
60

Chapter 4

T2 Relaxation and Diffusion
Measurements of Hyperpolarized 129Xe
and 3He in the Pulsed Low-Field Resistive
MR Scanner

4.1 Background

The transverse relaxation time T2 characterizes the rate of magnetization decay in the

plane perpendicular (or transverse) to the static magnetic field B◦ after the magnetization

has been tipped away from the B◦ field by an RF pulse. The transverse magnetization

decay results as spins lose their coherence while they precess with slightly different Larmor

frequencies in the transverse plane. The dispersion in frequencies in turn occurs when the

spins precess in different magnetic fields. There are three causes for this field variation [29].

First, the external field is not perfectly homogeneous and therefore varies slightly across

the sample. Second, each spin creates a magnetic dipole field that affects the neighboring

spins. This is commonly referred to as spin-spin interaction. Depending on the spin density

distribution, the fields seen by the spins at different positions can be slightly different.

Lastly, if spins move (diffuse) within the sample in the presence of background magnetic

gradients1, they experience a time varying field. The end result of the three scenarios is

that some of the spins acquire extra phase, which leads to de-phasing and consequently,

loss of MR signal.

In conventional MR, the transverse relaxation rate determines the amount of time avail-

able for imaging between each 90-degree RF excitation pulse. In spin echo imaging of water,
1The background gradients can either be due to field inhomogeneities or due to the externally applied

gradients.
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for instance, one acquires one or two lines of k -space [59] after each 90-degree RF excita-

tion.2 Therefore, the T2 relaxation rate of water presents a limit on the time available for

imaging one line of k -space. Once the transverse polarization of water is lost, the longitu-

dinal thermal polarization is allowed to grow towards its thermal equilibrium value. A new

90-degree RF pulse flips the magnetization again into the transverse plane so that a new

line of k -space is collected.

In contrast, the transverse relaxation rate of hyperpolarized gas determines the total

time available for imaging in a spin echo sequence due to the nonrenewable nature of gas

hyperpolarization. The longitudinal magnetization of hyperpolarized gas decays (rather

than grows) with a time constant T1 towards its thermal equilibrium. Hence, it does not

pay off to wait after the transverse magnetization has decayed; the longitudinal magnetiza-

tion will not recover to its initial hyper-value. To deal with the problem of nonrenewable

polarization, small flip-angle pulse-sequences have primarily been used [6, 68]. However,

such pulse sequences make poor use of the available magnetization as each acquisition only

uses a small fraction (sin α, where α is the flip-angle) of the available magnetization. Since

the inherent transverse relaxation times of gases3 are an order of magnitude longer than for

liquids [59], the entire k -space could be sampled using a single-shot (i.e, single 90-degree

pulse) spin echo sequence. Such sequences should give a superior SNR compared to small

flip-angle sequences because they use all the available magnetization (α = 90◦) to encode

the image-domain data (see Section 4.6 for more details). In fact, imaging with the entire

magnetization vector versus a 12-degree projection of the initial magnetization increases

the SNR by a factor of around 5 (sin 90◦/ sin 12◦ ≈ 5). This is equivalent to increasing the

initial 129Xe hyperpolarization from 5% to 25%–a goal that has proven to be very difficult

to achieve.

Our aim was to implement a single-shot spin echo imaging sequence (also called CPMG

sequence, after Carr-Purcell-Meiboom-Gill [69, 70], on the pulsed low-field resistive MR

scanner. In particular, we wanted to investigate whether the resistive pulsed system was

stable enough to maintain the stringent phase stability required during the CPMG condi-

tion. Studying TCPMG
2 relaxation enabled us to estimate the phase stability of the resistive

scanner and to identify other potential problems of using the resistive system for spin echo
2K -space (or time-domain space) is the Fourier transform of image-domain space.
3The inherent transverse relaxation times should be understood as the transverse relaxation times result-

ing exclusively from spin-spin interactions.



62

imaging.

Furthermore, by varying the interecho spacing in the CPMG spin echo sequence, we were

able to differentiate between the TCPMG
2 relaxation times and the inherent T2 relaxation of

gases. The TCPMG
2 relaxation characterizes the decay of a spin echo train in a particular

magnetic environment and thus includes diffusion losses in the background gradients, while

the inherent T2 relaxation times of gases are purely the property of the gas mixture used.

The inherent T2 times of 129Xe and 3He mixtures used in the hyperpolarized gas experiments

are a useful measure of the absolute limit on the imaging time when using a CPMG sequence.

To the best of our knowledge, past experiments measuring the transverse relaxation times

of 129Xe and 3He [47, 71, 72, 26, 73, 28, 74, 75, 76, 77] did not remove the effects of diffusion

losses in the static background (remnant) gradients. The values of T2 relaxation times

quoted in the literature are thus comparable to what we call TCPMG
2 relaxation, and not

to the inherent T2 relaxation.

Apart from the non-renewable nature of the noble gas polarization, large diffusion of

gases is another factor that makes imaging of hyperpolarized gas difficult, and more impor-

tantly, dictates pulse-sequence design. Diffusion of spins through magnetic field gradients

causes loss of NMR signal and limits the maximum achievable resolution. The reduced sus-

ceptibility effect and smaller magnetic field heterogeneities at low fields should help decrease

signal loss due to diffusion in our low-field system. However, in order to predict MR signal

loss during imaging with spin echo and/or gradient echo sequences, we had to evaluate the

diffusion coefficient of hyperpolarized gases on our system. Diffusion coefficients for 129Xe

and 3He in vitro have been measured. Patyal et al. [78] performed measurements of 129Xe

diffusion coefficient while Bock et al. [79] and Schmidt et al. [80] measured diffusion coef-

ficient of 3He. However, all these measurements were done using low flip-angle techniques

(gradient echo, DANTE) which suffer from poor SNR and are limited by T1 relaxation.

Some fast sequences, such as BURST from Wolber et al. [81] and Peled et al. [82] avoided

the problem of T1 relaxation, but had a complicated spin dynamics. Mair et al. [83] and

Zhao et al. [77] established the advantage of high SNR techniques based on multiple spin

echo sequences (RARE, CPMG). These techniques enable the use of multiple diffusive at-

tenuations within a single sequence and thus allow the measurement of time-dependant (or

restricted) gas diffusion [83]. However, to remove diffusion losses in the background gradi-

ents from the total signal decay, the experiments in [83] and [77] required two shots (i.e.,
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two separate CPMG trains) as well as the normalization of the echo train against the first

echo. Two (or multi) shot spin echo sequences are impractical in the case of hyperpolarized

gases because of the non-renewable gas polarization.

Our single-shot CPMG sequence for measuring diffusion coefficient uses all the available

magnetization and thus has inherently high SNR. In addition, the chosen sequence enabled

us to separate TCPMG
2 relaxation of the gas from diffusive loses in the external gradients.

Finally, by comparing the experimental measurement of 3He, 129Xe and water diffusion

coefficients with theoretical estimations, we were able to determine the precision of our

single-shot CPMG sequence for measuring diffusion coefficients.
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4.2 Theory of Transverse (T2) Relaxation

As mentioned in Section 4.1, the transverse component of magnetization decays due to

magnetic fluctuations which cause spreading in the Larmor frequency of the spin ensem-

ble and, consequently, dephasing. The rate of decay of the transverse component Mxy is

proportional to the instantaneous value of the transverse magnetization,

dMxy

dt
= −Mxy

T ∗
2

, (4.1)

where the transverse relaxation coefficient T ∗
2 includes the relaxation due to static magnetic

field inhomogeneities, T∆Bz , the inherent relaxation due to spin-spin interactions, T2, and

relaxation due to the diffusion of spins in the magnetic field gradients, TD.4 To summarize:

1
T ∗

2

=
1

T∆Bz

+
1
T2

+
1

TD
. (4.2)

Later in the chapter we will show how to separate the 1/T∆Bz term from the rest of relax-

ation using spin echoes. Once that is accomplished, we proceed to identify the 1/TD term

and distinguish it from the inherent 1/T2 relaxation of hyperpolarized gases (129Xe ad 3He).

The solution to Eq. 4.1, after a 90-degree excitation (Mxy(0) = M◦), is

Mxy = M◦e−t/T ∗
2 . (4.3)

Equation 4.3 describes the macroscopic behavior of the transverse component of the mag-

netization. However, to understand how the above relationship arises as a result of the

microscopic motion of magnetic moments, one has to consider the equations of motion of

the individual spins and then average over the spin population.

The magnetic field seen by the j th spin is Bj = (B◦ + bj)k, where B◦k is the static

magnetic field pointing in the z-direction and bjk is the z component of the field fluctuations

seen by the j th spin.5 For mobile (i.e., diffusing) spins, bj is time-varying. The equation of

4It should be pointed out that most books on the subject of MR relaxation define Eq. 4.1 in terms of T2

and not T ∗
2 as is done here.

5This discussion assumes that only those fluctuations in bj that are parallel to B◦ cause variations in
Larmor frequency and therefore transverse relaxation. This approximation is invalid when dealing with
longitudinal relaxation or non-adiabatic transverse relaxation.
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motion for the j th magnetic moment is

µ̇j = γµj × Bj = γµj × [B◦ + bj(t)]k. (4.4)

Combining the x and y transverse components of the magnetic moment into a single complex

µ, such that µj = µj,x + µj,y, the equations of motion become

µ̇j(t) = −iγ[B◦ + bj(t)]µj(t). (4.5)

After integration, the above equation gives

µj(t) = exp (−iγB◦t) exp
[
−iγ

∫ t

0
bj(τ)dτ

]
µj(0), (4.6)

where µj(0) is the initial magnetization of the j th spin. To get the total transverse magne-

tization, we have to sum over N particles in the system:

M =
1
V

N∑
j=1

µj (4.7)

=
1
V

N∑
j=1

exp
[
−iγB◦t − iγ

∫ t

0
bj(τ)dτ

]
µj(0). (4.8)

Since the initial value of the magnetic moment µj(0) is independent of its local field bj the

initial magnetization can be factored out:

M(0) =
1
V

N∑
j=1

µj(0). (4.9)

By also factoring out the exponential representing the precession around B◦ field, the com-

plex transverse magnetization is finally given by

M(t) = exp (−iγB◦t)


 1

N

N∑
j=1

exp
[
−iγ

∫ t

0
bj(τ)dτ

]
M(0). (4.10)

Equation 4.10 describes the behavior of the transverse magnetization, also called the

Free-Induction-Decay (FID). The first term represents the oscillatory part of the FID–the

oscillation of magnetization around B◦, with the characteristic Larmor frequency ω◦ = γB◦,
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where γ is the gyromagnetic ratio of the spin. The last term is the initial value of magne-

tization. The term in the curly brackets is the envelope of the FID–the relaxation of the

transverse magnetization.

Let us look more closely at the relaxation part of the FID. The time integral over the

magnetic fluctuations seen by the j th particle in Eq. 4.10 can be related to the accumulated

phase angle φj(t), where

φj(t) = −γ

∫ t

0
b(τ)dτ. (4.11)

The average over the population of particles can then be written as

F (t) =
1
N

N∑
j=1

exp [−iφ(t)] = 〈exp [−iφ(t)]〉 (4.12)

F (t) =
∫

P [φ(t)] exp [iφ(t)]dφ, (4.13)

where P [φ(t)]dφ is the probability that a spin had accumulated a phase between φ and φ+dφ

in a time t. To solve Eq. 4.13, we have to assume a functional form for the probability

function. Since the spin samples many different fields over a short time, we can invoke

the Central Limit Theorem [29]. The probability distribution of phase angles can thus be

described using a Gaussian function, with zero mean angle and a mean square width of 〈φ2〉:

P (φ) =
1

(2π〈φ2〉) 1
2

exp

(
− φ2

2〈φ2〉

)
. (4.14)

The relaxation of the FID signal, using a Gaussian distribution for the spin phase angles, is

F (t) =
1

(2π〈φ2〉) 1
2

∫ ∞

−∞
exp

(
− φ2

2〈φ2〉

)
exp (iφ)dφ. (4.15)

The integral above can be evaluated by completing the square of the arguments of the

exponentials. The result is

F (t) = exp

[
−〈φ2(t)〉

2

]
≡ exp

[
− t

T ∗
2

]
. (4.16)

To make further progress on the equation above would require us to know the mean

square width of the phase angles sampled by the spins. Nevertheless, by starting with

the equation of motion for the individual spins (Eq. 4.4) and then averaging over the spin
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population, we were able to show that the transverse magnetization can be expressed as

M(t) = M(0) exp (−iω◦t)F (t), (4.17)

where F(t) is given by Eq. 4.16. We will return to this equation as well as Eq. 4.10 in the

following chapters when describing the effects of magnetic field inhomogeneities and the

effect of diffusion on transverse relaxation.
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4.3 Reversible T2 Decay

Equation 4.2 tells us that part of the transverse relaxation is due to the inhomogeneities in

the main magnetic field. Spins at different positions in the sample dephase because they see

a different field. Fortunately, the magnetization lost due to dephasing in an inhomogeneous

magnet can be recovered using the technique of spin echoes.

4.3.1 Magnet Inhomogeneities and Spin Echoes

The easiest way to understand the occurrence of a spin echo is to draw on the analogy

between the spins precessing in an inhomogeneous magnetic field and runners running with

different speeds on a track course. Imagine the runners started running at the same time

and place on the track. After some time t into the run, the runners will be spread along

the course of the run, with the fastest runner furthest away from the start and the slowest

one the closest. If at time t, the runners are made to turn back (i.e., reverse direction of

running by 180◦) and if they continue to run at the same speed, they will all reach the start

at the same time, namely, at time 2t. The distance by which the fastest runner was ahead

of the slowest one before time t, he gets behind after time t; what used to be an advantage

turned into a disadvantage. Similarly, the spins in a higher magnetic field precess faster

than the spins in the lower magnetic field. After a time t, the fast spins will have gained an

additional ∆φ of phase relative to the slow spins. If the sense of spin precession is reversed

at time t (with a 180-degree pulse), then the spins will again have the same phase at time 2t.

In other words, the coherence of spins will be fully restored at time 2t.

To demonstrate the concept of spin echoes formally, we return to Eq. 4.10, representing

the behavior of transverse magnetization at time t, where bj(t) is the magnetic field variation

seen by the j th particle. It is best to transform this equation to the rotating frame of

reference. In the rotating frame, the Larmor precession is not detectable. Thus,

M(t) =
1
N

N∑
j=1

exp
[
−iγ

∫ t

0
bj(τ)dτ

]
M(0). (4.18)

If a π pulse is applied at time t about an axis in the transverse plane, all spins will

be rotated through a 180-degree angle and the net complex magnetization vector M will
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Figure 4.1: Creation of a spin echo.

be transformed into its complex conjugate M∗ (Figure 4.1).6 Therefore, after a 180-degree

rotation, the transverse magnetization vector at time t will be

M(t) =
1
N

N∑
j=1

exp
[
+iγ

∫ t

0
bj(τ)dτ

]
M∗(0). (4.19)

If the spins continue to precess in the same sense they did before the application of the π

pulse (in the runners’ case, this would correspond to saying that the runners continue to run

forward after they have turned around at time t), then, after an additional time t1, they will

acquire an extra phase, exp
(
−iγ
∫ t+t1
t bj(τ)dτ

)
, and the complex transverse magnetization

in the rotating frame will be

M(t + t1) =
1
N

N∑
j=1

exp
[
−iγ

∫ t+t1

t
bj(τ)dτ

]
exp
[
+iγ

∫ t

0
bj(τ)dτ

]
M∗(0). (4.20)

For diffusing spins, the integrals over the field from 0 to t and from t to t + t1 will not

cancel out because spins diffuse randomly in the magnetic field. However, for stationary7

spins, the integrals reduce to exp (−iγbjt1) and exp (+iγbjt). Then,

M(t + t1) =
1
N

N∑
j=1

exp [−iγbj(t1 − t)]M∗(0). (4.21)

6This can most easily be seen by fixing the axis of rotation and looking at the transformation of mag-
netization components under the 180-degree rotation. If the magnetization is rotated by 180◦ around the
x-axis, for instance, then: Mx → Mx, My → −My, Mz → −Mz. From this transformation we see that the
complex transverse magnetization (Mx + iMy) transforms into its conjugate (Mx − iMy) under a 180-degree
rotation around x, similarly for a 180-degree rotation around y-axis.

7Stationary spins are spins that do not move out of a voxel of size (∆a)3, where ∆a is the resolution of
MR imaging system.
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If t = t1, then M(2t) = M∗(0). This means that for stationary spins, the initial magnetiza-

tion has been fully recovered at time 2t. For diffusing spins, however, the echoes will still

occur, but with progressively smaller amplitudes. The decay of the echoes due to diffusion

will be examined in the next chapter.

In addition to signal loss due to diffusion of spins, the 180-degree pulses in the echo

sequence do not refocus the effects of spin-spin interaction. To see this, we return to

Eq. 4.18. For spin-spin interaction (see Section 4.4.2), the source of magnetic field bj are

the magnetic dipoles rather than the external field. By rotating the magnetization 180◦,

the magnetic dipoles and, therefore, the sources of the field inhomogeneity, are rotated

as well. This means that in addition to converting the magnetization in Eq. 4.18 into its

conjugate, the sign of bj needs to be inverted. Consequently, the two exponentials do not

cancel out–and the magnetization which was lost through the local fields of dipolar origin

cannot be recovered [29].

Using the technique of spin echoes one can thus distinguish between the relaxation due

to instrumentational limitations (i.e., inhomogeneous holding magnetic field) and relaxation

inherent to the system (i.e., spin-spin interaction and diffusion). In other words, the 1/T∆Bz

term can be factored out of Eq. 4.2, so that

1
T ∗

2

=
1

T∆Bz

+
1

TCPMG
2

, (4.22)

where the TCPMG
2 time constant describes the rate of spin echo decay resulting from the

inherent T2 relaxation and diffusion losses8,

1
TCPMG

2

=
1
T2

+
1

TD
. (4.23)

8CPMG stands for Carr-Purcell-Meiboom-Gill [69, 70].
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4.4 Irreversible T2 Decay

The T2 relaxation which occurs due to magnetic field inhomogeneities can be removed

using spin echo techniques. We call such relaxation a reversible T2 decay. The spin-spin

interactions and diffusion, on the other hand, contribute to an irreversible T2 decay, which

will be examined in detail in this section.

4.4.1 Diffusion

We present two alternative approaches in deriving an expression for signal decay due to

diffusion of spins in the field gradients. The first approach is statistical, based on the

random walk of spins [59]. This approach illustrates the statistical nature of spins, but is

cumbersome and limited to the case of constant gradients. The second approach is based

on the generalized Bloch equation, which has two extra terms as compared to the standard

Bloch equation–a term describing the transport of magnetization due to flow and a term

describing the random transport of magnetization due to diffusion [59]. This approach is

less intuitive, but has the advantage of being elegant and applicable to an arbitrary gradient

form.

4.4.1.1 Statistical Approach to Signal Decay due to Diffusion in Constant Gra-

dients

The goal is to find the average square phase shift ∆θ2 (Eq. 4.16) for spins diffusing randomly

through a constant gradient. If the motion is limited to one dimension, then the frequency of

precession of such spins is ω(t) = γB◦+γGx, where x is the average distance that a particle

travels in time t. If time t is divided into n steps, each of duration τs, then t = nτs. During

each step, the particle jumps either left or right with equal probability, so that ai = ±1.

If the root-mean-square (r.m.s.) displacement in one dimension is ξ, then the distance z

travelled by the molecule after n jumps is

z(nτs) =
n∑

i=1

ξai, (4.24)

z2(nτs) =
n∑

i=1

n∑
j=1

ξ2aiaj =
n∑

i=1

n∑
j=1

ξ2δij =
n∑

i=1

ξ2 = nξ2. (4.25)
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Defining the diffusion constant as

D =
ξ2

2τs
, (4.26)

we get

z2(t) = 2tD. (4.27)

The above equation relates the macroscopic mean square displacement of a diffusing parti-

cle z2 and the diffusion constant D. For three-dimensional molecular motion, the factor 2

in Eq. 4.27 should be replaced by 6.

Let us go back to the equation describing the frequency of precession. Replacing x with

z(nτs), we have

ω(nτs) = γB◦ + γG
n∑

i=1

ξai. (4.28)

The cumulative angle after time t = nτs is

φ(t) = γB◦nτs +
n∑

m=1

γGτs

m∑
i=1

ξai = φ◦ + ∆φ. (4.29)

Note that
∑n

m=1 γGτs
∑m

i=1 ξai =
∑n

i=1(n + 1 − i)ξaiγGτs. Therefore,

∆φ2(nτs) = γ2G2τ2
s ξ2

n∑
i=1

n∑
j=1

(n + 1 − i)(n + 1 − j)aiaj

= γ2G2τ2
s ξ2

n∑
i=1

n∑
j=1

(n + 1 − i)(n + 1 − j)δij

= γ2G2τ2
s ξ2

n∑
i=1

(n + 1 − i)2 = γ2G2τ2
s ξ2

n∑
j=1

j2

=
1
3
γ2G2τ2

s ξ2n3

=
2
3
γ2G2Dτ3

s n3

∆φ2(t) =
2
3
γ2G2Dt3, (4.30)

where on line 3 of the above equation we used the equality
∑n

i=1 (n + 1 − i)2 =
∑n

j=1 j2.

If the average square phase shift is inserted into Eq. 4.16, we obtain an expression for

the relaxation of the FID signal which results exclusively from the diffusion of spins in a

constant gradient:

F (t) = exp
(
−1

3
γ2G2Dt3

)
. (4.31)
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If a 180-degree RF pulse reverses the orientation of spins in the magnetic field gradients

at time t, the spins begin to re-phase, until they are fully re-phased and an echo is formed

at time 2t (see Section 4.3.1). The re-phasing of spins decreases the net effect of diffusion

losses. In other words, if spins were allowed to diffuse in a positive (constant) gradient for a

time 2t, the diffusion losses would be proportional to exp
[
−1

3γ2G2D(2t)3
]
. However, since

the π pulse reverses the sign of the magnetic field gradients seen by the spins at time t, the

echo magnitude at time 2t will be

M(2t) = M(t) exp
(
−1

3
γ2G2Dt3

)

M(2t) =
[
M(0) exp

(
−1

3
γ2G2Dt3

)]
exp
(
−1

3
γ2G2Dt3

)

M(2t) = M(0) exp
(
− 1

12
γ2G2D (2t)3

)
. (4.32)

The spin echo at time T = 2t can then be expressed as

M(T ) = M(0) exp
(
− 1

12
γ2G2D (T )3

)
. (4.33)

4.4.1.2 Signal Decay due to Diffusion in an Arbitrary Gradient Waveform

Based on the Bloch Equation

The generalized Bloch equation for the Mx-coordinate is

dMx

dt
= γMyBeff − Mx

T2
+ ∇ · �D · ∇Mx −∇ · �vMx. (4.34)

The first term on the right hand side is due to the rotation of the magnetization around the

effective field Beff =
(
B◦ − ω

γ

)
+ r · g, where g = ∂Bz/∂x d̂x + ∂Bz/∂y d̂y + ∂Bz/∂z d̂z

is the magnetic field gradient and r = x + y + z is the position of the spin with respect to

an arbitrary origin; the second term represents the inherent T2 relaxation; the third term

stands for relaxation due to diffusion of spins in the magnetic field gradients; the fourth and

last term represents relaxation due to the directional transport (i.e., flow) of magnetization.9

By exchanging the subscript x in Eq. 4.34 with y and vice versa, one can obtain a similar
9We choose to include the ’flow’ term in the Bloch equation to illustrate the most general situation. Our

in vitro experiments did not include flow; however, when modelling an in vivo situation, such as delivery of
hyperpolarized gas to the lungs through inhalation, the relaxation due to the flow of magnetization should
be taken into account.
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equation for the My magnetization component:

dMy

dt
= −γMxBeff − My

T2
+ ∇ · �D · ∇My −∇ · �vMy. (4.35)

We can combine Eqs. 4.34 and 4.35 by introducing a complex magnetization M+ = Mx + iMy.

Furthermore, on resonance, ω = γB◦, and the effective field reduces to Beff = r · g. Thus,

∂M+

∂t
= −iγr · gM+ − M+

T2
+ ∇ · �D · ∇M+ −∇ · �vM+. (4.36)

For isotropic diffusion, the diffusion term in the Bloch equation reduces to

∇ · D · ∇M+ = ∇ ·




D 0 0

0 D 0

0 0 D


 · ∇M+ = D∇2M+. (4.37)

In addition, for spatially independent velocities, the flow term in the Bloch equation becomes

∇ · �vM+ = (∇ · �v)M+ + �v · ∇M+ = �v · ∇M+. (4.38)

Assuming a solution of the form

M+(r, t) = A(t) exp
[
−iγr ·

∫ t

0
g(τ)dτ

]
exp
[
− t

T2

]
, (4.39)

and substituting it into Eq. 4.36, we get an expression for A(t):

A(t) = exp


−Dγ2

∫ t

0

(∫ t′

0
g(τ)dτ

)2

dt′

 exp

[
iγv ·

∫ t

0

(∫ t′

0
g(τ)dτ

)
dt′
]
. (4.40)

The first exponential on the right side of the above equation represents the signal decay

due to diffusion, while the second exponential represents the signal decay due to flow. We

will focus on the first term only. Since k ≡ γ
2π

∫ t′
0 g(τ)dτ [59], we can express the diffusion

term as

exp
[
− t

TD

]
= exp

[
−4π2D

∫ t

0
k2(t′)dt′

]
= exp [−Db], (4.41)
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where

b ≡ 4π2
∫ t

0
k2(τ)dτ. (4.42)

Equation 4.41 tells us that by knowing the diffusion constant of the gas mixture and the

integral of the gradient waveform over time, one can find TD and as a result eliminate the

signal decay due to diffusion from the total decay (see Eq. 4.2).

4.4.2 Spin-Spin Interaction

The theory of spin-spin interaction is very complex and can only be explained using the

quantum mechanical description of nuclear interactions. We therefore limit this section to

outlining the main steps in the derivation of T2 as described in [59] .

There are several processes which contribute to dephasing of transverse magnetiza-

tion [59]: the dipolar interaction between a pair of spins, chemical shift interaction, scalar

coupling, and the quadrupole interaction (for I > 1/2). For spin-1/2 nuclei, the dominant

interaction causing spin relaxation arises from the dipolar Hamiltonian [59], which is

HD =
µ◦
4π

∑
i<j

γiγj h̄

r3
ij

[
Ii · Ij − 3(Ii · rij)(Ij · rij)

r2
ij

]
, (4.43)

where the sum refers to all the spin pairs (i,j), I is the vector operator given by Ixx+Iyy+Izz,

and rij is the distance between two spins.

If we introduce a density matrix ρ, where for a spin-1/2 particle the density matrix is

ρ =


 1

2 + 〈Iz〉 〈Ix − iIy〉
〈Ix + iIy〉 1

2 − 〈Iz〉


 , (4.44)

then the evolution of the density matrix in the rotating frame of reference can be expressed as

i
dρ∗(t)

dt
= [H∗

D(t), ρ∗(t)] , (4.45)

where H∗
D is the transformed dipolar Hamiltonian, exp [iω◦Izt]HD(t) exp [−iω◦Izt], ρ∗(t) is

transformed density matrix, exp [iω◦Izt]ρ(0) exp [−iω◦Izt], and ω◦ is the Larmor frequency.

Once the evolution of ρ∗ in Eq. 4.45 is calculated, the decay of transverse relaxation can
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be determined. From [59], the transverse relaxation time in liquids T2 is

1
T2

=
(

µ◦
4π

)2

γ4 h̄2 3
2

I(I + 1)
[
1
4
J (0)(0) +

5
2
J (1)(ω◦) +

1
4
J (2)(2ω◦)

]
, (4.46)

where J (0)(0), J (1)(ω) and J (2)(ω) are spectral density functions defined in terms of the

rotational correlation time τc as

J (0)(0) =
24

15r6
ij

τc

J (1)(ω) =
4

15r6
ij

τc

1 + ω2τ2
c

J (2)(ω) =
16

15r6
ij

τc

1 + ω2τ2
c

. (4.47)
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4.5 Measurements of Reversible Transverse Relaxation with

Free-Induction-Decay

The largest contribution to T ∗
2 relaxation is dephasing due to external field inhomogeneities

(see Eq. 4.2), which can be removed using the technique of spin echoes. Consequently,

T ∗
2 does not give any information about the system under study (hyperpolarized gas, for

instance); it only describes how well one is able to shim the external magnet. To minimize

the external field inhomogeneities, FID signals (which decay with time constant T ∗
2 , see

Eq. 4.16) were collected prior to any other signal acquisition. Shimming currents were

applied to the x, y, and z gradient coils in order to maximize T ∗
2 relaxation time. From

the frequency domain perspective (see Appendix B), this translated into minimizing the

linewidth of the frequency spectrum.

In addition to shimming, the FID signal was used to match the receiver frequency to

the frequency of transmission (and therefore, precession). Special care was devoted to being

within a few Hertz of the precession frequency to avoid off-resonance effects.

/2

RF

Signal

Acquisition window

Figure 4.2: Pulse sequence used to generate free-induction-decay, or FID.

Figure 4.2 shows the basic structure of the pulse sequence used to generate free-induction-

decay. The duration of the RF pulse determines the angle by which the magnetization has

been tipped away from the static field (so-called “flip-angle”). If the amplitude of the RF

field is B1 and the frequency of precession around the B1 field is ω1 = dθ/dt, then the

flip-angle dθ is

dθ = γB1dt. (4.48)

Normally, the flip-angle is chosen to be 90◦ (i.e., π/2) to maximize the projection of mag-

netization onto the transverse plane and, therefore, the SNR.
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Figure 4.3: Free-induction-decay (FID) signal of water taken on the low-field pulsed resistive
scanner (top) and its Fourier transform (bottom).

Figure 4.3 shows a typical FID signal of distilled water and its spectra, which is obtained

by taking the Fourier transform (FT) of the time domain signal. Since the FT of an

exponential decay is a Lorentzian (see Appendix B), we can fit the data to the function of

the form

L(x) =
1
π

1
2Γ

(ω − ω◦)2 +
(

1
2Γ
)2 , (4.49)

where Γ is the FWHM (Full-Width-Half-Maximum) value and ω◦ is the central frequency

of the fit. From Appendix B, the T ∗
2 relaxation time is

T ∗
2 =

1
πΓ

. (4.50)
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The typical linewidth (FWHM) of water, 129Xe and 3He frequency spectra at 397 kHz

central frequency was between 5 and 15 Hz. The T ∗
2 relaxation rate for all samples was

thus between 20 ms and 60 ms. Since the FID was collected from the entire sample (i.e., a

sphere of diameter ∆x, where ∆x = 2.5 cm), the typical background gradients due to the

field inhomogeneities were G = ∆f/(γ∆x) = 0.01 − 0.03 mT/m.

4.5.1 Determination of Gas Polarization

Water and gas spectra were also used for calibrating the noble gas polarization. As demon-

strated in Eq. 3.4, the NMR signal is proportional to the magnetization of the sample and

the frequency ω at which the signal was acquired (i.e., readout frequency). The magnetiza-

tion of the sample can be expressed in terms of the polarization as M = Pnµ, where n is

the number density of the sample and µ is its magnetic moment. Therefore,

SHyp Gas

SH2O
=

PHyp Gas

PH2O

nHyp Gas

np

µHyp Gas

µp

ωHyp Gas

ωH2O
, (4.51)

where the subscript HypGas refers to either 129Xe or 3He, np is the proton number density

and µp is the proton magnetic moment. By measuring the ratio of the hyperpolarized

gas and water signals which were acquired at the same readout frequency, the noble gas

(hyper)polarization can be evaluated from

PHyp Gas = PH2O
np

nHyp Gas

µp

µHyp Gas

SHyp Gas

SH2O
. (4.52)

The ratio of magnetic moments can be determined immediately: µp = 2.793µN , µXe =

0.780µN , and µHe = 2.127µN , where µN is the nuclear magnetic moment. Therefore,

µp/µXe = 3.58 and µp/µHe = 1.31.

The number density is commonly expressed in units of amagat, which is defined as the

number density per standard atmosphere (p = 1 atm, T = 273 K). Thus, from the ideal gas

law (pV = nRT , where R is the universal gas constant), 1 amagat = 44.50 mol/m3. For

water at T = 25◦C,

nH2O =
ρH2O

[
g

m3

]
ρmolar

H2O

[ g
mol

] [amagat]

44.50
[

mol
m3

] . (4.53)

Since at T = 25◦C, ρH2O = 997 × 103 g/m3, and ρmolar
H2O = 18 g/mol, it follows that
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nH2O = 1244.69 amagats. Because there are two protons in each water molecule, the proton

number density is np = 2489.4 amagats.

For hyperpolarized gas, the number density in amagats is a function of the gas pressure

pHyp Gas normalized to 1 atm; the temperature of the gas when the cells were filled, THyp Gas,

normalized to 273 K; and the abundance F of the spin-1/2 gas in the gas mixture:

nHyp Gas =
pHyp Gas [atm]

1 [atm]
273 [K]

THyp Gas [K]
FHyp Gas [amagat] . (4.54)

The xenon cell used for hyperpolarized 129Xe experiments was filled with 0.48 atm of nat-

urally abundant 129Xe (FXe = 26.44% = 2.644 × 10−3) at room temperature (300 K). The
129Xe number density in the cell was thus nXe = 0.115 amagats. The helium cell used for all

the hyperpolarized 3He experiments was filled with 0.74 atm of pure 3He (F = 100% = 1) at

room temperature. Therefore, the number density of 3He in the cell was nHe = 0.6825 am-

agats. Table 4.1 summarizes the gas content of the cells.

0.75

0.48

Hyp Gas Pressure

(atm)

0.103He Cell

0.14129Xe Cell

Nitrogen Pressure

(atm)

Table 4.1: The gas content of 129Xe and 3He cells used at Stanford. All pressures measured
at room temperature.

The thermal polarization of water protons is equal to the fraction of protons which are

in the lower energy state , N ↑ /Ntotal, minus the fraction of protons that are in the upper

energy state, N ↓ /Ntotal:

P thermal
H2O =

N ↑ −N ↓
N ↑ +N ↓ . (4.55)

Using the Boltzmann distribution, we can express the number of protons in the lower energy

state in terms of the number of protons in the higher energy state:

N ↑= N ↓ exp
(

∆E

kT

)
= N ↓ exp

(
h̄γB◦
kT

)
. (4.56)
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Substituting this relation into Eq. 4.55 we get

P =
[
1 − exp (−h̄γB◦/kT )
1 + exp (−h̄γB◦/kT )

]
= tanh

(
h̄γB◦
2kT

)
. (4.57)

At high temperatures T or small magnetic fields B◦ the hyperbolic tangent can be expanded

in a power series. If only the first power term is kept, the thermal polarization becomes

P ∼ h̄γB◦
2kT

=
µpB◦
kT

, (4.58)

since ∆E = 2µpB◦ = h̄γB◦ for a spin 1/2 particle. Notice that µp = 8.8 × 10−11 eV/mT,

kT = 0.0258 eV at room temperature, and B◦ = 397 kHz/42.58 kHz
mT . The thermal po-

larization of water at room temperature and 397 kHz readout frequency is thus PH2O =

3.18 × 10−8.

It only remains to evaluate the ratio of hyperpolarized gas and water signals. We col-

lected FID signals of distilled water using no polarizing waveform, so that the signal was

entirely due to the thermal polarization at the readout frequency (397 kHz). Since the

longitudinal relaxation time–which characterizes the rate of growth of thermal polarization

in the applied magnetic field–was measured to be around 2.4 s for distilled water, we started

signal acquisition approximately 3T1 or 7 s after the application of the readout pulse. This

“waiting period” enabled the protons to reach thermal equilibrium levels before the collec-

tion of the FID signal. The hyperpolarized gas and water FID signals were collected using

90-degree flip-angles for maximum SNR.

Both water and hyperpolarized FID signals were Fourier transformed into the frequency

domain and then analyzed using Matlab. First, the DC background level of both spectra

was estimated using a linear fit through the noise tails (see Figure 4.4 and 4.5) and then

subtracted from the main signal magnitude. This procedure removed any undesired im-

pulse which could have appeared in the time domain signal at t = 0 as a result of electronic

circuitry.10 The areas under the gas and water spectral curves were then estimated by inte-

grating the spectral function from one noise tail to the other. Finally, the gas polarization

was estimated using Eq. 4.52.

We also compared the noise levels of water and hyperpolarized gas signals. In principle,
10One possible source of the impulse at t = 0 is the digital filter which could be coupling the switching

noise into the AD converter.
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Figure 4.4: Xenon and water spectra used to calibrate xenon polarization levels.
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Figure 4.5: Helium and water spectra used to calibrate helium polarization levels.



83

if the water and gas signals were obtained on the same day, under the same conditions,

the noise levels of both signals should have been comparable in size, because the dominant

source of noise at the readout frequency of 397 kHz was the coil, which was the same

for both samples. Therefore, a mismatch in the water and gas noise levels could indicate

that the low-field pulsed resistive system response has changed after the collection of one

spectra and before the collection of the other. One possibility is phase noise, which is a

consequence of variations in the phase of the readout magnet that result when the magnet

heats up. Unfortunately, phase noise is a function of signal size and thus can change

the SNR response of the system. It is thus impossible to retroactively correct the signal

size by scaling the signals with the ratio of noise levels. The noise levels of water and

hyperpolarized gas in our measurements were within 70% of each other, which means that

the ratio of hyperpolarized gas and water areas is at best 30% accurate. The errors in

estimating other factors in Eq. 4.52 are negligible compared to the error in the estimation

of the areas. The calibration of noble gas polarization is thus 30% accurate. This level of

accuracy was satisfactory, since our goal at Stanford was not precise polarimetry, but to

explore the versatile function of the low-field pulsed resistive system in imaging water and

hyperpolarized gas.

Figure 4.4 shows 129Xe and water spectra plotted on the same scale, while Figure 4.5

shows 3He and water spectra. The typical 129Xe polarization after 5 min of pumping

with 7 W of circularly polarized laser power was between 2% and 7%, while after 30 min of

pumping with 7 W of laser power we were able achieve polarizations of around 1% for 3He.

4.5.2 Adiabatic Condition for Spin Transition in the Pulsed Scanner

Unlike water, which requires a polarizing field to increase its thermal polarization levels,

the hyperpolarized gas polarization is created by the optical pumping process and thus does

not require a polarizing waveform in the pulse sequence. Therefore, in the hyperpolarized

gas experiments, only the readout field B◦ was used. However, due to its pulsed nature,

the readout field is constantly turned on and off during imaging. While off, the noble gas

magnetization is aligned with the Earth’s field, which in the low-field pulsed resistive scanner

is not parallel to the readout field. In contrast, during the on state, the magnetization aligns

with the readout field which is two orders of magnitude bigger than the Earth’s field. If this

transition (see Figure 4.6) were nonadiabatic, significant polarization losses could occur.
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Figure 4.6: A schematic representation of the hyperpolarized gas magnetization alignment
during imaging on the low-field pulsed resistive scanner. Left: magnetization alignment
before the application of B◦ field. Right: magnetization alignment after the application of
B◦ field. An adiabatic transition between the two states is required to prevent polarization
loss.

We now compute the maximum ramping speed of the readout field allowed by the

adiabatic condition. The adiabatic condition dictates the rate of change of the angle between

the Earth’s field BE and the effective field Beff (t) (Figure 4.7). In the worst-case scenario,

the Earth’s field and the readout field are orthogonal.11 The angle θ between Beff and BE

can be expressed in terms of the time-varying readout field B◦ = tBmax/Tramp, where Bmax

is the saturation value of the readout field and Tramp is the time it takes the readout field

to reach its saturation value (see Figure 4.7),

θ(t) = arctan

(
tBmax

TrampBE

)
≡ arctan

(
t

α

)
, (4.59)

where α ≡ TrampBE

Bmax
. Thus,

θ̇(t) =
α

(t2 + α2)
. (4.60)

The transition will be adiabatic if the frequency of precession around the effective magnetic

field is much bigger than the rate of change of θ. Therefore, θ̇(t) � γBeff , where

γBeff = γ
[
B2

◦(t) + B2
E

]1/2

11Even though the Earth’s field was not orthogonal to the readout field in the low-field pulsed resis-
tive scanner, the worst-case scenario is a valid scenario at the beginning of the ramping period, when
B◦(t < 0) = 0. The readout field ramping time which we derive in this section can be viewed as an upper
limit on the ramping time that allows an adiabatic change of magnetization alinement. The ramping time
could be shorter if we created a special readout-field pulse.
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Figure 4.7: A vectorial representation of the hyperpolarized gas magnetization transition
during the ramping of the readout field. Left: Without the background field. Right: With
small background field, Blow, along z-direction.

= γ


(Bmaxt

Tramp

)2

+ B2
E




1/2

= γ
Bmax

Tramp

√
t2 + α2. (4.61)

The adiabatic condition can also be expressed as a ratio,

θ̇(t)
γBeff (t)

=
α2

γBE [t2 + α2]3/2
� 1. (4.62)

Worst case occurs when t = 0. Thus,

˙θ(0)
γBeff (0)

=
1

γBEα
� 1

⇒ Tramp

(
BE

Bmax

)
� 1

γBE
. (4.63)

In our case, BE ≈ 50 µT and Bmax = 25 mT. Hence,

Tramp
∼= 200 ms for 3He

∼= 600 ms for 129Xe. (4.64)

The results tell us that the magnetization will change adiabatically if the initial ramp-up

time of the readout field is at least 200 ms long for 3He and 600 ms long for 129Xe. However,

Tramp is limited by the magnet rise-up time L/R, where L and R are the coil’s inductance
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and resistance, respectively. For the readout magnet, the rise-up time is approximately

50 ms–a time too short for the adiabatic transition of hyperpolarized gas magnetization. A

different method was thus needed to achieve an adiabatic sweep.

The problem was solved by applying a small offset current to the readout magnet in

order to dominate the Earth’s field and prevent the angle change during the off state of

the readout field. The situation is illustrated on the right side of Figure 4.7. In this new

operational mode, the readout magnet was never completely off –it was either on a high

mode setting (which determines the readout frequency) or on a low mode setting (typically,

1 mT). A modified pulse sequence is shown in Figure 4.8.

180 180 18090

RF

Bo(t)

Signal

time
Bp(t)

Time-varying

T1 decay

Time-varying

T1 buildup

Low-field T2

decay

Figure 4.8: Timing diagram of a typical PMRI pulse sequence with a modified B◦ wave-
form. Unlike in the diagram of Figure 3.2, the B◦ is now on a low-field setting before the
application of the Bp pulse.

To demonstrate experimentally that a fraction of polarization is lost without the low

field enabled during the off mode of the readout magnet, we performed measurements of

FID amplitude with and without the background (low) field present. We observed anywhere

between 30% to 70% loss in hyperpolarized magnetization when the low-field setting was

disabled. The wide spread in measurements was due to our inability to control precisely

the parameters which affect the initial value of the gas magnetization, such as the time it

takes to walk the cell from the pumping setup into the imaging scanner. Using this method

we were also not able to determine accurately the minimal value of the low field required to

prevent magnetization losses. Instead, we performed an experiment which gave a negative
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result (i.e., no signal) when the low field was on, and a positive result (i.e., signal) when

the low field was off.

RF

G

Bo

Signal

Figure 4.9: Pulse sequence used for demonstrating the non-adiabatic ramp-up of B◦ pulse
in the absence of the low-field setting.
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Figure 4.10: Creation of spin echoes demonstrating the existence of transverse magnetiza-
tion before the ramp-up of the B◦ pulse: without the background field, with background
field = 25 µT and with background field = 100 µT.

The experiment relied on the creation of a spin echo using a 180-degree pulse, a technique

we described in Section 4.3.1. Figure 4.9 shows the sequence used in the experiment.

Notice that there is no 90-degree pulse in this sequence, which would normally flip the

magnetization from the z-axis on to the xy plane. Nevertheless, a spin echo was created

after the 180-degree pulse. This indicated the presence of transverse magnetization before

the (non-adiabatic) ramp-up of the B◦ field. On the other hand, if the low-field setting was
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enabled, the magnetization was aligned entirely along the z-direction before the ramp-up

of the B◦ field, and consequently, no echo was formed. A small “crusher” (i.e., destructive)

gradient was applied to destroy the FID signal which would result from an imperfect 180-

degree pulse.

Figure 4.10 shows the results of spin echo experiments, confirming the need for the low-

field setting during the off mode of the readout field cycle. When the low field was smaller

than 0.1 mT (twice the Earth’s field), an echo was created, which proves that transverse

magnetization existed before the ramp-up of B◦ field. This transverse magnetization would

have either been lost after the non-adiabatic ramp-up or, in the case of spin echo sequence,

could contribute to the creation of stimulated echoes. From the results in Figure 4.10 we

were able to conclude that the minimum (critical) field needed to prevent polarization loss

was 0.1 mT. The low field used in our experiments was 1 mT, which is well above the critical

value.
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4.6 Measurements of Irreversible Transverse Relaxation Us-

ing CPMG Sequence

Signal

time

( /2)x ( )y ( )y

TE

RF

TE

Figure 4.11: Pulse sequence used to generate a Carr-Purcell-Meiboom-Gill echo train.

The irreversible T2 relaxation, given by the Eq. 4.23, describes the decay of a spin echo

train in a Carr-Purcell-Meiboom-Gill sequence. The basic sequence used to create a spin

echo train is illustrated in Figure 4.11. First, a 90-degree pulse was applied along one of the

transverse axis (either x or y). A time TE/2 later, a 180-degree pulse was applied along the

other transverse axis (either y or x). The 180-degree pulse flips the spins in the transverse

plane (around either y or x axis) and causes a spin echo to appear at time TE after the

application of the 90-degree pulse. By reapplying the 180-degree pulses in equally spaced

intervals of length TE, an echo gets created each time at a half point (TE/2) between the

180-degree pulses. Since TE equals the length between two successive echoes, it is also

called “interecho time”. The axis of rotation of the 180-degree pulses (which is related

to the phase of the RF pulses) has to be parallel to the orientation of magnetization [29].

For instance, after the application of a 90-degree pulse which rotates the spins around the

x-axis, the spins are aligned along the y-axis; consequently, the 180-degree pulses have to be

applied along the y-axis. This algorithm prevents the accumulation of errors from imperfect

180-degree pulses.

Figure 4.12 shows an example of 3He and 129Xe spin echo trains obtained on the low-

field pulsed resistive scanner. Each plot contains 32 echoes. The interecho time for 3He was

57.03 ms, while the TE for 129Xe was 67.34 ms. There is nothing fundamental about the
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Figure 4.12: 3He (left) and 129Xe (right) spin echo trains obtained with the CPMG sequence.

TE times used in these experiments. The TE values were chosen so that we could display

clearly the TCPMG
2 relaxation experienced by the gas during the acquisition window.

To extract the TCPMG
2 time constant from the echo trains such as the ones shown in

Figure 4.12, we perform a least-square fit to the logarithm of the data.12 The fit is a straight

line of the form

ln (S) = − t

TCPMG
2

+ lnS◦ → y = −tk + n, (4.65)

where y = lnS is the natural log of the average (mean) echo magnitude, which was obtained

by integrating the area under each echo; n = ln S◦ is the natural log of the initial echo

magnitude; and k = 1/TCPMG
2 is the relaxation rate of the spin echo train in the CPMG

sequence. Figure 4.13 shows experimental data as well as the fit to the data (using Eq. 4.65)

of average echo magnitude as a function of time during a CPMG sequence. The TCPMG
2

relaxation time obtained from the fit was 49.5 s.

Measurements of TCPMG
2 showed a strong dependence of TCPMG

2 relaxation time on

the interecho time TE. Consequently, unique 3He and 129Xe TCPMG
2 relaxation times do

not exist. However, the dependence of TCPMG
2 on the interecho time is important for

determining the inherent T2 relaxation rate of gases, which is the subject of Section 4.8. In

that section we study the functional dependence of TCPMG
2 on TE and develop a method

for extracting the inherent T2 relaxation time from the TCPMG
2 data.

In the following two subsections we examine in more detail two common problems en-
12In Matlab, the least-square algorithm is implemented into the function polyfit which we used for fitting

the data.
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Figure 4.13: A logarithmic plot of the average measured 129Xe spin echo magnitude as
a function of time and best fit to the data. Number of echoes=4096, TE=7.29 ms, T2
extracted from the plot=49.5 s.

countered when using the CPMG spin echo sequence on the low-field pulsed resistive scan-

ner: the generation of stimulated echoes and the off-resonance effects resulting from the

resistive heating of the magnet.

4.6.1 Errors in RF Pulse Calibration and Stimulated Echoes

The duration of the RF pulses determines the magnetization flip-angle according to the

Eq. 4.48. The magnitude of B1 field in Eq. 4.48 is a function of the shape and size of the

RF coil, the strength of the current in the coil, and the position of the sample within the

coil. If the sample fills the coil (i.e., the coil fits tightly around the sample), the magnitude

of B1 can vary significantly across the sample. For all these reasons, the magnitude of B1

is not known a priori and the flip-angle calibration has to be determined experimentally.

The common procedure is to look for a null in the FID signal–a result of a 180-degree flip–

while systematically increasing the duration of the B1 pulse. However, this method is not

practical for hyperpolarized gases since (M◦ sinα) of noble gas magnetization is destroyed

after each α-degree pulse. We therefore always calibrate the RF pulses on a water phantom

and then scale the duration of the B1 pulse by the ratio of gas and water gyromagnetic

moments. For a flip-angle α, the duration of the B1 field in the case of hyperpolarized gas,
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THyp Gas
α , and in the case of water, TH2O

α , are related by

α = γp B1 TH2O
α = γHyp Gas B1 THyp Gas

α

→ THyp Gas
α =

γp

γHyp Gas
TH2O

α . (4.66)
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Figure 4.14: Measurement of FID magnitude as a function of B1 pulse duration.

Figure 4.14 is an example of RF pulse calibration. It displays the magnitude of the FID

signal at time t = 0 as a function of B1 pulse width. As predicted from

Mxy = M◦ |sin (γB1Tα)| , (4.67)

the dependence of the FID magnitude on the B1 pulse width is sinusoidal. The maximum

FID values correspond to odd multiples of π/2 (90◦ and 270◦), while the nulls correspond

to even multiples of π/2 (180◦ and 360◦). Measurements such as this one enabled us to

determine the width of B1 for any flip-angle.

One of the implication in using the above-described calibration procedure is that any

error in measuring the width of the 180-degree pulses translated into an error in the RF

flip-angle. The accuracy in determining the width of a 180-degree pulse when looking for

a null in the FID signal was ±1 µs. The width of the 180-degree pulse depended on the

signal attenuation used in producing the magnitude of B1 pulse. With the attenuation most

commonly used, the length of 180-degree pulse for water was around 120 µs. Thus, the error
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in the RF flip-angle could be as high as 0.8%-1%. This means that in the CPMG sequence,

around sin (180 − 0.01 × 180) = 3% of the initial magnetization might end up along the

longitudinal axis after each 180-degree pulse. This would cause an accelerated decay of the

transverse component Mxy. In addition, the magnetization stored along the longitudinal

axis would eventually be knocked back into the transverse plane by an imperfect 180-degree

pulse and contribute to the creation of stimulated echoes. Such echoes were observed

occasionally during our measurements. Figure 4.15 shows an example of an echo train that

produced stimulated echoes in the second half of the train. We attribute this effect to

miscalibrated 180-degree pulses.
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Figure 4.15: An example of the occurrence of stimulated echoes during a CPMG spin echo
train. Number of echoes=256, TE=27.03 ms.

4.6.2 Heating of the Magnet and Off-Resonance Effects

One of the challenges in using resistive magnets for MR imaging is temporal instability of the

magnetic field due to the resistive heating of the copper wires. The heat causes the copper

wires to expand outward from the center of the magnet bore–a process, which changes the

strength of the magnetic field at the position of the sample. In addition, the increase in the

temperature of the wires increases their resistance and, as a result, the power of the magnetic

field changes. The temporal instability of the B◦ field causes drifts in the readout frequency

and therefore, phase errors. In Section 3.4.1 we showed that for a field-of-view of 10 cm and

a resolution of 1 mm, the temporal stability of the magnet should be better than 100 ppm.
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The temporal drifts in the readout field are particularly damaging in the case of CPMG

sequence, which has stringent phase stability requirements. In Section 4.3.1 we derived an

expression (Eq. 4.20) for the complex transverse magnetization in the rotating frame after

the application of a 180-degree pulse, for the case of time-dependent local fields bj . In that

derivation we made an assumption that stationary spins (unlike freely diffusing spins) see a

constant, time-independent field, which enabled us to solve the integral in Eq. 4.20. That

assumption no longer holds when the local fields change due to temporal instabilities arising

from resistive heating of the magnet. In such a case, the two exponential terms in Eq. 4.20

no longer cancel out. The situation is conceptually similar to the case of diffusing spins;

the only difference is in the source of the temporal field variation.

To solve the time integrals in Eq. 4.20, we need to make an assumption about the form

of the bj(τ) field. To first order, the field drifts linearly with time, so that bj(τ) = b◦ + αt,

where b◦ is the Larmor frequency of the individual spin, and α = ∂b/∂t. Equation 4.20

then reduces to

M(2t1) =
1
N

N∑
j=1

exp
[
−iγαjt

2
1

]
M∗(0)

M(t) =
1
N

N∑
j=1

exp
[
− i

4
γαjt

2
]
M∗(0). (4.68)

Assuming all spins see the same field variation ∂bj/∂t ≡ ∂B/∂t, the sum over all spins

reduces to

M(t) = exp
[
− i

4
∂(γB)

∂t
t2
]
M∗(0). (4.69)

The above equation represents the complex magnetization at time t in terms of the initial

magnetization (at t = 0). We see that unlike in the case of time-independent field, the echo

for a linearly drifting field is phase shifted with respect to the original signal. As a result,

the axis of rotation is no longer parallel to the magnetization–a situation which violates the

CPMG condition (see beginning of Section 4.6). As the echo train progresses, transverse

phase errors diverge. This leads to the growth of the longitudinal magnetization, a faster

decay of transverse magnetization and, potentially, to stimulated echoes, as discussed in

Section 4.6.1.

Measurements of TCPMG
2 presented in Section 4.6 (see Figure 4.13) demonstrate that our

resistive system can maintain sufficient temporal stability to acquire as many as 4096 echoes
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in the time period of 30 s. This was an important milestone in investigating the use of

resistive pulsed low-field magnets for hyperpolarized gas imaging.
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4.7 Measurements of Diffusion Using PGSE Sequence

To determine the relaxation rate arising from the diffusion of spins through magnetic field

gradients (1/TD in Eq. 4.23), we need to know the value of diffusion coefficients for the

gas mixture used in our experiments. Appendix A gives a theoretical estimation of the

observable diffusion coefficients of 129Xe and 3He in the binary gas mixture with nitrogen gas,

based upon Lennard-Jones potentials. For measurements of 129Xe diffusion, a cell containing

0.48 atm of naturally abundant 129Xe and 0.14 atm of nitrogen was used. The theoretical

calculation gave an observable diffusion coefficient for 129Xe of (1.08 ± 0.08) × 10−5 m2/s.

For measurements of 3He diffusion, we used a cell that contained 0.75 atm of pure 3He gas

and 0.1 atm of nitrogen. The calculations yielded an observable diffusion coefficient for 3He

of (1.77 ± 0.12) × 10−4 m2/s. The diffusion coefficient of water is 2.26 × 10−9 m2/s [84].

Signal

time

( /2)x ( )y ( )y

TE

RF

G g

TE

n2n1

Figure 4.16: Pulse sequence used for measuring diffusion coefficients of hyperpolarized gases
and water. First n1 loops: no gradients used; last n2 loops: bipolar gradients with amplitude
= g, width = δ, separation = ∆.

The pulse sequence used for measurements of the diffusion coefficients is shown in Fig-

ure 4.16. A pair of bipolar pulsed gradients of size g, width δ, and separation ∆, was

added between each acquisition to the standard CPMG sequence (Figure 4.11). Since each

180-degree pulse inverts the sign of the preceding gradients, the area under the gradient

waveform is zero at the time of each acquisition. The first n1 echoes were acquired with the

gradient amplitude set to zero, while the last n2 echoes were acquired at a fixed value of g.
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As a result, there was an extra decay due to diffusion in the bipolar gradients during the

last n2 echoes only.

time

G g

d TEd+ d+ d+ +

Figure 4.17: Bipolar gradient waveform used in the diffusion sequence as a function of time.

To find this decay, we refer back to the Eq. 4.41 [59],

A(t) = A◦ exp


−Dγ2

∫ t

0

(∫ t′

0
g(t′′)dt′′

)2

. (4.70)

The signal decay due to diffusion is obtained by integrating the gradient waveform over

time. The bipolar gradients used in our diffusion experiments (Figure 4.16) are displayed

again in Figure 4.17, this time explicitly showing the sign inversion of the first gradient lobe

due to the 180-degree pulse. The time integral of g from the beginning of the waveform to

the occurrence of the spin echo at time t = TE is

∫ t′

0
g(t′)dt′′ =




0 0 < t < d

−g(t′ − d) d < t < d + δ

−gδ d + δ < t < d + ∆

−gδ + g(t′ − d − ∆) d + ∆ < t < d + ∆ + δ

−gδ + gδ d + ∆ + δ < t < TE

(4.71)

and the time integral of k2 is

∫ t

0

(∫ t′

0
g(t′′)dt′′

)2

= −
∫ d+δ

d
g2(t′ − d)2dt′ −

∫ d+∆

d+δ
g2δ2dt′

+
∫ d+∆+δ

d+∆

[
g2δ2 − 2g2δ(t′ − d − ∆) + g2(t′ − d − ∆)2

]
dt′
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= g2δ2
(

∆ − δ

3

)
. (4.72)

To obtain the amplitude of the nth echo we need to sum n such integrals. Thus,

A(nTE) = A◦ exp
[
−D nγ2g2δ2

(
∆ − δ

3

)]
, (4.73)

where D is the diffusion coefficient of the sample, A◦ is the initial signal amplitude, and γ

is the gyromagnetic ratio in radial units (i.e., rad/s/T).

We are now able to express the echo amplitude as a function of the interecho time TE

during the diffusion sequence from Figure 4.16,

A(n1TE) = A◦ exp

(
− n1TE

TCPMG
2

)
(4.74)

A ((n1 + n2)TE) = A◦ exp

(
−(n1 + n2)TE

TCPMG
2

− D n2γ
2g2δ2

(
∆ − δ

3

))
. (4.75)

Equation 4.74 refers to the echo amplitude of the first n1 echoes (at times n1 TE), while

Eq. 4.75 refers to the echo amplitude of the last n2 echoes (at times (n1+n2)TE). By taking

the logarithm of each equation above, we obtain two straight lines. A least-square-fit to

the two lines produces four parameters–slope and intersect of the first line, P1 and P2, and

slope and intersect of the second line, R1 and R2, where

P1 = − 1
TCPMG

2

P2 = lnA◦

R1 = − 1
TCPMG

2

− D
b

TE

R2 = Dn1b + lnA◦

and b ≡ γ2g2δ2(∆−δ/3). The above equation can be rewritten in matrix form as A ·x = B,

where

A =




0 −1 0

1 0 0

0 −1 − b
TE

1 0 n1b




B =




P1

P2

R1

R2




x =




lnA◦

1/TCPMG
2

D


 . (4.76)
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Since there are four parameters (vector B), but only three unknowns (vector x), the system

is over-constrained [85].13 The problem is then to search for the least-square solution x̄ that

minimizes the error E = (B−Ax̄). Geometrically, this translates to searching for a solution

x̄ such that the error vector E will be perpendicular to every column of A (or every row of

AT ). Therefore,

AT (B − Ax̄) = 0

x̄ =
(
AT A

)−1
AT b (4.77)

D = x̄(3). (4.78)

We have demonstrated that by fitting the echo amplitudes obtained with the diffusion

sequence to two straight lines, we can obtain an estimation of the diffusion constant using

Eqs. 4.77 and 4.78.

Figures 4.18, 4.19 and 4.20 show an example of diffusion measurements for 3He, 129Xe

and water, respectively. Figures on the left display the echo magnitude as a function of

acquisition time, while figures on the right show the average echo magnitude plotted on a

logarithmic scale as a function of real time and best linear fit to the data. From the log

plots one can see a clear change in the slope of the two linear fits, which can be attributed

to diffusion losses in bipolar gradients during the last n2 echoes.

The difference in the slopes of the two straight fits depends on the parameter b (see

Eq. 4.42). In the case of bipolar gradients of amplitude g, width δ, and separation ∆, the

value of b for the n2th echo is

b ≡ 4π2
∫ t

0
k2(τ)dτ = n2γ

2g2δ2
(

∆ − δ

3

)
. (4.79)

In our experiments, we chose values of b that produced a visible change in the slope of

the two linear fits. For 3He, b(n2 = 1) ranged from 0.5×103 s/m2 to 2×103 s/m2, for 129Xe

from 4× 103 s/m2 to 2.5× 104 s/m2, and for water from 3.5× 107 s/m2 to 1.5× 108 s/m2.

We observed that a value of b which was smaller than the lower limit of the intervals

given above produced large uncertainties in the measurements of diffusion coefficients for

xenon and helium, and gave unreasonable results (i.e., negative D values) for the diffusion
13There will not exist a choice of x that perfectly fits the parameters of B.
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Figure 4.18: Left: 3He spin echo train obtained with diffusion sequence from Figure 4.16.
Right: Average echo amplitude from (right) plotted on a log scale as a function of time and
best fit to data. n1=4: g=0; n2=8: g=0.368 mT/m; TE=105.35 ms, ∆=10.09 ms, δ=5 ms.
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Figure 4.19: Left: 129Xe spin echo train obtained with diffusion sequence from Figure 4.16.
Right: Average echo amplitude from (right) plotted on a log scale as a function of time and
best fit to data. n1=4: g=0; n2=8: g=2.76 mT/m; TE=135 ms, ∆=25.22 ms, δ=5 ms.
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Figure 4.20: Left: Water spin echo train obtained with diffusion sequence from Figure 4.16.
Right: Average echo amplitude from (right) plotted on a log scale as a function of time and
best fit to data. n1=8: g=0; n2=8: g=13.8 mT/m; TE=75.55 ms, ∆=35.13 ms, δ=15 ms.
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coefficient of water. The problem lies in the fact that a small value of b, combined with

a small diffusion coefficient of water DH2O, produces a signal decay e−Db which is smaller

than the statistical variation of our measurements. Dividing the data into two parts and

then fitting each part to a straight line can result in a negative slope difference and thus a

negative diffusion coefficient.

4.7.1 Uncertainties in Determining Diffusion Coefficients of Hyperpolar-

ized 129Xe and 3He

Let us first estimate the uncertainty in the theoretical estimation of diffusion coefficients

for bipolar gas mixtures. Since the calculations involve many tabulated parameters, they

are presented in Appendix A. From Eqs. A.2, A.4, and A.5 we see that the largest un-

certainty in the estimation of observable diffusion coefficient of 129Xe and 3He comes from

the uncertainty in the temperature of the gas inside the cell and, to a lesser extent, from

the uncertainty in the pressures of the gases in the binary gas mixture. By performing

simple experiments in which we measured the temperature of 129Xe and 3He cells during

optical pumping and then again 2-5 min after cooling them in cold water, we were able to

determine that the temperature of the 129Xe cell was 30 ± 10◦C, while the temperature of

the 3He cell (which was pumped at a higher temperature than 129Xe) was 35 ± 10◦C. The

uncertainty in the pressure of gases inside the cell is directly related to the accuracy of the

cell-filling process which we estimated to be ±0.01 atm.

To estimate the uncertainty in the measurement of diffusion coefficient we return to

Eqs. 4.76, 4.77, and 4.78. The diffusion coefficient D is a function of the elements of

matrices A and B:

D =
TE

b
(
1 + n2

1 TE2
) {P (1) − n1 TE P (2) − R(1) + n1 TE R(2)} . (4.80)

Therefore, the uncertainty in D will mainly be a function of the uncertainties in b, TE,

and uncertainties in the fit parameters P (1), P (2), R(1), R(2). From Figures 4.18, 4.20

and 4.19 we can see that the fits match the data almost perfectly, so the uncertainties in

the fit parameters can be ignored. The uncertainty in the interecho time should also be

negligible, because the console system can generates time intervals with 10 µs accuracy,

while the smallest interecho times were 5 ms. The uncertainty from the TE times would
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thus be less than 0.5%.

Finally, it is important to evaluate the uncertainty in the parameter b ≡ γ2δ2(∆− δ/3).

The dominant error in b comes from the gradient strength g = η I, where η is the gradient

efficiency coefficient in units of mT/m/A, and I is the current through the gradient coils in

units of Amperes. The gradient efficiencies were calibrated for each gradient coil with 5%

accuracy. Since the gradient efficiency is the dominant source of uncertainty, we conclude

that the measurements of 129Xe, 3He and water diffusion coefficients are ∆D/D = 2∆g/g =

10% accurate. This estimation is also consistent with the spread of D values obtained from

repeated measurements.

(2.0 +/- 0.3) x 10-9(2.10 +/- 0.21) x 10-9H2O

(1.77 +/-0.12) x 10-4(1.69 +/- 0.17) x 10-43He

(1.08+/-0.08) x 10-5(1.28 +/- 0.13) x 10-5129Xe

D (m2/s)

Theory

D (m2/s)

Experimental

Table 4.2: Table of experimental and theoretical values of diffusion coefficients for 129Xe,
3He and distilled water.

Table 4.2 summarizes the experimental values of 129Xe, 3He and water diffusion coeffi-

cients obtained on the pulsed low-field resistive scanner using the pulse sequence from Fig-

ure 4.16, and compares them to the theoretical values which are calculated in Appendix A.

The theoretical value for the water diffusion coefficient was obtained from Piton et.al. [84].
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4.8 Measurement of Intrinsic (Spin-Spin) T2 Relaxation Us-

ing CPMG Sequence with Variable Interecho Times

At the end of Section 4.6 we indicated that the measured TCPMG
2 of hyperpolarized gases

depends strongly on the interecho time TE used in the CPMG sequence. We are now going

to investigate this dependence in more detail.

The TCPMG
2 measurements showed that using longer interecho times in the CPMG

sequence resulted in shorter measured TCPMG
2 relaxation times. This dependence is in-

dicative of diffusion-induced losses (see Section 4.4.1) which occur when spins diffuse out

of the voxel that is being inverted and refocused by the 180-degree pulse of the CPMG

sequence. The longer the time between two successive 180-degree pulses (which equals the

interecho time TE in Figure 4.11), the bigger the average distance travelled by the spins

during that time and the bigger the loss of signal coherence. However, diffusion loss is the

result of random phase accretion when spins diffuse through magnetic field gradients, and

there were no external gradients used in the CPMG pulse sequence of Figure 4.11. Does

this mean the reasoning just presented is flawed? Not really. Even though there were no

external gradients applied during the CPMG sequence of Figure 4.11, there were gradients

present due to magnetic field inhomogeneity as well as gradients due to the magnetic field

susceptibility differences between air and the sample.14 These gradients, which are constant

throughout the CPMG sequence, are estimated to be small (on the order of 0.1 mT/m),

yet can cause a detectable signal loss because of the large diffusion constant of gases.

To compute signal decay due to constant gradients we refer back to Figure 4.17 and

Eq. 4.73. The amplitude of the nth echo in the case of constant gradients is the limiting

case of Eq. 4.73, with δ → TE/2 and ∆ → δ. At time t = nTE,

A(nTE) = lim
δ=∆→TE/2

{
A◦ exp

[
−D nγ2g2δ2

(
∆ − δ

3

)]}

= A◦ exp
[
− 1

12
Dnγ2g2TE3

]
. (4.81)

14In the case of spherical glass cells, the susceptibility effects are negligible.
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By adding the decay due to the inherent T2 relaxation, we get

A(nTE) = A◦ exp
(
−nTE

T2

)
exp
(
− 1

12
Dnγ2g2TE3

)
. (4.82)

Since the detected relaxation rate is 1/TCPMG
2 , the two exponentials can be combined into

a single decay term,

A(nTE) = A◦ exp

(
− nTE

TCPMG
2

)
, where

1
TCPMG

2

≡ 1
T2

+
1
12

Dγ2g2TE2. (4.83)

The above equation expresses the relationship between the TCPMG
2 relaxation time and the

interecho time TE. We see that the inherent T2 relaxation is equal to TCPMG
2 relaxation

at TE = 0.

We performed TCPMG
2 measurements using the pulse sequence shown in Figure 4.11

and with TE times ranging from 5 ms to above 100 ms for 129Xe, 3He and water. We then

plotted TCPMG
2 versus TE and fitted the data using least-square method to a two-parameter

function of the form

F (TE) =
1

1/a + bTE2
. (4.84)

Using Eq. 4.83, the values of a and b give the inherent T2 relaxation and the gradient

amplitude due to the magnetic field inhomogeneities, respectively:

T2 = a (4.85)

g =

√
12b

Dγ2
. (4.86)

Since the inherent T2 relaxation and the gradient amplitude g are independent of each other,

we should obtain, within the experimental error, same T2 relaxation times regardless of the

size of the background gradients. We therefore repeated the TCPMG
2 (TE) measurements

for a range of g values (0.01 mT/m-0.4 mT/m) which were controlled with the size of the

shimming currents applied to the magnetic field gradients (see beginning of Section 4.5).

The measurements of TCPMG
2 for different g values should, in theory, converge to a single

point at TE = 0.
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Figures 4.21, 4.22, and 4.23 show the results of our TCPMG
2 (TE) measurements for 3He,

129Xe, and water, respectively. Water measurements were done on distilled water as well as

water doped with 0.012 molar CuSO4 ·5H2O–a substance which decreases the T2 relaxation

time of water. Only the results for the distilled water are shown. The water measurements

should show no variation in the measured TCPMG
2 beyond the statistical error because of

the small diffusion constant of water (see Section 4.7). This is confirmed in Figure 4.23.

The average T2 relaxation time of distilled water was 1 s, while T2 of doped water was

around 42 ms. Both results are in agreement with expectations.

Analysis of the three sets of 129Xe TCPMG
2 data in Figure 4.22 results in an inherent T2

relaxation of 129Xe equal to 46.7±0.5 s. On the other hand, the inherent T2 relaxation time

of 3He for the two sets of data in Figure 4.21 is equal to 19.2 ± 4.5 s. In the next section

we examine the sources of errors involved in obtaining this data.

4.8.1 Uncertainties in Determining Inherent T2 Relaxation of Hyperpo-

larized 129Xe and 3He

Equation 4.84 tells us that the inherent T2 relaxation of 129Xe and 3He is obtained from

one of the parameters of a two-parameter fit. The quality of the fit will thus determine

the uncertainty in the inherent T2 time. In addition, we need to examine the uncertainty

associated with the data of Figures 4.21 and 4.22. Each data point in these plots was

obtained from the least-square fit of the CPMG echo train (see Figure 4.13). Consequently,

the uncertainty in the extracted TCMPG
2 time constant will contribute to the uncertainty

in the data points of Figures 4.21 and 4.22. By shifting the data in the vicinity of TE = 0

for the amount of TCPMG
2 uncertainty we concluded that the uncertainty in the estimation

of the inherent T2 is between 3% and 6%.

The uncertainty of 6% is sufficient to explain the variation in the extrapolated T2 times

for the three sets of 129Xe data, but it does not suffice to explain the 20% error in the 3He

data. We thus have to look at possible systematic errors.

There are many effects which can shorten the measured TCPMG
2 times. We mentioned

some of them, such as the uncertainties in the calibration of the 180-degree pulses and the

off-resonance effect due to the resistive heating of the magnet, in Sections 4.6.1 and 4.6.2.

However, none of these possible sources of error should affect 3He data more than 129Xe.

One major difference between 3He and 129Xe experiments was the temperature of the cell
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Figure 4.21: 3He TCPMG
2 data as a function of interecho time, TE, for two shimming values,

and a fit to the data according to Eq 4.84. g ≈ 0.06 mT/m, T2 = 23.7 s; g ≈ 0.01 mT/m,
T2 = 14.7 s.
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Figure 4.22: 129Xe TCPMG
2 data as a function of interecho time, TE, for three shimming

values, and a fit to the data according to Eq 4.84. g ≈ 0.02 mT/m, T2 = 47.2 s; g ≈
0.13 mT/m, T2 = 46.5 s; g ≈ 0.38 mT/m, T2 = 46.3 s.
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Figure 4.23: Distilled water TCPMG
2 data as a function of interecho time, TE, and a fit to

the data according to Eq 4.84. g = 0.005 mT/m, T2 = 1.04 s.
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during optical pumping (120◦C for 3He vs. 80◦C for 129Xe). Since the signals were collected

immediately after placing the cell into the low-field scanner for best SNR values, the 3He

cell might not have been in thermal equilibrium during data acquisition and the gas inside

the cell might have been undergoing convective flow.

To understand how flow of gas inside the cell would decrease the echo magnitude and

contribute to TCPMG
2 decay, we return to Eq. 4.40. The second term on the right hand

side represents the phase shift of the echo in the presence of flow with velocity v. Since no

external gradients were applied during the CPMG sequence, the gradient g(t) in Eq. 4.40

will be due to the magnetic field inhomogeneities. For a constant background inhomogeneity

of magnitude g, the time integral reduces to

∫ t

0

(∫ t′

0
g(t′′)dt′′

)
dt′ = −1

4
g TE2. (4.87)

The second term in Eq. 4.40 thus becomes

exp

[
iγv ·

∫ t

0

(∫ t′

0
g(τ)dτ

)
dt′
]

= exp
[
− i

4
γ v · g TE2

]
(4.88)

For 3He, γ = 32.43 kHz/mT, g was on the order of 0.1 mT/m, and the shortest TE time

was 7 ms.15 In the worst-case scenario, v · g = v g. For a 1-degree phase shift we have

exp
[
−1

4
γ v g TE2

]
= exp

[
−i

π

180

]

v = 1 cm/s. (4.89)

The result tells us that if the convective flow moves with velocity of 1 cm/s (a plausible

assumption), each spin echo would be phase-shifted 1-degree from the previous one. This

would violate the CPMG condition which requires that the axis of rotation remains parallel

to the gas magnetization (see also Section 4.6.2) and result in an accelerated decay of spin

echoes and a shorter TCPMG
2 time.

We tested our “flow” hypothesis by performing some simple tests. Table 4.3 gives an

overview of these tests and the corresponding qualitative results. On the basis of the test

results we were able to form the following conclusions: 1. Shaking the cell and so disturbing
15The error in T CPMG

2 of the echo train with the shortest TE time will weight the most in the evaluation
of the error in T2.
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the gas inside the cell does indeed affect the quality of spin echoes and the rate of decay of

the spin echo train; 2. In our in vitro experiments the effect of gas movement (due to shaking

or high temperatures) subsides after 10-20 s, hence data acquisition should not begin before

the gas had the time to reach thermal equilibrium; 3. Spin echoes decay faster if the cell

is not at room temperature during data acquisition, although more studies (possibly with
3He gas rather than 129Xe) would have to be done to understand whether this effect is due

to hyperpolarized gas relaxation resulting from collisions with unpolarized Rb vapor or due

to the effects of gas flow.

In summary, we think that either shaking of the cell and/or not cooling the gas inside

the cell to room temperature affected our TCPMG
2 data and thus contributed to the error

in the inherent 3He T2 relaxation times. Evaluating the size of this systematic error would

require a more detailed study. Alternatively, we could increase the statistics of 3He data.

Finally, understanding the effects of flow on a CPMG spin echo train and the measured

TCPMG
2 relaxation time would be essential in in vivo experiments, due to the motion (flow)

of gas through the bronchi and lungs.

FastGood
Cooling for 10 sec before data 

acquisition

SlowGood
Shaking + waiting 10 sec before 

data acquisition

FastBad
No cooling of the cell before 

data acquisition

Qualitative Results

Flow Tests using Xe cell

Good

Good

Poor

Quality of Spin-

Echo Train

Slow
Cooling for 20 sec before data 

acquisition

Slow
No shaking before 

data acquisition

Fast
Shaking the cell vigorously before 

data acquisition

Rate of Spin-

Echo Decay

Table 4.3: Results of simple qualitative experiments testing the hypothesis of gas flow.
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4.9 Conclusions

We have investigated the possibility of using a pulsed (or variable) rather than a static

resistive system for low-field hyperpolarized gas imaging. In particular, the field instability

at 397 kHz (i.e., 33 mT for 129Xe) is small enough to allow the implementation of the CPMG

spin echo sequence. We were able to collect 129Xe CPMG spin echo trains lasting over 30 s

and following a well behaved exponential decay. In addition, by adding a small offset field

to the readout magnet, we guaranteed an adiabatic transition in magnetization alignment

during the pulsing of the readout magnet and hence prevented loss of gas polarization.

We have developed a single-shot sequence for measuring diffusion coefficients of gases

which separates diffusion losses from TCPMG
2 relaxation losses. Our diffusion sequence

was a variation of the pulsed gradient spin echo sequence, with external gradients applied

in the second half of the sequence only. For the binary mixture of hyperpolarized gas

and nitrogen, the experimental values of 3He, 129Xe and water diffusion coefficients were:

DHe3 = (1.69 ± 0.17) × 10−4 m2/s, DXe129 = (1.28 ± 0.13) × 10−5 m2/s, and DH2O =

(2.10± 0.21)× 10−9 m2/s. The dominant experimental error was due to the uncertainty in

the gradient strengths. This error could easily be reduced in the future by calibrating the

gradient strengths more accurately. Finally, the experimental measurements agree well with

the theoretical calculations of diffusion coefficients using Lennard-Jones [30] potentials.

Because diffusion coefficient is dependent on the cell pressure and gas composition, it is

difficult to compare our data with the existing experimental data on diffusion coefficients.

Schmidth et al. [80] measured a 3He diffusion coefficient of 21.3 ± 0.4 mm2/s at 7 atm of

gas, which translates to (1.491±0.028)×10−4 m2/s at 1 atm of gas and agrees well with our

measurement to within the uncertainty in the nitrogen pressure used in their experiment.

Peled et al. [82] measured a 129Xe diffusion coefficient of 0.0579× 10−4 m2/s, which is very

close to our calculated 129Xe self-diffusion coefficient (see Appendix A), so we conclude that

their gas mixture had negligible amounts of nitrogen gas.

Finally, by varying the interecho time in the CPMG sequence we were able to determine

the T2 relaxation time at zero interecho spacing, which represents the inherent T2 decay of

hyperpolarized gas and is the upper limit on the time available for spin echo imaging. We

measured an inherent 129Xe T2 relaxation of 46.7± 0.5 s, and an inherent 3He T2 relaxation

of 19.2±4.5 s. We hypothesize that the large error in the 3He data might be due to the flow
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(motion) of gas inside the cell, which would result if the cell is not in thermal equilibrium

during data acquisition or is shaken before being placed in the scanner.

Most of the T2 values quoted in literature are the TCPMG
2 times which include diffusion

losses in the background gradients. For instance, Pfeffer et al. [86] point out that their T2

measurement was influenced by the field inhomogeneities so that the 129Xe relaxation time

of 12.9 ± 1.9 s was the lower limit on 129Xe T2 relaxation. Darrasse et al. [47] measured

TCPMG
2 for 3He in lungs at two different interecho times (10 ms, 30 ms) but did not use

their measurements to find the inherent T2 in lungs.

For future work, it would be interesting to see whether our method for determining the

inherent T2 times would be applicable to in vivo experiments. When imaging lungs, the

effect of gas flow on the T2 measurements would need to be studied in detail. However, such

a study requires a full body scanner.




