CaltechTHESIS
  A Caltech Library Service

A Phase-Field Model of Dislocations in Ductile Single Crystals

Citation

Koslowski, Marisol (2003) A Phase-Field Model of Dislocations in Ductile Single Crystals. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/SFMJ-1B50. https://resolver.caltech.edu/CaltechETD:etd-05302003-094155

Abstract

A phase-field theory of dislocations, strain hardening and hysteresis in ductile single crystals is developed. The theory accounts for an arbitrary number and arrangement of dislocation lines over a slip plane; the long-range elastic interactions between dislocation lines; the core structure of the dislocations; the interaction between the dislocations and an applied resolved shear stress field; and the irreversible interactions with short-range obstacles, resulting in hardening, path dependency and hysteresis.

We introduce a variational formulation for the statistical mechanics of dissipative systems. The influence of finite temperature as well as the mechanics in the phase-field theory are modeled with a Metropolis Monte Carlo algorithm and a mean field approximation.

A chief advantage of the present theory is that at zero temperature it is analytically tractable, in the sense that the complexity of the calculations may be reduced, with the aid of closed form analytical solutions, to the determination of the value of the phase field at point-obstacle sites. The theory predicts a range of behaviors which are in qualitative agreement with observation, including hardening and dislocation multiplication in single slip under monotonic loading; the Bauschinger effect under reverse loading; the fading memory effect; the evolution of the dislocation density under cycling loading; temperature softening; strain rate dependence; and others.

The model also reproduces the formation of dislocation networks observed in grain boundaries for different crystal structures and orientations. Simultaneously with the stable configurations the theory naturally predicts the equilibrium dislocation density independently of initial values or sources.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:dislocations; phase-field; plasticity; single crystals
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Aeronautics
Minor Option:Materials Science
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Ortiz, Michael
Group:GALCIT
Thesis Committee:
  • Ortiz, Michael (chair)
  • Molinari, Alain
  • Meiron, Daniel I.
  • Ravichandran, Guruswami
  • Bhattacharya, Kaushik
Defense Date:6 December 2002
Non-Caltech Author Email:marisol (AT) purdue.edu
Record Number:CaltechETD:etd-05302003-094155
Persistent URL:https://resolver.caltech.edu/CaltechETD:etd-05302003-094155
DOI:10.7907/SFMJ-1B50
ORCID:
AuthorORCID
Koslowski, Marisol0000-0001-9650-2168
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:2287
Collection:CaltechTHESIS
Deposited By: Imported from ETD-db
Deposited On:30 May 2003
Last Modified:05 May 2021 23:02

Thesis Files

[img]
Preview
PDF - Final Version
See Usage Policy.

17MB

Repository Staff Only: item control page