Appendix B

Dansyl probe syntheses and characterization and D-8-Ad:P450cam structure

determination

Acknowlegements. The structure of the D-8-Ad:P450cam conjugate was determined by Anna-Maria A. Hays.

Syntheses.

Adamantane-1-carboxylic acid [4-(5-dimethylamino-naphthalene-1-sulfonylamino)-
butyl]-amide (1): (D-4-Ad) 0.100 g (0.312 mmole) 3, 74.5 mg (0.37 mmole) 1adamantyl carbonyl chloride, and 0.11 mL (0.62 mmole) N, N-diisopropylethylamine were dissolved in 5 mL dry DMF under Ar and stirred overnight at ambient temperature. The reaction mixture was diluted with $25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed twice with water, and the organic phase concentrated under reduced pressure. The crude product was purified via flash chromatography using $9: 1 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the product as a pale yellow-green solid. Yield $35.6 \mathrm{mg}(24 \%){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 8.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 8.31$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 8.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=0.9,7.2 \mathrm{~Hz}) 7.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,8.4 \mathrm{~Hz}) 7.51(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=7.2,8.4 \mathrm{~Hz}) 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) 5.63(1 \mathrm{H}, \mathrm{m}) 5.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}) 3.11(2 \mathrm{H}, \mathrm{m})$ $2.89(2 \mathrm{H}, \mathrm{m}) 2.88(6 \mathrm{H}, \mathrm{s}) 2.00(3 \mathrm{H}, \mathrm{m}) 1.77(6 \mathrm{H}, \mathrm{m}) 1.68(6 \mathrm{H}, \mathrm{m}) 1.42(4 \mathrm{H}, \mathrm{m}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 178.43,152.16,134.95,130.58,130.06,129.81,128.57,123.44,119.07,115.41$, $45.68,43.10,40.77,39.45,38.73,36.72,28.33,26.99,26.90$. ESI-MS (m/z) 484.3 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Adamantane-1-carboxylic acid [4-(5-dimethylamino-naphthalene-1-sulfonylamino)-octyl]-amide (2): Was prepared from 4 and 1-adamantyl carbonyl chloride in a manner identical to 1. Yield 45%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 8.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4) 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7) 8.24$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}) 7.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,8.7 \mathrm{~Hz}) 7.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,8.4 \mathrm{~Hz}) 7.18$
$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}) 5.58(1 \mathrm{H}, \mathrm{m}) 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}) 3.17(2 \mathrm{H}, \mathrm{m}) 2.88(6 \mathrm{H}, \mathrm{s}) 2.87(2 \mathrm{H}$, m) $2.02(3 \mathrm{H}, \mathrm{m}) 1.90(3 \mathrm{H}, \mathrm{m}) 1.82(3 \mathrm{H}, \mathrm{m}) 1.70(6 \mathrm{H}, \mathrm{m}) 1.38(4 \mathrm{H}, \mathrm{m}) 1.14(8 \mathrm{H}, \mathrm{m}))^{13} \mathrm{C}$ NMR (CDCl_{3}) 178.17, 152.20, 134.98, 130.57, 130.07, 129.86, 123.45, 118.98, 115.40, $45.67,43.48,40.77,39.50,38.83,36.75,36.65,29.73,29.17,28.99,28.36,28.06,26.86$, 26.50. ESI-MS (m/z) $540.3\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

5-Dimethylamino-Naphthalene-1-sulfonic acid (4-amino-butyl)-amide (3):

Following the preparation by Ikunaga et al., ${ }^{2} 200 \mathrm{mg}$ (0.75 mmole) dansyl chloride and 1.49 mL 1,4-diaminobutane (14.8 mmole) were dissolved in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 2 hours under argon. The reaction mixture was loaded directly onto a flash silica column, and eluted using $4: 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}$ to give the product as a pale yellowgreen oil. Yield $0.104 \mathrm{~g}(44 \%){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 8.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 8.36(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.7 \mathrm{~Hz}) 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) 7.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,8.7 \mathrm{~Hz}) 7.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,8.4$ Hz) $7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}) 5.3(3 \mathrm{H}$, overlapping m) $2.85(6 \mathrm{H}, \mathrm{s}) 2.84(2 \mathrm{H}, \mathrm{m}) 2.73(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.3 \mathrm{~Hz}) 1.52(4 \mathrm{H}, \mathrm{m}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 152.00,135.28,130.25,130.02,129.81$, $129.49,128.32,123.39,119.28,115.31,45.61,43.01,40.61,28.36,27.22$. ESI-MS (m/z) $322.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

5-Dimethylamino-naphthalene-1-sulfonic acid (4-amino-octyl)-amide (4):3 Was prepared from 1,8-diaminooctane and dansyl chloride in an identical fashion to 3. Yield $66 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 8.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 8.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 8.20(2 \mathrm{H}, \mathrm{dd}$,
$\mathrm{J}=0.9,7.2) 7.52(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,7.5 \mathrm{~Hz}) 7.48(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,8.4 \mathrm{~Hz}) 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5$ Hz) $5.5(3 \mathrm{H}$, overlapping m) $2.85(6 \mathrm{H}, \mathrm{s}) 2.82(2 \mathrm{H}, \mathrm{m}) 2.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) 1.49(2 \mathrm{H}$, m) $1.33(2 \mathrm{H}, \mathrm{m}) 1.11(8 \mathrm{H}, \mathrm{m}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ 152.09, 135.25, 130.42, 130.05, 129.87, 129.60, 128.51, 123.43, 119.18, 115.36, 45.65, 43.39, 40.99, 30.44, 29.64, 28.95, 28.82, 26.51, 26.35. ESI-MS (m/z) $378.3\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

P450cam:D-8-Ad Crystallization and Data Collection. The C334A P450cam:D-8-Ad complex was formed at a molar ratio of $1: 1(400 \mu \mathrm{M})$ at room temperature and crystallized by hanging drop vapor diffusion at $4^{\circ} \mathrm{C}$. Crystals were obtained under 0.1 M citrate (pH 5.5), $200 \mathrm{mM} \mathrm{KCl}, 13 \%$ (wt/vol) polyethylene glycol (PEG; molecular weight $=8,000$). For diffraction experiments, crystals were soaked in a solution containing 0.75 M citrate (pH 5.5), $150 \mathrm{mM} \mathrm{KCl}, 10 \%$ (wt/vol) PEG 8000, and 25\% (wt/vol) PEG 400 for 1 minute and flash frozen in liquid nitrogen. Data were collected on an Raxis IV detector equipped with Osmic confocal mirrors and Xstream cryo-device (100K) using CuK_{α} radiation $(\lambda=1.5418 \AA$) from a Ru200 X-ray generator operated at $50 \mathrm{kV}, 100$ mA . Data were processed using DENZO and SCALEPACK. ${ }^{4}$ The space group was $\mathrm{P} 2_{1} 2_{1} 2_{1}$ with cell dimensions: $\mathrm{a}=64.95, \mathrm{~b}=75.31, \mathrm{c}=93.17 \AA^{3}$ (Matthews coefficient $\left(\mathrm{V}_{\mathrm{M}}\right)=2.50$; solvent content $\left.=49.9 \%\right)$.

Structure Determination. The structure was solved by molecular replacement using the program AMoRE ${ }^{5}$ with camphor-bound P 450 cam (PDB code 2 cpp) as the initial model. After initial rigid body refinement in CNS, ${ }^{6}$ further refinement was carried out by iterative cycles of simulated annealing and B factor refinement using CNS and manual fitting using XFIT. 7 The heme and D-8-Ad were located in $\left|F_{o}\right|-\left|F_{c}\right|$ electron density omit maps and further refined by simulated annealing and manual fitting. The difference
electron density map $\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right|\right)$ of the D-8-Ad is well defined and continuous, and the average B-factor for D-8-Ad is moderately low ($38 \AA^{2}$) confirming the high occupancy of the ligand. The final model, which includes residues $(11-414)$ of P450cam, D-8-Ad, heme, and 301 waters, gave $\mathrm{R}_{\text {factor }} / \mathrm{R}_{\text {free }}$ values of 20.2 and 24.7.

Table B.1. Diffraction and Refinement Statistics for P450cam complexed with D-8-Ad

Diffraction Data:	
PDB code	
Resolution (\AA)	$20-2.2$
Unit Cell (\AA)	$\mathrm{a}=64.95, \mathrm{~b}=75.31, \mathrm{c}=93.17$
Space Group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
Reflections (Total/Unique)	$115720 / 21045$
Multiplicity	5.2
Completeness (\%)	$93.3(63.8)^{*}$
$\mathrm{R}_{\text {sym }}$	$0.102(0.266)^{*}$
$\mathrm{I} / \sigma(\mathrm{I})$	$13.9(2.5)^{*}$
Refinement Statistics:	
$\mathrm{R}_{\text {factor }}^{\S}$	$20.2(28.5)^{*}$
$\mathrm{R}_{\text {free }}{ }^{\AA}$	$24.7(33.0)^{*}$
Average B (from Wilson plot, $\left.\AA^{2}\right)$	26.2
No. of protein atoms and Ave B, $\left(\AA^{2}\right)$	$3200,25.4$
No. of waters and Ave B, $\left(\AA^{2}\right)$	$301,34.0$
No. of heme atoms and Ave B, $\left(\AA^{2}\right)$	$43,16.5$
No. of D-8-Ad atoms and Ave B, $\left(\AA^{2}\right)$	$38,38.9$
Rms bonds, angles ${ }^{\dagger}$	$0.006 \AA, 1.3^{\circ}$

* Outer shell statistics ($2.30-2.20 \AA$)
${ }^{\S} \mathrm{R}=?| | \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }}\right|\right| / ?\left|\mathrm{~F}_{\text {obs }}\right|$ for all reflections (no σ cutoff).
${ }^{\text {I }}$ Free R calculated using 4.8% as test set.
${ }^{\dagger}$ rms deviations from ideal bond and angle restraints.

REFERENCES

1. Dmochowski, I. J.; Crane, B. R.; Wilker, J. J.; Winkler, J. R.; Gray, H. B. Proc.

Natl. Acad. Sci. U.S.A. 1999, 96, 12987-12990.
2. Ikunaga, T.; Ikeda, H.; Ueno, A. Chem. Eur. J. 1999, 5, 2698-2704.
3. Macchia, M.; Salvetti, F.; Barontini, S.; Calvani, F.; Gesi, M.; Hamdan, M.; Lucacchini, A.; Pellegrini, A.; Soldani, P.; Marini, C. Bioorg. Med. Chem. Lett. 1998, 8, 3223-3228.
4. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307-326.
5. Navaza, J. Acta Crystallogr., Sect. A 1994, 50, 157-163.
6. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-

Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice,
L. M.; Simonson, T.; Warren, G. L. Acta Crystallogr., Sect. D 1998, 54, 905-921.
7. McRee, D. E. J. Struct. Biol. 1999, 125, 156-165.

