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Abstract

In the information age, network systems and applications have been growing rapidly to
provide us with more versatile and high bit rate services. However, the limited bandwidth
restricts the amount of information that can be sent through the networks. Thus efficient
data representation or source coding is imperative for future network development. Distinct
from the traditional source coding strategy, network source codes take advantage of the

network topology and are able to maximally compress data before transmission.

In this thesis, I present a variety of source coding techniques for use in network environ-
ments and demonstrate the benefits of network source codes over traditional source codes

from both theoretical and practical perspectives.

First, I address source coding for broadcast systems. The results I obtain include deriva-
tion of the theoretical limits of broadcast system source codes, algorithm design for optimal
broadcast system vector quantizers, implementation of the optimal code, and experimental

results.

Then, I focus on multiple access systems which are the dual systems of broadcast systems.
I present the properties of multiple access source codes and generalize traditional entropy
code design algorithms to attain the corresponding optimal multiple access source codes for

vi



vii
arbitrary joint source statistics. I further introduce a family of polynomial complexity code
design algorithms that approximates the optimal solutions. Application to universal coding
for multiple access networks when the joint source statistics are unknown a prior: is briefly
discussed. Finally, I demonstrate algorithmic performance by showing experimental results
on a variety of data sets.

Finally, in seeking a simple lossy source coding method for general networks, I apply
entropy constrained dithered quantization in network source code design and present the
coding results for multi-resolution source codes and multiple access source codes. Multi-
resolution and multiple access dithered quantizers are low complexity codes that achieve

performance very close to the theoretical rate-distortion bound.
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Chapter 1

Introduction

In the information age, network systems and applications have been growing rapidly. They
provide an enormous variety of services, for example, Internet browsing, wireless commu-
nications, satellite communications, video conferencing, sensor networks, and distributed
computing. However, further development of advanced network technologies is limited by
the amount of information that can be sent through the corresponding networks. In networks
where bandwidth is critically limited, it is imperative to use efficient data representations or
source codes for optimizing network system performance.

I define a network to be any collection of nodes joined by communication links. In the
most general case, every node in a network can communicate with every other node. Each
node in a network has a collection of sources to be encoded into messages for transmission
and a collection of sources for which it receives descriptions and builds reproductions. The
traditional source coding strategy suggests that each node should compress each of its out-
going sources and decompress each of its incoming sources independently; thus this strategy

is independent of the network topology.
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In this thesis, I demonstrate the benefits of the alternative “network” approach in which
network topology is incorporated into the compression system design. The data compression
algorithms designed for use in network systems are called network source codes. Almost three
decades have passed since the teams of Slepian and Wolf [2], Gray and Wyner [3], and Wyner
and Ziv [4] demonstrated (for three simple networks) the enormous gains achievable in mov-
ing from source codes designed for traditional (single-sender, single-receiver) communication
systems to network source codes. Yet the theory and design of network source codes remain
largely unsolved problems. This thesis aims at tackling the problems of network source cod-
ing theory and design for some rudimentary network scenarios. In particular, I focus on code
design for broadcast and multiple access systems.

Both lossless and lossy source codes are required for communications. Lossless codes
are typically applied in applications like text transmission, banking, military data, and
medical research, where perfect reconstruction of the data is required. Lossless codes are
also used inside lossy codes. Lossy codes are generally applied in applications like video
and image transmission, personal communications, Internet browsing, where some sacrifice
in reconstruction fidelity is considered acceptable in light of the higher compression ratios of
lossy codes. I work on both lossless and lossy network source codes in my thesis.

To tackle the problem of network source coding, I first choose two subsystems of a general
network: broadcast system and multiple access networks, and treat each individually.

Chapter 2 treats source coding for broadcast systems. Broadcast systems represent ap-
plications where one node must simultaneously send either the same or different information
to multiple nodes in the network. My research here gives results on both the theory and

the practice of lossless and lossy broadcast system source codes, including derivation of the



theoretical limits of broadcast system source codes, a design algorithm for optimal broad-
cast system vector quantizers, a discussion of optimal code implementation and experimental
results. This work also appears in [5, 6, 7].

Chapter 3 treats source coding for multiple access systems. Multiple access systems play
a central role in an enormous variety of network technologies, where several transmitters
send information to a single receiver. Multiple access source codes yield efficient data rep-
resentations for multiple access systems when cooperation among the transmitters is not
possible. In this chapter, I present the properties of instantaneous and uniquely decodable
multiple access source codes and generalize the Huffman and arithmetic code design algo-
rithms to attain the corresponding optimal instantaneous multiple access source codes for
arbitrary joint source statistics. I further introduce a family of polynomial complexity code
design algorithms that approximates the optimal solutions. Application to universal coding
for multiple access networks when the joint source statistics are unknown a prior: is also
briefly discussed. Finally, I demonstrate algorithmic performance by showing experimental
results on a variety of data sets. This work also appears in [8, 9, 10, 11, 12, 13, 14].

While most of the thesis treats lossless or nearly lossless coding, low complexity lossy
source coding algorithms for network are also a topic of considerable importance and interest.
Chapter 4 treats low complexity code design for a special type of broadcast source code called
a multi-resolution source code. Multi-resolution source codes are compression algorithms for
broadcast applications where all users desire the same information but different users may
have different rate constraints.

Chapter 4 introduces and analyzes entropy constrained dithered quantizer for multi-

resolution and multiple access source codes. For multi-resolution source coding, I demon-
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strate that a scalar entropy constrained dithered quantizer can achieve performance at most
a constant distance away from the n-dimensional optimum for arbitrary sources. For multiple
access source coding, entropy constrained dithered quantization can also achieve performance
close to the optimum for certain sources. My publications for this part include [15, 16, 17].

Finally Chapter 5 summarizes the contributions of this thesis and lists open problems for

interested readers.



Chapter 2

Source Coding for Broadcast Systems

2.1 Introduction

A broadcast system is a network in which one transmitter simultaneously sends information
to a collection of receivers. The information sent by the transmitter may include both com-
mon information, intended for a collection of receivers, and private information, intended for
only one receiver. Broadcast systems play a role in many network communication environ-
ments. For example, a base station sending information to a collection of hand-held units
in a wireless communication network is a broadcast system; similarly, a video conferencing
system may be modeled as a collection of broadcast networks, where each node broadcasts
one user’s voice and video messages to all other nodes in the network. Paging systems and
computer networks are also examples of network technologies where broadcast systems play
a central role.

Broadcast system source codes (BSSC), introduced in [5, 6, 7], are source codes explicitly

designed for broadcast systems. I first use a simplified broadcast system with two receivers
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to illustrate the idea of BSSC. In this system, the transmitter sends private information X;
to receiver 1, private information X, to receiver 2, and common information X, to both
receivers. Receiver 1’s reproduction of (X1, X 5) is denoted by X; = (X;,1, X1.9.1). Likewise
receiver 2’s reconstruction is Xy = (XQ,Q, X 12,2)-

To understand the potential benefit of BSSC, consider the following lossless coding exam-
ple, illustrated by Figure 2.1. To achieve lossless source coding in a broadcast system using
only traditional (single-encoder, single-decoder) source codes, we must encode the sources
X1, Xz, and X, independently using three separate encoders placed at the transmitter.
That is, we independently map each source Xg (S € {{1}, {2}, {1,2}}) into a channel code-
word Cs from some rate-Rg lossless source code. Receiver 1 noiselessly receives C; and
(1,2, and independently decodes C; to give Xl,l, and Cj 5 to give Xl,g,l using two separate
decoders co-located at receiver 1. Likewise, receiver 2 receives Cy and (9, and uses in-
dependent decoders to reconstruct Xg,g and X’LQ,Q in the same way. The decoder for the
common information C o located at receiver 1 is the same as the decoder for Cjo at re-
ceiver 2. And thus X1,2,1 = XLQ’Q. Further, for this example all codes are lossless, and thus
Xl,Z,l = X1,2,2 = X1,2, X1,1 = X, and X2,2 = Xo.

The above method decomposes the broadcast system into three separate encoder-decoder
subsystems, each of which works on a single information source Xg independently. Thus,
the rate Rg required by the decoder to losslessly reconstruct a random variable Xg must
be greater than or equal to the entropy H(Xg). As a result, the total rate R, = R; +
R, > received at receiver 1 and the total rate R, = Ry + R received at receiver 2 must
be bounded as R,; > H(X;)+ H(Xi2), and R,p > H(X3) + H(X;2) to achieve lossless

compression with the system described above.
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Figure 2.1: Traditional (single-encoder single-decoder) source codes for broadcast system.
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Figure 2.2: Broadcast System Source Coding.

Now consider replacing the collection of encoders at the transmitter with a single encoder
at the transmitter and replacing the pair of decoders at each receiver by a single decoder
at each receiver, as shown in Figure 2.2. I call the resulting code a broadcast system source
code. Now, I jointly encode (X3, X, X 2) into (Cy, Cs, C12) with a single encoder. Receiver
1 noiselessly receives and jointly decodes (Cy, C12), while receiver 2 noiselessly receives and
jointly decodes (C2,C12). In this case, the encoding of X;, X5, and X;, need not be
independent, and likewise the decoding at each receiver is performed together. The following
algorithm can thus be employed. Losslessly describe source X o with codeword C} o from a

rate-H (X ) entropy code. Losslessly describe sources X; and X, with codewords C; and
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Cy from rate-H (X;| X, ) and rate-H (X3|X; 2) conditional entropy codes conditioned on X »
respectively. Receiver 1 receives both C; and (' 2, while receiver 2 receives both C5 and C ».
Each decoder can decode the common information (described by C ») first and then use that
common information to decode the received private information (described by C; or Cy). The
total rate for receivers 1 and 2 respectively are R,; = H(X;2) + H(X1|X12) = H(X1, X12)
and R.o = H(X,2) + H(X2|X:2) = H(Xy, X1 ), which are the minimal total rates possible
for the given transmissions. When X; and X, » are dependent random variables, this rate is
smaller than the rate required by the previous method.

The above simple example demonstrates both the problems inherent in using traditional
source codes in broadcast systems and the potential benefits of BSSC. In particular, the
use of existing (single-encoder, single-decoder) source codes fails to take advantage of the
specific characteristics of the broadcast system. Our most basic innovation in the proposal of
BSSC is the assertion that source codes should be designed specially for broadcast systems.
Dependent encoders at the transmitter and dependent decoders at each receiver are necessary
in order to achieve optimal performance. Note, however, that the method given in the
earlier example does not generalize to lossless codes with more than two receivers or to lossy
source coding, where performance gains are likewise expected. Thus while the given method
demonstrates the inefficiencies of using independent codes, it does not solve the general BSSC

design problem. In later sections, I describe practical algorithms for optimal BSSC design.

Chapter Outline

This chapter treats the performance limits, optimal design, and empirical behavior of lossless

and lossy BSSCs.
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Section 2.2 defines notation. In Section 2.3, I derive the achievable rate region for lossless
broadcast system source coding in an M-receiver system. Section 2.4 contains a detailed
description of a locally optimal design algorithm for fixed- and variable-rate broadcast system
vector quantization (BSVQ) for general M-receiver broadcast systems. The optimal design
algorithm, which relies on a k-ary tree structure for some k > 3, generalizes the optimal
multiple description vector quantizer design algorithm of [18]. In Section 2.5, I demonstrate
the empirical performance of BSV(Q for a 2-receiver broadcast system and compare that
performance with the performance achievable with independent single-transmitter, single-
receiver codes in the same system, thereby demonstrating the benefits of lossy BSSC. The

key contributions of this chapter are summarized in Section 2.6.

2.2 Notation

Consider a single-transmitter, M-receiver broadcast system. I label the receivers by 1,..., M
and define M = {1,..., M}. Let S be the set of all nonempty subsets of M. Then each
set S € § describes a group of receivers to whom a particular message may be sent. For
an M-receiver system, the cardinality of S is 2™ — 1, and thus there can be as many as
2M _ 1 messages to be described. I assume an arbitrary but fixed ordering on S; thus
S=1{5(1),...,502™ —1)}. For any set S € S, Xg[1], Xs[2],... denotes the random source
sequence to be described to all receivers in set S, and Xs denotes the corresponding source
alphabet; thus for each 7 > 1, source symbol Xs[i] may take on any value zg € Xg. If

|S| > 1, then Xg is the common information received by all of the receivers in S; if |[S| =1,

then X is the private information received by the single receiver in S.
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For any M-receiver broadcast system, a broadcast system source code contains one en-
coder and M decoders. In the most general case, the broadcast system transmitter uses the
single encoder to jointly describe all sources X such that S € §. Each receiver r € M uses
a single decoder to jointly decode the descriptions of all sources Xg such that r € S.

This work treats block BSSCs. I therefore begin by fixing blocklength or coding dimension
n. For each S € S, I block the source sequence {Xg[i]}3°, into vectors of length n and use
Xg € X% to denote a single n-vector. The encoder jointly encodes all source vectors X3g
with § € §. For any receiver r € M, the decoder at receiver r jointly decodes all messages
X2 with S €S, ={S €S8 :reS} Nowfor any set W C S, let X7, denote the vector
(X¢:SeW)and A} = [[gey A& denote the corresponding product alphabet; thus X7,
can take on any value xJ,, € A}, where the components of X7, and its alphabet A7}, are
ordered according to the fixed ordering on S. Then X% € X¢ is the vector of sources
described by the encoder and X € X3 is the vector of sources intended for receiver r.
For notational simplicity, I abbreviate this notation as X" = X%, X" = X, X! = X% and
X = Xg . Finally, for each S € S and r € S, let 2\?5,T denote the reproduction alphabet
used by receiver r in its reproduction of source Xg. Then for any S € S, I use Xg,r to denote
receiver r’s reproduction of source vector Xg and Xf = (Xgr : S € S,) to denote the full
vector of reproductions at receiver r. Thus Xg,,, and X" can respectively take on any value
7%, € X%, and X* € X7 = [[go5 AL,

The system encoder a : X™ — C maps the space of input source vectors X™ to the
transmitter’s product channel codebook C = [[¢.sCs, where for each S € S, the individual
channel codebook Cg is a subset of the set {0,1}* of finite binary strings. The encoder a

comprises two parts, a = yo «, where o : X" — 7, v: Z — C, and o denotes composition.
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The intermediate alphabet Z is the index set of the channel codebook C, where index set 7
is a product alphabet of form Z = []¢.sZs and Zg is the index set associated with source
Xg. The first component v maps each source vector X" € X" to a channel codeword index
1 € . In lossless codes, a is one-to-one and information lossless; while in lossy codes, «
is many-to-one and information lossy. The function v, which is information lossless, maps

index ¢ into the corresponding channel codeword ¢; € C.

For each r € M, I use t, : C — C, to denote the action of the channel seen by receiver
r. Thus receiver r losslessly receives the subset of the channel codeword that is directly
relevant to him. Receiver r’s decoder b, : C, — 2?,,” maps that receiver’s product channel
codebook C, = [[¢¢s, Cs to reproduction space /'f'T" by way of index set Z, = [[¢cs, Zs- Thus
b, = 3, 06,, where 6, : C, = Z, and B, : I, — /'\Af'ﬁ. Here Z, may be interpreted as the index
set of the channel codebook C,. The function J, converts each received channel codeword

¢ € C, to an index i, € Z,, and the function £, maps this index 7, to a reproduction vector

For any x" € X", a(x") = y(a(x")) = c for some ¢ = (cs : S € §) € C, and for each
receiver 7, ¢, = (c¢g : S € §;) € C, and b,(c,) = 5.(6-(c,)) = XTI for some X! € 22’,”, where
cs = vs(a(x")). Luse B, 5(dr(c,)) = 2%, to denote receiver 7’s reproduction of z%. In order
for each decoder to be able to successfully decode a sequence of source vector descriptions,
the product channel codebook C, must be uniquely decodable for each » € M. 1 consider

both fixed-and variable-rate channel codebooks.
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2.3 Theoretical Bounds on Lossless Codes

In this section, I describe the achievable rate region for lossless source coding in an M-receiver
broadcast system. The proof for this region borrows several ideas from the Slepian-Wolf
theorem [19].

For our discussion of lossless BSSC performance bounds, I make the following assump-
tions. For each S € &, assume that X is a finite source alphabet. Further, assume that
X[1],X][2],... is drawn i.i.d. with known probability mass function p(x) on source alphabet
X. For any U, V, W C S, let H(X,y) denote the entropy of X,y and I(Xy; Xy) the mutual

information of X;; and Xy,.
Definition 1 The set Agi«) C X" of e-typical n-vectors is defined by

AE?T) = AM(X,) = {x": | — (1/n)logp(x}y,) — HXw)| <¢, YVWCS,}.

T

For any U,V C S, Agﬁ) (Xy|x}) is then defined as the set of X7, vectors that are jointly

e-typical with a particular xy, vector, i.e.,
AE’}T)(XMX%) = {x}; : | — (1/n)logp(xy|x}) — HXu|Xy)| <e, YUCS,}.

Definition 2 A ((2"fsw ... 2"RsusD) n) reduced broadcast system source code for an M-

recetver broadcast system consists of |S| encoder maps
fo: X8 —{1,...,2"s} SeS
and M decoder maps

gt {12, 2"} > [] A5, rem.

SES, SeSy
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The concept of a reduced BSSC is prompted by the following observation. Consider a 3-
receiver system; the sources are X 231, X{101, X{13), X231, X{13, Xyo3, X{3}, abbreviated
as Xio3, X129, X13, Xo3, X1, Xo, and X3 for simplicity. Much of the performance benefits
associated with broadcast system source coding can be achieved through sequential descrip-
tion of the sources {Xs : S € S}. In particular, suppose that the encoder first describes
X193, then describes X12, X13, Xa3, and finally describes X;, X5, X3. For each receiver r,
r € {1,2,3}, the coding of X;5, X13, Xo3 can be based on knowledge of Xi53. That is, we
can first losslessly describe X;o3, then describe Xi5, X153, and X3 using conditional entropy
codes conditioned on Xi93 and finally describe X, X5 and X3 using conditional entropy
codes conditioned on the sources already decoded at each receiver. This sequential approach
is decodable at all decoders since each decoder receives and decodes in advance all infor-
mation needed by the conditional entropy codes’ decoders. Note, however, that the coding
of the common information which is shared by only 2 receivers, i.e., X9, X13, Xo3, cannot
be based on each other because, e.g., not all receivers that receive X5 also receive X;3 or
Xo3. Given this observation, I seek codes in which the description of X5 is useful in the
decoding of both X3 and X535 but not dependent on either. Only then can the description
of X5 be successfully decoded at receivers 1 and 2. Toward this end, I replace the BSSC’s
single encoder with a collection of independent encoders and use an approach similar to
the Slepian-Wolf coding strategy. The resulting code is the reduced BSSC. In the resulting
reduced BSSC, the encoder at the transmitter encodes the sources independently, but the
decoder at each receiver decodes the received sources jointly. The rate region of the lossless

source code achieved by this coding scheme is given by Theorem 1.
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Theorem 1 The set of achievable rate vectors for reduced broadcast system source coding

i a single-transmitter, M -receiver broadcast system is given by

> H(Xyy| X, e C 9.1
RW—TEMIP"%QST (Xw|Xs,awe), VW CS, for some r € M, (2.1)

where Ry = ) ¢y Rs and superscript ¢ denotes the set complement operator.

Proof of Achievability

The proof follows an approach similar to the proof of the Slepian-Wolf theorem.

I first randomly design a collection of encoders as follows. For each S € &, indepen-
dently assign every z% € X? to one of 2"/ bins according to a uniform distribution on
{1,2,...,2"Bs} The resulting mappings are the encoders {fs}. Reveal fs to all receivers r,
such that S € §,.

The decoders are then designed as follows. For any r € M, receiver r receives the index
vector (ig, S € S,) and declares X! = x7', if there is one and only one n-vector x € X such
that for all S € S,, fs(z%) =is and X} € A Otherwise the decoder declares an error.

For any r € M, receiver r’s probability of error is defined as Pe(,nr) = P(XT # X,). We
have an error if X7 ¢ Agi«) or if there is another typical sequence in the same bin. Let X,

be drawn according to p(x,), T% € Xg, X}, € A}3,. Define the events

By, = {Xp¢ A},
EW,r = {HinW:VSGW, ‘/EZ’#XEL’ fS(-’fg):fS(Xg)

and (X}, X% ye) €A} VW CS,.
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Hence by the union bound,

P = P((Uwcs, Bwy) U Eoy) < P(Eoy) + Y P(Bw,).
WCS,

First consider P(Ey,). By the AEP, P(E,,) — 0 and therefore for any ¢ > 0, P(E,,) < €

for n large enough. For any W C S,, bound P(Ey ) as

P(Ew,)
= P{3X},:VS € W,7% # X%, fs(72) = fs(X%) and (X}, X% 1pe) € Ang}

= ) p(x!)P{IKY, : VS € W, 7% # 2%, fs(38) = fo(a), (X, X2 ) € AW}

n
x’l‘

< D (] 27)1AD (X |xE e )]
xn Sew

< (H Q_WRS)Q"Z(H(XW‘xsrﬂwc)‘i‘f).
Sew

which goes to 0 if ) ¢ ), Rs > H(Xyy|Xs,nwe). Hence for sufficiently large n, P(Ey,,) < €.
Combining the above results for all € M and W C S, I can bound the probability of
error P{™ of the whole system for n large enough. In particular, if
Y Rs > H(Xw|Xs,owe), ¥r € M,YW C S, (2.2)
Sew

then

= 3P < NPE) + 3 P(Bw) < 22 = Ke

remM WCS, r

where K is a constant. The conditions in (2.2) define the rate region of (2.1). Since
the expected error probability for a random code is small, there exists at least one code
({f&}s,{gr}-) with probability of error < Ke, and we can construct a sequence of codes

with P™ — 0. 0
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Proof of Converse

Consider a reduced BSSC with fixed encoders {fs}, decoders {g.} and probability of error
P 5 0asn — oo. Let Ig = fg(X7). Since P = > rem P™ goes to 0 when n — oo,
we have for all r, Pe(ff«) — 0, as n — oo. For any W C 8, let I,y denote the index vector

(Is : S € W), and abbreviate the notation Is, as I,. Then by Fano’s inequality

H(XP|L,) < PMWn > (log|Xs|) + 1 = ne, and H(X|XE e, I) < ney YW CS,,

SeSy

where €, — 0 as n — oo. Then any r € M, and any W C §,,

n Z Rs > H(Iy)
> H(Iw | X5 e )
= I(XJ; Iy | X5 qe ) - H( Ly | X5, X5 e )
= (X% Ty | X% e )+ H(Ly | X2)
= I( X%}v; Iy | Xgmwc )
= H(X} | X% e ) — H( X5 | X2 e Iy )
= H(XJ, | X5 e ) — H( XY | X5 e, I, Is,amwe )
= H(Xjy | X5 e ) = H( X5 | XE e, I)
> H(XY | X e ) — 16

= nH( Xy | Xs,awe ) — nép

Dividing by n and taking the limit as n — oo, we have the desired converse. O
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Figure 2.3: The k-ary tree structure for 2-receiver broadcast system lossy code.

2.4 Lossy Code Design

Our broadcast system vector quantization (BSVQ) design algorithm is based on a tree struc-
ture similar to that used for the multiple description vector quantization algorithm [18]. To
understand that tree structure, first consider the k-ary tree with £ = 5 shown in Figure 2.3.
The given tree is intended for use in an n-dimensional, 2-receiver BSVQ with index set
Ty =1, =1, =T = {1,2,3,4}. Each horizontal branch of the tree denotes an unreceived
source description, while each downward path denotes a received index from Z. For the code
given in Figure 2.3, each receiver receives 2 indices: receiver 1 receives i; = (i12,%1) and
receiver 2 gets iy = (i12,42). Thus each receiver can receive one of 16 possible messages.
Associated with each possible message is a vector (Xg : S € 8) of reproduction vectors
or codewords. The codewords reside at leaves of the tree. In particular, the codewords for
receivers 1 and 2 are indicated by |1]| and , respectively, in Figure 2.3. The given figure
shows the indices in order 49,41, 95 from top to bottom in the tree. (The order is arbitrary.)
Since receiver 1 receives 715 and 7; but not i, the codewords used by receiver 1 sit at the
16 nodes corresponding to two downward paths followed by a horizontal path through the

tree. For receiver 2’s codewords the horizontal path is the second step rather than the third.
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The given structure generalizes to arbitrary M-receiver broadcast systems (by adding more
levels to the tree) with arbitrary finite index sets (by allowing an arbitrary number of down-
ward branches) and may be used for both fixed-rate coding (by describing each index using
its natural binary description) and variable-rate coding (by describing each index using an
appropriate entropy code).

I now adapt the generalized Lloyd algorithm [20, 21] to BSSC design. For any receiver
r and any set S € S, let Dg, = (l/n)ES[d(Xg,Xg,T)] denote the per symbol expected
distortion of the reproduction of source Xg made by receiver r. For any set S € S, let
Rs = (1/n)Eg[Rs(X7%)] denote the average rate used to transmit Xg, where Rg(X%) denotes
the rate used to describe source vector Xg.

Let D= (Dg,: S € S,,7r€ M) and R= (Rs:S €S8). The set of distortion-rate pairs
(D,R) achievable through BSVQ (of arbitrary dimension) defines a convex region in the
(>, |Sr| + |S])-dimensional distortion-rate space. This convex hull is entirely characterized
by its support functional J = > > s s s, (Ds, + AsRs), where pg, and Ag are the
associated Lagrangian constants. The functional J may be viewed as a Lagrangian for
minimizing any combination of rates and distortions subject to constraints on the remaining
quantities.

The goal of the algorithm is to minimize

J(a: {75}’ {(57"}’ {ﬁr,S})

= Byl 37 s AR, Brs (80 (6, (1@ (XM))) + As s (a(XEN]

SES,,r
where o, {ys}, {0,} and {f, s} are the encoders and decoders defined in Section 2.2. The

design of the BSV(Q employs a convergent iterative descent approach reminiscent of the
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generalized Lloyd algorithm. Each iteration proceeds as follows.

1. Optimize the encoder «. For a given {vs}, {6,} and {5, s}, the optimal encoder o*
is the one that maps each source vector x" to the index 7, such that the reproductions

2§, will result in the smallest J. Thus o is given by

a*(a") = argmin D nseld(XE, Brs (6 (6:(v(0)))) + Asls ()]

2. Optimize the decoder f,. For a given «, v and {0, },cn, the optimal decoder 3 (i,),
r € M, is the one that minimizes the expected reproduction distortion given 7,. The

mathematical expression for 5*(i,) is given by

ﬁ:(zr) = arg mir} Z/J'S,r [EXg [d(Xg, ig‘,r)wr(tr(’)/(a(xn)))) = Zr]] .

xneXp
In particular, for the squared error distortion measure, 3*(i,) is the expected value of

all the source vectors X" such that §,(t,(y(«w(X")))) = i,, and is given by
Brlir) = s, = Exz[X5[0, (b, (v(a(X™)))) = i ].

3. Optimize the lossless encoder v and the lossless decoder §,. For a given o and
{Br}rem, the optimal decoder v and {6, },cr are the ones that minimize the expected

description length.

2.5 Experimental results

I include results for experiments performed for the two-receiver broadcast system using the

algorithm described in Section 2.4. The experiments are performed on the satellite weather
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data sets, obtained courtesy of NASA and the University of Hawaii. It contains images from
weather satellite GOES-8, which records 8-bit greyscale images in three frequency bands
(visible, infrared 1, and infrared 2). Each image is cropped to 512 x 512 pixels. Some sample
images are shown in the Appendix.

The training set contains three sets of satellite weather images. Each set contains eight
images from the same frequency band. The visible frequency band set is used as training
data for X o; the infrared 1 and infrared 2 sets are used for X; and Xj, respectively. A
non-overlapping test set contains three image sets with four images each and is assigned to
the three sources similarly.

To choose the Lagrangian constants, I make several assumptions: (1) no receiver cares
about the private information of any other, thus 11231 = 13,2 = 0; (2) there is a trade-off
between the two private informations, thus py,1 = 0, py232 =1 — 0, and (3) the common
information has equal importance for both receivers, thus p19)1 = pg1,2),2 = 6/2.

Since the 9-dimensional rate-distortion space associated with this problem is difficult to
visualize, the rates are fixed as follows. Each receiver is assigned a fixed rate of 4 bits per
pixel (bpp), and the system uses a total rate of 6 bpp. To meet these rate constraints,
in fixed-rate coding, I use a 5-ary tree and set A\¢ = 0. In variable-rate coding, I use
a 17-ary tree and for each (6,0) pair adjust As to meet the desired rate constraint. By
fixing the rates in this way, I can focus on the convex hull of the achieved distortions D =
((Dg1,23,1 + Dy1,2},2)/2,Dy13,1, Dy2},2) in a 3-dimensional space.

For comparison purposes, I use either fixed-rate VQ or entropy constrained VQ (ECVQ)
to independently encode and decode the sources, and I compare the resulting achievable

distortions D = (D{l,z},D{l},D{z}) with those of BSVQ. Since the rate assigned to each
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Figure 2.5: Variable-rate BSVQ vs. ECVQ.

receiver is identical for the BSVQ and for the independent codes, the lower the convex hull

of distortions in 3-dimensional space, the better the performance.

Figure 2.4 compares the distortion triple of fixed-rate BSVQ with that of fixed-rate inde-
pendent VQ, showing the 3-dimensional distortion space from two different angles. Figure 2.5
compares the distortion triple of variable-rate BSVQ with that of independent ECVQ. In
both comparisons, the convex hull achieved by the BSVQ (solid line) is significantly lower

than that achieved by the independent source code (dashed line) in the 3-dimensional space.
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Figure 2.6: Variable-rate BSVQ vs. fixed-rate BSVQ.

Thus it demonstrates the performance benefits of BSVQs over independent source codes in
a 2-receiver system.

Finally, Figure 2.6 compares fixed-rate BSV(Q with variable-rate BSVQ. As with inde-
pendent codes, variable-rate codes (of a given dimension) outperform fixed-rate codes (of

the same dimension).

2.6 Summary

In this chapter, I prove the theoretical limits of lossless source coding performance in M-
receiver broadcast systems. This proof also shows that only through joint coding can we
hope to achieve optimal performance for broadcast systems. A detailed description of the
practical algorithm for BSVQ is given, followed by experimental results, which show the

benefits of BSVQ over independent coding.



Chapter 3

Source Coding for Multiple Access

Systems

3.1 Introduction

A multiple access network comprises multiple transmitters sending information to a single
receiver. One example of a multiple access system is a sensor network, where separately
located sensors send correlated information to a central processing unit.

Multiple access source codes (MASCs) (also known as Slepian-Wolf or distributed source
codes) yield efficient data representations for multiple access systems when cooperation
among the transmitters is not possible. In the MASC configuration shown in Figure 3.1(a),
two encoders independently describe information to a single decoder. The decoder uses the
received pair of descriptions to reconstruct the original data sequences. In [19], Slepian and
Wolf describe all rate pairs achievable with coding dimension n — oo and probability of
decoding error P — 0. (See Figure 3.1(b).)

23
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Figure 3.1: (a) An MASC and (b) the Slepian-Wolf achievable rate region for MASCs.

This chapter treats MASCs (n < oo) for both the lossless (Pe(") = 0) and “near-
lossless” (Pe(n) — 0) cases. The discontinuity in the limiting rate region at P =0 [22]*
motivates the interest in near-lossless coding. For finite n, this discontinuity occurs at
P > min{p™(z", y") : p"(z",y") > 0} rather than P\™ = 0. Given their superior rate ca-
pabilities, near-lossless codes are useful where small error probabilities are acceptable (e.g.,

as entropy codes in lossy MASCs).

Prior work on MASCs for n < oo focuses primarily on the special case of a lossless
instantaneous side information source code (SISC), where the decoder knows Y and the
goal is to uniquely describe X using the smallest possible average rate. Work on lossless
instantaneous SISC design appears in [22, 1]; these algorithms are suboptimal by [23]. Work
on properties of optimal SISCs includes [24], which uses a graph-theoretic framework to
derive bounds on the minimal expected rate in terms of the graph entropy, and [23], which

describes necessary and sufficient conditions for the existence of a code with a given set of

1For example, if p(z,y) > 0 for all (z,y) € X x Y, then achieving PM™ =0 requires Rx + Ry >

H(X)+ H(Y) for all n. In contrast, Rx + Ry > H(X,Y) is achievable when n — oo and P™ 0.
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codeword lengths when the alphabet size of YV is two [23]. A design algorithm for lossless
SISCs and MASCs for sources X and Y guaranteed to meet a maximal Hamming distance
constraint appears in [25, 26].

Near-lossless codes are a special case of lossy codes with a Hamming distortion measure
and an asymptotically negligible distortion. Work on lossy MASCs appears in [27, 28, 25,

26, 7, 29, 30, 31].

Chapter Outline

This chapter derives properties of MASCs and uses these properties to extend the defi-
nitions of Huffman and arithmetic codes to achieve corresponding lossless and near-lossless
MASCs, giving the first constructive algorithm for building optimal lossless and near-lossless
instantaneous SISCs and MASCs for general sources. The definitions and methods apply to
arbitrary discrete-alphabet sources. While the encoding and decoding complexities of the
proposed optimal MASCs are comparable to the corresponding complexities for traditional
(single-sender, single-receiver) Huffman and arithmetic codes, the design complexities for the
optimal MASCs are high. Since high design complexities seem to be unavoidable (in [32],
Koulgi et al. show that even the lossless SISC design problem is NP-hard), I also consider
low complexity approximate solutions.

The remainder of this chapter is organized as follows. Section 3.2 contains generaliza-
tions of the Huffman and arithmetic code design algorithms to the lossless instantaneous
SISC problem. Section 3.3 extends these results to general MASCs. Section 3.4 treats
the near-lossless MASC problem. Section 3.5 gives a family of low complexity sub-optimal

design algorithms. Section 3.6 analyzes properties of lossless uniquely decodable MASCs.
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Section 3.7 contains experimental results for both optimal and sub-optimal coding algo-
rithms and an application of these coding algorithms to universal coding when the source
distribution is unknown a priori. Section 3.8 gives a summary of the key contributions of

this chapter.

3.2 Lossless Instantaneous Side Information Source Codes

3.2.1 Problem Statement

Let X and Y be memoryless sources with joint probability mass function (p.m.f.) p(z,y)
on finite alphabet X x V. I use px(z) and py(y) to denote the marginals of p(z,y) with
respect to X and Y, dropping the subscripts when they are clear from the argument to
give p(z) = px(z) and p(y) = py(y). A lossless instantaneous MASC for joint source (X,Y)
consists of two encoders yx : X — {0,1}* and 7y : Y — {0, 1}* and a decoder y~' : {0, 1}* x
{0,1}* — X x Y. Here yx(x) and 7y (y) are the binary descriptions of z and y, and the
probability of decoding error is P, = Pr(y }(yx(X), v (Y)) # (X,Y)). This section treats
lossless coding, where P, = 0. Further, I concentrate exclusively on instantaneous codes,
where for any input sequences 1, o, Z3, . - - and Y1, Y2, ¥3, - - - with p(z1,y1) > 0 the decoder
reconstructs (z1,%;) by reading only the first |yx(z;)| bits from vx (x1)yx(z2)yx (23) - .. and

the first |y (y1)| bits from vy (y1) vy (y2) vy (y3) - - - (without prior knowledge of these lengths).

When Y is perfectly known to the decoder, the problem reduces to the SISC problem.
This scenario describes MASCs where 7y encodes Y using a traditional code for p.m.f.

{p(y)}yey so that yx can encode X assuming that the decoder knows Y. In this case,
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y~1:{0,1}* x Y — X. If the decoder can correctly reconstruct z; by reading only the first
|vx(x1)| bits of vx(x1)yx(T2)vx(73) ..., then (yx,77!) is a lossless instantaneous SISC. T
wish to design a lossless instantaneous SISC that achieves the lowest possible expected rate.

I treat code design for general MASCs in Section 3.3.

Lemma 1 (SISC Prefix Property): Code yx is a lossless instantaneous SISC for X given'Y

if and only if for each x, &', y with p(x,y) > 0 and p(z',y) > 0, {vx(x),vx(z")} is prefiz-free.

Proof: Necessary: If there exists some y € Y and z,z' € X for which p(z,y) > 0, p(z',y) >
0, and yx(z) is a prefix of yx(z'), then the codewords for  and 2’ cannot be instantaneously
distinguished when Y = y. Sufficient: The decoder receives Y and performs the mapping
YY) {0,11 — {z € X : p(x,Y) > 0}. Since {yx(z) : p(z,Y) > 0} is prefix-free, the
code is instantaneous. a

Distinct symbols z,z' € X are confusable under p(z,y), written z < 2/, if p(z,y) > 0
and p(z',y) > 0 for some y € Y. By Lemma 1, an SISC’s descriptions of z and z’ can be
identical (yx(x) = vx(z')) or the description of x can be a proper prefix of the description of
x' (written yx(z) < yx(z)) if the symbols are not confusable (z # z') — that is, if knowing
Y eliminates any ambiguity between the descriptions of 2 and z’. The design algorithm in [1]
allows vx(z) = vx(z') when z # 2’ but never allows vx (z) < yx ('), giving a code consistent
with the unrestricted inputs codes of [24]. While [24] and [23] don’t treat code design, both
address the two types of prefix violations. The discussions in [22] and [24] associate with
each p.m.f. p(z,y) on X x ) a graph G = (X, Ex), where there is an edge between =,z € X
if and only if z # 2’ and = < 2’. Alon and Orlitsky state that code yx is valid if and only

if for every edge {z,2'} € Ex, {vx(z),vx(z")} satisfies the prefix condition; thus a valid
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code from [24] is a lossless instantaneous SISC. Since the set of uniquely decodable codes on
colorings of GG is a subset of the set of valid codes, they bound the expected rate of a side
information code as a function of the “chromatic entropy” of G. While this approach yields
elegant rate bounds, the difference between the resulting expected rate and the optimal
performance can be arbitrarily large [24]. Building on the results of [24], the recent work
of [33] characterizes the asymptotic rate of an SISC as the complementary graph entropy of

graph G.

3.2.2 Groups, Partitions, and Matched Codes

While graphs give a strong intuition into the performance bounds of [24], I find them difficult
to work with for optimal code design; I therefore turn instead to tree structures in the
discussion that follows. I use trees to illustrate the prefix relationships between codewords:
vx(x) < vx(z') if and only if z is an ancestor of 2’ in the corresponding tree, and vyx(z) =
vx (z') if and only if z and 2’ occupy the same node of the corresponding tree. The resulting
trees are similar to Huffman code trees in that all symbols descending from a common parent
have descriptions that share a common prefix; they differ from Huffman trees in that they
need not be binary, symbols can reside at internal nodes as well as leaves, and multiple
symbols can occupy the same node. I call each possible sub-tree a “group”; the number of
levels in a group equals the number of levels in the corresponding tree. Precise definitions
follow; these definitions rule out any construction that cannot yield a lossless instantaneous

SISC.

The collection G = (z1, ..., xy) is a legitimate 1-level group for p(z,y) if for any distinct
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z;,x; € G, x; # x;.2 The tree representation T(G) for 1-level group G is a single node
representing all members of G. For the p.m.f. in Table 6.1(a) in the Appendix, (ay), (a4, az),

and (ag, a4, a7) are all examples of legitimate 1-level groups.

A 2-level group for p(z,y), denoted by G = (R : C(R)), comprises a root R and its
children C(R); R is a 1-level group, C(R) is a set of 1-level groups, and G’ # R for all
G' € C(R), where for any groups G; and Go, G; # Go if and only if x1 # x5 for all 21 € G;
and zo € Go. Members of all G’ € C(R) are called members of C(R), and members of R
and C(R) are called members of G. In the tree representation 7(G) for G, T(R) is the root
of T(G) and the parent of all subtrees 7(G') for G’ € C(R). An example of a 2-level group
for the p.m.f. in Table 6.1(a) is Go = ((a4) : {(a0), (a2, az), (ag)}). In this case R = (a4) and
C(R) = {(ap), (az,ar), (ag)}. The members of C(R) are {ay, as, as, az}; the members of G,
are {ao, az, a4, ag,ar}. The tree representation 7 (Gy) is a 2-level tree comprising a root and
its three children, each of which is a single node.

For each subsequent M > 2, an M-level group for p(x,y) is a pair G = (R : C(R)) such
that G' # R for all G' € C(R). Here R is a 1-level group and C(R) is a set of groups of
M — 1 or fewer levels, at least one of which has (M — 1) levels. The members of R and
C(R) together comprise the members of G = (R : C(R)). Again, 7 (R) is the root of T(G)
and the parent of all subtrees 7(G') for G’ € C(R). For any M > 1, an M-level group is
also called a multi-level group. An example of a 3-level group for the p.m.f. in Table 6.1(a)
is G3 = ((a7) : {(ag), (a1), ((a2) : {(a4), (as)})}).- In T(Gs), the root T (az) of the three-level

group has three children: the first two children are nodes 7 (ag) and 7 (a;); the third child

2All symbols given the same color in a coloring in [24] are a one-level group. Thus any independent set

in the graph G can be a one-level group.



30 CHAPTER 3. SOURCE CODING FOR MULTIPLE ACCESS SYSTEMS

root !
(3, %) /ay7\ 1 /!2\ Y %(1)\
ag ay as 21 22 23 (100) (101) (11)
PN N T
as  as 231 232 (110) (111)

(2) (b) (c)

Figure 3.2: (a) Partition tree T (P(X)); (b) labels for 7(P(X)); (c) matched code for P(X).

is a 2-level tree with root node 7 (a2) and children 7 (a4) and 7 (a;).

A partition P(X) on X for p.m.f. p(x, y) is a complete and non-overlapping set of groups.
That is, P(X) = {G1,Gs,...,Gn} satisfies J;*,G; = X and G;(Gx = ¢ for any j # k,
where each G; € P(X) is a group for p(z,y), and G; UGy, and G; N Gy, refer to the union and
intersection respectively of the members of G; and Gj;. The tree representation of a partition
is called a partition tree. The partition tree 7 (P (X)) for partition P(X) = {G1,Ga,...,Gm}
has an empty root r with m children, 7(G1),...,T(Gm). A partition tree is not necessarily
a regular k-ary tree since the number of descendants varies from one node to the next.

Figure 3.2(a) gives a partition tree for partition P(X) = {(as, a¢),Gs}-

For any 1-level group G at depth d in 7 (P (X)), let n describe the d-step path from root r
to node 7(G) in T(P(X)). We often refer to G by describing this path. Thus 7 (n) = 7(G).
For notational simplicity, we sometimes substitute n for 7(n) when it is clear from the
context that we are talking about the node rather than the 1-level group at that node (e.g.,
n € T(P(X)) rather than 7 (n) € T(P(X))). To make the path descriptions unique, I fix
an order on the descendants of each node and number them from left to right. Thus n’s

children are labeled as nl,n2,...,nK(n), where nk is a vector created by concatenating k
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to n and K (n) is the number of children descending from n. The labeled partition tree for
Figure 3.2(a) appears in Figure 3.2(b).

The node probability g(n) of 1-level group n is the sum of the probabilities of that group’s
members. The subtree probability ()(n) of 1-level group n is the sum of probabilities of n’s
members and descendants in 7 (P(X)). In Figure 3.2(b), ¢(23) = px(a2) and Q(23) =
px(az) + px(as) + px(as).

A matched code vx for partition P(X) is any binary code® such that for any node
n € 7(P(X)) and symbols 21,22 € nand z3 € nk, k € {1,..., K(n)}: (1) vx(z1) = vx(x2);
(2) vx(z1) < vx(z3); (3) {7 x(nk) : k € {1,...,K(n)}} is prefix-free. (I use yx(n) inter-
changeably with vx(z) for any z € n.) If symbol z € X" belongs to 1-level group G, then
vx (x) describes the path in T (P(X)) from r to 7(G); the path description is a concatenated
list of step descriptions, where the step from n to nk, k € {1,..., K(n)}, is described using
a prefix-code on {1,..., K(n)}.

An example of a matched code for the partition of Figure 3.2(a) appears in Figure 3.2(c).
Figure 3.3 shows that code’s encoder and decoder.

In the decoder definition —’ marks an event that can never occur, ']’ marks a case
where the decoder knows it has not reached the end of vx(z), and 1’ marks a case where
the decoder would have decoded based on fewer symbol than are given. For example, since
only vx(a3) and yx(as) begin with 0... and p(as,ag) = p(as,ap) = 0, the decoder never
receives Yx(zr) = 0--- when Y = ag; if the decoder receives binary string 11... when

Y = ay, then the decoder has not reached the end of vyx(z;) since p(az,a;) = p(az,a1) =0

3T here focus on codes with binary channel alphabet {0,1}. The extension to codes with other finite

channel alphabets is straightforward.
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Y (yx(@1) .. .), )

. vx(x1) .. \y||ao a1 as a3 ay as ag a7
0 ifz € {as, a6}

0 — Qa3 Qg Q3 — Qg Qg Qg
1 if z =ay

1 N N
100 if x = ay

w.. 4+ 4 4+ 4L 4417

vx(T) =1 101 ifz=aq

100... apy — Gy Gy — — T T
11 ifx=a,

101... - a — — a1 a1 T T
110 ifx =a4

11... a 4 a L L L T 7
111 ifx = a5
\

110... T Qy T — Q4 — T T

111... T — 1 a5 a5 a5 T 1

Figure 3.3: The encoder and decoder for the example in Figure 3.2. For the decoder, —
marks an event that can never occur, | marks a case where the decoder knows it has not
reached the end of yx(z), and 1 marks a case where the decoder would have decoded based

on fewer symbol than are given.
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and every other yx(z;) beginning 11... has length greater than 2; if the decoder receives
binary string 111... when Y = qg, then it decodes to as after only 2 bits. The code is
instantaneous since the decoder can always decode after no more than |yx(z)| bits. The
code is lossless since 7! (vx(z),y) = = whenever p(z,y) > 0 and probability 0 events cannot
occur. The code achieves expected rate Ex|yx(X)| = 2.12 < H(X) = 2.91 by violating
Kraft’s inequality. (Kraft’s inequality does not apply to SISCs [23].) This rate may be
further reduced if we choose the partition and its matched code more carefully. For example,
setting yx(ag) = 7x(a1) = 10 in this code gives a lossless instantaneous code with lower

expected rate.

3.2.3 All Lossless Codes are Matched Codes

In the above framework, a partition specifies the prefix and equivalence relationships in the
binary descriptions of x € X’; a matched code is any code with those properties. Theorem 2

establishes the equivalence of matched codes and lossless instantaneous SISCs.

Theorem 2 Code yx is a lossless, instantaneous SISC for p(x,y) if and only if vx is a

matched code for some partition P(X) for p(z,y).

Proof: Forward: By the definitions of partitions and matched codes, only symbols that
are not confusable can be assigned codewords that violate the prefix condition. Thus any
matched code is a lossless instantaneous code by Lemma 1.

Converse: Given 7x, we construct a partition P(X) for p(x, y) such that vx is a matched
code for P(X'). We begin by building a binary tree 75 with symbol z at the node reached by

following path vx(z) downward from the tree root. We build partition tree T from binary
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tree 75 by visiting the nodes of 75 one by one and modifying them as follows. If the current
node is the root of the tree and that node is occupied by some x € X', we add a new node
r as the parent of the current node; if the current node is not the root of the tree and that
node is empty, we remove the current node from the tree, attaching the node’s children (if
any) directly to the node’s parent; otherwise, we make no change. Tree T is a partition tree
for some partition P(X) for p(x, y) since: (1) yx lossless implies each non-empty node n € T
is a legitimate 1-level group; (2) vx instantaneous implies each subtree of T is a legitimate
multi-level group; and (3) the root of T is an empty node with one or more multi-level groups
descending from it. Here (1) and (2) follow from Lemma 1 while (3) is by construction given
(1) and (2). Code 7x is a matched code for P(X) since: for any n € T(P(X)), z1,29 € n,
and z3 € nk, yx(x1) = vx(x2), 7x(z1) < vx(x3); and {yx(nk) : k € {1,...,K(n)}} is
prefix-free by construction. O

Using Theorem 2, I break the problem of lossless SISC design into two parts: partition
design and matched code design. While the choice of 1-level groups in a partition design is
equivalent to choosing a coloring of the nodes of graph G, the coloring corresponding to the
optimal partition need not be the entropy-minimizing coloring [24]. T conjecture that both
finding the optimal coloring and finding the optimal prefix relationships for that coloring

are NP-hard problems, * and I combine these “hard” parts into the single step of partition

4The intuition behind the first conjecture results from the difficulty of coloring problems for a wide variety
of applications. The intuition for the second conjecture comes from the observation that finding the optimal
prefix relationship is an optimal partition design problem for the set of distributions whose optimal partitions
use proper prefix relationships but do not allow vx (z) = vx (z') for any x # z'. Since this restriction does
not suggest any obvious constraints on p(z,y), I conjecture that finding optimal prefix relationships, like

optimal partition design, is NP-hard.
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design. I treat both optimal partition design and fast approximation algorithms in later
sections. Given a partition, optimal matched code design requires only polynomial time.
I treat optimal matched code design next. There is no analogue to matched code design

in [24].

3.2.4 Matched Code Design: Optimal Huffman and Arithmetic

Codes

I wish to design the optimal matched code for an arbitrary fixed partition P(X) for p(x,y).
In traditional lossless coding, the optimal description lengths are [*(xz) = — logp(z) for all
x € X if those lengths are all integers. Theorem 3 gives the corresponding result for lossless

SISCs on a fixed partition P(X).

Theorem 3 Given partition P(X) for p(z,y), the optimal matched code for P(X) has de-
scription lengths I*(r) = 0 and

I*(nk) = I*(n) — log, ( Q(nk) )

> Qng)
for alln € T(P(X)) and k € {1,...,K(n)} if those lengths are all integers. Here I*(n) =1

implies I*(x) =1 for each symbol x in 1-level group n.

Proof: Given z € n € T(P(X)), let I(n) = |yx(x)|. Then for any matched code yx for

P(X),
K(n)
Elyx(X)] = ¢i@m)= Y > Quk)((nk) - I(n)).
neT(P(X)) neT(P(X)) k=1

Thus the minimal expected rate is achieved by minimizing each sum ZkK:(?) Qnk)(l(nk) —

I(n)) independently. If we write vx (nk) = ggy, for each k& € {1,... K(n)}, where g = yx(n),
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then g is the suffix associated with the kth descendant of n and |gx| = I(nk) — I(n).
For {gi,...,9kn)} to satisfy the prefix condition, {[gi],...,|gxm)|} must satisfy Kraft’s

inequality. The minimization of 1™ Q(nk)|gk| subject to SH™ 2-19 < 1 is achieved by

setting
Q(nk)
|9x| = I(nk) — I(n) = —log, (n— ,
> Q(nj)
which completes the proof. O

The proof of Theorem 3 demonstrates that we can design matched codes by designing
entropy codes on the children of each internal node of a partition tree. All entropy cod-
ing algorithms are candidates for matched code design. I focus on matched Huffman and
arithmetic coding. For any node n with K(n) > 0, the Huffman code 7;12( ) describes the
step from n to nk using a Huffman code designed for p.m.f. {Q(nk)/ Z]K:(f) Q(n)}E™ on
alphabet {1,..., K(n)}. The arithmetic code ygé;,( ) uses arithmetic codes matched to the

same p.m.f.s. Both of these strategies give polynomial time algorithms. Theorem 4 proves

the optimality of matched Huffman codes. Before giving that result, I give an example.

Ezample: In building a matched Huffman code for the partition in Figure 3.2(a), we
work from the top of partition tree 7. We begin by designing a Huffman code for p.m.f.
{Q(k)/ Z]I.(:(;)Q(j) ,f:(? on the K(r) descendants of the (empty) root of 7. In this case,
K(r) =2 ("' = (a3, a6) and 2" = (a7)), the p.m.f. is {px(a3) + px(as), px(ar) + px(ao) +
px(a1) +px(az) +px(as) + px(as)} = {.21,.79}, and the Huffman code is {0,1}. We repeat
this process for each subsequent tree node n with K(n) > 0. Node 2 gives K(2) = 3, p.m.f.

{px(a0)/Q1,px(a1)/Q1, (px(az) + px(as) + px(as))/Q1} = {.1/Q1,.19/Q1,.37/Q1} (Q1 =

.66), and Huffman code {00, 01, 1}. Node 23 gives K(23) = 2, p.m.f. {px(as)/Q2,px(as)/Q2}



3.2. LOSSLESS INSTANTANEOUS SIDE INFORMATION SOURCE CODES 37

= {.11/Q2,.06/Q2} (Q2 = .17), and Huffman code {0,1}. Finally, vx(n) concatenates the
Huffman codewords for all branches traversed in moving from r to n in 7. The codewords

for this example appear in Figure 3.2(c).

Theorem 4 Given a partition P(X), matched Huffman codes for P(X) achieve the optimal

expected rate over all matched codes for P(X).

Proof: Let T be the partition tree of P(X). The codelength of a node n € T is denoted by

I(n). The average length [ for P(X) is

where for each k € {1,..., K (1)}, Al(k) = X ;e ¢(kn)({(kn) — I(k)).

Note that ZkK:(? Q(k)I(k) and {Al(k)} can be minimized independently. Thus

K(r K(r
min/ = min i) Q(k)l(k) + i) min Al(k).

k=1 k=1
In matched Huffman coding, working from the top to the bottom of the partition tree, we
first minimize Z/f:(? Q(k)I(k) over all integer lengths I(k) by employing Huffman codes on
Q(k). We then minimize each Al(k) over all integer length codes by similarly breaking each
down layer by layer and minimizing the expected length at each layer. O
In traditional arithmetic coding (with no side information), the description length of
data sequence z" is [(z™) = [—logpx(z™)] + 1, where px(x™) is the probability of z". In
designing the matched arithmetic code for 2" for a given partition P(X), we use the decoder’s
knowledge of y™ to decrease the description length of 2. The following example, illustrated
in Figure 3.4, demonstrates the techniques of matched arithmetic coding for the partition

given in Figure 3.2(a).
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&y 8y
00 — 00 00~ 02
%
01 - Y-
% 21 0214 03759
0.29 1
0.33— 0.3297-} 0.4705-
&
0.49 1
& 056 05571} 0.6501
06 -
A
0.71 1
0.77776‘5
% 084 0.8437-} 0.8765 -
0.87 -
&
10 - 10 - 1.0 10
(a) (b)

Figure 3.4: Dividing the unit interval in (a) traditional arithmetic coding and (b) matched
arithmetic coding for partition P(X) of Figure 3.2(a). (c) Matched arithmetic coding for

sequence a7;a3a401as.
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In traditional arithmetic coding, data sequence X" is represented by an interval of the
[0,1) line. We describe X™ by describing the mid-point of the corresponding interval to
sufficient accuracy to avoid confusion with neighboring intervals. We find the interval for
a™ recursively. We first break [0,1) into intervals corresponding to all possible values of
x1 (see Figure 3.4(a)). Then we break the interval for the observed X; into subintervals
corresponding to all possible values of Xz, and so on. Given the interval A C [0,1) for X*
for some 0 < k < n (the interval for X° is [0, 1)), the subintervals for {X*z;,,} are ordered
subintervals of A with lengths proportional to p(zg,1)-

In matched arithmetic coding for partition P(X’), we again describe X" by describing the
mid-point of a recursively constructed subinterval of [0,1). The intervals here correspond
to nodes, and we describe symbol x € X by describing the mid-point of the interval corre-
sponding to the node n for which z € n. In describing z;, the interval for root r is [0, 1)
with length p(*)(r) = 1. We define the remainder of the intervals recursively. The interval

for any n € T(P(X)) comprises K(n) ordered subintervals of lengths

Wy — [ QR Yy Qmk) Ny N
ALY (zﬁ?@(nm)p 0= (g™ ) ke L K@),

corresponding to the K (n) children of n in the partition tree. The nested nature of the
intervals parallels the situation in matched Huffman coding where one symbol’s description
is the prefix of another symbol’s description. Again, for any legitimate partition P(X), the
decoder can uniquely distinguish between symbols with nested intervals using its knowledge
of the side information.

Refining the interval for sequence X*~! to find the subinterval for X’ involves carving

the current interval into subintervals of sizes proportional to those found above. We finally
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describe X by describing the center of its corresponding subinterval to an accuracy sufficient

to distinguish it from its neighboring subintervals. To ensure unique decodability,
D (@") = [~ logp™(a")] +1,

where p(4)(z™) is the length of the subinterval corresponding to string z". Given a fixed

partition P(X'), suppose x € n(x) € T(P(X)) and ny(x) is the parent of n(z). Then

D) = [—logp™(a")] +1

= i —logp(A)(n(:v,-))w +1

£ A Q(n(x:))
— ; (— Ing( )(no(xz’)) — log kK:(;,O(;Ci)) Q(no(l',)k))“ +1

<) (@) +2
=1

where [*() is the optimal length function specified in Theorem 3. Thus the description

length [(Y)(z") in coding data sequence 2™ using a 1-dimensional “matched arithmetic code”

(4)

Vx p(x) Satisfies (1/n)ID(z") < (1/n) 1, *(z;) + 2/n, giving a normalized description

length arbitrarily close to the one-dimensional optimum for n sufficiently large. (In practice,
assuming that a large number of symbols are coded, we can always use El;‘,(x) (X) as the rate
for arithmetic coding, neglecting as trivial the 2/n term in the above bound.) We deal with
floating point precision issues using the same techniques applied to traditional arithmetic
codes.

Ezample: Again consider the p.m.f. of Table 6.1(a) and the partition of Figure 3.2(a). The
interval for the root is [0,1) with subintervals [0,.21) and [.21,1) for children "1’ = (a3, as)

and '2" = (a7), respectively. Interval [.21,1) comprises subintervals [.21,.3297), [.3297, .5571),
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and [.5571,1) for 21" = (ay), 22" = (ay), and 23" = (ay) since

PV ((a0)) = p(A)((”))Q((ag)((foé)((m)) = 19— _1 75 = 1197
p((a) = p"((ar) Q((ag)((ili)((m)) :.79-79'1_9'13 = 2274
P () = p((ar) Q((ag)((f2§)((a7)) = .79‘79'?:7' — = 4428

Interval [.5571,1) comprises subintervals [.5571,.8437) and [.8437,1) for ‘231" = (a4) and

'232" = (a5) since

PP ((ay)) = p(A)((aQ))Q((ag)((f“;)((%)) = .4428(.11/(.37 — .2)) = .2866
P ((as)) = p((a2)) Q((ag)((f5;)((a2)):.4428(.06/(.37—.2)):.1563.

Figure 3.4(b) shows these intervals.

Figure 3.4(c) shows the recursive interval refinement procedure for X° = (azazasa;as).
Symbol X; = a; gives interval [0.21,1) of length .79 (indicated by the bold line). Symbol
Xy = a3 refines the above interval to the interval [.21,.3759) of length .21 - .79 = .1659.
Symbol X3 = a4 refines that interval to the interval [.3024,.3500) of length .2866 - .1659 =

.0475. This procedure continues, giving final interval [0.3241, 0.3289).

3.2.5 Optimal Partitions: Definitions and Properties

The preceding discussion treats matched code design for a given partition P(X’). The par-
tition yielding the best performance remains to be found.

Given a partition P(X), let lgg() and I3 yy be the Huffman and optimal description
lengths respectively for P(X). We say that P(X) is optimal for a matched Huffman SISC

on p(z,y) if Elgg() (X) < Elg,{()X) (X) for any partition P'(X) for p(z,y) (and therefore, by
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Theorems 2 and 4, Elg&) (X) < EIl(X) where [ is the description length for any instanta-
neous lossless SISC on p(z,y)). We say that P(X) is optimal for a matched arithmetic SISC
on p(z,y) if Elp ) (X) < Ely 4 (X) for any partition P'(X) for p(z, y) since the arithmetic
code approaches the optimal one-dimensional expected rate of Theorem 3 as n (the number

of symbols coded) grows.

Some properties of optimal partitions follow.

Lemma 2 There ezists an optimal partition P*(X') for p(x,y) for which every node except
for the root of P*(X) is non-empty and no node except for the root can have exactly one

child.

Proof: If any non-root node n of partition P(X) is empty, then removing n, so {nk}kK:(?)

descend directly from n’s parent, gives new partition P'(X’). Any matched code on P(X),
including the optimal matched code on P(X), is a matched code on P'(X). If n has exactly
one child, then combining n and its child yields a legitimate partition P’(X); the optimal
matched code for P'(X) yields expected rate no worse than that of the optimal matched

code for P(X). O

Lemma 3 Let T(n) be an arbitrary node in optimal partition P*(X) for p(z,y), and let
G = ((n) : C(n)) be the group with root n and descendants identical to the descendants of
n in P*(X). Thenn = {z € G : {z} # (GN {z}°)} and C(n) is an optimal partition of
{re€G:z¢n}.

Proof: Since the matched code’s description can be broken into a description of n followed

by a matched code on C(n) and the corresponding description lengths add, the partition

described by 7 (P (X)) cannot be optimal unless the partition described by C(n) is. O
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Lemma 4 The optimal partitions for matched Huffman and arithmetic SISCs can differ.

Proof: I give a proof by example. For the p.m.f. of Table 6.1(a), the optimal partition
for a matched Huffman SISC is {(ao, a1), ((a2,a7) : {(a3), (a5)}), (a4, as)} while the optimal
partition for a matched arithmetic SISC is {(as, a¢), ((a7) : {(ao,as), ((a2) : {(a1)(as)}H}H}-
O

Lemmas 2 and 3 apply to both cases. Lemma 4 results since Huffman codes use true
single-symbol coding (n = 1) while arithmetic codes minimize the expected rate when n is

large. The rates are related as

1 1
lim = Bl ) (X™) < BI04 (X) < lim = Bl 4 (X™) + 1.

n—oo 1 PEI(X) n—oo 7

I next show that there exist pairs of groups (Gr, G;) such that GrNG; = () but Gr and G;
cannot both descend from the root of an optimal partition. This result is derived by showing
conditions under which there exists a group G* that combines the members of G; and G; and
for which replacing {Gr, G;} with {G*} in P(X) guarantees a performance improvement.

Suppose that G;,G; € P(X), so that G; and G; extend directly from the root r of
T(P(X)) and nodes I and J are the roots of 7(G;) and T(G;). Let n, denote the 1-
level group at some node in 7(G;). We say that G; can be combined with G; at n, if the
combined group G* is a legitimate group, where G* is obtained by replacing n, with 1-level
group (I,n,) and adding the descendants of I (in addition to the descendants of n,) as
descendants of (I, n,) in 7(G*). Figures 3.5(a) and (b) show an example where groups G; =
((a2) : {(as), (a5)}) and G; = ((ar) : {(a1), (as)}) of partition P(X) = {(ao), (as),Gr, G}

combine at (ag). The modified partition is P*(X) = {(ao), (as), G*}, where G* = ((ag,ay) :

{(a1), (a3), (as), (as)}).
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Figure 3.5: Combining the groups in partition (a) to get partition (b); (c¢) the matched

Huffman code rate for (a) is 2.25; (d) the matched Huffman code rate for (b) is 2.3.
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Figure 3.6: Combining two groups (G and G;) into one group.

Theorem 5 Let P(X) = {Gi,...,Gn} be a partition of X under p(x,y). Suppose that
Gr € P(X) can be combined with G; € P(X) at 1-level group n, in T(G;). Let P*(X) be the

resulting partition. Then El}. ) (X) < Elp ) (X).

Proof: Let n, = Jj; ... jy = 0,5y, so that n, is the parent of n,. Let & = {Jj;...7J; :
1 <i < M} be all nodes on the path to n, except node J, S, = {n € T(G,) : n is the sibling
of node s € 81} be their siblings, and S3 = (S; U {J}) N {n,}¢ be & modified to include J
and exclude n,. Let @), and ¢, denote the subtree and node probabilities respectively for
any node n € 7(P(X)), and define AQy, = Qn — Gn = Z;{:(?) (@nj- Then Figure 3.6 shows
the subtree probabilities associated with combining G; with G; at n,. Let the resulting new

group be G*.



3.2. LOSSLESS INSTANTANEOUS SIDE INFORMATION SOURCE CODES 45

The sum of the subtree probabilities of G; and G; equals the subtree probability of G*,
and thus the optimal average rate of the groups in P(X') N {G, G,}¢ are not changed by the
combination. Thus if (I;,7,) and (I},7;) are the optimal average rates for (Gr,G,) in P(X)

and P*(X), respectively, then Al; + Al; = (I; — Z;) +(Iy — 7}) gives the total rate cost of

using partition P(X') rather than partition P*(X’). From Theorem 3 we have

K(I) 0
—lr = QrlogQr+ kz_; Q. log Aé;] + Aly
K(I)

> Q1+ Qnk Q1r

=l; = Qrlog ((QI + Q) ngl 0, + A0, AQ,,) + ; Qrx log AQ, + A0, + Aly

which implies
Al = Qrlog Qr+Qs H Qr+ Qnk _I_Kz(i)Q log AQr
! ! Qr s Qr+AQn | & MU AQr+ AQ,

_ Qr+Qs Qr+Qui  Qi+Qn, Q1+Qno) AQ;
= Qrlos (QI+AQJ QU+ AQ Q1A @ ) TAYERG A,

Qr+Qn @n, AQn,
oo 11 g, +orve (14 G ) - 2emme (14535

where Al; represents the portion of the average rate unchanged by the combination of G;
and G;. It follows that Al; > 0 since log [lnes,(Qr + @n)/(Qr + AQy) > 0 and for any

constant ¢ > 0, xlog(1 + ¢/x) is monotonically increasing in z > 0, giving

AQ;log (1 + AA%H;) < AQylog ( Qg’ > < Qrlog (1 + %) )

Similarly, using Al; as the portion of I; unchanged by the combination,

K(no)
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Al = QJ10g<QJ+QI) Z O log an+Q1+ Z anlogAQ AQn

nkeS; Qn nkes; QI
AQn Y AQu
+nkzesanklogAQ Q1+ ZQ“°klgm
() B+ §) F (- )
—AQy, log (1 + Agl )
Qr Qr
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Thus Al; > 0 by the monotonicity of xlog(1 + ¢/z). Since the optimal rates of G; and G;
both decrease after combining, I have the desired result. O

Unfortunately, Theorem 5 does not hold for matched Huffman coding. For the example
given in Figure 3.5, if the p.m.f. on X = {ag, a1, ...,a7} is {0.45,0.1,0.05,0.1,0.1,0.1, 0.05,
0.05}, then the matched Huffman code rates for the partition before and after combining
are 2.25 and 2.3 respectively (shown in Figures 3.5(c) and (d)). Theorem 6 shows a weaker

result that does apply in Huffman coding.

Theorem 6 Given partition P(X) of X on p(z,y), if G1,Gs € P(X) satisfy: (1) Gy is a
1-level group and (2) Gr can be combined with Gy at root J of T(Gy) to form partition P*(X),

then BIGH ) (X) < Bl (X).

Proof: Let vx denote the matched Huffman code for P(X), and let oy and vy be this code’s
binary descriptions for nodes I and J. The binary description for any symbol in G; equals
as (yx(z) = ay for each = € G;) while the binary description for any symbol in G; has prefix
ay (7x(x) = ayvi(z) for each = € G;, where 7% is a matched Huffman code for G;). Let

Oimin be the shorter of oy and a;. Since 7x is a matched Huffman code for P(X) and P*(X)
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is a partition of X on p(z,y),

Olmin ifz e g
X (@) =9 ammyi(z) ifz€Gy

vx(x)  otherwise

\

is a matched code for P*(X). Further, |amm| < |oz| and |omin| < |ay| imply that the
expected length of a*(X) is less than or equal to the expected length of yx(X) (but perhaps

greater than the expected length of the matched Huffman code for P*(X)). O

3.2.6 Partition Design and Complexity

I next consider techniques for finding the optimal partition for a fixed p(z,y). These tech-
niques may be used to find the optimal partition for Huffman coding or the optimal partition
for arithmetic coding by applying the appropriate optimality criterion. Since optimal lossless
SISC design is NP-hard [32] and matched code design requires only polynomial complexity,
the partition design problem must be NP-hard. I next describe a search algorithm for the
optimal solution. The approach given gains efficiency by taking advantage of the above-
described properties of optimal partitions.

I build an optimal partition for X by building optimal groups for larger and larger
subsets X’ C X for which R(X') = {z € X' : {z} # (X' N {z}°)} implies R(X’) # ¢ and
testing all legitimate combinations of those groups. I eliminate all X’ with R(X') = ¢ by
Lemma 2. By Lemma 3, the optimal group for X' is G*(X’) = (R(X') : C(X")), where
C(X') = P*(X'NR(X')) is the optimal partition on X’ N R(X")¢. Thus G*({z}) = (z) for

any z € X. For any X' C X with |[R(X’)| > 0 and |[A' N R(X")¢| > 0, I find C(X") by
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calculating the expected rate of the matched code for each set of groups of the form

C = {Q*(Sl), ceay g*(SK) : |R(Sk)| >0 Vk, U,leSk = (XI N R(X')c),S,- N Sj = (15,

S;, S; can’t be combined by Theorem 5 or 6 Vi, j},

and choosing the one with the best performance. By examining all subsets of X’ in order
of increasing size and storing the results, all G*(S) values are available when needed and
calculation repetition can be avoided. (For example, X’ # X" does not imply that (X' N
R(X") # (X"NR(X")¢), but we can avoid repeating the optimization through appropriate
storage of past results.)

I consider both design complexity and operation complexity for the encoder and decoder.

The design complexity varies greatly depending p(z) and the locations of the zeros in
p(z,y) [24]. The worst case complexity can be loosely bounded from above by Z‘k)i‘l ('f') B, <
21¥I B x|, where By, is the Bell number. The Bell number B,, ~ m~/2[\(m)]"+1/2eA(m)=m=1
is the number of ways a set of m elements can be partitioned into nonempty subsets, where
A(m) In[A(m)] = m [34]. When the number of symbols that are not confusable is low or high
the actual complexity is greatly reduced (e.g., the complexity is lowest when no symbols can
be combined or all symbols can be combined).

While optimal SISC design is expensive, the encoding and decoding complexities for an
optimal SISC are comparable to the encoding and decoding complexities of a traditional
(single-sender, single-receiver) Huffman or arithmetic code. All are linear in |X|. For Huff-
man coding, I use a table look-up encoder and a binary tree decoder. The decoder’s binary
tree labels node n with all z € X’ such that yx(x) = n. Since the decoder knows y, it stops

reading bits when it reaches a node n for which there is some z € n with p(z,y) > 0; the
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decoder outputs that x. Similarly, an arithmetic SISC has encoding and decoding complex-
ities that are comparable to those of traditional arithmetic codes. In arithmetic coding, the
encoder describes x by describing the interval for n such that z € n, and the decoder maps

that interval back to the z € n with p(z,y) > 0.

3.3 Lossless Instantaneous Multiple Access Source Codes

3.3.1 Problem Statement, Partition Pairs, and Optimal Matched

Codes

I here drop the SISC assumption that ¥ (or X) can be decoded independently and consider
MASC design when it may be necessary to decode the two symbol descriptions together.
I replace the SISC partition P(X) by a pair of partitions (P(X),P())) that describe the
prefix and equivalence relationships for {yx(z) : x € X} and {yv(y) : y € YV}, respectively.
For an MASC to be instantaneous, the decoder must recognize when it reaches the end of
vx (X) and vy (Y'). We again use tree structures to help us understand the prefix relationships
that make instantaneous decoding possible. Let 7y and 7y, be a pair of binary trees for which
each symbol z € X resides at the node reached by traversing path yx(z) from the root of Ty
and each symbol y € ) resides at the node reached by traversing path vy (y) from the root
of Ty. To decode binary strings vx(X) ... and 7y (Y) ..., the decoder starts at the roots of
T» and Ty and moves down the first few bits of the path yx(X)...in Ty and vy (Y)... in
Ty, in each case stopping when it reaches an occupied node. Let nx and ny denote those

occupied nodes, and use 7x and 7y to describe the subtrees comprising, respectively, nx
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plus all of its descendants and ny plus all of its descendants. For instantaneous coding, at
least one of the following conditions must hold:

(A) X € Tx or ny is a leaf implies that Y € ny, and Y € Ty or ny is a leaf implies that
X € ny;

(B) X € Tx implies that YV ¢ ny;

(C) Y € Ty implies that X ¢ nx.

Under condition (A), the decoder has reached the end of yx (X) and vy (Y). Under condition
(B), the decoder reads the next few bits of 7y (Y) ..., traversing the described path in 7y
to node n{, with subtree 7y,. Condition (C) similarly leads to a new node n’y and subtree
Tx. If none of these conditions holds, then the decoder is not instantaneous since it cannot
determine whether to continue reading one or both of the descriptions. The decoder continues
the above procedure until it determines the nodes of 7x and 73 where X and Y reside. At
each step before the decoding halts, at least one of the conditions (A), (B), and (C) must
be satisfied.

For an MASC to be lossless, the above procedure’s final nodes ny and ny must satisfy
(X,Y) € nx x ny, and for any other (z',y’) € nx X ny, we must have p(X,y') = p(2',Y) =
pl',y') = 0.

I define a partition pair (P(X’), P(Y)) to be any pair of prefix relationships on {yx(z) :
z € X} and {yy(y) : y € Y}. The following theorem gives a simple test for determining
whether (P(X),P())) gives a lossless instantaneous MASC. Theorem 7 reduces to Lemma 1
when either P(X) = {(z) : z € X} or P(Y) = {(y) : y € V}. In either of these cases, the

general MASC problem reduces to the SISC problem of Section 3.2.
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Theorem 7 (MASC Prefix Property): Partition pair (P(X),P(Y)) yields a lossless in-

stantaneous MASC for p(z,y) if and only if for any (z,y) # (2',y") with p(z,y) > 0 and

p(@',y') > 0, at least one of {yx(x),yx(z")} and {yv(y), v (y")} is prefiz free.

Proof: If an MASC is not instantaneous, then there must be a time in the decoding pro-
cedure when the decoder reaches nodes (ny,ny) with subtrees (7x,7y) but none of con-
ditions (A), (B), or (C) is satisfied. Violating (A), (B), and (C) implies that there must
exist a pair (z,y),(2',y") € Tx x Ty with p(xz,y) > 0 and p(z’,y’) > 0 such that ei-
ther (z,2') € nx x (Tx Nn%) and (y,¥') € ny X ny or (z,2') € ny x (Tx N n%) and
(y,9y") € ny x (Ty Nn§) or (z,2') € nx X ny and (y,y') € ny X (Ty N n§). Thus both
{7x(z),vx(z")} and {yy(y), v (y')} violate the prefix property. If an MASC is instantaneous
but not lossless, then there must be a pair of nodes (nx, ny) and an (z,y) # (z',y") for which
(z,y), (2',y') € nx x ny and both p(z,y) > 0 and p(z’,y’) > 0, so that the decoder reaches
a node pair instantaneously but cannot decode without loss. In this case, at least one of the
following must be true: (1) x # z’ and yx(z) = vx(z') or (2) y # ' and yx(y) = yx(¥'). In
either case, the MASC prefix condition is violated.

I now show that if the MASC prefix condition is violated, then we cannot achieve a
lossless instantaneous MASC. I begin by building two binary trees, 7x and 7y. For each
z € X and y € Y, I place symbol z at the node reached by path vx(z) in Ty and symbol
y at the node reached by path vy (y) in 7y. If there exists a violation of the MASC prefix
condition, then there exists an (z,y) # (2',y') for which p(z,y) > 0 and p(z',y’) > 0 and
neither {yx(z), vx(«')} nor {yy(y), v (y')} is prefix free. If n,, n,/, n,, and n, are the nodes

in our tree construction satisfying z € n,, 2’ € ny, y € n,, and y' € ny, then one of two
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Figure 3.7: The partition pair (P(X), P(Y)) with P(X’) shown in (a) and P(Y) shown in (b)
gives a lossless, instantaneous MASC for the p.m.f. in Table 6.1(a). Replacing P(Y) with

the partition shown in (c) fails to give a lossless, instantaneous MASC for the same p.m.f.

cases can occur. If (ng, n,) = (ny,ny), then the example satisfies (A); in this case, the code
is not lossless since vx(z) = vx(z') and vy (y) = ¥ (y') (by construction) and p(z,y) > 0
and p(z’,y") > 0 (by assumption). If (n,, n,) # (ny,n, ), then either one of {n,, n, } is the
ancestor of the other and {n,,n,} is not prefix free or one of {n,,n,} is the ancestor of
the other and {n,,n, } is not prefix free (or both). In this case, none of (A), (B), and (C)
is satisfied since the decoder cannot determine whether or not to read beyond the common
prefix of {yx(z),vx(z')} in the description of X or the common prefix of {vy (y), vy (¥')} in

the description of Y. O

Ezample: Again consider the p.m.f. in Table 6.1(a). If we set P(X) and P(Y) to be the
partitions in Figures 3.7(a) and (b), respectively, then there is no pair (z,y) # (2/,y') with
p(z,y) > 0 and p(a’,y') > 0 for which neither {yx(x),vx(z")} nor {yv(y),w(y')} is prefix
free. Thus (P(X),P(Y)) gives a lossless, instantaneous code for the p.m.f. in Table 6.1(a).
In contrast, if P(X') and P(Y) are the partitions in Figures 3.7(a) and (c), respectively, then
p(az,az) > 0 and p(as,a;) > 0 but yx(az) = vx(a3) and vy (a;) < yy(az). Thus neither

{vx(a2),vx(a3)} nor {vy(ai),vy(az)} is prefix free, and the decoder cannot know whether
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or not to continue reading beyond vy (a1) in decoding the description of Y when it receives
vx(az) = vx(a3) as its description from X.

Theorem 2 generalizes to show that every lossless, instantaneous MASC is a pair of
matched codes for some (P(X),P())) satisfying Theorem 7. Thus optimal MASC design is
equivalent to optimal partition design followed by optimal matched code design. Matched
code design for each partition of an MASC is identical to matched code design for the
partition of an SISC. Thus the generalization to optimal matched Huffman and arithmetic
codes for any partition pair (P(X),P(Y)) for p(z,y) is immediate. The codewords of an
optimal matched Huffman code for the partitions in Figure 3.7 appear in parentheses under

the nodes of the partition trees.

3.3.2 Optimal Partition Properties

Given a partition pair (P(X), P(Y)) that satisfies the MASC prefix condition, (P(X),P(}))
is optimal for use in a matched Huffman MASC on p(z,y) if (Elgg()(X),Elgg,)(Y)) sits
on the lower boundary of the rates achievable by a lossless MASC on alphabet X' x ).
Similarly, (P(X),P(Y)) is optimal for use in a matched arithmetic MASC on p(z,y) if

(Elp(a) (X), Elp(yy(Y)) sits on the lower boundary of

{(Bl ) (X), Bl (V) : (P'(X), P'(¥)) are partitions on X x ¥ for {p(z,y)}}.

Again lg,H) and [, denote the Huffman and optimal description lengths respectively for parti-

tion P, and Huffman coding is optimal over all codes on a fixed alphabet. (Mixed codes (e.g.,

Huffman coding on X and arithmetic coding on Y') are also possible within this framework.)
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Lemma 5 For each partition pair (P(X),P(Y)) that achieves performance on the lower
boundary of the achievable rate region, there exists a partition pair (P*(X'), P*(Y)) achieving
the same rate performance as (P(X),P(Y)) for which every node except for the roots of

P*(X) and P*(Y) is non-empty and no node except for the roots can have ezxactly one child.

Proof: We build P*(X) and P*(Y) by modifying P(X) and P(}) to remove all empty
nodes, attaching the node’s children directly to its parent. We also remove any non-root
node n that has exactly one child n1, combining n and nl to form 1-level group (n,nl) with
{nlk}kK:(?l) descending directly from (n,nl). Since neither change can increase the code’s

rate or change the sets of symbols whose descriptions violated the prefix property, we have

the desired (P*(X), P*(Y)) by Theorem 7. O

3.3.3 Partition Design and Complexity

For a fixed partition P()) on Y with matched code 7y, I design the optimal partition and
matched code yx on X such that (yx,7y) satisfy the MASC prefix condition. Traversing

through all partitions on Y, I can trace out the lower boundary of achievable rates for MASC.

A very loose bound on the worst-case complexity for designing an optimal MASC is
Cmasc < 27X+ B4 (|Y]+1)!. The encoding and decoding complexities of the proposed op-
timal MASCs are linear in the alphabet size and comparable to the corresponding traditional

codes.
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3.4 Near-Lossless Instantaneous Multiple Access Source

Codes

Finally, I generalize from lossless to near-lossless codes. For any fixed small € > 0, I call
MASC ((vx,7),7"") a near-lossless instantaneous MASC for P, < €if ((vx,vy),7™") yields
instantaneous decoding with P, = Pr(y }(yx(X), w(Y)) # (X,Y)) < e. Since the code is
instantaneous, the decoder builds its reconstruction (Z1, §;) of (z1,y1) using exactly |yx(z1)|
bits from vx(z1)yx(z2)yx(z3) ... and |y (y1)| bits from vy (y1)vy (y2)yy (y3) - .. (without
prior knowledge of these lengths). Thus even when (%1, 4:) # (21, y1), the decoder correctly
determines |yx(x1)| and |yy(y1)|- This requirement disallows loss of synchronization and

error propagation.

Theorem 8 (Near-Lossless MASC' Prefir Property): Partition pair (P(X),P(Y)) yields a
near-lossless instantaneous MASC for p(x,y) if and only if for any (x,y) # («',y") with
p(z,y) > 0 and p(z',y’) > 0, either:

(A) at least one of {yx(x),vx(z")} and {vv(y), 1w (¥)} is prefiz free; or

(B) vx(z) = vx(2') and vy (y) = w (')

Proof: Recall that yx(x) is a proper prefix of vx(z') (written vx(z) < yx(2')) if vx(z) <
vx(x') and vx(z) # vx(2'). Fix some (z,y) # («',y") with p(z,y) > 0 and p(2’,y") > 0.
Under (A), the decoder can instantaneously and losslessly distinguish between (z,y) and
(2',y') by Theorem 7. Under (B), we cannot decode losslessly, but there is no ambiguity in

how many bits to decode.
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If neither (A) nor (B) is satisfied, then there exists an (z,y) # (2',y') for which p(z,y) > 0
and p(z',y") > 0 and either the decoder cannot determine whether to decode |yx(x)| bits or
lvx(2')| > |vx ()| bits because vx(z) < vx(z') and {7y (y), 7 (¥')} is not prefix free or the
decoder cannot determine whether to decode |yy (y)| bits or |yy(y')| > |y (y)| bits because
v (y) < v (') and {yx(z),vx(z")} is not prefix free. O

In a near-lossless SISC for X given Y, the prefix condition simplifies to: for any z,z’ € X
for which there exists a y € Y with p(z,y) > 0 and p(z’,y) > 0, yx(z) < 7x(z') is disallowed
(as in lossless coding) but yx(z) = yx(z') is allowed. Here vx(z) < vx(z') would leave the
decoder no means of determining whether to decode |yx(z)| bits or |yx(z')| bits. However,
vx(x) = vx(z') allows instantaneous (but not error free) decoding.

Given a partition pair (P(X),P(})) satisfying the near-lossless MASC prefix property,
then for any ¢ € n, € T(P(X)) and y € n, € T(P(Y)) with p(z,y) > 0, the optimal

decoder gives

v Hvx (@), w(y) = arg  max p(z',y)

(z’,y")Eng xXny

P.(P(X),P(Y)) = Z { Z p(r,y) — max p(m,y)}.
(z,y)

(nx,ny)eT(P(X))xT(P(V)) Enxxny (z,y)€nx xny

By Theorem 8, I can design a near-lossless MASC by designing a lossless MASC on a
reduced alphabet that represents each 1-level group by a single symbol. The optimal near-
lossless MASC can be found by searching the reduced alphabets that satisfy a given error
constraint €. The optimal performance of this one-dimensional code is bounded below by
the convex hull of the Slepian-Wolf rate regions on these reduced alphabets.

It is interesting to compare the near-lossless coding approach given above to MASCs

based on error correction codes (see for example [25, 26, 29, 30, 31]). The strengths of
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those algorithms are that they are computationally efficient at high coding dimension n and
achieve good coding performance (low error probabilities and rates close to the Slepian-Wolf
bound) when the relationship between sources X and Y resembles that between the input
and output of the noisy channels for which the error correction code was designed (e.g., the
structured sources of [25, 26, 29, 30, 31]). The weaknesses of these codes are that they do not
give instantaneous coding, and they can suffer catastrophic decoding failure due to loss of
synchronization when the “errors” between X and Y exceed the code’s correction capabilities.
In contrast, the strengths of our codes are that they are instantaneous and cannot suffer
catastrophic failures. The weaknesses are that code design complexity becomes prohibitive
for large coding dimensions, and thus the codes’ rate and error probabilities generally fail
to meet their asymptotic limits. For example, the smallest error probability that can give a

result different from lossless coding for a block-length-n code is min{p"(z",y") : p™ (2", y") >

0}.

3.5 Low Complexity Multiple Access Source Coding

Algorithms

3.5.1 Problem Statement

Since the complexity of optimal MASC design is high, in this section, I introduce a family of
low complexity code design algorithms that approximates the optimal solution for instanta-
neous lossless and near-lossless SISCs. The algorithms may be used to design both Huffman

and arithmetic SISCs for an arbitrary probability mass function p(z,y). The results apply
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to MASC design under the assumption of a fixed, known P()). The only difference between

SISC and MASC design lies in the prefix property and group definitions.

Section 3.5.2 treats Alon and Orlitsky’s elegant chromatic entropy bound on optimal
SISC rates [24]; I show that the underlying code construction is NP-hard and therefore is
not a viable alternative for sub-optimal code design. Section 3.5.3 introduces a constrained
SISC design problem and its polynomial-time optimal solution. Section 3.5.4 describes a
family of search strategies for the unconstrained problem built from the design algorithm for

the constrained problem.

3.5.2 Obtaining Chromatic Entropy is NP-Hard

Since design of optimal lossless SISCs [32] and MASCs is NP-hard, I consider sub-optimal
alternatives. The design used to bound the optimal SISC rate in [24] seems an attractive

alternative. I next consider its complexity.

Associate with each p(z,y) on X x Y a graph G = (X, Ex). Distinct vertices z,z' € X
are connected if and only if p(x, y)p(z', y) > 0 for some y € Y. Code ~yx is valid if and only
if for every edge (z,2') € Ex, {7x(z),vx(z)} satisfies the prefix condition; a valid code is a

lossless instantaneous SISC [11].

A legitimate coloring c¢ colors the vertices of G' so that no two connected vertices have
the same color. The entropy of ¢ is H[c(X)] = — "5 Plc™"(8)]log P[c~" ()], where ¢'(8)
describes all symbols with color 3 and P[A] = }_, 4.y P(z,y). The chromatic entropy

is Hy(G,P) = min H[c(X)] (the minimum is taken over legitimate colorings). By [24,
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Theorem 2], the optimal rate R for an SISC on p(z,y) satisfies
H,(G,P)—loglH,(G,P)+1]—loge < R< H,(G,P) + 1.

I prove that calculating H, (G, P) is NP-hard by showing that the H, decision problem
is NP-complete. The H, decision problem inputs graph G(V, F) and marginal pmf P and

outputs the answer to “Is H, (G, P) < log, 3?”
Theorem 9 H, is NP-complete.

Proof: Given any coloring on GG as a guess, we can always verify in polynomial time if this
coloring has an entropy < log, 3. Thus H, € NP.

I next show that there exists a polynomial reduction of 3C to H,. (Here 3C denotes the
problem “is G colorable with 3 colors?”, which is NP-complete [35].) The input I of 3C is
graph G'(V', E'); I give a polynomial algorithm to construct input f(I) of H, from I; then
I show that G’ is 3-colorable if and only if H, (G, P) < log, 3.

Construct G(V, E) as: V = V' U {vy,v9,v3} = {0}, ..., 0}y, v1,v9,03} (M = |V']), E =
E'U{(vy,v2), (v1,v3), (v, v3)}, i.€., v1, v9, v3 form a triangle. Construct P as P(v;) = 1/3,
P(vy) =1/3, P(vs) =1/3 = 1/M, and P(v}) = 1/M? for j =1,..., M.

Assume G’ is 3-colorable, then G is also 3-colorable. Thus H, (G, P) < log, 3.

Next, assume G’ is K-colorable with K > 3 but not 3-colorable. Then M > 4 and G is
also K-colorable but not 3-colorable. Let k;,j =1,2,..., K be the number of vertices in G’
that are colored color ¢;, and without loss of generality assume k; > ko > ... > kg. Then a

simple minimization gives:

HX(GaP):f(%‘F%)+f<%+%)+f(%+%—%>+2f<%),
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where f(p) = —plogp. The minimal value of H, (G, P) is achieved when the k;’s take their

boundary values: ky = M — (K — 1), k; = 1(2 < j < K). Thus we have

i H, (G,P
(G,P) :nlﬁllfncolorable X( ’ )

(S ) s d) s e )0 3

Since (a + b) log(a + b) > aloga + blogb, we have

min min H,(G,P) = min H,(G,P)
K24(q,p) : k-colorable (G,P) : 4-colorable
M-3 1 1 1 1 1 1 1 def
= f(ww) +f(M2+3) +f(—+§ M) +f(W) = Hy(M)
It can be shown that d?ﬁy ) > 0 and limp; o0 % = 0, thus & fﬁ% ) < 0. Since

%ﬁw)w:z} < 0, we have dH“( ) < 0 for M > 4. It can be verified that limp, oo Hy(M) =
log, 3, giving Hy(M) > log, 3 for M > 3.

Thus G’ is 3-colorable if and only if H, (G, P) < log, 3. O

3.5.3 Constrained Side Information Source Code Design Algo-
rithms

Given the high complexity of optimal partition design, I temporarily restrict my attention
to defining and solving a constrained partition design problem.

Order alphabet X as O = {1, ...,2n}, where N = |X| and 7 < j implies z; precedes z;
in the chosen order. An order-constrained partition for O is any partition P on X such that
a depth-first search [35] of P can describe X" in order O.

Any order-constrained partition has the property that

1. any one-level group n € 7 (P) is a sequence of adjacent elements in the ordering;
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2. if we define the position of a group to span from its first member to its last, then
the root and descendants of every multi-level group 7(G) € 7 (P) must hold adjacent

positions in the ordering.

Since partitions don’t specify the order of symbols in a node or siblings in the tree and
since a depth-first search doesn’t preserve the structure of P, many partitions can give
the same order and many orders can come from the same partition. The optimal order-
constrained partition for order O and constant A > 0 is P(O, \) = argminp J\(P), where
JA\(P) = R(P) + AP.(P) and the minimum is taken over partitions with order O. The
A-optimal order is O*(\) = arg ming Jy(P(O, A)). I control P, by varying \.

I focus on near-lossless SISC design in the following descriptions. Since lossless and near-
lossless SISC design differ only in the prefix property, extension to lossless SISC design is

straightforward.

Theorem 10 The worst-case complexity in constructing the optimal order-constrained par-

tition and matched code for a given order {z1,...,zn} is O(N*).

Proof: Fix A, and let G[i, k] = P({=;, ...,z }, N), r[i, k] = R(G[i, k]), and e[i, k] = P.(G]i, k]).
I use dynamic programming to find G[i, k| for all 1 < k —4 < N —i. (Note that G[i, 1] = (x;)
and r[i,7] = e[i, ] = 0 for all 4.)

Let r[i, 7, k] and ey, [4, j, k] denote the rate and error probability resulting from combining
Gli, j] with G[j+1, k] into G[i, k] using a type-m combination, m = 1,2. When m = 1, G[i, k|

comprises an empty root with children G[i, j] and G[j+1, k|; thus e1[i, j, k] = eli, j]+e[j+1, k],
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and °
rli,jl +rlj + 1, k] + PJi, k] in Huffman coding
(a1 [Za ja k] =
rli, jl +r[j + 1, k] + P[i, k|H(PJi, j]/P[i, k]) in arithmetic coding,
where P[i, j] = Y_. px(z¢) and H(p) = —plogp — (1 —p) log(1 —p). When m = 2, we build

Gli, k] by combining one of G[i, j| and G[j + 1, k] with the root of the other. Let R(G) be

the root of G, C(G) be the children of R(G), and define s[i, j, k] as

4

o

if r[i,7] =0,7[j + 1,k] =0 and (G[7, j]UG[j + 1,k]) = R(G[i, k])

—_

if r[i,7] = 0,7[j + 1,k] > 0 and G[, j] can join R(G[j + 1, k])
sli, J, k] =

[\

if r[i, j] > 0,7[j + 1,k] = 0 and G[j + 1, k] can join R(G[i, j])

w

Gli, j| and G[j + 1, k] can’t be joined by type-2 combination,

\

where G, G’ can be joined if the resulting partition is valid. Then

(TQ[’i,j, k], 62[i,j, k])

/

0, P.(G[i,j]Uglj+1,k])) if s[i,j,k] =0
_ (rlj+1,k], Pe(Gli,j] UR(G[j + 1,k])) + P.(C(Glj + 1,k])) if s[i,j,k] =1
(rli, 3, Pe(R(GL, 1) UGlj + 1, k]) + Pe(C(GIi, 1)) if si, j, k] = 2
(00, o0) if s[i, j, k] = 3.

\

Let m* = m*[i, j, k] = argming,c 91 {rmli, j, k| + Aem[i, j, k]} be the optimizing method and
J* = j*[i, k] = argminjegiivi,. k—13{rm=[4, 4, k] + Xems[1, j, k]} the optimizing index. Then
r[i, k| = rm«[i, 7%, k|, €[i, k] = enx[i, j*, k], and G[i, k] is the group described by the type-m*
combination of G[i, 7*] and G[j* + 1, k].

When the procedure is complete, G[1, N] is the optimal order-constrained partition on

order {z1,...,zx}; 7[1, N] and e[l, N] are its expected rate and error probability.

5The derivation of r1[i, j, k] is given in the Appendix.
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The number of operations required to calculate r,,[i, 7, k] and e,,[i, j, k| dominates the
complexity of this algorithm. In calculating s[i, j, k], we need to check whether subsets
of Gli,j] and G[j + 1,k] can be joined, which requires at most min{j — i + 1,k — j} <
(k—1)/2 operations (previous join-ability results are stored). Thus the worst-case complexity

is Yo SN Yy (k —0)/2 = O(N*). O

3.5.4 Low Complexity Design Algorithms

Since order-constrained partition optimization requires only polynomial time and optimal
code design is NP-hard,, optimal order design is NP-hard. I tackle this combinatorial opti-
mization problem using simulated annealing (SA) and iterative descent techniques. In the
discussion that follows, I use J(O) = JAx(P(O,N)) = R(P(O,\)) + AP.(P(O, \)) for some

fixed A > 0.

Simulated Annealing (SA)

SA [36, 37] attempts to find an optimal solution while avoiding local optima. Applying SA

to optimal order design, gives the following algorithm.

1. Initialize order O and temperature 7.
2. While the outer loop stopping criterion is not satisfied, do the following.

a) While the inner loop stopping criterion is not satisfied, do the following.
i) Choose a random neighbor O’ of O.
i) If J(O') < J(O), set O =0O".

i) If J(O') > J(O), set O = O' with probability e=(/(©)=7(ON/T
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b) Set T'= pT (0 < p < 1 to reduce the temperature).

3. Return the best order.

The choices of the initial order and temperature, neighbor definitions, stopping criteria
and parameter p all affect the speed of convergence and final solution of the SA algorithm.
We choose the initial order at random and set the initial temperature 7, to make the initial
distribution on orders uniform. We set p € [0.9,0.99] and use the symmetric neighbor
relation (switching the positions of two randomly chosen elements in O) that achieves the
best performance in our tests. We stop the inner loop if the rate has not decreased for L;,
orders in this inner loop and stop the outer loop if the rate has not decreased for L,,; outer

loop iterations.

Descent Neighbor (DIN)

Iterative descent algorithms are a degenerate special case of SA algorithms. In this case,
I define an asymmetrical neighbor (descent neighbor) relationship that guarantees J(O') <
J(O) for all neighbors O of O. I guarantee this property by defining the neighbors of O
to be the orders O for which P(O, \) (the optimal partition for O) is a legitimate order-
constrained partition on O'. Given order @, we can find its descent neighbor O’ by switching
the positions of the descendants of any internal node in 7 (P(0)) or exchanging the position
of a root with its children or permuting the positions of symbols residing at the same node.
Since P(O) is also an order-constrained partition for O', J(O') < J(O).

The basic DN algorithm is as follows:

1. Choose an initial order O at random.
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2. While no more than Lpy orders with identical rates have been chosen, do:

i) Choose a random descent neighbor O’ of O.

i) If J(O') < J(O), set O = O'.

iii) If J(O') = J(O), set O = O with probability p,.

iv) Set po = papa (0 < pg < 1),

3. Return J(O).

Given a complexity budget equivalent to testing C' orders, we can combat local minimality
problems by running the DN algorithm £ times with k£ distinct randomly chosen initial
orders. We stop the algorithm once C' orders have been tested and output the best order

observed over all of the experiments.

Mixing SA with DN

Various mixtures of SA with DN are also possible. For example:

1. SA 4+ DN: Each time we reach step 2 b) of SA, we run DN starting from O. (Note:
In the inner loop, we stop the SA chain if the rate has not decreased for Lg,4 orders in that
SA chain and stop the DN chain if the rate has not decreased for Lpx orders in that DN
chain. We stop the outer loop if the rate has not decreased over L,,; outer loops.)

2. DN-merged-in-SA: Change step i) of SA to: choose a random symmetric neighbor

of O with probability P;, choose a random descent neighbor of O with probability 1 — F;.
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3.6 Uniquely Decodable Multiple Access Source Codes

Most prior work on the properties of optimal MASCs and SISCs focuses on instantaneous
codes. In this section, I extend our interest to a wider class of codes: uniquely decodable
(UD) MASCs and SISCs. A uniquely decodable MASC for source pair (X,Y") consists of two
encoders vy : X — {0,1}* and 7y : Y — {0,1}* and a decoder v~ * : {0,1}* x {0,1}* —
X x Y, where the decoder can uniquely and perfectly reconstruct any source sequences
T1,T2, T3, ... and Yy, Y2, Ys, - .. such that p(z;,y;) > 0 for all 7. In simple terms, a uniquely
decodable MASC has the property that any pair of encoded strings (yx(z"), vy (y")) for
(z™,y™) € X™ x Y™ has only one possible pair of source sequences producing it. A uniquely
decodable SISC assumes perfect knowledge of y1,y2,y3, ... at the decoder and can uniquely
and perfectly reconstruct any source sequence x1,Zs, 3, ... such that p(z;,y;) > 0 for all 7.

The class of UD codes is a super-set of the class of lossless instantaneous codes.

The interest in UD MASCs and SISCs is inspired by the fact that in traditional single-
transmitter single-receiver single-source source coding, the set of achievable codeword lengths
is the same for uniquely decodable and lossless instantaneous codes [38, 39]. Hence in
searching for optimal code design algorithms, people focus on lossless instantaneous code

design. For MASCs and SISCs, parallel results are not available yet.

In this section, I investigate various properties of UD MASCs and SISCs. In particular,
I give necessary and sufficient conditions for UD MASCs and SISCs. I also give necessary

conditions on the set of achievable codeword lengths for UD codes.
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3.6.1 Necessary and Sufficient Conditions on Uniquely Decodable

Multiple Access Source Codes

First, I would like to see if existing necessary and sufficient conditions for lossless instanta-
neous SISCs can be generalized to UD SISCs.

Define I';y = {yx(x) : p(z,y) > 0} to be the codeword set for A, = {z € X : p(x,y) > 0}.
Lemma 1 in Section 3.2 shows that code vx is a lossless instantaneous SISC for X given
Y if and only if Iy is prefix-free for each y € Y. To generalize this result to UD SISCs,
I conjecture that yx is a UD SISC for X given Y if and only if I'y is UD without side
information for each y € ).

The following lemmas show that this conjecture is only partially correct.

Lemma 6 vx is a UD SISC for X given Y only if I'y is UD without side information for

each y € ).

Proof. I would like to show that if there exists a y* € Y, such that I'y- is not UD, then
there always exists a Y sequence y1,9s,...,yx and two distinct X sequences z1,%s,..., Tk

and z, x5, ..., 2% with identical binary encoded strings

Yx (1) yx (22) - - vx (Tx) = yx (2))yx (25) - - vx (),

and p(z;, v;)p(x}, y;) > 0 for all 4 € [1, K.
Assume Jy* € Y, such that I'y« is not UD. Then there exist two distinct X sequences
XK = (z1,29,...,25) and XX = (2}, 1),...,2%), such that z;,z} € {z € X : p(z,y*) >

0} for all i € [1,K]| and yx(z1)yx(x2)-..vx(rx) =yx(x))yx(x})...vx(z%). Then the
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Y\X a b c

A 025(025| 0

B 025 0 ]0.25

vx(X)| 0 | 01 | 10

Table 3.1: Counterexample used for proving Lemma 7.

binary string vx(21)yx(z2) ... vx(zx) with side information Y& = (y*,y*,...,y*). cannot
be uniquely decoded. O

Unfortunately, the necessary condition of Lemma 6 is not sufficient.

Lemma 7 The condition that 'y be UD for each y € Y is not sufficient to guarantee that

vx s a UD SISC for X given Y.

Proof. I use the following example. Let p(z,y) and vyx be given by Table 3.1. Note that
both T'y = {vx : p(z,A) > 0} = {0,01} and T'p = {yx : p(z,B) > 0} = {0,10} are
uniquely decodable. Consider Y sequence AB and encoded binary string 010 for X. String
010 can be parsed into two different X sequences ac and ba with p(a, A)p(c, B) > 0 and
p(b, A)p(a, B) > 0. Hence, we cannot uniquely decode 010 given Y sequence AB. O

The example used in proving Lemma 7 can also be used to prove the following corollary.

Corollary 1 If Y = {A, B}, the condition that Iy be UD for eachy € Y and T4 NTg be

prefix free is not sufficient to guarantee that yx is a UD SISC for X given Y.

These results suggest that even for a very simple p(z,y) and 7yx, we may need a more
sophisticated procedure to test whether or not vy is UD. Theorems 11 and 12 generalize the

test procedure of Sardinas and Patterson [40] to UD SISCs and UD MASCs.
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If string s is the concatenation of two strings, i.e., s = s;8,, then the operators '+’ and
'—! on strings are defined as s = s; + s and s, = s — s;. Thus '+’ designates concatenation

while ’-’ is a suffix operator.

Theorem 11 SISC vx s UD given Y if and only if it passes TEST 1.

TEST 1
1. Let S = {yx(z) : x € X}.
2. Let §; ={c—c':c,c’ €l forsomey €)Y and ¢’ <c}andi=1.
3. For each pair (c,s) such that c € S,, s € §;, and s < c,

(a) if c,c —s € I'y for some y € Y, then yx fails the test and the procedure stops;

(b) let Siti1(c,s) = {¢' — (¢ —s) : c,c’ € T, forsome y € Y and c —s < '}, (see

Figure 3.8(a));

(c) let Siyi(c,s) = {(c—s) —c' :c,c € [, forsomey € Y and ¢’ < c — s}, (see

Figure 3.8(b)).

4. For each pair (c,s) such that c € S,, s € S;, and ¢ < s, let Siy1(c,s) = {(s —¢) + ¢’ :

c,c’ € I'y for some y € Y} (see Figure 3.8(c)).

5. Let

Si—|—1 = UCESO [USESi:s<c |:S¢+1(C, S) U SH—I(Ca S) USESi:c-<s Si+1 (C: S) -

6. If every string in S, has appeared in some S;, j <4 or S;;1 is empty, then yx passes

the test, and the procedure stops. Otherwise, increment 7 and go to step 4.
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< C ——

~—S-~Cc —
(a)

- C —

(b)

(c)

Figure 3.8: Three prefix/suffix relations between strings ¢ € S, and s € §;.

Table 3.2 gives an example of how to use TEST 1 to determine if yx is a UD SISC. The
test fails in the construction of Ss since ¢ = 100 € &y, s = 1 € &; and ¢ = 00 implies
(c,c —s) € I';. Constructing a string that can be decoded in two distinct ways involves
tracing back any path in the test that ends in a violation. In this example, the binary
description 0101100 can be parsed as 010,11,00 or 01,01,100 when (Y7, Y5,Y3) = (2,2, 3).

TEST 1 can be generalized to give a necessary and sufficient condition for UD MASCs.

Theorem 12 MASC {vx,vy} is UD if and only if it passes TEST 2.

First, I define a two-step prefiz/suffiz procedure. Figure 3.8 illustrates this process as
well. The input is a set of codewords C and a suffix s; the output is a collection of suffixes S.
The procedure works as follows. Given a suffix s and set of codewords C, find all ¢, ¢’ € C,

such that

1. s < c (step 1), c —s < ¢’ (step 2). Put the suffix ' = ¢/ — (¢ — s) (shaded string in

Figure 3.8(a)) into S.



3.6. UNIQUELY DECODABLE MULTIPLE ACCESS SOURCE CODES 71

Table 3.2: An example where vx is not UD SISC as tested by TEST 1. In this table, S;
are classified according to y, hence S; may contain repeated elements. This classification is

convenient but not necessary.

Ty | S |81]8: |8

r'y| 00 010
01 1]1
10
11

I'b[ 00| 0]0]0

01 111
11 10 | 10
010

10 1

11 00

100




72 CHAPTER 3. SOURCE CODING FOR MULTIPLE ACCESS SYSTEMS
2. s < c (step 1), ¢/ < ¢ —s (step 2). Put the suffix s’ = (¢ —s) — ¢’ (shaded string in

Figure 3.8(b)) into S.

3. ¢ <s (step 1), ¢’ € C (step 2). Put s" = (s — ¢) + ¢’ (shaded string in Figure 3.8(c))

into S.

TEST 2

1. Let Sxo = {yx(2z) : z € X} and Syy = {w(y) : y € Y}. Draw an undirected graph

with vertex set Sxo U Syo and edge set {(vx(z), v (y)) : p(z,y) > 0}.

2. Sx1 x Sy1 ={(c; —¢}) x (¢, — ) : €z, €, € Sxo and ¢y, ¢}, € Sy, €, < ¢, and ¢, <
¢y, P(Cq, €y)p(cy, ¢;) + p(ce, €, )p(ch, cy) > 0.} © Connect s, € Sx; with s, € Sy;. Set

1= 1.

3. If there exist codewords c,, ¢, € Sxo, ¢y, €, € Syq and connected suffixes s, € Sx;, s, €

/
x?

Syi such that p(c,, ¢,)p(cy, €,) + p(ce, ¢ )p(cy, ¢y) > 0 and s, = ¢, — €}, Sy, = ¢, —

then (vx,yy) fails the test and procedure stops.

4. Do the two-step prefix/suffix procedure for input codeword set Sxo and each suffix
s € Sx;. Let Sx(i+1) be the union of the output of that procedure. Similarly, running

the procedure on Sy for each s € Sy; gives Sy (i11).

5. Connect suffix s € Sx(41) with suffix s;] € Sy(i+1) if and only if there exist code-
words ¢, ¢, € Sxo, €y, C;, € Syo and connected suffixes s, € Sx;, s, € Sy; such that

p(ce, ¢y)p(cy, ;) + p(cs, € )p(cy, ¢y) > 0, codewords ¢, ¢, and suffix s, result in suffix

6Here p(c,,cy) > 0 if and only if I(z,y) € X x Y, such that yx(z) = ¢z, 7y (y) = ¢y and p(z,y) > 0.
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!
x?

s, codewords cy,c; and suffix s, result in suffix sfy, through two-step prefix/suffix

processes respectively.
6. Remove all un-connected suffixes from Sx(;41) and Sy i41).

7. If Sx(it+1), Sy@+1) and their connecting pattern have appeared previously or at least
one of Sx(it1) or Sy(i+1) is empty, then (yx,7y) passes the test, and the procedure

stops. Otherwise, increment 4 and repeat step 3.

3.6.2 Necessary Conditions on the Codeword Lengths for Uniquely

Decodable Side Information Source Code

Section 3.6.1 describes testing procedures for determining if a particular code is UD. In
this section, I generalize the Kraft Inequality [38, 39] to give necessary conditions on the
codeword lengths for UD SISCs. Necessary and sufficient conditions are not yet known.

A set of necessary conditions on the codeword lengths for UD SISC can be easily obtained

from Lemma 6 by applying the Kraft Inequality from traditional UD codes.

Corollary 2 For every UD SISC on X given Y,

Z 271l <1 for each ye .

cel’y

I would like to seek more stringent necessary conditions. I proceed in order of increasing
alphabet size of ) and finally generalize our results to arbitrary |)|. Lemmas 8 and 9
generalize two results from lossless instantaneous SISCs given in [23] to UD SISCs. Without

loss of generality, let ) = {1,..., Ny}, where Ny = |)|.
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Lemma 8 If |Y| =2, then

Z 27l <1 foreach yey

cely

s necessary and sufficient for the existence of UD SISC.

Proof. By Corollary 2 and [23, Theorem 1].
Note that Theorem 1 of [23] and Lemma 8 imply that the set of achievable codeword

lengths is the same for UD SISC and for lossless instantaneous SISC when |Y| = 2.

Lemma 9 For every UD SISC on X given'Y with |Y| =3, (I1NTy)U(F1NT3)U(TyNTy)

1s UD without side information.

Proof. Assume I'* = ('} NT) U (I NT3) U (I, NT3) is not UD without side information.
Then there exists an encoded binary string +* such that v* = vyx(z1)yx(z2) ... vx(zx) =
vx (@) yx (xh) ... yx (2'), where z;, 2} € (A1 N Ay) U (A N A3) U (A2 N A;3) for all i € [1, K]
and z; # zi.

Since z;, 2} € (A1 N Ag) U (A1 N A;) U (A N A3), there exists a yf € {1, 2,3} such that
both p(z;,yf) > 0 and p(z},yf) > 0,3 =1,...,K. Let Y* = (y],9;,---,¥))- Then v*

cannot be uniquely decoded given side information Y*.

Theorem 13 For any UD SISC on X given Y,
(ToNTy)uTenTH)u(ynly)

is UD without side information for every {a,b,c} C ).
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Lemma 6 is a special case of Theorem 13 with a = b = c.

Notice that the structure of Theorem 13 is critical to the result. For example, when
|V| = 4, it is not necessary for (I'y NT'y) U ('3 NT4) be UD. Table 6.3 in the Appendix gives
an example where none of (I'y NTy) U (I'sNTy) or (1 NT3)U(TyNTy) or (INTy)U(FaNTy)

is UD, but yx(X) is a UD SISC for X given Y.

Corollary 3 For any UD SISC on X given Y,

Z 27ld <1

c€(TqNlp)U(TeNIe)U(TpNIe)
for every {a,b,c} C Y.
Finally, we note that the results of [23] for |Y| = 2 and |Y| = 3 extend similarly to larger

alphabets ).

Theorem 14 For any lossless instantaneous SISC on X given Y,
(TaNTy) U (TaNT)UTNI)

is prefic free for every {a,b,c} C Y.

From the necessary conditions of Corollaries 3 I derive a lower bound on the rates achiev-
able for by UD and lossless instantaneous SISCs. The following results apply when |Y| < 3.
(The proof of Theorem 15 is straight forward from Theorem 16.) The approach generalizes

for larger alphabets.

Theorem 15 For |Y| = 2, the optimal rate R(X) for a one-dimensional lossless SISC on
X given Y satisfies R*(X) < R(X) < R*(X) + 1, where

Pis

R'(X)=H(X) - (Pa+ PiQ)h(m)a
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and P =37 4,045 P(®), Pr2a =3 e acna, P(2), h(p) = —plogp — (1 — p)log(1 — p).

By using block coding, we can achieve R*(X) asymptotically as the blocklength ap-

proaches infinity. I also show that R*(X) is always bounded from below by H(X|Y).

Lemma 10 Ifa+ b+ c+d =1 for some non-negative a, b, c,d, then

(a+b)log(a+b) + (c+ d)log(c + d) + (a + ¢)log(a + ¢) + (b + d) log(b + d) (3.1)

< aloga+ blogh+ cloge+ dlogd (3.2)

Proof. By Jenson’s inequality, we have

(3.1)—(3.2)

(a+b)(a+c) (c+d)(b+d)

bl
+ 0log d

clog + dlog

= a]og w+

(c+d)(a+c)

< log((a+b)(a+c)+(a+b)(b+d)+ (c+d)(a+c)+ (c+d)(b+d))

= 0

Lemma 11 For |Y| =2, R*(X) > H(X|Y), with equality if and only if

p(z,1)
p(z,2)
> wein, P(T;1) _ Dz aina, P(@,2)

EweAmAg p(z,1) ZwAgmAQ p(z,2)

s a constant for all z € A1 N Ay and

Proof. Let Az = A1 NAS, Ag = AN Ay, Al = AiN Ay, Pi3 = ZmeAlg p(z,1), Py =

ZweAiz p(2,2), Po1 = ZSCEAIZ p(z,1), Py = ZweAm p(2,2), Pig = Pia1 + Pias.

We have

= — Z z,1)logp(z,1) — Z p(z,2)logp(z,2)

TEA 3 TEA7y



3.6.

H(X]Y)

H(X[Y) -

VAN

IN
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7

— > plz,1)log(p(z, 1) + p(x,2)) = Y p(z,2)log(p(x, 1) + p(z,2))

z€A12 €A1

+Pj3log Py3 + Ppylog Pry — (Pi3 + Pro) log(Pyz + Pro)

- Z z,1)logp(z,1) — Z p(z,2)logp(zx,2)

TEA 3 TEA7,
- > plz,1)logp(x,1) = Y p(x,2)logp(z,2)
€A1 T€A12

+(Py3 + Pio1) log(Pi3 + Pia1) + (Pig + Piog) log(Pra + Piog)

Z p(I, 1) log p(.T, 1) + p(.??, 2) T Z p(I, 2) log p(l‘, 1) —i—p(x,

p(z,2)

SCEA12 p(m’ 1)
+(Pyi3 + Pio1) log(Pi3 + Pia1) + (Prg + Pio2) log(Pra + Piog)

TEA12

—Pi3log P15 — Prylog Py + (Piz + Pro) log(Piz + Pro)

+(Pi3 + Pio1) 1og(Piz + Pia1) + (Pig + Pio2) log(Pra + Pi2o)
—Piglog Py — Prylog Pry + (Piz + Pra) log(Piz + Pry)

Piay ]og% + Pigz log %

—Piglog Pi3 — Prylog Pry + (Pia + Pro) log(Piz + Pra)
+(Pi3 + Pig1) log(Pis + Pio1) + (Pr2 + Pigo) log(Pra2 + Pigo)
(Pro1 + Pigg) log(Pia1 + Prog) + (Piz2 + Pr2) log(Pra + Pra)
+(Pi3 + Pio1) log(Piz + Pia1) + (Pig + Pio2) log(Pra + Pi2o)

—Pi91log Pigy — Pigylog Pigy — Pj3log P53 — Prylog Pro

(3.4)

In the above, (3.3) comes from Jenson’s inequality and equality holds if and only if

p(l‘, 1) + p(.T, 2)

z,1) + p(z,2)

p(z,1) p(z,2)

and p(z, are constants for all x € Ajs;
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A1 ﬂ A2
E%F
Lo

A3

Figure 3.9: Definition of A, B,C,D,E, F,G.

and (3.4) comes from Lemma 10 with equality if and only if

(

(Pig1 + Piog)(Pio1 + Pi3) = Pioy
(P21 + Pi9g)(Piog + Pia) = Pigo

(Piz + Pro)(Pio1 + Pi3) = Pi3

(P13 + Pro)(Pig2 + Prp) = Pro.

Hence equality holds if and only if p(x,1)/p(z,2) is constant for all x € Ay and Pja1/ Pz =

Piyy [ Prs. o

The minimal value of R* (which equals the minimal value of H(X|Y)) is H(X) — 1,
achieved when P =0 and P;5 = P, = 1/2.

When |Y| = 3, to simplify our notation, we define (see Figure 3.9):

A= AN AN AL
B = A7 N Ay N A;S,
C=ANA5N As,
D=ANA;NAS,

E=ANAN A,
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F = .Af NA; N Az,
G=ANA,NA;,

and Pg = pr(x)

€S

Theorem 16 For |Y| = 3, the optimal rate R(X) for a one-dimensional lossless SISC on
X given Y satisfies

Pc

R(X) > H(X) = (Pa + Pe)h(5—2) = (Pp + Po)h(-— 2 ) — (Po + Pl o 5y

PA + PF PB + PE
Proof. From the necessary conditions of Corollary 3, we can obtain a lower bound on R(X)

using Lagrangian minimization to minimize

D DD A T WP YO D S (- S NP Vo A

€ AUDUEUG r€BUDUFUG c€CUEUFUG z€DUEUFUG

We set the derivative dJJ/dl(z) = 0, and obtain

(

)\127“@ r €A
)\22_l($) T €B
/\32_l($) relC

p(x) = 3 ()\1 + /\2 + )\4) —U) r€D
()\1 + /\3 + )\4) —U) r€FE

()\2 + A3 + )\4) —l(=) reF

(Al + Ao+ )\3 + )\4)2—l(m) r€eG
\
where \; = A\j/In2. From ) p(x) =1, and assuming the necessary conditions are met with

—l(z) —l(z) —

. . _l . _
equality, i.e., ZweAUDUEUG 12 @ = 1, ZzeBUDUFUG Ap2 =1, erC’UEUFUG A3
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1, X sepuBUruc X270 =1, we get 23:1 A; =1 and

7

Py/A = Pp/(A2 + A3+ A1)

y Ps/Xa= Pr/(AM+ X3+ \)

| Pc/A3:PD/()\1+/\2+)\4)

Hence

)\1:PA/(PA+PF)
Ay = Pg/(Pp + Pg)

A3 = Pc/(Pc + Pp)

A=1—=XA — X — Ag,
\

which gives

—log(P3p(z)) =€ A
—log(Petlep(z)) z € B
—log(P2Pep(2)) zeC
I(z) = { —log(£et2p(z)) z € D
—log(£2-2p(z)) z € E

~log("42Ep(z)) w € F

—log(p(x)) z €Qq.
Thus R = 32, p(2)l(z) = H(X) = (Pa + Pr)h(p5;) = (Ps + Pe)h(pPs;) — (Po +

Pp)h(5265-) is a lower bound on R(X). O

Pc+Pp

"When |Y| = 2, we have Pc = 0. The necessary conditions of Corollary 3 are also sufficient for the

existence of a UD SISC, which gives the results of Theorem 15.
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root root root
(az ag) /a7\ (ay ay) (a/\aﬁ (aga9 (agay (a;a,a;) (azay (ay
(ag ay /az\ az dag
(a) a; Gag (b) (©

Figure 3.10: Partition trees for the p.m.f. from Table 6.1(a) using (a) optimal arithmetic
coding, (b) optimal Huffman coding, (c) arithmetic or Huffman coding with the approach

in [1].

3.7 Experimental Results

3.7.1 Optimal Design Algorithms

This section shows optimal coding rates for lossless SISCs, lossless MASCs, and near-lossless
MASCs for the p.m.f.s of Tables 6.1 and 6.2 in the Appendix. I achieve these results by
building the optimal partitions and matched codes for each scenario using the algorithms
discussed in Sections 3.2, 3.3, and 3.4. Both Huffman and arithmetic coding rates are

included.

Table 3.3 gives SISC results. As an example, for the p.m.f. in Table 6.1(a), the rate
achievable in coding X using side information Y is approximately half that of an ordinary
Huffman code and 90% that of [1]; the corresponding partition trees appear in Figure 3.10.
The number of partitions tested to get the optimal rates ranges from 2|X|? to |X|® for these

p-m.f. examples.

Figure 3.11 shows general lossless and near-lossless MASC results compared with the

corresponding bounds and the independent coding results. The optimal lossless MASC gives
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Table | H(X) 51,4(X) | Rgra(X) | Ra(X) sr,a(X) | R p(X)
6.1(a) || 2.91075 | 1.67976 | 1.53582 2.96 1.75 1.67
6.1(b) || 2.51160 | 1.8201 1.79381 2.54 1.94 1.94
6.1(c) || 2.91623 | 1.5071 1.46162 2.96 1.56 1.49
6.1(d) || 2.91623 | 1.2784 1.15161 2.96 1.46 1.2
6.2(a) || 3.85278 | 3.04098 | 2.94631 | 3.8764 | 3.07865 | 2.97472
6.2(b) || 3.90508 | 3.27019 | 3.17971 | 3.93979 | 3.31152 | 3.21204

Table 3.3: Lossless SISC results for the p.m.f.s of Tables 6.1 and 6.2. In this table,
[H(X), Rsra(X), Ry 4(X)] and [Ry (X), Ry 4(X), Rg; ;5 (X)] denote the optimal and Huff-
man results, respectively, for [traditional, SISC [1], optimal SISC] coding on X when Y is

given as side information to the decoder.
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significant performance improvement over independent coding of X and Y. For the example
of Table 6.1(a), near-lossless coding with error probability 0.01 gives big improvements over
lossless coding. The number of partitions tested in tracing out the given rate regions are
bounded above by 2|X|*, |X|*, 2|X|%, 2|X[5, 2|X|*, and |X|3/2, respectively, for these six
p-m.f.s.

Figure 3.12 shows the effect of the coding dimension on the achievable rate for a fixed error
probability. I use the following p.m.f. Let X =) = {0,1} and py (1) = 0.5, pxy(0/0) = o,
and pxjy(1/1) = B for some 0 < o, < 0.5. Figure 3.12 shows the near lossless MASC
performance for P, < 5 x 107% at parameter values o = B = 0.0002 and o = 0.002,
B = 0.0002. As the coding dimension increases, the achievable rate region improves. The
number of partitions tested in tracing out the rate regions is bounded above by 2% for

dimension-3, € = 5e — 5 near-lossless MASCs.

Finally in Table 3.4, I compare the running time of (A) the optimal SISC design of
Section 3.2 with (B) a later optimal design used in [32]. All experiments are run under
identical conditions. Results are normalized to the running time of (A). While no general
results are available, the comparison of (A) and (B) demonstrates the existence of examples
where the more structured search presented in Section 3.2 reduces complexity relative to [32]

very significantly.

3.7.2 Low Complexity Design Algorithms

I test both lossless and near-lossless SISC performance using the dynamic programming

algorithm from Section 3.5.4.
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Figure 3.11: Dimension-1 lossless and near-lossless MASC results for Tables 6.1(a) (top
left), 6.1(b) (top right), 6.1(c) (middle left), 6.1(d) (middle right), 6.2(a) (bottom left),
and 6.2(b) (bottom right). (H: Huffman code; A: arithmetic code; S — W, P, = 0: Slepian-

Wolf bound; S — W, P, = e: bound for near-lossless MASC)
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Table 6.1(a) | 6.1(b) | 6.1(c) | 6.1(d) 6.2(a) 6.2(b)

SISCon X (A) || 1 1 1 1 1 1

SISC on X (B) || 13.056 | 11.40 | 20.56 | 3.681 | 1.26 x 105 | 1.36 x 10°

SISC on Y (A) 1 1 1 1 1 1

SISConY (B) || 7.672 | 15.20 | 3.664 | 3.661 8050.32 89145.32

Table 3.4: Comparing the running time of optimal design approaches.

Lossless SISC

For lossless SISCs, I use the following sources. Let Gy, = (X, Ex) be a random graph with
N vertices; each pair of vertices is connected with probability ¢ (independent of all other
pairs). I choose a distribution P[-] on the underlying size-N alphabet by drawing u1, ..., uy
uniformly on (0,1) and then normalizing.®

I test the fast algorithms on Gy, and P using N € {8,16,32,64,128,256} and ¢ €
{0.1,0.3,0.5,0.7,0.9}. I show the performance of our algorithm as a function of the number
C of orders tested. Since the algorithm involves random order choices, I run each experiment
K times. I measure the performance of the algorithm both by the fraction of trials in which
the algorithm achieves the target rate (the globally optimal rate when N is small or the best
rate from N randomly chosen orders when N is large) and by the average (over trials) of

the code’s rate at the end of a trial.

8By [24], if pmfs p and p' satisfy (1) p(z,y) = 0 if and only if p/(z,y) = 0 and (2) >, P y) =32, p'(2,y)
for all z, then the optimal lossless SISCs and expected performances for the two pmfs are identical. Therefore,
I specify only P[z] for all z and not p(z, y) for all (z,y), and the performance on a single graph G n 4 represents

the performance on a large collection of sources.
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In Figure 3.13, I present the experimental results as a function of C for N € {16,64} and
g € {0.3,0.7} when a set of generally good parameters is used for each of the algorithms.
Table 3.5 compares how close the fast algorithm’s results come to the optimum. Table 3.6
gives the best rates the fast algorithms obtained for N = 256 and ¢ € {0.3,0.5,0.7}. Table 3.7
summarizes the parameters used in Figure 3.13 and Table 3.6.

From these figures and tables, I have the following observations:

1. SA is the most successful at avoiding local minima, but its rate of convergence is slow.
When C' is N3, the average rate is close to the target rate, but the probability of hitting

the target rate is still very low for N > 16.

2. The rate of DN decreases much faster than that of SA when the complexity is low.
If the DN algorithm is run only once, it usually gets stuck with a local minimum.
By running DN multiple times, we avoid this problem in all of our experiments and
achieve a much better performance than SA. At C = N2, multiple-run DN achieves
performances very close to the optimum. For example, for N = 16, at C = N3, the
probability of hitting the optimal solution is at least 0.97 and the average rate differs
from the optimal rate by at most 0.02%. Even at C = N? and C = 2N?2, the average

rates differ from the optimal rate by at most 2% and 1%, respectively.

3. SA+DN and DN-merged-in-SA perform slightly better than SA but worse than DN
for N = 16 and ¢ = 0.3, 0.5; they perform better than DN for N = 16 and ¢ = 0.7. For
N = 64 and C < 2N?, DN-merged-in-SA achieves performance very close to that of DN
and both are much better than SA + DN’s; but as the complexity further increases,

DN-merged-in-SA outperforms the others, especially in terms of the probability of
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hitting the target rate for ¢ = 0.5,0.7.

Near-lossless SISC

For near-lossless coding, we need to specify the exact p(z,y) in order to calculate error
probability P,. Hence, I generate the random source as follows: assume a fixed percentage z
of zero entries in p(z,y); assign the designated number of zeros to randomly chosen entries;
choose the value for the remaining entries at random; and finally normalize.

I use the same sets of parameters as in Table 3.7 for the four algorithms. For each fixed
constant A, near-lossless coding achieves similar performance to lossless coding in terms of
the probability of hitting the target solution and the average value of the optimizing criteria
Jy = R+ AP, as a function of the number of orders searched.

By varying the value of A\, I can trace out the curve between error probability P, and
rate R. Figure 3.14 shows the near-lossless coding results for three random sources. Two
sets of curves corresponding to high design complexity (searching C = N3 orders) and low
design complexity (searching C' = N orders) are plotted for each source. From these plots,
we can see that by allowing an error probability 0.1%, the rate can drop up to 3%. At high
design complexity, the four algorithms achieve performance very close to each other; at low

design complexity, the DN algorithm outperforms all the other algorithms significantly.

3.7.3 Universal Codes Design Algorithms

The low complexity sub-optimal SISC design algorithm can be applied in a variety of net-
work coding scenarios to achieve low complexity network coding algorithms. One example

is to apply low complexity near-lossless SISC design in network vector quantization [7].
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Table 3.5: Closeness to the optimal solution. Ratio = Ryest/Ropt, Rfast = average rate of

the fast algorithm over K trials, Prob. = probability of hitting the target rate.

N =16 qg=20.3 qg=0.5 qg=0.7

C=N? | 011 |1.0701|0.02 |1.0874 | 0.03 | 1.0488
SA C =2N? | 0.16 | 1.0455 | 0.03 | 1.0610 | 0.06 | 1.0311

C=N3* |079 |1.0013]0.30 |1.0147 | 0.58 | 1.0038

C=N?% | 054 |1.0063|0.20 |1.02220.19 | 1.0094
DN C=2N%2|0.71 |1.0022]0.36 |1.0121|0.40 | 1.0041

C=N3 |1 1 0.97 | 1.0002 | 0.99 | 1.000

C=N? |0.31 1.0261 | 0.12 | 1.0433 | 0.19 | 1.0173
SA + DN C =2N?|0.57 |1.0084 | 0.21 | 1.0248 | 0.46 | 1.0055

C=N® 098 |1 0.83 | 1.0015 |1 1

C=N? | 027 |1.0394|0.06 |1.0460 | 0.31 | 1.0154
DN-merged-in-SA | C' = 2N? | 0.37 | 1.0213 | 0.11 | 1.0351 | 0.53 | 1.0050

C=N® 098 |1 0.67 |1.0050 | 0.99 |1
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Table 3.6: Achievable rates for N = 256, complexity limit C = N? = 65536.

N =256 q SA DN SA + DN | DN-merged-in-SA
Huffman Rate | 0.3 | 5.00656 | 4.43684 | 4.38234 4.30231
= 7.75968 0.5 | 5.57978 | 5.09944 | 5.06005 4.96012
0.7 | 6.16025 | 5.61802 | 5.59836 5.53641

Table 3.7: Good parameters

SA DN SA + DN | DN-merged-in-SA

Ly, =4 Lpy =16 Lsy=14 Ly, =4

N =16 (K =100) | Ly =16 pe =0 Lpy =16 Ly = 16
C = 4096 T, =0.01 Loy =4 P, =0.7

T, = 0.01 T, = 0.01

N =64 (K =10) | Ly =256 | Lpy = 1024 | Lgs = 256 L;, = 256

N=256(K=1) | Low=256| pa=0 |Lpy=1024 Loy = 256
C = 65536 T,=0.01 Loyt = 256 P, =0.7

T, = 0.01 T, = 0.01

91
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—— sA, Cc=N®
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(c) N =16, z =90%

Figure 3.14: Performance of four fast near-lossless SISC design algorithms.
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Reference [7] shows the concrete benefit of using variable-rate near-lossless SISC over (1)
using variable-rate lossless SISC, (2) using fixed-rate lossless SISC and (3) using no side
information in network vector quantization. Universal linked side information source codes
(ULSISCs) [10] presents another application for SISC design. In this section, I give a brief
introduction of ULSISC and present experimental results.

In Sections 3.2, 3.3, 3.4, and 3.5, I design optimal or sub-optimal SISCs and MASCs for
a given joint source distribution p(z,y). When p(z,y) is unknown at design time, we require
more sophisticated techniques to achieve good performance. A universal linked side informa-
tion source code (ULSISC) [44, 45] is a modified SISC that achieves asymptotically optimal
performance for any p(z,y) on fixed alphabet X x ). The modification involves allowing an
asymptotically negligible amount of communication from the decoder back to the encoder.
This modification is critical in order to achieve universality in the SISC framework [44, 45].

The proof of the existence of ULSISCs given in [44, 45] is constructive. The encoder
describes some fraction of the incoming data sequence to the decoder using a simple source
code. The decoder then estimates p(x,y) and describes its estimate to the encoder. Fi-
nally, the encoder describes X" using an SISC matched to the distribution estimate. A
careful balance between the fraction of the data sequence used in the distribution estimate
and the resulting estimation accuracy allows the ULSISC to achieve asymptotically opti-
mal performance. Details on ULSISC design appear in [10]. Without going into details of
how to achieve a good balance, I here present only the experimental results using the set of
parameters described in [10].

Due to the high complexity of optimal SISC design, I use the low complexity DN coding

technique of Section 3.5 to design the sub-optimal SISC matched to the estimated distribu-
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tion.

The experiments are performed on random sources generated in the same way as in
Section 3.7.2, where I fix the percentage z of zero entries in p(z,y), assign the designated
number of zeros to randomly chosen entries, choose the value for the remaining entries at
random, and normalize. By varying the value of A I can trace out the curve between error
probability P, and rate R. I fix the set of parameters used in estimating p(z, y) and vary the
block length n and the SISC design complexity C. We compare the resulting ULSISC curves
to each other and to the performance of the optimal SISC designed for the true p(z,y).

Figure 3.15 shows the experimental results for four random sources. These results demon-
strate that using low complexity SISC design in ULSISC when p(z, y) is unknown can achieve
performance very close to the optimal SISC performance when p(z,y) is known. Increas-
ing blocklength n has a greater impact on improving the performance than increasing the

sub-optimal SISC design complexity.

3.8 Summary

This chapter demonstrates that the optimal lossless and near-lossless MASC design prob-
lems can be broken into two sub-problems: partition design and matched code design. The
partition of an MASC describes the prefix and equivalence relationships for the code’s binary
descriptions. I give necessary and sufficient conditions on these partitions for instantaneous
and lossless or near-lossless decoding and describe a variety of properties of the optimal parti-
tion that decrease the complexity associated with optimal partition design. I demonstrate the

relationship between optimal matched codes and traditional (single-sender, single-receiver)
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Figure 3.15: Performance of ULSISC, N = |X| = |)Y|.
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source codes and use this relationship to give optimal matched code design algorithms. When
combined, these results characterize lossless and near-lossless SISCs and MASCs and yield a
means of searching for the optimal codes of those types for an arbitrary source p.m.f. p(x,y).
Experimental results based on this algorithm are consistent with the theory.

Since optimal MASC code design is NP-hard, I provide a polynomial-time optimal solu-
tion for a constrained MASC design problem, then use this solution to solve the unconstrained
MASC design problem and give a family of low complexity algorithms which approximate
the optimal design for general p.m.f.s. Experimental results compare the achievable rates
and error probability of different low complexity design algorithms with each other and with
the optimal solution. These results demonstrate that the DN, SA+DN, and DN-merged-in-
SA algorithms yield good performance for a wide range of source distributions; DN is better
suited for low design complexity requirement, while SA+DN and DN-merged-in-SA are bet-
ter suited for large alphabet size and high design complexity. The optimal and sub-optimal
SISC design algorithm has been applied in universal linked side information source coding
and in network vector quantizer design, demonstrating its applicability in various network
source coding scenarios.

I also investigate the properties of uniquely decodable MASCs. I provide necessary and
sufficient conditions for uniquely decodable MASCs which can be examined by a testing
procedure. I further provide necessary conditions on the codeword lengths for uniquely

decodable SISCs for arbitrary p.m.f.s.



Chapter 4

Entropy Constrained Dithered

Quantization

4.1 Introduction

In general, to obtain a lossy code that achieves the asymptotically optimal performance
requires high design complexity. Entropy constrained dithered quantization (ECDQ) [46, 47]
is an exception; it is a simple procedure for source-independent lossy coding and can achieve
performance very close to the theoretical optimal performance. T apply ECDQ to network
coding environment in this chapter.

ECDQ is dithered uniform or lattice quantization followed by universal entropy coding.
The ECDQ’s universal entropy code (e.g., a Lempel-Ziv-based algorithm) captures the source
statistics. We define the rate redundancy of an ECDQ with expected distortion D as the
difference between the rate (measured as entropy) of the ECDQ and the rate-distortion
function for the same source at the same distortion. In [47], Zamir and Feder give an

97
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upper bound on the rate redundancy that holds for all K-dimensional vector sources and all

distortion values and is constant for the squared-error distortion measure.

ECDQ

A uniform scalar quantizer @ : R — R is defined as Q(z) = iA for all z € (iIA—A/2,iA+
A/2]. The dither random variable Z is uniformly distributed in (—A/2, A/2]. We assume
that Z is available to both the encoder and the decoder. The ECDQ encoder encodes
source X as Q(X + 7). The quantized value is then described by a conditional univer-
sal entropy coder conditioned on Z. The decoder contains the corresponding conditional
universal entropy decoder from which it decodes Q(X + Z) and builds the reconstruction
X = Q(X + Z) — Z. We call this coding scheme Scalar ECDQ (SECDQ).

In a more general form of ECDQ, the uniform scalar quantizer is replaced by a K-
dimensional lattice quantizer @ : R¥ — R¥ which maps every K-dimensional vector % €
RX into the nearest lattice point IX in the K-dimensional lattice Lx. Thus the set of all
K-dimensional vectors mapped into IX € Lk is the Voronoi region, V(IX) = {z € R¥ :
d(z" —1f) < d(z% =) ¥ j #i}. The dither vector Z¥ is a K-dimensional vector uniformly
distributed over the basic cell of the lattice V, = V(0%), which is the Voronoi region of the
lattice point 0%. The ECDQ reconstructs XX as X = Q(XX + ZK) — ZX. This coding
scheme is called Lattice ECDQ (LECDQ).

In block coding, for a given n-dimensional vector z" € R", we assume K divides n and
consider z" as a concatenation of n/K K-dimensional vectors. Each K-dimensional vector
is quantized independently using identical dither; the concatenated n/K quantized values

Q¥ (XK + ZX) are then coded jointly by conditional entropy codes.



4.1. INTRODUCTION 99

We use the squared error distortion measure d(z,z) = (v — %)% Let Gg denote the
normalized second moment of Lg, then E||ZX||2/K = GxV? ¥, where V is the volume of
Vo.

Properties of ECDQ [48]:

1. For reconstruction XX = Q(XX + ZK) — ZX | the difference XX — XX is independent

of X¥ and is distributed as —Z%. Thus the distortion
D = E||X¥ — X¥|?/K = E||Z¥|]?/K = GxV¥¥

is independent of the source XX. If Z is a scalar (K = 1) and uniformly distributed

on (—A/2,A/2], then D = EZ? = A?/12.

2. The rate of an ECDQ can be made arbitrarily close to the conditional entropy of the
dithered quantizer given ZX using block coding. Hence we measure the rate of the

ECDQ as the conditional entropy of the quantizer output given Z%. Thus the rate is

1 K Ky Ky _ L K. yvK _ 7K
ZH(QUX® +25)|2%) = Z1(X"; X - 2%).

3. Let the minimal Gk of any K-dimensional lattice be

GP' = min(KVHH) 0 [ ][5 P’
@ Vo

Then for the corresponding optimal lattice quantizer, the autocorrelation of the quan-
tizer noise is Ryx = E(Z¥(Z%)!) = 0?1, where I is the K x K identity matrix and

0? = GP'V?K is the second moment of the lattice.
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Rate-distortion function

The rate-distortion function of a n-dimensional random vector X™ is defined as [47]

Ro(D) = inf Lrxemomy,

{fun|xn (urfen): (1/n)Ed(X™,U)<D} N

where fyn xn(u”™|2") is a conditional probability density function (pdf) of the representation
u™ given the source sample z", the term (1/n)Ed(X"™, U™) is the average distortion per source

symbol between the source and its representation, and

(XU =1(Xy,...,Xn;Un, ..., Up)

is the mutual information between X" and U™.

Chapter Outline

In this chapter, I apply ECDQs to multi-resolution source coding and multiple access source
coding.

Section 4.2 treats multi-resolution source codes. I show that using a nested scalar ECD(Q
in multi-resolution source coding can achieve a rate redundancy bounded from above by a
constant for any distortion value at any resolution for any source. I also give a practical
algorithm for designing multi-resolution scalar ECDQs and test that algorithm on a family
of images.

Section 4.3 treats multiple access source codes. I apply lattice ECDQ and optimal linear
estimation in multiple access source code design and derive the rate-distortion performance
for arbitrary sources. A constant upper bound on the rate redundancy can be derived for

some sources.



4.2. MULTI-RESOLUTION SOURCE CODES 101

4.2 Multi-resolution Source Codes

A multi-resolution source code (MRSC) with M = 2 (2RSC) consists of two encoder maps

and two decoder maps:

(a) a coarse map pair, encoder f; : R"™ — {1,...,L;} and decoder ¢; : {1,...,L;} - R"

with rate Ry = (1/n)log Ly and distortion Dy = (1/n)Ed(X™, g1(f1(X™))), and

(b) a refinement map pair, encoder fo : R"™ — {1,..., Ly} and decoder g, : {1,..., L1} X
{1,..., Ly} — R"™ with total rate Ry = (1/n)log(L;Ls) and distortion Dy = (1/n)

Ed(X", g2(f1(X™), f2(X"))).

The generalization to MRSC with M > 2 is straightforward; we use R; and D;, i =1,..., M,
to denote the rate and distortion at the 7th resolution.

The rate redundancy at the sth-resolution of a multi-resolution ECDQ is defined as the
difference between the rate R; achieved by the MR-ECDQ in resolution-i and the rate-

distortion function R, (D;) at the same distortion D;.

4.2.1 Code Design and Performance Analysis

In this section, I consider scalar ECDQ in MRSC design. I use a nested coding structure
and show that the rate redundancy of MR-SECDQ is bounded from above by a constant at
all distortion values and all resolutions.

In the MR-SECDQ), I begin with a single dither random variable Z; distributed uniformly
on (—A;/2,A,/2] and then define Z; = Z;_; — N;A;, i = 2,3,..., where A; = A,_; /M, for

some positive integer M;, and N; is the nearest integer to Z;_1/A;. Since Z; is distributed
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Figure 4.1: Calculating Z5 and Z3 as deterministic functions of dither random variable Z;.

uniformly on (—A;/2,A;/2], Z; is uniformly distributed on interval (—A;/2,A;/2]. Fig-
ure 4.1 gives an example. Here Ay =6, My = My = M3 = 3, Z; = 5/2, hence Z = 1/2 and
Z3 =—1/6.

The SECDQ encoder encodes source X by applying a uniform scalar quantizer @); to X +
Z;; the basic cell of Q; is (—A;/2, A;/2]. The SECDQ describes the quantized value to the de-
coder using a conditional entropy coder conditioned on 7, ..., Z;, Q1(X+Z1),...,Qi—1 (X +
Z;1)- (Typically the entropy code is a block entropy code that describes every n quantized
values using a conditional entropy coding on the block.) The decoder contains the corre-
sponding universal conditional entropy decoder and outputs X; = Q:i(X + Z;) — Z; as its
reconstruction at resolution .

For the nested MR-SECDQ), I have the following rate redundancy results.

Theorem 17 Let (Dq,...,Dy) and (Ry, ..., Ryr) be the distortion and total rate at reso-
lution 1,..., M of a nested MR-SECDQ, where D; = D;_1/M? for some integer M;. Then

R; — R,(D;) <0.754 for alli € {1,..., M} and any source.

Proof. Assume we use block entropy coding with block length n.



4.2. MULTI-RESOLUTION SOURCE CODES 103

By Property 1 from Section 4.1, the distortion at the i-th resolution is

1., 11 ., 1 1 11 )
O T T T 2SR T T
Hj:2 j Hj:2 J

1270 12 M2 M2
Only nested distortion values D; = D;_;/M? can be obtained via the nested MR-SECDQ.

Let Z' = (Z;,...,Z;) and use QP (X" + Z7') = (Qi(X1 + Z;), - .., Qi(X1 + Z;)) to denote
a vector of n quantized values; then the rate at the i-th resolution is
1 n n n 1 n n n
R, = EH(Q1(X + 721 7)) = EI(X s X" —27) (4.1)

1
Ri = Ryt HQUX"+ 20|70 2 QUX" + Z0), ., QL (X" + Z2)))

1
= Rii+—I(X" X" = ZMX" =27, ... X" = 7Z")) (4.2)
n
1
= —I(X™X"—ZM X" — 2", ..., X"~ 77
n

1 1
= —I(X™X"—ZM 4+ —I(X" X" —Z" ..., X" — ZM| X" — 77
n n

1
= (X" X" — 2" (4.3)
n
where (4.1) and (4.2) come from Property 2 in Section 4.1, and (4.3) holds since Z; uniquely
determines Z;, in nested ECDQ.
Let U} be the n-dimensional vector achieving the n-dimensional rate distortion function

R,(D;) for source X. Then applying [47, Theorem 2], I can bound the rate redundancy of

the nested MR-SECDQ at the i-th resolution as

1 1
Ri = Ry(Dy) = ~I(X™ X" = Z7) = ~I(X";U") < 0.754.

where Dz = Dz—l/Mf O
For arbitrary distortion values at any resolution, I can obtain two upper bounds on the
rate redundancy, one that allows time-sharing and one that doesn’t. I consider the case

without time-sharing first. The following result from [49] is useful in obtaining these results.
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Lemma 12 [49, Lemma 1] Let R, (D) be the rate-distortion function, then for any 0 <
Dl S D27
D,

1
w(D1) — R,(Ds) < =log —.
Rn(Dy) = Ry(Do) QOng

Theorem 18 Let (Dy,...,Dy) and (Ry,. .., Ry) be the target expected distortion and ex-
pected total rate at resolution 1,..., M of an MR-SECDQ (without time-sharing). Then

R; — R, (D;) < 1.754 for alli € {1,..., M} and any source.

Proof. Given target distortions D; > Dy > ... > D, at resolutions 1,..., M, we design
a nested MR-SECDQ code with distortion D] < D; at each resolution i. We choose D;
as D} = D, and, for each i € {2,..., M}, D! = D;/4™, where m; is a positive integer
satisfying D, /4™ < D; < Dy /4™~

From Theorem 17, we can achieve R; — R, (D;) < 0.754 for each ¢ € {1,..., M}. Thus

R; — Rn(Di) = R, — Rn(D;) + Rn(Dg) - Rn(Di)

1 D;
< R;— R,(D)) + 3 log Dl (4.4)
1
< 0.754 + 3 log 4 (4.5)
= 1.754

where (4.4) comes from Lemma 12 and (4.5) follows from D} = D, /4™ < D; < D /4™~ =
D./A. O

Lemma 13 is useful for the investigation of the time-sharing case.
Lemma 13 Suppose 0 < Dy/4 < Dy < Dy and D = aD; + (1 — a)Ds, where 0 < a < 1,

then

CVRn(Dl) + (1 — OZ)RH(DQ) — Rn(D) < (7 =0.3413.
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Proof:

« D
. g lo Ole + (]_ — Oé)DQ
- 98 D,
(6] DQ
= §log <a+(1—a)E)
«
< 5 log(4 — 3a) (4.8)
< 0.3413, (4.9)

where (4.6) follows since Dy > D and the rate-distortion function is a non-increasing func-
tion; (4.7) follows from Lemma 12; (4.8) follows from Dy/4 < D;; and (4.9) comes from a

standard maximization. O

Theorem 19 Let (Ds,...,Dyr) and (Ry,. .., Ryy) be the target expected distortion and ex-
pected total rate at resolution 1,..., M of an MR-SECDQ that allows time-sharing. Then

R; — R, (D;) < 1.096 for alli € {1,..., M} and any source.

Proof. I use time sharing between the resolutions of a nested MR-SECDQ. The nested

MR-SECDQ achieves rate I?; and distortion Dj at resolution j, where D} = D; and

1 1

I achieve distortion D; in resolution ¢ of the target MR-SECDQ by time-sharing between the

(29)-th and the (2¢ + 1)-th resolution of the nested MR-SECDQ. Since Djy; > D; > Dy, .,
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there must exist an « € [0,1] such that aDj, , + (1 — o)D), = D;. Hence R; = aR);_ | +

(1 — @)R),. The rate redundancy can be bounded by Ry — R,(D,) = R} — R,(D}) < 0.754

and for 7 > 1,
R; — R,(D;)
= altyy + (1 — )Ry — Ry(aDyyy + (1 — a)Dy)
= a(Ryy1 — Ba(Doiiq)) + (1 — ) (RYy; — Ra(Ds;))
+aR,(Dy1) + (1 — a)Ra(Dy;) — Ru(aDy i + (1 — @) Dy;)
< 0754+ aR,(Dy ) + (1 — a)Ra(Dy;) — Ru(aDy; i + (1 — ) Diy) (4.10)
< 0.754+0.3413 (4.11)
= 1.096,
where (4.10) comes from Theorem 17, and (4.11) follows from Lemma 13. O

In the above argument, I time-share between the resolutions of a single MR-SECDQ code.
To do this, for a fraction « of the time, I use the j-th resolution by encoding, transmitting
and decoding Q1,...,Q;; for the remaining fraction (1 — «) of the time, I use the (j +
1)-th resolution by encoding, transmitting and decoding @1, ...,Q;, Qj+1. The resulting
rate redundancy bound is a constant independent of the distortion values, the number of
resolutions, and the source. If we allow the rate redundancy bound to be expressed as
a function of the distortion values, we can time-share among distinct nested MR-SECDQ

codes and achieve a tighter upper bound.
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4.2.2 Code Implementation and Experimental Results

Implementing the MR-SECDQs described in the previous section presents certain difficulties,
since universal conditional entropy codes are not currently available and even good low-
complexity conditional entropy codes without the universality constraint are difficult to
achieve. In order to implement a simple coding algorithm that takes advantage of the
correlation among adjacent symbols and uses information from previous resolutions and the
dithers to improve the performance, I modify the code design techniques of Section 4.2.1 and

give a practical multi-resolution source coding algorithm.

Code Implementation

Consider a length-L data sequence {X;}Z |, where each X; € [Xmin, Xmay)- Figure 4.2(a)
gives a sample image file. The data sequence is obtained in line scan order, i.e., by reading
from left to right, from top to bottom of the image. I fix the value of the dither Z = z,,
Zo € [—Xmax; Xmax|, and add it to every symbol in the sequence (see Figure 4.2(a)).!

At the first resolution, quantize X; + z, using uniform scalar quantizer Q;(.) with basic
cell size A1 = Xmax — Xmin- The index of the quantized value is I; (X) = | X/A;]. We use
universal entropy code (e.g., Lempel-Ziv-Welch code [50, 51] or Burrows-Wheeler Transform

coding [52]) on I1(X; + 2,)[1(X2 + 25) ... [1(XL + 2,). The decoder decodes I1(X; + z,)

'Tn Theorems 17,18 and 19 of Section 4.2.1, the rate-distortion performance we obtained is an expected
performance over the distribution of source X and dither Z. So there always exists a value z* of Z that
achieves rate-distortion performance above average and is at most a constant distance away from the opti-
mum. I fix the value of Z for each image. Through experiments, I develop a rule for determining a good

value of Z, as discussed shortly.
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Figure 4.2: MR-ECDQ implementation: (a) original image and dithered image; (b) rear-

ranging pixels positions in multi-resolution coding.
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and reconstructs Q;(X; + 2,) as the mid-point of the quantizing cell, i.e., Q(X; + z,) =
I (X;+2,) A1+A1 /2. The reconstruction for X; at the 1st resolution is Xu’ = Q1(Xi+20)— 20,
1=1,...,L.

At the m-th (m > 1) resolution, I first re-order the symbols in the sequence, so that
symbols with identical index values I, Is,..., I, 1 are placed at adjacent positions (see
Figure 4.2 for an illustration). The index value I,,,(X; + 2,) conditioned on Qy,—1(X; + 2,) is

0 if X+ 2, < Qum1(Xi + 2),

Im(Xz —+ ZO) =
1 if Xz + 2 2 Qm—l(Xi + Zo)-

The binary sequence I, (X, 1)+ 20) I (Xim(2)+20) - - - I (Xim(z)+2,) is then coded by universal
entropy code, where X,,(,..., X;,p)is the data sequence after re-ordering. The decoder
already knows I, and @, for all X and all £ < m; hence the decoder can recover I,,,(X + z,)
and re-order the data sequence appropriately. The reproduction value is the mid-point of
the new quantization cell: Qu,(X; + 20) = Qm-1(Xi + 20) + Ln(X; + 20) Ay — Ay /2. The
reconstruction for X; at the m-th resolution is )A(m,i =Qm(Xi+2,) —20,0=1,...,L.

The above procedure is equivalent to quantize X; + 2, using uniform scalar quantizer
Qm/(.) with basic cell size A, = A,,_1/2, then code @, (X; + z,) using a universal con-
ditional entropy code conditioned on Q1 (X; + 2,), - - ., Q@m_1(X; + 2z,). By rearranging the
positions of pixels according to I, ..., I,,—; (or equivalently Q1 (X;+25),-- -, Qm-1(Xi+20)),
a simple universal entropy code can capture the statistics of Q,,(X; + 2,) given Q1(X; +
20)s -+ s Qm—1(X; + 2z,) and achieve performance close to the optimal performance.

There are a few techniques that can further improve the performance and still keep the

algorithm simple.

1. Scan the image in a zigzag pattern as shown in Figure 4.3.
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Figure 4.3: The zigzag scanning pattern.

2. Set Q,(+) as the centroid (rather than the mid-point) of the quantization cell and use

non-uniform scalar quantizer for the m-th (m > 1) resolution.

3. Experimentally T find 2, = (Xmax — Xmin)/2 — Yoe; Xi/L to be a good value for the

dither.

Experimental Results

I implement the algorithm of previous section and test it on a variety of images. I use
both the Lempel-Ziv-Welch (LZW) code and BZIP, an algorithm based on Burrows-Wheeler
Transform (BWT) as lossless codes. I compare the rate-distortion performance of variations
on the above algorithm with each other and with the performance of the Set Partitioning In
Hierarchical Trees (SPIHT) algorithm [53, 54]. The images I test include Barbara, Crowd,
Airport, Lena, and a set of medical brain-scan images (shown in the Appendix).

First, I test the influence of the quantization rule, entropy code, and image scan order.

Figure 4.4 shows the average results on a brain-scan image Brainl averaged over a range of
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Figure 4.4: Various methods for improving the performance of ECDQ.

Z values. The results are similar for other images. Here centroids outperform mid-points
(despite the overhead needed to describe those centroids to the decoder), BTW outperforms
LZW, and zigzag outperforms raster scan.

In Figure 4.5, T plot the rate-distortion curves for different dither values for image Brainl
using BWT in ECDQ. The dither value z, has much greater influence on low rate performance
than on high rate performance. For R < 0.2, z, = 96 achieves the best performance over all
tested dither values and its rate performance differs from that of SPIHT by no more than
0.08 bits/symbol at the same distortion. For R > 0.5, most z, values outperform SPIHT), in
some cases yielding rate differences larger than 0.5 for the same distortion.

Figure 4.6 compares the performance achieved by applying ECD(Q on the original image

to that achieved by applying ECDQ on the image’s wavelet coefficients [53]. The latter
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Figure 4.5: ECDQ+BWT’s performance on a brain-scan image at different z, values.

achieves performance very close to that of SPTHT at very low rates (the rate difference is at
most 0.02). At higher rates, application of ECDQ in the spatial domain outperforms both
application of ECDQ to the wavelet coefficients and SPTHT.

In Figures 4.7, 4.8, 4.9 and 4.10, T compare the performance of ECDQ and SPTHT on
four images. Our conclusions from these figures are: at very low rates, the performance of
ECDQ on wavelet coefficients can be very close to or even the same as that of SPIHT; at

higher rates ECDQ on the original image always outperforms SPIHT.

4.3 Multiple Access Source Codes

A multiple access source code (MASC) with M = 2 (2ASC) consists of two encoder maps,
fi: R —={1,...,Li} and fo : R™ — {1,..., Ly}, and one decoder map, g : {1,..., L} X
{1,..., Ly} —» R™ x R™. The rates and distortions are R; = (1/n)logL;, i = 1,2, and D; =

(1/n)Ed(X", 1 (f1(X"), fo(Y"™))), D2 = (1/n)Ed(Y™, g2(f1(X™), f2(Y™))), respectively.
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Figure 4.6: Comparison of the average performance of different ECDQ algorithms with

SPIHT on a brain-scan image Brainl.
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Figure 4.7: Comparison of the performance of ECDQ with SPIHT on image Lena.
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Figure 4.8: Comparison of the performance of ECD(Q with SPIHT on image Airport.
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Figure 4.9: Comparison of the performance of ECDQ with SPIHT on image Barbara.
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Figure 4.10: Comparison of the performance of ECDQ with SPTHT on image Crowd.

Tung and Berger investigate the lossy source coding problem for this system and give
one inner bound and one outer bound on the achievable region in [55]. The inner bound is
not tight in general, and the relationship between the inner bound and the achievable region
for joint encoding is difficult to understand. Feng and Effros bound the difference between

the performance of MASCs and the joint rate-distortion function in [56].

To apply K-dimensional lattice ECDQ in MASC design (MA-ECDQ), I assume K = n

in the following discussion. The results apply to any K such that K divides n.

Let X™ and Y" be n-dimensional vector sources. I use independent ECDQs on X"
and Y" and use joint optimal linear estimation at the decoder to get reconstructions Xn
and Y. Let Z and Z? be the n-dimensional dithers with Z?1LZ2 (Zr Z»)1(X™ Y™),
ol = 1/nE(ZMZM)Y), i = 1,2, where A-LB specifies that A and B are independent. Then

the channel codewords ¢; of X™ and ¢y of Y™ are the entropy coding of @Q1(X"™ + Z7) and
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Q2(Y™ + Z7) conditioned on Z7 and Z7, respectively. The reconstruction of X" is
X" = o (QuX" + Z27) = Z0) + Bu(@(Y" + Z3) — Z3)

and that of Y™ is
V™ = ap(Q1(X™ + Z7) — Z1) + o Qo (Y™ + Z3) — Z3),

for some coefficients oy, s, B1, Bo. Let o = (1/n) Y 1 E(X?), 0% = (1/n) > E(Y}?),

and (1/n) Y ¢ | E(X;Y;) = poxoy. Then the distortion for X" is

D,

1 A
= —EB||X" - X"|?
n

- %Enxn — (o (Qu(X™ + Z7) — Z7) + Bu(Qa(Y™ + Z3) — ZB))|P

1
= ;Ell((1 —a)X" = BiY") + o (X" + Z7 — QuX™ + Z7) + (Y™ + ZF — QY™ + Z3)) 7
= (1- a1)2a§( —261(1 —an)poxoy + ﬁ%(f% + a%a% + ﬂ%ag.

We want to minimize D; for fixed o2 and o2. Let 0D;/da; = 0 and dD;/983; = 0, then

041(0§( + 0%) + Bipoxoy = 0}"(, Q1pOx0y + 51(052/ + 03) = pox0Oy.

Thus,
1 —p?)o%o% + 0% 038 o x Oy T?
alz( p’)oxoy X% and 512pXY1,
A A
where A = (0% + 0?)(0% + 02) — p?0%0%. As a result,
2 9 2 9 2 2 | 2
050 oyoi((1—p°)oy +o
Dy = 2 [(0} + (% + o) ~ oot 0§ + o - phoy] = AR L),

By symmetry,

b _ obod((1— )k + )
2 — A .
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The rates are

1 1
Ri==I(X";X"—2Z") and Ry=—I(Y™Y" —ZJ).
n n

I examine the performance of this code in a simple case. When X" and Y™ are iid and

joint Gaussian, 0% = 02 =1, and D; = D, = D, the joint rate-distortion function is [3]:

¢

1—p2
%log Dga OSDsl_pa
RXnYn(D,D) = { %log 2Di_€1p—p)’ 1-p< DK<L,
0, D>1.
\
We have
1. 1+02 1
R, < 3 log 2 + 3 log(2meGy).

Since D; = Ds, we get 02 = 02 and R; = R,. Consider n — oo, then o? = 1/(2%% — 1),

hence

okot((1 = p*)oy +03) _ (2" —1)(1—p*) +1

D, = A = TQ8R; _ p2(92R1 — )2

Figure 4.11 illustrates the comparison of the upper bound on the total rates R; + Ro
achieved by MA-ECDQ to the joint rate-distortion function Rxny~», where we assume that
2

n — 00, 0% = 0% = 1 and p = 1/2. This figure shows that the maximum difference does

not exceed 0.2075.

4.4 Summary

In this chapter, I design multi-resolution source codes and multiple access source codes using
entropy constrained dithered quantization. In both cases, I analyze the rate-distortion per-

formance. For multi-resolution source coding, I use a nested scalar ECD(Q and demonstrate
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Figure 4.11: Comparing the rate achieved by MA-ECD(Q with the minimal achievable rate

at the same distortion for Gaussian sources.
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constant rate redundancy bound at all resolutions, for all distortions, and for all sources. I
further provide a practical implementation of MR-SECD(Q and show its competitive rate-
distortion performance on images. For multiple access source coding, I provide a lossy coding
scheme using lattice ECD(Q combined with optimal linear estimation at the decoder. I show
that the code can achieve rate-distortion performance very close to the joint rate-distortion

function for certain Gaussian sources.



Chapter 5

Summary

In this thesis, I present a variety of source coding techniques for use in network environments
and demonstrate the concrete benefits of network source codes over traditional source codes
from both theoretical and practical perspectives.

The network systems I consider include broadcast systems, multiple access systems, and
multi-resolution systems. I investigate various code properties, analyze limiting performance,
and design optimal and low-complexity coding algorithms for lossless, near-lossless, and
lossy source coding in those systems. The experiments I performed on various data sets
demonstrate the power of these algorithms.

In particular, for broadcast systems, I prove the theoretical limits of lossless source coding
performance and use a tree-structured vector quantizer for lossy code design. The tree-
structured vector quantizer design can also be applied to multiple description and multi-
resolution source coding which are special cases of broadcast system source coding.

For multiple access systems, I first address instantaneous code and break optimal lossless
and near-lossless code design into partition design and matched code design. I describe

120
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the properties of optimal partitions and optimal matched code. These properties relates
network source coding with traditional (single-sender, single-receiver) source coding and can
decrease the complexity associated with optimal multiple access source code design. These
results yield a means of searching for the optimal code for an arbitrary source p.m.f. p(z,y).
Since optimal MASC design is NP-hard, I provide a family of low-complexity sub-optimal
algorithms which approximate the optimal design for general p.m.f.s. Both the optimal
and sub-optimal MASC design algorithm has been applied in various network source coding
scenarios. I also investigate a larger class of code: the uniquely decodable MASC. I provide
necessary and sufficient conditions on the actual codewords and necessary conditions on the
codeword lengths for uniquely decodable MASCs. Lower bounds on the MASC’s achievable
rates are also given. Experimental results are consistent with theory.

In seeking for a simple lossy code design algorithm in network environment, I turn to
entropy constrained dithered quantization and apply ECDQ to multi-resolution and multiple
access systems. I analyze the rate-distortion performance for each code and show ECDQ ap-
plied in networks can achieve performance very close to the theoretical optimal performance.
I also provide a practical implementation of ECDQ in MR systems and show its competitive
rate-distortion performance on images.

The analysis generalize and I apply traditional source coding techniques to network cod-
ing environments. These techniques include entropy coding (e.g., Huffman coding, arith-
metic coding, and the Kraft inequality), universal coding (e.g., Lempel-Ziv coding, Burrow-
Wheeler Transform coding), quantization (e.g., weighted universal vector quantization, tree-
structured vector quantization, scalar or lattice entropy constrained dithered quantization),

Lagrangian optimization and rate-distortion theory. The theory of simulated annealing is
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also used in giving low complexity design algorithms.



Chapter 6

Appendix

Derivation of r1[i, j, k] in Theorem 10

Recall that in arithmetic coding, the optimal description length of node nk is I(nk) =

l( ) logw Suppose g[’L ]] [gl, .- '7gN1]7 g[] + 17k] = [giv .- '7g§\/'2]7 let T(g) be

the best rate of G, Q(G) be the subtree probability of G’s root, then
M
rli,j] = Z ) +Z —Q(G:)1 g[(z )]

— Z ) +Z ~Q(G:) log Q(G;) + Pli, j]1og Pli, ]

i=1

rlj+1,k = Z +Z G)1og Q(G!) + P[j + 1,k]log P[j + 1, k].

The new group G[i, j| is obtained by putting G[7, j| and G[j + 1, k| as siblings, thus

Tl[iaja k]
Ny No
= Y r(G)+ > r(G +Z ~Q(Gi)1og Q(G:) +Z —Q(97)1og Q(G;) + P[i, k] log PY[i, k]
i=1 i=1 i=1
= r[i,j]+r[j +1,k] — P[i, j]log P[i,j| — P[j + 1,k]log P[5 + 1, k] + P[i, k] log P[s, k]
o o Pliyj]
= r[i,j]+r[j + 1,k + P[i, k]H(P[i, K ).
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(a) Visible Spectrum (b) Infrared 2 (c) Infrared 5

Figure 6.1: Sample images from the GOES-8 weather satellites, used in BSVQ.

Joint Probability Examples Used in Chapter 3

Tables 6.1 and 6.2 give four 8 x 8 and two 16 x 16 p.m.f. examples.

Test Image Examples

This section gives a few examples of the test images I use in this thesis.



Table 6.1: Sample p.m.f.s on alphabet X x Y with X =Y = {ag, a1, .., a6, a7}-

(a)

x\y|a a a a3 a4 a5 ag ay
ap |.04 0 .04 02 O 0 0 0
aq 0 .04 0 0 .05 .1 0 0
a |.15 0 .05 O 0 0 0 0
as 0O .05 0 .06 0 0 0 0
ay 0 .06 O 0 .06 O 0 0
as 0 0 0 .01 .02 .03 0 0
ag 0 0 .01 O 0 .06 .02 .01
ar 0 0 0 0 0 0 .05 .08
| (b) |
x\y|a a a a3 a4 a5 ag ar
@ | 1 0 1 1 0 0 0 0
ai 06 .04 0 0 .06 O 1 0
a | .15 0 .05 O 0 0 0 0
as 0O .05 0 .05 O 0 0 0
Qy 0 .04 0 0 .02 O 0 0
as 0 0 0 .02 .01 .01 0 0
Qg 0 0 .01 O 0 0 .015 .005
ar 0 0 0 0 0 .01 0 .01
| (c)
x\y|a a a a3 a4 a5 ag ay
ap | .06 O 0 0 .04 0 0 0
aq 0 0 .05 .04 0 0 0 0
Qo 0 0 .05 0 0 0 0 .15
as | .06 O 0 0 .06 O 0 0
as | .05 O 0 0 0 .06 0 0
as 0 0 0 0 0 0 .07 0
ag 0 .06 0 1 0 0 0 .03
ay 0 0 0 0 .08 0 .05 0
| (d)
x\y|a a a a3 a4 a5 ag ar
a | .06 .04 O 0 0 0 0 0
a1 0 .04 05 O 0 0 0 0
Qo 0 0 .05 .15 O 0 0 0
as 0 0 0 .06 .05 O 0 0
ay 0 0 0 0 .05 .06 0 0
as 0 0 0 0 0 0 .07 0
Qg 0 0 0 0 0 1 .06 .03
ar 0 0 0 0 0 0 .05 .08
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.y 015}.

= {ao, a1, - -

=Y

Table 6.2: Sample p.m.f.s p(x,y) on alphabet X x Y with X

356 - p(z, )

(a)

w0 o]
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Table 6.3: An example p(z,y) to show that (I'y N T's) U (I's N ['y) be traditional UD code is

not necessary. Note: * refers to p(z,y) > 0.

vx(XN\Y | 1]2]3|4

0000 101010

0000 0O[*|0]0

0000 0[(0]*]0

0000 0[0|0|*

001 *1*1010

010 1o *|0

011 100 *

011 0O[*|*]0

010 O[*|0]|*

001 0j0|*|*

100 KLEI*10

101 KL*10]*

110 lo|*|*

111 O *|*|*

0001 * % % *
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(b) Brain2

(c) Brain3 (d) Brain4

Figure 6.2: Examples of medical scan images used in ECDQ.
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(c) Barbara (d) Crowd

Figure 6.3: Test images used in ECDQ.
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