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I would like to thank my advisor, Peter Schröder for his guidance and support during my graduate career. He

helped me grow into a deliberate researcher and provided enough flexibility for me to maintain my commit-

ments to my family and to my academic career. This kindness and the opportunities that Peter continually

provided to me are a gift I truly treasure.
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Abstract

This thesis presents computational topology algorithms for discrete 2-manifolds. Although it is straightfor-

ward to compute the genus of a discrete 2-manifold, this topological invariant does not tell us enough for

most computer graphics applications where we would like to know: what does the topology look like? Genus

is a scalar value with no associated geometric appearance. We can, however, isolate geometric regions of

the surface that are topologically interesting. The simplest topologically interesting, and perhaps most intu-

itive, regions to consider are those with genus equal to one. By isolating and examining such regions we can

compute measures to better describe the appearance of relevant surface topology. Thus, this work focuses on

isolatinghandles, regions with genus equal to one, in discrete 2-manifolds.

In this thesis, we present novel algorithms guaranteed to identify and isolate handles for various dis-

crete surface representations. Additionally, we present robust techniques to measure the geometric extent of

handles by identifying two locally minimal-length non-separating cycles for each handle. We also present

algorithms to retain or simplify the topology of a reconstructed surface as desired. Finally, the value of these

algorithms is demonstrated through specific applications to computer graphics. For example, we demonstrate

how geometric models can be greatly improved through topology simplification both for models represented

by volume data or by triangle meshes.

Contributions The contributions of this work include:

• A robust and efficient method for identifying and isolating handles for discrete 2-manifolds.

• A method to robustly represent the topology of the surface with anaugmented Reeb graph.

• A robust method to find two locally minimal-length non-separating cycles for each handle.

• A simple method to simplify the topology for volume data and triangle meshes which preserves the local

geometry as much as possible.

• An out-of-core method for topology simplification for volume data.
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Chapter 1

Introduction

Imagine that we live in a world where everything is made of silly putty – very strong silly putty, that can

be molded into different shapes, but that cannot be ripped apart and resealed together. In such a world, if

you start with a round ball of silly putty – you could push and pull it to mold it into a shape that represented

the folds and valleys of your brain. However, if you were asked to model a coffee cup, you could nicely

form the bowl for the coffee to sit in, but you would not be able to model the handle without riping a hole

in the silly putty (see Figure 1.2). In order for you to be able to build a model of the coffee cup, you would

have needed to start with silly putty in a dough-nut shape not a round ball. This is the world of topology,

where we ask “what is essential about the shape of an object?” This question has been considered for ages

by mathematicians who have developed methods and language to address the issue of what can be said about

the essential shape of an object. For this thesis, we re-consider this age-old question, but from the perspective

of a computer scientist and more specifically, from the perspective of a computer graphics researcher.

1.1 General setting

One of the main goals of computer graphics is the digital representation of the real three dimensional world.

Surface representation (or geometric modeling) is at the heart of this goal. Geometric models are used to

represent real world objects in applications such as scientific visualization, topography, engineering, games,

virtual environments and even art history, (see Figure 1.1). Digital surface representations can be created by

artists but the bulk of geometric models come from acquired data – that is from scanning a real world object.

For example using a laser range scanner is one method of acquiring data. This data is a discrete sampling

of the geometry of a real world object. From this sampling, a surface is reconstructed and represented with

a geometric model such as a triangle mesh. Computer graphics has traditionally focused on the geometry of

a model, since the geometry closely determines the general appearance of the model. However, one of the

aspects of geometric models that is commonly overlooked is thetopologyof the model and how the topology

affects the representation and use of the model. This thesis presents computational algorithms to analyze the

topology of geometric models. Building on mathematical tools from the continuous setting, we introduce
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algorithms, tailored for discrete surface representations to analyze the topology of geometric models. In

general the discrete surface representation we work with are piece-wise linear discrete 2-manifolds. We

present details about such surface representations in Chapter 2.

Figure 1.1:Examples of geometric models used for various applications
Examples of geometric models used for various applications – including: scientific visualization (isosurface
of a mouse fetus), engineering (model of a mechanical part), art history (model of the head of Michelangelo’s
David statue), topography (model of Mount Shasta) and entertainment (model of a dragon). The model of the
mouse fetus is from Caltech, the image of the mechanical part is from Desbrun [20], the model of the head of
the David and dragon are from Stanford’s model repository, and finally the image of the topographic model
of Mount Shasta is from Reynoldset al. [69]. See Section 1.6 for more information about the data used for
this thesis.

When talking about the topology of a model, one of the main aspects of the topology that we are concerned

with is thegenusof the object.Genusis, roughly speaking, the number of handles or “holes” that an object

has. In the previous example of the coffee cup and the brain, the coffee cup is genus one and the brain is genus

zero. Equivalently ahandleis a toroidal region of the surface with genusg = 1 (various formal definitions

exist, see for example, “Conway’s ZIP proof” [33]). Talking about handles gives us a way to talk about the

shape of an object.Genuscan be more precisely defined as the largest number of non-intersecting simple

closed curves that can be drawn on a surface without separating it,i.e., when the surface is cut along such a
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curve it is still in one piece. Again, consider the brain and coffee cup example, every closed non-intersecting

curve drawn on a brain will separate it into two different pieces of surface, while there are a whole family

of closed curves on a coffee cup that would keep the surface as one piece. Consider the curve encircling the

handle of the coffee cup. The coffee cup will remain a single connected component even if the surface is cut

along such a curve. These curves are callednon-separating cycles, as they leave the surface connected [5],

(see Figure 1.2).

Figure 1.2:Coffee cup and brain
A coffee cup (genus one) and a brain (genus zero). Note that there are no non-separating cycles on the brain,
while there are a whole family of such cycles on the coffee cup. One non-separating cycle is shown on the
handle of the coffee cup (dashed yellow cycle). Aseparatingcycle is shown on the brain (dashed yellow
cycle).

1.2 Framework and motivation

Why should we care about the shape of an object? One fundamental reason is that to accurately represent

our complex world, geometric models need to be able to represent arbitrary topology. We need to be able to

represent coffee cups, brains and any other complex shape. Thus, within computer graphics, most geomet-

ric models are flexible and can represent arbitrary topology. However, few algorithms have been developed

to analyze the topology of the models. There has been extensive focus on the geometry of surfaces and

researchers go to great length to try to represent the geometry of a surface as accurately as possible. The dig-

ital Michelangelo project [59] acquired models with sub-millimeter geometric accuracy in order to correctly

model Michelangelo’s chisel strokes on his marble statues. However, a highly accurate geometric model is

not necessarily an accurate surface representation. The same Michelangelo statue that had sub-millimeter

accurate geometry had excess topology on the order of 957 extra little handles. See Figure 1.2 for an example

of excess topology on a digital model.

These excess handles are not only a problem in terms of accuracy, but the topology of a surface affects the

efficiency of its digital representation. Excess topology requires excess geometry to represent the handles,
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Figure 1.3:Close-up view of an extraneous handle
Sequence of progressively closer views revealing an extraneous handle in the Buddha mesh.

(see Figure 1.4). Beyond this, the topology of a surface affects theparameterizationof a surface.Parameteri-

zationis an essential tool in computer graphics as it maps the surface of a three dimensional (3D) object into a

two dimensional (2D) domain. Mathematical operations are easier to apply to a surface in a 2D domain, thus,

parameterization is used regularly in computer graphics to apply texture maps, to remap surfaces to different

representations, and even to apply physical simulations to the surface. Consider the task of flattening a model

to a 2D domain. To accomplish this, a closed model requires:2× g cuts, whereg is the genus of the object.

This means that for a model with high genus, it will have a large cut boundary which will affect the quality of

the parameterization, (see Chapter 5 for more details). Excess topology is just one example of why we want

algorithms to analyze the topology of a model. In general, creating accurate models with complex topology

requires the ability to analyze the topology of the surface.

1.2.1 The interplay of geometry and topology

Although topology is the study of the “shape” of curves and surfaces, topology typically is not concerned

with the embedding of that curve or surface. For example, topology is concerned with the fact that if you

remove a point from a circle, it becomes a line segment. This is true whether the circle is an ellipse or whether

the circle has knots in it. In computer graphics, we care about the embedding and geometry of a surface. If

you were asked to create a digital representation of a coffee cup, no one would be happy if you returned a

model that looked like a Krispy Kreme dough-nut. Even though you have returned an object with the correct

topological shape, the geometrical shape is incorrect. For computer graphics, we typically are not concerned

with purely topological aspects of a surface. Thus, the algorithms we introduce, are founded on the topology,

but consider geometric aspects of the surface, for example, geometric measures of the extent of a handle.

This interplay of geometry and topology is inherent in the discrete nature of the surfaces used in computer

graphics. Consider the statement above about removing a point from a circle. If we have a discretely sampled

circle, removing a point from the circle could be interpreted a number of different ways in the reconstruction

of a circle from the discrete points. Perhaps the missing point is just a change in the sampling rate, or perhaps

it is break in the circle. When working in a discrete setting, we are given a finite sampling of the surface,
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Genus 104 Genus 104 (2K triangles) Genus 6 (2K triangles)

Original scan Topologically simplified

Figure 1.4:Buddha with excess topology
This scanned Buddha has genus 104 instead of the expected 6. On the left, regions with extraneous handles
are highlighted in red. The two images on the right compare mesh simplification results before and after
topology simplification The high genus mesh requires many triangles to needlessly represent topological
artifacts, resulting in loss of overall geometrical quality for a given triangle budget.

for example either as points or as scalar grid values in a volume. We typically have rules for reconstructing

a discrete surface from these discrete samples. During the reconstruction, geometric choices may be made

that have topological consequences. Researchers have developed various tools for surface reconstruction to

explore these topological and geometrical choices, such as alpha-shapes [28]. However, for the settings we

consider the surface reconstruction is fixed. In such a setting the topology is fixed and we need methods to

analyze the existing topology in a geometric context. For this end we must use some geometric measures in

order to say something meaningful about the topology.

The genus of a surface in many ways determines the topological complexity of the surface. The fact that

it takes2 × g cuts, (whereg is the genus of the surface) to flatten a surface into a disk, is just one indicator

of how genus affects operations to manipulate surfaces. Determining the genus of a discrete 2-manifold is a

relatively simple task. By sweeping over the surface and counting the number of vertices (V ), edges (E), and

faces (F ) for each individual surface component, we can compute theEuler characteristic, χ. Specifically,

χ = |V | − |E| + |F |, and the surfacegenusis g = (2 − χ)/2 (for each of the the individual components

of the surface). Genus is a global invariant for the surface and its scalar value gives us one measure of the

complexity of the surface, (e.g., a genus zero shape is much less complex then a surface withg = 100).

However, this number on its own does not provide a complete picture of the topology of the surface. Genus

is a global scalar value for the entire surface and does not give information about the location or geometric
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extent of a given topological feature of a surface.

For the field of computer graphics, great care is taken with the geometry of a surface, as the geometry

plays such an important role in determining the appearance of a surface. Although a coffee cup is topo-

logically equivalent to a dough-nut, geometrically the shapes differ. And the difference in their appearance

matters greatly when the goal is accurately representing the appearance of real world objects. Thus, a great

deal of work in computer graphics has focused on geometric aspects of a surface, including geometry ac-

quisition [17, 45, 47, 59], geometry simplification [35, 43, 67], geometry smoothing [63] and geometry

compression [51, 6, 20]. However, there is a direct relationship between the topology and the geometry of

a surface that cannot be ignored. Geometry simplification, which preserves the manifold property of a sur-

face, will only have a limited affect on a high genus model. See Figure 1.4 for an example of how geometry

simplification is affected by the topology of a model. Alternatively, many mathematicians and computational

topologist are concerned with studying purely topological properties of a surface. This thesis takes a com-

bined approach and identifies and localizes topological features within a surface by mixing topological and

geometrical approaches.

1.3 Introduction to the algorithms

This thesis presents computational topology algorithms that are designed for discrete surfaces and that simul-

taneously account for the geometry of a surface. Although there are easy methods to compute the genus of

a surface, as stated above, the genus alone does not tell us enough. For most computer graphics applications

we would like to know what the genus looks like. However, genus is just a scalar value with no associated

geometric appearance. We can, however, isolate regions of the surface that are topologically interesting.

The simplest topologically interesting, and perhaps most intuitive, regions to consider are regions with genus

equal to one. Thus, instead of considering global topological invariants like the genus of a surface, we ana-

lyze the topology of the surface in terms of local handles, regions with genus equal to one. Handles give us a

way to talk about the shape or topology of an object, while still considering the geometry and embedding of

the surface. Toward this end, we introduce algorithms:

• to localize regions of topological interest, (regions withg = 1, handles) within a surface,

• to measure the geometric extent of those handles,

• to re-sample those handles and either retain or simplify the topology in the re-sampled surface.

1.3.1 Localizing and coding topology

It is feasible to compute the genus of the surface using the Euler characteristic. However, genus is a global

property and we want to be able to isolate regions of topological interest within the surface. Thus, we present

a robust and efficient algorithm to localize regions of genus one – or handles – within the surface. We prove
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that our method for traversing the surface to identify handles will identifyall handles. We discuss our methods

for identifying topology in Chapter 4. The handles of a surface are coded in anaugmented Reeb graphwhich

allows for easy identification and isolation within the surface. We discuss Reeb graphs in Chapter 2 and

present an augmented Reeb graph in Chapter 4.

Figure 1.5:Localizing a handle
Illustration of localizing handles in a surface. On the left is a figure of an augmented Reeb graph used to
identify handles and the corresponding handle on the surface. On the right is a close-up image of some of
104 handles on the Buddha statue highlighted in red.

1.3.2 Measuring feature size

Depending on the application, we may need to determine the geometric extent of a handle relative to the

rest of the surface geometry. We present an algorithm to measure the handle size with the specific focus

of considering the smallest extent of the handle. Our algorithm will compute two locally minimal-length

transverse non-separating cycles for each handle. These cycles are provably, the discrete minimal-length

cycles for each local handle. Combined, these cycles give a measure of the geometric extent of the handle,

with particularly regard to considering minimal geometric changes to the surface to alter the topology. This

measure is a very natural and intuitive measure for the size of a handle. We present the algorithm to compute

locally minimal-length non-separating cycles in Chapter 4.

1.3.3 Re-sampling topology: preserving genus and simplifying genus

Since complex geometric models can simultaneously have topology that is inherent to the model and excess

topology, we present algorithms to re-sample the topology of a surface. Handles which need to be preserved

during remeshing, can be re-sampled to preserve the original topology of a model. The re-sampling can

reconstruct the handle with fewer geometric samples if desired. In addition, since acquired data can easily

have topological artifacts which need to be removed, we present algorithms to reduce the topological com-
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Figure 1.6:Example of non-separating cycles
Two examples of the cycles used to measure the topological extent of a handle. The figure on the left shows
two possible non-separating cycles on a torus, while the figure on the right shows two actual discrete non-
separating cycles found on a geometric model of a torus.

plexity of a surface. We have developed methods for topology simplification for both the mesh setting and

the volume setting, each tuned for its respective setting.

These algorithms can be used together to build up applications which improve the usability and accuracy

of geometric models. We discuss specific applications of these methods next.

1.4 Brief discussion of the applications

1.4.1 Isosurface topology simplification

Although many geometric models have been acquired at very high sampling rates with attention paid to

geometric accuracy, small errors in the acquisition process lead to geometric noise, which in turn can lead

to topological artifacts. Geometric models acquired from real world data, for example from laser range

scanners or even MRI and CT scanners, commonly have topological artifacts. This high resolution volume

data often cannot fit entirely into the main memory of most machines. We present an out-of-core method

to remove topological artifacts directly from volume data. Rather than attempting to repair the defects on a

mesh already extracted from the volume [40], our approach operates on the volume representation directly, as

this offers advantages of efficiency and robustness. Our algorithm identifies topology in the volume through

the application of techniques associated with Morse theory [64], discussed in detail in Chapter 2. Building

on related approaches [9, 74, 78], the algorithm tracks changes in a wavefront induced by a discrete height

function to identify the topology of the surface. The topology is coded in an augmented Reeb graph, where

cycles in the Reeb graph correspond to handles. In order to measure the size of handles on the surface, we

examine them one by one and consider cutting this region along anon-separating cycle. By subsequently

pinching each of the two open boundaries of such a cycle to a point, the genus of the handle is reduced to that

of a sphere (g = 0). For every handle of the surface, our approach computes a discrete approximation of the

non-separating cycle with locally minimal-length (see Figure 1.6 for an example). Using the length of this

cycle as a measure of the size of the handle, we choose either to retain the handle or remove it. Chapters 4
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and 5 present the details of these algorithms and their applications.

1 million triangle 15,000 triangles 15,000 triangles

(b) Topologically simplified (genus 0) (a) Original (genus 957) (b) Topologically simplified (genus 0)

Figure 1.7:Progressive mesh of the David head
Comparison of progressive meshes of the David model before and after topology simplification. In the center,
many triangles are wasted representing invisible topological artifacts. The figure on the left shows that the
fine detailed geometry of the model is not altered due to topology simplification.

1.4.2 Mesh topology simplification/Topological noise removal

Although many acquired surfaces are represented as volume data, some are stored as meshes which can also

have topological artifacts. We present two algorithms to simplify the topology of triangle meshes. The first

repeatedly searches over the surface in small local areas and removes any handles found within a smallε-

radius. The second algorithm is a global algorithm with a tighter measure of the size of a handle. Both

robustly remove topological artifacts from triangle meshes.

1.4.3 Semi-regular mesh extraction from volume data

The author’s Masters research on the extraction of semi-regular meshes from volume data, is an example of an

application which reconstructs a mesh with the same global topology as an original surface. This application

is not a contribution to this thesis, but is included here due to its relevance as an application of computational

topology algorithms to discrete 2-manifolds.

Isosurface extraction is a fundamental technique of geometric modeling and one of the most useful

tools for visualizing volume data. The predominant algorithm for isosurface extraction, Marching Cubes

(MC) [60], computes a local triangulation within each voxel of the volume containing the surface, resulting

in a uniform resolution mesh. Often much smaller meshes adequately describe the surface since MC meshes

tend to oversample the isosurface, encumbering downstream applications, (e.g., rendering, denoising, finite

element simulations, and network transmission). We present an alternative method for thedirectextraction of

an adaptively sampled multi-resolution isosurface mesh with good aspect ratio triangles. The multi-resolution
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Figure 1.8:Overview of semi-regular mesh extraction
Overview of the semi-regular mesh extraction algorithm. Given a volume and a particular isovalue of interest
(top-left), a set of topologically faithful rings is constructed (top right). Stitching them together creates the
coarsest level mesh for the solver (bottom left). Adaptive refinement constructs a better and better fit with a
mesh having semi-regular (subdivision) connectivity and an explicit multi-resolution structure (bottom).

structure is based on adaptivesemi-regularmeshes, well known from the subdivision setting [80]. In order

to extract a semi-regular mesh, we need to start with a coarse base mesh with the same global topology as

the desired isosurface. This requires methods to localize where the desired isosurface has handles in order

to correctly reconstruct a surface with the same genus and similar geometric shape as the desired isosurface.

After the initial coarse mesh is extracted, the algorithm uses an iterative solver to subdivide the coarse mesh

and reposition the vertices to match the desired isosurface.

1.5 Contributions

The contributions of this thesis are the following:

A robust and efficient method to localize and isolate handles for discrete 2-manifolds.We propose a

method where handles are efficiently identified through methods tuned to the discrete setting. The handle

identification traversal of the surface is varied for efficiency while guaranteeing that all handles are located.

We present a traversal method with a complexity ofO(n log n), with proof that our traversal methods will

detectall handles during the traversal. Handles can subsequently be efficiently identified during the traversal

of the surface as cycles in the augmented Reeb graph as it is incrementally constructed (see next paragraph).

Section 4.2.1.1 of Chapter 4 presents these methods in detail and the associated combinatorial proof.

A method to robustly represent the topology of the surface with anaugmented Reeb graph. We present

a method to construct an augmented Reeb graph which stores additional geometric information about the

surface to facilitate isolating handles. We present a method to construct the augmented Reeb graph, which

guarantees that for each interval of the traversal, eachribbon has genus equal to zero. In addition, we
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guarantee that for each interval, the number of cycles in the augmented Reeb graph matches the genus of

the surface traversed thus far. Geometric properties of the surface are encoded in the augmented Reeb graph

which allows geometrically succinct handles to be isolated within the original surface. Section 4.2.2.2 of

Chapter 4 presents the augmented Reeb graph and the methods used to guarantee consistency between the

number of handles and the number of cycles in the graph.

A method to find two locally minimal-length non-separating cycles for each handle. This thesis

introduces a simple measure of handle size to be the length of two transverse non-separating cycles. The

locally minimal-length non-separating cycles are detected efficiently for handles of the surface. We present a

proof that we find two discrete locally minimal-length non-separating cycles with a complexity comparable

to related approaches. See Section 4.3.2 in Chapter 4 for more details.

A simple method to simplify the topology for volume data and triangle meshes which preserves the local

geometry as much as possible. Cutting the surface along the locally minimal-length non-separating cycle

will reduce the genus of the model while retaining as much of the fine geometrical detail as possible. By using

the smaller of the two non-separating cycles for each handle, the topology of the surface is only modified in

a small local region. This targeted approach to modifying the topology preserves the fine geometry of the

surface as much as possible. We propose a simple method to simplify the topology of triangle meshes and

isosurfaces. Refer to Section 4.4.1 in Chapter 4 for more details. In particular, for isosurface topology

simplification, to remove a handle, we alter the scalar values of the volume, thus indirectly modifying the

isosurface. Since isosurfaces are always manifold, operating on the volume is robust. Also, by operating

on the volume directly, we avoid computing an expensive triangle mesh and never compute or store floating

point values to represent the geometric position of the vertices of the surface. Since our algorithm creates

a topologically clean volume, this volume can then be used for surface extraction or other applications [48]

that depend on a topologically accurate volumetric representation.

An out-of-core method for topology simplification for volume data. Complex 3D models are rep-

resented by large volumes that may not fit entirely in main memory. The model in Figure 1.7 is from a

885×709×736 grid, and much larger models now exist [59]. The isosurface topology simplification algo-

rithm is applied to such volumes using out-of-core methods. The algorithm employs a sweep method to read

the volume in planar slices, so the data access pattern is highly regular. We encode surface topology as the

sweep progresses using an augmented Reeb graph, requiring only a few slices in memory at any given time.

For some large handles, previous slices may need to be reloaded to perform simplification. However, simpli-

fication can be performed on small segments of the volume one at a time, resulting in a purely out-of-core

algorithm. The details of this out-of-core method are presented in Section 5.2.1 of Chapter 5.
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1.6 Acquired Data

Throughout this thesis various representations of discrete 2-manifolds are used. We discuss the details of

the particular surface representations we use in Chapter 2. In particular, we demonstrate the algorithms

presented in this thesis on triangle meshes and isosurfaces represented in regular scalar volumes. All of this

data was acquired from real world 3D objects using either Cyberware 3030MS optical triangulation scanner,

Stanford Large Stature Scanner or an MRI or CT scanner. The models of the dragon, Buddha, and David

head came from the Stanford Computer Graphics Laboratory Scanning Repository and Digital Michelangelo

library [59, 18]. Ten MRI scans of the brain came from the Harvard Medical School (in particular from: Drs.

Kikinis, M. Shenton, R. McCarley, and F. Jolesz) [52]. The feline, mouse fetus and torus volumes are from the

Caltech Multi-Res Modeling group and the Caltech Graphics Groups. Any other data is cited appropriately

in the figure captions.

1.7 Summary

The rest of this thesis is structured as follows:

• TheBackground chapter presents a short summary of material relevant to geometric modeling and com-

putational topology. This chapter includes definitions of terms and some historical context to the study of

topology.

• TheRelated Work chapter presents how other researchers have addressed similar issues of computational

topology.

• TheAlgorithms chapter details the algorithms we introduce for locating, measuring and resampling han-

dles for discrete surface representations.

• TheApplications chapter presents in detail, three applications of computational topology algorithms to

computer graphics.

• TheConclusionschapter summarizes the contributions of this thesis and discusses future extensions.
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Chapter 2

Background

This thesis addresses the application of computational topology algorithms to discrete surfaces. The following

background material is presented to provide context for this work. First, a discussion of surfaces and surface

attributes is presented along with a discussion of the various representations of discrete 2-manifolds. Next,

we present some historical and mathematical context for topology. We then present some useful methods

from topology which can be applied to surfaces. Finally, some useful definitions for our specific setting are

introduced.

2.1 Surfaces

Surfaces have been studied by mathematicians for centuries. Typically mathematicians conceive of surfaces

as continuous, for example a surface may be defined as a continuous function of two variables. Each surface

has a variety of attributes. For example, the surfaces typically used in computer graphics areoriented 2-

manifolds with or without boundary. A 2-manifoldis a surface where the local area around every point on

the surface is Euclidean, meaning, around each point the surface appears to be nearly “flat.” The world we

live on is an excellent example of a 2-manifold. Manifolds are a preferable surface representation because

the surface can be divided into regions, called charts. Chartification allows 2-manifolds embedded in 3D to

be flattened into a two dimensional domain (throughparameterization). Surfaces used in computer graphics

are typicallyoriented, this refers to the fact that the surface has two sides. For example, a sphere has two

sides, while a Mobius strip has only one side. Another attribute of surfaces is whether the surface isclosed

or with boundary. This refers to the number of open boundary components of a surface. For example, an egg

is closed but once it has been cracked open, it is has boundaries.

2.1.1 Simplicial complexes

Mathematically, surfaces are often conceived of as continuous and smooth,i.e., one that has a sufficient

number of partial derivatives. Smooth often refers to a surface with infinitely many partial derivatives but
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usually just two partials are sufficient. In computer graphics we operate in a discrete setting, where only a

finite number of samples are used to represent a surface. These surfaces are often continuous, but are only

piece-wise linear and are represented only by a discrete set of points which are connected together as triangles

or polygons. Throughout this thesis, we refer todiscrete 2-manifolds, all such surfaces are assumed to be

piece-wise linear unless otherwise specified.

A common way to conceive of a discrete surface representation is as a simplicial complex. A simplicial

complex is built up of simplices. Formally, asimplexis the convex hull of a set of affine independent points,

such as, a vertex, an edge and a triangle. A vertex is said to be a simplex of dimension zero, while an edge

is a simplex of dimension one and a triangle is a simplex of dimension two. Afaceis defined as a subset of

a simplex, which is itself a simplex. For example, a vertex that is an endpoint of an edge is considered a face

of that edge. Formally, a simplicial complex is a finite collectionK of simplices, such that:

• Every face of a simplexK is in K

• The intersection of any simplices inK is a face of both simplices. For example, two triangles must meet

exactly along their shared edge.

Simplicial complexes give us a formal way to talk about a discrete representation of a manifold. When talking

about simplicial complexes, we may need to talk about specific neighborhoods on the complex. Thestar of a

vertexv, St(v) denotes the neighborhood around a vertexv. Specifically,St(v) includes all of the simplices

that includev as a vertex.

2.1.2 Triangle meshes

Triangle meshes are commonly used to represent discrete surfaces and are an example of a simplicial com-

plex. A triangle mesh can be defined asM = (K,x) whereK = V ∪ E ∪ F is an abstract simplicial

complex representing the connectivity of the mesh (V , E, andF are sets of vertices, edges, and faces, cor-

respondingly), andx : V → R3 is the coordinate function that gives the coordinates of every vertex of

V . Triangle meshes are used so frequently to represent surfaces in the discrete domain that most computer

graphics hardware is optimized to render triangles.

Multiresolution One particular triangle mesh representation deserves special mention: semi-regular meshes.

Semi-regular meshes are a multi-resolution mesh representation which is well known from the subdivision

setting [80]. A semi-regular mesh consists of a coarsest level triangle mesh which is recursively refined

through quadrisection. The resulting meshes have regular (valence 6) vertices almost everywhere. Adaptivity

is achieved through terminating the recursion appropriately and enforcing a restriction criterion (triangles

sharing an edge must be off by no more than one level of refinement). Conforming edges are used to prevent

T-vertices. Because of their special structure such meshes enjoy many benefits including efficient compres-

sion [51] and editing [81].
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Figure 2.1:Scalar volume
Two representations of a scalar volume. On the left is a stack of images from an MRI scan. On the right is a
grid of scalar values.

2.1.3 Scalar volumes

Another common discrete surface representation is an isosurface in a scalar volume. A scalar volume consist

of a regularly sampled 3D grid of scalar values. A gridcube, also called avoxel, is bounded by 8 grid

data points, (see Figure 2.1 and Figure 2.1.3). Scalar volumes are typically acquired from real world data

from various sources, such as, magnetic resonance imaging (MRI) and computed Tomography (CT) imaging.

These popular imaging techniques are used in a variety of medical and scientific applications to view and

analyze three dimensional structures. These imaging systems typically create a stack of registered images,

(see Figure 2.1). Each pixel of each image is a scalar node in the 3D grid. Scalar volumes can also be

produced from simulations like computational fluid dynamics (CFD).

Figure 2.2:Voxel
Voxels of a volume with various surfel configurations.

Signed Distance Volumes Another type of volume data that is commonly used is signed distance volumes.

A distance volume is a volume dataset that stores the shortest distance to the surface at the vertices of each

voxel. Whether a vertex is inside or outside of the surface is encoded in the sign of the distance. Signed

distance volumes are commonly the output of a surface reconstruction algorithm from acquired data. For

example, laser range scanners achieve full coverage of complex objects by acquiring and merging multiple

scans [17, 45, 59]. Thus, acquired models are frequently represented and stored as a signed distance volume.
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Isosurfaces Although scalar volumes allow for the visualization of 3D structures, typically a user is in-

terested in manipulating a surface instead of the entire volume of data. For example, a doctor may want

to only visualize a specific layer of skin or tissue from a medical MRI scan. Anisosurfaceis the surface

defined by a specific scalar value. Specifically, consider an implied surface intersected by the volume grid.

This intersection and the entire grid can be represented by tuples(i, F (i)), wherei is a point in 3D space

andF (i) is the scalar value of the volume at that point in space. Without loss of generality we assume that

the surface we are interested in is the zero isocontour of the volume. The surface will be pierced by the

edges and faces of the grid, creating a collection of patches each of which we denote as asurfel, for surface

element. Within each cube of the grid, an isosurface generation algorithm (e.g., [54] or [60]) defines the set

of surfels [78], (see Figure 2.1.3). Each cube may have up to 4 surfels. The surfels from all cubes together

form a discrete representation of the isosurface. We use the connectivity rules of Lachaud [54] due to the fact

that they produce a closed oriented surface without singularities or self-intersections [54]. Lachaud’s table

has proven properties by restricting data to well defined interior and exteriors,i.e., for a scalar functionF (i),

the interior is defined asF (i) < 0, while exterior is defined asF (i) ≥ 0. This is similar to a standard general

position argument, and creates a well defined isosurface,i.e., the surface is perturbed away from the volume

grid nodes. Isosurfaces are a fundamental data type for geometric modeling. Such a surface can either be

extracted from the volume and manipulated as a triangle mesh, or the data structure of the volume itself can

be manipulated, affecting the isosurface within.

2.1.4 Surfaces as graphs

Discrete surfaces, either triangle meshes or isosurfaces, can be viewed as a graph. A graph is a binary relation

on a set of vertices, where the vertices are either connected or not. The primal graph of a surface is the graph

with nodes for each vertex and graph edges that exactly follow the connectivity relationship of the vertices

along the triangle or surfel edges. Thedual graph is the graph constructed by replacing each face of the

surface with a graph node and then connecting these nodes with graph edges for each edge between adjacent

faces in the primal graph. Conceiving of the surface as a graph is a useful metaphor, especially as there are a

variety of useful and applicable graph algorithms, such as Dijkstra’s shortest path algorithm. This algorithm

uses a breadth first traversal of the graph to compute the shortest path over the entire graph starting with any

graph node,v. It is useful to apply Dijkstra’s shortest path algorithm to surfaces to compute discrete distances

between faces of the mesh. See, for example, [16] for details of the Dijkstra’s algorithm.

2.2 Topology

As suggested by the above definition of a triangle mesh, surfaces are predominantly thought of in terms

of their geometry, (e.g., the 3D positions of the mesh vertices) and their connectivity, (e.g., the simplicial

complex that determines the relationship of the vertices). However, these are not the only qualities of a
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surface and in this thesis we focus on another aspect of surfaces, their topology.

In general, topology studies theshapeof curves, surfaces andspacesin general. An example of a space

is the real line (i.e., the real numbers). Topology is the study of the properties of surfaces that are preserved

under deformations other than tearing. In other words, topology considers the aspects of a curve or surface

that do not depend on the geometry of the curve or surface. For example, a circle is topologically equivalent

to an ellipse even though their geometric shape is different.

2.2.1 Historical and mathematical context

Topology has been studied by mathematicians for hundreds of years with many of the initial contributions

made by Leonhard Euler in the 1700s. This initial work freed mathematicians to consider the properties of

curves or surfaces that did not depend on a distance metric (e.g.properties independent of the measurement of

geometry). The first publication about topology is considered to be Euler’s publication about the Königsberg

bridge problem. In summary this paper showed that ‘a graph has a path traversing each edge exactly once if

two vertices have odd degrees.’ This work showed a property of graphs that is true regardless of the geometry

of the graph. Soon after Euler proposed his formula for polyhedra:V − E + F = 2 (whereV refers to the

number of vertices of the polyhedra,E refers to the number of edges andF refers to the number of faces).

Although this initial formula was incomplete, it set the stage for mathematicians to explore properties outside

of distance measurements for curves and surfaces. Euler’s formula was only later corrected (in 1813) by

Simon Lhuilier to account for genus:V − E + F = 2 − 2G (whereG refers to the genus). Although this

initial work seems in some ways simple, at the time it signaled a significant shift in mathematicians thinking.

Specifically, this work presented the first work on invariant properties of graphs or polyhedra independent of

the geometry.

Topology evolved quickly from its early beginnings and was explored from a variety of angles, resulting

in a number of branches of topology. Much of the formal structure used in topology was formalized in

1895 by Jules Poincaré. Poincaŕe introduced the idea of homology groups and Betti numbers to quantify

topological attributes of an object. Formally, thenth Betti number is the rank of thenth homology group.

A more intuitive explanation of the Betti numbers is that, for example,β0 is the number of components of

a complex andβ1 is loosely the maximum number of cycles that do not separate a surface into two or more

pieces, (e.g., the two generator loops of a torus). This work forms the foundation of algebraic topology

which uses algebraic structures like groups and rings to study hole structures in spaces. Differential topology

take a slightly different approach and considers the non-metrical aspects of smooth manifolds. Topology has

been studied from various mathematical angles and applied to various types of data ranging from point sets

and curves, to manifolds. Regardless of the methods used to study topology the same fundamental thrust is

always present which is the study of aspects of spaces, outside of geometric metrics. In other words, topology

separates global shape properties from local geometric properties.

Much of the work done in topology has been applied to continuous smooth manifolds. Recently however,
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computational topology has been of growing interest due to the numerous applications of topology to the

piece-wise linear discrete setting. Just as computational geometry has contributed to the usability of geo-

metric models, computational topology offers a wealth of interesting problems to increase the usability of

discrete models. Computational topology uses theory from topology to develop computational algorithms to

analyze the shape of objects or spaces. This is a relatively new area of research, and only a few researchers

have focused on piece-wise linear discrete surfaces.

2.2.2 Morse theory

One of the key tools used to study the topology of spaces is Morse theory. Morse theory is the study of

the relationship between functions on a space and the shape of the space. Although Morse theory can be

applied to spaces of infinite dimension, we are particularly interested in the application of Morse theory to

2-manifolds. Building on variational calculus, Morse theory draws a relationship between the critical points

of a smooth function defined on a smooth manifold to the global topology of the manifold [64, 62].

To better understand Morse theory, first let us briefly consider the critical points of functions of one

variable,f(x) = y. We can examine the maxima, minima, and inflection points of such a function by

examining its critical points. Namely, the critical points of such a function satisfy:f ′(x0) = 0. A critical

point is said to benon-degenerateif its second derivative is not equal to zero, (f ′′(x0) 6= 0). Likewise for

functions of two variables, such asf(x, y) = z, critical points are defined as the points where the gradient

is equal to zero (∇f = 0, i.e., the partial derivatives∂f/∂x and∂f/∂y are both equal to zero). A non-

degenerate critical point for a function with two variables is one where the determinant of the Hessian of

f is not zero. The Hessian is the matrix of second derivatives with the determinant of the Hessian being:

detHf(x, y) = ∂2f/∂x2 × ∂2f/∂y2 − (∂2f/∂x∂y)2.

Now, given a smooth manifold,M , a map,f : M → R, which assigns a real number to each point

p of M , is a functionf on M . Such a function is aMorse functionif every critical point of the function

f : M → R onM is non-degenerate and isolated. The critical points are isolated if each critical point maps

to unique real number.

Consider the case of a function of two variables, Morse theory shows that near a non-degenerate critical

point the function can only look fairly simple. In fact, by choosing appropriate local coordinates, a function

of two variable will have one of three possible shapes around a non-degenerate critical point:

• f = x2 + y2 + c

• f = x2 − y2 + c

• f = −x2 − y2 + c

wherec is a constant. See Figure 2.3 for an illustration of these functions. By decomposing a smooth manifold

into these “shapes”, the global shape and topology of the manifold is revealed. Morse theory also presents

methods to classify which type of critical point a given point corresponds to. Specifically, by examining
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the number of negative eigenvalues of the Hessian, the critical point can beindexed. That is, a minimum

has zero negative eigenvalues, a saddle point has one, and a maximum has two negative eigenvalues. This

analysis corresponds to the fact that a minimum has no downhill sides, while an isolated saddle point has two

downhill sides, one parallel to the direction of the eigenvector associated with the negative eigenvalue and

one anti-parallel. A maximum has downhill sides associated with both directions of both eigenvectors.

A classic result from Morse theory is that given a closed surfaceM and a Morse function,f : M → R. If

this function has only two non-degenerate critical points thenM is topologically equivalent to a sphere. For

example, a typical Morse function is a height function, and if we consider such a function and a sphere, we

see that there are two critical points to the function, corresponding to the maximum and minimum at the north

and south pole of the sphere, (see Figure 2.4). More precisely, the number of critical points is equivalent to

the Euler characteristic of the surface:χ = #minima −#saddlepoints + #maxima. Another essential

result from Morse theory shows that between the critical points the topology of the manifold is guaranteed

not to change (called thedeformation lemma).

Figure 2.3:Critical points for a function of two variables
Representations of the possible shapes near critical points for a function of two variables. On the left is
f = x2+y2+c, the middle figure representsf = x2−y2+c, and the figure on the right isf = −x2−y2+c.

To further illustrate the relationship of critical points and the global topology of a surface, consider the

following geometric interpretation. Given a Morse function,f : M → R which is a height function, that

height function defines parallel planes. Now imagine a torus standing on its end, (see Figure 2.4). If we

consider each of the tangent planes of the torus, the points with tangent planes that correspond exactly to the

height planes will be the critical points of the Morse function. For the example of the torus, as we would

expect there will be critical points corresponding to the maximum and minimum (at the north and south poles

of the torus) and at the two saddle points of the handle.

There is further geometric interpretation of Morse theory for a 2-manifold correlating the tangent plane

of the surface for each point and the planes defined by a height function. Specifically, we consider classifying

critical points and trivial points (non-critical points). Similar to the method presented above, where we

classify points based on their shape, let us consider analyzing the local shape of the surface, by looking at

the relationship between a small circular neighborhood of each point on the surface and the height planes of
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Figure 2.4:Illustration of height planes on a sphere and torus
On the left is a sphere and its two critical points, (and their associated tangent planes), at the north and south
pole. On the right is a torus with showing height planes matching the tangent planes at critical points for a
minimum and a saddle point.

a height function. For a regular (trivial) pointq, the height plane isnot the tangent plane. In fact the height

plane divides the small circular neighborhood aroundq into two pieces. One piece lays above the height

plane and the other below, (see Figure 2.5). Now, consider instead a maximum or minimum point and the

small circular neighborhood around each of these points. The horizontal plane of the height function will not

intersect either of these points nor their small circle neighborhood. Finally, consider a saddle point – for such

a point, again consider the small circular neighborhood around the point and its relationship to the height

plane. For a saddle point, its circle will be intersected in four places, dividing the region around the saddle

point into four sections, (see Figure 2.5). These observation are important for understanding related methods

in the discrete setting, discussed in Chapter 2.

Figure 2.5:Critical points and height planes
On the left is a trivial point and a small circular neighborhood. Note that the height plane divides the
circular neighborhood into two regions. On the right is a critical point, a saddle point, with a small circular
neighborhood. For isolated saddle point the height plane divides the circular neighborhood into four regions.

Morse theory is a powerful tool for revealing the global topology of smooth 2-manifolds, however, this
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thesis is directed to the piece-wise linear discrete setting. We do not start with smooth manifolds, nor is it

always easy to construct a smooth Morse function over the surface. There has been recent work on extending

Morse theory for piece-wise linear functions on 2-manifolds. Work presented by Ulrike Axen [9] uses a

wavefront traversal to generate a Morse function for triangulated meshes and work by Edelsbrunneret al.[26]

extend Morse theory to piece-wise linear functions on 2-manifolds. This work is discussed in more detail

in Section 3. The work presented in this thesis builds from Morse theory with some modifications to tune

our methods to the discrete setting. We do not find exact critical points on a surface, but instead findcritical

levels. We discuss these methods in more detail in Section 4.

2.2.3 Reeb graphs

A Reeb graph is graphical representation of the connectivity of a surface between critical points. Reeb graphs

were initially used to represent the skeleton of a manifold [68]. Initially, a Reeb graph would have a node

for every critical point in the surface and edges (or arcs) between the nodes that represent the connected

components of the surface between the critical points. However, more commonly Reeb graphs have been

used to represent the relationship of the level sets for a surface [56, 75, 14, 53]. See Section 4.2.1.2 for a

definition of level sets. Specifically, given a scalar functionf defined on the surface, a Reeb graph tracks

the connected components of the pre-image of the function. For instance, if the scalar function is a height

function that returns discretez intervals, its pre-image is the intersection of the surface withz planes, and the

connected components consist of closed planar contours (see Figure 2.2.3). The Reeb graph tracks how these

contours split and merge asz varies and is often used to analyze surface topology. Reeb graphs have been

used to code surface topology by a number of researchers, which we will discuss in detail in Section 3. This

thesis uses anaugmented Reeb Graphto represent the topology of surfaces as discussed in Section 4.

Figure 2.6:Torus and example Reeb graph
An example of a torus, planar contours defined by a height function and the associated Reeb graph.

2.2.4 Some useful definitions

In addition to the above background information, there are a few specific definitions that will be useful for

understanding the work presented in this thesis.
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Definitions

• A simple cycleis a closed loop that does not intersect itself.

• A simplenon-separating cycleis a cycle that when removed from the surface, leaves only a single con-

nected component.

• The genusof a surface is the largest number of disjoint non-separating cycles that do not intersect one

another.

• A handlecorresponds to a surface region with genus equal to one. The genus of a region with boundaries

can be computed from the Euler characteristic,χ, of this region. Whereχ = v − e + f .

Surface topology The topology of a surface is characterized by its genus, its orientability, the number of

its connected components, and the number of its boundary components [61]. The surfaces addressed in this

thesis are oriented and closed. Specifically all, isosurfaces have the property that they are always orientable,

and never have boundaries (if one pads all sides of the volume with “outside” scalar values). The algorithms

presented in this thesis deal with multiple disconnected components by processing them independently.
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Chapter 3

Related Work

Various researchers have addressed problems related to analyzing, measuring and altering the topology of

discrete 2-manifolds. We consider relevant related work here.

3.1 Identifying topology

One of the algorithms presented in this thesis is a method to identify and isolate handles in a discrete 2-

manifold. We first consider methods related to identifying the topology of a surface.

3.1.1 Morse theory

The algorithm presented in this thesis to identify the topology of a surface is related to Morse theory. As

presented in Chapter 2, Morse theory examines the relationship of the critical points of a smooth function

defined on a smooth manifold to the connectivity of the manifold [64]. The main challenges of applying

Morse theory to discrete 2-manifolds is that it was developed for smooth manifolds and it produces many

more critical points then handles. We propose an alternative approach which is tuned to the discrete setting

which can efficiently isolate regions that correspond to the pairs of saddle points that correspond to a handle.

Other researchers have addressed the challenges of applying Morse theory to the discrete setting differently.

For example, Axen [10] and Edelsbrunneret al. [26] have addressed extending Morse theory and critical

point analysis to a piece-wise linear discrete setting. We discuss how these methods relate to the goals and

algorithms presented in this thesis.

Morse theory has been used for various applications to analyze the topology of discrete surfaces. Most

notably, work by Axen [10, 9] and by Edelsbrunneret al. [26] address the challenge of finding exact critical

points for piece-wise linear 2-manifolds. The work by Axen is closely related to the work presented in

this thesis. Both methods examine the behavior of a wavefront traversal of the surface in order to detect the

topology of the surface. The main difference between the work of Axen and the algorithm to identify topology

presented in this thesis is that the work by Axen identifies critical points, while our method identifies critical
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levels. This difference has consequences for how the two methods deal with degenerate or non-isolated

critical points in the piece-wise linear setting. In addition, our algorithm has advantages for later isolating

handles in the surface, (discussed in Chapter 4).

In the work by Axen, a discrete distances is propagated to all vertices in a triangulated manifold starting

from an arbitrary vertex,v. The distance between two vertices is defined as the smallest number of edges

between those vertices,i.e., a graph geodesic with all edges having weight equal to one. Furthermore, Axen

defines that the distance of any simplex with dimension greater then zero,i.e., an edge or triangle, is the

minimum distance of any of the vertices of that simplex. Recall from Section 2.2.2 that the geometric inter-

pretation of Morse theory for a 2-manifold analyzes critical points based on the correspondence of the local

tangent planes of the surface with the planes defined by a Morse function. In general, the algorithm proposed

by Axen examines thestar of every vertex,v, St(v). Refer to Section 2.1.1 for the definition of the star of a

vertex. The algorithm identifies critical points on the surface by correlating the configuration of the distance

function in the star ofv, to the possible configurations of critical points. The analysis divides the simplices

of the triangulated manifold into sets of wavefront simplices,W (i), and the sets of simplicesS(i) that do not

belong toW (i). W (i) includes any simplexα, where all vertices ofα have distancei andα is a face of a

simplex that has distance equal toi− 1. For example, an edge with both vertices of distancei which is a face

of a triangle which has a vertex of distancei− 1 is in W (i). All vertices of distancei are in the setW (i), but

an edge between a vertex of distancei− 1 andi is in S(i− 1).

In this setting, a normal (trivial ) vertex,v ∈ W (i) is not a critical point if the star ofv is divided into two

pieces byW (i), one piece with simplices in the setS(i) and the other piece with simplices in the setS(i−1),

(see Figure 3.1). Likewise, an isolated saddle point for a vertex,v ∈ W (i) will have a star which is divided

into four regions alternating between regions ofS(i− 1) andS(i). Again, see Figure 3.1. There is only one

local minimum for the wavefront traversal which is the start vertexv, where the star ofv is comprised of

simplices all belonging toS(0). Maxima are any vertices,v ∈ W (i) with a star of simplices only inS(i−1).

The analysis presented in the initial algorithm by Axen [10] requires that the discrete distance function

can be extended linearly to a continuous function. This requires that some faces of the surface be subdivided

k times. This subdivision can cause the the data set to grow more than((k + 1)!)k times. The subdivision

is required as the analysis depends on extending the distance function to be continuous. For example the

distance function can be extended across the simplices of distancei − 1 to distancei. However, some

simplices calledgrounded simplicesdo not permit such an extension. An example of a grounded simplex is

the final face traversed by the wavefront, or an edge with both vertices of distancei which is not a face of a

simplex of distancei−1. See Figure 3.2 for an example of one such grounded edge. By subdividing the faces

of the triangle mesh these grounded simplices are resolved. Since subdivision is a costly solution, Axen later

proposes a method to first identify critical points for each vertex on the normal wavefront [9]. After an initial

pass over the surface to identify critical points which ignores grounded simplices, the modified algorithm

performs a subsequent pass over the dual of the grounded simplices to detect critical points for these regions.
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Figure 3.1:The star of two different vertices
Two different configurations of the star of two vertices∈ W (i). On the left is a normal (trivial) vertex which
is divided into two pieces. One piece is a subset ofS(i) and the other is a subset ofS(i − 1). On the right
is an isolated saddle point that has divided the star neighborhood into four pieces alternating betweenS(i)
andS(i− 1).

The algorithm presented in this thesis to identify topology is related to this work by Axen [10, 9]. Our

method relies on a wavefront traversal to detect the topology of the surface, however, the method does not

analyze each vertex and its star, and instead analyzes the wavefront components to findcritical regions. The

contoursidentified using our algorithm are similar to the wavefronts identified by Axen. Likewise theribbons

are related to the intermediary subsetsS. Our analysis correlates to methods used by Axen. For example, a

trivial wavefront component (contour) is one which connects two ribbons, one above and one below. Every

star of the vertices on this contour is divided into two pieces just like the trivial vertices in Axen’s analysis.

Our method is not affected by grounded simplices as we do not attempt to find exact critical points. In

addition, grounded simplices are incorporated into theribbonsand correctly encoded in the augmented Reeb

graph. See Chapter 4 for more details.

The work by Axen addresses non-isolated and degenerate critical points. For example, any saddle point

that is not isolated will have a star neighborhood which is divided into more than four regions. In general de-

generacies are handled by partitioning the degenerate sub-complexes into different wavefronts by perturbing

the regular distance function with anε offset of a local distance function. This is reminiscent of our approach

for dealing with non-isolated degenerate critical points as presented in Section 4.2.1.5. Our approach locally

modifies the distance function to guarantee that the critical points are isolated. The work by Axen has the

same complexity as the algorithm proposed in this thesis. The prominent factor in the complexity of both

algorithms is propagating distances over the surface in a breadth first traversalO(n log n), (wheren is the

number of vertices). Both algorithms use subsequent passes over the data on the order ofO(n) to compute

relevant topological information.

In our work, we are only interested in identifying handles within a surface and we do not attempt to

identify every critical point on the surface as Axen does. Instead, we are only interested in locating pairs

of critical levels that correspond to a handle. Similar to the work of [9, 40, 78], we examine how the trace
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Figure 3.2:A grounded simplex
The purple edgee is a grounded simplex. Both ofe’s vertices are members ofW (i), however,e is not a face
of a simplex of distancei − 1, thereforee is not inW (i). The edgee is ∈ S(i), however it does not have
one vertex of distancei and one of distancei − 1 and therefore causes problems for extending the distance
function to be continuous.

of a discrete wavefront, induced by a distance function or height function changes as it progresses over a

2-manifold. Regions where the wavefront splits and merges as it passes over the surface are related to the

location of saddle points on the surface. By keeping track of the connected components of the surface and

taking care that the traversal always captures critical levels of the surface we are able to identify handles with

a discrete traversal and subsequently isolate handles in the surface. Chapter 4 gives details about our method

for identifying and isolating handles.

Critical Points Critical point analysis has been used by alternative applications in computer graphics. For

example, the work of Bajajet al. [12] uses critical point analysis to constrain geometry simplification to be

topology preserving. Work has been done by Standeret al. [76] on using critical points from Morse theory to

guarantee the topology of the polygonization of an implicit surface. In addition, critical points have been used

to analyze terrain data [77]. Our work is focused on identifying handles and does not isolate exact critical

points in order to identify the relevant topology in the surface.

3.1.2 Reeb graphs

As discussed in Chapter 2, a Reeb graph can be used to represent the connectivity of a manifold between

critical points. Reeb graphs were initially used to represent the skeleton of a manifold [68]. Initially, a Reeb

graph would have a node for every critical point in the surface and edges (or arcs) between the nodes that

represent the connected components of the surface between the critical points. However, more commonly

Reeb graphs have been used to represent the relationship of thelevel setsfor a surface [56, 75, 14, 53]. See

Section 4.2.1.2 for a definition of level sets. Each node typically represents a contour of the level set and edges

between the nodes represents the connected components of the surface between the contours. The level sets

may be defined by a variety of functions, typically a height or distance function. Specifically, given a height
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functionf , defined on the surface, a Reeb graph tracks the level sets of the surface, which are the connected

components of the pre-image of the function. For instance, if a height function returns thez coordinate of

a volume, its pre-image is the intersection of the surface with thez planes, and the connected components

consist of closed planar contours (see Figure 4.8). See Section 4.2.1.2 for more details. The Reeb graph

tracks how these contours split and merge asz varies.

Shinagawaet al. [75] use this framework for the reconstruction of surfaces from contours. In work done

by Shinagawa [75], a Reeb graph is constructed from predetermined cross sectional contours only. In such

a setting, a priori information about the topology of the initial shape is required to guarantee that the Reeb

graph exactly matches the topology of the input shape. Typically Reeb graphs are constructed with a one to

one correspondence between the nodes in the graph and the contours of the surface. A graph constructed with

nodes for contours alone, can have degeneracies. We propose anaugmentedReeb graph that has additional

nodes to code the surface components between contours. See Section 4.2.1.1 for a more thorough discussion

of this topic. TheaugmentedReeb graph can be constructed incrementally while sweeping across the surface

guaranteeing that the topology of the graph always matches that of the surface processed thus far.

The work by Atteneet al. [8] proposes anExtended Reeb Graphwhich is used to re-mesh a surface.

This work builds on our initial work [78] and proposes a graph construction that can be down-sampled

to re-mesh a surface. The method has interesting similarities to the algorithms proposed in this thesis as

their topological analysis relies on identifyingcritical regionsof the surface to construct their Extended Reeb

graph. However, the work by Atteneet al. uses a height function to construct contours for arbitrary polygonal

meshes to identify the topology and reconstruct a re-mesh of the surface. This method does not build the

Reeb graph directly from traversing the connectivity of the surface nor does it store ribbon information and

thus encounters problems with degenerate critical points and with instabilities due to the sampling and the

direction of the height function.

Reeb graphs are sometimes called contour trees and have alternatively been used to construct the medial

axis of polyhedral objects [56], to compute seed sets for tracing isosurfaces [14, 53], to recognize shapes [44],

and to re-mesh surfaces [78, 8]. For some of these applications, the cycles in the Reeb graph are not required

to be in a one-to-one correspondence with handles as the applications use the Reeb graph as anindicator of

the topological shape of an object.

Note that none of the related work discussed above subsequently isolates handles in the surface, once the

topology has been identified. We have found that isolating handles is useful for measuring the geometric ex-

tent of topological features, and useful for simplifying topology with minimal changes to the global topology

of a surface. In addition, isolating handles is useful for guaranteeing that a re-mesh correctly re-samples the

original topology. We present more information about these methods in Chapter 4.
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3.2 Cutting meshes open

Our approach shares common themes with work on cutting a surface into a single topological disk [55, 31,

37, 49, 15], as we use two locally shortest length non-separating cycles to measure and simplify each handle,

if desired. Algorithms to cut a surface into a disk typically analyze the topology of the entire surface. Our

problem is slightly different as we first localize handles in the surface using a Reeb graph and then measure

each handle individually. We do not attempt to cut a genusg surface into a disk.

3.2.1 Cut graphs

Erickson and Har-Peled [31] address the task of optimally cutting a surface into a disk. They propose a

greedy algorithm to compute a nearly minimalcut-graph. A cut-graph is a collection of edges that cut a

surface into a disk. One step of their algorithm finds nearly-shortest essential loops which is related to our

task of finding short non-separating cycles for each handle. However, their approach must analyze the entire

surface, compute a cut-graph for the surface and then locally find nearly-shortest essential loops one at a time

for each handle. Our approach never requires the computation of a cut-graph for the entire surface. Since

our search for non-separating cycles is localized, our algorithm for volume data can operate out-of-core and

generate fast locally shortest non-separating cycles used to simplify the topology.

Recent work by Hart [42] focuses on finding a bouquet of non-separating cycles to flatten a mesh into a

planar domain. The approach uses Morse theory to find critical points in a mesh. For each saddle point on the

mesh, two paths to the surface minimum are found. These paths together can be used to cut and flatten the

mesh. These combined paths are not necessarily the shortest cycles. One of the contribution of this work is

the introduction of afair Morse function which smooths the geometry of the surface to reduce the extraneous

critical points. The approach presents a method to produce a total number of critical points such that there is

one maximum, one minimum and two saddle points for each handle. This is a valuable contribution as the

excessive number of critical points is a limitation of critical point analysis.

3.2.2 Polygonal schema

The work of Lazaruset al. [55] finds acanonical polygonal schema, which is a set of2 × g loops on

the surface, (whereg is the genus), that share a single vertex in common and that are generators of the

fundamental group of the surface. Such a sequence of loops will cut a surface into a disk, however, is more

restricted then a cut-graph since every loop must pass through the same vertex. In our work, we examine

each handle and measure two non-separating loops. The initial approach proposed by Lazarus [55] did not

optimize the length of the cuts. In subsequent work by Colin de Verdière and Lazarus [15] they give an

algorithm for the construction of an optimal system of loops equivalent to a given polygonal schema. They

define an optimal system to be one where all the loops are of shortest length. An interesting result from this

paper is that for a given loop, they can compute a shortest simple loop in the same equivalence class (a loop
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that can be deformed into the initial loop) in polynomial time. Given two initial non-separating loops on a

torus, their method could be used to tighten the loops to shortest length. This algorithm could be used as

an alternative to our proposed method to find shortest non-separating cycles,given a starting pair of cycles.

Both methods make use of tiling the surface (also called auniversal covering) in order to find the shortest

path and both methods compute the loops in polynomial time. However, our methodgeneratestwo shortest

length non-separating cycles for each local handle while the method of Colin de Verdière and Lazarus could

be used to tighten existing loops. See Section 4.3.3 for more details about our method for finding shortest

non-separating cycles.

3.3 Topology simplification

One of the main applications of the algorithms presented in this thesis is topology simplification of both

meshes and isosurfaces represented as a scalar volume.

3.3.1 Mesh-based topology simplification

Researchers have addressed topology simplification through a variety of methods. Using the concept of

alpha hulls, El-Sana and Varshney [30] reduce surface genus by re-tessellating small handles in a model.

Their algorithm creates candidate tessellation regions by heuristically detecting crease edges in mechanical

CAD models. The approach lacks a well defined topological measure for evaluating the size of handles

in the model. One difference with our approach is that we evaluate whether to retain or simplify a handle

based on a topological measure defined on the handle itself. Their approach identifies removable tunnels by

rolling a sphere of small radius over the object and filling the tunnels that are not accessible. The method

performs well for mechanical CAD models. Another difference with our mesh based work is that it identifies

tunnels by working within the surface, and thus can be applied to self-intersecting meshes as long as they are

topologically 2-manifolds.

Edelsbrunneret al. [27] use alpha complexes to generate a filtration, a history of the evolution of com-

plexes. A filtration allows for a combinatorial definition of topological feature size. Zomorodian expands

this work in his thesis [79] and presents a practical algorithm to apply topology simplification to a variety of

topological spaces. This work relies on constructing a Morse complex. Such a construction is presented in

Edelsbrunneret al. [26] for piece-wise linear 2-manifolds. This work could be applied to filter small handles

from volumetric data. To properly remove the handles from volume data requires the construction of a three

dimensional Morse complex. Recent work addresses this issue [25].

Our initial work to remove excess topology was implemented for existing triangle meshes [40]. This

work repeatedly growsε-balls over the surface, and removes any handle enclosed within such a ball via mesh

surgery. This approach is simple and effective, however it has some drawbacks. Namely, the definition of

topological feature size fails to detect long thin handles, since they do not fit in a small ball (see Figure 3.3).
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Finally, topological repair using mesh surgery can give rise to surface self-intersections. We present more

information about this method in detail in Section 5. We also present an improved method for topology

simplification for meshes and an algorithm to operate on the volume data, since an isosurface will always

remain a manifold even after topological repair is applied to the volume data.

Figure 3.3:Two different sized handles
Two different types of handles. Methods that measure handles by only evaluating the surface within anε-ball
or sphere will fail to detect long thin handles (except when using largeε).

3.3.2 Volume-based topology simplification

Nooruddin and Turk [66] convert a polygonal model into a volumetric representation in order to repair its

topology. They apply morphological operations (dilation and erosion) to the volume data, causing handles to

close. However, the operators affect the entire volume, resulting in the smoothing of geometry and thus loss

of fine detail. Extensions to this approach were recently presented by Bischoffet al. [13]. We prefer a more

targeted approach that provides analysis of the sizes of the handles and exactly preserves geometrical detail

in regions away from topological artifacts.

Shattuck and Leahy [72] address the specific problem of constructing a genus zero model of the human

cortex from MRI scans, for use in cortical flattening and mapping. In contrast to the previous methods,

they build Reeb graphs over the volume rather than the mesh. Specifically, they construct two Reeb graphs,

encoding the connectivity of foreground and background voxels respectively. Their method removes all

handles without regard to size, and always breaks handles along axis-aligned planes (Figure 4.18 shows an

example where their strategy would fail to find a minimal way to break the handle). In contrast, our approach

for volume data, performs one main sweep, constructs a single graph, has a tighter measure of handle sizes,

and repairs the volume with a more general and spatially localized operation.

3.3.3 Model simplification

It is worth noting that there is another way to potentially “filter” or smooth the noisy topology of scanned data

by smoothing/down-sampling the initial volume data or triangle mesh. Although this approach may remove

many of the small tunnels present in the data, it will do so in an uncontrolled manner and will potentially

wipe out other features of the model (thin tubes and connected components could be broken apart and the
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finer detailed geometry will disappear). Work by Gerstner and Pajarola [36] on topology preserving volume

simplification is one potential solution to try to control the effect of the down-sampling, however, presently

this work offers no method to distinguish important topology inherent to the model (such as a large handle)

and small tunnels.

Likewise, several algorithms simplify topology as a byproduct of model simplification of a triangle mesh,

e.g., [35, 43, 67]. These methods can result in non-manifold structures which would hinder parametrization as

much as the original topological artifacts. In addition, since these methods simultaneously simplify geometry

and topology, removing topological artifacts invariably involves loss of geometrical detail. We focus on

simplifying topology while preserving as much geometrical detail as possible.

3.4 Computational topology for computer graphics

A variety of researchers have relied on coding or matching the topology of a given mesh to a new configura-

tion [7][3][4]. Most recently attention has been directed toward general simplicial complexes. Specifically,

the problem of preserving the topology of simplicial complexes while applying edge contractions was con-

sidered by Deyet al. [23]. This work develops computational topology techniques for specific tasks for

simplicial complexes such as edge contraction and is not closely related to the algorithms presented in this

thesis. For a survey of some open problems in computational topology and other applications of computa-

tional topology to shape modeling and computer graphics see, for example, the work of Hart [41] and Deyet

al. [22].
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Chapter 4

Algorithms

4.1 Introduction

The genus of a surface in many ways determines the topological complexity of the surface. The fact that it

takes2 × g cuts, (whereg is the genus of the surface), to flatten a surface into a disk is just one indicator

of how genus affects operations to manipulate surfaces. Determining the genus of a discrete 2-manifold is a

relatively simple task. By sweeping over the surface and counting the number of vertices (V ), edges (E), and

faces (F ) for each individual surface component, we can compute theEuler characteristic, χ. Specifically,

χ = |V | − |E| + |F |, and the surfacegenusis g = (2 − χ)/2 (for each of the individual components of

the surface). Genus is a global invariant for the surface and its scalar value gives us one measure of the

complexity of the surface, (e.g., a genus zero shape is much less complex then a surface withg = 100).

However this number on its own does not provide a complete picture of the topology of the surface. Genus

is a global scalar value for the entire surface and does not give information about the location or geometric

extent of a given topological feature.

For the field of computer graphics, great care is taken with the geometry of a surface, as the geometry

plays such an important role in determining the appearance of a surface. Although a coffee mug is topolog-

ically equivalent to a dough-nut, geometrically the shapes differ. The difference in their appearance matters

greatly when the goal is accurately representing the appearance of real world objects. Thus, a great deal

of work in computer graphics has focused on geometric aspects of a surface, including geometry acquisi-

tion [17, 45, 47, 59], geometry simplification [35, 43, 67], geometry smoothing [63] and geometry compres-

sion [51, 6, 20]. However, there is a direct relationship between the topology and the geometry of a surface

that cannot be ignored. For example, geometry simplification which preserves the manifold property of a

surface, will only have a limited affect on a high genus model. See Figure 1.4 for an example of how geom-

etry simplification is affected by the topological complexity of a model. Alternatively, many mathematicians

and computational topologist are concerned with studying purely topological invariants of a surface. This

thesis takes a combined approach and identifies and localizes topological features within a surface by mixing

topological and geometrical approaches.
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The challenge of this research is to present computational topology algorithms that are designed for

discrete surfaces and that simultaneously account for the geometry of a surface. For example, let us return

to the issue of computing the genus of a discrete 2-manifold. Although it is straightforward to compute the

genus of a surface, this does not tell us enough for most computer graphics applications where we would

like to know what the genuslooks like. Genus is a scalar value with no associated geometric appearance.

We can however, isolate geometric regions of the surface that are topologically interesting. The simplest

topologically interesting regions and perhaps most intuitive regions to consider are those with genus equal to

one. By isolating and examining such regions we can compute a measure to better describe the appearance

of relevant surface topology. Thus, this work focuses on isolatinghandles, regions with genus equal to

one, in discrete 2-manifolds. Once these regions of interest have been isolated and measured, we may want to

reconstruct these regions with a different geometric sampling then the original surface. During reconstruction,

we want to be able to choose to retain or simplify topological features of the re-sampled surface. These are

the tasks addressed in this thesis, thus we present algorithms:

• to localize regions of topological interest, (regions withg = 1, handles),

• to measure the geometric extent of those handles,

• to re-sample those handles and either retain or simplify the topology in the resampling.

4.2 Localizing topology

For the purposes of computer graphics we would like to locate geometric regions of topological interest on

a surface. The simplest non-trivial regions are areas with genus equal to one. Such regions arehandles. As

mentioned in Chapter 2, handles correspond to the intuitive definition of this word. For example, a coffee cup

with a handle has genus equal to one. Thus, the task of our first algorithm is to locate handles in a discrete

2-manifold. We can decompose a surface into balls and handles, where a ball is a region with genus equal

to zero. However, there are many different ways to decompose a surface into separate handles and balls. For

example, consider Figure 4.2, where even a two holed torus can be cut into different handle configurations.

Thus, our task is two-fold:

1. identifyregions of topological interest. That is identify where the topology changes on a surface

2. isolategeometrically succinct handles within the surface.

Inherent in this task is the need to represent the topology of the surface in a useful and simplified way. Thus,

we also present a method to represent the topology of the surface. We first present algorithms for identifying

regions of topological interest.
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Figure 4.1:Handle decomposition
A two holed torus decomposed into different possible handle configurations.

4.2.1 Identifying topology

4.2.1.1 Morse functions

Morse theory, introduced in Chapter 2, is a powerful tool for revealing the global topology of smooth man-

ifolds, however, there are a number of considerations for our setting that complicate the direct application

of Morse theory to identify topology for discrete surfaces. Most notably, our setting is a discrete one with

piece-wise linear 2-manifolds not smooth manifolds. Although there are recent methods to detect critical

points for the piece-wise linear setting [10, 26], we consider methods tuned for the discrete setting that do not

identify exact critical points. There are many more critical points than handles and and we are not interested

in maxima, minima or lone saddle points. We are only interested in pairs of saddle points that correspond to

a handle, (see Figure 4.2.1.1). For this purpose we have found that approaches related to Morse theory, tuned

for the discrete setting and which identifycritical levelsof the surface are more appropriate.

Figure 4.2:Example saddle points
A lone saddle point on a branching in the surface and pair of saddle points that make up a handle.

Building on Morse theory, we consider exploring the connectivity of a 2-manifold with a function defined

on that manifold. We specifically work with discrete 2-manifolds and discrete functions. By observing the

way the discrete function behaves we are able to make observations about the underlaying connectivity of the

discrete 2-manifold. We make the observation that by tuning the sampling of our function to closely follow

the discrete connectivity of the surface, we can choose appropriate sampling rates to captureall the topology

of the surface.
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4.2.1.2 Height function and immersion

Consider defining a height function for a surface. As mentioned in Chapter 2, height functions are often

used as Morse functions. Consider the following observations about a height function defined on a closed

2-manifold. A height function is defined in a given direction in space by the vectorz. The function returns

the projection of the surface ontoz. In other words, the function associates an elevation alongz with each

point on the surface, (see Figure 4.3). Formally, given a 2-manifold,M , defined by a simplicial complex, and

an embedding of that manifold,S : M → R3, for a pointp of M , the height functionHz will return the dot

product ofz and the value ofS for p, (i.e., Hz(p) = z ·S(p)). Given a height function for a 2-manifold and a

specific height value,h, apre-imageof the function is alevel setof the surface. Thepre-imageof the function

Hz is the subsetU of M , such that each elementu ∈ U , satisfiesHz(u) = h. For our setting, a level set will

be a set of closedcontourscreated by intersecting the closed 2-manifold with a perpendicular plane at height,

h. In the discrete setting, a contour is a closed polyline. We call the set of connected polygons between two

successive contours aribbon, (see Figure 4.3).

Observe that defining a height function for a closed 2-manifold and examining the pre-image of the func-

tion for various intervals alongz will create a sequence of closed contours of the surface. This corresponds

to placing the closed 2-manifold in a tank and slowly immersing it in liquid up to various heights by adding

more and more water to the tank. The level set for a given heighth will be the intersection of the surface with

the top of the water, (see Figure 4.3). We observe that as the surface is immersed in the water, the topology

of the level sets change,i.e., the number of components of the level set changes for various heights. For

example, imagine we are pouring water into a tank with the surface shown in Figure 4.3. As we first pour

water in to levelh0, we do not intersect the surface and the pre-image of our height function will be empty

(it will have no contours). When the water first touches the surface at levelhi, the topology of the level set

changes and the pre-image now consists of a single contour. As we continue pouring water into the tank, the

topology of the level sets will continue to change. For example, when the water level first reaches the “hole”

of one of the handles, the topology of the level set will change from a single contour to two. Finally, consider

when we pour in the last of the water and the level set changes such that we once again have no contours.

This analogy of immersing a surface in water is often used to describe the process of finding critical points

in a surface. There is a direct correlation with the level sets of a surface changing and changes in the topology

of the surface [9, 40, 78]. Consider for example the analysis used in the work of Axen [10] discussed in

Chapter 3. Axen examines the star of a vertex to determine if the vertex is a normal vertex or a critical vertex.

For example a vertex which is a minimum will be adjacent to a level set (or wavefront) which is entirely

“above” the vertex, (i.e., a wavefront with a larger distance value). Likewise a vertex that is a maximum will

be adjacent to a level set which is entirely “below” the vertex, (i.e., a wavefront with a smaller distance value).

And finally a vertex which is a saddle point will be adjacent to both a “bottom” level set and a “top” level

set, (i.e., wavefront(s) with a larger distance value and wavefront(s) with smaller distance values). In fact,

levels where the topology of the level set change directly correlate to levels where the topology of the surface
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Figure 4.3:Example of immersion
On the left is an illustration of a height function with its associated direction vectorz. On the right is a

surface being immersed in water and the associated level set for the surface at heighth.

change. Such levels are calledcritical levelsand we analyze their correspondence to the surface topology in

the next section.

4.2.1.3 Face-by-face traversal

Consider the relationship of the level set topology to the surface topology and how observing changes to level

sets allows us to deduce the topology of the surface. We work in a discrete piece-wise linear setting where

we can make some simple combinatorial observations. Namely, we observe that the discrete primitives that

make up discrete 2-manifolds are all simple polygons or triangles and cannot individually represent complex

topological features, (e.g., a handle or even a cylinder). Only by combining these elements can we build up

more complex topology. Now consider the level sets generated by a traversal of the surface one face at a time.

For example, a traversal defined on the surface that starts from an initial face and immerses one additional

face at a time. For such aface-by-facetraversal, the level sets will be the boundary of the currently immersed

faces.

Let us analyze the correlation between the face-by-face traversal and the topology of the surface, by

examining the Euler characteristic of the surface for each step of the traversal. Recall that we can compute

the genus of a surface from its Euler characteristic. The starting element for the traversal will be a single

face. For the initial face, the starting contour of the first level set will be the ordered edges of the face.

Algorithmically, we proceed by adding an adjacent face, to the current contour, ordered using Dijkstra’s

shortest path algorithm. After each face is added we compute a new level set which includes the contour

modified by adding the new face. Consider the possible results of adding a face to the current contour and

how those operations affect the genus of the current region. We enumerate the specifics of such a traversal

with regards to a triangle mesh, however a similar analysis is applied for arbitrary polygons,i.e.surfels, for

the volume setting. The possible changes to the contours of the level sets can be enumerated as one of three

possible operations:add-triangle, close-crack, andmerge-edge. We describe these operations in more detail.

Add-triangle We assume that the current contour and the new incoming triangle share at least one com-
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mon edge. Then theadd-triangleoperation adds the triangle to the current contour by merging across a

common edge. The resulting surface has one more face, two more edges, and one more vertex than the origi-

nal one (see Figure 4.4(a)). For this trivial operation, the number of contours of the level set does not change.

We observe that the genus of the corresponding surface region also does not change. Indeed,

χnew = Vnew − Enew + Fnew + Hnew

= (Vold + 1)− (Eold + 2) + (Fold + 1) + Hold

= χold.

Since the genus of the region isg = 1− χ/2, andχ is unchanged, the genus of the current surface region is

preserved during theadd-triangleoperation.

Close-crackOnce the new triangle is added to the contour we need to resolve possible self-adjacencies

along the contour. One local inconsistency is depicted in Figure 4.4(b). We fix the contour locally by elimi-

nating the two redundant edges. The resulting surface has one less edge, and one less vertex than the original

one. The number of faces and contours does not change. Again, the genus of the corresponding surface does

not change. As,

χnew = (Vold − 1)− (Eold − 1) + Fold + Hold

= χold.

(a) (b) (c)

Figure 4.4:Face-by-face operations
(a) add-triangleoperation; (b)close-crackoperation; (c)merge-edgeoperation. Current surface region
shown in gray, the current contour is in blue.

Merge-edgeThe last operation required to maintain a consistent level set is not local, in that it requires

adjacency tests between different parts of the contour or even between different contours. Indeed, theclose-

crackoperation cannot resolve situations such as the one shown in Figure 4.4(c). Here two edges lying on two

separate pieces of the contour correspond to the same edge of the original surface. We fix this inconsistency

by merging the current contour(s) across this edge. As a result the number of contours will either increase by

one (when the merged edges belong to the same contour), or decrease by one (when two different contours

become one). Themerge-edgeoperation results in one less edge and two less vertices for the current region,

and the number of faces does not change. Depending on the value of the change in the number of contours

we will encounter two cases:
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• A contour splits.

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold + 1)

= χold.

• Contours merge.

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold − 1)

= χold − 2.

In this last case the genus of the current region increases by one! This simple combinatorial argument

illustrates the relationship between changes in the topology of the level sets and changes in the topology of the

surface. We observe that if we constructed level sets using a face-by-face traversal we would be guaranteed

to capture all the topological changes of the surface.

The problem with a face-by-face traversal of the surface is that such a construction is very redundant. For

most of the surface traversal, we only need to use theadd-faceoperation. We therefore revisit the question

of level set construction but use what we have learned from the face-by-face traversal to guarantee that we

construct contours that will encode the topology of the surface.

4.2.1.4 Constructing level sets

In the discrete setting, we would like to only construct level sets necessary to capture all the topology of the

surface. Thus, let us consider a modification to the face-by-face traversal

Distance functions We start by considering another function that is commonly used as a Morse function,

which is a distance function (also called a geodesic function, or brush-fire or wavefront traversal). A geodesic

function computes the shortest path from a seed point on a surface to every other point on the surface. Agraph

geodesicis the shortest path between two graph vertices and can be computed using a breadth first traversal,

for example, Dijkstra’s algorithm to compute shortest paths. This kind of traversal is similar to the face-by-

face traversal except that now the level sets are constructed only after all the faces of distanced from the seed

face have been added to the current region. The level set of the geodesic function for any specific distance,

d, will be one or more contours, similar to the contours computed for a givenh of a height function. One

interesting aspect of the contours of a geodesic function is that they will closely follow the geometry of the

surface, (see Figure 4.19). As the function traverses the surface and the number of contours changes for

various distances from the seed point, the topology of the surface changes.
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Now let us consider the two settings for discrete 2-manifolds and which functions might be appropriate

for traversing the surface to construct contours. We discuss methods to guarantee that these traversals are

accurate and construct contours necessary to capture all the topology of the surface in the subsequent section.

Triangulations For triangle meshes, (as described in Chapter 2) the data is organized as a connected set

of faces. In this setting, it is natural to consider traversing the mesh using a graph geodesic defined on the

faces of the surface. Starting from a seed face, we use a discrete distance function to traverse the mesh and

construct contours representing the topology of the surface. For the purpose of discovering the topology of

the surface, we typically use an equal weighted integer distance function, where each face is distance one

from all adjacent neighbor faces. When we traverse across the surface as the distance function progresses,

the level set of the distance function will be a set of contours as depicted in Figure 4.19. Between the contours

the surface may have several connected components. We call these componentsribbons.

Scalar volumes Let us consider the volume setting, which were defined in Chapter 2. For this setting, the

data is organized on a discrete grid with the connectivity of the surface defined for each grid voxel by a look-

up table [54]. For such a setting it is very natural to consider sampling this grid using a height function at the

predefinedz intervals by the grid itself. In fact, such a sampling has advantages for out-of-core algorithms,

as discussed in the Chapter 5. For the volume setting we can choose to use a height function to construct

contours representing the topology of the surface. In such a setting we can use an axis-alignedsweepthrough

the volume to visit the grid data along parallel dataplanes. As expected, the isosurface intersects each such

plane along a set of contours as depicted on Figure 4.8 and 4.12. Asliceof the volume is the set of grid cubes

between two adjacent data planes. Within each slice, the surface may have several connected components.

Once again, we call these connected componentsribbons.

4.2.1.5 Intra-ribbon handles

Both of these sampling rates are very natural to their respective setting and allow for the traversal of the

surface in incremental regions, orintervals. However, there are consequences of this sampling choice for

both the volume setting and the mesh setting. Specifically, it is possible that a handle is entirely contained

between the previous and next contour,i.e., within a ribbon. For such a case, the handle would not be detected,

as the computed level sets have identical topology. One suchintra-ribbon handlefor the volume setting is

generated by the6 × 6 cube grid shown in Figure 4.5. Although such cases are rare, we must address their

presence.

One might propose a possible solution to dealing with such cases for a height function would be to

locally increase the sampling of the level set construction. Unfortunately, just increasing the sampling is not

a solution. For example the two saddle points that define a handle could appear exactly at the same height,

thus no matter how fine the sampling, they could not be isolated from one another and the topology of the
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Figure 4.5:Example of an intra-ribbon handle
Example of an intra-ribbon handle. This torus tilted at an angle is formed by two “C” shaped contours. As
shown in the figure in the center, the Reeb graph does not contain any cycle. On the right we see the volume
grid overlaid on this isosurface.

level sets would not appear to change. Methods such as those used by Axen [9] seek to apply perturbations to

the data to guarantee that every critical point is isolated at a unique height. We opt for a simpler solution by

making an observation about the discrete setting and about the discrete primitives that make up our discrete 2-

manifold. Each surface element is topologically simple and only by piecing them together can we construct

a handle. Specifically, for the volume setting, observe that an isosurface cannot have a handle within a

single cube, thus, by traversing the surface voxel by voxel when necessary, we can isolate critical levels and

identify the topology. This is exactly the method presented in the discussion of a face-by-face traversal. This

observation gives us the insight to solve the problem of intra-ribbon handles for both a height function or a

geodesic function traversal.

We observe that an alternative distance function can be defined which guarantees thatall the topology

of the surface is discovered. As we presented earlier, a distance function defined on faces that orders each

face uniquely, such that a contour is constructed after each face is added, guarantees an encoding of all the

topological changes in a surface. Thus, for any intra-ribbon handles we modify the traversal to be a face-

by-face traversal and construct a contour after adding each neighboring face one at a time. Using an interval

traversal with a face-by-face traversal when necessary, we are guaranteed that the level sets for a handle will

at some point break from one contour into two contours and then merge back to one, and we will identify all

handles.

An intra-ribbon handle relates to a non-isolated critical level. Just as critical points must be isolated for

a function to be a Morse function, in order to correctly encode the topology, we must detect isolated critical

levels. Altering the algorithm to construct a contour after adding each face within the slice, will isolate

distinct critical levels where the previous sampling could not. We limit this face-by-face traversal to only

the current ribbon because such a traversal is redundant and is costly when intra-ribbon handles are typically

only 1–10% of the input. A face-by-face traversal is costly because it constructs a contour for every face,

thus the number of contours computed will be on the order ofn for a surface withn elements. In contrast,

an interval traversal using a height function or graph geodesic would construct contours on the order of
√

n.

Thus, we opt for a mixed solution which uses predominantly intervals of a height function or graph geodesic
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for the surface traversal, but where any interval with an intra-ribbon handle is traversed using a face-by-face

traversal. We discuss how to detect intra-ribbon handles in Section 4.2.2.5.

A note about traversal For a height function, the function may be defined for various directions (for

example along thex, y, or z axis). Likewise a graph geodesic is defined from a given seed point. Although

alternative directions and seed points will change some geometric information about individual ribbons and

contours, the level set analysis will always compute the correct topology. This is due to the guarantees

provided by the combined interval and face-by-face traversal discussed above. In addition, we have found

that the sweep direction and seed point do not change the behavior of the algorithm to isolate handles within

the surface.

Figure 4.6:Ambiguous change in two level sets
An illustration of two level sets which transition from two level sets to one. Shown in the middle is a surface
reconstruction corresponding to a maxima while on the right we see a surface reconstruction corresponding
to a saddle point.

4.2.2 Coding the topology

Given that we know how to traverse the surface to construct contours in order to correctly detect changes in

the topology of the surface, we need to address how to store and analyze this information. Although at first it

may seem sufficient to count the number of contours for each level set and store any level where the number

of contours changes, this is not enough information to quantify changes in the topology of the surface. For

example, a level with two contours followed by a single contour could be a saddle point or a maximum, (see

Figure 4.6). Instead we need to analyze how the connectivity of the contours change for varying level sets so

that we can disambiguate when a contour disappears versus when two contours merge together. In order to do

this, we must keep track of the connected components of the surface as they intersect the height or geodesic

function.

Morse theory provides a more complex analysis of critical points of a surface that automatically differ-

entiates the possible topology changes. Recall that critical points are identified and indexed by looking at

the number of negative eigenvalues of the Hessian. However, we have chosen to not identify exact criti-

cal points and use critical level analysis as this gives us more flexibility to identify and isolate topology for
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discrete 2-manifolds. Instead, we keep track of surface components and level sets with the use of aReeb

graph. Coding the topology of a surface by examining the critical levels of a surface has been used by other

researchers [75, 56, 14, 53]. Specifically, by coding the contours in a Reeb graph, researchers have attempted

to encode the topology of the surface.

4.2.2.1 Reeb graph

As presented in Chapter 2, a Reeb graph can be used to represent the topology of a surface. Traditionally

Reeb graphs were used to represent critical points, where the edges in the graph represented the connected

components of the surface between critical points. However, many researchers have used them to code the

connectivity of discrete level sets of a surface [75, 56, 14, 53]. Typically, each node of the Reeb graph

represents a contour of a level set and the edges between the nodes represent the connected components of

the surface between the level sets. Specifically, given a scalar function,f , a Reeb graph can be used to track

the connected components of the pre-image of the function. For the example of using a height function, the

Reeb graph would contain nodes for each of the contours for each level set generated by the height function.

The graph would have edges for each of the surface components between the contours. See Figure 4.9 for

examples of some Reeb graphs.

We require that the Reeb graph exactly represents the topology of the surface,i.e., cycles in the Reeb

graph correspond to handles in the surface. See Figure 4.9 (A) for an example. Arbitrarily choosing discrete

level sets from the height function may miss some levels where the level set topology might have changed.

See Figure 4.7 for an example of a problem with arbitrarily sampling the level sets. This is why in work done

by Shinagawa [75], where the Reeb graph is constructed from predetermined cross sectional contours, a priori

information about the topology of the initial shape is required. It is only with this additional information that

the method is able to guarantee that the topology of the Reeb graph will exactly match the topology of the

input shape. This is not an issue with our methods, as we have established in Section 4.2.1.1 that by traversing

the exact connectivity of the surface we can construct level sets such that the contours will always expose the

surface topology. Another short coming of a contour Reeb graph is that occasionally discrete contours alone

do not provide enough information about how the topology of the surface is changing (see Figure 4.9 (B) and

(C)).

4.2.2.2 Augmented Reeb graph

As presented in Section 4.2.1.1, we know that we can traverse the surface such that we will construct level sets

that reflect the changes in the topology of the surface. However, Figure 4.9 (B) and (C) shows an example

where constructing a Reeb graph from discrete contours with edges only between sequential contours can

create a degenerate Reeb graph with no cycle. More importantly, for our purposes we would like to use the

Reeb graph to not only identify handles, but also to isolate the handles within the surface. Thus, we propose

anaugmentedReeb graph, which has nodes not only for contours, but nodes for all theribbonsof a surface.



43

Figure 4.7:Arbitrary sampling
An illustration that an arbitrary discrete sampling of a height function which can miss critical levels of the
height function.

This augmented Reeb graph contains more information so that we can disambiguate cases where contours

alone do not provide enough information and we can isolate geometric regions of the surface corresponding

to handles. Specifically, we augment the Reeb graph with additional nodes for each connected component

of the surface, (see Figures 4.8 and 4.9). These ribbon nodes store more geometric information about the

polygons that make up the topology of the surface. Thus, these additional nodes allow us to not only identify

handles but reconstruct them from the information stored in the graph (see Figure 4.10). We discuss the

methods we use to isolate handles in Section 4.2.4.

Figure 4.8:Isosurface and Reeb graph
An isosurface and its corresponding Reeb graph for a bottom to top sweep of the volume. In the graph,
contour nodes are shown in blue, and ribbon nodes in pink. Also shown on the graph are component labels,
here represented as numbers.

Augmented Reeb graph construction algorithm Let us formalize the construction of the augmented Reeb

graph and examine the correspondence of cycles in this graph to handles in the surface. To construct a Reeb

graph, for eachz interval of the volume or each face interval of the geodesic function, we must construct the

contours and associated ribbons.
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4.2.2.3 Contour construction

Before we construct contours, height and distance values must be appropriately propagated throughout the

current interval of the discrete 2-manifold. Both contour construction and ribbon construction can easily

be done with a breadth first search starting from an appropriate starting element,e.g.a triangle or surfel.

For example to construct contours for the volume case, for each plane of the volume, the grid is traversed

and a contour is constructed starting with any edge of the isosurface. Contour construction proceeds in the

plane from the starting edge to the next edge of the isosurface until the contour is closed. The following

pseudo-code summarizes contour construction for the volume setting.

function Construct Contours(int z)

Foreachgrid cell{i, j} of thez plane

if the grid cell{i, j} contains the isosurface

Compute the appropriate edge,e, of the isosurface

if e has not been used by a previous contour

Create a new contourc with start edgee

Storec in Currentcontours list

Mark e as used byc

Compute nextedge in thez plane

While the nextedge is not equal toe

Add nextedge toc

Mark nextedge as used byc

Compute nextedge in thez plane

A similar approach is used for a triangle mesh, except edges are no longer followed in the plane and instead

the edges are traversed between triangles of distanced− 1 and distanced.

4.2.2.4 Ribbon construction

Ribbons are constructed by running a breadth first traversal starting with the polygons adjacent to one contour

and ending with the polygons adjacent to the previous contour. We use sets of triangles or surfels to represent

the ribbons of triangle meshes and volumes respectively. During ribbon construction, we keep track of

adjacent contours in order to track the edges of the augmented Reeb graph. We create nodes in the Reeb

graph corresponding to both ribbonsand contours, and record their adjacency as graph edges, as illustrated

in Figures 4.8 and 4.12. We represent adjacencies in the Reeb graph,i.e., edges, as child and parent pointers

stored in both the contours and ribbons. That is, each contour has one child ribbon and one parent ribbon,

while each ribbon has a list of child contours and a list of parent contours. These pointers are updated to

store the adjacency information of the Reeb graph edges. The following pseudo-code summarizes ribbon
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construction for the volume setting:

function Construct Ribbons(Contourlist Currentcontours, intz)

ForeachContourc in the Currentcontour list

Create a new Ribbonr1

Set childribbon ofc to r1

Foreachedge ofc compute adjacent surfels of height= z − 1

Add s to queue of CurSurfels

While Cur Surfels is not empty

s = top of CurSurfels

if s is a member of any other Ribbonr2

r1 = Union(r1, r2)

Updater1 andr2 parentcontours pointers to includec

Foreachof the parentcontours ofr1 andr2

Update childribbon pointers tor1

Add s to r1

Add any unvisited neighbors ofs with height= z − 1 to Cur Surfels

Mark s as visited

A similar approach is used to construct ribbons for a triangle mesh with the exception that sets of triangles

are distinguished by distance value not height value. Note that during ribbon construction we automatically

update the adjacency edges for the newly created contours by updating the childribbon pointers. After the

ribbons are constructed, we need to compute the adjacencies between the newly constructed ribbons and their

child contours. This is done by testing adjacencies in the surface,e.g., each new ribbon adds all childcontours

of heightz − 1 which are adjacent along the edges of any surfels in that ribbon.

Note that anyend region, like the bottom ribbon of the torus on its side in Figure 4.9 (B) will not have

any child contours. In addition, to identify the ribbon associated with the end region corresponding to the

top layer of the torus on its side in Figure 4.9 (B), we must perform a final pass. Specifically, all contours

of heightz − 1 must have a parent ribbon, if not, we must construct an end region ribbon. This is done

with a method similar to the ConstructRibbon function above. End region ribbons will have either no child

contours or no parent contours. We assert throughout the construction algorithm that every contour must have

valid child and parent ribbons. Such a construction will create an augmented Reeb graph with the addition of

the following consistency check.

4.2.2.5 Asserting Reeb graph consistency

As proven in Section 4.2.1.1, we can traverse the surface such that we will construct level sets that reflect the

changes in the topology of the surface. To guarantee that the Reeb graph accurately represents the topology
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of the surface, we keep track of the Euler characteristic of the surface during the traversal. Recall from

Section 4.1 that we can compute the genus of a surface or region of surface using the Euler characteristic.

During the Reeb graph construction, we use the Euler characteristic of the surface in order to detect intra-

ribbon handles and to guarantee a correspondence between the cycles in the augmented Reeb graph and the

handles of the surface.

During ribbon construction, we test that the Euler characteristic for each ribbon corresponds to a region

with genus equal to zero. If a ribbon has non-zero genus, it obviously contains one or more handle(s). For

such intra-ribbon handles, where the topology cannot be resolved by the normal interval sampling, we locally

alter the traversal to be a face-by-face traversal within the current ribbon. As proven in Section 4.2.1.1 such

a traversal is guaranteed to produce contours and ribbons that represent a handle. Constructing a Reeb graph

from contours and ribbons defined by this traversal will guarantee that we encode every handle as a cycle in

the Reeb graph. However, we only use a face-by-face traversal when needed, since constructing a Reeb graph

from the contours created by a face-by-face traversal would create an overly dense graph.

To confirm theoverall correct construction of the augmented Reeb graph for each interval, we use the

Euler characteristic of the surface traversed thus far, to assert that the number of cycles in the Reeb graph

matches the computed genus of the surface. We employ a step by step construction, where we guarantee

that each ribbon interval has genus equal to zero and where after each interval the number of cycles in the

Reeb graph matches the number of handles in the surface. Such a construction results in a Reeb graph where

each cycle corresponds to a handle of the surface. We discuss how to detect handles and the combinatorial

choices for isolating handles within the surface in the next section. The following pseudo-code summarizes

the construction of the augmented Reeb graph.

function Augmented Reeb graph construction

Foreach intervali of height or distance function

Compute the Euler characteristic of the surface up to intervali (See Section 4.1)

Construct contoursc for intervali (See Section 4.2.2.3)

Foreachcontour construct and merge ribbons(See Section 4.2.2.4)

Foreachnew ribbonr

Compute the Euler characteristic of ribbonr

if the genus ofr is greater than zero

Delete parentcontours

Construct contours and ribbons with a face-by-face traversal(See Section 4.2.1.3)

Add ribbon to Reebgraph(ribbonr, Reeb GraphG) (See Section 4.2.4.2)

Compute number of cyclesn in the Reeb graphG

Assert thatn = genus of the surface up to intervali

Note that the examples of the degenerate Reeb graphs from Figure 4.9 (B) and (C) are related to the
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Figure 4.9:Example Reeb graphs
Example surfaces and their associated level sets, Reeb graphs andaugmented Reeb graph. The examples
are: (A) an upright torus, (B) a torus on its side, and (C) a bowl-like surface. Note that (B) and (C) have
degenerate discrete contour Reeb graphs which are corrected with an augmented Reeb graph representation.

grounded simplicesin the work of Axen [10]. Axen’s initial solution to use subdivision would create more

contours and resolve the degenerate Reeb graph. Likewise, our inclusion of the ribbon nodes is reminiscent of

Axen’s second solution to examine the dual of the wavefront to resolve grounded simplices. Automatically,

by including ribbon nodes, we can resolve all end regions as these regions will be represented by ribbons

nodes in the Reeb graph. Figure 4.9 illustrates how the degenerate Reeb graphs are resolved in an augmented

Reeb graph.

4.2.3 Detecting handles

Finding cycles in the augmented Reeb graph Once an augmented Reeb graph is constructed, we need a

method to detect where the graph has cycles so that we may detect where the surface has handles. We could

use various techniques to detect the cycles but we are specifically interested in an algorithm that allows us

to locally and incrementally check the Reeb graph for a cycle (i.e., the entire graph need not be constructed

first). For a given level set of the Reeb graph corresponding to a specific heighth or distanced, we would like

to detect if any of the newly added nodes in the Reeb graph correspond to a cycle. For a distance function,

any ribbon with more then one child contour is adjacent to a cycle. Such ribbon nodes are easy to detect by

counting the number of adjacent contour nodes in the previous interval.

For a height function, the algorithm needs to locally differentiate between a lone saddle point and a pair

of saddle points that form a handle. Both of these events are encoded in the augmented Reeb graph by the

merging of two contours to one ribbon. See Figure 4.8 for an example of both cases. To distinguish between
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these two cases we associate a label with both ribbons and contours, that identifies the connected component

to which they belong. Such a labeling allows us to locally differentiate between the merging of (a) two

previouslydisconnectedcomponents (i.e., a lone saddle point) and (b) two previouslyconnectedcomponents

(i.e., a handle forming from the second of a pair of saddle points). For a height function, the only way that

a Reeb cycle can form is when two contour nodes in the previous interval are added to a single ribbon node

in the augmented Reeb graph. When adding such graph edges, we test whether the two contour nodes have

the same component label. If so, they belong to the same connected component and a Reeb cycle is formed.

In any case, after the graph edge is added, we relabel the graph nodes to reflect the merging of connected

components.

4.2.4 Isolating handles

Once we have detected a cycle in the augmented Reeb graph, we need to isolate the handle in the surface

that corresponds to this cycle. The augmented Reeb graph contains all the information that we need to isolate

the corresponding geometric region of the surface. Isolating groups of adjacent nodes in the Reeb graph

corresponds to isolating adjacent contours and ribbons which form a geometrically succinct region of the

surface. Recall that the ribbons and contours have been constructed by a function that traverses the surface

in a spatially localized manner, either defined by regions of the surface within a height interval or within a

distance interval. Isolating groups of adjacent nodes in the augmented Reeb graph corresponds to isolating

a region with boundary on the surface, where the open boundaries correspond to the contour nodes, (see

Figure 4.10).

Figure 4.10:Isolating handles
Example of isolating nodes in the augmented Reeb graph and the corresponding geometric region on the
surface.
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4.2.4.1 Combinatorial considerations

As there are many ways to decompose a surface into handles, we must consider the criteria for making

combinatorial choices for isolating handles. For the purpose of computer graphics, we consider handles

to be toroidal regions that are geometrically localized in the surface. Each of the handles that we consider,

correspond to a cycle in the augmented Reeb graph. Each of these cycles correspond to the height or geodesic

function splitting into two components and then merging back together. Since the traversal function that

generates the cycles is a spatially localized function, the cycles have spatial correspondence to geometrically

concise regions. However, even within the Reeb graph, there are many possible cycles in a cyclic graph.

Consider Figure 4.11. In order to find geometrically succinct regions, when we detect a cycle, we want to

find a short graph cycle. Thus, when a Reeb cycle is detected, we perform a breadth first search through the

graph to find the shortest cycle, starting from one of the like-labeled contour nodes,e.g., c1 to the otherc2.

This Reeb cycle path consists of alternating ribbon and contour nodes and defines ahandlewith boundary.

Figure 4.11:Example of finding a Reeb cycle
Example surface and its augmented Reeb graph with an adjacent handle. The ribbonr has the previous

contoursC = {c1, c2}. When we discover the Reeb cycle associated with contoursc1 andc2, we construct
the cycle path by finding the shortest pathfrom c1 to c2.

More than one cycle can be formed simultaneously in the Reeb graph. Such a case is indicative of handles

being adjacent to one another. For example consider the two holed torus and its associated augmented Reeb

graph in Figure 4.12. In such a case, a givenz interval has a ribbon withk child contours with the same

component labels, withk ≥ 2. Although the local genus of the surface isk − 1, we need to isolate a handle

for all pairs of child contours. Figure 4.12 shows a two handled torus with a Reeb graph with three possible

cycles. In order to accurately consider all of the possible ways to isolate a handle for this region we must

consider all pairs of child contours. A single ribbon withk ≥ 2 child contours can correspond to a region

with a degenerate critical point, such as a multiple (or non-isolated) saddle. In such a case, our method of

checking the possible combinations of child contours relates to splitting a multiple saddle into simple saddles

(similar to [79]).
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Figure 4.12:Two holed torus
A two-holed torus, the associated planar cross section, and its associated augmented Reeb graph. To find
the minimal-length Reeb loop (shown in blue), we must explore all pairs of child contours with the same
component label (i.e., {c1, c2}, {c1, c3} and{c2, c3} where the minimal-length Reeb loop is associated with
{c1, c2}).

4.2.4.2 Pseudo-code for detection and isolation

The following pseudo-code summarizes the key parts of the detection and handle isolation algorithm (see

Figure 4.11):

function Add ribbon to Reeb graph(ribbonr, Reeb GraphG)

Add ribbonr as node in Reeb graphG.

label(r) := unique label().

Identify all previous contoursC adjacent tor on surface.

Foreach(pair contoursc1, c2 ∈ C)

if label(c1) = label(c2) then

pathP := shortest path fromc1 to c2 in G.

Report Reeb cycle as(c2, r) + (r, c1) + P .

Foreach(contourc ∈ C)

Add edge (c, r) to G.

Unify labels of contourc and ribbonr.

Once a handle has been isolated, we would like a method to measure the geometric extent of each handle.

The measure proposed in this thesis is presented in the next section.

4.3 Measuring feature size

4.3.1 Problem statement

Once we have isolated a handle within the surface we would like to measure the geometric extent of the

handle to analyze the importance of each particular topological feature. Specifically, we are interested in a

measure that gives a reasonable idea of the geometric importance of a given handle, since it is possible that

any acquired data may include some topology which is inherent to the model, (see Figure 1.4). While we

could isolate handles one by one and display them for a user to inspect, we sought an automatic method to
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measure and evaluate the size of handles for a given model. To do this, we consider measuring two locally

shortest-length transverse non-separating cycles.

4.3.2 Loops

When considering the extent of a handle there are a variety of possible measures for the geometric size of the

handle. We have a chosen a measure based on finding two transverse non-separating loops. We present some

information about loops to motivate some of the intuition behind our choice of considering two transverse

non-separating cycles. It is well known that a torus can be cut open and flattened to a disk with two loops. In

fact, a surface with genusg can be flattened to a disk with2×g loops [65]. For a torus, two possible cycles are

the canonical generator loops, (see Figure 4.13). Generator loops are basis elements for the torus and as basis

elements the entire space of the torus can be reached through integer combinations of these loops. Observe

that the generator loops on a torus are both non-separating cycles. Consider, starting with the set of loops that

includes the canonical generator loops. Call themA andB. Refer to Figure 4.13. From these initial loops, we

can build up an infinite number of equivalence classes of loops by considering integer combinations of loops,

where an integer multiple of a given loop such as2A, intuitively, means to wrap aroundA twice. The integer

combinations include the trivial loop or null loop which can be contracted to a disk, (i.e., 0A or 0B) and the

loops in the opposite direction asA andB respectively, called̄A andB̄, (i.e., −1A and−1B). Just as there

are an infinite number of equivalence classes of loops for a torus there are an infinite number of generator

loops. Any pair of loops will be a basis pair provided that the canonical generator loops can be formed from

that pair. For example,A + B,B is a valid basis, however,A + B, 2A + 2B is not.

Figure 4.13:Canonical generator loops
A torus with the canonical generator loops. On the right we see possible ways to cut the torus open along

each of these two loops, either into a cylinder, rectangle or annulus.

We consider finding two loops to measure the two dimensional extent of a torus. With just two loops we

can describe the entire space of a torus and it takes two loops to decompose a torus into a rectangle. We do

not require that the algorithm finds two generator loops, instead, we seek to find two non-separating cycles

from different equivalence classes. The two shortest-length non-separating cycles give a reasonable measure
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of the minimal geometric extents of the torus.

4.3.3 Overview: two non-separating cycles

Given a handle, we wish to identify two non-separating loops which are transverse to one another. For the

sake of discussion we distinguish and name these loops depending on the orientation of the Reeb graph:

• theReeb loopis the nearly shortest loop around the Reeb cycle, and

• thecross loopis the nearly shortest loop “transversal” to the Reeb loop.

Note that depending on the direction of the height or distance function, a loop that may be called a Reeb

loop would alternately be called a cross loop from an alternative direction. Thus, for an up-right torus, like

the one shown in Figure 4.9 (A), the Reeb loop length measures its inner circumference, and the cross loop

length measures its girth. For a horizontal torus, (Figure 4.9 (B)), the opposite would be true. See Figures 1.6

and 4.18 for an example of both loops. There are many possible non-separating cycles for a given handle.

Since our goal is to measure the extent of the handle relative to rest of the surface geometry and relative

to other handles, we find tight fitting loops of shortest length from two different equivalence classes. With

the measure of the length of the two loops, we can define the handle size in various ways depending on the

application. For example, we may define handle size to be the smaller of the Reeb loop length and the cross

loop length or alternatively as a ratio between the two loops. Each of these measures gives information about

the relative size of the handle with regards to the rest of the surface.

A first look at finding shortest cycles One approach to find nearly shortest-length non-separating cycles

is to use the algorithm of Erickson and Har-Peled. This work creates a cut-graph for the entire surface, where

key sub-paths of the cut-graph are shortest paths. Short non-separating cycles are formed by contracting each

of these sub-paths to a single vertex,v, and then constructing a shortest non-separating cycle that passes

throughv (which can be done in O(n log n) time). This shortest non-separating cycle will be within a factor

of two of the overall shortest non-separating cycle. Once a shortest loop has been found using this approach,

a transverse loop could be found with some modifications to their algorithm. One drawback to this approach

is that it requires constructing a cut-graph for the entire surface. We wish to simplify this problem to only

look at local regions of the surface, thus we take a more localized approach to finding minimal-length non-

separating cycles. Our approach is to isolate regions of genus one,i.e.handles or a torus with boundary, on the

surface and find shortest-length cycles for each local region. Our method is competitive with that of Erickson

and Har-Peled for the case of a torus. See the following section, for more details.

The following section addresses finding short loops on a torus. Our method breaks a surface into handles,

which are equivalent to a torus with boundary, however, these methods still apply, as we can simulate a closed

torus by closing all the boundaries on a handle with temporary disks.
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4.3.3.1 General idea

We find theReeb loopby constructing a non-separating cycle that matches the Reeb cycle. Observe that any

one of the contours in the Reeb cycle are non-separating cycles, which can be used to cut the Reeb cycle.

Intuitively, this corresponds to cutting along a contour of the handle to open it into an cylinder, which is open

on both ends, see Figure 4.14. We construct a locally shortest-length non-separating cycle that follows the

Reeb cycle by computing the shortest path from one side of such a contour to the other. On the cylinder this

corresponds to computing the shortest path from the top of the cylinder to the bottom. We discuss the exact

method we use to find the shortest path in the next section. We guarantee that the loop that we find matches

a given Reeb cycle by restricting the area that we search for the loop to the isolated region corresponding to

the cycle in the Reeb graph, as described in Section 4.2.4. We construct thecross loopin a similar manner.

Now, starting from one side of the Reeb loop, we compute the shortest paths to the other side of the Reeb

loop. Among all shortest paths forming cycles, the shortest is the cross loop.

Figure 4.14:Reeb loop
Illustration of the process of identifying the Reeb loop for a torus. In this case, we are searching for a loop
on the surface of the torus that corresponds to the red cycle in the Reeb graph shown on the left. The search
is started from one of the contours in the Reeb cycle, shown in purple in the middle two images.

4.3.3.2 Shortest cycles

Let us consider the details of finding the minimal-length non-separating cycles on a torus. First we consider a

simple approach. Given a toroidal region on the surface, we start with an arbitrary non-separating cycle (such

a cycle is a contour form by either a height or geodesic function which is stored in the Reeb graph). From

this arbitrary non-separating cycle,γ we run Dijkstra’s shortest path algorithm from each vertex inγ from

one side of the cycle to other (matching the start vertexv with itself). The shortest path of all paths found

from one side ofγ to the other will be the shortest non-separating cycle in this direction that crossesγ once.

We will call this loopL, (see Figure 4.14). However, there may be a shorter loop that crossesγ more than

once. Such a loop may wrap around the handle more than once or may simplybacktrackacrossγ more then

once before returning to the originating vertexv, (see Figure 4.15 (A)).

Although this simple algorithm gives us a short loop, we would likeL to be the shortest overall loop and

thus be composed of all shortest path segments. That is, we require that starting at any arbitrary vertexk on

the loopL, the path to any other vertex,k′ onL would be the shortest path betweenk andk′. However, this is
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Figure 4.15:Example of loops on a handle
Examples of some loops on a handle. (A) On the left is a torus with a loop that backtracks acrossγ. On

the right is a torus with a loop that wraps around and crossesγ twice. (B) An illustration of two possible
paths fromk to k′. (C) A loop that crossesL twice, once ata and again atb. (D) A loop that winds around a
cylinder or handle.

not currently true for all segments ofL. Although all sub-paths of a shortest path algorithm are also shortest

sub-paths, we have run a constrained shortest path algorithm. Specifically, the constraint that the path start

from some vertexv on γ and return back tov by only crossingγ once, means that we have not constructed

a complete shortest path. We can see this, when we consider the following. The pathL will first crossγ at

some vertexu. Since we restrict backtracking, our algorithm must close the loop by connectingv to u by the

shortest pathalongγ, (see Figure 4.14). Instead, we need to allow the shortest pathL to cross overγ and

return tov by the genuinely shortest path betweenu andv. Thus, we make the following modification to the

algorithm. We start with the same arbitrary loopγ, however, this time when we cut alongγ we tile duplicate

copies of the cylinder one on top of the other, (see Figure 4.16). Each tiling is a duplicate copy of the handle

(cylinder). We number each copy of the contourγ and all associated vertices sequentially,i.e., γ0, γ1, γ2, etc.

The number of tilings we will need is bounded as discussed later. For now, assume there are an infinite tiling

of cylinders. We now run the same shortest path algorithm for every vertexv0 of γ0. However, this time we

may cross into any of the other cylinders as long as the path returns to some copy ofvi onγi. This is similar

to what is done in Colin de Verdière and Lazarus [15]. By tiling the handles together, we now run the shortest

path algorithm fromv0 to vi allowing the path to cross overγ as many times as necessary.

Now thatL is a shortest path, every sub-path alongL is also a shortest path. To convince ourselves,

consider, as a counter example two vertices alongL, k andk′, (see Figure 4.15 (B)). Assume for simplicity

that the path fromk to k′ onL crossesγ once at a vertexv. We know that the segment ofL from k′ to k, that

does not crossγ, is a shortest path because this path is just a sub-path of Dijkstra’s shortest path algorithm.

We call this sub-pathK. Now assume that there is a shorter path fromk to k′ that crossesγ at vertexp. Call

this pathP . Such a path cannot exist because if it did, then the loopM comprised ofP + K would be the

overall shortest path for this handle and would have been detected when measuring the path for the vertexp!
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Figure 4.16:Possible tilings of a handle
On the left is a tiling of the handle that are decomposed into cylinders by cutting alongγ. On the right is a
tiling of the handle as rectangles.

We have shown by proof by contradiction thatall sub-paths alongL are shortest sub-paths.

Finding the transverse loop Now starting withL, we apply the same Dijkstra’s algorithm for every vertex

of L, from one side ofL to the other to compute the next non-separating cycle (transverse toL). Call the

transverse loop that we findγ′. Note two features of this second pass: we do not need to tile the handle and

there cannot be a shorter cycle that crossesL more than once. We see this by the following argument (refer

to Figure 4.15 (C)). Assume there is a cycle that crossesL twice, once at vertexa and a second time at vertex

b. Call this double crossing pathD. Call the path alongL from a to b, δ. Now consider the path alongD

from a to b, call thisα and call the path alongD from b to a, β. Now we know thatδ is the shortest path from

a to b (see previous paragraph), thus we know thatα ≥ δ and thatβ ≥ δ. Thus, we know that there are two

paths that crossL just once that are shorter or of equal length toD (namelyδ + α or δ + β). Thus there is no

shorter path that crossesL twice. We also do not need to consider paths that backtrack acrossL because of

a similar argument,e.g., all sub-path ofL are shortest paths. For example, ifγ′ starts at a vertexg on L and

returns toL at a vertexl, we know that the shortest path fromg to l will be alongL.

After running these two passes of the shortest path algorithm we have found two transverse shortest-length

non-separating cycles for the torus.

Number of Tilings We can prove that we only need a limited number of tilings of the handle to find the

shortest path. Specifically, the number of tilings is limited by two factors. Ifγ hask vertices, wherek < n

andn is the number of vertices in the torus, then we need at mostk tilings. This is due to the fact that we will

never construct a path that crosses through a vertex onγ more then once, nor will we construct a shortest path



56

with a cycle, as all the edge weights are positive. Likewise, given some shortest path of distanced, where

d < n, we would only need at mostd tilings. The smaller ofd or k constrains the number of tilings needed

to find the shortest path. Note that on averagek will be on the order of
√

n. In addition, eitherk << n or

d << n, as then vertices cannot simultaneously be spread out to create long cycles and a longγ. Either way,

the number of tilings are limited by the smaller ofk or d.

Complexity considerations If we compare the torus case for our approach and the approach of Erickson

and Har-Peled we see that our algorithm performs competitively. To run their proposed algorithm would take

O(n log n) and would return a loop within a factor of two of the shortest loop. It takesO(n log n) time to

construct a Reeb graph (as we use a breadth first search to construct the contours and ribbons). It then takes

O(k×n log n) time to find the shortest loop given an initialγ from the Reeb graph, wherek is the number of

vertices in the loopγ. In general,k will be on average
√

n, asγ is one dimensional subset of then vertices

in the torus. Thus, with an average factor of
√

n more complexity, the algorithm proposed in this thesis will

find the shortest non-separating loops on a torus.

Note that another option for finding the shortest non-separating loops, would be to run a modified Erickson

and Har-Peled approach that also made use ofγ from the Reeb graph. Specifically, a modified algorithm could

runk shortest path searches for a non-separating loop using the method proposed by Erickson and Har-Peled,

for each vertex inγ. Some additional work would be required to make sure that the correct non-separating

cycle is found, (i.e.one that is not in the same equivalence class asγ itself). Such an approach would have the

same complexity as the method proposed in this thesis,O(k × n log n), and now both methods would return

the shortest non-separating loops for the torus.

Considerations Note that the initial loop that we find,L, may wrap around the handle more then once.

AlthoughL is the shortest loop and is a non-separating loop, there are times when we may want to restrictL

to not wrap around the handle more then once. Specifically, there are geometric considerations when usingL

to simplify the topology of a handle. See Section 4.4.1 for more information. It is interesting to note that we

can easily constrain thatL not wrap around the handle more then once in one direction and will still be within

a bounded difference of the shortest loop. We can constrain thatL only wrap around once but is allowed to

backtrack, by using the same tiling method however, by restricting thatL must return to the first copy ofv1

on γ1, (see Figure 4.16). In this case,L will be within a factor ofk of the shortest loop. This is due to the

fact thatL will take at most a path of lengthk/2 to return tov once it crossesγ atu.

One interesting fact about constrainingL is the limitation, that we can prevent wrap around only in one

direction. We cannot constrainL to not wind around the handle like a candy cane, (see Figure 4.15 (D)).

The only reason that we can constrainL in the first place to not wrap around the handle more then once is

because we start with a non-separating cycle that itself does not wrap around the handle (this is due to the

planar nature of the level sets for height functions). If we had a similar guarantee for a loop in the same
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equivalence class asL that also did not wind around the handle, we could construct a rectangular tiling and

likewise constrain the path to end within the original rectangle copy of the handle, (see Figure 4.16). It is

conceivable that a geometric constraint could be constructed to prevent winding however, we leave this for

future work. In general, we are content that the loops found by our algorithm are non-separating loops of

minimal-length.

Note that the paths found by the algorithms proposed in this thesis are discrete approximations. First, the

shortest loop is not computed as the geodesic over the continuous surface, but as the shortest path over the

discrete connectivity graph. Second, we assign all edges in this graph a constant cost, motivated by the fact

that the discrete 2-manifolds that we work with tend to have faces of equal sizes. For example, consider the

fact that all cubes in the volume have uniform size. Euclidean distance costs could be computed, however,

we found our discrete approximations work well in practice. It is possible to extend these results to arbitrary

paths over a surface, which we leave for future exploration.

4.3.3.3 Measure of handle sizes

From the two non-separating cycles, we can now derive a measure of the handle. Generally, we use the

smaller of the two cycles as the measure of handle size. If desired, we can provide additional criteria, for

example, the ratio between the two loop lengths. From the orientation of any contour in the Reeb graph

cycle, one can determine whether the ribbon cycle encloses a void or encloses material, which can be used to

determine criteria about which loop to measure for topology simplification. Alternatively, instead of finding

shortest loops we could find loops with the longest length for each handle if desired.

4.3.3.4 Measurement alternatives

Note that there are other simple ways to measure the extent of a topological feature. For example, we also

experimented with a very simple measure of feature size, by restricting the geodesic function to a limitedε

search radius. That is, from an arbitrary seed point on the surface, we would start a distance function and

only traverse the surface out anε distance. By using a very smallε value, if any topology was discovered

within this ε radius, it would be consideredsmall. By repeatedly searching over the surface from various

seed points, we could discover if any of the handles in the surface covered roughly less than anπε2 area, (see

Figure 3.3). The advantage of this measure is that is is very simple. The drawback of such an approach is that

it is not a very tight measure for the handle and it only gives a measure for topology smaller thanε, while we

would like to measure the extent of all the handles in the surface.

4.4 Resampling topology

Once we have information about the location of handles and a measure to evaluate the extent of the handles,

we may choose to re-sample the surface topology. We may want to re-sample a surface to eliminate certain
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handles. Many acquired models suffer from topological noise in the form of excess handles, which we

may want to eliminate. Or we may want to reconstruct a new mesh with the same topology.Remeshingis

common in computer graphics, as various mesh representations have various advantages. Given an initial

irregular mesh representation (with arbitrary valence vertices), we may, for example, want to re-mesh the

surface to be a semi-regular mesh. During the remeshing process we may want to retain the original topology

of the mesh for large handles. This process will be a resampling of the existing topology, guaranteeing that

the genus of the re-meshed surfaces matches that of the original.

4.4.1 Handle removal

Let us first consider resampling the topology of the surface in order to remove excess handles.

handle collapse handle pinching

Figure 4.17:Handle removal
Two ways of removing a handle, illustrated on two tori. The “fat” torus is best repaired by collapsing the
handle, and the “skinny” torus is best repaired by pinching the handle.

There are two natural ways to remove a handle (Figure 4.17). In order to remove either of the handles

shown in Figure 4.17, we reduce the number of non-separating cycles for the surface. Recall that genus

is defined as the maximum number of simple non-separating cycles that do not intersect. By collapsing

a non-separating cycle, we conceptually either fill in the interior of a handle or we pinch open the handle

(Figure 4.17), reducing the genus of the surface. Local surface geometry determines which method is more

appropriate, as illustrated in Figure 4.17. Both methods are in fact the same operation applied to two different

non-separating cycles. We call this operationloop closure. Topologically, the loop closure operation collapses

the loop to a single point, removing the handle. In terms of geometry, loop closure removes the handle by

removing a thin strip of surface about the loop, and closing the resulting two boundaries using two parallel

“membranes” spanning the loop.

The ideal choice of which handles to remove is subjective, since some topology may be inherent to the

model. While a system could be designed to locate handles and repeatedly ask the user for guidance, we

sought an automatic solution. To make this problem computationally tractable, we use the smaller of the two

non-separating cycles as a measure, and let the algorithm remove all handles whose measured size is smaller

than a threshold̀. The locally minimum-length non-separating cycle is an appropriate measure for handle

removal because we would like to modify the surface geometry in a minimal way. Thus, we are interested in
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Figure 4.18:Loops on the feline mesh
Close-up of the feline mesh with the Reeb loop shown in blue, and cross loop shown in red. The right image
shows the output of our algorithm after collapsing the cross loop of the handle.

applying loop closure to the smallest non-separating loops. Loop closure removes the handle using the same

minimal-length loop found to measure handle size.

The algorithm to modify the surface topology depends on the surface representation.

4.4.1.1 Triangle meshes

For triangle meshes, loop closure is applied by simply locally modifying the surface connectivity to reflect the

closure. First the mesh connectivity is cut along the smallest non-separating cycle. Since the loop is generally

non-planar, one could construct some approximation to the minimal spanning surface. For efficiency, we

simply use a triangle fan about the centroid of the loop. Next, the new boundaries are closed by adding a

fan of triangles to close the boundary on each side of the open loop. Note that the resulting mesh will have

connectivity that is guaranteed to be topologically accurate. However, depending on the orientation of the

loop, the fan of triangles may intersect one another or intersect other regions of the surface. This region may

be smoothed or displaced to remove the self-intersection, however, self-intersections due to loop closure in

one of the challenges for the mesh setting.

4.4.1.2 Volume

To perform loop closure on an isosurface represented by a scalar volume, we scan-convert a surface spanning

the loop into the volume grid data [50]. The scan-conversion writes either positive or negative scalar values

in the grid, depending on the orientation of the loop. We can determine whether we need to add or subtract

material based on the orientation of adjacent contours in the Reeb graph. This rasterization technique both

collapses and pinches off handles through insertion of a thin wall. The modified isosurface is guaranteed to

remain a manifold and to have no self-intersections.
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4.4.1.3 Considerations

There are a few potential issues to consider with topology simplification. Our algorithm provides the essential

information to always successfully reduce the genus of a handle,i.e., the location of the locally minimal-

length non-separating cycle for each handle. Topologically, the handle can always be closed along this

loop, reducing the genus of the model. However, as mentioned above, depending upon how the surface is

embedded inR3 the fan of triangles closing the non-planar loop could be self-intersecting, or could intersect

other regions of the surface, for instance, if the handle were to contain another, nested handle. In practice,

this is not an issue since we only typically simplifysmallhandles. At worst, the loop closure could introduce

additional handles. Note that for any loop that wraps around the handle more then once, self-intersections

would be particularly bad, (see discussion in Section 4.3.3.2). Thus, for topology simplification we may want

to constrain the loops to only wrap around the handle once.

One way to address the issue of handles that may be created due to obstructions is to locally rebuild

the Reeb graph after a loop closure operation. If any new components or handles were introduced in the

previous simplification step, they will appear in the reconstructed Reeb graph and be subsequently processed.

In theory the introduction of new handles could cause halting problems if each collapse always created a new

handle. We have chosen a relatively simple method for performing loop closure due to the fact that our target

application is to remove small excess topology from models. In practice, the issue of obstructions has never

caused the creation of new handles or halting problems. In addition, even for large loops that do not contain

obstructions, our simple closure routine performs as expected (see Figure 1.4). However, for an alternative

application that targeted closing large loops it would be important to add a criterion to check for obstructions

and alter the closing routine accordingly.

One difference between the volume setting and the mesh setting is that although in either case loop

closure can cause the surface to become self-intersecting, one advantage of the volume setting is the fact that

the extracted isosurface will always be a non-self-intersecting manifold [54].

4.4.2 Handle retention

If the goal is to reconstruct handles to re-mesh a surface, this can be done using the information stored in

the Reeb graph. Note that this work was done as a part of the author’s Master thesis research, however, it

is summarized again here as it is a relevant algorithm for applying computational topology algorithms to

discrete 2-manifolds. The author’s Masters research on the extraction of semi-regular meshes from volume

data, required the construction of a base mesh with the same global topology as a desired isosurface. By

building a Reeb graph for the desired isosurface, and appropriately selecting contours from the Reeb graph,

the selected contours can be stitched together to construct a coarse approximation of the surface with the

same genus as the desired isosurface.
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Details of Coarse Mesh Construction The Reeb graph provides everything needed to build a coarse mesh

from a discrete set of the level sets. Specifically, by carefully choosing which level sets to include in the

reconstruction and then stitching the level sets together, a coarse sampling of the surface can be constructed.

In order to have a good coarse sampling of the surface, we may wish to only include the smallest number

of contours necessary: contours essential for coding topology are those at critical levels in the surface. As

described above, critical levels correspond to cycles in the Reeb graph. For example, to reconstruct a torus,

it is necessary to include a level set corresponding to the bottom of the torus, with a single contour; a level

set when the number of contours changes to two and finally a level set with a single contour. Recall that the

topology of the surface between these key contours does not change and thus the surface can be drastically

down-sampled in these regions without changing the topology of the surface.

The desired coarseness of the mesh can be controlled by adding criteria for contour selection. For ex-

ample, consider a requirement that the coarse mesh exhibit good aspect ratio triangles. This can be achieved

by selecting contours at multiples of some integer distancew and changing the sampling density along the

contours to also be of average distancew.

Figure 4.19:Distance function on the feline
Two views of some of the distance contours (at multiples of an integer distance) for the feline dataset. The
seed for the distance function is near the tail of the feline.

Given the list of required contours for tiling a good coarse approximation of the final surface, we need

to stitch them together. The final step of the algorithm is related to contour stitching [11, 34, 29]. However,

since we work within the framework of an existing surface (isosurface or mesh) we do not face the traditional

correspondence problems of contour stitching. Specifically, the volume data or mesh and the Reeb graph

prevent ambiguities about inter-contour connections.
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Figure 4.20:Stitching
Stitching example for a saddle.

Ribbon sub-sampling and shortest distance projection The general procedure is to subsample each con-

tour along its length to convert it into a coarse contour of edges and vertices to be triangulated with adjacent

contours. Adjacent contours are connected to one another by projecting contour samples to the next saved

contour (see Figure 4.4.2). This projection step is done by simply following the shortest paths from one con-

tour to the next. Recall that these paths are automatically constructed during the propagation of the geodesic

function used to construct the Reeb graph. The projection may result in samples being too close or too far

away from one another due to changes in the geometry of the isosurface. In this case we can adjust the num-

ber of samples to accommodate the density change by snapping close points together, or inserting a midpoint

sample. The samples on both contours are enumerated in corresponding order to facilitate triangulation. The

starting and ending contour(s) for a model are evenly sub-sampled and connected to a central point.

Stitching It is easy to tile two contours that have a one-to-one correspondence in their sample enumeration.

The general approach of the algorithm is tobreakthe contours into one-to-one correspondence and then use

bridges between adjacent connected contours to correctly model the topology of the surface. For example,

for a saddle where there is a transition from one contour to two, we “break” the saddle into two pairs of 1-to-1

contours with a conforming bridge between appropriate segments (Fig. 4.4.2). This is done by making a pass

around the single contour to find if two neighboring samples have been projected from different predecessor

contours, in which case they are stored to make the conforming bridge (Fig. 4.4.2).

Once all the contours are stitched together they form a resampling of the original surface that has the

same global topology as the desired isosurface. See Figure 4.21 for examples of coarse meshes constructed

using this method. Although this method has only been implemented for isosurfaces, the same method could

be applied to meshes in order to re-sample the mesh topology and retain inherent topology.
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Figure 4.21:Examples of coarse meshes
On the right and middle are examples of two coarse meshes reconstructed from volume data. The feline
is genus two and the torus is genus one. On the left is a close up of tail of the feline, showing a correct
reconstruction of the two handles.

4.5 Conclusion

We have presented algorithms to detect, isolate, measure and re-sample topology for discrete surfaces. These

algorithms focus on isolating handles within a surface. We present a robust method to identify handles by

using a combined interval and face-by-face traversal of the surface. We have shown that the proposed traversal

will detectall handles in a surface. This method is tuned for the discrete setting and can be effectively applied

to triangle meshes and volume data. We represent the topology of the surface using an augmented Reeb

graph which allows us to subsequently isolate handles within the surface. We construct the augmented Reeb

graph such that the number of cycles in the Reeb graph is guaranteed to match the genus of the surface at

each interval of the surface traversal. Once we have localized regions with interesting topology, we propose

an algorithm to measure the minimum geometric extent of these regions. We present an effective method

to compute two locally minimal-length non-separating cuts for each handle. Finally, we present methods

to simplify or re-sample the topology of a surface if desired. In the next chapter we explore the various

applications of these methods to specific settings and present results and implementation details.
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Chapter 5

Applications

With the algorithms presented in Chapter 4 we are able to build a number of applications to improve the

usability and accuracy of digital models for computer graphics applications. We consider these applications

here.

5.1 Setting

Highly detailed geometric models are used in computer graphics to convey visually rich data. Highly ac-

curate geometric models of physical objects are often acquired through discrete scanning techniques. For

example, models are commonly obtained using laser range scanners, computed tomography (CT) or mag-

netic resonance imaging (MRI). Laser range scanners achieve full coverage of complex objects by acquiring

and merging multiple scans. Once these scans have been acquired, surface reconstruction is applied and the

model is represented as a discrete 2-manifold. Many surface reconstruction algorithms perform the merging

of scanned data using a volumetric grid representation, in which the model is represented as the zero-contour

of its sampled distance function,i.e., as anisosurface [17, 45, 47, 59]. Similarly, CT or MRI produce data

volumes from which isosurfaces are extracted [60]. Thus, much of the acquired surface models used in

computer graphics are either represented in a scalar volume or as a triangulated manifold.

5.2 Simplifying topology

Consider that although acquired data is being captured with higher and higher resolution geometric accuracy,

often these models may have higher genus than expected, due to the presence of extraneous topological

handles. In fact, although the real Buddha statue is genus 6, the scanned Buddha surface has genus 104

because of nearly invisible artifacts like the one revealed in Figure 1.2. Similar artifacts also arise in models

acquired from CT and MRI scans, and can result in incorrect connectivity of biological structures, such as

a brain surface with non-zero genus. In general, topological defects are caused by a number of factors,

including sampling density, sampling noise, misalignment of scans, and grid discretization.
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While often invisible, extraneous handles create significant problems for subsequent geometry processing

like model simplification, smoothing, and parametrization. As seen in Figure 1.4, traditional mesh simpli-

fication preserves all handles, resulting in inferior overall quality at coarse resolutions. Also, topological

artifacts hinder any processing that must parametrize the surface, such as texture mapping and remeshing

(see Section 5.2.1.5). Finally, correct topology can be essential for applications such as the fitting of organ

templates to medical MRI data [72, 48].

Given the presence of this excess topology in acquired models, we present a method for removing topo-

logical defects in a surface. We consider acquired data that is represented as either an isosurface in a scalar

volume or as a triangle mesh. First we address isosurface topology simplification.

5.2.1 In volumes

We present a method for removing topological defects in an isosurface. Rather than attempting to repair the

defects on a mesh already extracted from the volume [40], our approach operates on the volume representation

directly, as this offers advantages of efficiency and robustness. In terms of efficiency the advantage of the

volume setting is the natural ordering of the data in the form of planar slices. This ordering allows us

to developout-of-corealgorithms to process very large dataset. Operating directly on a volume is robust

because even when we alter discrete grid samples in the volume to simplify the topology, the final isosurface

will remain a manifold[54].

As presented in Chapter 4, our algorithm identifies topology in the volume through the application of

techniques associated with Morse theory [64]. The topology is coded in a augmented Reeb graph [68], where

cycles in the Reeb graph correspond to handles. In order to measure the size of handles on the surface, we

examine them one by one and consider cutting this region along anon-separating cycle. By subsequently

pinching each of the two open boundaries of such a cycle to a point, the genus of the handle is reduced

(g = 0). See Figure 4.18 for an example. Using the length of this cycle as a measure of the size of the handle,

we choose either to retain the handle or remove it. Our method sweeps through the volume grid to locate

handles, compute their sizes, and selectively remove them, accessing only a small buffer of the volume at a

time. The contributions of our method are the following:

Out-of-core execution Complex 3D models are represented by large volumes that may not fit entirely

in memory. The model in Figure 1.7 is from a885×709×736 grid, and much larger models now exist [59].

The algorithm is applied to such volumes using out-of-core methods. The volume is processed using a sweep

method, so the data access pattern is highly regular. We encode surface topology as the sweep progresses

using an augmented Reeb graph, requiring only a few slices in memory at any time.

Fast identification of handles Handles are efficiently identified during the sweep, as cycles in the aug-

mented Reeb graph as it is incrementally constructed. We detectall handles during the sweep.

Handle size estimation and local repair Some models have genus that should be preserved, such as

the handles formed by the Buddha’s arms. We use a simple measure of handle size to be the length of a
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non-separating cycle, and remove all handles with a size smaller than a user defined threshold. Cutting along

such a cycle helps retain as much as possible of the fine geometrical detail of the model.

Volumetric modification To remove a handle, we alter the scalar values of the volume, thus indirectly

modifying the isosurface. Since properly extracted isosurfaces are always manifold [54], operating on the

volume is robust. In contrast, traditional “mesh surgery” must deal with issues of surface self-intersection

and non-manifoldness. Also, by operating on the volume directly, we avoid computing an expensive triangle

mesh and never compute or store floating point values to represent the geometric position of the vertices

of the surface. Since our algorithm creates a topologically clean volume, this volume can then be used for

surface extraction or other applications that depend on a topologically accurate volumetric representation, for

example cortex labeling [48] or 3D morphing.

5.2.1.1 Our approach

Definitions and terminology Our input consists of a regularly sampled 3D grid of scalar values. As pre-

sented in Chapter 2, the surfels from all cubes of the scalar volume together form a discrete representation of

the isosurface. For our algorithm, the important element is the connectivity of the surfels, as this connectivity

defines the topology of the surface. Our algorithm never requires the construction or storage of a triangula-

tion of the surface. We assume that the connectivity of the surfels is pre-determined, for example, by some

table driven isosurface generation algorithm. We use the connectivity rules of Lachaud [54] due to the fact

that they produce a closed oriented surface without singularities nor self-intersections [54]. Lachaud’s table

has proven properties by restricting data to have well defined interior and exteriors,i.e., for a scalar function

F (x), the interior is defined asF (x) < 0, while exterior is defined asF (x) ≥ 0. This is similar to a standard

general position argument, and creates a well defined isosurface,i.e., the surface is perturbed away from the

volume grid nodes.

Problem statement The topology of a surface is characterized by its genus, its orientability, the number

of its connected components, and the number of its boundary components [61]. Isosurfaces have the property

that they are always orientable, and never have boundaries (if one pads all sides of the volume with “outside”

scalar values). Our problem of topology simplification corresponds to reducing surface genus,i.e., removing

handles. Our algorithm deals with multiple disconnected components by concurrently simplifying them

independently. Typically, for the final output, one discards all but the largest component. However, for

completeness we simplify the topology of all the components in the volume.

Our goal is to locate handles in the isosurface and selectively remove them. We remove all handles whose

measured size is smaller than a user-provided threshold`. For the application of topology simplification,

we define the appropriate measure of the size of a handle to be the minimal-lengthnon-separating cycle.

In order to support out-of-core processing of the data, our algorithm does not find globally minimal-length

non-separating cycles. Instead our method finds locally short non-separating cycles for each handle. See

Figure 4.18 for an illustration of such cycles.
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Summary Our approach can be summarized as:

• Sweep through the volume tolocateall handles.

• For each handle found,measureits size.

• If the size is sufficiently small,removethe handle.

We now present each of these steps in more detail.

5.2.1.2 Locating handles

Using the algorithm described in Chapter 4, we use a height function to sweep through the volume along the

z axis, and construct an augmented Reeb graph to track the connected components of the surface as the sweep

advances. We analyze the isosurface one slice orz-interval at a time. Within a slice, the surface is made up

of ribbons, whose boundaries are contours in the two adjacentz planes. Both the ribbons and contours are

identified using a breadth first search within the slice to find connected sets of surfels (in the slice) and edges

(in the planes) respectively. Contours are constructed by searching from an arbitrary edge in the plane until

the contour is closed. Ribbons are constructed by running a breadth first traversal in the slice starting with the

surfels adjacent to one contour and ending with the surfels adjacent to the previous contour. Section 5.3.1.3

provides further implementation information on traversing surfels within the volume. We create nodes in

the augmented Reeb graph corresponding to both ribbonsandcontours, and record their adjacency as graph

edges, as illustrated in Figures 4.8 and 4.12. Given the reconstruction rules of Lachaud, the isosurface is

well defined and likewise all the ribbons and contours are well defined. Ribbons, contours and surfels are

all topological entities and are constructed based on their connectivity. We do not store floating point values

representing the geometric position of vertices of the mesh.

As observed in Chapter 4 the sampling rate for a discrete height function will have consequences. We

choose to sample the height function at the discretez intervals of the volumetric grid as such planar slices

are a natural choice for the volume setting as an ordered traversal through the slices allows for the out-

of-core processing of the volume data. However, the consequence of this sampling choice is that when a

handle is entirely contained within a ribbon, (i.e., within a slice of the volume), it does not initially appear

as a cycle in the augmented Reeb graph. In practice, these intra-ribbon handles occur for 1–10% of the

total slices for a volume. As proposed in Chapter 4 we detect these intra-ribbon handles by computing the

Euler characteristic of each surface ribbon and locally modify the height function to be a distance function

defined on the faces within the slice as necessary. We confine face-by-face traversal to the slice because the

breadth first traversal of the entire surface would cause irregular access to the volume data, making out-of-

core computation impossible.

Finding cycles in the augmented Reeb graphReeb cycles are detected incrementally as the sweep

advances through the volume. This progressive detection allows for handle removal to occur concurrently

during the sweep. Our approach is similar to the algorithm discussed in Chapter 4. We keep track of compo-
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nent labels using a Union-Find algorithm on a disjoint-set data structure [16], taking negligible time. When

a Reeb cycle is detected, we isolate the associated handle using the method proposed in Chapter 4.

5.2.1.3 Measuring topological handle size

For each handle, we compute two transverse non-separating cycles. One which we call theReeb loopbecause

it is the locally shortest loop around the Reeb cycle and the other which we call thecross loopis the locally

shortest loop transverse to the Reeb loop. There are many possible non-separating cycles for a given handle.

Since our goal is to simplify the topology in a way that minimizes geometric changes to the volume we

attempt to find tight fitting loops of short length.

We find the Reeb and cross loop as discussed in Chapter 4. That is we, cut the handle along one of the

planar cross sections in the handle and compute the shortest path from one side of the cut to the other. As

an implementation detail, for this application, we ran the constrained shortest path that required that the loop

not backtrack or loop around more then once. This loop is only nearly minimal-length because weclose

the loop by only traversing along the contour. However, such a loop is within a bounded difference of the

minimal-length non-separating cycle,e. As presented in Chapter 4, for a starting contour withk surfels on

its boundary, the non-separating cycle we find is at most onlye + k/2. We guarantee that the loop that we

find matches a given Reeb cycle by restricting the area that we search for the loop. Specifically for this

implementation we observe that the Reeb cycle contains at least one pair of contours in the same plane, thus

we start the search from one such contour and only consider returning paths that have passed through the

other contour. We represent paths over surfels instead of the mesh vertices and edges that a marching cubes

extraction would produce, as the difference is not significant due to the regular sampling of the volume data.

We construct thecross loopin a similar manner. Starting from one side of the Reeb loop, we compute

the shortest paths to the points on the other side of the Reeb loop. Among all shortest paths forming cycles,

the shortest is the cross loop. Note that neither the cross loop nor Reeb loop is required to lie along a plane.

They can cut diagonally through the volume, as shown in Figure 4.18.

Measure of handle sizesFrom these two non-separating cycles, we can derive a measure of the handle.

Generally, we use the smaller of the two cycles as the measure of handle size. If desired, we can provide

additional user-control. For example, if the user wants to avoid removing long skinny handles, we can

preserve handles that have a large ratio between the two loop sizes. Also, the user can specify that material is

to only be added or subtracted from the volume.

As a measure of loop size, we chose the perimeter length of the loop. This length corresponds to the

extent of the cut along the surface necessary for loop closure. An alternative would be to measure the area

of the loop,e.g., the area of the spanning minimal surface. This area would correspond to the extent of the

new surface necessary for loop closure. We have chosen loop length because on our examples this typically

was a tighter measure than area. Consider a handle in the shape of a wide, thin-walled vertical tube. The

minimal-length non-separating cycle is then a tall, thin rectangle. Even though the loop area may be quite
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Model Grid size #Faces Thresh. Genus #Intra- Loops collapsed Timing

size` before after ribbon #Reeb #cross (minutes)

David 885×736×709 15,244,302 166.5 1063 0 76 332 731 87.5
Buddha 400×400×950 4,736,292 9.5 106 6 26 42 58 6.5
Dragon 500×714×324 3,222,612 46.5 60 1 18 31 28 3.8
Brain1 125×255×255 688,248 32.5 366 0 6 320 46 2.8
Brain2 125×255×255 452,050 14.5 21 0 6 12 9 0.7
Brain3 125×255×255 529,012 10.5 41 0 4 25 15 0.6
Brain4 125×255×255 699,566 14.5 50 0 7 11 39 1.7
Feline 332×148×316 653,922 4.5 6 2 1 2 2 0.2

Table 5.1:Results table
Quantitative results: The handle threshold size` is expressed in units of cube edge size. The number of
removed handles (original genus minus simplified genus) is broken down into handles collapsed by Reeb or
cross loop. Times are shown in CPU minutes for a 1 Ghz, Pentium 4. All values listed are for the entire
volume,i.e., for the surface and any spurious disconnected components in the volume data.

small, its perimeter is quite long, and it will therefore be preferable to identify this handle as a large feature.

The user may specify an area metric instead of length if this is deemed more appropriate for a particular

application,e.g., if filling a long narrow opening in a wide surface is a desired result.

Handle size approximation Our method for computing the minimal-length loop size makes several ap-

proximations. First, the shortest loop is not computed as the geodesic over the continuous surface, but as

the shortest path over the discrete surfel connectivity graph. Second, our current implementation assigns all

edges in this graph a constant cost, motivated by the fact that all cubes in the volume have uniform size.

Euclidean distance costs could be computed, but the resulting effect is too small in our examples to matter

as the minimal-length cycles are very small to begin with. These approximations improve the speed of our

algorithm. Our approach is tailored for the detection, measurement and removal ofsmallexcess topology.

5.2.1.4 Removing handles

The same minimal-length loop used to define handle size is also used to remove the handle through loop clo-

sure. We perform loop closure on the isosurface using the method presented in Chapter 4. This rasterization

technique both collapses and pinches off handles through insertion of a thin wall. The modified isosurface,

once extracted from the volume data, is guaranteed to remain a manifold and to have no self-intersections [54].

5.2.1.5 Results and discussion

We have run our topology simplification algorithm on a number of volumes, as shown in Table 5.1. The

Buddha, dragon, feline and David models are from laser range scans at Stanford University. The brain

models are from MRI scans from the Harvard Medical School [52].

We have demonstrated the robustness of our algorithm using convoluted geometry (Figure 5.2.1.5) and

large volumes (Table 5.1). Our method is also able to simplify topology for large handle sizes. For example,
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Figure 5.1:Genus zero Buddha
Setting the loop size threshold` to infinity for topology simplification results in a genus zero Buddha.

setting` to infinity produces a genus zero Buddha, where even the large handles (with lengths up to 246)

are removed (Figure 5.2.1.4). Since our algorithm locally reconstructs the Reeb graph after every topological

change, it guarantees that we are accurately identifying all of the topology of the surface, even as its topology

evolves. In practice our method has always removed all handles with length less than`.

The timing for our algorithm depends on the size of the volume and on the number of handles. It depends

particularly on the number of handles that need to be simplified, since the Reeb graph must be locally rebuilt

each time a handle is simplified. In general, our processing takes on the order of minutes, see Table 5.1.

During topology simplification, collapse and pinch operations appear with approximately equal fre-

quency. Topological artifacts are generally small, in terms of both Reeb and loop sizes, and are oriented

randomly throughout the volume, leading to equal likelihood of either the Reeb or cross loop having size

< `.

The scatterplot in Figure 5.8 shows a typical distribution of handle sizes for an object with large-scale

topology. Typically, extraneous handles in the isosurface are small with 90% having loop lengths of 4–8 (see

Figure 5.7). However, there are some volumes containing handles with larger Reeb and cross loops. For laser

range data, these larger loops are typically associated with spurious data, external to the intended surface.

For example, whereas the surface of the dragon has predominantly small handles, one of its spurious external

surface components has a handle of length46.

The number of intra-ribbon handles varies strongly depending upon the data and the sweep direction. For

example, one of the brain MRI volumes has 120 intra-ribbon handles in the original scan direction. This

high number is due to the nature of the data. MRI data is often segmented by hand, and small misalignments

between these segmented contours commonly give rise to intra-ribbon handles. Sweeping the brain MRI data

along an orthogonal direction produces only 6 intra-ribbon handles. Given this observation, one could choose
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to reorder MRI volumes to sweep in a direction orthogonal to the original data orientation. For range scans,

intra-ribbon handles are less frequent, and seem to be independent of sweep direction.

base mesh (5,464 triangles) base mesh (4 triangles) 7k triangles

Original (genus 366) Topologically simplified (genus zero)

Figure 5.2:Progressive meshes of a brain
Comparison of the base meshes of progressive meshes on a brain model (MRI).

Figure 5.3:A remesh of the genus one dragon
A remesh of the genus one dragon. Given the difficulty of achieving a high quality parametrization for high
genus models, remeshing the original dragon with genus 46 would be quite challenging and require numerous
elements in the base domain.

5.2.1.6 Applications

Topology simplification facilitates many surface operations:

• Fewer triangles are wasted to encode topological defects duringmesh simplification, as shown in Fig-

ures 1.4, 1.7 and 5.2.1.5 using the progressive mesh representation of Hoppe [46]. Consequently, coarser

meshes can be created, and geometrical quality is improved at all levels of detail.
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Cuts on the dragon model Complete normal-map image of the dragon

Figure 5.4:Geometry image of the genus one dragon
Geometry Image of the genus one dragon model, showing the cuts used to parametrize the entire model onto
a single chart. Parameterizing the 500K face dragon onto a unit square would cause large distortion with the
original genus 43 model.

Labeled cortex (genus zero)

Figure 5.5:Labeled cortex models
Two different views of a brain model in which cortex labels have been propagated from one brain to the next
through the method of Jaumeet al..

• Better surface parametrization improvestexture mapping, as shown in Figure 5.6 using the method of

Sanderet al. [70]. Fewer charts are necessary to partition the surface, which results in a nicer parametric

domain.

• Removal of topological defects greatly facilitatesremeshing, as shown in Figure 5.3 using the method of

Guskovet al. [38]. The remesh has nice regular face sizes and allows for efficient progressive geometry

compression [51] as well as many other semi-regular geometry processing algorithms [71]. The topolog-

ically clean volumes can also be more readily used for semi-regular mesh extraction [78]. Applications

such as geometry images [37], as shown in Figure 5.4, which remesh the entire surface to a completely

regular structure by parametrizing the surface to a disk, would suffer from large distortion if applied to

surfaces with many topological artifacts.

• Medical applications such a cortex labeling benefit from operating on topologically clean volumes. For
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example, the approach of Jaumeet al. [48], requires genus zero brain models and volumes to propagate

cortex labels correctly. See Figure 5.2.1.5 for an illustration of excess topology in brain data. Using our

method to obtain topologically clean volumes, Jaumeet al. are able to propagate cortex labels from one

labeled volume to others, (see Figure 5.5).

353 surface charts texture domain 3,700 triangles

(a) Original model (genus 101)

40 surface charts texture domain 2,000 triangles

(b) Topologically simplified model (genus 6)

Figure 5.6:Texture map comparison
Comparison of normal-mapping progressive meshes before and after topology simplification. Both mod-
els refer to 512x512 texture images. The topological complexity of the original model requires many more
parametric charts, shown in pseudocolor. The resulting fragmentation of the parametric domain restricts
simplification.
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5.2.1.7 Discussion

Setting the handle size thresholdFor our examples, we first make an initial pass over the volume to gather

statistics on handle sizes, and examine these using a scatterplot (Figure 5.8) or histogram (Figures 5.7). By

looking at the relative sizes of handles, we select an appropriate`. For most of the models, the excess topology

has loop lengths in the range of 4–8. Thus, the setting of` typically ranges from 10–20.

We observed that the initial statistics can change significantly as handles are simplified. Figure 5.8 shows

a large handle with a small nested handle. For this configuration, the large handle has a large Reeb loop and

small cross loop, and the small handle has an even smaller Reeb loop and shares the same cross loop. During

topology simplification, the small handle is removed first leaving only the large handle which now has both

large Reeband cross loop. This phenomenon is also reflected in the scatterplots before and after topology

simplification (Figure 5.8), where a data point near the` line moves to the top right once the small handle is

removed. Note that this effect would be present in any topology simplification that sequentially treats handles

locally one by one, when handles are adjacent to one another as seen in Figure 5.8. As adjacent handles are

simplified, the topology and measure of that topology changes. There is more than one way to simplify the

topology of a shape. In order to support out-of-core operations on large data we have chosen to analyze

topology locally in terms of handles. Since our intended application is the removal of topological artifacts,

we have chosen an approach that automatically removes excess topology of a given size. An alternative

application could integrate visualization of the handles and their non-separating cycles to allow the user more

fine control over the order in which loops are collapsed if so desired. For our setting, we found that our

method performed well and achieved the desired results.

Figure 5.7:Histogram
Histogram of handle sizes for the original scanned Buddha model. Recall that handle size is the smaller of
the Reeb and cross loop lengths.

Algorithm time complexity The overriding time complexity term for the algorithm is the traversal of

the volume, which requires accessingO(n3) grid values, wheren is the extent of the grid in each dimension.

Typically the surface has onlyO(n2) surfels, and the augmented Reeb graph onlyO(n) nodes and edges,

so the processing steps related to the surface and augmented Reeb graph do not require significant time.

However, there is processing time associated with each handle discovered and its subsequent measurement
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and possible removal. This processing time is dominated by the time complexity of the breadth first searches

run to compute the length of the Reeb and cross loop. For each loop, the complexity isO(d log d), whered

is the number of surfels in the local handle. This measure correspond to running Dijkstra’s algorithm. In the

worst case situation the complexity for a given handle could beO(n2), if the entire surface were composed

of one large handle.

A final concern for time complexity is the fact that for every handle that is simplified, we must reconstruct

the Reeb graph locally to account for the resulting changes. The cost of this reconstruction is on the order of

`× n (where` slices withn surfels need to be reconstructed after the topology changes).

Buddha loop data before topology simplification

Buddha loop data after topology simplification

Figure 5.8:Scatterplot
Scatterplot of the Reeb loop and cross loop lengths of the handles of the Buddha, before and after topology
simplification. Hollow circles identify handles whose minimal-length loop encloses a void. The red lines
mark the range of̀ that keeps exactly these 6 handles. On the right we see corresponding close up view
of two adjacent handles on the Buddha model with a shared small cross loop. After topology simplification
(bottom), the small handle is collapsed and the larger handle now has a larger cross loop.

Algorithm space complexity Perhaps more important are the space requirements. In practice, we only

keep50 slices of volume in memory at any time, making the algorithm viable even for low-end computers.

The choice of buffer size is flexible and can change due to the size of the volume and the memory resources

available. All of the operations have strong spatial coherence, and in practice, we found that we rarely reload
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base mesh (752 triangles) simplified mesh (1,000 triangles)

(a) Original model (genus 43)

base mesh (52 triangles) simplified mesh (1,000 triangles)

(b) Topologically simplified model (genus one)

Figure 5.9:Progressive meshes of dragon
Comparison of progressive meshes with a given triangle budget on the dragon before and after topology
simplification. See Figure 5.3 for aremeshof the detailed genus one mesh.

the same slice more than twice.

In addition to the buffer of volumes slices, the algorithm stores the augmented Reeb graphO(n) for the

surface, and some limited local number of surfels,P < O(n2). Typically we store≈ 50 × n surfels, since

surfels below the bottom of the current buffer are erased to minimize memory use. These local surfels are

stored to compute loops for any handle that is being processed, however, they can also quickly be recomputed

using a table look-up [54]. In general computing the Reeb loop for a handle requires access to the surfels in

all ribbons referred to in the Reeb cycle. Accurate computation of the cross loop requires additional slices

above and below the cycle. The number of additional slices is determined according to`, such that we are

guaranteed to find a cross loop of length less than` if one exists. The worst case situation is that of a very

long handle with a thin cross-section somewhere along its length. In this worst case setting, the memory

requirements may reachO(n2) to store all of the surfels, in practice this does not happen.

Since surfels below thebottomof the current buffer are erased to minimize memory use, Reeb and cross

loop computation for handles with length> 50 may require reloading the buffer with previous slices of the

volume that have already been flushed from memory. This reloading is only necessary to re-allocate surfels

and all computations can be done in sequence, locally on the volume data. The algorithm will never require

more memory than the allocated buffer of slices orO(n2), in the rare case when all the surfels must be stored.

Reloading previous buffers is rare since few handles have large extents.
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5.2.1.8 Summary

We have introduced an algorithm for automatically removing handles from isosurfaces through direct pro-

cessing of the original volume data, and demonstrated its effectiveness on several complex models. We have

also demonstrated that removing topological artifacts is important for many subsequent modeling operations.

5.2.2 For meshes

Acquired data is also often represented as triangle meshes, and the same excess topology present in volume

data is present in these existing meshes. In order to address the issue of excess topology for existing meshes,

we have looked at two applications to simplify the topology of triangle meshes. Our initial work uses a

simple approach to locate and measure topology. Later we revisit mesh topology simplification using a global

approach much like the isosurface topology simplification research presented in the previous Section 5.2.1.

We first present our initial work on triangle meshes which uses a simple local method to identify topolog-

ical noise.

5.2.2.1 Topological noise removal for meshes

Our initial work on simplifying topology for triangle meshes introduced a simple criteria for identifying

topological noise, and a fast algorithm that finds small handles in the data, and removes them one by one.

The user could control criteria to help determine which handles are noise and which are inherent to the

model. Portions of the following text, which refer to ‘Topological Noise Removal’ are reprinted from [40]

with permission from the Canadian Information Processing Society (CIPS).

5.2.2.2 Overview of the algorithm

Figure 5.10:Topological noise removal overview
(a-e) Overview of the algorithm: (a) a small region is grown around a seed face; (b) the genus of the grown
region becomes non-zero; (c) a non-separating cycle is found; (d) the mesh is cut; (e) both new holes are
sealed. (f) The left handle is “fully inside” a ball of a small radius; the right handle is not. Note that both
handles could be eliminated by short cuts. Our algorithm will only remove the left handle. (Formally, the left
highlighted region is of genus one, while the right highlighted region is of genus zero.)
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For this work we used an algorithm similar to what was presented in Chapter 4. That is we traversed

the surface using a distance function starting from a seed face. However, for this initial work on meshes,

we used a face-by-face traversal for the entire search. The algorithm would grow an open region by adding

faces one by one, while explicitly keeping track of the current level set,i.e., the boundaries of the open

region. Every time a contour of the growing region touched itself along an edge, we would split this contour

into two smaller contour fronts and continue the distance propagation. Whenever contours of two different

components touch along an edge, we found a handle. For this work, we used two stopping criteria for the

region growing procedure. We either exhaust all the faces that are closer than some given radius from the seed

face, or we actually find a handle in which case the growing stops. When a handle is found, the mesh is cut

along a non-separating cycle, which is later triangulated using methods described in [73][57], or commercial

packages [1][2]. Similar to the loop closure operation, this reduces the genus of the surface. Figure 5.10

illustrates the entire process.

5.2.2.3 Algorithm

We consider a triangular meshM = (K,x) whereK = V ∪ E ∪ F is an abstract simplicial complex

representing the connectivity of the mesh (V, E , andF are sets of vertices, edges, and faces, correspondingly),

andx : V → R3 is the coordinate function that gives the coordinates of every vertex ofV. This work focused

on meshes guaranteed to be orientable manifolds. Topology of such surfaces is easily characterized by their

genus.

Small handles In order to define which handles should be removed from the mesh, we used a distance

metric on the mesh (as described in Chapter 4). We considered any handle that was within anε distance from

the seed face to be small. Our distance function for this application was defined on the dual graph(F , E ′) of

the meshM where a dual edge(t1, t2) between two faces of the mesh is inE ′ if t1 andt2 share a (primal)

edge in the triangulation. If some non-negative weight functionw is defined onE ′, we can now define the

distanced(s, t) between any two facess andt as the minimal sum of weights over all the paths in the dual

graph. One easy example is given by settingw(e′) = 1 for everye′ ∈ E ′. It is also possible to make weights

that would approximate geodesic distances on a manifold. In this work we usew ≡ 1.

The general principle that we use to remove small handles was to createε-simple meshes. MeshM

is ε-simple if for every facet ∈ F all level sets within anε distance enclose a region of genus zero. We

call these regions,ε-balls. This was done by finding non-separating cycles for any handles found within

the correspondingε-balls. Note, however, that short non-separating cycles can exist in meshes that areε-

simple for smallε, such as the ones containing long narrow handles, see Figure 5.10(f). However, for this

initial work, we choose to not remove such long handles automatically. In this work, we only found cycles

corresponding to handles that were completely contained in small regions of the mesh.

The size forε varies depending on the input data and the relative size of handles to be simplified. For
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example, in practice we found that values ranging from four to twelve were appropriate for input models

ranging from 184K to 4,000K faces.

5.2.2.4 Region growing

We first describe the algorithm that looks for handles in the neighborhood of a seed face. Later, in Sec-

tion 5.2.2.6 we explain a global search for handles that will use this local procedure as an elementary opera-

tion.

The local procedure starts with a seed facetseed ∈ F . The faces from theε-ball aroundtseed are

considered one by one in the order produced by using Dijkstra’s algorithm on the dual graph, as described

in Chapter 4. The process starts with one triangle which is obviously of genus zero. We then proceed either

until all the faces of theε-ball are exhausted, or until we find that after the current triangle is added, the genus

of the active region has grown. If the latter happens, the region growing stops and a non-separating cycle is

found inside the active region. We then cut the mesh (possibly locally subdividing it), seal the two resulting

holes, and start with the current seed face again. Thus, the small handles in the mesh are extinguished one by

one.

In order to find small handles, we keep track of the level sets within theε-ball. If a contour from one level

set later splits apart into two contours and then merges back together, we have found a handle. The level sets

are constructed after adding each face, exactly as described in Chapter 4. That is, we consider changes to

the level sets based on three operations:add-triangle, close-crack, andmerge-edge. For this work, we do not

explicitly construct a Reeb graph and instead just keep track of the current contours within anε-ball. Only

local information is stored, such as, path information from the add-triangle operation, which is used to find

the non-separating cycle later. Specifically, each face stores a pointer to the face to which it was added. To

set up the notation, lett be the new face andt′ ∈ A be a face from the active region that shared a common

edge witht. We callt′ theparent of t, or t′ = parent(t).

5.2.2.5 Cutting the mesh

In this section, we describe how a non-separating cycle is found inside the active region after a merge-

edge operation has merged two contours. Suppose that the two contours merged along the edgeeM =

{v(1), v(2)} = t(1) ∩ t(2). We build two sequences of faces,p(1) andp(2), defined asp(j) = (t(j)1 , . . . , t
(j)
Kj ),

wheret
(j)
k+1 = parent(t(j)k ), j = 1, 2. Note that both of these face paths end at the original seed face which

has no parent. After excluding a common tail of these two paths we have a closed path in the dual graph of

the active region. It is then possible to subdivide the faces on this closed path so that there is a closed cycle

along the edges of this locally subdivided mesh which does not intersect itself, see Figure 5.12. Note that this

path iscompletely inside the interior of the current active mesh region.

This is a different method for computing a non-separating cycle than was described in Chapter 4. Let us

briefly prove that this cycle is non-separating, that is, it leaves the active mesh region (and hence the mesh
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Figure 5.11:Handle detection and removal
Running the algorithm locally: (a) the active region is seeded with a single face; (b) propagation has started;
(c) the active region has two contours; (d) two contours have merged and a non-separating cycle is found in
a locally subdivided mesh.

tseed

t(1)

t(2)
p(2)

p(1)

Figure 5.12:Cutting the mesh.
Cutting the mesh Left: two paths in the dual graph from the facest(1) andt(2) to the seed face are found by
following the parent links. Note that the closed face path in the dual graph can be reduced as shown by the
black dashed line (two adjacent faces allow a shorter connection rather than taking the longer path through
the first common face of the pathsp(1) and p(2)). Right: the non-separating cycle with the corresponding
local mesh refinement.
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itself) connected. In order to prove that we simply notice that the two verticesv(1) andv(2) lie on the different

sides of the cycle locally but we can reachv(2) from v(1) by following the contour of the current active region

(we can do that because the cycle is fully inside the active region and thus does not touch the boundary).

We also further reduce the length of the cycle, by using reductions similar to the one shown in above figure.

During these reductions we do not allow facest(1) andt(2) to disappear, therefore the argument above still

holds. We then seal these two new gaps in the mesh, and thus remove the handle. Figure 5.11 illustrates the

process on a fragment of a real mesh.

The subdivision performed during the cycle computation changes distances in the dual graph. We fix this

problem by assigning zero weights to the new edges introduced during subdivision (of course, the dual edges

corresponding to the edges in the cycle itself simply disappear from the dual graph of the modified mesh.)

5.2.2.6 Global procedure and preprocessing

In the previous section we described a procedure that grows a mesh region of some radiusε > 0 centered at a

seed face and removes all the handles that are discovered inside this mesh region one by one. We can run this

procedure starting from all the faces in the original mesh. This will produce a mesh that isε-simple. However,

asε grows the running times of this naive algorithm become unacceptable. We propose a preprocessing step

that excludes large portions of seed faces from the consideration. We rely on the following fact which is true

in a metric space. LetBR(t0) be the closed ball of radiusR centered att0 (note that we measure the distances

on the surface, so in our case, a ball is a surface region.) Then for anyt′ ∈ BR−ε(t0) the ball centered at

t′ of radiusε is contained inBR(t0), in fact, Bε(t′) ⊂ BR(t0). Therefore, in the preprocessing step we

will be growing balls until their genus changes, without any restriction on their radius. Suppose that we have

grown a mesh regionA that includes the ballBR(t0) for someR > ε, and the genus ofA is zero. Then

we can be assured that any subset ofA will also be of genus zero, and since the balls of radiusε centered

inside the smaller regionBR−ε(t0) are subsets ofA, we can exclude them from the potential seed set. These

large regions are seeded in the preprocessing step at randomly chosen faces of the original mesh (in practice,

taking one percent of the original number of faces produces good results). This procedure greatly reduces

the potential seed set for a givenε. For example, without preprocessing, the algorithm takes 1147 seconds

to perform simplification with radius 3 on the David’s head model; while the improved procedure takes only

136 seconds. More performance numbers can be found in Table 5.2.2.6.

5.2.2.7 Results

To demonstrate our approach we have applied our technique to a variety of the Stanford laser range finder

datasets. For example, we consider the triangle mesh dataset of the David’s head from Stanford’s Michelan-

gelo project [58]. The original irregular mesh has genus 340. Obviously, none of these 340 tiny handles

are actually present in the original sculpture, therefore all these handles can be removed to facilitate further

processing tasks. An irregular mesh of David’s head containing more than a million triangles is processed by
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Dataset Radius Removed Time
handles

David’s head I 8 241 35m 34s
4000K faces 10 264 1h 24m 43s
genus 340 12 283 3h 13m 30s

David’s head II 8 291 12m 53s
1173K faces 10 301 27m 37s
genus 340 12 313 56m 52s

David’s head III 8 323 4m 27s
184K faces 10 326 9m 36s
genus 340 12 330 19m 6s

David (complete statue) 8 12 34m 4s
8254K faces 10 13 45m 11s

genus 20 12 14 57m 43s

Buddha 8 71 10m 23s
1087K faces 10 82 34m 24s
genus 104 12 85 2h 43m 9s

Dragon 8 21 6m 4s
870K faces 10 32 16m 59s
genus 46 12 35 53m 3s

St.Matthew 6 3 21m 19s
3382K faces, genus 5 12 4 29m 37s

Table 5.2:Results Table
Timings given for Pentium III Xeon 550 MHz.

our algorithm in one hour, removing 313 (92%) of the handles automatically. We have found that most of the

models reconstructed using Curless and Levoy’s VRIP method [17] have topological artifacts. We noticed

that higher resolution models and meshes that were more convoluted in shape typically have more topological

noise. We have run our algorithm on models of different resolution with different threshold radius settings

and recorded the number of handles removed and the algorithm’s running time. These results are illustrated

in Table 5.2.2.6. Note that this automatic technique fails to generate a genus zero surface when there are

handles larger than the givenε. For this initial work, we used a very simple measure. We later improved our

results for triangle meshes with subsequent work discussed in the next Section 5.2.3.

We have applied various mesh processing techniques to meshes that have been topologically simpli-

fied using our algorithm with encouraging results. In particular, we were able to apply the multi-resolution

remesher of Guskov et al. [39] to the simplified genus zero mesh of David’s head. The base mesh for this

remesh contained 262 triangles. It would be impossible to achieve such a small number of patches without

first applying a topology simplification operation to the original data (recall that the original mesh had 340

handles).

Similarly, parameterization of mesh regions is a fundamental part of many remeshing, texturing, and other

mesh processing algorithms. Figure 5.2.2.7 shows the parameterized mesh region of the David’s ear. The

texture coordinates are assigned with the(u, v)-coordinates computed with the shape-preserving parameteri-

zation of Floater [32]. The original region of this mesh contained twelve handles. Our algorithm removed all
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(a) (b) (c) (d)

Figure 5.13:Smoothing result
Smoothed version of David’s ear (a) and close up view of the smoothed ear after topology simplification (b)
and a close up of the artifacts that occur without simplification (flipped triangles) (c) and a detailed view of
the handles causing the artifacts (d).

Figure 5.14:Texture mapped ear
An example of texturing mapping after successfully parameterizing the topologically simplified David ear.
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of these handles in fifteen seconds, and produced a mesh that is homeomorphic to a square, allowing it to be

properly parameterized.

Additionally, acquired meshes often contain geometric noise, and have to be filtered with various mesh

smoothing/noise removal techniques. In particular, we used the method described in Desbrun et al. [21].

If the original mesh contains unnecessary non-trivial topological artifact, the smoothing procedure typically

results in a mesh with artifacts that foil its appearance (such as flipped triangles), as shown in Figure 5.13.

This is due to the fact that smoothing operators cannot modify the topology of the mesh, and the presence

of these small handles impairs the smoothing process by limiting its effects. Attempts to smooth the region

around small handles can potentially result in collapsing the handle, creating undesirable degeneracies. Thus

first removing the topological noise greatly improves the performance of geometric noise removal procedures,

as illustrated by Figure 5.13.

5.2.2.8 Conclusions

Excess topology is a serious problem for many scanned models. This incorrect topology results in visible

artifacts when these meshes are smoothed, encumbers parameterization and hinders the performance of many

multi-resolution techniques. We have presented a simple criteria for identifying excess topology and a com-

putational procedure that removes these topological artifacts. However, after this initial work we considered

enhancements from the lessons we learned working with volume data (presented previously in Section 5.2.1).

5.2.3 Mesh topology simplification revisited

We learned valuable lessons from our research on simplifying the topology of isosurfaces within volume data

and choose to extend this new knowledge back to the mesh setting. Specifically, we looked at replacing the

repeated localε-ball searches with a global augmented Reeb graph construction. Such a global construction

requires that we visit each face of the mesh only once to build up connectivity information for the entire

surface. This allows us to guarantee that we encode all of the topology of the mesh without needing to

repeatedly propagateε-ball searches over the surface. In addition, we wanted a measure that would measure

all handles, including ones that did not “fit” into anε radius. See Figure 3.3 for an example of a handle

that would not be measured using our initial mesh based approach. Finally, we wanted to apply the tighter

handle size measure used in the volume setting. That is, we wanted to find two locally minimal-length non-

separating cycles to evaluate the size of a handle. Thus, we revisited triangle mesh simplification, using a

global augmented Reeb graph and a tighter handle measure.

Specifically, we designed an algorithm that uses a distance function defined over mesh faces, as described

in Chapter 4. Starting from an arbitrary seed face, we propagate a discrete distance function to construct con-

tours and ribbons. Contours and ribbons are constructed on the fly after the current distanced is propagated.

We use an augmented Reeb graph and contours and ribbons are constructed using the methods described in
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Section 4.2.2.2. Contours are constructed starting with the first unused edge between a face of distanced

and a face of distanced − 1. Contour construction is completed by following the orientation of the triangle

faces to find the next unused edge. Ribbons are constructed by gathering together all faces of distanced that

are edge adjacent to one another. After ribbon and contour construction, the adjacency of the contours and

ribbons in the surface are used to determine the correct edges to add to the augmented Reeb graph.

As described in Chapter 4 we must account for intra-ribbon handles and adjust the traversal function

to be face-by-face when necessary to guarantee that the number of cycles in the augmented Reeb graph

always matches the Euler characteristic of the surface traversed thus far. Note that unlike the case of a height

function, we do not need to keep component information with a distance function traversal from a single

seed point. This is due to the fact that no new components will be created during the traversal, each new

contour is connected to a previous ribbon. In this settinganyribbon node in the augmented Reeb graph that

has more than one child node will be a part of cycle and thus a critical level. After processing the contours

of distanced and adding all the appropriate edges to the augmented Reeb graph, we check for critical levels

of the distance function. Anytime a ribbon node is adjacent to more then one child contour, we know that

it is adjacent to a cycle. We then identify the possible cycle(s) and isolate the associated handle(s). This is

done using the methods discussed in Chapter 4. Note that just as a ribbon node defined by a height function

may have more then two child nodes the same case may occur with a distance function. For such a case,

each of the possible cycles must be isolated and measured. For the newly isolated handle(s), we construct the

two locally minimal-length non-separating loops and evaluate if the handle should be simplified, as described

previously in Chapter 4.

Just as was done for the volume setting, we first gather statistics for a mesh about handle sizes and then

simplify all handles with a non-separating cycle of length less than the user defined threshold. Handles are

simplified using the methods presented in Chapter 4. We locally re-build the Reeb graph to account for the

changes to the topology. For a distance function the augmented Reeb graph must be rebuilt only for the

distance levels adjacent to the isolated handle.

This algorithm improved the accuracy of our mesh topology simplification, as we are now able to reduce

the genus 100% for the David head, as opposed to the 92% by our initial algorithm. The global traversal and

augmented Reeb graph guarantee that we will findall the topology present in a mesh and the locally minimal-

length non-separating cycles give a more accurate measure of the handle sizes. This allows the topology

simplification algorithm to be more precise and change the geometry of the surface in a locally minimal way.

Similar to the results already presented, the topologically simplified meshes can now be parameterized for

subsequent texture mapping and remeshing as desired.
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Figure 5.15:Example of a series of semi-regular meshes
Example of various levels of an extraction of adaptive semi-regular meshes from a volume using our algo-
rithm. On the left is a coarse resolution version of the surface, followed in the middle by an intermediate
version. Finally the finest resolution surface is on the right.

5.3 Hierarchical surface reconstruction

Our final application concernsremeshinga surface from one discrete surface representation to another. Note

that this work was done as a part of the author’s Master thesis research, however, it is summarized again here

as it is an relevant application of computational topology algorithms to discrete 2-manifolds.Portions of the

following text, which refer to ‘Semi-Regular Mesh Extraction from Volumes’, are reprinted from [78] with the

permission of IEEE.

5.3.1 In volumes

5.3.1.1 Motivation

We are interested in remeshing an irregular mesh to a multi-resolution mesh representation. Such represen-

tations have advantages for editing, compression and level of detail rendering. In particular we are interested

in looking at improving isosurfaces extracted using Marching Cubes (MC). Marching Cubes (MC) [60], is

the predominant algorithm for isosurface extraction. As described in Chapter 2, this method computes a local

triangulation within each voxel of the volume containing the surface. This results in a uniform resolution

mesh. Often much smaller meshes adequately describe the surface since MC meshes tend to oversample the

isosurface, encumbering downstream applications, e.g., rendering, denoising, finite element simulations, and

network transmission.

There are a variety of methods to remesh existing meshes. Many techniques start with the existing mesh

and apply topology preserving geometry simplification to compute an initial coarse mesh. This coarse mesh is

subsequently processed to create a multi-resolution representation [24, 57, 39]. Such a process is guaranteed
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to create a coarse mesh with the correct topology. We tackle a slightly different problem, which is given

volume data directly extract a multi-resolution mesh without first extracting a full resolution isosurface. We

present a method for thedirect extraction of an adaptively sampled multi-resolution isosurface mesh with

good aspect ratio triangles. The multi-resolution structure is based on adaptivesemi-regularmeshes, well

known from the subdivision setting [80]. Figure 5.15 shows an example of a multi-resolution semi-regular

mesh extracted from a distance volume with our algorithm.

5.3.1.2 Coarse mesh extraction

In order to extract a mesh with semi-regular connectivity from volume data, we need to first evaluate the

volume data itself to determine the topology of the desired isosurface. In turn, this evaluation process fa-

cilitates the construction of a coarse mesh with the correct topology. The approach has three main features:

guaranteed topology, low memory requirements and adjustable complexity of the initial mesh.

Since volume data can potentially be very large and fill main memory, the task of extracting an isosurface

can be time consuming and memory intensive due to the need to compute and maintain the local triangulation

per voxel. We want to avoid this costly triangulation step and only store and use a small amount of data to

construct the coarsest mesh. An alternate approach for dealing with large volume data is to down-sample

the volume through a smoothed pyramid construction and then extract a coarse mesh. The problem with

this approach is that it cannot guarantee the topology, e.g., small handles will disappear in the smoothing

step, causing a change in the topology of the initial mesh. Instead we work with the original sampling of the

volume and leverage the connectivity information inherently represented by voxel adjacency. This allows us

to minimize the amount of extra data we need to store for constructing a topologically accurate coarse mesh.

Essentially, we treat the voxel grid as a data structure already representing the surface in an implicit way

and we traverse this data structure to extract an accurate coarse mesh. While doing this, we do not compute

or store the local triangulation per voxel and instead store a Reeb graph to represent the topological structures

of the desired isosurface. Our general approach is based on constructing and traversing a Reeb graph, in

order to subsample the volume data and extract a coarse mesh. When extracting a coarse mesh, the user may

define the discretization rate of the initial mesh. Alternatively, the algorithm can automatically generate a

coarse mesh with the minimal discretization that maintains the topology. This is done by guaranteeing that

we include any critical levels of the surface.

5.3.1.3 Distance function propagation and Reeb graph

As presented in Chapter 4, we can build a Reeb graph from the contours associated with a distance function

on the surface. For coarse mesh construction, we use a distance function starting from an arbitrary seed

point. We use a distance function and not a height function because the contours for the distance function

will be closely aligned with the geometry of the underlying surface and thus provided a good sub-sampling

of the surface geometry. As our setting is a scalar volume as described in Chapter 2, we define the distance
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function on surfels. Our notion of distance is very much like Chamfer distance in image processing (also

called “chess-board” distance): two surfels are a unit distance apart if they share at least one vertex. We can

follow the connectivity of surfels in the volume by using a table look-up to determine edge adjacency with

neighboring voxels. We use a priority queue to walk from surfel to surfel sequentially (Fig. 5.17, left). Our

algorithm is equivalent to running Dijkstra’s algorithm to discover all paths from the source surfel to all other

unvisited surfels.

Figure 5.16:Example of a surfel and following its active edges
Arrows indicate how to follow active edges from a given surfel (left). On the right we see that the surfel with
distancen will propagate the distancen + 1 across its active edges to the connected surfels. Note that the
other surfel in this voxel will only receive a distance when the wave front reaches it.

In order to come up with a consistent ordering within the contours, we use the orientation of the surfels

to follow from one surfel of distanced to the next. For a given leveld, of the distance function, after a single

contour is constructed, we check to make sure that all the valid surfels of leveld are part of a contour. If

not, we start the contour construction again with one of the unprocessed surfels at leveld. As each contour

is constructed the appropriate edges of the Reeb graph are added to the previous contours. Note that again,

we do not need to keep component information with a distance function traversal from a single seed point.

This is due to the fact that no new components will be created during the traversal. In this settinganycontour

node in the Reeb graph that has more than one child node will be a part of cycle and thus a critical level.

5.3.1.4 Mesh construction from the Reeb graph

The Reeb graph provides all the information needed to build the coarse mesh. We use the coarse mesh

construction algorithm described in Chapter 4. Contour constructionandcritical level detection can be per-

formed in a sweep algorithm. Once the contours at leveld are constructed, we check for a critical level by

checking the relative number of children at leveld− 1. Once a critical level is detected it is sub-sampled and

stitched together with the previous contour to create a coarse mesh.
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Figure 5.17:Distance function propagation on a surfel
Illustration of the distance function overlaid on some surfels (left). Same portion with adjacencies of the Reeb
graph (contours) added (right).

5.3.1.5 Discussion

One of the benefits of this approach is the low memory overhead for the Reeb graph representation. In

the case of anO(n3) volume the storage requirement for propagating the distance function isO(n2), as it

depends on the size of the surface. Once again the computation time for the Reeb graph will beO(n log n)

as the Reeb graph construction is equivalent to running a Dijkstra’s algorithm over the mesh to propagate

distances and then anO(n) time step to collect surfels into contours. The only other data that we need to

store for generation of the coarse mesh is dependent on the contours in the Reeb graph and isO(n). Memory

overhead for contours is minimized by keeping only, (i) the contours selected to be part of the coarse mesh;

(ii) the last contour constructed and (iii) the current contour, which is being evaluated for possible selection.

Conclusion Once we have a coarse mesh, we use quadrisection to create a semi-regular mesh. We use a

force based solver to position the vertices to best match the desired isosurface. This work presents a novel

algorithm to extract isosurfaces in the form of hierarchical, adaptive semi-regular meshes. It relies on a novel

approach to construct a coarsest mesh with the same global topology as the isosurface. The resulting meshes

have a natural multi-resolution structure since they are semi-regular, making them suitable for a variety of

powerful digital geometry processing algorithms.

5.4 Conclusion

We have presented a variety of applications which demonstrate the usefulness of computational topology

algorithms for computer graphics applications. By using these applications we can create more useful ge-

ometric models which accurately represent the topology of acquired data and can more readily be used for

texture mapping, remeshing, smoothing or other applications which rely on a parameterization of the surface.
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Chapter 6

Conclusion

This thesis has presented computational topology algorithm for acquired 2-manifolds used in computer graph-

ics. These algorithms are tailored for the discrete representation of 2-manifolds as triangle meshes or scalar

volumes. We have presented algorithms for the identifying and isolating handles within a surface, algorithms

for measuring the length of two locally minimal-length non-separating loops for each handle and methods

to re-sample the geometry of the surface to retain or simplify handles. We have demonstrated the use of

these algorithms through applications which simplify the topology of triangle meshes and scalar volumes. In

these applications, we introduced methods for automatically removing handles from isosurfaces and triangle

meshes through direct processing of the original volume data or mesh. We have demonstrated the effective-

ness of these methods on several complex models. We have also demonstrated that removing topological

artifacts is important for many subsequent modeling operations.

6.1 Contributions

The contributions of this thesis are the following:

A robust and efficient method to localize and isolate handles for discrete 2-manifolds.We propose a

method where handles are efficiently identified through methods tuned to the discrete setting. The handle

identification traversal of the surface is varied for efficiency while guaranteeing that all handles are located.

We present a traversal method with a complexity ofO(n log n), with proof that our traversal methods will

detectall handles during the traversal. Handles can subsequently be efficiently identified during the traversal

of the surface as cycles in the augmented Reeb graph as it is incrementally constructed (see next paragraph).

Section 4.2.1.1 of Chapter 4 presented these methods in detail and the associated combinatorial proof.

A method to robustly represent the topology of the surface with anaugmented Reeb graph. We present

a method to construct an augmented Reeb graph which stores additional geometric information about the

surface to facilitate isolating handles. We present a method to construct the augmented Reeb graph, which
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guarantees that for each interval of the traversal, eachribbon has genus equal to zero. In addition, we

guarantee that for each interval, the number of cycles in the augmented Reeb graph matches the genus of

the surface traversed thus far. Geometric properties of the surface are encoded in the augmented Reeb graph

which allows geometrically succinct handles to be isolated within the original surface. Section 4.2.2.2 of

Chapter 4 introduced the augmented Reeb graph and the methods used to guarantee consistency between the

number of handles and the number of cycles in the graph.

A method to find two locally minimal-length non-separating cycles for each handle. This thesis

introduces a simple measure of handle size to be the length of two transverse non-separating cycles. The

locally minimal-length non-separating cycles are detected efficiently for handles of the surface. We present a

proof that we find two discrete locally minimal-length non-separating cycles with a complexity comparable

to related approaches. See Section 4.3.2 in Chapter 4 for more details.

A simple method to simplify the topology for volume data and triangle meshes which preserves the local

geometry as much as possible. Cutting the surface along the locally minimal-length non-separating cycle

will reduce the genus of the model while retaining as much of the fine geometrical detail as possible. By using

the smaller of the two non-separating cycles for each handle, the topology of the surface is only modified in

a small local region. This targeted approach to modifying the topology preserves the fine geometry of the

surface as much as possible. We propose a simple method to simplify the topology of triangle meshes and

isosurfaces. Refer to Section 4.4.1 in Chapter 4 for more details. In particular, for isosurface topology

simplification, to remove a handle, we alter the scalar values of the volume, thus indirectly modifying the

isosurface. Since isosurfaces are always manifold, operating on the volume is robust. Also, by operating

on the volume directly, we avoid computing an expensive triangle mesh and never compute or store floating

point values to represent the geometric position of the vertices of the surface. Since our algorithm creates

a topologically clean volume, this volume can then be used for surface extraction or other applications [48]

that depend on a topologically accurate volumetric representation.

An out-of-core method for topology simplification for volume data. Complex 3D models are rep-

resented by large volumes that may not fit entirely in main memory. The model in Figure 1.7 is from a

885×709×736 grid, and much larger models now exist [59]. The isosurface topology simplification algo-

rithm is applied to such volumes using out-of-core methods. The algorithm employs a sweep method to read

the volume in planar slices, so the data access pattern is highly regular. We encode surface topology as the

sweep progresses using an augmented Reeb graph, requiring only a few slices in memory at any given time.

For some large handles, previous slices may need to be reloaded to perform simplification. However, simpli-

fication can be performed on small segments of the volume one at a time, resulting in a purely out-of-core

algorithm. The details of this out-of-core method are presented in Section 5.2.1 of Chapter 5.
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6.2 Future explorations

When simplifying the topology of a surface topological obstructions can inhibit the effectiveness of our

simple methods. Our work on simplifying the topology of triangle meshes in particular can create surfaces

that are self-intersecting after the loop closure operation. It would be worth exploring loop closure operations

that avoid self-intersections. In addition, the mesh setting poses challenges for out-of-core approaches and it

would be interesting to explore ordering the data such that it facilitates out-of-core processing.

For our purposes we have found that our combinatorial choices for isolating handles are sufficient. How-

ever, it is possible to check other pairings of previous components in order to check other combinatorial

choices for cycles in the Reeb graph and their corresponding handles. For example, by defining distances

on the Reeb graph such that every node is distance one from all adjacent neighbors, another combinatorial

choice would be all pairings in the Reeb graph within a user definedε distance. Exploring these kinds of

combinatorial choices, especially in light of finding globally minimum-length non-separating cycles, are an

interesting avenue for future work. In addition, as mentioned in Chapter 4 it may be interesting to explore

constructing shortest-length non-separating cycles that do not wrap around a handle at all. It is conceivable

that a geometric constraint could be constructed to prevent winding for the initial construction of the loopL.

Finding shortest paths to be arbitrary paths over a surface is another interesting extension to consider for this

work.

Also of interest is the task of incorporating algorithms for analyzing the topology earlier on in the surface

acquisition pipe-line. For example, during the segmentation of MRI data, it would be useful to create a tool

that only allows a doctor to segment the data such that a surface with the correct topology is generated.

Another area of future work is to improve the local surface geometry after handle removal. The handles

removed in our test examples were so small as to be nearly invisible, so we did not consider smoothing to

be important. However, it is conceivable that some settings and applications could require the removal of

topological features of a more substantial size. Since we have information about the local region affected by

the loop closure, we could smooth the newly inserted surface. For example, this smoothing would improve

the visual appearance of the regions bounded by the arms in the genus zero Buddha (Figure 5.2.1.4). In

range data reconstruction algorithms, it is already common to smooth the unscanned, filled-in regions of the

surface [17, 19]. For larger handles, it may be desirable to use more accurate approximations of true geodesic

non-separating cycles rather than the discrete graph approximation. More generally, we are interested in

exploring alternative methods for measuring handle size. We have experimented with one such measure with

success, however other criteria could be explored for varying applications.

To explore data such as MRI, some systems allow the isosurface value to be varied interactively. Ef-

ficiently removing handles in the changing isosurface is an interesting problem. Perhaps it is possible to

pre-process the volume to remove topological artifacts for a range of isosurface values. For such a setting,

the work of Zomorodian [79] is promising.
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