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Abstract

This thesis presents experimental measurements of the approach and rebound of a particle

colliding with a wall in a viscous fluid. Steel, glass, nylon, and Delrin particles were used,

with diameters ranging from  to  mm. The experiments were performed using a thick

Zerodur or Lucite wall with various mixtures of glycerol and water. Normal and tangential

coefficients of restitution were defined from the ratios of the respective velocity components

at the point of contact just prior to and after impact. These coefficients account for losses

due to lubrication effects and inelasticity.

The experiments clearly show that the rebound velocity depends strongly on the impact

Stokes number and weakly on the elastic properties of the materials. Below a Stokes number

of approximately , no rebound of the particle occurs. Above a Stokes number of approx-

imately , the normal coefficient of restitution asymptotically approaches the value for a

dry collision. The data collapse onto a single curve of restitution coefficient as a function of

Stokes number when normalized by the dry coefficient of restitution.

Oblique collisions in a fluid are qualitatively similar to oblique collisions in a dry system,

with a lowered friction coefficient dependent on surface roughness. For smooth surfaces the

friction coefficient is drastically reduced due to lubrication effects. Values for the friction

coefficient are predicted based on elastohydrodynamic lubrication theory. The particle sur-

face roughness was found to affect the repeatability of some measurements, especially for

low impact velocities.

A significant retardation of a particle approaching a target at a low Stokes number was

observed and quantified. The distance at which the particle’s trajectory varies due to the

presence of the wall is dependent on the impact Stokes number. The observed slowdown

can be predicted from hydrodynamic theory to a good approximation.
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An analysis of the erosion of ductile materials during immersed collisions is presented.

The size of the crater formed by the impact of a single particle against a ductile target can

be estimated from theory, and these estimates agree well with experimental measurements.



vii

Contents

Acknowledgements iii

Abstract v

List of Tables xi

List of Figures xiii

Nomenclature xvii

 Introduction 

. Coefficient of restitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Liquid-immersed collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Experimental setup 

. Description of the apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Surrounding fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Pendulum string . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Particles and target blocks . . . . . . . . . . . . . . . . . . . . . . 

.. Surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Experimental technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Normal collisions 

. Dry coefficients of restitution . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution with fluid effects . . . . . . . . . . . . . . . . . . 



viii

. Comparison with elastohydrodynamic theories . . . . . . . . . . . . . . . 

. Influence of the particle roughness . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Oblique collisions 

. Oblique impact of spheres . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Dry collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Collisions in a liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Mathematical modeling of the fluid effects . . . . . . . . . . . . . . . . . 

.. Angular velocity after a lubricated impact . . . . . . . . . . . . . . 

.. Viscosity variation with pressure . . . . . . . . . . . . . . . . . . 

.. Effect of temperature . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Comparison between experiments and theory . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Hydrodynamic effect of the wall 

. Approach of a particle to a wall . . . . . . . . . . . . . . . . . . . . . . . . 

. Comparison with hydrodynamic theory . . . . . . . . . . . . . . . . . . . 

. Flow field visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Application to slurry erosion 

. Erosion mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plastic indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Fluid effect on the impact velocity . . . . . . . . . . . . . . . . . . . . . . 

. Analysis of a slurry pot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Conclusion 

. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



ix

A Sample preparation 

B Particle tracking algorithm 

B. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B. Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.. Tracking of the particle translation (track.m ) . . . . . . . . . . 

B.. Tracking of the particle rotation (rotmeas.m ) . . . . . . . . . . 

C Physical properties of glycerol 

Bibliography 



x



xi

Tables

. Torsional stiffness of pendulum strings . . . . . . . . . . . . . . . . . . . . 

. Properties of particles used in collision experiments . . . . . . . . . . . . . 

. Properties of walls used in collision experiments . . . . . . . . . . . . . . . 

. Typical collision parameters for Stokes number less than 80 . . . . . . . . . 

. Parameters for the computation of elastohydrodynamic friction . . . . . . . 

. Collisional velocities and crater diameters for a slurry pot erosion tester . . . 

C. Density of glycerol–water solutions . . . . . . . . . . . . . . . . . . . . . . 

C. Specific gravity of glycerol–water solutions . . . . . . . . . . . . . . . . . . 

C. Viscosity of glycerol–water solutions . . . . . . . . . . . . . . . . . . . . . . 



xii



xiii

Figures

. Schematic representation of the experimental setup . . . . . . . . . . . . . 

. Viscosity as a function of density for glycerol–water mixtures between %

and % glycerol by weight . . . . . . . . . . . . . . . . . . . . . . . . . . 

. SEM photographs of the particles used in the experiments . . . . . . . . . . 

. Particle position and velocity traces for an immersed collision . . . . . . . . 

. Particle position and velocity traces for a dry collision . . . . . . . . . . . . 

. Angular velocity measurement for a typical collision . . . . . . . . . . . . . 

. Effect of the wall thickness on the dry coefficient of restitution of a 6 mm

glass bead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution as a function of Stokes number for collisions of glass

particles on a Zerodur wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution as a function of Stokes number for collisions of steel

particles on a Zerodur wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution as a function of Stokes number for collisions of plas-

tic particles on a Zerodur wall in water . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution as a function of Stokes number for collisions of all

particles on a Zerodur wall in water . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution as a function of Stokes number for collisions on a

Lucite wall in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficient of restitution for collisions of steel particles on a Zerodur wall,

compared with the results by McLaughlin and Gondret et al. . . . . . . . . . 

. Effective coefficient of restitution scaled by the dry coefficient of restitution,

as a function of Stokes number for immersed particle–wall collisions . . . . 



xiv

. Oblique loading of two spheres . . . . . . . . . . . . . . . . . . . . . . . . 

. Oblique collision of a sphere and a flat surface . . . . . . . . . . . . . . . . 

. Two spheres in an oblique collision . . . . . . . . . . . . . . . . . . . . . . 

. Comparison between the experimental results of Maw et al. and the oblique

collision of a 12.7 mm steel sphere in air on a Zerodur wall . . . . . . . . . . 

. Effective normal coefficient of restitution for immersed oblique collisions in

water and glycerol–water mixtures . . . . . . . . . . . . . . . . . . . . . . . 

. Measured angular velocity for a 12.7 mm steel sphere impacting obliquely on

a Zerodur wall in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Nondimensional incidence and rebound angles for a 12.7 mm steel ball bear-

ing impacting obliquely on a Zerodur wall in water . . . . . . . . . . . . . . 

. Rotational restitution and friction coefficients for a 12.7 mm steel ball bear-

ing impacting obliquely on a Zerodur wall . . . . . . . . . . . . . . . . . . 

. Measured angular velocity for a 12.7 mm glass sphere impacting obliquely on

a Zerodur wall in % wt. glycerol–water . . . . . . . . . . . . . . . . . . . 

. Nondimensional incidence and rebound angles for a 12.7 mm glass sphere

impacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . 

. Rotational restitution and friction coefficients for a 12.7 mm glass sphere im-

pacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . . . 

. Nondimensional incidence and rebound angles for a 12.7 mm steel sphere

impacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . 

. Nondimensional incidence and rebound angles for a 12.7 mm steel sphere

impacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . 

. Rotational restitution and friction coefficients for a 12.7 mm steel sphere im-

pacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . . . 

. Rotational restitution and friction coefficients for a 12.7 mm steel sphere im-

pacting obliquely on a Zerodur wall in % wt. glycerol–water . . . . . . . . 

. Coefficient of sliding friction for immersed oblique collisions in water and

glycerol–water mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



xv

. Local rebound angle for immersed oblique collisions in water and glycerol–

water mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Idealized oblique collision . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Elastohydrodynamic contact of a sphere and a wall . . . . . . . . . . . . . . 

. Friction coefficient, calculated from elastohydrodynamic lubrication theory,

for immersed oblique collisions . . . . . . . . . . . . . . . . . . . . . . . . 

. Comparison between theoretical and experimental friction coefficients for

collisions of steel and Zerodur in aqueous glycerol solutions . . . . . . . . . 

. Comparison of the velocity–position plots for a particle colliding with a wall

and a free swinging pendulum . . . . . . . . . . . . . . . . . . . . . . . . . 

. Coefficients of restitution and critical distances of slowdown for a 6.35 mm

glass bead impacting a Zerodur wall, immersed in glycerol–water . . . . . . 

. Distance at which a sphere has slowed down an additional % due to the

presence of a wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Normalized slowdown of a glass sphere within the last one and one-half par-

ticle diameters of its approach to a wall . . . . . . . . . . . . . . . . . . . . 

. Visualization of the flow field around a . mm Delrin sphere colliding with

the Zerodur wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Plastic indentation of a flat surface with a sphere . . . . . . . . . . . . . . . 

. Schematic diagram of a slurry pot . . . . . . . . . . . . . . . . . . . . . . . 

. Crater diameters for the experimental conditions explored by Clark . . . . . 

. Modified deceleration of a sphere due to the presence of a wall . . . . . . . . 

. Comparison between crater diameters calculated from theory and those mea-

sured by Clark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A. Attachment of a nylon string to a steel ball bearing . . . . . . . . . . . . . . 

B. Tracking of the position and angular orientation of a sphere using MATLAB . 



xvi



xvii

Nomenclature

Latin characters

a Hertz contact radius

b Target block thickness

C Pressure–viscosity coefficient, Chu–Cameron power law

c Specific heat

dc Crater diameter

dp Sphere diameter

E Young’s modulus

e Coefficient of restitution
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Chapter 

Introduction

The mechanisms of impact and rebound of solid particles in a multi-phase system are of in-

terest over a wide range of application areas. The oil industry, for instance, routinely relies

on the transport and deposition of macroscopic particles during drilling operations. The

ability to determine the location at which proppant particles will stop is fundamental to the

success of hydraulic fracturing techniques (Smith and Hannah, ), since the solid parti-

cles are responsible for keeping the fracture open once the pressure of the fracturing fluid is

lowered. The sand and rock fragments formed during drilling pose a problem of their own:

as the drilling fluid carries these particulates back into the machinery, they impact upon

pipe walls and pump components, causing considerable erosion. Many industrial processes

suffer from this same slurry erosion mechanism.

There have been many studies reported on the erosion of materials by impacting parti-

cles. Finnie () and Bitter () developed models for determining the mass of surface

material removed by the impact of a single particle. In practice, two types of wear occur si-

multaneously, one caused by the cutting action of free-moving particles and another caused

by the repeated plastic deformation of the surfaces (which eventually results in fracture or

breakage). As shown by Magnée (), the cutting action of the particles is more important

for ductile materials, while deformation is more significant for brittle materials.

In slurry erosion—where many particles hit a container surface and cause wear—the pa-

rameter usually linked to the erosion damage rate is the kinetic energy of the particles. Any

modeling of these flows requires a detailed understanding of the mechanics of individual

collisions. In dry granular flows where the effect of the interstitial fluid is negligible, the en-
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ergy dissipation due to the inelasticity of the contacts is often characterized by a coefficient

of restitution, e, defined by the ratio of the rebound velocity vr to the impact velocity vi ,

e =−vr

vi
. (.)

In a similar manner, an effective coefficient of restitution may be useful in describing a col-

lision in which the effects of the interstitial fluid are important. Such a coefficient must

account for the viscous dissipation and the kinetic energy needed to displace the fluid be-

tween the surfaces, in addition to the inelasticity of the contact.

. Coefficient of restitution

“Two seemingly identical black spheres, with marked differences in their physical properties.

They have the same density, mass, color and appearance; yet when dropped to the floor, one

jumps wildly, the other is motionless.” This is the text with which Edmund Scientific adver-

tises their Happy and Unhappy Balls product (Edmund Scientific, ). Contrary to what is

usually expected of a rubber ball, when the unhappy ball is dropped vertically onto the floor,

it stops dead without bouncing. On the other hand, the happy ball bounces to a height al-

most equal to the drop height. If one were to test the elastic properties of as a hard floor and

a soft membrane under tension by bouncing a happy ball on them, the ball would bounce

equally well on both surfaces. One might be tempted to conclude that the surfaces have

comparable properties. The differences between the two are much more obvious when one

also tests the surfaces using an unhappy ball, since the latter only bounces appreciably from

the stretched membrane. However, this test alone does not indicate whether the energy loss

occurs mainly in the floor or mainly in the ball.

An interesting experiment is to collide a happy ball with an unhappy ball, since the

physics of this type of collision is relevant to problems in the physics of sports where a ball

is struck by a bat or club or racquet. The particularities of a ball’s construction undoubtedly

affect the ball’s coefficient of restitution. Take, for instance, the average coefficient of restitu-

tion of an American or National League baseball from  through . Those balls had
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rubber-cushioned cork centers and a coefficient of restitution of 0.46± 0.01 (Briggs, ).

To stretch the supply of rubber, in  the American and National Leagues substituted bal-

ata cork centers for the rubber-cushioned cork centers that had been used in baseballs before

World War II. The coefficient of restitution of the official balls in  dropped to 0.40±0.01,

from which Briggs concluded that a hard-hit fly ball with a  center might be expected

to fall about  feet shorter than a pre-war ball hit under the same conditions. A modern-

day Major League baseball is required to have a coefficient of restitution of 0.546± 0.032

(Adair, ).

The construction of a ball, however, is not the only factor that affects its rebound. The

playing surface is equally important. Tennis players and commentators universally agree

that balls bounce much more slowly and much higher off a clay court than off grass, despite

the fact that calculations based on available data show that the differences should be rela-

tively small. In tennis, a difference of % in ball speed can translate to a difference of several

feet in ball position, so a % difference can win or lose a match. In baseball, a wet outfield

can cause the ball to be less lively or to bounce in an unexpected direction, providing a

runner with enough time to score the winning run.

The first theoretical treatment of the impact and rebound of two solid objects is due

to St.-Venant, who suggested that the total period of a collision is given by the time that it

takes a compressive wave to travel across the solid and be reflected back (Love, , §).

While this approximation is applicable when the bodies are relatively long, the collision

of small bodies is in general determined by the deformation of the regions of contact. In a

dry system, if the deformations are elastic, the process can be described by the Hertz contact

theory (Timoshenko and Goodier, , §). In the more general case, where some plastic

deformation occurs, the collision period is further prolonged.

According to Hertzian theory, the maximum radius of contact a of a sphere of density

ρp and radius R normally impacting an elastic half-space at a velocity V is given by

a =
(

3RW

4E∗

)1/3

, (.)

Since the  season, there is no distinction between American and National League baseballs. All
official balls are now labeled Major League Baseball.
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where W is the equivalent load due to the impact and is obtained from

W =
4

3
R2E∗

(
5π

4E∗
ρpV 2

)3/5

. (.)

The reduced modulus E∗ =
[(

1−ν2
1

)
/E1 +

(
1−ν2

2

)
/E2

]−1
is a function of the Young’s

moduli E1,E2 and Poisson’s ratios ν1,ν2 of the two bodies. The period τ of a collision

under these conditions is given by

τ =
2
√
πΓ(7

5)
Γ( 9

10)
a2

V R
≈ 2.87

(
M2

RE∗2V

)1/5

, (.)

where M = 4
3ρpπR3 is the mass of the particle. The collision time τ is on the order of

microseconds for elastic collisions of glass or metal objects a few centimeters in size. In

those materials, the velocity of a compressive wave is generally in excess of 1000 m s−1.

For collisions where plastic deformation occurs, the total time of impact is the sum

of two times: the time of elastic rebound, τ , given by equation (.) and the time of plastic

indentation, τp. The latter can be estimated by assuming that the plastic deformation occurs

under a dynamic pressure, pd, proportional to the yield strength of the material (Johnson,

, §.). This assumption leads to a plastic indentation time,

τp =
(
πM

8Rpd

)1/2

, (.)

which is independent of the impact velocity. For a hard metallic object of a few centimeters

in size colliding with a softer metal wall, τp is on the order of a few hundred microseconds.

This thesis is an examination of the effect that an interstitial fluid has on the rebound

of a sphere, be it a ball on a wet field or a solid particle in a multi-phase flow. Due to the

importance of fully-immersed systems to industrial processes, the emphasis is placed on the

latter. In discrete element simulations of dry flows, the coefficients of restitution are used as

input parameters to model the collision of two particles or the collision between a particle

and a wall. In general, constant coefficients of restitution are assumed, although it is possi-

ble to allow the coefficients to vary. The values, however, are often obtained from idealized
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experiments that may not be representative of the conditions encountered in applications.

The knowledge of an effective coefficient of restitution that accounts for the combined

effects of the interstitial fluid and the inelasticity of the contact would be useful for nu-

merical simulations of liquid–solid flows, such as those found in the studies by Hu (),

Glowinski et al. (), Nguyen and Ladd (), and ten Cate et al. (). In these simu-

lations, the motion of the interstitial fluid is calculated directly; however, the solid surfaces

are not allowed to touch because contact would break the lattice modeling of the fluid.

When two solid particles come within one grid spacing, fluid nodes are excluded from re-

gions between the solid surfaces, leading to a loss of mass conservation. A repulsive force

between the particles is incorporated to prevent contact between solid surfaces. Potapov,

Hunt, and Campbell () proposed a combination of smoothed particle hydrodynam-

ics (SPH) and the discrete element method to model flows containing macroscopic solid

particles in a viscous liquid. Their SPH model breaks down when the solid particle separa-

tion becomes smaller than a kernel width, since a mono-layer of smoothed fluid particles

becomes trapped between the solid surfaces. A model based on an effective coefficient of

restitution could be used to approximate the solid contacts in liquid–solid flow simulations,

significantly improving computational efficiency.

. Liquid-immersed collisions

The problem of a sphere of mass M moving in a fluid toward a surface or toward another

sphere has been studied by many researchers. Brenner () analyzed the problem of a

sphere moving toward a wall at small Reynolds number (Re = ρ f vidp/µ, where ρ f is the

fluid density, vi is the approach velocity, dp is the reduced particle diameter, and µ is the

fluid dynamic viscosity) and found that the hydrodynamic force diverges as the gap separa-

tion, h, tends to zero; therefore, in the absence of elasticity of the particles or of the fluid,

a rebound of the particles would not be possible. In a later study by Davis, Serayssol, and

Hinch (), the particle surfaces are allowed to deform elastically due to the increase in

hydrodynamic pressure. As a result, some of the incoming kinetic energy of the particle is

stored as elastic strain energy. This strain energy is released after the particle comes to rest,
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resulting in a rebound of the particles. However, since fluid always remains in the gap be-

tween the particles, physical contact between surfaces does not occur. The results from their

analysis showed that the maximum particle deformation and the rebound of the particle af-

ter collision (measured in terms of the ratio of the rebound velocity vr to the approach

velocity vi), depend on the particle Stokes number, St = Mvi/6πµR2 = (1/9)Re(ρp/ρ f )

and an elasticity parameter, ε= 4µviR3/2/πE∗x
5/2
0 , where x0 is the position within the gap

between the undeformed surfaces at which the velocity is vi , and R = dp/2 is the particle

radius. Since their analysis assumes that the Reynolds number based on the distance x0 is

much less than one, the results are independent of the fluid density.

Barnocky and Davis () extended the analysis of Davis et al. () to include the

variation of the density and viscosity with pressure. They observed that an increase in the

density of the fluid during compression could enhance the rebound of an impacting par-

ticle, even when the particle was completely rigid. The increase in viscosity with pressure

results in the fluid behaving like an elastic solid, significantly affecting the deformation of

an elastic particle and enhancing the rebound of the particle from a surface. The pertur-

bation analysis by Kytömaa and Schmid () examined the effect of fluid compressibility

on a collision between two particles by assuming that the solid is incompressible. Using a

linear representation for the density dependence on pressure, the particles do not rebound.

However, they conjecture that a nonlinear dependence of the density on pressure might

result in a rebound of the particles even when the particles are incompressible.

As pointed out by Smart and Leighton (), the thickness of the lubrication layer be-

tween two colliding particles is very small, and may be on the order of the size of the surface

roughness. They argued that surface roughness may have a significant impact on models

based on perfectly smooth particles, because contact may occur through microscopic sur-

face imperfections.

Lundberg and Shen () obtained experimental measurements of the coefficient of

restitution for the case when a drop of fluid was placed in the gap between a sphere and

a surface. Davis, Rager, and Good () and Barnocky and Davis () performed mea-

surements of the apparent coefficient of restitution for the collision of spheres with a flat

surface overlaid with a thin layer of viscous fluid. Their results show a critical Stokes num-
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ber above which rebound occurs. For smooth surfaces, this critical Stokes number varies

from approximately 0.25 to approximately 4. The data presented by Davis et al. () col-

lapse fairly well onto a single master curve, obtained from lubrication theory and scaling

arguments.

Three experimental studies have examined the rebound of a particle falling at its termi-

nal velocity and impacting a submerged surface. McLaughlin (), Gondret et al. ()

and Gondret, Lance, and Petit () dropped particles in a tank filled with various viscous

fluids to study the transition from arrest to rebound. McLaughlin used steel spheres of dif-

ferent diameters in glycerol–water mixtures and a thick steel anvil as a target. Gondret et al.

() used glass beads and steel spheres in water, glycerol, and silicone oil; the surface was

a relatively thin glass plate, twice as thick as the diameter of their largest particle. In a later

study by Gondret et al. (), the target surface was thicker and particles of tungsten car-

bide, stainless steel, soda glass, Teflon, Delrin, polyurethane, and nylon were used. In all

three studies, the authors observed that there was no rebound of the particle for Stokes num-

bers below a certain threshold. Gondret et al. () reported no rebound at St = 12, but

did report a rebound at St = 29, which was obtained with a steel ball falling in silicone oil.

McLaughlin reported no rebound at St = 10, but did report a rebound at St = 19. Neither

McLaughlin nor Gondret et al. () reported data for Reynolds numbers from approxi-

mately 150 to 5000. As noted by McLaughlin, the motion of the falling particle was erratic

due to the shedding of vortex rings in the wake of the sphere. Gondret et al. () reported

measurements for a range of Reynolds numbers of approximately 2 to 2000; no rebound

was reported for St = 12, but rebound did occur at slightly higher Stokes numbers.

The results published by Joseph et al. () constitute the bulk of Chapter  of the

present thesis. Normal collisions of spheres with a wall immersed in a liquid were per-

formed by means of a pendulum device. Joseph et al. observed no rebound for St ≈ 10 or

lower. The repeatability of the experiments was found to be dependent on the surface rough-

ness of the materials, in particular for St < 80. For higher impact velocities the coefficient

of restitution asymptotically approached the value for dry collisions.

In a related study by Zhang et al. (), spheres were dropped onto a stationary sphere

Teflon® and Delrin® are registered trademarks of E. I. du Pont de Nemours and Company.
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in a liquid such that both collinear and oblique collisions could be achieved. Their measure-

ments were favorably contrasted with lattice-Boltzmann simulations and with a mechanis-

tic model that describes the collision process.

. Thesis outline

The goal of the research documented in this thesis is to investigate the fundamental mechan-

ics of the collision of solid objects immersed in fluid. In particular, the work focuses on the

effects of a surrounding liquid on the rebound of a single sphere impacting a flat wall, both

perpendicularly and obliquely. A summary of the current literature that describes solid–

liquid interaction during rebound has been presented above.

The work presented in the thesis is largely experimental, and Chapter  provides a de-

scription of the experimental apparatus used. The characterization of the different compo-

nents of the experimental device and a description of the experimental technique are also

presented.

Chapter  concentrates on experiments performed for particle trajectories normal to the

impacted wall; collisions where the particle impacts obliquely with the wall are presented

in Chapter . Theoretical models are developed to contrast the results of the immersed

collisions with results of dry collisions from the literature.

The proper characterization of particle collisions in a liquid depends upon the ability to

accurately predict the particle velocity upon contact. Chapter  analyzes the effect of a wall

on the velocity of a particle, both experimentally and theoretically, with good agreement

between the two.

The theoretical models from Chapters  and  are used in Chapter  as a basis for pre-

dicting the wear caused by repeated deformation of a surface as a consequence of the impact

of free-moving particles in a flow.

A summary of the present work and some future directions are presented in Chapter

. The possibility of using the obtained models as a basis for numerical simulations of the

interaction of multiple particles is also discussed.
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Chapter 

Experimental setup

A pendulum configuration like the one proposed by Zenit and Hunt () was used to

control the trajectory of a particle colliding with a wall in a viscous fluid. The impact ve-

locity was controlled by varying the initial inclination angle. The resulting collisions were

monitored using a high-speed digital video camera. The experiments were performed in

glycerol–water mixtures with viscosities ranging from 1 to 60×10−3 Pa · s and with particles

ranging from 3 to 13 mm in diameter. The particle–fluid density ratio was between 1.1 and

7.8. With these parameters, the Stokes number defined using the velocity just prior to im-

pact ranged from 10 to approximately 2000. For validation purposes, some experiments

were also performed in air.

. Description of the apparatus

A fine nylon string of diameter between 50 and 130 µm was attached to a sphere that was

positioned at an initial angle φi with respect to the vertical. The particle was then released

without rotation from a pair of nylon- or Teflon-lined tweezers. The wall was positioned

such that contact occurred at φ = 0. To examine oblique collisions, the azimuthal orienta-

tion of the wall was adjusted such that its normal formed an angle α with the plane of the

pendulum. A schematic representation of the experimental setup is shown in Figure ..

A Redlake MotionScope® S monochrome high-speed digital camera (Redlake, )

was used to capture the trajectories of the spheres. The movies obtained from the camera

were archived on S-VHS tape for subsequent processing. Most of the experiments were





storage
and

display

release
device

VCR

RedLake
MotionScope
8000S camera

V

φi

dp

µf

ρpρf

α

Figure .: Schematic representation of the experimental setup.

recorded at  frames per second. In the majority of cases the sampling resolution was

240× 210 -bit pixels. The setup was such that for the experiments involving normal colli-

sions (Chapter ) the focal plane of the high-speed camera was parallel to the plane of the

pendulum. Oblique collisions (Chapter ) were recorded from below, as shown in Figure

., so that the deviation from the normal could be quantified.

The necessary illumination for high-speed video recording was provided by two 250 W

Lowel Pro-light focusing halogen spotlights. The heat generated by these lamps was suffi-

cient to noticeably warm up the liquid in the tank. The spotlights were left off in order to

minimize this heating, except for a short time before each experimental run to allow for the

light intensity to stabilize.

The mechanical and geometrical properties of the various components of the experi-

mental apparatus are characterized in the following sections.
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Figure .: Viscosity as a function of density for glycerol–water mixtures between %
and % glycerol by weight.

.. Surrounding fluid

Aqueous glycerol solutions ( to % wt., 1 to 60×10−3 Pa · s) were used as the surrounding

fluid for the experiments. Glycerol is completely miscible with water, which allows for a

large range of viscosities to be explored by changing the mix proportions. Tabulated values

for the density and viscosity of these solutions are readily available (Green and Maloney,

; Lide, ) and are presented in Appendix C. The specific gravity of the solutions

was measured using a hydrometer. The viscosity was then determined from the tabulated

data. Figure . shows the viscosity plotted as a function of mixture density for the lowest

and highest temperatures explored in this thesis. Note that the viscosity of glycerol–water

mixtures is highly temperature-sensitive; for this reason, the temperature of the liquid was

measured at each run with a mercury thermometer. In order to guarantee a stable viscosity,

experiments were always run within a 1°C temperature window.

The boiling point of glycerol at atmospheric pressure is 290°C. At 25°C the vapor pres-

sure of glycerol is well below 1 Pa; the vapor pressure of water at that temperature is on the

order of 3 kPa. For the concentrations used, water tends to evaporate from the surface of
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the solution. As the water evaporates, denser, more viscous glycerol is left behind, making

it necessary to regularly stir the mixture. It is important to wait for the air bubbles to clear

the liquid after mixing, since they affect the density measurements and interfere with the

video imaging.

.. Pendulum string

Each particle used was suspended from nylon string to form a pendulum. Several strings

were used, all of them Dai-Riki Velvet leaders in sizes ranging from 6X (∅ 130 µm) to 9X

(∅ 50 µm). The leaders were attached to the spheres using cyanoacrylate contact glue, as

described in Appendix A. Depending upon the concentration of glycerol used, a leader is

approximately neutrally buoyant. The diameter of the string used for making each pendu-

lum was chosen so that the string diameter was at least  times smaller than the sphere

diameter. For the experimental conditions explored, the drag coefficient of the string (a

cylinder) is similar to that of the sphere. The overall drag force is dominated by the drag on

the sphere, since the latter has a larger cross-sectional area. The string’s drag contribution

amounted to less than % of the overall drag force, and was therefore neglected.

In the case of oblique collisions, the torsional stiffness of the string had to be considered.

Modeling the string as a linear torsional spring, the torsional oscillation of the pendulum

is governed by the equation I0θ
′′+ Ksθ = 0, where I0 is the polar moment of inertia of the

sphere about its center and Ks is the torsional stiffness of the string suspending it. The

general solution is θ(t) = Acosω0t +B sinω0t , where ω0 =
√

Ks/I0 = 2π f . Therefore,

Ks = 4π2 f 2I0 =
32

15
π3ρ

R5

τ 2 , (.)

where the polar moment of inertia of a solid sphere, I0 = 2
5mR2 = 8

15πρR5, has been sub-

stituted in. By measuring the period τ of oscillations of a 12.7 mm steel ball bearing (ρ =

7780 kg m−3), the torsional stiffness of the different strings can be calculated from equation

(.). The results are summarized in Table ..

The contact time for an elastic dry collision, based on equation (.), is on the order

Fly-fishing casting lines.
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Table .: Torsional stiffness of pendulum strings.

String ∅ (µm) τ (s) Ks×109 (N m)

X 127 6.648 3846.4
X 76 17.229 572.8
X 51 41.568 98.4

of 5 µs for contacts involving steel or glass. For collisions in which plastic deformation oc-

curs, the period becomes longer and can be estimated from equation (.). Zenit, Hunt,

and Brennen () showed that the duration of an immersed collision is somewhat pro-

tracted, presumably because the particle impact speed is reduced by the fluid. The amount

of energy that can be recovered in the tangential direction from an oblique contact is re-

lated to the lateral stiffness of the bodies in contact, κcontact. The elastic timescales τcollision

and τstring, corresponding to the lateral stiffness of contact and the torsional stiffness of the

string, respectively, are related by the ratio

τstring

τcollision
=

√
κcontact/m√
Kstring/I0

≈ 1

R

√
κcontact

Kstring
, (.)

where κcontact = 8aG∗ is the lateral stiffness of a sphere–plane contact (see Carpick, Ogletree,

and Salmeron, ; Colchero, Luna, and Baró, ). The reduced shear modulus, G∗ =

[(2−ν1)/G1 + (2−ν2)/G2]
−1, depends on G1 and G2, the sphere and wall shear moduli,

and ν1 and ν2, the respective Poisson’s ratios.

Based on the times of contact for a typical steel–glass collision and on the measured pe-

riods of oscillation in Table ., we have from equation (.) that κcontact/Kstring ≈ 1010. The

torsional stiffness of the string can therefore be neglected when analyzing oblique collisions

with a pendular setup like the one proposed. Furthermore, the stiffness of the string has no

effect on the experimental measurement, since each experimental sample spans at most 0.2

seconds, a duration two orders of magnitude shorter than the torsional stiffness timescale.
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Table .: Properties of particles used in collision experiments.

Material
dp

(mm)
ε ρp

(kg m−3)
E

(GPa)
ν σs

(µm)
λp

(µm)

Glass beads 3.0 0.0625 2540 60 0.23 0.1384 44.70
4.1 0.0588 2540 60 0.23 0.0502 41.06
6.0 0.0476 2540 60 0.23 0.0721 49.76

Glass sphere 6.35–12.7 0.0031 2540 60 0.23 0.1305 22.59
Steel 4.1–12.7 0.0024 7780 190 0.27 0.0236 48.04
Nylon 6.35 0.0031 1140 2.76 0.40 2.0114 41.86
Delrin 12.7 0.0039 1400 2.80 0.35 0.7960 101.49

.. Particles and target blocks

Five different particle types, with diameters ranging from 3 to 12 mm, were used in the ex-

periments. The particle properties, such as density, ρp, Young’s modulus, E, Poisson’s ratio,

ν, diameter, dp, and sphericity, ε (defined for a given particle as the difference between the

largest diameter and the smallest diameter, divided by the nominal diameter), are summa-

rized in Table .. The sphericity values were computed from the particle dimensional tol-

erances in the manufacturer-provided specifications. The particles included glass grinding

beads, glass spheres, steel ball bearings, and nylon and Delrin spheres. Glass grinding beads

are inexpensive, and have a significant variation in particle diameter and a lower value of ε.

Glass spheres have much tighter size tolerances, a consequence of having been ground into

a spherical shape. The table also includes the root-mean-square surface height, σs, and the

correlation distance, λp, measured from the scanning electron microscopy images discussed

in §...

Most of the experiments presented in this thesis were performed using two different

materials as targets: Zerodur (a glass-like material) and Lucite. The properties of the

blocks are given in Table .. The blocks were chosen so that their thickness, b, was much

larger than the particle diameter (see Goldsmith, ; Sondergaard, Chaney, and Brennen,

). For comparison, a 6.35 mm glass plate was also used. The surfaces were polished

in order to minimize the effect of wall roughness on the experiments. Due to the chamber

Zerodur® is a registered trademark of Schott Glass Technologies.
Lucite® is a registered trademark of Lucite International Ltd.
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Table .: Properties of walls used in collision experiments.

Material b(mm) ρ (kg m−3) E (GPa) ν

Glass 6.35 2540 65 0.23
Zerodur 75.0 2530 91 0.24
Lucite 50.8 1100 40 0.32

size of the scanning electron microscope used, it was not possible to measure the surface

properties of the Zerodur block. However, the analysis of a small sample from the Lucite

block showed that the polished surfaces had a roughness comparable to that of the steel

particles.

.. Surface roughness

The surface roughness is quantified using two parameters as presented in Table .. The

root-mean-square surface roughness, or standard deviation of the surface height, σs, de-

scribes the variation in surface elevation with respect to a flat or mean (reference) surface.

In addition to σs, the profile of a random surface may be characterized by its autocorre-

lation function (Thomas, ) that describes the similarity between the height, z, of two

points of the surface separated some distance, x, along the surface. As the horizontal dis-

tance between two surface points increases, the autocorrelation function decreases toward

zero since the correlation between the heights of those two surface points decreases. The

maximum distance at which a significant correlation occurs is called the correlation length,

λp, and is defined as the displacement for which the autocorrelation function is equal to

e−1 (∼ 0.36788).

Figure . shows scanning electron microscopy images of the surfaces of the five kinds of

particles used in these experiments and of the Lucite target block. Figures .(a)–(c) show

the surface structures of the glass beads. The smaller beads tend to have more pits than the

larger ones. In all cases, the asperities are abrupt and have a fairly long correlation distance.

In contrast, the ground glass spheres, shown in Figure .(d), have smoother asperities with

a short correlation distance. The steel ball bearings are smooth with some isolated scratches

along the surface, as shown in Figure .(e). The plastic spheres have both a large r.m.s.
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(a) Glass bead, . mm, × (b) Glass bead, . mm, ×

(c) Glass bead, . mm, × (d) Glass sphere, . mm, ×

(e) Steel sphere, . mm, × (f) Nylon sphere, . mm, ×

(g) Delrin sphere, . mm, × (h) Lucite wall, ×

Figure .: SEM photographs of the surfaces of the particles used in the experiments.
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roughness and a long correlation distance. The nylon sphere, portrayed in Figure .(f),

has an intricate surface with filaments of material towering above the mean surface. The

Delrin sphere, shown in Figure .(g), has a surface covered with a regular distribution

of small Delrin flakes. It was not possible to obtain a profile image of the target blocks,

by virtue of them being flat. However, the analysis of multiple head-on images of small

samples from the Lucite block revealed surface roughness characteristics similar to those of

the steel particles. Figure .(h) shows the worst scratch encountered on the Lucite samples;

most other scratches on the Lucite samples resemble the thinner ones that are barely visible

in the figure.

. Experimental technique

The motion of the sphere was filmed using a high-speed digital camera with framing rates

up to  frames per second. The typical sampling resolution was 240 pixels wide by 210

pixels high. The resulting digital movie was processed to determine the position of the

centroid of the particle in each frame. A description of the tracking algorithm is given in

Appendix B. Since the images were taken such that typically 160 pixels appeared across the

diameter of the particle, the precision of the position could be determined within .% of a

particle diameter, corresponding to a resolution of one-half of a pixel.

Figure . is an example of the position–time and velocity–time plots recorded at 

frames per second of a particle approaching the Zerodur wall in water. The data correspond

to a 6.35 mm diameter glass particle released from an initial angle of 12◦ and supported by

a line of length 10.5 cm. Two lines are drawn through the five data points before and after

impact. For all the data presented in this thesis, line fits were done over five to ten points,

depending on the framing rate. In all cases, the correlation coefficient of the line to the data

had a value of 0.995 or higher, which is within the resolution of the measurement. The

slopes of the fitted lines give the rebound and impact velocities (vr and vi), which are used

to calculate the coefficient of restitution for a normal impact,

e =−vr

vi
.
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Figure .: Particle position and velocity for a 6.35 mm glass particle released from
an angle of 12◦ impacting the Zerodur wall in water. For this collision, the
coefficient of restitution is 0.8 (Re = 745, St = 211).
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Figure .: Particle position and velocity for a 6.35 mm glass particle released from an
angle of 12◦ impacting the Zerodur wall in air. For this collision, the coefficient
of restitution is 0.968 (Re = 62.5, St = 15000).
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Figure .: Particle position and velocity for a 12.7 mm glass particle in an aqueous
solution of glycerol (% wt.) impacting the Zerodur wall at an angle α = 20◦.
The angular velocities before and after impact are 0.3 rad s−1 and 6.26 rad s−1,
respectively. For this collision, the normal coefficient of restitution is 0.708
(Re = 374, St = 95).

The origin in the figure represents the point at which the particle reverses its direction of

motion and is determined from the intersection of the approach and rebound line fits. The

value of the position coordinate represents the gap between the particle and the wall. The

velocity of the particle, shown in Figure ., is obtained from the discrete sampled position

data using a first-order backward differencing scheme. For comparison, Figure . shows

similar position–time and velocity–time data for the same particle impacting the Zerodur

wall in air. When the particle is immersed in a liquid (Figure .), the trajectory shows a

slight deceleration due to viscous drag as it approaches the wall, which is not observed in

the collision in air (Figure .).

In order to determine the angular velocity of the particles in the oblique collision exper-

iments, two black dots were painted at almost diametrically opposing positions, such that

the high-speed camera could see both dots. The positions of these dots were tracked when

processing the movie. The angular orientation of the particle was then determined from the

slope of a line joining the tracked dots. Figure . is an example of an angular orientation–

time plot obtained from the rotation tracking. The data correspond to a 12.7 mm diameter

glass sphere released from an initial angle of 18◦ supported by a line of length 10 cm. The
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plane of the pendulum forms an angle α= 20◦ with the normal of the Zerodur target. Two

line fits are done over the entire range of data points before and after impact. The split

between the two ranges of data corresponds to the point at which the particle reverses its

direction of travel and is determined from the translational velocity plot (similar to Figure

.). The slopes of the lines fitted to the angular orientation give the angular velocities

before and after impact.
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Chapter 

Normal collisions

The analysis of the impact and rebound of macroscopic particles in a fluid begins with the

study of collisions where the trajectory of the impacting particle is perpendicular to the

impacted wall. Collisions where the surrounding fluid is air are examined first, in order

to validate the applicability of the experimental setup to the measurement of coefficients

of restitution. The effect of the surrounding fluid on the collisions is then determined by

analyzing experiments performed in aqueous solutions of glycerol. A simple model based

on elastohydrodynamic theory is found to predict the effect of the fluid on the coefficient

of restitution with moderate accuracy. The effect of surface roughness on the repeatability

of the measurements is also discussed.

. Dry coefficients of restitution

To assess the accuracy of the presented experimental setup, and to provide a comparison

base for the data, a series of measurements of the dry coefficient of restitution was obtained.

In a dry collision, the effect of the surrounding fluid is assumed to be negligible.

For impacts of glass and steel particles against the Zerodur wall within a range of veloc-

ities of 40–360 mm s−1, the mean coefficient of restitution, ē, is 0.97± 0.02, which agrees

with the values measured by Foerster et al. (). For the same particles and velocity range

with the Lucite wall, the value is lower, ē = 0.92± 0.03. For the collisions of nylon and

Delrin particles, the value is approximately ē = 0.90± 0.03, corresponding to a range of

velocities of 50–120 mm s−1. The velocities of the glass and steel particle impacts are less
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Figure .: Effect of the wall thickness on the dry coefficient of restitution of a 6 mm
glass bead. The mean coefficient of restitution is ē = 0.977± 0.019 for the
collisions with the 75 mm Zerodur wall and ē = 0.877±0.062 for the collisions
with the 6.35 mm glass wall.

than the velocity corresponding to the fully plastic impact region, for which the coefficient

of restitution has been shown to decrease with increasing impact velocity (Goldsmith, ;

Johnson, ).

The measurements made using the thin glass wall resulted in lower coefficients of resti-

tution. An example of these measurements is shown in Figure ., for the cases of a 6 mm

glass bead colliding with the Zerodur wall and the thin glass wall. With either a glass or steel

impact particle, for the same velocity range, the average value of the coefficient of restitution

was lower and the standard deviation was higher (ē = 0.88±0.07). The lower coefficient of

restitution values are in agreement with the measurements obtained by Goldsmith (),

Sondergaard et al. (), and Davis et al. (). In those studies, the reduction of the

coefficient of restitution was attributed to the wall thickness. With a thin wall, the elastic

waves generated by the particle collision can be reflected back to the impact point during

the particle contact time.
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. Coefficient of restitution with fluid effects

Figure . shows the coefficients of restitution measured for the different glass impact par-

ticles on the Zerodur wall in water, and glycerol in water mixtures, as a function of the

impact Stokes number St. The data indicate that the coefficient of restitution increases with

the Stokes number based on the impact velocity. The data show error bars that represent

the correlation values of the line fits used to calculate the approach and rebound velocities.

One of the data sets is taken with the Zerodur wall inclined 18◦ with respect to the vertical,

such that the particle is still accelerating at impact; the data using the inclined wall are con-

sistent with the other data sets. For the cases where the particle’s position did not vary with

time after impact, a value of zero is assigned to the coefficient of restitution. Generally, for

St less than 80, the scatter of the data is large and outside the error bars. A possible reason

for this scatter is discussed in §..

Figure . shows the measured coefficients of restitution as a function of the impact

Stokes number for steel impact particles on the Zerodur wall in several glycerol–water mix-

tures. The measured coefficients of restitution follow the same trend as in the experiments

with the glass particles, but the variance of the results is smaller.

Measurements were also obtained for collisions with the nylon and Delrin particles. The

measurements obtained for collisions of these particles on the Zerodur wall in water are

shown in Figure .. All measurements obtained for immersed collisions—of glass, steel,

and plastic particles—are shown in Figure ., as a function of the collisional Stokes num-

ber. Also included are the data for collisions of a 6.35 mm glass sphere in air. The trend is

the same for all the materials, regardless of the particle diameter and density, indicating that

the Stokes number is the appropriate parameter to represent the results. Within experimen-

tal uncertainty, the data show the coefficient of restitution to be independent of the ratio of

the solid phase density to the fluid phase density. For example, in the range of Stokes num-

bers between 100 and 300, the data for the 6.35 mm glass (ρp/ρ f = 2.5), for the 12.7 mm

Delrin (ρp/ρ f = 1.4) and for the 6.35 and 7.93 mm steel (ρp/ρ f = 7.8) appear to collapse

to the same range of coefficients of restitution. The data also show that the coefficient of

restitution is zero for Stokes numbers less than approximately Stc = 15.
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Figure .: Coefficient of restitution, e, as a function of Stokes number based on the
impact velocity for collisions of plastic particles on the Zerodur wall in water.

In addition to the data using the Zerodur wall, a Lucite wall was also used; the results

are presented in Figure .. Again, the data show that the coefficient of restitution depends

on the impact Stokes number, and that the coefficient is zero for Stokes numbers less than

a critical value. In comparing the data for Zerodur and Lucite walls, the coefficients of resti-

tution for the Lucite appear to be slightly lower than those for the Zerodur. This difference

is also observed in the dry coefficient of restitution. A direct comparison between the data

for collisions on Zerodur and on Lucite is presented in §..

Some data were also taken using the thin glass plate. Similar to those found for the dry

collisions, the data with the thin plate show a decrease in the average coefficient of resti-

tution and a significant increase in scatter. At Stokes numbers between 100 and 200 the

average coefficient of restitution is 0.56, which is approximately % less than the value

found using the Zerodur wall. In addition, the standard deviation has increased to approx-

imately ±0.10. The critical Stokes number also appears to be somewhat lower than for the

Zerodur wall.

Figure . shows the immersed collisions of steel particles on the Zerodur wall, and also

the measurements by McLaughlin () and Gondret et al. (, ). The data compare
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Figure .: Coefficient of restitution, e, as a function of Stokes number for collisions
of steel particles on a Zerodur wall (◦). Also shown are the results obtained
by McLaughlin () (�), corresponding to steel ball bearings impacting an
anvil, and by Gondret et al. (, ) (N, �), corresponding to steel spheres
impacting a glass wall.

well with the present measurements except for the values at high Stokes number measured

by Gondret et al. (), which may be a result of the thin wall used in their experiments.

These measurements seem to have been corrected in the later experiments of Gondret et al.

().

. Comparison with elastohydrodynamic theories

Since the rebound velocity depends on the elastic properties of the materials, the experi-

ments done with the Zerodur and Lucite walls were compared. The coefficients of restitu-

tion for the Lucite were found to be slightly lower than those for the Zerodur. The results for

the two walls compare well when presented as a ratio of the immersed and dry coefficients
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Figure .: Effective coefficient of restitution, e, scaled by the dry coefficient of restitu-
tion, edry, as a function of Stokes number, for immersed particle–wall collisions.
The dashed–dotted line shows the coefficient of restitution from the calcula-
tions by Davis et al. () for a value of the elasticity parameter ε≈ 10−8. The
solid line shows the coefficient of restitution from equation (.) for edry = 0.98
and xc/x0 = 10−3.

of restitution, as shown in Figure ..

Following the analysis proposed by Davis et al. (), the viscous component of the

coefficient of restitution for an immersed collision can be obtained. Davis et al. performed

calculations to predict the maximum rebound velocity of elastic particles colliding in a vis-

cous fluid. They characterized the collisions with two parameters, the particle Stokes num-

ber and an elasticity parameter, ε, defined in §.. For the experiments performed in this

study, the values of ε ranged from 10−7 to 10−8. The predictions by Davis et al. for ε= 10−8

were used, such that comparisons could be made between their calculations and the present

measurements. The dashed–dotted line in Figure . shows this prediction indicating a

sharp increase in e as St increases from the critical value. Predictions for ε = 10−7 would
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result in slightly higher values of e than those for ε= 10−8. It is important to note that the

Davis et al. study predicted that the two surfaces would not come into contact and that the

rebound would result from the stored elastic energy. The present comparison suggests that

the elastohydrodynamic theory may be extended to slightly inelastic surfaces by normaliz-

ing the results with the values for dry collisions.

A different method of obtaining the coefficient of restitution for an immersed collision

was proposed by Barnocky and Davis (). The model is based on the assumption that

the lubrication approximation breaks down at a critical distance, comparable to the size of

the particle surface roughness.

From lubrication theory, the hydrodynamic force exerted on a sphere approaching a

wall is

Fdrag = 6πµRu
R

x
=−m

du

dt
, (.)

where x is the gap between the surface of the particle and the wall. To estimate the viscous

dissipation produced by a particle colliding with and rebounding from a wall, the equation

of motion is integrated in two parts. The first (approach) portion is evaluated from x0 to

the critical distance, xc, at which the lubrication approximation breaks down due to surface

roughness. The second (rebound) portion is evaluated from xc back to x0, in order to obtain

the total velocity decay.

For the approach, a collision velocity, uc = u(x = xc), is obtained,

uc

u0
= 1+

1

St0
ln

xc

x0
, (.)

where St0 is the particle Stokes number at x0. The velocity after impact is taken as edryuc,

which accounts for the solid–solid contact. Therefore, the rebound velocity of the particle

as it returns to x0 is
ur

u0
= edry

uc

u0
+

1

St0
ln

xc

x0
= ex0. (.)

Note that ur/u0 is an effective coefficient of restitution, ex0 , defined at a position x0, that

accounts for losses within the lubrication layer and due to solid–solid contact. This effective
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coefficient of restitution is found to be

ex0 = edry +
1+ edry

St0
ln

xc

x0
, (.)

where xc/x0 can be estimated from the physical variables of the problem. Considering a

typical value of surface roughness size on the order of 0.1 µm and assuming x0 = R/100, a

typical value of xc/x0 is approximately 10−3. The solid line in Figure . shows the com-

parison between the prediction from equation (.) for edry = 0.98 and xc/x0 = 10−3 and

the experimental measurements. It is important to note that the mechanics of the flow in

the gap between the particle and the wall may be significantly affected by the presence of

asperities on the surface of the particle. Hence, the dry coefficient of restitution may not

capture all the losses associated with the solid–solid contact. In addition, the model as-

sumes that the Stokes drag law is valid for the whole range of experiments. Despite these

simplifications, the model compares qualitatively well with the experimental measurements.

The rapid change of the coefficient of restitution is captured by the model for small values

of Stokes number. According to the model, the critical Stokes number at which rebound

first occurs is higher for lower values of the dry coefficient of restitution, which seems to be

inconsistent with the experiments. For higher values of the Stokes number, the model un-

derestimates the fluid dissipation occurring during the collision but predicts well the weak

dependence of the coefficient of restitution on Stokes number.

. Influence of the particle roughness

A distinctive feature of the measured coefficients of restitution is that the variance increases

as the impact Stokes number decreases. During the experiments, special care was taken

to ensure that nominal conditions were kept constant for a given experimental set. The

variance of the measured coefficient of restitution was observed to be larger than the exper-

imental error for St less than 80 in the experiments done with glass and nylon particles. In

the experiments with steel particles, this large variance was not observed. The differences

in surface properties among the particle types may account for the observed differences in
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Table .: Typical collision parameters for St less than 80.

dp

(mm)
vi

(mm s−1)
µ

(Pa · s)
hm

(µm)
σs/hm Ah

(µm2)
λs

(µm2)
Ah/λs

Glass beads
3.0 25 0.001 0.0063 21.96 859.4 3595.9 0.239
4.1 50 0.001 0.0100 5.02 2794.6 3034.3 0.921

Glass sphere
6.35 50 0.005 0.0243 5.37 6703.5 918.7 7.297

Steel
6.35 80 0.024 0.0449 0.53 12310.3 4153.4 2.964
6.35 100 0.014 0.0396 0.60 14716.2 4153.4 3.543

Nylon
6.35 20 0.001 0.0276 72.88 6324.2 3154.2 2.005

variance.

As a particle approaches the wall, Davis et al. () predict a closest distance of ap-

proach, hm, which depends on the elasticity parameter ε and the Stokes number. For the col-

lisions presented here, the scaled approach distance hm/x1, where x1 = (4µviR3/2/πE∗)2/5,

varies from approximately 1/4 to 1/3 and is nearly independent of ε and St for St greater

than the critical value. Hence, it is possible to use the results of the study by Davis et al. to

estimate the closest distance of approach for various collision conditions.

Calculated values of hm = x1/3 are found in Table . for experimental conditions cor-

responding to St less than 80. These values are compared with the r.m.s. surface roughness,

σs. As shown in the table, this comparison suggests that hm is larger than σs only for the

steel spheres; for the glass sphere and beads, and the nylon particle, σs is significantly larger

than hm. Also presented in Table . is the contact area Ah = πa2 calculated from Hertzian

contact theory, which predicts that the radius of the contact is given by equation (.). This

area is compared with an average roughness area λs = 1.8λ2
p. Over a wide range of finite

sampling intervals, λs is the area in which, on average, one asperity can be found (John-

son, ). Hence, the ratio of the Hertzian contact area to the roughness correlation area

increases as the number of asperities involved in a contact event increases.

A possible explanation for the variation in the measured coefficients of restitution in-

volves these two ratios. For the steel particles, σs is smaller than the calculated distance hm
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and the effective contact area is larger than λs. Under these conditions, the variability from

collision to collision is expected to be small, which is consistent with the repeatable results

for the steel particles shown in Figure .. When hm is smaller than σs and the effective

collision area is much larger than λs, such as for the glass sphere or the nylon particle, the

particle and surface may interact through the tops of the asperities. Although the fluid may

still lubricate the surfaces of the asperities, the latter differ in size and orientation, which

may contribute to the scatter in the data. In addition, the fluid trapped in the crevices may

change pressure as it is compressed. As a result, the rebound velocity may be more variable

from experiment to experiment. When hm is smaller than σs and the effective collision area

is smaller than λs, the roughness may or may not be directly involved in a given collision.

Hence, for the small glass beads, the variability in the rebound velocity may result from

relatively large asperities being contacted on an irregular basis.

As the particle velocity is increased, both hm and the Hertzian contact area increase.

These effects may contribute to the smaller scatter found at higher Stokes numbers. In

addition, the rebound of the particle at low velocities may be affected by other factors. Even

when great care is taken to keep the experimental conditions as constant as possible, any

asymmetry in the release of the bead may cause a slight spin along the axis of the string of

the pendulum. Consequently, the local asperities involved in a particular collision may be

different from the ones involved in a subsequent collision, adding to the dispersion of the

data.

. Summary

The experimental measurements show the dependency of the coefficient of restitution on

the Stokes number. The coefficient of restitution increases with increasing Stokes number

beyond a certain critical value of approximately 10. The elastic properties of the particles

and the walls do not have a significant impact on the measured coefficients. However, if

the wall is not of sufficient size, the coefficient of restitution is reduced and the scatter in

the measurements is increased. These results compare well with experimental studies in the

literature.
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The analysis proposed by Davis et al. (), which predicts a rapid increase of the coef-

ficient of restitution for low Stokes numbers, compares well with the measurements when

presented as a ratio of the immersed and dry coefficients of restitution. Based on this anal-

ysis and on the surface properties of the particles, an explanation of the variance of the

data was proposed. A simple analytical model based on the one proposed by Barnocky and

Davis (), and similar to the one proposed by Davis et al. (), also compares favor-

ably with the experimental data. The characteristic variance observed in the measurements

of the immersed coefficients of restitution for St less than 80 appears to be a consequence

of the interaction of the surface roughness of the particles and the fluid trapped between

them. The observed variance was on the order of the experimental uncertainty for smooth

particles and considerably larger for the rougher particles.
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Chapter 

Oblique collisions

Normal collisions between spheres and flat walls were discussed in the previous chapter.

While the normal case provides great insight into the physics of immersed collisions, most

real-world impacts can be expected not to occur in a trajectory strictly perpendicular to the

plane of contact. Oblique collisions of spheres against flat walls are now analyzed.

First, the different theories that describe dry oblique collisions are presented and sum-

marized. Based on these theories and on experimental data from the literature, the applica-

bility of the pendulum setup to the characterization of oblique collisions is verified. Oblique

collisions of spheres immersed in liquid are then analyzed. The qualitative and quantitative

differences between oblique collisions of smooth and rough spheres are discussed and con-

trasted. The immersed collisions are also contrasted with the results from dry collisions.

Finally, a model that accounts for the fluid effects is presented.

. Oblique impact of spheres

The oblique contact of an elastic sphere and a flat surface can be analyzed based on Hertzian

contact theory (Timoshenko and Goodier, ), which describes the contact of two spher-

ical objects. The flat surface is represented by letting one of these spheres have an infinitely

large mass and radius. An oblique collision can be considered as a superposition of the

normal and tangential components of relative motion, with the interaction in the normal

direction described by Hertzian theory. Two distinct interaction mechanisms are recog-

nizable in the tangential direction: sliding and rolling. In sliding interactions, the relative
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Figure .: Oblique loading of two spheres.

velocity of the contacting surfaces is nonzero. In rolling interactions, the surfaces at the

point of contact do not move with respect to each other even if the relative velocity of the

centers of mass of the contacting objects is nonzero.

Assume momentarily that tangential interaction between the sphere and the surface

is not significantly affected by the elastic deformation of the surfaces in the normal direc-

tion. Further assume that the sphere begins to slide in a direction parallel to the wall. If

the contact surfaces are not ideally smooth, the sphere experiences an opposing force as

a consequence of friction. For a large enough frictional force, the relative velocity of the

contacting surfaces drops to zero while the velocity of the center of mass of the sphere is

nonzero. From that instant until the end of the collision, the sphere rolls on the flat surface.

In a physical system, the elastic deformation of the contacting surfaces cannot be ne-

glected. Mindlin () studied the case where two homogeneous, isotropic, elastic bodies

are pressed together with a constant force W and then subjected to a tangential force F , as

shown in Figure .. If F >µ f W , where µ f is a constant coefficient of friction, gross sliding

occurs throughout the contact area, whereas, for lower values of F , Mindlin concluded that

a circular inner region of the contact area remains stuck while a surrounding annulus slides

or micro-slips. It should be pointed out that the contact region is not necessarily circu-

lar. Cattaneo () derived the equations corresponding to elliptic contact surfaces. These
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equations are analogous to the equations for circular contacts and, in general, the circular

contact approximation is of satisfactory accuracy.

This approach has the problem of assuming a constant load W throughout. As colliding

particles come into contact, deform, and eventually rebound, the load conditions are not

that simple. This limitation was addressed by Mindlin and Deresiewicz (), who pro-

posed solving cases where the normal and tangential loads vary by applying the following

set of rules:

. The contact radius is given by Hertz contact theory.

. Slip is initiated whenever, in the absence of slip, F at any point exceeds the product

µ f W at that point.

. Slip progresses concentrically, forming an “annulus of slip.”

. The inequality F ≤ µ f W holds throughout the contact area.

. The adhered portion of the contact surface is subjected to a change of tangential

traction and undergoes a rigid-body tangential displacement.

. The evolution between two equilibrium states can be described by a quasi-static pro-

cess.

The approach described by Mindlin and Deresiewicz is applicable to a wide variety of

collisions. Their result is valid for the case when the spheres are first compressed normally

and then sheared. Walton () studied the case where the two motions occur simulta-

neously. Under those conditions, Walton concluded that if slip occurs, then it will be in

the form of sliding, i.e., slip over the whole of the contact area. Elata () warns against

misusing the force–displacement relations obtained by Walton by regarding them as path-

independent. These relations are path-dependent, and are derived assuming a fixed ratio

between the normal and tangential displacements of contact. When used to describe certain

cyclic contact displacements, Walton’s relations predict a net energy generation without any

work being done, which violates the second law of thermodynamics.
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Since the loading history depends on both the compliance of the contact and the motion

of the particles, the problem is well suited to a numerical solution that steps forward in time.

Maw, Barber, and Fawcett () developed such a method. The analysis presented below

closely follows the procedure detailed by Maw et al. The contact region is divided by a series

of n equi-spaced concentric circles of radius ai/n (i = 1, . . . ,n), which define the limits of a

series of tangential traction distributions such that the total traction f at radius r is

f (r) =
n

∑
i= j

fi

(
1− n2r2

a2i2

)1/2

, (.)

where j is the smallest integer greater than nr/a. The n coefficients fi can be obtained

by solving a mixed boundary-value problem in elasticity. A provisional division into slip

and stick regions can be assumed. In slip regions, the tangential traction is f (r) =±µ f p(r),

where p(r) is the local normal contact pressure. In stick regions, the tangential displacement

is prescribed. The mixed boundary-value problem in elasticity can now be solved and the

solution tested to see whether the original assumption was correct. In slip regions, the

relative incremental displacement must be in the correct sense for the assumed frictional

traction. In stick regions, the tangential traction must be below the frictional limit. The

assumption is changed for any failed region and a new solution is obtained. Convergence is

rapid. The following is an outline of the solution proposed by Maw et al. () for a sphere

impacting a half-space.

. Using the Hertz theory, find the solution to the normal contact problem.

. By proposing a distribution of tractions of the form

f (r) =


(
1− r2/a2

)
, 0≤ r ≤ a,

0, r > a,
(.)

and following the method used by Mindlin (), find the relative tangential dis-

placements uT in the direction of the traction.

. Stepping forward in time, find the new displacements and loads by assuming a provi-
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sional division into stick and slip regions.

. Test the obtained solution to ensure consistent tangential tractions, i.e., verify that

the tangential traction does not exceed the friction limit in stick regions and that the

assumed slip direction is adequate in slip regions.

. Once a satisfactory solution has been obtained, find the change in velocity during the

present time step from momentum considerations. The tangential force, found by

integrating equation (.) over the contact area,

F =
2πa2

3

n

∑
i=1

i2 fi
n2 , (.)

produces a change in angular and linear velocity,

δvT =−Fδt

M
− FR2δt

I
=−Fδt

M

(
1+

1

K2

)
, (.)

where K =
(
I/MR2

)1/2
is a nondimensional radius of gyration and vT = v +ωR is

the instantaneous value of the tangential velocity at the point of contact.

. With the new tangential velocity, find the corresponding tangential displacements uT

and repeat the procedure for the next time increment.

In order to achieve more generality, Maw et al. () proposed two nondimensional pa-

rameters, applicable to all materials and experimental conditions. The first, χ, is a modified

radius of gyration and is defined by

χ=
(1−ν)

(
1+1/K2

)
2−ν

. (.)

The second parameter, ψ, is a nondimensional local angle of contact, and is defined by

ψ(vT ) =
2(1−ν)vT

µ f (2−ν)vN,in
. (.)

Nondimensional angles of incidence and reflection, ψin and ψout, can be determined for
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Figure .: Schematic representation of the oblique collision of a sphere with a flat
surface. The sphere approaches the wall with no spin.

corresponding vT,in and vT,out. A positive angle of reflection is one in which the tangential

velocity of the point of contact retains the same sense. The parameter ψ can be interpreted

physically with respect to the parameter χ as follows. For values ofψ≤ 1, which correspond

to small angles of incidence, the normal load is considerably larger than the tangential force

of the particle and the surfaces stick during contact, although some microslip may be ob-

served in the periphery of the contact area where the normal load is markedly lower. For

values of ψ between 1 and (4χ−1), corresponding to intermediate ranges of the incidence

angle, the collision starts in gross slip. In this range the traction produced by friction is

large enough that the sliding velocity drops to zero before the end of the collision, and the

process transitions instantaneously from gross slip to full stick. Collisions at larger angles,

where ψ ≥ (4χ−1), occur entirely in gross slip.

A drawback of this otherwise general approach is that, in order to evaluateψ from exper-

imental measurements, a prior quantitative evaluation of the coefficient of sliding friction

is required. At the beginning of a collision, the only independent input variable for a given

system is the effective angle of incidence, with the material properties captured by χ and µ f .

The local angles of incidence, αin, and rebound, αout, at the contact area, shown in Figure
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Figure .: Two spheres in an oblique collision.

., are given by

tanαin =
vT,in

vN,in
=
µ f (2−ν)
2(1−ν)

ψin ≡Ψin and (.a)

tanαout =
vT,out

vN,in
=
µ f (2−ν)
2(1−ν)

ψout ≡Ψout. (.b)

Instead of evaluating a continuously varying force–displacement relationship for the col-

lision of elastic particles, it is often preferable to specify an instantaneous collision operator

for the equivalent system of rigid particles. Walton () presents a reasonably accurate

description of collisions between macroscopic spheres by introducing a three-parameter

model:

. a normal coefficient of restitution, e;

. a rotational coefficient of restitution, β, for contacts that are not continuously sliding

during the entire collision; and

. a coefficient of sliding friction, µ f , for sliding or grazing collisions.

The rotational coefficient of restitution is the same as the roughness coefficient β introduced

by Lun and Savage (). Unlike the description by Maw et al. (), Walton’s model

implies that slipping and sticking regions do not coexist in a given impact.

For two colliding spheres of radii R1 and R2 and masses M1 and M2 (Figure .), the
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velocities before and after collision are related by the impulse exerted by one sphere on the

other,

~J = M1 (~v1out−~v1in) =−M2 (~v2out−~v2in) . (.)

The relative velocity~v of the point of contact is given by

~v = (~v1−~v2)− (R1ω1 +R2ω2)× n̂, (.)

where n̂ is the unit vector that joins the centers of the two spheres.

The normal coefficient of restitution is given by

e =− n̂ ·~vout

n̂ ·~vin
, (.)

where 0≤ e ≤ 1, and changes in the angular velocities of the spheres are given by

I1

R1
(ω1out−ω1in) =

I2

R2
(ω2out−ω2in) =−n̂×~J. (.)

For sliding collisions, the coefficient of sliding friction dictates the relation

|n̂×~J|= µ f (n̂ ·~J) , (.)

where µ f ≥ 0, between the normal and tangential components of the impulse. Combining

equations (.)–(.) we obtain

~Jsliding =−M∗ (1+ e)
[

n̂(~v · n̂)−µ f
~v · n̂
|~v× n̂|

(~v− n̂(~v · n̂))
]
, (.)

where M∗ =
(
M−1

1 +M−1
2

)−1
is the reduced mass. Note from the definition of Ψin in equa-

tion (.a) that −~v · n̂/|~v× n̂|= 1/Ψin.

Application of this method leads to a sliding solution of the form

Ψout = Ψin−µ f (1+ e)
(
1+1/K2) . (.)
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For non-sliding collisions, the obtained solution is

Ψout =−βΨin. (.)

The effective angles of incidence and rebound, Ψin and Ψout, are those defined in equation

(.). Since in Walton’s model µ f and β are mutually exclusive properties of the contact

point, it is not possible to extract either of their values from an individual collision without

knowing beforehand whether or not the collision involves gross sliding. This limitation

can be circumvented by plotting Ψout as a function of Ψin. From such a plot, the slope

of equation (.) and the intercept of equation (.) can be used to determine β and µ f ,

respectively (Maw, Barber, and Fawcett, ; Foerster et al., ),

β =−Ψout

Ψin
(.)

and

µ f =
Ψin−Ψout

(1+ e)(1+1/K2)
. (.)

Equation (.) can be considered valid for the entire range of collisions, from sliding

to sticking (or rolling). In that sense, a value of β = −1 indicates full, non-dissipative

sliding, since it results from identical vT,in and vT,out. The case when β = 0 corresponds

to a rolling contact, where vT,out = 0. A value of β = 1 suggests a collision with full recoil,

where vT,out = −vT,in. Non-zero values between these extrema indicate dissipation during

the collision, either frictional losses for sliding collisions or inelasticity in the contact for

collisions with recoil.

A plot of equation (.) for the entire range of collisions has two distinct regions. The

first one, where the calculated µ f steadily grows towards a plateau, corresponds to non-

sliding collisions. The second one is the plateau itself, where a fairly constant value of µ f

indicates sliding collisions. By considering β valid for the entire range of collision angles α,

equations (.) and (.) can be rewritten as

µ f =
2(1+β)
7(1+ e)

Ψin, (.)
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where the square of the nondimensional radius of gyration of a homogeneous sphere, K2 =

I/MR2 = 5/2, has been substituted in. The coefficients of restitution e and β and the inci-

dence angle Ψin, from which µ f can be calculated, are all measurable quantities.

. Dry collisions

In order to validate the applicability of the pendulum setup to the measurement of oblique

collisions, a series of experiments was performed with a 12.7 mm steel ball bearing impact-

ing a Zerodur block. The azimuthal orientation of the wall was adjusted such that its normal

formed an angle αin with respect to the plane of the pendulum. The spheres were released

from an angle φi = 15◦ with respect to the vertical (see Figure .). The specifics of the

particle tracking algorithm used are described in Appendix B.

The measurements made using the pendulum setup in air compare favorably with the

experiments of Maw et al. (), where pucks on an air table were made to collide with a

polished steel block of matching specification. The pucks used by Maw et al. were sliced

by spark erosion from commercial steel ball bearings. Figure . shows the comparison be-

tween the collision of a 101.6 mm diameter steel puck impacting a steel wall and a 12.7 mm

steel sphere impacting a Zerodur wall. The mean normal coefficient of restitution of the

latter was ē = 0.97±0.02, which agrees with the values measured in §..

From the linear fits to the Ψout vs. Ψin plot shown in Figure ., the values of the ro-

tational coefficient of restitution (β = 0.34± 0.07) and the coefficient of sliding friction

(µ f = 0.11±0.003) were calculated from equations (.) and (.). These values are con-

sistent with those measured by Maw et al. () and Foerster et al. ().

. Collisions in a liquid

Measurements were obtained for collisions of glass and steel spheres on the Zerodur wall

in glycerol–water mixtures. Figure . shows the normal coefficient of restitution e ob-

tained from these measurements. Also included are the data for normal collisions (from

Figures . and .). The data are plotted as a function of a modified Stokes number,
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Figure .: Comparison between the experimental results of Maw et al. () and the
oblique collision of a 12.7 mm steel sphere in air on a Zerodur wall.

St cosαin = 2ρpRvN,in/9µ, based on the normal component of the impact velocity. The

incident angle αin is the angle formed by the trajectory of the contact point and the wall’s

normal. The trend is the same for all cases, regardless of the incident angle. Within experi-

mental uncertainty, the data show the normal coefficient of restitution in oblique collisions

to be independent of the tangential component of velocity. Hence, the results from §. may

be used directly in equation (.) when characterizing oblique immersed collisions.

Figure . shows the measured change in angular velocity after impact for a 12.7 mm

steel ball bearing colliding with a Zerodur wall as a function of impact angle. The system is

immersed in water (T = 20°C, µ= 1×10−3 Pa · s). The data show error bars that represent

the correlation values of the line fits used to calculate the angular velocities, as shown in

Figure ..

For values of αin between zero and ten degrees, the angular velocity steadily increases

as the tangential impact velocity increases. Beyond αin = 10◦ an angular velocity plateau
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Figure .: Effective normal coefficient of restitution, e, as a function of a modified
Stokes number based on the normal velocity of impact, St cosαin, for immersed
oblique collisions in water and glycerol–water mixtures.

of roughly ωout = 3 rad s−1 is reached. This suggests that for near-normal collisions there

is little or no gross sliding of the particle, whereas gross sliding occurs promptly afterward.

Figure . illustrates such behavior on the corresponding Ψout vs. Ψin plot. Compared with

the data for dry collisions, there is little incursion of the data into negative values of Ψout,

which indicates an absence of recoil in the collisions. The dotted line, of slope one, is the

theoretical trajectory of a specular rebound with no rotation, and is provided for compari-

son purposes. The experimental data for Ψin > 0.25 clearly follow a slope one line with a

negative intercept on the Ψout axis.

A plot of the derived rotational coefficient of restitution, based on equation (.), is

presented in Figure .. Each data point indicates the average value of the five distinct exper-

imental runs performed for each angleαin. Each error bar represents the standard deviation

of the five averaged measurements. The rotational coefficient of restitution for near-normal
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Figure .: Measured angular velocity for a 12.7 mm steel ball bearing impacting
obliquely without spin on a Zerodur wall. The surrounding fluid is water
(St = 2750, Re = 3170).

collisions is β = 0.46± 0.16, larger than what would be expected from the measurements

by Foerster et al. (). However, the error associated with the individual measurements

grows considerably as the tangential impact velocity decreases. Figure . also shows the

coefficient of sliding friction, based on equation (.). The computed coefficient of fric-

tion for the sliding collisions, µ f ≈ 0.03, is about one order of magnitude smaller than the

coefficient of friction for a lubricated contact between steel and glass (Bowden and Tabor,

). A possible explanation of this frictional value is discussed in §..

Figure . shows the measured after-impact angular velocities for a 12.7 mm glass sphere

colliding with a Zerodur wall. The surrounding fluid is a 4.5×10−3 Pa · s aqueous solution

of glycerol (% wt.). The behavior is markedly different from that observed with steel

collisions (Figure .). While the angular velocity does reach a plateau of almost 9 rad s−1,

it only does so at fairly large collision angles (in excess of 30◦). The richer behavior of these
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Figure .: Nondimensional rebound angle as a function of the nondimensional inci-
dence angle for a 12.7 mm steel ball bearing impacting obliquely without spin
on a Zerodur wall. The surrounding fluid is water (St = 2750, Re = 3170).

collisions, shown in Figure ., is qualitatively and quantitatively similar to that observed

in the experiments of Maw et al. () and Foerster et al. (), and also to the dry collision

data shown in Figure .. For small values of Ψin a positive value of the nondimensional

rebound angle is observed, a consequence of micro-slip at the beginning of the impact, as

identified by Maw et al. (). The collisions between 5◦ and 30◦ incident angle exhibit

negative values of Ψout, indicative of recoil in the collision. Such recoil is presumably a

consequence of solid–solid contact. It was shown in §. that, for glass spheres, the mean

surface roughness is larger than the elastohydrodynamic lubrication minimum distance of

approach hm. Therefore, solid–solid contact is to be expected.

For αin in excess of 30◦ (Ψin ≈ 0.6 and higher), gross sliding occurs throughout the

collision. A large scatter is exhibited by the data beyond αin = 55◦. For these angles the

Stokes number based on the normal impact velocity is below 70. As discussed in §., the
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Figure .: Measured rotational coefficients of restitution and computed effective co-
efficients of friction corresponding to the data from Figure .. Each point (�)
represents the average value of five distinct experimental runs (•). The error
bar on each point indicates the standard deviation of the five measurements.
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Figure .: Measured angular velocity for a 12.7 mm glass sphere impacting obliquely
without spin on a Zerodur wall. The surrounding fluid is a 4.5×10−3 Pa · s
aqueous solution of glycerol (% wt.; St = 95, Re = 371).

Hertzian contact area and the gap separation hm decrease for decreasing collisional veloci-

ties. Both of these effects contribute to a larger scatter in the data (see Figure .), since the

local asperities at the point of contact affect the outcome of any individual collision.

A plot of the derived rotational coefficient of restitution, based on equation (.), is

presented in Figure .. The rotational coefficients of restitution for near-normal collisions

correspond to a large error band. Also shown in Figure . is the coefficient of sliding

friction, calculated from equation (.). The plot shows that for near-normal collisions

there is no sliding, as anticipated from Figure ..

For higher tangential velocities—higher incidence angles—the computed coefficient of

friction is µ f = 0.14±0.02, consistent with the measurements of Bowden and Tabor ().

Two regions can be identified on the plot of β. The middle three data points, where β > 0,

correspond to collisions where recoil is observed. For these points, the computed coefficient
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Figure .: Nondimensional rebound angle as a function of the nondimensional
incidence angle for a 12.7 mm glass sphere impacting obliquely without spin
on a Zerodur wall. The surrounding fluid is a 4.5×10−3 Pa · s aqueous solution
of glycerol (% wt.; St = 95, Re = 371).

of friction is steadily rising and it can be interpreted as being proportional to the tangential

force necessary to balance the tangential elastic compliance of the colliding objects. The

rightmost three points, with β < 0, correspond to sliding cases where the frictional force

between the surfaces is no longer enough to balance the tangential motion of the sphere.

The seemingly high value of the coefficient of friction for the rightmost data point is an

artifact of the variability of the data for αin > 55◦.

Experiments were also performed with steel particles in glycerol–water solutions with

concentrations of % and % by weight. Those concentrations correspond to viscosities

of 3×10−3 Pa · s and 48×10−3 Pa · s, respectively. The results of those collisions are shown

in Figures . and .. Figure ., for a 3×10−3 Pa · s ambient fluid, illustrates the same

qualitative behavior as shown in Figure .. Note that the experimental points in this case
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Figure .: Measured rotational coefficient of restitution and computed effective co-
efficient of friction corresponding to the data from Figure .. Each point (�)
represents the average value of five distinct experimental runs (•). The error
bar on each point indicates the standard deviation of the five measurements.
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Figure .: Nondimensional rebound angle as a function of the nondimensional in-
cidence angle for a 12.7 mm steel ball bearing impacting obliquely without spin
on a Zerodur wall. The surrounding fluid is a 3×10−3 Pa · s aqueous solution
of glycerol (% wt.; St = 1025, Re = 1300).

are closer than those from the collisions in water to the line indicating specular reflection.

The slope of the data has a consistent value of one for collisions beyond Ψin = 0.15. Figure

. shows the rotational coefficient of restitution for these collisions. The values quickly

drop to a value of β ≈−1, indicative of sliding collisions. The coefficient of sliding friction

computed from equation (.), shown in Figure ., is 0.02 for all incidence angles greater

than 10◦.

The results for a 48×10−3 Pa · s surrounding liquid are shown in Figure ., together

with the data from collisions of glass in % glycerol–water presented in Figure .. These

two experimental sets correspond to similar collisional Stokes numbers (approximately 50

for the steel and 90 for the glass). The behaviors of the two are, however, markedly different.

The data for steel lie close to the line of specular reflection and exhibit no recoil. The data
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Figure .: Nondimensional rebound angle as a function of the nondimensional inci-
dence angle for a 12.7 mm steel ball bearing impacting obliquely without spin
on a Zerodur wall. The surrounding fluid is a 48×10−3 Pa · s aqueous solution
of glycerol (% wt.; St = 53, Re = 74).

for glass, on the other hand, lie considerably far away from the specular reflection line and

exhibit a coefficient of friction that slowly climbs to a value of approximately µ f = 0.14 (see

Figure .).

Figure . shows the calculated coefficient of rotational restitution for these experi-

ments. The values, in the near vicinity of β = −1, indicate collisions with gross slip. Also

shown is the computed friction coefficient , which exhibits a mean value of µ f ≈ 0.01. The

different behavior observed from the two materials can be explained by their surface rough-

ness values. From the measurements presented in §., the surface asperities on the glass

beads are expected to pierce through the lubrication layer during a collision, whereas those

on the steel ball bearings are not. The friction coefficient determined from the glass colli-

sions, is consistent both with experimental values in the literature for dry and lightly lubri-
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Figure .: Coefficient of sliding friction, µ f , as a function of a modified Stokes
number based on the tangential velocity of impact, St sinαin, for immersed
oblique collisions in water and glycerol–water mixtures.

cated sliding and with the assumption that the surface roughness elements interact through

the lubrication layer to form a solid–solid contact. In the case of the steel spheres, there are

no roughness elements capable of protruding through the fluid layer; hence, all tangential

force experienced by the particle should come from shear in the lubrication layer.

Figure . shows the computed friction coefficients, from Figures ., ., ., and

., as a function of a modified Stokes number based on the tangential impact velocity,

St sinαin. The friction coefficients collapse onto a single monotonically increasing function

of the tangential Stokes number for glass collisions where St sinαin < 10 and for all steel

collisions. At St sinαin ≈ 10, the collisions with glass spheres diverge from the line formed

by the rest of the data and their friction coefficients rapidly climb toward a value consistent

with solid–solid contacts. The coefficient of rotational restitution, β, was also plotted as

a function of modified Stokes numbers. None of those plots showed β to be functionally
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Figure .: Local rebound angle, ψout, as a function of the local incidence angle, ψin,
for immersed oblique collisions in water and glycerol–water mixtures.

dependent on Stokes number.

The observed trend for the friction coefficient in lubricated collisions is qualitatively

consistent with elastohydrodynamic theory. During a near-normal collision the normal

impact velocity is at its maximum. The minimum distance of approach, hm, increases with

increasing normal impact velocity; therefore, hm decreases with increasing impact angle. In

the case with glass, as the impact angle increases the gap becomes smaller until eventually

(St sinαin ≈ 10 in Figure .) the surface roughness elements make contact with the wall

surface. In the cases with steel, the gap is thicker than the size of the asperities and solid–

solid contact does not occur. The increasing coefficient of sliding friction is a consequence

of the reduced gap separation and increased tangential velocity as the tangential Stokes

number increases. These two effects combined amount to a higher shear rate and therefore

a higher value of the friction coefficient.

Figure . shows the local angle of rebound, ψout, as a function of the local angle of inci-





dence, ψin, for all the immersed oblique collision experiments. The local angle of contact ψ

corresponds to one of the collisional parameters introduced by Maw et al. () and is de-

fined in equation (.). The values shown in Figure . are a function of Ψ and µ f and were

obtained from equation (.). The individual plots of the effective angles of incidence and

rebound shown in Figures ., ., and . collapse onto a single curve in Figure .. The

values of the effective angles of incidence and rebound from Figure ., for collisions with

steel in % wt. glycerol–water, do not fall on the same curve as the other three cases but

lie somewhat above. Note, from Figure ., that the experimental error in determining the

friction coefficient for this last case is on the order of the friction coefficient itself, making

it difficult to distinguish this case from a perfectly sliding collision (for which µ f = 0).

. Mathematical modeling of the fluid effects

In the preceding section it was shown that, in the presence of solid–solid contact (Figure

., glass spheres), an immersed oblique collision behaves like a dry oblique collision. For

cases where, due to elastohydrodynamic lubrication, no solid–solid contact is expected (Fig-

ure ., steel spheres), the collisions are qualitatively similar to dry collisions with a rela-

tively small friction coefficient. The friction coefficient, computed from equation (.) and

shown in Figure ., falls for most cases within a range of µ f from approximately 0.001 to

0.1. In the study of bearings and bushings, this range of frictional force is associated with

systems that operate in an elastohydrodynamic lubrication regime (see Cameron, ). A

possible explanation of the observed values of µ f for the case of immersed collisions is given

in this section.

.. Angular velocity after a lubricated impact

In order to determine the change in angular velocity of a sphere due to an oblique colli-

sion, the following idealized model is proposed. For the purposes of hydrodynamic torque

computations, the particle is assumed to be a perfect sphere. The impact and rebound

trajectory is divided into three stages, as shown in Figure .: an approach stage, consist-
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Figure .: Idealized oblique collision. The sliding distance is greatly exaggerated.

ing of the superposition of the normal and tangential velocities vN and vT ; a contact stage,

where the sphere travels parallel to the wall at a gap separation hm for a time τ equal to the

contact time (equation (.); Zenit et al., ); and a rebound stage, consisting again of a

superposition of vN and vT .

Dean and O’Neill () and O’Neill (, ) considered a spherical rigid particle

undergoing parallel translational and rotational motion in the vicinity of a flat hard wall.

Their analysis corresponds to the slow, viscous case where Re → 0. The authors used spe-

cific bipolar coordinates, which allowed them to obtain exact solutions—expressed in terms

of infinite series of Legendre functions—for the velocity and pressure distributions. Dean

and O’Neill were then able to compute the nondimensional torque coefficients due to trans-

lational and rotational motion,

T ∗
t =

Tt

8πµU R2 and (.a)

T ∗
r =

Tr

8πµωR3 , (.b)

from their solution to Stokes’s equations. Here U represents the translational velocity in

the direction parallel to the wall, and ω represents an angular velocity about an axis parallel

to the wall and perpendicular to the direction of translation.

As pointed out by Goldman, Cox, and Brenner (), these solutions converge poorly
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(in a numerical sense) if the ratio of gap width to sphere radius is very small. Goldman

et al. utilized the method of matched asymptotic expansions to explore the limit where the

gap width tends to zero. Because of the linearity of the equations of motion, the combined

effect of a simultaneous translational and rotational motion is the vector sum of the separate

effects, T = 8πµR2 (U T ∗
t +ωRT ∗

r ).

In the absence of external torques on the sphere (T = 0), the balance of torque requires

that
ωR

U
=−T ∗

t

T ∗
r
. (.)

In the limiting case where the sphere approaches the plane, the asymptotic solutions by

Goldman et al. yield

T ∗
r ∼−4T ∗

t . (.)

For a perfect sphere approaching a wall without rotation, the only mechanism for spin

generation is the translational motion. Equation (.) implies that there is no significant

rotation until contact with the wall is achieved, since the counter-torque opposing rotation

is large enough to prevent any translation-induced rotational motion. The contributions to

the angular velocity of the approach and rebound stages depicted in Figure . are therefore

negligible.

The torque T and the angular velocity ω of the particle are related by

T = d(Iω)/dt = 8
15πρpR5dω/dt . (.)

From equations (.) and (.) we obtain, in integral form, the change of angular velocity

during a collision,

∆ω =
15µU

ρpR3

∫ t

0
T ∗(t)dt . (.)

Any initial angular velocity decays slowly due to the contribution of T ∗
r to T ∗ in equa-

tion (.). From equation (.) it follows that, in the absence of solid–solid contact, the

integral on the right-hand side of equation (.) must be zero. This is in direct contradic-

tion to the experimental evidence, since measurements carried out with steel spheres, where

no solid–solid contact is expected (see §.), do reveal a change in angular velocity.
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Equation (.) is based on the assumption that the fluid viscosity remains constant

throughout the collision. Barnocky and Davis () showed that the hydrodynamic pres-

sure that develops during a collision becomes large enough to cause the viscosity of the fluid

to increase by several orders of magnitude. In particular, the pressure buildup during the

collision process becomes sufficiently large that the corresponding viscosity increase causes

the fluid in the gap between two colliding spheres to behave nearly as a solid. Barnocky and

Davis concluded that the effect of the increase in viscosity on the normal component of a

collision is minor. In the tangential direction, however, the nearly-solidified gap-fluid acts

as a point force, imposing a torque on the particle.

.. Viscosity variation with pressure

A usual way of modeling the pressure dependence on viscosity is to follow Barus’s law (Go-

har, ),

µ= µ0 exp(α∗p). (.)

The pressure–viscosity coefficient α∗ is a constant depending on the fluid, and µ0 is the vis-

cosity at the reference pressure (usually 1 atm). Tabulated values of α∗ are readily available.

In some cases, however, Barus’s law vastly overpredicts the viscosity. In particular, Gohar

() warns against using Barus’s law when estimating the friction force of a lubricated

contact. A power law pressure–viscosity equation,

µ= µ0 (1+Cp)16 , (.)

proposed by Chu and Cameron (), offers a more adequate relation for determining

the frictional force. The coefficient C can be calculated from the pressure coefficient α∗ by

matching equations (.) and (.) at low pressures.

In order to evaluate the torque imposed on the particle, assume that the deformation of

the contact area is Hertzian, as shown in Figure .. The pressure distribution in the gap

does not vary throughout the thickness of the fluid film, and is given by Reynolds’s equation
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Figure .: Elastohydrodynamic contact of a sphere and a wall.

for pure squeeze motion,
1

r

∂

∂r

(
rh3∂p

∂r

)
= 12µ

∂h

∂t
. (.)

Integrating equation (.) once gives

∂p

∂r
=

6µr

h3

∂h

∂t
. (.)

At this point it is convenient to define a pressure parameter,

p0 ≡
1− (1+Cp)−15

15C
, (.)

based on equation (.). Note that for high pressures (1+Cp)−15 → 0 and p0 → 1/15C, a

constant. Furthermore,
dp0

dr
= (1+Cp)−16 dp

dr
,

and hence, substituting equation (.) into equation (.), Reynolds’s equation can be

written as
∂p0

∂r
=

6µ0r

h3

∂h

∂t
. (.)

Within the Hertzian contact region the pressures are sufficiently high that p0 → 1/15C

and hence (∂p0/∂r) = (∂h/∂t) = 0. The film thickness is therefore a constant, h = hm.

Since there is no pressure variation throughout the thickness of the film, the pressure in the

contact zone has a Hertzian distribution,

p = pmax

√
1− r2/a2. (.)
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The radial variation of viscosity, from equations (.) and (.), is given by

µ(r) = µ0

(
1+Cpmax

√
1− r2/a2

)16
. (.)

In a Hertzian contact the maximum pressure pmax is three-halves the mean pressure. From

equations (.) and (.), the maximum contact pressure is

pmax =
3

2

W

πa2 =
(

40

π4ρpV 2E∗4
)1/5

. (.)

Equation (.) cannot be used to evaluate the minimum distance of approach hm. The

film thickness (Gohar, , §..) is given by the expression

hm = 4.3384R

(
µ0UC

R

)5/7 (
W

E∗R2

)−1/21

, (.)

where U is the translational velocity in the direction parallel to the wall and the equivalent

load W is given by equation (.). This empirical formula for hm, presented in Gohar ()

in dimensionless form, was obtained from extensive numerical simulations of elastohydro-

dynamic contacts.

The frictional traction F on the contact area is a consequence of the shear imposed on

the gap by the tangential velocity of the sphere, and is given by the expression

F =
2πU

hm

∫ a

0
µ(r)r dr. (.)

Combining equations (.) and (.), the friction coefficient µ f = F/W takes the form

µ f =
2πUµ0

W hm

∫ a

0

(
1+Cpmax

√
1− r2/a2

)16
r dr. (.)

Upon computing µ f from equation (.) for the experimental conditions explored in this

thesis, the calculated values of the friction coefficient are found to be much larger than

those determined experimentally from equation (.). This discrepancy is due to the fact

that the energy used in overcoming the viscous forces in the liquid is dissipated as heat, and
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the resulting temperature rise in the film layer significantly reduces the viscosity.

.. Effect of temperature

A balance of the kinetic energy of a sphere, prior to and after impact, with the energy of

deformation and viscous losses in the fluid,

{
Kinetic Energy

}
in =

{
Kinetic Energy

}
out +

{
Inelasticity

}
+

{
Viscous Heat

}
, (.)

can be used to estimate the change in temperature of the fluid film, since most of the energy

dissipation of a collision occurs in the regions of contact. From the results in Chapter ,

equation (.) can be written as

Q =
1

2
Mv2

N,in

(
e2

dry− e2
wet

)
, (.)

where Q is the viscous heat generated in the gap. For a liquid of density ρ f and specific heat

c, the change in temperature, ∆θ, in the contact region is given by

∆θ =
Q

cρ f πa2hm
. (.)

This equation assumes that all the energy lost to viscous dissipation during the rebound

is concentrated in the Hertzian gap. In reality, a volume of fluid somewhat larger than

πa2hm absorbs the generated heat, and some of the heat is conducted away from the gap by

the solid surfaces and the surrounding fluid. These effects make equation (.) an upper

bound on the temperature increase.

Figure . shows the computed values of the lubrication friction coefficient, based on

equation (.), for the experimental conditions explored in this thesis. The curves shown

are computed for base viscosities at 20°C of 1, 3, and 48 cP, which correspond to aqueous

solutions of glycerol with concentrations of zero, %, and % by weight, respectively. The

combined effects of pressure and temperature have been considered when evaluating the

viscosity of the interstitial fluid. Since it is not possible to directly determine from the above
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Figure .: Friction coefficient, calculated from elastohydrodynamic lubrication the-
ory, for the oblique collision of a 12.7 mm steel ball bearing in three different
mixtures of glycerol and water. The predictions are based on equation (.).

equations the volume of fluid that absorbs the heat generated by viscous dissipation, an

increase in temperature of approximately 45 K was assumed for the collisions in water. This

estimated value is consistent with the temperature increase due to collisions, reported by

Bowden and Tabor (). Even though those results are for experimental conditions quite

different from the ones presented here, the choice of this value for the temperature increase

is justified a posteriori by the comparisons in §...

Several parameters had to be evaluated in order to compute the curves in Figure ..

The corresponding values are shown in Table .. Experiments were performed using a

12.7 mm steel ball bearing colliding obliquely with the Zerodur wall. Aqueous solutions of

glycerol with the concentrations and room-temperature viscosities detailed on the left-hand

side of Table . were used as surrounding fluids.

Based on the specific heats of water and glycerol, the mix-averaged specific heat of each

mixture was calculated. The values are reported on the right-hand side of Table .. The

specific heat of glycerol is listed for reference purposes, although no experiments were per-

formed in % glycerol. Also reported in the table are the typical normal impact velocity,
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Table .: Parameters for the computation of elastohydrodynamic friction.

Glycerol,
% wt.

visc.,
mPa · s c vN,in ewet Q ∆θmax µ0

0 1 4.18 200±50 0.95±0.03 6.8 435 0.300
37 3 3.52 205±75 0.88±0.02 31.3 1920 0.528
78 48 2.79 197±35 0.58±0.05 98.7 2350 2.993

100 — 2.4 — — — — —

Aqueous solutions of glycerol. c (kJ kg−1 K−1); ewet (dimensionless);
vN,in (mm s−1); Q (µJ); ∆θmax (K); µ0 (mPa · s).

vN,in, and the effective normal coefficient of restitution, ewet, for each case. The mean dry

coefficient of restitution of steel on Zerodur is edry = 0.97±0.02 (see §.).

The energy, Q, dissipated in the fluid as viscous heat is computed by substituting edry

and ewet into equation (.). The obtained values are listed in Table .. Assuming that

all the viscous heat is absorbed in the volume of fluid πa2hm within the contact area, the

maximum temperature increase of the liquid, ∆θmax, is determined. The value for water

is approximately 10 times larger than the estimated increase in temperature of 45 K, based

on the values reported by Bowden and Tabor (). Note that, in reality, not all of the

viscous dissipation energy is absorbed by the liquid in the contact gap. Some of the energy

lost to viscous heating is dissipated in the liquid surrounding the contact area. A fraction of

the energy dissipated in the gap as compressive heating is carried away from that region by

conduction cooling, both to the solid surfaces and to the surrounding fluid. The convection

cooling term is the only dissipation mechanism not generally thought to be significant in

elastohydrodynamic contacts (Gohar, , §.).

Taking into account the dissipation mechanisms detailed above, it is assumed here that

the increase in temperature in the gap is between one-tenth of ∆θmax (for water) and one-

twentieth (for % wt. glycerol). The corrected viscosity of the fluid, µ0, based on these

assumed temperature increases, is reported in Table .. The values of µ0 obtained in this

manner were substituted into equations (.) and (.) to generate the curves shown in

Figure .. The Hertzian radius of contact was evaluated from equation (.).
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.. Comparison between experiments and theory

The curves obtained from equation (.) are now compared with the measured values for

the coefficient of friction, as determined from equation (.). The experiments correspond

to a 12.7 mm diameter steel sphere colliding obliquely with a Zerodur wall in glycerol–water

mixtures. Figure . shows the curves from Figure . as individual plots, together with

their corresponding experimental points. Each data point reflects the average of five dis-

tinct experimental measurements at a given incidence angle and impact velocity. The error

bars are indicative of the dispersion of the averaged points and encompass one standard

deviation.

Figures .(b) and .(c) show good agreement between the experimental measure-

ments and the theory. For those cases a large fraction of the surrounding fluid (% and

%, respectively) is glycerol. The viscosity of glycerol, from the values tabulated in Go-

har (), is dependent on pressure with a pressure coefficient α∗ ≈ 6× 10−9 Pa−1. The

corresponding coefficient C in equation (.) is approximately 375× 10−12 Pa−1. On the

other hand, Figure .(a) has a region around αin = 30◦ where the experimental values

of the friction coefficient are considerably lower than those predicted by equation (.).

The upright triangles, 4, in Figure .(a) correspond to the points reported in Figure ..

Those measurements were obtained with a pendulum made using a ∅ 127 µm leader. To

ascertain that the torsional stiffness of the pendulum string is negligible, as determined in

§.., a set of measurements was done using a ∅ 51 µm leader. The results obtained from

those measurements are shown in Figure .(a) with upside-down triangles, 5. The same

depressed values of the friction coefficient for incidence angles of approximately 30◦ were

observed.

A possible explanation for the low values of the friction coefficient observed for water fol-

lows. At pressures up to about 150 MPa the viscosity of water decreases with pressure. As the

pressure increases, water’s hydrogen-bonded network of icosahedral water clusters, which is

partially responsible for the viscosity of water, becomes deformed and loses strength. This

reduction in cohesivity more than compensates for the reduced void volume between the

water molecules, hence reducing the viscosity. At higher pressures water behaves like a nor-
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Figure .: Comparison between theoretically calculated and experimentally mea-
sured friction coefficient values for collisions of a 12.7 mm steel ball bearing
with the Zerodur wall. The surrounding fluids are (a) water, (b) a % wt.
aqueous glycerol solution, and (c) a % wt. aqueous glycerol solution.
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mal liquid and its viscosity, a function of the void fraction between the molecules, increases

with pressure. With this in mind, the results with water are expected to exhibit a lower value

than the prediction from equation (.), which assumes a power-law increase in viscosity

with pressure.

. Summary

Oblique collisions in a fluid exhibit characteristics similar to those of dry collisions. The

results were described using a three-parameter model based on a normal coefficient of resti-

tution, e, a rotational coefficient of restitution, β, and a coefficient of sliding friction, µ f .

The measurements obtained from immersed collisions of rough particles are qualita-

tively and quantitatively similar to those obtained from dry oblique collisions. The observed

rotational impulse during those impacts appears to be a consequence of the solid–solid con-

tacts between the surface roughness elements of the colliding objects. In cases where the

particles are smooth, there is a substantial decrease in the observed frictional force.

An analysis of the viscous shear in the lubrication gap for contacts of smooth spheres

was performed. A model based on lubrication theory, which predicts within experimental

uncertainty the frictional force experienced by a smooth sphere in a lubricated impact, was

proposed. The model shows that knowledge of the combined effects of temperature and

pressure on the fluid viscosity is necessary in order to estimate the tangential force during

impact.
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Chapter 

Hydrodynamic effect of the wall

The proper characterization of particle collisions in a liquid depends upon the ability to

accurately predict the particle velocity upon contact. For a small enough particle or a low

enough far-field velocity, a significant retardation of the particle is observed as it approaches

a target. The impact velocity of the particle is significantly smaller than the value predicted

from viscous drag in an unbounded fluid. The effect of the wall on the approach of the

particles used in the experiments described in the previous two chapters is examined here.

. Approach of a particle to a wall

To quantify the effect of the wall on the trajectory of a particle, a series of experiments was

performed with a free swinging immersed pendulum. The trajectories for a particle col-

liding with the wall and for a free swinging particle were compared for the same particle

and the same initial release angle. The viscosity of the interstitial fluid was varied between

1×10−3 Pa · s and 12×10−3 Pa · s. Figure . shows the trajectories for five cases. The ve-

locities have been nondimensionalized by the velocity of the particle at a distance of 1.5

particle diameters from the wall. As seen in the figure, the velocity of the particle decreases

due to viscous drag even before it reaches the vicinity of the wall. Note that, when the wall

is present, there is a further reduction in the velocity of the particle as it approaches the

wall. This additional retardation is due to an added mass effect, since the particle can no

longer push the fluid forward ahead of its path and instead has to displace the fluid in a

direction parallel to the wall. For St = 9 based on the impact velocity, the particle starts
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Figure .: Comparison of the velocity–position plots for a particle colliding with a
wall (4) and a free swinging pendulum (�). The subfigures correspond to the
conditions indicated by the corresponding points in Figure ..
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Figure .: Coefficients of restitution (◦) and critical distances (�) corresponding to
five trials with a 6.35 mm glass bead impacting on a Zerodur wall, immersed
in glycerol–water mixtures with viscosities between (a) 11.6×10−3 Pa · s and
(e) 2.2×10−3 Pa · s. The points are plotted as a function of the impact Stokes
number, StVc/V−1.5.

decelerating at approximately 0.5 particle diameters from the wall, well ahead of the actual

collision. This reduction of the velocity is also noticeable for St = 13, 31, and 47 based on

the impact velocity. By comparing the two trajectories, a distance, hw, can be defined as a

critical distance at which the velocity of the particle has dropped % below the velocity it

would have if the wall were not there. The ratio of hw to dp is shown in Figure ., indicating

a decrease in hw/dp with Stokes number. For St = 68, there is no apparent deceleration due

to the presence of the wall. The seemingly low velocity value for the last datum in Figure

.(e) is a consequence of the numerical differentiation of the position data obtained from

the high-speed video; similar artifacts are observed in Figures . and .. Figure . also

shows the coefficients of restitution for the five experiments. Rebound did not occur for

St = 9.
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Figure .: Distance, in particle diameters, at which a sphere has slowed down an
additional % due to the presence of a wall, as a function of St at a distance of
1.5dp from the wall. The solid line corresponds to the results of Brenner ()
and the experimental points correspond to the cases in Figure .. The error
bars show the uncertainty of experimentally determining the point at which
the additional retardation has reached %.

. Comparison with hydrodynamic theory

The results presented by Brenner () can explain the experimentally observed slowdown

to a good approximation, as shown in Figure .. Brenner’s analysis, exact for the slow, vis-

cous case, provides a means to determine the effect of the wall on an approaching particle.

Since the hydrodynamic force diverges as the gap separation h tends to zero, Brenner’s solu-

tion predicts the velocity of the particle to be zero at the time of impact. In most real cases

the impact velocity of a particle is nonzero: part of the slowdown predicted by Brenner’s

theory is not experienced by the particle. We conclude that the theory provides an upper

bound on the distance at which the effects of the wall are no longer negligible.
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Figure .: Velocity ratio for a glass sphere approaching a wall from a distance of
1.5 particle diameters up to a gap separation of 1/100 of a particle radius, as a
function of St at a distance of 1.5dp from the wall. The solid line corresponds
to the numerical integration of equation (.).

In order to estimate the impact velocity, an approximation has been made for the pur-

poses of this study. The correction λ applied to Stokes’s law by Brenner () is assumed

to be applicable in the case of nonlinear drag. Following Brenner, the drag force felt by a

sphere approaching a wall in Stokes flow conditions is given by the expression

Fdrag = 3πµdpVλ, (.)

where

λ=
4

3
sinhη

∞

∑
n=1

n(n+1)
(2n−1)(2n+3)

[
2sinh(2n+1)η+(2n+1) sinh2η

4sinh2(n+ 1
2)η− (2n+1)2 sinh2 η

−1

]
. (.)

The parameter η, given by η = cosh−1(1 + 2h/dp), is a function of the gap separation be-





tween the particle and the wall.

In order to modify equation (.) for flows at higher Reynolds numbers, an additional

correction factor,

φ= 1+0.1935Re0.6305, (.)

is introduced into Brenner’s drag relation. The factor φ is a function of V and is based on

the expressions compiled by Clift, Grace, and Weber () for Re≤ 260. Equation (.) can

now be written as

Fdrag = 3πµdpVφλ=−mV
dV

dh
. (.)

The change in velocity due to the drag force in equation (.) can be directly integrated—

keeping in mind that φ itself is a function of the velocity of the particle—to determine the

velocity drop caused by the presence of the wall. The calculated slowdown for a 6.35 mm

diameter glass sphere is compared in Figure . with the slowdown determined experimen-

tally using the pendulum setup. The measured impact velocity Vc has been scaled by the

measured particle velocity V−1.5 at a gap separation h = 3dp/2. The theoretical curve corre-

sponds to the ratio of the calculated particle velocities at distances dp/200 and 3dp/2. The

gap separation of 1/100 of a particle radius corresponds to the resolution of the digital

camera used in the experiments.

. Flow field visualization

During the course of studying the hydrodynamic effect of the wall, the flow field surround-

ing the sphere during the collision process was briefly investigated. A few flow visualization

experiments were performed to observe the development of the flow field around the col-

liding particles. The flow cell was illuminated from underneath with a sheet of light from a

green argon-ion laser (514.5 nm). A small amount of fluorescent dye (Rhodamine B) was

placed around the particle before it was released. A typical example of the produced flow

field is shown in Figure ., which corresponds to a 12.7 mm Delrin particle just before and

after impact.

In this example a wake is observed to develop behind the sphere before the collision
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t = 312 mst = 168 ms

t = 96 mst = 32 ms

t = 0 mst = -56 ms

Figure .: Flow field around a . mm Delrin sphere colliding with the Zerodur wall
(St = 120). The timestamp t = 0 corresponds to the time of impact. For t < 0
the motion of the sphere is from left to right, while for t > 0 the sphere has
rebounded and its motion is from right to left. The dashed line denotes the
position of the wall. Only the the lower part of the flow field is shown.

occurs. At the moment of collision the wake detaches from the sphere and continues to

move forward, in the opposite direction of the rebounding particle. As the particle moves

away from the wall, a new wake is formed behind it that interacts with the original wake

and produces a complex three-dimensional flow field in the gap between the sphere and

the wall. A significant amount of fluid mixing is observed as a result of the rebound. The

nature of the flow field was recently studied experimentally by Eames and Dalziel ()

and by ten Cate et al. (). The latter also performed a numerical analysis based on

lattice-Boltzmann simulations.
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. Summary

A deceleration of the particle due to the presence of the wall was observed for collisions

at Stokes numbers lower than approximately 70. The distance from the wall at which the

particle starts decelerating increases with decreasing Stokes number. For a Stokes number

of 9, the approach is affected at a distance of approximately one particle radius.

Based on the theoretical model put forth by Brenner (), valid for the slow, viscous

case, a modified expression incorporating some of the nonlinear drag effects of higher

Reynolds numbers was proposed. The predictions from this model provide, to a good ap-

proximation, an upper bound on the distance at which the effects of a wall are no longer

negligible.

Preliminary flow visualizations of the evolution of the wake generated by the motion

of the sphere were obtained. A rich, three-dimensional structure was observed. Upon re-

bound, the wake lingers in the vicinity of the wall, with considerable mixing.
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Chapter 

Application to slurry erosion

The present chapter focuses on the erosion of a surface caused by the impact of solid parti-

cles carried by a fluid flow. The goal is to use the results obtained in Chapter  to estimate

the collisional velocities of particles impacting a soft, ductile target in a slurry flow. Based

on the estimated velocities and on the existing models for estimating the mass removal rate

in dry erosion processes, a prediction of the erosion damage in a solid–liquid system is

presented.

The work is entirely analytical, based on conclusions drawn from the hydrodynamic

effects described in Chapter . In order to validate the predictions, theoretically calculated

crater sizes for deformation wear are compared with the experimental results presented

by Clark (), obtained with a slurry pot tester. A slurry pot is a device that provides a

measure of the wear of cylindrical metal samples in a relatively short time. It cannot be used

directly to measure the wear on components of a flow system. This type of tester presents

the distinct advantage of allowing quick and easy changes in experimental conditions. The

primary shortcomings of a slurry pot are the unknown fluid mechanical characteristics of

the flow and the uncontrolled occurrence of particle comminution.

. Erosion mechanisms

Surface erosion as a process is strongly dependent on the impact velocity of the particle

causing the erosion. At a low impact velocity, the particle may not carry enough energy to

exceed the plastic limit of the impacted surface and, in the absence of a cutting action, may
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cause no erosion. At a higher impact velocity, a concavity with a radius of curvature similar

to that of the impacting particle may be formed on the impacted surface by means of plastic

deformation (Bitter, ). For very high speed ranges—supersonic impacts—the behavior

of the impacted material changes drastically. At a supersonic impact velocity, a crater of

dimension much larger than the diameter of the impacting particle is formed (Bitter, ).

When the elastic limit is exceeded, plastic deformation occurs in the zone of maximum

stress. The resulting deformation hardens the material locally, increasing the elastic limit.

Repeated collisions further increase this elastic limit until it becomes equal to the strength

of the material. Any subsequent increase in the applied load—any further impacts—exceed

the strength of the material and cause denudation. This type of erosion is called deformation

wear.

For oblique collisions, the impacted material is subject to shear over an area equal to the

vertical cross section of that part of the particle which has penetrated into the surface. If

the shearing strength is exceeded, cutting wear occurs (Finnie, ; Finnie and McFadden,

; Magnée, ). In general, both deformation and cutting wear occur simultaneously.

Depending upon the hardness and brittleness, or ductility, of the impacted material, either

deformation or cutting wear may be the dominating erosion mechanism (Magnée, ).

The focus of this chapter is on near-normal collisions on soft, ductile materials where the

effects of cutting wear are negligible.

. Plastic indentation

As described in §. and §., the interaction between two colliding spheres is described by

the Hertz contact theory (Timoshenko and Goodier, ). A flat surface can be represented

by letting one of the spheres have an infinitely large radius. The radius a of the contact area

of a sphere of diameter dp and density ρp impacting a flat body at a velocity V is given by

equation (.). The equivalent load due to the impact, W, is obtained from equation (.).

The maximum surface pressure pmax = 3
2 paverage is, from equations (.) and (.),

pmax =
(

40

π4ρpV 2E∗4
)1/5

. (.)
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Figure .: Plastic indentation of a flat surface with a sphere.

The onset of plastic deformation corresponds to pmax = σel, the elastic load limit. From

equation (.) the collision velocity at which the elastic limit is reached,

Vel =
π2σ

5/2
el

2E∗
√

10ρp
, (.)

can be determined. Following Bitter (), the contact area is divided into two regions: a

circle of diameter dc , where plastic deformation occurs, and an annulus around it, where

only elastic deformation occurs. The area of the annulus of elastic deformation is equal to

the Hertzian contact area for a perfectly elastic collision in which pmax = σel. The crater of

depth H left behind after all of the elastic load has been removed is depicted in Figure ..

For most ductile materials, σel can be assumed to be governed by the von Mises shear

strain energy criterion. The von Mises criterion states that failure occurs when the energy

of distortion reaches the yield energy σy of the material under simple tension (or compres-

sion) (Johnson, ). For a Hertz pressure distribution with ν = 0.34, the maximum stress

concentration occurs at a depth of 0.247dp and corresponds to 0.602pmax (Davies, ;

Johnson, ). Thus, by the von Mises criterion, σel = 1.66σy is the stress at the elastic

limit. For any stress beyond σel yield is expected to occur.

The energy Qp devoted to plastic deformation during a collision is directly proportional

to the mass M = πρpd3
p/6 of the impacting particle. Bitter () shows that this energy is

given by

Qp =
1

2
m(V −Vel)

2 . (.)
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Equation (.) is valid as long as the particles impinge normally to the body surface.

. Fluid effect on the impact velocity

For a collision in a fluid of viscosity µ and density ρ f , the impact velocity of a particle is

lower than the velocity of the same particle far away from the wall. In §. it was shown

experimentally that, when a wall is present, there is a further reduction of the velocity of the

particle than what would be expected exclusively from drag in an unbounded fluid.

In situations where Re ·x/dp is smaller than unity—Re is the particle Reynolds number—

the fluid inertia effects can be assumed to be negligible. In such cases, an approach based

on lubrication theory can be used to calculate the retardation of the particle due to the pres-

ence of the wall. Based on a derivation by Davis et al. (), equations (.) and (.) can

be rewritten as

Fdrag = 3πµdpV
dp

2x
=−mV

dV

dx
.

The collision velocity Vc of a particle in close proximity to a wall and immersed in a viscous

fluid can be obtained, to leading order, as a function of the distance x between the particle

and its target,
Vc

V0
= 1+

1

St0
ln

xc

x0
. (.)

Here V0 is the velocity at an initial distance x0 and St0 is the particle Stokes number at

x0. The distance xc is the critical distance at which lubrication theory breaks down due to

surface roughness elements. The mean surface roughness can be considered to be smaller

than  µm (Clark, ; Joseph et al., ).

. Analysis of a slurry pot

The material removal due to the plastic deformation caused by a single impacting particle

can now be calculated. Clark () conducted a series of slurry pot erosion tests with dilute

water–glycerol suspensions of glass beads and determined both the rate of particle impact

and the dimensions of the impact craters. The slurry pot used by Clark consisted of a cylin-
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Figure .: Schematic diagram of the slurry pot used by Clark ().

drical container of 165 mm in diameter and 254 mm in height, like the one shown in Figure

.. Two oxygen-free high-conductivity copper rods were used as targets. The test speci-

mens were placed on an anchor impeller as shown in the figure. The vessel was equipped

with four baffles extending into the pot to disrupt the liquid rotation during testing. The

test temperature was controlled to within 1°C in order to ensure repeatable experimental

conditions. Based on the hardness of the test specimens reported by Clark, measured after

annealing for one hour at 300°C, an elastic load limit of 132–148 MPa can be estimated

(Tabor, ).

The measured crater diameters reported by Clark (), nondimensionalized by the

diameters of the impacting particles, are shown in Figure . as a function of StN , the Stokes

number based on the nominal test speed VN . The dimensionless crater size, dc/dp, is a

measure of the fraction of kinetic energy devoted to plastic deformation. The choice of

reporting Clark’s data as a function of Stokes number was made because this representation

allows for a direct comparison with the results presented in Chapter . Furthermore, since

the effective immersed coefficient of restitution was shown in Chapters  and  to be a

function of Stokes number, presenting the collisional data obtained by Clark () as a

function of Stokes number is a natural choice. In all cases, the crater size goes to zero for
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Figure .: Crater diameters for the different experimental conditions explored by
Clark (). The lines are intended to guide the eye.

StN between 10 and 20. This range is consistent with the critical value of Stokes number,

Stcrit ≈ 10, at which no rebound occurs (see §.).

Clark determined the kinetic energy of the impacting beads by comparing the craters

formed in his experiment with those produced by hardness test indentation of the surface.

By assuming that all the kinetic energy was expended in plastic deformation of the copper

specimen, he was able to directly calculate the impact velocity. To compute a collisional

velocity Vc for each of Clark’s experiments without prior knowledge of the impact crater

size, a far-field velocity must be determined. As a first estimate, the far-field velocity is

assumed to be the nominal test speed VN . Based on the results in Figure ., the far-field is

assumed to begin in the vicinity of 1.5 particle diameters away from the test specimen. By

integrating equation (.) from x = 3dp/2 to xc, a collisional velocity VcN (based on VN)

can be obtained.

The value of VN overestimates the far-field velocity since, as the specimens are rotated
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Figure .: Modified deceleration of a sphere due to the presence of a wall. The
theoretical curve from Figure . has been shifted so that its zero-crossing is
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around the pot tester by the impeller, the slurry is also rotated to a certain extent. This

necessitates a correction to the far-field velocity. An upper bound on the correction factor

can be obtained by assuming that the drag in the fluid is dominated by form drag. The areas

of the baffles and of the test specimens can be determined from the dimensions of the tester

shown in Figure .. The projected area of the test specimens, As, in the direction normal

to the flow is approximately 475 mm2. The total area of the baffles, Ab, is approximately

9600 mm2. Neglecting the effect of the frame that holds the test specimens, the swirling

velocity of the rotating slurry can be estimated from the ratio As/Ab of the projected areas

and the nominal speed of the tester, VN . In order for the drag on the test specimens and the

baffles to balance, the swirl velocity must be VNAs/Ab. Since the test specimens move at a

velocity VN , an upper bound on the collisional velocities is given by 1−As/Ab. This value

is an upper bound because it is based on the assumption that the baffles contribute their

entire area toward generating shape drag.

For a target impacted by a particle, the absence of a crater can be the consequence of

either a purely elastic impact or no impact at all. The no impact condition is satisfied when

the relative velocity of the particle with respect to the target goes to zero (from Figure .,

at Stokes number Stmin ≈ 5). The low Stokes number region of Figure . is reproduced
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in Figure .. The theoretical curve, originally intersecting the horizontal axis at Stmin, has

been shifted so that its zero-crossing occurs at Stcrit. The shaded area represents the Stokes

number region within which no rebound is observed for any of the experimental conditions

explored in this thesis. The ratio Stmin/Stcrit can be used as a lower bound on the correction

factor for the collisional velocities based on VN . This lower bound on the correction factor

is used in the present calculations, since it provides a better match to the results by Clark

() than the upper bound does.

The values of Vc = VcNStmin/Stcrit for the experimental conditions explored by Clark

() are shown in Table .. The corresponding collisional Stokes numbers are also re-

ported. Most of the collisions occur for Stc between 10 and 2000, the range explored in

Chapter . Within this range, the approximations used for computing the collisional veloc-

ity are accurate to within %.

The energy Qp devoted to plastic deformation can be calculated from equation (.).

From this energy, the diameter dc of the formed permanent indentation can be calculated

directly from

Qp =
1

4

∫ H

0
πd2

cσel dH, (.)

since the crater has the same radius of curvature dp/2 as the impacting sphere, i.e., d2
c =

4dpH − 4H2 (see Figure .). The calculated values for dc are shown in Table .; they

predict the experimentally obtained crater dimensions well within the accuracy of the ap-

proximations employed. Figure . shows a comparison between the calculated and exper-

imentally measured crater sizes. The theoretical curves slightly overpredict the crater sizes,

which can be attributed at least in part to the fact that plastic hardening was not taken into

consideration when deriving equations (.) and (.).

. Summary

The size of the crater formed by the impact of a single particle against a ductile target was

estimated for various flow conditions. An analysis based on the hydrodynamic effect of a

wall on the trajectory of a particle was used to estimate the impact velocities of the solid
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Table .: Collisional velocities and crater diameters for a slurry pot erosion tester.

Bead diameter dc (µm)
dp (µm) Vc (m s−1) Stc calc. Clark ()

VN = 18.7 m s−1

µ= 0.66×10−3 Pa · s
750 6.67 2037 158.9 −
500–600 6.62 1483 116.1 102.3
212–250 6.46 608 48.2 36.4

µ= 3.63×10−3 Pa · s
750 6.27 348 154.1 146.0
500–600 6.17 251 112.1 102.6
212–250 5.80 99 45.7 33.3

µ= 20×10−3 Pa · s
750 5.44 55 143.6 133.1
500–600 5.21 39 103.1 88.4
212–250 4.24 13 39.1 21.6

µ= 60×10−3 Pa · s
750 4.33 15 128.2 −
500–600 3.83 9 88.5 62.5
212–250 1.45 2 22.9 none

VN = 9.35 m s−1

µ= 0.66×10−3 Pa · s
750 3.28 1001 111.6 −
500–600 3.25 728 81.4 78.6
212–250 3.14 295 34.4 27.6

µ= 3.63×10−3 Pa · s
750 3.01 167 107.0 105.6
500–600 2.94 120 77.6 71.0
212–250 2.69 46 31.1 20.8

µ= 20×10−3 Pa · s
750 2.43 24 96.1 77.2
500–600 2.24 17 67.7 51.2
212–250 1.42 4 22.6 11

µ= 60×10−3 Pa · s
750 1.50 5 75.5 −
500–600 1.05 3 46.3 30.4
212–250 0 0 0 none

Collisional velocities Vc and crater diameters dc for a slurry pot
erosion tester. Calculated and experimental (Clark, ) crater
diameters are contrasted for several nominal test conditions.
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measured by Clark ().

particles in a slurry pot tester. The predicted crater sizes were calculated from the estimated

impact velocities and material properties. The resulting predictions are in agreement with

experimental data in the literature, suggesting that erosion rates can be estimated from

theory for simple slurry flows.
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Chapter 

Conclusion

. Summary

The effect of an ambient fluid on the impact and rebound of a sphere colliding with a wall

was studied. An experimental pendulum apparatus consisting of a sphere attached to a

thin string was used to control the trajectory of each collision. The target wall was a thick

Zerodur block in most experiments; a thick Lucite wall was also used. The azimuthal ori-

entation of the target block was adjusted so that normal and oblique collisions could be

analyzed. The pendular setup and target block were placed inside a small tank so that colli-

sions in a surrounding liquid could be performed. Steel, glass, nylon, and Delrin particles

were used, in an aqueous glycerol solution. The motion of each sphere was recorded using

a high-speed digital video camera. From the image analysis of the individual frames of the

resulting movie, the particle’s position and angular orientation were determined.

An effective coefficient of restitution, e, was defined based on the normal components of

the velocity of the particle just prior to and after impact. Some benchmarking experiments

with air as the surrounding fluid were performed. The results from those experiments com-

pare favorably with results in the literature. A few trials were done with a thinner target wall,

and large variations in the data were observed for walls with thickness on the order of the

impacting particle’s diameter. It was concluded that the experimental measurements had to

be made using the thick walls in order to attain good repeatability.

In the case of an immersed collision, the effective coefficient of restitution provides an

overall measure of the energy dissipated during the collision, with no distinction between
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losses due to viscous dissipation and losses due to inelasticity in the contacts. The ratio

of the effective coefficient of restitution to the dry coefficient of restitution, e/edry, more

precisely reflects the energy losses due to the presence of the ambient fluid.

The elastic properties of the particles and the walls were found to have little effect on the

value of the dry-scaled coefficient of restitution. Independent of the particles and walls used,

a single curve with moderate scatter was obtained when plotting e/edry as a function of the

Stokes number based on the impact velocity. The coefficient of restitution was shown to

increase with increasing Stokes number. Four interrelated rebound regimes were observed:

– A critical value of St ≈ 10 was found below which rebound does not occur. For such

slow collisions, the kinetic energy of the particle is completely dissipated as viscous

drag in the surrounding fluid.

– A deceleration of the particle due to the presence of the wall was observed for St

between 10 and 70. In this range, the fluid inertia dominates the motion and the

particle is forced to slow down due to the added mass effect of having to expel the

liquid from the gap between itself and the wall.

– No apparent deceleration was observed for St above 70. The particle inertia dom-

inates during the approach and the only slowdown observed is akin to that of an

object in an unbounded fluid.

– For St of about 1000 and higher, the coefficient of restitution approached the dry

value asymptotically. For such fast collisions, the fluid effects can be neglected with

little loss in accuracy.

A simple analytical model based on Stokes drag and elastohydrodynamic theory was pro-

posed. The model predicts that the dry-scaled effective coefficient of restitution increases

rapidly for Stokes numbers above the critical Stokes number for no rebound. For Stokes

numbers above approximately 100, the model predicts a slow asymptotic approach of e to

edry. Based on this model and on the surface properties of the particles, an explanation

of the variance of the data was proposed. For materials with a surface roughness compa-

rable to the minimum distance of approach predicted by elastohydrodynamic theory, the
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roughness elements are expected to protrude through the fluid layer. Under those condi-

tions, a solid–solid contact is to be expected. The contact between roughness elements can

explain the characteristic variance presented by the experimental values for St less than 80.

The variance was on the order of the experimental uncertainty for smooth particles and

considerably larger for the rougher particles.

Oblique collision experiments were performed by changing the azimuthal orientation

of the target block in the experimental setup. The incidence angle was defined as the angle

between the plane of the pendulum and the normal to the wall surface. The particles in the

pendular setup were released without rotation, and their angular orientation was tracked

throughout the collision so that any change in angular velocity could be quantified. In

general, two kinds of contact are identifiable in an oblique collision: a sliding contact, where

there is a relative velocity between the surfaces of the colliding object, and a rolling contact,

where the rotation of the particle exactly matches its translation so that the point of contact

never slips. Depending upon the magnitude of the frictional force exerted by the surfaces

on one another, a collision that starts by sliding can become a rolling collision.

A three-parameter model was used to describe the measurements from the oblique colli-

sion experiments. The first parameter is the normal coefficient of restitution, defined in the

same manner as the coefficient of restitution for a normal collision. The second parameter,

a coefficient of rotational restitution, β, is based on the tangential components of the veloc-

ity of the point of contact just prior to and after impact. This parameter encompasses the

changes in the linear and angular momentum of the colliding particle. A third parameter,

the coefficient of sliding friction, µ f , provides a measure of the tangential force acting on

the particle as it slides during a collision.

A few oblique collision experiments were done in air in order to evaluate the applicabil-

ity of the pendular experimental setup to these kinds of collisions. The results from those

measurements are in agreement with results reported in the literature. Immersed collisions

were then studied. The results from collisions of rough particles, where the average asper-

ity size is comparable to the gap separation predicted by elastohydrodynamic lubrication

theory, are qualitatively and quantitatively similar to the results from dry oblique collisions.

Some similarities were found between experiments performed with smooth spheres and
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those carried out with rough spheres or without an ambient liquid. The main difference

between smooth and rough collisions manifested itself as a drastically reduced friction co-

efficient. The roughness elements of smooth particles cannot be expected to interact with

the roughness elements of a smooth wall, and therefore any frictional force exerted by the

wall on the particle comes from shearing the lubrication layer.

A model was proposed to explain the observed tangential force acting on a smooth

sphere during an oblique collision. This model, based on lubrication theory, takes into

account the dependence of viscosity on pressure and temperature. The viscosity of most

liquids increases with increasing pressure. As a particle approaches a wall, a considerable

rise in pressure and temperature occurs in the gap between the two. The increase in pressure

tends to increase the viscosity of the fluid in the lubrication layer, whereas the temperature

rise tends to lower the viscosity. A delicate equilibrium between the two effects amounts to

a change in viscosity in the gap just large enough to successfully predict the tangential force

felt by an obliquely colliding smooth particle.

In order to quantify the effect of the wall on the observed slowdown of the particles for

St < 70, a modified expression based on the theoretical analysis done by Brenner was pro-

posed. The modified expression is based on the assumption that the creeping flow solution

of a sphere approaching a wall is valid for Reynolds numbers on the order of 100 as long

as a modified drag coefficient function of Re is used when calculating the drag. The predic-

tions from this model provide, to a good approximation, an explanation of the observed

slowdown of a particle in the range of St from 10 to 70.

The analysis of the particle slowdown was used in an attempt to predict erosion rates

in particulate flows. In erosion problems, the wear of a surface depends upon several fac-

tors, including the fluid flow conditions, the impacting particle material properties, and the

surface properties of the eroded object. While the material properties can be determined

from independent measurements, the flow conditions are in general much harder to eval-

uate. Existing theories on the wear of plastic surfaces were combined with the predictions

from the model obtained for the slowdown of a particle discussed above. The size of the

crater formed by the impact of a single particle against a ductile target was estimated to

good agreement with experimental data in the literature.
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. Future directions

The complexity of the flow field around the particle affects the nature of the rebound. For

the larger Stokes numbers studied in this thesis, the model presented in §. is not able to

accurately predict the effect of the wall due to the unsteady nature of the flow field. Further

analysis of the flow around the particle could prove useful towards understanding the full

range of collisional conditions that may be encountered in applications.

Several questions are raised by the observed structure of the wake. One of them has to

do with the heat transfer related to a collision. In §., a bound on the temperature increase

of the liquid in a lubricated collision was estimated. It was mentioned there that the con-

vective cooling is generally negligible during a collision, due to the time and length scales

involved. In the big picture, however, convection may be a key player. As the wake moves

past a sphere bouncing off a wall, it carries fluid from the bulk of the system toward the wall.

Once the particle has moved away, the wake left behind persists for a considerable amount

of time. The mixing of the fluid originally near the wall with fluid from several particle

diameters into the flow may considerably impact the thermal distribution of a solid–liquid

system. A greater understanding of the energy transfer could prove useful in studying sev-

eral industrial processes.

Also of interest, and not explored in this thesis, is the problem of the impact between two

particles. The results obtained here for single-particle collisions should be applicable within

certain bounds to collisions between two particles, with some additional complexities. For

instance, the added mass effect responsible for the particle slowdown described in §. can

be expected to induce a long-range interaction between the particles.

As was mentioned in the Introduction, it is not uncommon for existing numerical sim-

ulations of solid–liquid flows to introduce a repulsive force that prevents contact between

two solid surfaces. The repulsive force is introduced to prevent the model of the surround-

ing fluid from breaking down as the gap separation between the surfaces tends to zero. A

simple model like the one presented in §. may prove useful towards improving the com-

putational efficiency of such numerical simulations, with little or no sacrifice of the physical

accuracy of the model.
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The predictions of crater diameter size presented in Chapter  were compared with the

experimental results obtained by Clark. However, no experimental measurement of crater

diameters was performed during the course of the present work. In order to better validate

the predictions made, an experimental study of erosion based on the pendular setup would

be ideal. Under the controlled conditions provided by the pendulum, a systematic study of

the effects of impact angle, incident velocity, and surrounding fluids could further expand

the present knowledge in the field of erosion in fluid–particle systems.
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Appendix A

Sample preparation

The pendulums used in the experiments were made by attaching thin fly-fishing casting

lines to the various spheres with cyanoacrylate contact glue. The procedure for making one

pendulum follows:

. Clean and degrease the sphere. In general, acetone should be used to clean the

spheres; acetone dissolves any cyanoacrylate glue that might have been left behind

on the sphere from a previous experiment. For plastic spheres soluble in acetone, the

cleaning and degreasing should instead be done with isopropanol.

. Dry and wipe the sphere with a lint-free cloth or lens-cleaning paper.

. Place the sphere on a washer on the lab bench, to prevent it from rolling.

. Apply a small drop of cyanoacrylate glue to the top of the sphere, as shown in Figure

A.(a).

. Hold the fishing line vertically with its tip in the middle of the drop of glue. The

line should be held perpendicular to the surface of the sphere such that the tip barely

touches the sphere.

. With a pair of tweezers, hold the string in place as shown in Figure A.(b).

. Let the assembly sit still for at least  hours.

. Carefully remove the tweezers and lift the assembly by the fishing line. The sphere

should at this point be firmly attached to the string.
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(a) Glue droplet (b) Pendulum assembly (c) A finished pendulum

Figure A.: Attachment of a nylon string to a steel ball bearing.

. Immerse the sphere in water. Any remaining acetone in the cyanoacrylate glue will

promptly dissolve in the water, strengthening the bond.

. Dry the sphere with a lint-free cloth or lens-cleaning paper.

. Inspect the attachment point. If any defects are present, detach the string and repeat

the entire process. A small deviation of the string from the perpendicular is accept-

able, and can be corrected by hand by bending the string.

A finished pendulum looks like the one shown in Figure A.(c). It should be noted that

the first  hours of the glue curing time are particularly critical; any strong vibration or

inadvertent motion may move the tweezers relative to the sphere and break the bond. A

clean, out of the way area is best for sample preparation.
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Appendix B

Particle tracking algorithm

In order to track the position and rotation of the particles in the experiments, high-speed

video imaging was used. The individual events, captured with a high-speed video camera,

were archived to S-VHS tape at a playback rate of  frames per second. The taped video

was then digitized using a Power Macintosh G3 with an Audio/Video Personality Card and

saved as an uncompressed AVI movie.

B. Methodology

Full-resolution uncompressed AVI movies were chosen for the processing of the high-speed

video because they can be readily imported into MATLAB for subsequent processing. The

high-speed camera used, a Redlake MotionScope® S, is a black-and-white camera with

an 8-bit sensor. In order to preserve as much information as possible, the AVI movies were

encoded using 65536 shades of gray.

The lighting of the experimental setup was done in such a way that the background of

the recorded images appeared dark and defocused, as seen in Figure B.(a). Once the full-

resolution AVI movie had been read into MATLAB, each frame of the movie was processed

as an individual image. The contrast of each image was enhanced by mapping the darkest

shade of gray in the image to black and the lightest one to white, to take advantage of the

full black–white dynamic range. Figure B.(b) shows the result of applying this contrast

enhancement to the image in Figure B.(a). The particle edges were then found using the

Matlab® is a registered trademark of The MathWorks, Inc.
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(a) Raw image (b) Contrast-enhanced (c) Edge detection

(d) Dilated edges (e) Tracked disk (f) Angular orientation

Figure B.: Tracking of the position and angular orientation of a sphere using
MATLAB.

method proposed by Canny (), as implemented in the Image Processing Toolbox for

MATLAB.

The Canny method detects edges in an image by identifying local maxima in the gra-

dient of the intensity of the image. The gradient is calculated using the derivative of a

Gaussian filter and is compared with two thresholds. Edges identified using the low thresh-

old are included in the output only if they are connected to edges identified using the high

threshold.

The raw edge image, shown in Figure B.(c), consists of lines of one pixel in width. Such

lines do not necessarily form a closed path. Since the edge of a tracked sphere should always

form a closed path, the detected edges were dilated by replacing all black pixels adjacent to

a white pixel with white pixels. The resulting image is shown in Figure B.(d). The interior

of the closed path was then filled with white and the edges of the disk obtained were eroded

to remove the white pixels that had been artificially introduced by the dilation.

The resulting black-and-white image, shown in Figure B.(e), is internally represented
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by MATLAB as a binary matrix. Each number 1 indicates a pixel of the tracked sphere and

each number 0 indicates a pixel of the background. The averages by rows and columns of the

indices of all the 1-valued pixels correspond to the horizontal and vertical coordinates of the

centroid of the tracked sphere, respectively. The black cross shown in Figure B.(e) indicates

the position of the centroid of the sphere. The method described above is implemented in

the function track , listed in §B...

Two black dots were painted on each sphere at almost diametrically opposing locations,

like those shown by the arrows in Figure B.(f). These dots were used to determine the

angular orientation of the sphere. The coordinates of each dot were determined within

MATLAB using the mouse as an input device. The cross-hair lines shown in Figure B.(f)

indicate the position of the cursor at the time when the rightmost point was selected. From

the slope of a line joining the two selected points, the angular orientation of the particle was

determined. This process is implemented in the function rotmeas , listed in §B...

B. Source code

B.. Tracking of the particle translation (track.m )

The following MATLAB function takes as input a set of MAT-files that contain frames from

an AVI movie. The output is a data structure that contains a sub-structure with the coor-

dinates of the centroid of the tracked particle, a sub-structure with the dimensions of the

particle, and two vectors with the number of frames tracked and skipped. The function

includes documentation that can be accessed through the help command in MATLAB.

function particle = track(name,range,step,cut)
% TRACK − Tracks a particle using frames from an AVI movie

% TRACK(NAME,RANGE,STEP,CUT) returns a data structure with the

% substructures GEOM and POS, and with two vectors: a vector of

5 % FRAME numbers and a vector of SKIPped frames.

%

% The structure GEOM contains vectors for WIDTH and HEIGHT of the

% analyzed FRAMEs.

%

10 % The structure POS contains the position vectors X and Y for the

% center of the particle.

%
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% See also ROTMEAS.

15 % Gustavo Joseph, 25 January 2003

if nargin == 3, cut=0; end %% i.e., no wall clip mask

start = min (range);
20 finish = max(range);

NumFrames = finish - start + 1;

%%%%%

25 %% initialize variables

%%%%%

%% Thresholds for detecting skipped frames (raw) and for dealing

%% with non−uniform lighting conditions

30 thresh.raw = 0.82;
thresh.top = 1.0;
thresh.bot = 1.0;
thresh.split = 0.45;
thresh.perc=thresh.top;

35

%% Position and dimensions of the video image

orig.x = 40;
orig.y = 27;
mask.w = 230;

40 mask.h = 200;

%% Masks for obscuring the target wall

mask.clos = round (0.4*mask.h): round (0.6*mask.h);
mask.cut = cut;

45 rect = [orig.x+mask.cut orig.y mask.w-1-mask.cut mask.h-1];
frame.mask = ones (mask.h,mask.w-mask.cut);

%% Structuring elements for particle tracking

seex = strel (’disk’,2,0);
50 sere = strel (’disk’,35,0);

%% Counters

frame.prev = 0;
frame.bw.prev = 0;

55 frame.num = start - 1;
skip = 0; %% count of skipped frames

%%%%%

%% Frames input

60 %%%%%

frame.info = aviinfo (name);

if start>frame.info.NumFrames,
65 error ([’Movie contains ’, num2str (frame.info.NumFrames),’ frames’]);
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end

if finish>frame.info.NumFrames, finish=frame.info.NumFrames; end

70 %% The AVI movie is saved as a series of MAT−files, each one with

%% 100 frames. Segments is a vector which states how many frames

%% to read from the respective MAT−file
segments = nonzeros ( [ ( mod(-start,100)+1); ones ( ( NumFrames - ...

mod(-start,100) - 1 - mod(finish,100) ) / 100 , 1)*100; ...
75 mod(finish,100) ] );

if NumFrames<100 & ceil (start/100)== ceil (finish/100) ,
segments = [ NumFrames ];

end
80

H.debug = 0;
%H.debug = figure; %% Uncomment this line for debugging

%%%%%

85 %% Tracking body

%%%%%

for ind1 = 1: length (segments),

90 block = ceil (ind1 - 1 + start/100); %% segment number for filename

load ([’frames/frames’, num2str (block),’.mat’]);

if ind1 == 1,
95 if ceil (start/100)== ceil (finish/100),

low = start - 100* floor ((start-1)/100);
else

low = 101 - segments(ind1);
end

100 offset = low - 1; %% offset of start of the first frame segment

high = low + segments(ind1) - 1;
else

low = 1;
high = segments(ind1);

105 end

%% Loop through the frames in this segment

for ind2 = low:high,

110 count = (ind1 - 1)*100 + ind2;
F = mov(ind2);
[frame.raw,map] = frame2im (F);
frame.curr = ind2gray (frame.raw,map);
frame.bw.curr = im2bw (frame.curr,thresh.raw);

115

if frame.bw.curr == frame.bw.prev,
disp ([’Skipped repeated frame ’ num2str (count)])
skip = skip + 1;
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else
120 frame.num = frame.num + 1;

if mod (frame.num,step) == 0,
%% this frame will be tracked

ind = count - skip - offset;

125 %% Remove image border

frame.crop = imcrop (frame.curr,rect);

%% Equalize image to a uniform level of grey

thresh.level = graythresh ( histeq (frame.crop))*thresh.perc;
130

%% Detect particle edges

frame.bw.crop = edge (frame.crop,’canny’,[],2.0);
%% Remove edges that correspond to the target wall

frame.bw.crop = frame.bw.crop & frame.mask;
135 %% Remove shadow from target wall

frame.bw.crop(mask.clos,1) = 1;

%% Dilate the image to ensure that the edge is a closed path

frame.bw.crop = imdilate (frame.bw.crop,seex);
140 %% Fill the closed paths, hence locating the particle

frame.bw.crop = imfill (frame.bw.crop, ’holes’);

%% Remove pixels artificially added to eliminate wall shadow

frame.bw.crop(mask.clos,1) = 0;
145 %% Add pixels with luminance larger than thresh.level

frame.bw.crop = frame.bw.crop | im2bw (frame.crop,thresh.level);

%% Filter out edge noise

frame.bw.crop = imopen (frame.bw.crop,sere);
150

%% If debugging is enabled, display tracked image

if H.debug ~= 0,
figure (H.debug);
imshow ( double (frame.bw.crop) );

155 daspect ([1 1 1]);
end

%% Compute particle dimensions and centroid coordinates

[i,j]= find (frame.bw.crop);
160

%% If no pixels are found, the frame is skipped

if isempty (i)
skip = skip + 1;

else
165

%% Horizontal dimensions

xmin = min (j) - 1;
xmax = max(j) + 1;
particle.geom.width(ind) = xmax - xmin;

170

%% Vertical dimensions
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ymin = min (i) - 1;
ymax = max(i) + 1;
particle.geom.height(ind) = ymax - ymin;

175

%% Centroid coordinates

particle.pos.x(ind) = mean(j);
particle.pos.y(ind) = mask.h - mean(i);

180 %% If the partcle has crossed into a different illumination

%% zone, change the threshold value

if particle.pos.y(ind) < (thresh.split*mask.h),
thresh.perc = thresh.bot;

end
185

particle.frame(ind) = frame.num;
particle.skip(ind) = skip; %% number of frames skipped so far

end
190 else

%% this frame was skipped

skip = skip + 1;
end

end
195 frame.bw.prev = frame.bw.curr;

end
end

%% number of frames skipped between the previous frame and this one

200 particle.skip = diff ([0 particle.skip]);

%% Wait for a second before closing the debugging image

if H.debug ~= 0,
pause (1);

205 close (H.debug);
end

B.. Tracking of the particle rotation (rotmeas.m )

The following MATLAB function takes the data structure generated by the particle transla-

tion tracking function track listed above and adds to it three sub-structures containing

the orientation angle of the tracked particle and the coordinates of the points used for track-

ing the angular orientation. The function includes documentation that can be accessed

through the help command in MATLAB.

function particle = rotmeas(name,frames,skipped,cut)
% ROTMEAS − Angle with respect to the horizontal from an AVI movie

% ROTMEAS(NAME,FRAMES,SKIPPED,CUT) returns a data structure with
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% the substructures POS, DOT1 and DOT2.

5 %

% The input consists of the NAME of the AVI movie to use, a vector

% with the FRAMES to read, a vector detailing SKIPPED frames during

% the original tracking, and an optional integer CUT declaring the

% masking for eliminating the wall from the image. Very few error

10 % checks are performed. It is the responsibility of the previous

% tracking to provide reliable FRAMES and SKIPPED information.

%

% The structure POS contains the position vectors X and Y for the

% center of the particle, as well as a crude value for the

15 % orientation ANGLE. A value of −1 in the ANGLE is used to

% signify that an error occured when determining the angle.

%

% The structures DOT1 and DOT2 contain the position vectors

% X and Y for the orientation tracking marks that are painted

20 % on the particle for the experiment.

%

% See also TRACK.

% Gustavo Joseph, 25 January 2003

25

if nargin == 3, cut=0; end %% no wall clip mask

NumFrames = length (frames);

30 if length (skipped) ~= NumFrames,
error (’Incorrect number of SKIP elements.’);

end

frames = frames + cumsum(skipped);
35

start = min (frames);
finish = max(frames);

%%%%%

40 %% initialize variables

%%%%%

%% Position and dimensions of the video image

orig.x = 40;
45 orig.y = 27;

mask.w = 230;
mask.h = 200;

%% Masks for obscuring the target wall

50 mask.cut = cut;
rect = [orig.x+mask.cut orig.y mask.w-1-mask.cut mask.h-1];
frame.mask = ones (mask.h,mask.w-mask.cut);

%%%%%

55 %% Frames input

%%%%%
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%% The AVI movie is saved as a series of MAT−files, each one with

%% 100 frames. Segments is a vector which states how many frames

60 %% to read from the respective MAT−file
segments = nonzeros ( [ ( mod(-start,100)+1); ones ( ( NumFrames - ...

mod(-start,100) - 1 - mod(finish,100) ) / 100 , 1)*100; ...
mod(finish,100) ] );

65 if NumFrames<100 & ceil (start/100)== ceil (finish/100),
segments = [ NumFrames ];

end

%% Initialize figure. Black background is easier on the eyes

70 H.finds = figure ;
whitebg (1,’black’)
count = 0;

%%%%%

75 %% Tracking body

%%%%%

for ind1 = 1: length (segments),

80 block = ceil (ind1 - 1 + start/100); %% segment number for filename

load ([’frames/frames’, num2str (block),’.mat’]);

low = sum( frames <= 100*(block-1) ) + 1;
85 high = sum( frames <= 100*block ) ;

%% Loop through the frames in this segment

for ind2 = low:high,

90 ind = mod( frames(ind2) - 1, 100 ) + 1;

F = mov(ind);
[frame.raw,map] = frame2im (F);
[frame.curr,map]= cmunique (frame.raw,map);

95

frame.curr = imcrop (frame.curr,rect);

%% Pink makes the dots easy to see on screen

colormap (pink)
100

%% Display particle with a natural aspect ratio

imagesc (frame.curr);
daspect ([1 1 1]);

105 %% Read two sets of coordinates from mouse input

[x,y]= ginput (2);

count = count + 1;
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110 %% Compute angle between the dots from the mouse input

if (x(1)==x(2) & y(1)==y(2)),
particle.pos.ang(count) = -1;

else
particle.pos.ang(count) = atan2(y(2)-y(1),x(1)-x(2)) ...

115 *180/pi ... %% angle in degrees

+ 180; %% from 0 to 360

end
particle.dot1.x(count) = x(1);
particle.dot1.y(count) = y(1);

120 particle.dot2.x(count) = x(2);
particle.dot2.y(count) = y(2);

end
end

125

%% Close figure with particle image

close (H.finds);





Appendix C

Physical properties of glycerol

Glycerol (,,-propanetriol) is a liquid at room temperature. Commonly known as glycerin,

it has a molecular weight of 92.09 g mol−1. It is viscous, stable, hygroscopic, clear, odorless,

noncorrosive, sweet tasting, very low in toxicity, and is classified by the Food and Drug

Administration as “Generally Recognized As Safe” (GRAS). It has a freezing point of 17°C

and a boiling point at atmospheric pressure of 290°C.

Glycerol is fully miscible with water, and a common means of determining the glycerol

content of an aqueous solution is to measure the specific gravity of the mixture. Table C.

shows the density of glycerol–water solutions at various concentrations and temperatures,

from which the true specific gravity—the ratio of the weight of a glycerol–water mixture

to the weight of an equal volume of pure water at its maximum density—can be calculated.

Table C. shows the apparent specific gravity—as measured by a hydrometer—of aqueous

solutions of glycerol up to % glycerol by weight. These tables are taken from data sheets

provided by Dow Chemical Synthetic Glycerine Products and are in agreement with the

tabulated data presented by Green and Maloney ().

The viscosity of aqueous glycerol solutions from  to % concentrations and 0 to 70°C

temperatures is given in Table C.. These data, also from The Dow Chemical Company, are

in agreement with those reported by Lide (). Once the concentration of glycerol has

been determined from Table C. by means of a hydrometer, the viscosity of the mixture can

be determined from the tabulated data.
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Table C.: Density of glycerol–water solutions.
Glycerol Density (g cm−3)
(% wt.) 15°C 15.5°C 20°C 25°C 30°C

100 1.26415 1.26381 1.26108 1.25802 1.25495
99 1.26160 1.26125 1.25850 1.25545 1.25235
98 1.25900 1.25865 1.25590 1.25290 1.24975
97 1.25645 1.25610 1.25335 1.25030 1.24710
96 1.25385 1.25350 1.25080 1.24770 1.24450
95 1.25130 1.25095 1.24825 1.24515 1.24190
94 1.24865 1.24830 1.24560 1.24250 1.23930
93 1.24600 1.24565 1.24300 1.23985 1.23670
92 1.24340 1.24305 1.24035 1.23725 1.23410
91 1.24075 1.24040 1.23770 1.23460 1.23150
90 1.23810 1.23775 1.23510 1.23200 1.22890
89 1.23545 1.23510 1.23245 1.22935 1.22625
88 1.23280 1.23245 1.22975 1.22665 1.22360
87 1.23015 1.22980 1.22710 1.22400 1.22095
86 1.22750 1.22710 1.22445 1.22135 1.21830
85 1.22485 1.22445 1.22180 1.21870 1.21565
84 1.22220 1.22180 1.21915 1.21605 1.21300
83 1.21955 1.21915 1.21650 1.21340 1.21035
82 1.21690 1.21650 1.21380 1.21075 1.20770
81 1.21425 1.21385 1.21115 1.20810 1.20505
80 1.21160 1.21120 1.20850 1.20545 1.20240
79 1.20885 1.20845 1.20575 1.20275 1.19970
78 1.20610 1.20570 1.20305 1.20005 1.19705
77 1.20335 1.20300 1.20030 1.19735 1.19435
76 1.20060 1.20025 1.19760 1.19465 1.19170
75 1.19785 1.19750 1.19485 1.19195 1.18900
74 1.19510 1.19480 1.19215 1.18925 1.18635
73 1.19235 1.19205 1.18940 1.18650 1.18365
72 1.18965 1.18930 1.18670 1.18380 1.18100
71 1.18690 1.18655 1.18395 1.18110 1.17830
70 1.18415 1.18385 1.18125 1.17840 1.17565
69 1.18135 1.18105 1.17850 1.17565 1.17290
68 1.17860 1.17830 1.17575 1.17295 1.17020
67 1.17585 1.17555 1.17300 1.17020 1.16745
66 1.17305 1.17275 1.17025 1.16745 1.16470
65 1.17030 1.17000 1.16750 1.16475 1.16195
64 1.16755 1.16725 1.16475 1.16200 1.15925
63 1.16480 1.16445 1.16205 1.15925 1.15650
62 1.16200 1.16170 1.15930 1.15655 1.15375
61 1.15925 1.15895 1.15655 1.15380 1.15100
60 1.15650 1.15615 1.15380 1.15105 1.14830
59 1.15370 1.15340 1.15105 1.14835 1.14555
58 1.15095 1.15065 1.14830 1.14560 1.14285
57 1.14815 1.14785 1.14555 1.14285 1.14010
56 1.14535 1.14510 1.14280 1.14015 1.13740
55 1.14260 1.14230 1.14005 1.13740 1.13470
54 1.13980 1.13955 1.13730 1.13465 1.13195
53 1.13705 1.13680 1.13455 1.13195 1.12925
52 1.13425 1.13400 1.13180 1.12920 1.12650
51 1.13150 1.13125 1.12905 1.12650 1.12380

continued on next page
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Table C.: continued from previous page
Glycerol Density (g cm−3)
(% wt.) 15°C 15.5°C 20°C 25°C 30°C

50 1.12870 1.12845 1.12630 1.12375 1.12110
49 1.12600 1.12575 1.12360 1.12110 1.11845
48 1.12325 1.12305 1.12090 1.11840 1.11580
47 1.12055 1.12030 1.11820 1.11575 1.11320
46 1.11780 1.11760 1.11550 1.11310 1.11055
45 1.11510 1.11490 1.11280 1.11040 1.10795
44 1.11235 1.11215 1.11010 1.10775 1.10530
43 1.10960 1.10945 1.10740 1.10510 1.10265
42 1.10690 1.10670 1.10470 1.10240 1.10005
41 1.10415 1.10400 1.10200 1.09975 1.09740
40 1.10145 1.10130 1.09930 1.09710 1.09475
39 1.09875 1.09860 1.09665 1.09445 1.09215
38 1.09605 1.09590 1.09400 1.09180 1.08955
37 1.09340 1.09320 1.09135 1.08915 1.08690
36 1.09070 1.09050 1.08865 1.08655 1.08430
35 1.08800 1.08780 1.08600 1.08390 1.08165
34 1.08530 1.08515 1.08335 1.08125 1.07905
33 1.08265 1.08245 1.08070 1.07860 1.07645
32 1.07995 1.07975 1.07800 1.07600 1.07380
31 1.07725 1.07705 1.07535 1.07335 1.07120
30 1.07455 1.07435 1.07270 1.07070 1.06855
29 1.07195 1.07175 1.07010 1.06815 1.06605
28 1.06935 1.06915 1.06755 1.06560 1.06355
27 1.06670 1.06655 1.06495 1.06305 1.06105
26 1.06410 1.06390 1.06240 1.06055 1.05855
25 1.06150 1.06130 1.05980 1.05800 1.05605
24 1.05885 1.05870 1.05720 1.05545 1.05350
23 1.05625 1.05610 1.05465 1.05290 1.05100
22 1.05365 1.05350 1.05205 1.05035 1.04850
21 1.05100 1.05090 1.04950 1.04780 1.04600
20 1.04840 1.04825 1.04690 1.04525 1.04350
19 1.04590 1.04575 1.04440 1.04280 1.04105
18 1.04335 1.04325 1.04195 1.04035 1.03860
17 1.04085 1.04075 1.03945 1.03790 1.03615
16 1.03835 1.03825 1.03695 1.03545 1.03370
15 1.03580 1.03570 1.03450 1.03300 1.03130
14 1.03330 1.03320 1.03200 1.03055 1.02885
13 1.03080 1.03070 1.02955 1.02805 1.02640
12 1.02830 1.02820 1.02705 1.02560 1.02395
11 1.02575 1.02565 1.02455 1.02315 1.02150
10 1.02325 1.02315 1.02210 1.02070 1.01905

9 1.02085 1.02075 1.01970 1.01835 1.01670
8 1.01840 1.01835 1.01730 1.01600 1.01440
7 1.01600 1.01590 1.01495 1.01360 1.01205
6 1.01360 1.01350 1.01255 1.01125 1.00970
5 1.01120 1.01110 1.01015 1.00890 1.00735
4 1.00875 1.00870 1.00780 1.00655 1.00505
3 1.00635 1.00630 1.00540 1.00415 1.00270
2 1.00395 1.00385 1.00300 1.00180 1.00035
1 1.00155 1.00145 1.00060 0.99945 0.99800
0 0.99913 0.99905 0.99823 0.99708 0.99568
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Table C.: Specific gravity of glycerol–water solutions.

Glycerol Apparent specific gravity
(% wt.) 15/15°C 15.5/15.5°C 20/20°C 25/25°C

80 1.21290 1.21260 1.21090 1.20925
79 1.21015 1.20985 1.20815 1.20655
78 1.20740 1.20710 1.20540 1.20380
77 1.20465 1.20440 1.20270 1.20110
76 1.20190 1.20165 1.19995 1.19840
75 1.19915 1.19890 1.19720 1.19565
74 1.19640 1.19615 1.19450 1.19295
73 1.19365 1.19340 1.19175 1.19025
72 1.19090 1.19070 1.18900 1.18755
71 1.18815 1.87950 1.18630 1.18480
70 1.18540 1.18520 1.18355 1.18210
69 1.18260 1.18240 1.18080 1.17935
68 1.17985 1.17965 1.17805 1.17660
67 1.17705 1.17685 1.17530 1.17385
66 1.17430 1.17410 1.17255 1.17110
65 1.17155 1.17130 1.16980 1.16835
64 1.16875 1.16855 1.16705 1.16560
63 1.16600 1.16575 1.16430 1.16285
62 1.16320 1.16300 1.16155 1.16010
61 1.16045 1.16020 1.15875 1.15735
60 1.15770 1.15745 1.15605 1.15460
59 1.15490 1.15465 1.15325 1.15185
58 1.15210 1.15190 1.15050 1.14915
57 1.14935 1.14910 1.14775 1.14640
56 1.14655 1.14635 1.14500 1.14365
55 1.14375 1.14355 1.14220 1.14090
54 1.14100 1.14080 1.13945 1.13815
53 1.13820 1.13800 1.13670 1.13540
52 1.13540 1.13525 1.13395 1.13265
51 1.13265 1.13245 1.13120 1.12995
50 1.12985 1.12970 1.12845 1.12720
49 1.12710 1.12695 1.12570 1.12450
48 1.12440 1.12425 1.12300 1.12185
47 1.12165 1.12150 1.12030 1.11915
46 1.11890 1.11880 1.11760 1.11650
45 1.11620 1.11605 1.11490 1.11380
44 1.11345 1.11335 1.11220 1.11115
43 1.11075 1.11060 1.10950 1.10845
42 1.10800 1.10790 1.10680 1.10575
41 1.10525 1.10515 1.10410 1.10310

continued on next page
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Table C.: continued from previous page

Glycerol Apparent specific gravity
(% wt.) 15/15°C 15.5/15.5°C 20/20°C 25/25°C

40 1.10255 1.10245 1.10135 1.10040
39 1.09985 1.09975 1.09870 1.09775
38 1.09715 1.09705 1.09605 1.09510
37 1.09445 1.09435 1.09335 1.09245
36 1.09175 1.09165 1.09070 1.08980
35 1.08905 1.08895 1.08805 1.08715
34 1.08635 1.08625 1.08535 1.08455
33 1.08365 1.08355 1.08270 1.08190
32 1.08100 1.08085 1.08005 1.07925
31 1.07830 1.07815 1.07735 1.07660
30 1.07560 1.07545 1.07470 1.07395
29 1.07295 1.07285 1.07210 1.07135
28 1.07035 1.07025 1.06950 1.06880
27 1.06770 1.06760 1.06690 1.06625
26 1.06510 1.06500 1.06435 1.06370
25 1.06250 1.06240 1.06175 1.06115
24 1.05985 1.05980 1.05915 1.05860
23 1.05725 1.05715 1.05655 1.05605
22 1.05460 1.05455 1.05400 1.05350
21 1.05200 1.05195 1.05140 1.05095
20 1.04935 1.04935 1.04880 1.04840
19 1.04685 1.04680 1.04630 1.04590
18 1.04435 1.04430 1.04380 1.04345
17 1.04180 1.04180 1.04135 1.04100
16 1.03930 1.03925 1.03885 1.03850
15 1.03675 1.03675 1.03635 1.03605
14 1.03425 1.03420 1.03390 1.03360
13 1.03175 1.03170 1.03140 1.03110
12 1.02920 1.02920 1.02890 1.02865
11 1.02670 1.02665 1.02640 1.02620
10 1.02415 1.02415 1.02395 1.02370

9 1.02175 1.02175 1.02155 1.02135
8 1.01935 1.01930 1.01915 1.01900
7 1.01690 1.01690 1.01675 1.01660
6 1.01450 1.01450 1.01435 1.01425
5 1.01210 1.01205 1.01195 1.01185
4 1.00965 1.00965 1.00955 1.00950
3 1.00725 1.00725 1.00720 1.00710
2 1.00485 1.00485 1.00480 1.00475
1 1.00240 1.00240 1.00240 1.00235
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Table C.: Viscosity of glycerol–water solutions.

Glycerol Viscosity (cP)†

(% wt.) 10°C 20°C 25°C 30°C 40°C 50°C 60°C 70°C
100 3900 1410 906 612 284 142 81.3 50.6

99 3090 1150 743 500 235 122 69.1 43.6
98 2460 939 603 409 196 104 59.8 38.5
97 1950 765 501 340 166 88.9 51.9 33.6
96 1580 624 417 281 142 77.8 45.4 29.7
95 1270 523 350 237 121 67.0 39.9 26.4
94 1040 437 296 202 105 58.4 35.4 23.6
93 860 367 251 172 89 51.5 31.6 21.2
92 729 310 213 147 78.3 44.8 28.0 19.0
91 592 259 181 127 68.1 39.8 25.1 17.1
90 498 219 157 109 60.0 35.5 22.5 15.5
85 223 109 78 58 33.5 21.2 14.2 10.0
80 116 60.1 45.3 33.9 20.8 13.6 9.42 6.94
75 65.2 35.5 27.1 21.2 13.6 9.25 6.61 5.01
70 38.8 22.5 17.6 14.1 9.40 6.61 4.86 3.78
65 25.3 15.2 12.06 9.85 6.80 4.89 3.66 2.91
60 17.4 10.8 8.673 7.19 5.08 3.76 2.85 2.29
50 9.01 6.00 5.041 4.21 3.10 2.37 1.86 1.53
40 5.37 3.72 3.181 2.72 2.07 1.62 1.30 1.09
30 3.49 2.50 2.157 1.87 1.46 1.16 0.956 0.816
20 2.41 1.76 1.542 1.35 1.07 0.879 0.731 0.635
10 1.74 1.31 1.153 1.03 0.826 0.680 0.575 0.500

0 1.308 1.005 0.893 0.800 0.656 0.549 0.469 0.406

† 1 cP = 1×10−3 Pa · s.





Bibliography

R. K. Adair (). The Physics of Baseball, rd edn. New York: Perennial.

G. Barnocky and R. H. Davis (). Elastohydrodynamic collision and rebound of

spheres: experimental verification. Phys. Fluids (), –.

G. Barnocky and R. H. Davis (). The influence of pressure-dependent density and

viscosity on the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech.

, –.

J. G. A. Bitter (). A study of erosion phenomena. Wear , –, –.

F. P. Bowden and D. Tabor (). The Friction and Lubrication of Solids. Oxford: Claren-

don Press.

H. Brenner (). The slow motion of a sphere through a viscous fluid towards a plane

surface. Chem. Engng Sci. , –.

L. J. Briggs (). Methods for measuring the coefficient of restitution and the spin of a

ball. J. Res. Nat. B. of Standards (RP), –.

A. Cameron (). Basic Lubrication Theory, rd edn. Chichester: Ellis Horwood Ltd.

J. Canny (). A computational approach to edge-detection. IEEE T. Pattern Anal. (),

–.

R. W. Carpick, D. F. Ogletree, and M. Salmeron (). Lateral stiffness: A new nanome-

chanical measurement for the determination of shear strengths with friction force mi-

croscopy. Appl. Phys. Lett. (), –.





A. ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker (). Particle

imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere

settling under gravity. Phys. Fluids (), –.

C. Cattaneo (). Sul contatto di due corpi elastici: distribuzione locale degli sforzi.

Accademia dei Lincei, Rendiconti, series  XXVII, –, –, –.

P. S. Y. Chu and A. Cameron (). Pressure viscosity characteristics of lubricating oils. J.

Inst. Petrol. (), –.

H. M. Clark (). On the impact rate and impact energy of particles in a slurry pot

erosion tester. Wear (), –.

R. Clift, J. R. Grace, and M. E. Weber (). Bubbles, Drops, and Particles. New York:

Academic Press.

J. Colchero, M. Luna, and A. M. Baró (). Lock-in technique for measuring friction

on a nanometer scale. Appl. Phys. Lett. (), –.

R. M. Davies (). The determination of static and dynamic yield stresses using a steel

ball. Proc. R. Soc. Lond. A , –.

R. H. Davis, D. A. Rager, and B. T. Good (). Elastohydrodynamic rebound of spheres

from coated surfaces. J. Fluid Mech. , –.

R. H. Davis, J. M. Serayssol, and E. J. Hinch (). The elastohydrodynamic collision of

two spheres. J. Fluid Mech. , –.

W. R. Dean and M. E. O’Neill (). A slow motion of viscous liquid caused by a slowly

rotating solid sphere. Mathematika , –.

I. Eames and S. B. Dalziel (). Dust resuspension by the flow around an impacting

sphere. J. Fluid Mech. , –.

Edmund Scientific (). Happy & Unhappy Balls. Scientifics Item No. CR--.

URL <http://www.scientificsonline.com/>

http://www.scientificsonline.com/




D. Elata (). On the oblique compression of two elastic spheres. Trans. ASME: J. Appl.

Mech. (), –.

I. Finnie (). Erosion of surfaces by solid particles. Wear (), –.

I. Finnie and D. H. McFadden (). On the velocity dependence of erosion of ductile

metals by solid particles at low angles of incidence. Wear (), –.

S. F. Foerster, M. Y. Louge, A. H. Chang, and K. Allia (). Measurements of the

collision properties of small spheres. Phys. Fluids (), –.

R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph (). A distributed Lagrange

multiplier fictitious domain method for particulate flows. Int. J. Multiphas. Flow (),

–.

R. Gohar (). Elastohydrodynamics, nd edn. London: Imperial College Press.

A. J. Goldman, R. G. Cox, and H. Brenner (). Slow viscous motion of a sphere

parallel to a plane wall—I. Motion through a quiescent fluid. Chem. Engng Sci. (),

–.

W. Goldsmith (). Impact. London: Edward Arnold Ltd.

P. Gondret, E. Hallouin, M. Lance, and L. Petit (). Experiments on the motion of

a solid sphere toward a wall: From viscous dissipation to elastohydrodynamic bouncing.

Phys. Fluids (), –.

P. Gondret, M. Lance, and L. Petit (). Bouncing motion of spherical particles in

fluids. Phys. Fluids (), –.

D. W. Green and J. O. Maloney, eds. (). Perry’s Chemical Engineers’ Handbook, th

edn. New York: McGraw–Hill.

H. H. Hu (). Direct simulation of flows of solid–liquid mixtures. Int. J. Multiphas. Flow

(), –.

K. L. Johnson (). Contact Mechanics. New York: Cambridge University Press.





G. G. Joseph, R. Zenit, M. L. Hunt, and A. M. Rosenwinkel (). Particle–wall colli-

sions in a viscous fluid. J. Fluid Mech. , –.

H. K. Kytömaa and P. J. Schmid (). On the collision of rigid spheres in a weakly

compressible fluid. Phys. Fluids A (), –.

D. R. Lide, ed. (). CRC Handbook of Chemistry and Physics, nd edn. Boca Raton:

CRC Press.

A. E. H. Love (). A Treatise on the Mathematical Theory of Elastisity, th edn. Cambridge

University Press.

C. K. K. Lun and S. B. Savage (). A simple kinetic theory for granular flow of rough,

inelastic, spherical particles. Trans. ASME: J. Appl. Mech. (), –.

J. Lundberg and H. H. Shen (). Collisional restitution dependence on viscosity. J.

Engng Mech. Div. ASCE (), –.

A. Magnée (). Generalized law of erosion—Application to various alloys and inter-

metallics. Wear (), –.

N. Maw, J. R. Barber, and J. N. Fawcett (). The oblique impact of elastic spheres.

Wear (), –.

N. Maw, J. R. Barber, and J. N. Fawcett (). The role of elastic tangential compliance

in oblique impact. Trans. ASME: J. Lubric. Tech. (), –.

M. H. McLaughlin (). An experimental study of particle–wall collision relating to flow

of solid particles in a fluid. Engineer’s degree thesis, California Institute of Technology,

Pasadena, California.

R. D. Mindlin (). Compliance of elastic bodies in contact. Trans. ASME: J. Appl. Mech.

, –.

R. D. Mindlin and H. Deresiewicz (). Elastic spheres in contact under varying

oblique forces. Trans. ASME: J. Appl. Mech. , –.





N. Nguyen and A. J. C. Ladd (). Lubrication corrections for lattice-Boltzmann simu-

lations of particle suspensions. Phys. Rev. E , .

M. E. O’Neill (). A slow motion of viscous liquid caused by a slowly moving solid

sphere. Mathematika , –.

M. E. O’Neill (). A slow motion of viscous liquid caused by a slowly moving solid

sphere: an addendum. Mathematika , –.

A. V. Potapov, M. L. Hunt, and C. S. Campbell (). Liquid–solid flows using smoothed

particle hydrodynamics and the discrete element method. Powder Tech. (–), –.

Redlake (). Instructions for Operating the MotionScope® S and C Series High Speed

Video Cameras. San Diego. Manual No. -, Revision J.

J. R. Smart and D. T. Leighton (). Measurement of the hydrodynamic surface-

roughness of noncolloidal spheres. Phys. Fluids A (), –.

M. B. Smith and R. R. Hannah (). High-permeability fracturing: The evolution of a

technology. J. Pet. Tech. (), –.

R. Sondergaard, K. Chaney, and C. E. Brennen (). Measurements of solid spheres

bouncing off flat plates. Trans. ASME: J. Appl. Mech. (), –.

D. Tabor (). The Hardness of Metals. Oxford University Press.

T. R. Thomas (). Rough Surfaces, nd edn. London: Imperial College Press.

S. P. Timoshenko and J. N. Goodier (). Theory of Elasticity, rd edn. McGraw–Hill.

K. Walton (). The oblique compression of two elastic spheres. J. Mech. Phys. Solids

(), –.

O. R. Walton (). Numerical simulation of inelastic, frictional particle–particle inter-

actions. In M. C. Roco, ed., Particulate Two-Phase Flow, chap. , pp. –. Boston:

Butterworth–Heinemann.





R. Zenit and M. L. Hunt (). Mechanics of immersed particle collisions. Trans. ASME:

J. Fluid Engng (), –.

R. Zenit, M. L. Hunt, and C. E. Brennen (). Collisional particle pressure measure-

ments in solid–liquid flows. J. Fluid Mech. , –.

J. P. Zhang, L. S. Fan, C. Zhu, R. Pfeffer, and D. W. Qi (). Dynamic behavior of

collision of elastic spheres in viscous fluids. Powder Tech. (–), –.



This thesis was prepared in LATEX 2ε, using the class file written by Daniel M. Zimmerman and
available on the Caltech Library System website. It was typeset directly to Adobe Portable Docu-
ment Format on a Power Macintosh G3 running Mac OS X, using pdfTEX as included in Thomas
Esser’s teTEX distribution. The figures were prepared using MATLAB® and the schematic diagrams
were drawn in Adobe® Illustrator® 10. The crunch, crunch, crunch... was done with
MATHEMATICA® and MATLAB®.

The typeface used for the main text is Minion, designed by Robert Slimbach. The typewriter
font is a combination of Courier by Howard Kettler for the upright characters and Lucida Sans
Typewriter by Charles Bigelow and Kris Holmes for the slanted characters. The Greek characters
and mathematical symbols in formulas are taken from Computer Modern by Donald Knuth, with
the exception of the summation symbol, which comes from Adobe Symbol. The font used for text
in figures and diagrams is Palatino™ by Hermann Zapf.

http://library.caltech.edu/

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Coefficient of restitution
	1.2 Liquid-immersed collisions
	1.3 Thesis outline

	2 Experimental setup
	2.1 Description of the apparatus
	2.1.1 Surrounding fluid
	2.1.2 Pendulum string
	2.1.3 Particles and target blocks
	2.1.4 Surface roughness

	2.2 Experimental technique

	3 Normal collisions
	3.1 Dry coefficients of restitution
	3.2 Coefficient of restitution with fluid effects
	3.3 Comparison with elastohydrodynamic theories
	3.4 Influence of the particle roughness
	3.5 Summary

	4 Oblique collisions
	4.1 Oblique impact of spheres
	4.2 Dry collisions
	4.3 Collisions in a liquid
	4.4 Mathematical modeling of the fluid effects
	4.4.1 Angular velocity after a lubricated impact
	4.4.2 Viscosity variation with pressure
	4.4.3 Effect of temperature
	4.4.4 Comparison between experiments and theory

	4.5 Summary

	5 Hydrodynamic effect of the wall
	5.1 Approach of a particle to a wall
	5.2 Comparison with hydrodynamic theory
	5.3 Flow field visualization
	5.4 Summary

	6 Application to slurry erosion
	6.1 Erosion mechanisms
	6.2 Plastic indentation
	6.3 Fluid effect on the impact velocity
	6.4 Analysis of a slurry pot
	6.5 Summary

	7 Conclusion
	7.1 Summary
	7.2 Future directions

	A Sample preparation
	B Particle tracking algorithm
	B.1 Methodology
	B.2 Source code
	B.2.1 Tracking of the particle translation (track.m)
	B.2.2 Tracking of the particle rotation (rotmeas.m)


	C Physical properties of glycerol
	Bibliography

