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Abstract

We consider several examples of metallic systems that exhibit non-Fermi-liquid be-

havior. In these examples the system is not a Fermi liquid due to the presence of

a “hidden” order. The primary models are density waves with an odd-frequency-

dependent order parameter and density waves with d-wave symmetry. In the first

model, the same-time correlation functions vanish and there is a conventional Fermi

surface. In the second model, the gap vanishes at the nodes. We derive the phase

diagrams and study the thermodynamic and kinetic properties. We also consider the

effects of competing orders on the phase diagram when the underlying microscopic

interaction has a high symmetry.

Adviser: Prof. John Preskill
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Summary

The development of the Fermi-liquid theory in the late 50’s – early 60’s was a major

advance in physics, which essentially created a new area of research, the modern

theory of condensed matter. Fermi-liquid theory successfully described the properties

of a vast majority of metals and metallic alloys. Its development was closely related to

the investigation into the properties of materials that had non-Fermi-liquid behavior,

such as superconductors and charge-density-wave phases.

Recently, experiments in certain metals and alloys showed peculiar behavior that

did not agree with Fermi-liquid theory. These materials include “heavy-fermion”

alloys that exhibit Kondo effect, two-dimensional electron gas materials, quantum

Hall systems, quantum wires, and high-temperature superconductors.

In Chapter 1, we will review the foundations of the Fermi-liquid theory and the

basic models that exhibit non-Fermi-liquid behavior in the metallic state, such as

Luttinger liquid. We will also review the technique of the derivation of the mean-

field theory (or Ginzburg-Landau theory) from the microscopic models, since this

technique is extensively used in the subsequent chapters.

In Chapter 2, we will propose a model in which the order parameter depends on

frequency. The odd-frequency dependence allows the system to have a normal Fermi

surface, while the presence of order leads to the non-Fermi-liquid behavior.

In Chapter 3, we will consider the case when the underlying interaction has a high

symmetry. The phase diagrams of such models are usually complicated due to the

proximity of several possible phases. In two dimensions, the part of phase diagrams

that is above (in temperature) superconducting or antiferromagnetic phases often has

a local order that is coupled to strong quantum fluctuations.
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Finally, in Chapter 4, we will study the properties of the ‘pseudogap’ phase in

high-Tc cuprates. According to the model, it is described by a density-wave phase

with dx2−y2-wave symmetry, which is metallic, but breaks several discrete symmetries

and is not a Fermi liquid.

The appendices include the discussion of the theory of phase transitions of third-

order for long-ranged interactions and the FORTRAN code that was extensively used

to obtain the phase diagrams in the studied models.
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Chapter 1 Introduction

1.1 Fermi liquids

The theoretical models of the interacting electrons that are studied in condensed mat-

ter theory include strong interactions between very large (practically infinite) number

of particles. However, what is usually measured are the quantities that are macro-

scopic and vary slowly across the system. One can imagine starting the investigation

into the properties of the model with “zooming” into system to the maximum allowed

limit (typically, until we can “see” the lattice) and then slowly zooming out, coming

to more and more macroscopic description of the model. This is the basic idea of

scaling. Under scaling the constants characterizing the original microscopic interac-

tions dramatically change so that some of them disappear (these are called irrelevant)

and some of them get amplified or appear (these are called relevant). Obviously, the

macroscopic properties of the system depend mostly on relevant interactions. The

behavior of the constants under scaling is akin to a mechanical motion in a potential

field: there are points of equilibrium which do not change. These points are called

fixed points. Since the microscopic models change under scaling in such a way that

they reach one of the (stable) fixed points at the macroscopic level, the fixed points

describe the actual macroscopic behavior of the system that is generic to a large class

of microscopic models.

There is a special case, though, namely, interactions which are finite deviations

from the fixed points, but which do not change under scaling. These are called

marginal perturbations and in some cases they simply correspond to different fixed

points. In this case the fixed points merge into a fixed line, along which one can move
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by varying the marginal coupling.

An example of marginal interactions is forward scattering, in which the initial and

final directions of the particles are the same. Another example is the renormalized

mass, which, by definition, is the apparent macroscopic mass of the particles. There

are also nonforward scattering processes, in which the total momentum of incoming

(and hence, outgoing) particles is zero, but the directions of incoming and outgoing

particles are different. The nonforward scattering corresponds to the Cooper channel,

and it is marginal at the tree level of renormalization group analysis. However, it

becomes relevant or irrelevant at higher orders for attractive or repulsive interactions,

respectively.

As the forward scattering interactions become fixed points, the physics that they

describe becomes Landau’s Fermi liquid theory [1, 2]. While the original particles in

the microscopic models may be strongly interacting, the elementary fermionic exci-

tations of the Fermi liquid are interacting only weakly and most of their properties

resemble those of the degenerated Fermi gas (at temperature T = 0). The terms

that would lead to the finite lifetime of these quasiparticles turn out to be irrele-

vant, therefore, the quasiparticles have essentially infinite lifetime. As Landau was

describing his theory himself, if you very slowly (“adiabatically”) turn off the strong

interactions in the original model, you will arrive at the description that still cor-

rectly predicts many of the macroscopic properties of the system. The nonforward

scattering interactions have to be small and irrelevant in Landau’s theory and they

are being ignored. The forward scattering interaction is called Landau parameter and

it is the only interaction in the Fermi liquid theory.

The picture that Fermi-liquid theory is a fixed point for marginal interactions of

the model (excluding nonforward ones) is very descriptive. An alternative way to see

this theory is that it is a saddle-point of the theory, in which each particle field is

duplicated N times and N → ∞ [3]. This allows one to regard Landau’s theory as
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a quasi-classical limit. Apart from Fermi liquid state, other possible infrared fixed

points that have spin rotation and translational symmetries are insulator, supercon-

ductor, and (in one dimension) Luttinger liquid.

The Fermi-liquid theory is characterized by a few important features [4, 5]. The

ground state corresponds to the occupation by Fermi quasiparticles of all the states

below the Fermi surface. The distribution of real particles of the liquid is not Fermi-

like, but there is still discontinuity in this distribution at Fermi surface as well. For

a system with rotational invariance, it implies that the number of particles and the

Fermi momentum do not depend on the interactions in the model. However, most

of these particles are not observable and the only meaningful quasiparticles are those

near the Fermi surface, i.e., for which |p − pF | . T , where p is the momentum of

the quasiparticles and pF is the Fermi momentum. The lifetime of the quasiparticles

depends on temperature as τ ∝ T−2 for T ¿ εF , where εF is the Fermi energy.

The entropy and the specific heat are those of an ideal gas of particles with effective

mass m∗ = pF /vF , where Fermi velocity is vF = [∂ε/∂p]pF
. The compressibility

(N/m) (∂µ/∂N) and the magnetic susceptibility χ are always positive. (µ is chemical

potential and N is particle number.) Interactions induce the oscillations in the Fermi

liquid, which are called zero sound modes and which are associated with a pole in the

density-density correlation function at ω = uzsk, where uzs is the zero sound velocity.

Fermi-liquid behavior can be destroyed by attractive interactions, leading to to su-

perconducting instability, or by strong repulsive interactions, leading to density-wave

instability. Another possibility for a non-Fermi-liquid behavior is that the system is

a marginal Fermi liquid [6], such as models with singular bare interaction vertices. In

the latter case, the physics is no longer a continuation of the noninteracting problem,

but it still retains a lot of Fermi-liquid features. The Kondo problem, discussed in

the following section, shows non-Fermi-liquid behavior due to enhanced scattering

of the fermion quasiparticles. The presence of bosonic fields can destroy the Fermi
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liquid state as well, such as the gauge bosons [7] or Tomonaga-Luttinger bosons, also

discussed later in this chapter.

1.2 Luttinger’s theorem

In a Fermi liquid, the number of particles per unit volume is related to Fermi energy

by the same formula as for a noninteracting gas of Fermi particles:

N =

∫
G(0,k)≥0

2ddk

(2π)d
, (1.1)

where G (ω,k) is the Green function. This constitutes Luttinger’s theorem [8], which

can actually be derived from more basic assumptions with respect to the behavior of

the Green function [4]. It is valid when, first, at large frequencies the Green function

behaves as G (ω) ∼ ω−1, ω → ∞, second, the poles of G (ω,k) on the complex fre-

quency plane satisfy the condition (Reω) (Imω) < 0, and third, at the Fermi surface

(defined as a boundary of the region G (0,k) ≥ 0) the self-energy has no singularity.

In particular, for a noninteracting Fermi gas, G0 (ω,k) = [ω − ε (k) + µ]−1. When

these conditions are satisfied, one can replace the right-hand side in the definition of

the particle density

N = −2i lim
t→−0

∫
dd+1k

(2π)d+1
G (k) e−iωt, k = (ω,k) (1.2)

= 2i

∫
dd+1k

(2π)d+1

(
∂ ln G

∂ω
+ Σ

∂G

∂ω

)
(1.3)

with only first term in Eq. (1.3),

2i

∫
dd+1k

(2π)d+1

∂ ln G

∂ω
, (1.4)

so that further integration by parts leads to Eq. (1.1). Here Σ is self-energy.
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A different proof of Luttinger’s theorem is based on the analysis of density-density

correlation function. In this case the Fermi surface is determined as the region where

the presence of low-energy particle-hole excitations induces a singularity in the Green

function. This approach turns out to be particularly useful in one-dimensional sys-

tems, such as Tomonaga-Luttinger liquid [9, 10, 11, 12]. In this case one such low-

energy excitation can be constructed explicitly [13] as exp
[
(2πi/L)

∫
dx xn (x)

]
|G〉,

where |G〉 is the ground state, L is the size of the system and n (x) is the particle

density at coordinate x. Evidently, this state has wavevector 2πN/L relative to the

ground state and this wavevector has to be 2kF because of the associated singularity

in the density-density correlation function. This establishes the relation between the

Fermi momentum and particle density, which proves the theorem.

However, neither of the proofs above are valid when G (ω)−1 has a singularity at

Fermi surface. In particular, in a BCS superconductor self-energy is

Σ =
∆2

ω + ξ (k) − iδ sign ξ (k)
, ξ = ε (k) − µ, (1.5)

where ∆ is the superconducting gap and δ → +0, therefore, G (ω)−1 ∼ −∆2/ω at

ξ = 0. Thus, the correct formula for the particle number should include both terms

in Eq. (1.3). The second term in this formula becomes a correction to Luttinger’s

theorem

N ′ = 2i

∫
dd+1k

(2π)d+1
(G0 − G)

= −2i

∫
dd+1k

(2π)d+1
ΣG0G. (1.6)

Note the importance of the fact that the pole in Eq. (1.5) is in the upper half-plane

of the complex plane for ε (k) < µ. This causes the second term in Eq. (1.3) to

make a nonzero contribution. On the contrary, in the case of a charge-density wave,
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Σ = Φ2/ [ω + ξ (k) + 2µ + iδsign ξ (k)], where Φ is the charge gap, therefore, the pole

has Imω < 0 for ξ (k) < 0 and there is no correction to the theorem. As for a

BCS superconductor, there is such a correction to the right-hand side of Luttinger’s

theorem Eq. (1.1):

N ′ =

∫
ddk

(2π)d


sign ξ (k) − ξ (k)√

ξ (k)2 + ∆2


 ,

= −
∫

ddk

(2π)d
sign ξ (k)

1

2

[
∆

ξ (k)

]2

+ O
{[

∆

ξ (k)

]4
}

. (1.7)

The expression in the square brackets in the first line of the formula above is just the

difference between the occupation numbers in the BCS state and in the normal state,

2 |vk|2 − 2θH (−ξ), where θH is the Heaviside unit step function and vk has a usual

definition [14]. If the chemical potential is fixed at the center of the band µ = 0, then

N ′ = 0 and Luttinger’s theorem is exact. If we fix the number of particles instead,

then µ will be shifted in the superconducting state and there will be small correction

even at half-filling. This correction is also related to the condensation energy at zero

temperature ∆F (µ) = Fs −Fn, where Fs is free energy in superconducting state and

Fn and the normal state:

N ′ = − ∂

∂µ
∆F. (1.8)

This means that the correction to the theorem will be largest away from half-filling, in

the region where the condensation energy varies most rapidly with chemical potential,

which is usually near the bottom of the band or near the quantum critical point.

In a certain aspect this situation is similar to Bose-Einstein condensation. Below

the critical temperature the total number of bosons becomes the sum of the number of

particles at nonzero momenta and the number of particles at zero momentum, i.e., in

the condensate. The fraction of bosons in the condensate is macroscopically large and

does not depend directly on the total number of the particles in the system. In our
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case, the off-diagonal long range order [15] implies that in the thermodynamic limit

the anomalous correlation function iF ∗ (1, 2) =
〈
N + 2

∣∣ψ† (1) ψ† (2)
∣∣ N

〉
6= 0, which

means that when we add a pair of electrons to the system, there is a finite probability

that they will settle in the condensate as a Cooper pair. The condensate amplitude

is Φ (x) = iF (x, x) = ∆/g, where g is the strength of mean-field superconducting

coupling constant, and the condensate fraction is [16] (1/N)
∫

dx1dx2 |F (1, 2)|2 ∼

ρ (εF ) ∆, where ρ(ε) is density of states. Therefore, both of them become macro-

scopic quantities, which leads to the violation of Eq. (1.1). Just like in Bose-Einstein

condensate, each Cooper pair has a total momentum zero. However, for the case of a

particle-hole condensate, the total momentum of a particle-hole pair is Q 6= 0, which

preserves the symmetry of occupation with respect to the center of the band and

there is no violation of the theorem.

1.3 Bose-Einstein condensation and fluctuational

superconductivity

The fact that BCS ground state is not a Fermi liquid prompts a question: perhaps,

it could actually be described as a Bose liquid? Indeed, being a subsystem of two

fermions, each Cooper pair has statistical properties of a boson, therefore, it is pos-

sible to describe the superconductor at T = 0 in terms of a condensed Bose gas of

nonoverlapping particles, resemble to diatomic molecules [17]. For most of the known

superconductors, it seems like the critical temperature Tc is much lower than the

temperature of the Bose-Einstein condensation of the Cooper pairs, which explains

why the pairs condense immediately at Tc and always have total momentum zero.

However, one can imagine that electrons bind together into pairs at a higher tem-

perature Tb, but the momentum of the pairs has initially a wide distribution, for

example, due to the presence of incoherent pair excitations. These pair excitations
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have a usual Bose distribution, but they block the sites available to fermions. Thus,

the system may have composite bosons (Cooper pairs) and a gap in the single-fermion

excitation spectrum, but the bosons may remain uncondensed. At TBEC a macro-

scopic fraction of the Cooper pairs undergoes Bose-Einstein condensation and the

system becomes superconducting. Hence, for temperatures TBEC < T < Tb, the pres-

ence of incoherent thermal pair excitations leads to finite resistivity and the system is

metallic in this aspect, although it is almost a Bose liquid. The main difference of this

state from real Bose liquids is that the composite bosons have a hard core. However,

they do not interact much with each other and their hard cores reveal themselves

mostly in the collective mode spectrum [18].

In order to have such an intermediate metallic phase, one has to have a sufficiently

strong attractive interaction, since for weak attractive interactions there will be only

the conventional superconducting phase of BCS type. This is related to the Bose-

Einstein condensate (BEC) – BCS crossover [17, 19]. Several authors proposed this

crossover as a key to the explanation of the enigmatic properties of the pseudogap [20,

21, 22] and some aspects of bosonic character (such as reduced superfluid density in

a microscopic phase separation [23]) in the high-Tc superconductors. Recently it has

been argued that the bosons may remain uncondensed at any finite temperature and

this has been applied to the model of the pseudogap as well [24].

To understand how Bose-Einstein condensation occurs, let us first consider a sim-

ple model of attractive interaction between two free fermions via a delta-function-like

potential [19]. The Schrödinger equation in reduced coordinates is

[
− 1

m
∇2 − V δ (x)

]
ψ (x) = −εbψ (x) , (1.9)

where V is the coupling constant, δ (x) is the delta-function and εb is the binding

energy. Note that this is not a Cooper problem of the pairing of two electrons on
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top of the Fermi sea. The solution of this equation can be written for the Fourier-

transform of ψ (x):

ψ̄ (k) =
V

2ε (k) + εb

ψ (0) . (1.10)

Since ψ (0) =
∫

k
ψ̄ (k), we can express the coupling constant V in terms of binding

energy εb:

1

V
=

∫
ddk

(2π)d

1

2ε (k) + εb

. (1.11)

It is assumed that the bandwidth is finite so that there is no ultraviolet divergence

in the integral. If we substitute the latter expression into the gap equation from the

BCS theory, we find that

∫
ddk

(2π)d

1

2ε (k) + εb

=
1

2

∫
ddk

(2π)d

1√
[ε (k) − µ]2 + ∆2

. (1.12)

In the limit of strong interaction (V → ∞) both integrals must be small, which is

satisfied when

∆ → 0, µ → −εb/2, εb → ∞. (1.13)

This constitutes the strong-coupling BEC limit, in which the fermions are bound

together. The fact that the chemical potential µ becomes negative is of significant

importance, because it means that the system is substantially far from the Fermi-

liquid state. We can regard the fermion pairs as composite bosons, whose spectrum

is E (k) = ε (k) /2 − εb − 2µ = ε (k) /2. As we can see, the chemical potential

for the composite bosons vanishes, which is the condition for their Bose-Einstein

condensation in the k = 0 state.

Below the Bose-Einstein condensation temperature the Cooper pairs condense.

However, the superconductivity will develop only when ordering occurs globally. It

is possible that the superconducting order will develop only locally at first, though.

This may happen because the thermal fluctuations may cause the phase of the order
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parameter to slip through an integer multiple of 2π, which will cause the dc current

to attain a finite value for a finite driving voltage across the sample, i.e., it will result

in finite resistivity [25]. The phase slips occur in an area of order of coherence length,

where the system becomes almost normal.

In two-dimensional (2-D) case, the normal regions are the cores of the vortices,

similar to the vortices in type-II superconductors. In zero magnetic field, the vortices

appear in vortex — antivortex pairs so that total flux remains zero. The energy

of the attractive interaction within the pair is Ev (r) = (κΦ2
0/8π

2λ) ln (r/ξ), where

Φ0 = hc/2e, λ is 2-D penetration depth, r is the distance between the vortices, ξ

is coherence length and κ is a correction factor of order of one. Hence, the average

distance between the vortices is

〈
R2

〉
∝

∫
d2r r2e−Ev(r)/T

=

∫ ∞

ξ

dr r3−(κΦ2
0/8π2λ)/T . (1.14)

Thus, at temperature

TKT = κ
Φ2

0

32π2λ
(1.15)

the vortices become bound, which constitutes Kosterlitz-Thouless transition [26].

Above TKT , the vortices are unbound and can prolifirate. When an unbound vor-

tex passes through the edge of the sample, the phase of the superconducting order

parameter slips by 2π there, which leads to finite resistivity.

The existence of finite resistivity for temperatures TKT < T < Tb implies that

the superconducting pairing has local amplitude, but the thermal fluctuations of the

phase of the order parameter destroy the long-range order completely. In reality, the

transition at Tc is not strictly Kosterlitz-Thouless due to the role of third dimension

(3-D), which exists in real systems. Weak coupling between the 2-D planes leads to

correlated motion of vortices in adjacent planes that form 3-D vortex loops near Tc.
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Below Tc these loops are restricted in size and they become arbitrary large at Tc [27].

In Refs. [28, 29, 30, 31] the properties of this intermediate phase with fluctuating

superconductivity were studied in the context of the pseudogap regime of high-Tc

cuprates.

In the fluctuating superconductivity phase the total vorticity is zero, but the sys-

tem is full of fluctuating vortex-antivortex pairs. Each of the pairs is surrounded

by supercurrents with associated quasiparticle excitation spectrum of BCS type,[
(ε (k) − µ)2 + ∆ (k)2]1/2

. These spectra are shifted due to the superfluid motion

around the vortices by ~k · vs (r), where r is the distance from the vortex core. The

superfluid velocity vs decays as 1/r away from the core.

The presence of fluctuating superconductivity phase is possible for usual BCS-like

interaction, but it is not inevitable. However, it does become inevitable if the system

is essentially 2-D and the superconducting transition is associated with spontaneous

breaking of a continuous symmetry. According to Mermin-Wagner-Coleman theorem,

no such transition is possible at any finite temperature, however, this theorem is

applicable neither to Kosterlitz-Thouless type of transition nor to the systems with

weak interlayer coupling. One can introduce various symmetry-breaking terms into

the Hamiltonian, but generally they will only reduce the symmetry of the model,

which still has to be broken spontaneously. For such systems, it should be possible

to study the model within mean-field approximation, which will produce the correct

estimates for the local (short length-scale) physics, such as the temperature Tb at

which the local pairing appears. The spectral properties, being essentially local,

should also reveal non-Fermi-liquid features of the state. In particular, Luttinger’s

theorem appears to be violated due to the presence of the excitation gap in the short

scale. The long-range order develops at lower temperature Tc = TKT , for which the

interlayer coupling plays significant role as well, so that the transition actually belongs

to the universality class of 3-D XY rather than of Kosterlitz-Thouless.
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1.4 Kondo effect

One of the most important problems in condensed-matter physics that has signatures

of non-Fermi-liquid metallic behavior is Kondo effect. This effect is observed in dilute

magnetic alloys that consist of a few magnetic impurity atoms, such as Fe or Ni,

dissolved in a nonmagnetic metal, such as Cu or Al. In normal Fermi-liquid metals,

resistivity slowly decreases with temperature as 1+aT 2 attaining a finite value at T =

0. The Kondo effect is anomalous increase in electrical resistance at low temperatures,

which is approximately ln (1/T ) in intermediate regime and 1 − aT 2 near T = 0

(Fig. 1.1). As Kondo [32] proposed, this increase is due to the scattering enhanced

by exchange between the conduction electrons and the magnetic impurity atoms.

R

ln 
 T

T

K

0
0

Figure 1.1: Kondo effect.
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The Hamiltonian describing such interaction with a single impurity is

H =
∑
k,α

ε (k) c†kαckα + J
∑

k,k′,α,α′

(
c†k′α′σα,α′ckα

)
· S, (1.16)

where the first term describes the conduction (s) electrons and the second term is

the exchange interaction, σ are Pauli matrices, S is the impurity spin 1/2 operator,

and J > 0 is antiferromagnetic coupling constant. However, it is hard to see why

this is actually interaction term, since usually the interactions involve four fermion

operators. A naive expectation would be that the interaction term should be regarded

as interaction with an external field, which becomes the four-fermion one in second

order of perturbation theory, after which it can be treated as usually. However, this

is not the case in this problem, as the impurity has an internal degree of freedom

(spin), which can flip. As a result, the ordinary “bubble” and three-fermion diagrams

do not exhibit any anomaly. The correct treatment is to represent the impurity as a

localized fermion by introducing the pseudofermion operators d†
β and dβ. Thus, one

should add a “kinetic” term
∑

β 0 d†
βdβ to the Hamiltoninan and in the interaction

term replace c†k′α′ckα with d†
β′c

†
k′α′ckαdβ. If we represent the conducting electrons with

solid lines and impurity with dashed lines, then the leading contribution to the self-

energy appears to be second order in the interaction vertex (Born approximation),

shown on figure 1.2.

Σ

Figure 1.2: Self-energy for Kondo effect in Born approximation.
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The physical origin of self-energy can be explained as follows. The incoming s-

electron interacts with the impurity spin, as a result of which both the impurity and

the electron get flipped. Later, the flipped spin interacts again with the electron,

restoring its original spin state. The net effect is that the s-electron is scattered out

of its original state, which gives it finite lifetime. If we assume that the density of

states is a Lorentzian of width 2W with ρF being density of states at Fermi level,

then for half-filled band we discover a logarithmic contribution to the vertex

JρF ln

(
W

2πT

)
. (1.17)

This contribution correctly predicts the temperature behavior in the “Kondo effect”

regime. However, it diverges at T = 0 instead of explaining the 1 − aT 2 behavior

at lower temperatures. Abrikosov et al. [4] showed that the leading contribution to

the self-energy is given by the “parquet” diagrams, which are obtained from those on

Fig. 1.2 by inserting more and more fermion-pseudofermion bubbles into the vertex,

and summing over them gives

J

1 − 2JρF ln
(

W
2πT

) . (1.18)

The latter formula diverges at finite Kondo temperature

TK =
W

2
e−1/2ρF J . (1.19)

This means that at TK the perturbation theory breaks down. The region T < TK is

commonly called a “Kondo problem.”

Unlike in the case of phase transitions, when the breakdown of perturbation theory

is a signature of the transition, the temperature TK is critical in a different sense.

Below TK the physics is dominated by the quantum behavior at T = 0 so that
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the problem simply can no longer be treated perturbatively. However, the “phase

transition” occurs only at T = 0, at which the conduction electrons screen the local

magnetic moments and form the bound singlet states with impurities [33]. At the

same time the low energy excitations of the system can be described by a local (“phase

shift”) Fermi liquid with Fermi temperature of order of TK [34].

The latter can be seen from the fact that duality transformation permits us to

map the strong-coupling regime of the Kondo model onto an Anderson model [35]

at weak coupling with renormalized parameters [36]. The Anderson model describes

and impurity with on-site interaction, hybridized to a band of conduction electrons:

H =
∑

α

εdd
†
αdα + Und↑nd↓ +

∑
k,α

ε (k) c†kαckα +
∑
k,α

(
Vkd

†
αckα + V ∗

k c†kαdα

)
. (1.20)

This model is integrable and there is an exact solution [37]. The strong coupling

regime of the Kondo model corresponds to Anderson model with

U =
3

4

t3

J2
, (1.21a)

∆ =
3

8

t3

J
, (1.21b)

where hopping t = W/4 for one-dimensional case and π
∑

k |Vk|2 δ (ω − εk) ' ∆ =

const is a parameter which controls the width of the virtual bound state resonance at

εd in the noninteracting (U = 0) limit. Similarly, the strong coupling regime (U À

π∆, εd < 0) of Anderson model corresponds to the Kondo model with temperature

TK = U

(
∆

2U

)1/2

e−(πU/8∆)+(π∆/2U). (1.22)

In the strong coupling regime at T = 0, there is scale invariance so that the vertex

and the spectral functions of the fermions and localized electrons (pseudofermions) be-

come homogeneous. (The homogeneous functions have a property that f(x1, x2, . . .) =
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aγf (x1/a, x2/a, . . .), where the scaling factor a is an arbitrary real number and γ is

a scaling exponent.) The pseudofermion propagator is G (ω) ∝ ∆−γ (αT − iω)γ−1 for

ω ¿ T ¿ ∆, where γ > 0, ∆ (T ) is temperature-dependent and α is a constant.

Therefore, the real-time propagator would decay exponentially when γ = 1 and as a

power low when γ 6= 1. Consequently, the vertex containing 2m pseudofermion legs

and 2n fermion legs becomes Γm,n ∝ ∆mγ (αT − iω)1−n−mγ and the magnetic suscep-

tibility is χ ∼ T γ−1/∆γ. The exact numerical [38] and analytical [39] calculations

show that χ remains finite at T = 0, since the impurity spins are quenched, so that

γ = 1 and the spin state decays exponentially with finite lifetime ∆−1. The self-

consistent evaluation of the pseudofermion self-energy i∆ determines this quantity,

∆ (T ) ' TK +
(
π
√

3/4
)
T for T ¿ TK . This finally leads to Curie-Weiss behavior

of magnetic susceptibility

χ ∼
(

TK +
π
√

3

4
T

)−1

(1.23)

and the correct dependence of resistance on temperature:

R ∼ 1 − π2

4

T 2

T 2
K

, T ¿ TK . (1.24)

For temperatures above TK , the resistance remains

R ∼ 3π2

16
ln−2

(
T

TK

)
, (1.25)

which should be understood as a crossover from the weak-coupling regime at high

temperatures to the strong coupling at low temperatures.

While the original Kondo problem is well understood now, the exact behavior of

the lattice model, i.e., the system containing several impurities, remains unknown.

One of the reasons for that is the interaction between the localized spins. In the second

order of perturbation theory, the spin-spin interaction is described by Ruderman-
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Kittel-Kasuya-Yosida (RKKY) Hamiltonian [40],

HRKKY = −9π

8
nc

J2

εF

∑
〈ij〉

Si · Sj

r3
ij

[
2kF cos (2kF rij) −

1

rij

sin (2kF rij)

]
, (1.26)

where nc is the conduction electron density. This interaction oscillates with distance

between the spins due to Friedel oscillations of the spin polarization of conduction

electrons induced by a localized spin. To understand which ground state will be fa-

vored, it is convenient to study the Fourier transform of the RKKY interaction, which

is essentially the susceptibility. If the maximum of the susceptibility is achieved at

zero wave vector, the interaction favors ferromagnetic ground state. If it is achieved

at wave vector Q = (π/a, π/a) (for a two-dimensional lattice with lattice spacing a),

the interaction favors antiferromagnetic ground state. In either case, ordering sup-

presses the Kondo effect. Indeed, the characteristic energy scale of RKKY interaction

is TRKKY = J2/εF , which usually dominates over the Kondo temperature, at least

in the weak-coupling regime. For example, if we consider just two impurities with

antiferromagnetic RKKY coupling, in the ground state they will form a singlet state

and will hardly interact with conduction electrons at all.

However, the formation of local singlets between the conduction band electrons

and the localized spins in the strong-coupling regime induces quenching of the local

moments, which makes the derivation of RKKY Hamiltonian invalid. Thus, the

exact behavior of the system becomes dependent on the dimensionality, the strength

of the exchange coupling, and the conduction electron density. One of the important

questions is whether the change between the regime TRKKY ¿ TK and the regime

TRKKY À TK is a transition or a crossover. The recent study of the two-impurity

Kondo problem has shown that in the presence of small asymmetry between the

channels there is only a crossover between Kondo and RKKY regimes [41].

The electron-electron interaction can induce the opening of several spin-exchange
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channels between the local moments and the conduction electrons [42]. In the model

that considers a single impurity atom the Kondo effect develops exclusively in the

strongest screening channel due to the local symmetry that preserves the channel

quantum number of the scattered electrons. However, in a lattice the conduction

electrons are allowed to change the channels as they propagate between the impurity

sites. This means that the Kondo effect develops coherently in several channels, which

is described by the multichannel Kondo problem on a lattice [43]:

H = −t
M∑

λ=1

∑
〈ij〉

c
(λ)†
iα c

(λ)
jα − µ

∑
i

c
(λ)†
iα c

(λ)
iα + J

∑
k,k′,α,α′

(
c
(λ)†
iα σα,βc

(λ)
iβ

)
· Si. (1.27)

Unlike in a single-channel problem, which exhibits Fermi-liquid behavior in the asymp-

totic regime when length scales are long compared to vF /T and time scales are long

compared to 1/TK , the ground state of the two-channel model has certain non-Fermi-

liquid features in the Kondo regime related to the spin excitations [44]. In particular,

the spin susceptibility diverges in the limit of large time scales and finite distances [45].

More generally, the non-Fermi-liquid behavior is observed when the number of chan-

nels M is larger than 2S, where S is the spin of the impurity.

1.5 Luttinger liquid

A Luttinger liquid [9, 10, 11, 12] is an important metallic phase that is not a Fermi

liquid due to the absence of quasiparticles at Fermi level. Its existence has been proved

in one dimension (1-D), but there is still little experimental evidence for Luttinger-

liquid behavior in higher-dimensional systems.

Luttinger liquid is a well-known example when renormalization-group approach

gives a solution that is qualitatively different from mean-field one. Unlike in Fermi-

liquid case, the Luttinger liquid is a fixed point of any repulsive quartic interaction,
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which is related to the fact that the number of left- and right-moving fermions is

separately conserved. If we compute a correction to the vertex at one-loop level

in higher dimensions and discover that so called BCS diagram gives a siginificant

contribution, chances are that this contribution is relevant and the ground state of

the system is superconducting. The mean-field theory would concentrate on this

single type of the diagrams and would estimate the energy of the ground state. In 1-

D case, this diagram is precisely cancelled out by “cross-zero-sound” (charge-density

wave) one, as a result, the interaction is marginal rather than relevant and the mean-

field theory makes totally incorrect predictions, in fact, it breaks down. In higher

dimensions the BCS and charge-density-wave instabilities do not cancel each other

precisely, therefore, one of them dominates and mean-field theory can concentrate on

the leading diagram while neglecting the other.

In 1-D systems the Fermi-liquid state can only correspond to noninteracting

fermions. Any metallic state with interacting fermions must be Luttinger liquid,

therefore, for the general analysis of the properties of the system it is sufficient to

consider only weak interactions. The Fermi surface reduces to just two Fermi points,

near which there are low energy excitations. Following our experience with Fermi

liquids, we should expect that most important physical properties are determined by

quasiparticles that exist near the Fermi surface. Since there are only two possible

directions for the motion of these excitations, it is convenient to represent electrons

near Fermi points as sums of right-moving and left-moving particles. Then the free-

electron Hamiltonian for spinless electrons is

H0 = πvF

∫
dx

(
J2

R + J2
L

)
, (1.28)
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where the currents for left- and right-moving particles are

JL,R (k) =
√

L

∫
dx e−ikxψ†

L,R (x) ψL,R (x) . (1.29)

It is clear that the ground state described by such a model is a perfect conductor,

since one can move a particle from just below the Fermi surface to just above it

at tiny energy cost. A remarkable feature of this Hamiltonian is that it appears to

represent the right- and left-moving fermions as totally separate particles. Note that

momentum k can be arbitrary, even though the model has been linearized near the

Fermi points. The free electron propagators are

〈
TψL,R (t, x) ψ†

L,R (0)
〉
∝ (x ± vF t)−1 , (1.30)

whose Fourier transforms are (ω ± vF k)−1.

With interaction included, the Hamiltonian becomes

H =

∫
dx

[
πvF

(
J2

R + J2
L

)
+ λJLJR

]
(1.31)

=

∫
dx πv

(
j2
R + j2

L

)
, (1.32)

where jL,R = cosh (θ) JL,R + sinh (θ) JR,L, tanh (2θ) = λ/2πvF , v =
√

v2
F − (λ/2π)2.

The interaction term is actually special, since some of the terms that include different

quasiparticles are missing. These terms typically oscillate rapidly with wave vectors

of order kF or involve the derivatives that arise from Taylor expansion of nonlocal

interactions. In fact, this model is closely related to the massless Thirring model in

quantum field theory, in which the replacement of the fermion field by a boson field

leads to a free field theory. It is also exactly soluble [11] by using the bosonization

technique.

The bosonization method is based on the idea that in 1-D the correlation func-
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tions involving the fermion operators can be represented in terms of the boson oper-

ators [46]. Consider the action for the free fermions:

S =

∫
d2z

(
ψ†

R∂zψR + ψ†
L∂z̄ψL

)
, (1.33)

where ψL (z̄) and ψR (z) are the operators for left- and right-moving particles, z =

x + iτ and τ is imaginary time. A 4N -point correlation function is

〈
ψ†

R (z1) ψL (z̄1) . . . ψ†
R (zN) ψL (z̄N) ψR (z′1) ψ†

L (z̄′1) . . . ψR (z′N) ψ†
L (z̄′N)

〉
=

∣∣det
(
zi − z′j

)∣∣−2
, (1.34a)

which coinsides with a correlation function involving a bosonic field ϕ (z)

〈
eiϕ(z1) . . . eiϕ(zN )e−iϕ(z′1) . . . e−iϕ(z′N)

〉
, (1.34b)

where it is assumed that the operators are normal-ordered. The bosons, of course,

have a hard core, due to their underlying fermionic nature. Thus, we can define

ψL,R = exp (±ϕL,R), consequently, the density operators for left- and right-movers

are

jL = − 1

2π
∂z̄ϕL, (1.35a)

jR = − 1

2π
∂zϕR. (1.35b)

The latter expressions will be valid for the interacting case as well, if one introduces

the bosonic fields ϕL,R as

ψL,R = ei[cosh(θ)ϕL,R−sinh(θ)ϕR,L]. (1.36)
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The subsequent computation is straightforward. We find that the low-lying excita-

tions have velocities ±v and the propagators are

〈
TψL,R (t, x) ψ†

L,R (0)
〉

=
e±ikF x

(x ± vt) (x2 − v2t2)γ , (1.37)

where γ = sinh (θ)2 is the anomalous dimension. It can be represented in the form

γ = (1/4) (K + K−1 − 2), where K = exp (−2θ), so that

vF

v
=

1

2

(
K +

1

K

)
, (1.38a)

λ

2π
=

1 − K2

1 + K2
. (1.38b)

The Fourier transform of the propagators is

G (ω, k) =
1

ω2γ
0

(v2k2 − ω2)
γ

ω ± vk
. (1.39)

From the latter expression it is clear that the Green functions contain no single-

particle poles, which means that in the proximity of Fermi points there are no quasi-

paticles. The behavior of the system remains qualitatively different from the free-

fermion case γ = 0 even in the limit γ → 0. Apparently, this result would be difficult

to prove in conventional perturbation theory.

The occupation number is

n (k) =
1

2
sign (kF − k)

∣∣∣∣k − kF

k0

∣∣∣∣
2γ

+
1

2
sign (kF + k)

∣∣∣∣k + kF

k0

∣∣∣∣
2γ

, (1.40)

where k0 is a constant. This expression is continuous through the Fermi points for a

nonzero interaction constant λ. Note, however, that its derivatives diverge at Fermi

points. Consequently, the density of states is ρ (ε) ∝ (µ − ε)2γ, which means that the

spectral weight near the chemical potential µ is suppressed by the same power law be-
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havior as in n (k)−1/2. This power law suppression can be revealed in photoemission

and tunneling experiments.

The density-density correlation function has a form

〈ρ (x, t) ρ (0)〉 =
1

K

[
1

(x − vt)2 +
1

(x + vt)2

]
+ const × cos (2kF x)

(x2 − v2t2)(1/K)
, (1.41)

As we can see, for repulsive interactions, the contribution to the density-density

correlation funcion at ±2kF falls off slowly due to the modified exponent. For nonin-

teracting electrons K = 1.

If we take into account the spins of the fermions, we will discover that the physics

remains essentially the same, but spin currents Js = J↑ − J↓ and charge currents

Jc = J↑ + J↓ separate and must be included independently in the Hamiltonian. For

free excitations, the correlation function in each sector is (x ± vF t)1/2, so that the

total expression remains Eq. (1.30). Treating interactions becomes more complicated,

though. When interactions couple only charge currents, it is somewhat easier to do the

calculations, but the charge and spin velocities are no longer the same. In particular,

for spin-independent interaction the spin velociy vs = vF . The bosonization procedure

is the same and leads to spinless bosons that have charge and neutral bosons that

have spin. The Green function is

GL,R (t, x) ∝ e∓ikF x

[
1

(x ± vct) (x ± vst)

]1/2
1

(x2 − v2
c t

2)γ . (1.42)

Let us mention now a few expressions for experimentally observable quantities.

The specific heat in 1-D is linear in temperature γ̂T , where the constant γ̂ is inversely

proportional to the sound velocity. This is the 1-D version of the Debye’s law. The

ratio of γ̂ to the corresponding value γ̂0 for the noninteracting fermions is

γ̂

γ̂0

=
1

2

(
vF

vc

+
vF

vs

)
. (1.43)



26

The compressibility and spin susceptibility at zero temperature are κ/κ0 = KcvF /vc

and χ/χ0 = KsvF /vs. As we can see, the constants that determine the anomalous

dimension in the Green functions also enter the low temperature thermodynamics.

The constant K has generally a physical meaning of conductance. If we imag-

ine that the chemical potential for the right-moving particles has shifted by a small

amount δµR, the system will adjust so that the Hamiltonian will be minimized at new

density nR + δnR, where δnR = (Ke/2πv) δµR. This extra density carries current δIR

to the right, which corresponds to conductance G = δIR/δµR = Ke2/h. For non-

interacting fermions, we recover the perfect conductance of the Landauer transport

theory, e2/h per channel. As we can see, interactions in 1-D modify G, since for

repulsive interactions K < 1. In practice, the applied voltage is coupled to both left

and right-moving modes.1 However, if the piece of 1-D wire is infinitely large, one

obtains the same expression for conductance G as given above. For a finite piece of

wire of length L between the two Fermi-liquid leads, this expression is valid only for

ac conductance with frequency ω > v/L. Evidently, these expressions assume the

total absence of impurities. In fact, even a weak impurity potential causes complete

backscattering so that the conductance vanishes at zero temperature [47]. Basically,

electrons cannot tunnel through the barrier from one semi-infinite Luttinger liquid to

another due to vanishing density of states.

Apparently, for 2-D systems the model that is described by interaction that has

zero range in y direction and zero hopping in the same direction will be essentially

a 1-D Luttinger liquid along x direction and therefore, it will have Luttinger liquid

ground state. What if we turn on small hopping along y direction? It turns out

that for γ > 1/2 this perturbation is irrelevant and scales to zero in infrared limit,

therefore, the ground state will still be Luttinger liquid [48]. The situation with

interactions is more complicated [49]. If interactions merely couple currents along

1In some systems, such as those with fractional quantum Hall effect, one can couple to the chiral
modes at the edges selectively.
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x so that the Hamiltonian can be exactly diagonalized, then such interactions are

marginal and still describe a Luttinger liquid. However, so far there have been no

convincing evidence that more general interactions between spinful fermions can lead

to Luttinger-liquid behavior in two or more dimensions.

1.6 Ginzburg-Landau theory

In the understanding of the mechanism of superconductivity, two theories have played

major roles, one suggested by Ginzburg and Landau [50] (GL) and the other by

Bardeen, Cooper, and Schrieffer [51] (BCS). The former is a macroscopic model,

where the system is described by free energy, which is a function of temperature and

chemical potential (or particle number). The latter is a microscopic model, defined

by a reduced Hamiltonian at zero temperature. These two models are consistent with

each other, as it was shown by Gor’kov [52], who derived the GL theory from BCS.

Unfortunately, his computation is very complicated, therefore, it is rarely repro-

duced in textbooks. However, the relationship between these two models is of sig-

nificant importance, since it explains how the same phenomenon can be described

at different scales. The technique that is used to derive the macroscopic GL theory

from the microscopic BCS model is fundamental and will be used extensively in the

following chapters. The goal of this section is to provide a straightforward derivation

of the phenomenological GL theory form the microscopic BCS model. We will first

derive the GL for a constant order parameter, then find the corrections for space-

and time-dependent order parameter, which include the derivatives. Finally, we will

consider only these corrections and represent them in terms of vortex currents.
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The Hamiltonain in the BCS model is

H =

∫
ddk

(2π)d
ε (k) cα† (k) cα (k)

+

∫
k

∫
k′

c†↑ (k) c†↓ (−k) Vkk′c↓ (−k′) c↑ (k′) , (1.44)

where Vkk′ = −V in a narrow band near the Fermi surface and is zero otherwise. The

corresponding action is

S =

∫
dτ

{∫
ddk

(2π)d
ψ̄α (k) (∂τ + µ) ψα (k) −H

[
ψα, ψ̄α

]}
. (1.45)

We will assume that the interaction is short-ranged in real space, i.e., that it is

varying over the region much smaller than ~vF /V . The opposite case of a long-ranged

interaction is considered in Appendix A and it leads to a third-order phase transition.

Since we are interested in the mean-field theory, the first step is the Hubbard-

Stratonovich transformation. Simply speaking, we introduce a new bosonic field φ (k)

such that its equations of motion are

φ =

∫
ddk

(2π)d
V ψ↑ (k) ψ↓ (−k) , (1.46a)

φ∗ =

∫
ddk

(2π)d
V ψ̄↓ (−k) ψ̄↑ (k) . (1.46b)

The corresponding action,

S =

∫
dτ

∫
ddk

(2π)d

{
ψ̄α (k) (∂τ − ξ (k)) ψα (k) − |φ|2

V

+

∫
ddk′

(2π)d
φ (k) ψ̄↑ (k′) ψ̄↓ (−k′) + φ∗ (k) ψ↓ (−k′) ψ↑ (k′)

}
, (1.47)

is equivalent to the original action of the BCS theory Eq. (1.45). Here ξ (k) = ε (k)−µ.

The next step is to integrate out the fermions and to derive the thermodynamic
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potential as a function of φ. In order to do that, we need to modify Eq. (1.47) so

that it will appear bilinear in Fermi fields. Let us define a two-component Fermi field

Ψα (k):

Ψ↑ (k) =


 ψ↑ (k)

ψ̄↓ (−k)


 , Ψ↓ (−k) =


 ψ↓ (−k)

ψ̄↑ (k)


 (1.48)

Then, after replacing the time integral with the sum over Matsubara frequencies

ωn = (2n + 1) πT ,

S = T
∑
ωn

∫
ddk

(2π)d

{
−|φ|2

V

δn,0

T 2
+

∫
k′

(2π)dΨ̄α (k′, ωn) (iωn − M (φ)) Ψα (k′, ωn)

}
, (1.49)

where

M (φ) =


 −ξ (k) δkk′ φ∗ (k)

φ (k) ξ (k) δkk′


 . (1.50)

The thermodynamic Gibbs potential is, by definition,

F (T, µ) = −T ln

∫
DψDψ̄ eS[ψ,ψ̄]. (1.51)

With the help of the Gaussian identity for the fermions, we obtain the expression

F =

∫
ddk

(2π)d

|φ|2

V
− T ln Det (iωn − M (φ)) . (1.52)

To evaluate this expression, we substitute Eq. (1.46), i.e., the saddle-point solu-

tion. This is equivalent to Hartree-Fock decoupling and represents a mean-field ap-

proximation. The eigenvalues of the matrix iωn − M (φ) are iωn ± E (k), where

E (k) =
[
ξ (k)2 + |φ|2

]1/2
. For constant field φ, the trace can be calculated in the

closed form. Using the identity ln Det A = Tr ln A, we derive the thermodynamic
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potential per unit volume

f = f0 +
|φ|2

V
− T

∑
ωn

∫
ddk

(2π)d
ln

(
1 +

|φ|2

ω2
n + ξ (k)2

)
, (1.53)

where f0 is the value of f for φ = 0,

f0 = −2T

∫
k

ln

{
1 + exp

(
−ξ(k)

T

)}
. (1.54)

Here the factor of two comes from the trace over spins. The frequency sum in

Eq. (1.53) can be evaluated, which produces the expression for the free energy in

BCS model:

f =
|φ|2
V

+

∫
k

{
ξ(k) − 2T ln

[
2 cosh

(
E(k)

2T

)]}
. (1.55)

The mean-field solution corresponds to the minimum of free energy so that ∂f/∂φ = 0.

This yields the BCS equation

1

V
=

∫
ddk

(2π)d

1

2E (k)
tanh

(
E (k)

2T

)
. (1.56)

Finally, we expand the logarithm in Eq. (1.55). This immediately leads to the

expression for the constant part of GL free energy:

f = f0 + a |φ|2 + b |φ|4 , (1.57)

where

a =
1

V
−

∫
ddk

(2π)d

1

2ξ (k)
tanh

(
ξ (k)

2T

)
, (1.58a)

b = −
∫

ddk

(2π)d

1

2ξ (k)

∂

∂ξ

[
1

4ξ (k)
tanh

(
ξ (k)

2T

)]
. (1.58b)

The parameter Veff = 1/a is sometimes called the “renormalized” coupling constant,



31

in a sense that expanding Eq. (1.56) in terms of φ to the second order leaves the

equation with ultraviolet divergence, which can be regularized by introducing a mo-

mentum cutoff.

In presence of the electromagnetic field (ϕ,A), the order parameter can no longer

be treated as spatially uniform or time-independent. This results in corrections to

Eq. (1.57), known as gradient terms in GL theory [53]. In order to find them, we

need to expand the logarithm in Eq. (1.53) in terms of the perturbation. If φ is finite

and the perturbation is δφ, this leads to the collective modes in the nonlinear sigma

model. However, we are interested in the expansion around φ = 0 when φ becomes

a function of small frequency and small momentum, φ = φ (Ω,K). In this case the

expansion is almost the same as one leading to Eq. (1.57). Let us observe that the

second term in Eq. (1.58a) is

T
∑

n

∫
ddk

(2π)d

1

iωn + ξ (k)

1

iωn − ξ (k)
(1.59)

Apparently, in order to take into account the dependence on (Ω,K), we should replace

this expression with

T
∑

n

∫
ddk

(2π)d

1

iωn + ξ (k)

1

iωn − Ω − ξ (k + K)
. (1.60)

The latter formula can be expanded in terms of (Ω,K) and evaluated. Finally, we take

into account the presence of electromagnetic field by replacing K → −i∇− (2e/c)A

and Ω → i∂t − 2eϕ. Thus, the correction to Eq. (1.57) is

fgrad =
1

2m

∣∣∣∣∣
(
∇− i

2e

c
A

)2

φ

∣∣∣∣∣
2

+
1

D
φ∗ (∂t + 2ieϕ) φ, (1.61)
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where

1

m
= −

∫
ddk

(2π)d

∂2ξ

∂k2

∂

∂ξ

[
1

4ξ (k)
tanh

(
ξ (k)

2T

)]
, (1.62)

1

D
= −

∫
ddk

(2π)d

∂

∂ξ

[
1

4ξ (k)
tanh

(
ξ (k)

2T

)]
. (1.63)

Note that the expansion in frequency is only valid in the limit Ω ¿ |φ|, which means

that this model describes slow variations of the order parameter in space and time.

Finally, we will derive the vortex version of the gradient term. The motiva-

tion for this calculations stems from the idea of duality in electrodynamics. The

dual Lagrangian in electrodynamics contains an additional term describing magnetic

monopole currents j̃µ, which looks exactly as the usual electrical current term, except

that matter fields are coupled to the “dual” vector-potential Ãµ rather than to the

electromagnetic vector-potential Aµ and that this term enters Lagrangian with the

opposite sign. The definitions of the electromagnetic field tensor Fµν and its dual

F̃µν = (1/2) εµνσρF
σρ need to be modified so that varying the action by Ãµ will give

us the Maxwell’s equations that take into account the magnetic monopoles:

Fµν = ∂µAν − ∂νAµ +
1

2
εµνσρ

(
∂σÃρ − ∂ρÃσ

)
, (1.64a)

F̃µν = ∂µÃν − ∂νÃµ +
1

2
εµνσρ (∂σAρ − ∂ρAσ) . (1.64b)

In this case the term in action that describes free electromagnetic field does not need

to be changed, since FµνF
µν = −F̃µνF̃

µν . Thus, the Maxwell’s equations become

∂µF
µν =

4π

c
jν , (1.65a)

1

2
εµνσρ∂µF

σρ =
4π

c
j̃ν . (1.65b)

In absence of magnetic monopoles, j̃µ = 0 and Eq. (1.65b) takes its usual form,
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∇× E + (1/c) ∂H/∂t = 0 and ∇ · H = 0. Note that in classical Maxwell’s theory of

electromagnetism, this equation follows from the symmetry properties of the tensor

F µν rather than from action.

In Eq. (1.65a), the contribution of Fµν containing the tensor εµνσρ vanishes if Ãµ is

single-valued. The only way it can make a finite contribution is when Ãµ is multiple-

valued, which will make this term singular at the location of the monopole. The

same is true, of course, for Eq. (1.65b) and Aµ as well. What is important that the

dual part of the Lagrangian has opposite signs compared to the “normal” part, which

causes the monopole currents and the associated gauge fields Ãµ to become unstable

and which leads to their disappearance.

This picture is analogous to two-dimensional vortices in superconductors, when

the phase of the order parameter is no longer a single-valued quantity. Another

analogy is that the absence of magnetic monopoles in our world can be regarded as

a characteristic feature of a certain phase. An alternative phase would be the dual

world with magnetic monopoles and no electrical charges. If one of these phases

corresponds to an “order,” then the other, with the opposite signs in the Lagrangian,

should be naturally associated with “disorder.”

In the context of superconductivity in 2 + 1 dimensions, the gradient term in

the “normal” model represents fluctuations of the phase of the order parameter.

Hence, the dual model should represent these fluctuations in terms of the vortex

current. Thus, we consider a superconducting state in which the absolute value of

the order parameter |φ| is finite and fixed, but its phase η is varying. In presence

of an electromagnetic field, these phase fluctuations can be described by a bosonic

Lagrangian

L =
|φ|2

2m∗

(
∂µη − e∗

c
Aµ

)(
∂µη − e∗

c
Aµ

)
− 1

16π
FµνF

µν . (1.66)
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The electromagnetic field tensor F µν is assumed to be re-defined in the formula above.

Even if we start with its usual definition, we will have to introduce additional terms

at the end to keep the theory self-consistent, as we will see below. Thus, the tensor

F µν is

Fµν = ∂µAν − ∂νAµ + εµνλjλ. (1.67)

Here jλ is the vortex current . As we have already mentioned, we will choose such a

definition of the vortex current so that the Lagrangian will describe the self-consistent

theory. This definition is

jµ =
c

e∗
εµνλ∂

ν∂λη. (1.68)

The vortex current vanishes for a single-valued function η, but it becomes singular

when η is multivalued.

The electrical current is

Jµ =
|φ|2 e∗

m∗

(
∂µη − e∗

c
Aµ

)
(1.69)

and it is trivially related to the electromagnetic field tensor:

F µν =
m∗c

e∗2 |φ|2
(∂νJµ − ∂µJν) . (1.70)

Note that the vortex current is precisely canceled out by the singular part in the

derivatives of the electrical current. The charge conservation law ∂µJ
µ = 0 implies

that the current Jµ can be represented in terms of another (dual) vector field aµ so

that

Jµ = −εµνλ∂νaλ. (1.71)

The dual field aµ is defined up to a gradient of a single-valued scalar field ∂µθ. The
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Maxwell’s equation Eq. (1.65a) becomes

Jµ = − c

4π
∂ν (∂µAν − ∂νAµ)

=
m∗c2

4πe∗2 |φ|2
∂ν (∂µJν − ∂νJµ)

=
m∗c2

4πe∗2 |φ|2
εµνλεσρλ∂ν∂

σJρ. (1.72)

Comparing the latter formula with Eq. (1.71), we find that

F µν =
4π

c
εµνλ (aλ − ∂λθ) (1.73)

and that

aλ =
m∗c2

4πe∗2 |φ|2
ελσρ∂

σJρ + ∂λθ. (1.74)

Looking at Eq. (1.73), we notice that the aλ−∂λθ is proportional to the magnetic field

across the sample, aλ = − (c/8π) ελσρF
σρ + ∂λθ. Furthermore, from the definition of

the vortex current and the equation above, we can see that

jµ =
4π

c
aµ + εµνλ∂

νAλ. (1.75)

Finally, we substitute Eqs. (1.69), (1.71), (1.73) and (1.75) into Eq. (1.66):

L =
m∗

2e∗2 |φ|2
fµνf

µν − 1

2c
aµ

(
jµ − εµνλ∂νAλ

)
, (1.76)

where fµν = ∂µaν − ∂νaν and we have dropped ∂µθ. If we formally vary Eq. (1.76)

by aµ, we will recover the same equation on vortex current as one that is derived

after substituting Eqs.(1.74), (1.71) into Eq. (1.75). This means that our theory is

self-consistent.

To the contrary, we could start with conventional definition of Maxwell’s field ten-
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sor F µν instead of Eq. (1.67). Then the vortex current term (−εµνλjλ) would appear

in Eq. (1.70). Moreover, Eq. (1.74) would contain an additional term −(c/4π)jλ and

this equation would become the replacement for Eq. (1.75). However, this additional

term would not be recovered after varying the new Lagrangian by aµ, which means

that one would have to add a term (1/2c)jµa
µ to the Lagrangian so that the theory

would be self-consistent. The latter correction is equivalent to re-defining F µν as in

Eq. (1.67).

Thus, we have re-interpreted the model of a system in the superconducting state

in terms of vortex currents. As we can see, this Langrangian Eq. (1.76) resembles the

original model Eq. (1.66), but the signs are opposite. This is related to the fact that

in the superconducting state the density of vortices is zero because vortex condensate

is unstable.

The disordered state corresponds to the opposite regime. During the disorder-

ing transition the vortices condense and in this case the vortex current should be

characterized by its own bosonic field Φ and the dual gauge field aµ,

jλ = 2Im [Φ∗ (∂µ − iaµ) Φ] . (1.77)

Then the dual Lagrangian can be written as following [54]:

Ldual = |(∂µ − iaµ) Φ|2 − V (|Φ|) − 1

4
fµνf

µν − κεµνλa
µ∂νAλ. (1.78)

For this model the equations involving the superconducting order parameter |φ|2 are

no longer applicable and Eq. (1.71) becomes the definition of the electrical current.
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Chapter 2 Odd-Frequency Density Waves

2.1 Introduction

Many attempts to uncover non-Fermi-liquid metallic behavior in strongly-correlated

electron systems have focused on enhanced scattering mechanisms which might lead

to anomalous behavior in the electron Green function. In this chapter we attempt a

different tack and focus on metallic states with a conventional Fermi surface which

can be distinguished from Fermi liquids by an order parameter [55]. In order to

preserve the Fermi surface, the order parameter is taken to be odd in frequency .1

When the order parameter breaks a continuous symmetry, the low-energy spectrum

must also include Goldstone modes. As a result, odd-frequency ordering results in a

set of low-energy excitations which is larger than that of a Fermi liquid (so that they

are no longer in one-to-one correspondence with those of a free Fermi gas), leading

to a manifestly non-Fermi liquid state.

A number of authors have considered superconducting states with order parame-

ters 〈cα(k, ω) cβ(−k,−ω)〉 which are odd in frequency [56, 57, 58, 59, 60, 61, 62, 63,

64]. The energetic advantage of such a state is that it would enable the electrons

to avoid instantaneous Coulomb repulsion while still benefitting from pairing. The

odd-frequency dependence of the order parameter is due to the unusual frequency

dependence of interaction. The latter could be linear in ω and ω′ [57, 58, 59], pro-

portional to ω−1 and ω′−1 [60], or even have log |(ω − ω′) / (ω + ω′)| dependence [61].

Some exactly soluble one-dimensional models, such as the one-dimensional Kondo

1A frequency-independent order parameter may have Fermi pockets, but these are to be con-
trasted with the large true Fermi surface of a Fermi liquid. An odd-frequency ordered state has a
Fermi surface of the latter variety.
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lattice, have a tendency towards such ordering as well [65, 66]. However, there are

claims that the simplest models of odd-frequency superconducting states suffer from

pathologies which make them unstable [62, 63, 64, 67].

We will consider the analogous states in the particle-hole channels. These are

metallic states — unlike the corresponding superconducting states — with normal

Fermi surfaces. We find that simple models of odd-frequency density wave states do

not suffer from any pathologies (and we comment briefly on the supposed pathologies

of odd-frequency superconducting states as well). Odd-frequency states can exhibit

a number of interesting non-Fermi liquid properties including the Goldstone modes

mentioned above, a range of states above the Fermi surface with finite lifetimes even in

the limit of vanishing frequency and temperature ε, T → 0, and a non-mean-field-like

temperature-dependent order parameter.

However, the question of their detection is nontrivial and cuts to the heart of

attempts to experimentally distinguish non-Fermi liquids from Fermi liquids. While

an odd-frequency superconducting state is, first and foremost, a superconducting

state, which would be identified by its vanishing resistivity, Meissner effect, etc., an

odd-frequency density wave state can masquerade as a Fermi liquid since the order

parameter vanishes at zero frequency. There will be signatures in thermodynamic

and transport measurements, but they can easily be mistakenly attributed to other

effects, as we discuss below.

2.2 Order parameters and symmetries

An odd-frequency charge-density wave state is defined by the anomalous correlation

function 〈
cα† (k, εn) cα (k + Q, εn)

〉
= F (k, εn) , (2.1)
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where F (k, εn) is an odd function of frequency,

F (k,−εn) = −F (k, εn) . (2.2)

To find an equal-time correlation function which serves as an order-parameter, we

Fourier transform (2.1):

〈
Tτ

(
cα† (k, τ) cα (k + Q, 0)

)〉
= F̃ (k, τ) , (2.3)

where F̃ (k, τ) is odd in τ . Since its Fourier transform is odd, F̃ (k, τ) is imaginary.

Thus, we can use the time-derivative as an order parameter:

〈
Tτ

(
∂τc

α† (k, τ) cα (k + Q, 0)
)〉

τ=0
= ∂τ F̃ (k, 0) . (2.4)

The state defined by these order parameters, (2.1) or (2.4), breaks translational

symmetry. Time-reversal symmetry is not broken. This is most easily seen by con-

sidering (2.3). Taking the complex conjugate of both sides of (2.3) gives

〈
Tτ

(
cα† (k + Q, 0) cα (k, τ)

)〉
=

(
F̃ (k, τ)

)∗

= −F̃ (k, τ) . (2.5)

Meanwhile, (2.3) is transformed under time-reversal, T , into:

〈
Tτ

(
T

(
cα† (k, τ) cα (k + Q, 0)

))〉
=

〈
Tτ

(
cα† (k + Q, 0) cα (k,−τ)

)〉
= −F̃ (k,−τ)

= F̃ (k, τ)

=
〈
Tτ

(
cα† (k, τ) cα (k + Q, 0)

)〉
, (2.6)
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and, hence, the order parameter does not break time-reversal symmetry. In going

from the first equality to the second, we have used (2.5).

An odd-frequency spin-density wave is defined by

〈
cα† (k, εn) cβ (k + Q, εn)

〉
= ~n · ~σα

βF (k, εn) , (2.7)

where F (k, εn) is again an odd function of frequency and ~n is the direction chosen

spontaneously by the ordered state. This state breaks translational symmetry and

spin-rotational symmetry, which is broken to the U(1) subgroup of rotations about

~n. Again, time-reversal is preserved. Such a state will exhibit a nonzero expectations

value and anomalous correlations of the spin nematic order parameter, SiSj−δijS
2/3,

such as those discussed for spin-only models in Ref. [68].

2.3 Model interaction

We now consider a simple two-dimensional model which admits an odd-frequency

charge-density-wave state at the mean-field level. The model contains a nonsingular

four-fermion interaction which can be generated by the exchange of phonons or some

gapped electronic collective mode. For simplicity, we focus on the charge-density-wave

case; the spin-density-wave is analogous.

We consider an effective action which consists of a kinetic term

S0 =

∫
dτ

∫
k

cα†(k, τ) (∂τ − (ε(k) − µ)) cα(k, τ) (2.8)
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and an interaction term

Sint =
1

Ω2
c

∫
dτ

∫
k,k′

[
cα†(k + Q, τ)∂τcα(k, τ)

]
c

Vkk′

×
[
cβ†(k′, τ)∂τcβ(k′, τ)

]
c

. (2.9)

To avoid clutter, the
∫

k,k′ is used as shorthand for the integrals over k, k′:
∫

k
≡∫

d2k/(2π)2. The subscript c indicates that the terms in brackets are actually defined

with a frequency cutoff, Ωc:

[
cα†(k + Q, τ)∂τcα(k, τ)

]
c

≡

T
∑

|εn|<Ωc

iεn cα†(k + Q, εn) cα(k, εn). (2.10)

For simplicity, we take Vkk′ independent of k, k′, Vkk′ = λ. For simplicity, we also take

Q = (π, π) and ε(k) = −2t(cos kx + cos ky), corresponding to commensurate order

for a system of electrons on a square lattice with nearest-neighbor hopping. The

generalization to incommensurate order and other band structures is straightforward.

The interaction term Sint is long-ranged in precisely the same way as the BCS

reduced interaction. A more realistic short-ranged interaction would be of the form

S̃int =

∫
k,k′,q

[
cα†(k + q, τ)∂τcα(k, τ)

]
c

V q
kk′

×
[
cβ†(k′, τ)∂τcβ(k′ + q, τ)

]
c

, (2.11)

which includes (2.9) as one term in the sum over q. Such an interaction could arise

from the diagram of figure 2.1 if the collective mode has a propagator of the form

λ
Ω2

c

Ω2
c + v2(k − k′)2 + (εn − εn′)2

. (2.12)
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If v is small, then we can expand the collective mode propagator to obtain Vkk′ = λ,

for |εn| , |εn′ | ≤ Ωc. Other terms will also be generated which could drive the formation

of even-frequency order, but they appear to be weaker.

A collective mode or phonon at finite frequency, Ωc will mediate an interaction

which grows as the mode frequency is approached but decreases at higher frequencies.

At low frequencies, we can use the expansion suggested below (2.12) to extract the

odd-frequency kernel. We model the decay of the interaction at high frequencies by

introducing a cutoff at Ωc. Later, we will model it more realistically by allowing this

cutoff to be smooth.

k + q, ε + ω k' + q, ε' + ω

k', ε' k, ε

Figure 2.1: A diagram which can lead to an interaction favorable for odd-frequency
density-wave ordering. The dashed line represents a collective mode which mediates
the interaction.

We assume an order parameter of the form:

α ≡ λ

Ω2
c

∫
k

〈
cα†(k + Q, τ) i∂τcα(k, τ)

〉
c
. (2.13)

According to our previous observations, α is real. Then the mean-field action takes
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the form

SMF = T
∑

n

∫
k

cα†(k, εn) (iεn − (ε(k) − µ)) cα(k, εn)

− T
∑

n

∫
k

αεn cα†(k, εn)cα(k + Q, εn). (2.14)

The equation of motion following from the mean-field action is:

(iεn − ε(k) + µ) cα(k, εn) − αεncα(k + Q, εn) = 0. (2.15)

We multiply the equation of motion by c†α(k, εn) and take the imaginary time-ordered

expectation value. We see that the ordinary and anomalous Green functions satisfy

the equation:

(iεn − ε(k) + µ) G(k, εn) − αεnF (k, εn) = 1. (2.16)

The right-hand-side results from the time-derivative (i.e., iεn) acting on the time-

ordering symbol.2 If we make the replacement k → k + Q in (2.15), then we can

derive a second equation in the same way,

(iεn + ε(k) + µ) F (k, εn) − αεnG(k, εn) = 0, (2.17)

and the Green function and anomalous Green function for |εn| ≤ Ωc take the form:

G (k, εn) =
iεn + µ + ε(k)

(iεn + µ)2 − (ε(k))2 − α2ε2
n

, (2.18a)

F (k, εn) =
αεn

(iεn + µ)2 − (ε(k))2 − α2ε2
n

. (2.18b)

2Some care is required since both the kinetic and interaction terms in the mean-field action
contain a single time-derivative. As a result, the commutations relations are modified. However,
the resulting equations for G and F are of the same form as one would obtain by ignoring this fact
and ignoring the time-derivative arising from the frequency dependence of the gap in (2.15), i.e., by
making two compensating errors.
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One might naively think that equation (2.17) could be obtained by inspection from

(2.16) by replacing ∆(εn) by ∆∗(−εn) as one usually does in the case of an even-

frequency gap. In this case, this would amount to the replacement of αεn by −αεn,

as was done in Ref. [62, 63, 64, 67]. However, in the case of an odd-frequency gap,

this simple substitution only works for real frequencies. Since the gap is linear in

frequency and the squared modulus of the gap appears in the Green functions, the

Green functions are no longer analytic in the frequency. As a result, the analytic

continuation from real to Matsubara frequencies is subtle. The safe route is to derive

both (2.16) and (2.17) directly from the mean-field action, as we have done. The

naive, incorrect form of (2.17) would lead to a negative superfluid density in the case

of odd-gap superconductors. On the other hand, the correct analogue of (2.17) for a

superconducting action would lead to a stable odd-frequency superconducting state.

Such a Green function was used in the context of an odd-frequency superconducting

state induced by disorder [61]. We derive the Green functions for odd-frequency

superconductivity in Appendix B.

For |εn| > Ωc, F vanishes and G returns to its normal state form. In principle, we

should also allow for a quasiparticle renormalization Z resulting from the interaction,

but this does not qualitatively modify our results, so we drop this correction for

simplicity.

From these Green functions, we see that, at µ = 0, the odd-frequency charge-

density-wave order parameter modifies the quasiparticle spectrum to:

E(k) ≡ ε(k)√
1 + α2

, (2.19)

i.e., it renormalizes the effective mass. For µ 6= 0, the effect is more complicated. As
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a result of the odd-frequency charge-density-wave, ε(k) − µ is replaced with

E(k) ≡ −µ ±
√

(1 + α2) ε2 (k) − α2µ2

1 + α2
. (2.20)

From (2.20), we see that the Fermi surface is unmoved, i.e., E(k) = 0 when ε(k) = µ,

as we expect, since the order parameter vanishes at zero frequency.

Furthermore, there is a range of k values above the Fermi surface, |ε(k)| <∣∣αµ/
√

1 + α2
∣∣, where E(k) has an imaginary part, so that quasiparticles in this re-

gion have a finite lifetime. However, these states have zero occupation number, as

the corresponding poles in the Green functions turn out to be lying outside of the

integration contour. This gives rise to a possibility of the ground state in which some

of the quasiparticles are in levels which are in disconnected from the rest of the Fermi

sea.

2.4 Gap equation

We must now impose a self-consistency condition on F (k, εn), which is the gap equa-

tion. To derive this equation, we substitute (2.1) and (2.18b) into (2.13). We will

also impose a condition on the particle number, thereby implicitly fixing the chemical

potential. These conditions read

− λ

Ω2
c

2T
∑

n

′∫
k

ε2
n

(iεn + µ)2 − (ε(k))2 − α2ε2
n

= 1, (2.21a)

T
∑

n

′∫
k

iεn + µ + ε(k)

(iεn + µ)2 − (ε(k))2 − α2ε2
n

= n. (2.21b)

For simplicity, we consider the case of half-filling, n = 1. We have repeated our

calculations at nonzero doping and found similar results.

The prime on the Matsubara summations in (2.21a), (2.21b) indicate that they
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are done with α = 0 for |εn| > Ωc and α 6= 0 only for |εn| ≤ Ωc. A more realistic

model replaces the interaction with one that has a “smooth” cutoff sη(εn) sη(εn′)

and α by α sη(εn), with sη(ε) = 1 for ε ¿ Ωc and sη(ε) = 0 for ε À Ωc. We can

vary η between the limit η → ∞, which corresponds to a sharp cutoff, and η → 0

which corresponds to the absence of a cutoff. For computational simplicity, we take

sη(ε) = nF (|ε| − Ωc; β = η).

We now discuss the analysis of (2.21a), (2.21b). Let us first consider the case of

a sharp cutoff. The left-hand side of the gap equation vanishes if the temperature is

above

Tmax
c =

Ωc

π
. (2.22)

Tmax
c is the highest possible transition temperature for this system. Just below this

temperature there is only one pair of terms in the Matsubara sum which is allowed

by the cutoff Ωc. As the temperature is decreased, more Matsubara frequencies begin

to contribute, resulting in minor steps in the phase diagram.

For large λ, Tc = Tmax
c . Decreasing λ, we enter a regime, λc2 < λ < λc1, in which

the system is in the odd-frequency density-wave phase for an intermediate range of

temperatures Tc2 < T < Tc1. λc1 is the location of the quantum phase transition at

which the odd-frequency density-wave order first appears at zero temperature. It is

obtained from (2.21a) by setting µ = 0 and α = 0 and converting the Matsubara sum

into an integral: ∫
k

[
Ωc − ε (k) arctan

Ωc

ε (k)

]
=

πΩ2
c

λc1

. (2.23)

The integrand is approximately Ωc for small ε (k) and Ω3
c/3ε

2 (k) for |ε (k)| À Ωc.

As λ is further decreased, Tc2 increases and finally reaches Tmax
c at λc2. To find

λc2, we again set µ = 0 and α = 0, but now we retain only the pair of terms in the
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Matsubara sum corresponding to the frequencies ±Ωc:

∫
k

Tmax
c

Ω2
c + ε2 (k)

=
1

λc2

. (2.24)

Comparing expressions (2.23) and (2.24), we find that the latter is larger by a factor

of 3 for large ε (k); hence, λc2 < λc1. For λ > λc2, α jumps discontinuously at Tmax
c .

Finally, for 0 < λ < λc2, there are no odd-frequency charge-density-wave solutions.

As a result, the phase diagram has the shape shown in Fig. 2.2 (dashed line) with

re-entrant transitions for λc2 < λ < λc1.

Let us now consider how this picture is modified when we make the cutoff smooth,

as it must be in a physical system. The sharpness of the steps which separate the

re-entrant transitions depends on the details of the high-frequency cutoff; they dis-

appear in the limit when the cutoff is very smooth. When the cutoff is relatively

sharp, more re-entrant transitions are possible, and there will be several tempera-

ture regions in which an odd-frequency charge-density wave occurs. However, for

a smooth cutoff, there is typically only one such region. The transition at Tmax
c is

replaced with a smooth curve Tc1(λ), at which a second-order transition takes place.

The corresponding phase boundary is depicted by the solid line in Fig. 2.2.

Below Tc1(λ), α increases as shown in Fig. 2.3. Note that for a smooth cutoff

all transitions are of second order, even though the rise of α at Tc1 is very steep for

large values of λ and may give a false impression of a first-order transition. It is also

noteworthy that even for large λ the order parameter α rapidly attains its maximum

as T is decreased below Tc and then decreases as T → 0 to some nonzero asymptotic

value. This has a significant impact on experimentally measurable parameters, as we

describe in the following section.

The unusual temperature dependence of the order parameter, which is reflected

in the re-entrant phase diagram and (as we will see in the next section) the condensa-
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Figure 2.2: Phase diagram at half-filling for “smooth” and “sharp” cutoffs at Ω = 0.3.
The energy scale is set by the width of the band W = 2.

tion energy, is a consequence of the frequency-dependence of the gap. In an ordinary,

frequency-independent (or weakly-dependent) ordered state, the condensation energy

at weak-coupling comes primarily from states near the Fermi energy. At high tem-

peratures, these states are thermally excited, so there is little condensation energy

to be gained, and the order parameter decreases as the temperature is increased.

In the case of odd-frequency ordered states, there is very little condensation energy

to be gained from the particles near the Fermi surface because their energy is low

(and, hence, they interact weakly with the order parameter). As a result, the order

parameter and condensation energy decrease as the temperature is decreased.

In fact, there is a second solution to the gap equation in which it is favorable

to have a disconnected Fermi sea in which some electrons are excited to a strip in

momentum space above the Fermi surface which is diconnected from the rest of the

Fermi sea, which is centered about k = 0. When this occurs, the occupation number

does not increase monotonically with ε(k). However, this solution is higher in energy,

so it does not occur.
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Figure 2.3: Order parameter for different values of the interaction strength, λ, with
a “smooth” cutoff at Ω = 0.3.

2.5 Experimental signatures

At Tc, there will be the usual thermodynamic signatures of a second-order phase

transition. The condensation energy associated with this transition is the difference

between the free energy of the odd-frequency charge-density-wave state and corre-

sponding free energy of the normal state at the same temperature. At µ = 0 and

with a sharp cutoff,

∆E (T ) =
Ω2

c

λ
α2 + 2T

nc∑
n=−nc−1

∫
k

ln

(
ε(k)2 + ε2

n

(1 + α2) ε2
n + ε(k)2

)
, (2.25)

where nc = (Ωc/πT − 1) /2. This equation is obtained by using α as a Hubbard-

Stratonovich field to decouple (2.9), resulting in the first term in (2.25). The electronic

action is then the mean-field action (2.14), so that the partition function may be

evaluated to give the second term in (2.25). At zero temperature, the integrals may
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be evaluated analytically:

∆E (0) =
Ω2

c

λ
α2 +

2

π

∫
k

ε(k) arctan

(
Ωc

ε(k)

)

− 2

π

∫
k

ε(k)√
1 + α2

arctan

(
Ωc

√
1 + α2

ε(k)

)

+ Ωc
2

π

∫
k

ln

(
Ω2

c + ε2(k)

(1 + α2) Ω2
c + ε2(k)

)
. (2.26)

The last term is overwhelmingly negative, as may be seen in various limits (e.g.,

α ¿ 1 or Ωc → ∞). Note that the energetic gain comes not from the terms in the

frequency sum (2.25) with small Matsubara frequency, which actually increase energy,

but from the terms near the cutoff — in a complete reversal of the situation for a

frequency-independent gap.3

Again, for a smooth cutoff the Matsubara frequency sum becomes infinite and

α should be replaced with sη(εn)α. For smooth cutoff and finite temperature, the

condensation energy must be evaluated numerically. The dependence of the conden-

sation energy ∆E on temperature is shown in Fig. 2.4. Unlike in even-frequency

phases, where |∆E| slowly increases as the system cools down and attains its maxi-

mum at zero temperature, in our model it rapidly reaches a maximum and decreases

to a constant asymptotic value as T → 0. As may be seen in figure 2.4, the con-

densation energy is of order of NF T 2
c1 at the maximum, which is comparable to the

maximum condensation energy attained in even-frequency phases.

The DC conductivity can be computed from the Kubo formula. We assume a

model in which impurities give rise to a lifetime, τ . The resulting conductivity is

given by

σ =
1

1 + α2

∫
k

(
∂ε(k)

∂kx

)2
τ

4T

1

cosh
(

E(k)
2T

)2 , (2.27)

3The derivation of the “anomalous” last term in (2.26) is straightforward from the partition
function using the path integral formalism. It is much more difficult, if at all possible, to explain its
presence within classical thermodynamics. It is manifestly a quantum phenomenon.
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Figure 2.4: Condensation energy as a function of temperature in model (2.9) with a
“smooth” cutoff at Ω = 0.3.

where E(k) is given in (2.20). For small µ, the modification of the quasiparticle

spectrum in the odd-frequency charge-density-wave phase reduces to the rescaling of

the electron mass near the Fermi surface, so that the new effective mass is m∗ =

m
√

1 + α2. This mass enhancement leads to a noticeable increase of the resistivity,

as shown in Fig. 2.5. Of course, outside of the the region Tc2(λ) < T < Tc1(λ) the

resistivity is that of the normal phase.

2.6 Discussion

In this work we have considered a model with an odd-frequency charge-density-wave

solution. The transition to this state is signaled by a second-order phase transition

with a jump in the specific heat. For strong interactions, the model is in an odd-

frequency charge-density-wave phase for all temperatures T < Tc. For moderately

weak interactions, the model is in such a phase for an intermediate temperature

regime Tc1 < T < Tc2. There is a quantum phase transition at λ = λc1; for weaker
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Figure 2.5: Resistivity as a function of temperature in the model of Eq. (2.9) with a
“smooth” cutoff at Ω = 0.3 and interaction strength λ = 4.

interactions, the system is not ordered at T = 0.

A similar model admits an odd-frequency spin-density-wave ground state. Such

a state will have, in addition to its Fermi-liquid-like quasiparticles, Goldstone boson

excitations. As a result SiSj − δijS
2/3, has a nonzero expectation value, and its

correlation functions have Goldstone poles.

The method that we used to derive the Green functions of the odd-frequency

density wave can be applied to the analysis of odd-frequency superconductivity as

well, with some modification. The corresponding mean field theory should describe a

stable state with positive superfluid density.

Odd-frequency charge-density wave order results in mass enhancement. This af-

fects transport properties ; in the density-wave state the resistivity is considerably

larger than in the normal state. The effect is largest at intermediate temperatures due

to the form of interaction, which attains its maximum value near the high-frequency

cutoff. At low temperatures, the system is either in the normal state (for λ < λc1)

or in an ordered state (for λ ≥ λc1) with some asymptotic value of the order param-
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eter. This type of non-monotonic resistivity curve has been observed in a number of

strongly-correlated electron systems. In layered materials, such as the cuprates and

ruthenates, it has been observed in c-axis transport [69, 70]. In 2DEGs, this type

of behavior has been observed in the vicinity of a putative metal-insulator transi-

tion [71, 72, 73, 74, 75]. It would be premature to suggest that odd-frequency order

is developing in any of these experiments, but it is noteworthy that it does provide a

natural explanation of otherwise puzzling behavior.

Odd-frequency density wave ordering is also manifested in thermodynamics . Un-

like in even-frequency states, where the condensation energy |∆E| is small near the

phase transition and reaches a maximum at zero temperature, in odd-frequency states

the maximum of |∆E| is located near the upper critical temperature. Consequently,

there is strong variation of all thermodynamic quantities with temperature just below

Tc. Again, at lower temperatures these phenomena disappear.

The model that we have introduced is certainly simplified, as it ignores the possi-

ble proximity of other phases. However, we believe that odd-frequency density-wave

order can result when a tendency towards ordinary even-frequency density-wave order

is frustrated by some interaction. Without such interaction, since the condensation

energy in the odd-frequency phase is the largest at high temperatures, one should ex-

pect to find it above the even-frequency state. The final resolution of the competition

will depend on the scales at which the various interactions act, essentially, Ωc in our

model. In particular, one can imagine a scenario in which an ordinary even-frequency

density wave is favorable at higher temperatures, but below a certain temperature,

the system undergoes a transition into an odd-frequency state.

More generally, the density-wave models with interaction that depends on fre-

quency and whose maximum is attained at some finite frequency Ωc would have

similar thermodynamic and kinetic properties at intermediate temperatures as our

model. This is because the thermally excited fermion quasiparticles would “sense”
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such an interaction the strongest near temperature Ωc/π. However, at low temper-

atures the pure odd-frequency phase would have distinguishibly different properties,

since it would remain metallic at T = 0.
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Chapter 3 Competing orders

The interactions that have high symmetry are of significant interest in the condensed-

matter theory. When the symmetry is broken, the system undergoes a phase tran-

sition. The higher the symmetry is, the more possible phases can exist or coexist

on the phase diagram. Each kind of order is associated with its own condensation

energy, which causes them to compete with each other. The mean-field theory allows

one to predict the phase diagram qualitatively, to determine the regions of possible

phase coexistence and to locate the quantum critical points.

A realistic model usually includes a lot of other interactions in addition to one

with high symmetry. However, often the overall symmetry of the problem is still

quite high and is broken spontaneously. This means that in two dimensions (2-D),

the mean-field critical temperature only predicts the formation of the local order and

globally the system may remain normal (metallic) even below this temperature. The

proximity of the quantum critical points may substantially affect the properties of the

locally ordered phases as well, since they strongly enhance the quantum fluctuations.

Conversely, the weak interlayer coupling suppresses the fluctuations and at sufficiently

low temperature begins to act as an interaction in the third dimension, which drives

the system through a global phase transition. Even in absence of such interlayer cou-

pling, the transition can be of Kosterlitz-Thouless type, when no symmetry breaking

actually takes place. Finally, there are cases when the broken symmetries are discrete

(such as in the case of charge-density wave), in which the mean-field theory predicts

the actual critical temperature.

We will illustrate it on a simple example of a 2-D bilayer bipartite lattice (Fig.

3.1), in which electrons on the two layers tend to bind into pairs due to an attractive
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interaction between the electrons on different layers [76]. To make this model more

realistic, consider each site on the lattice as a small capacitor formed by two layers.

(It is actually possible to synthesize such systems and explore them experimentally

[77].) If a is the lattice spacing and b ¿ a is the spacing between the layers, then

the energies of interlayer Coulomb interaction and of the capacitor can be estimated,

respectively, as n(1)n(2)/b and (2πb/a2)
(
n(1) − n(2)

)2
, where n(λ) is the number of

electrons on the layer λ at given site. Thus, it appears that the Coulomb interaction

dominates over capacitance in this limit, hence this interaction becomes important

only when b À a.

Figure 3.1: Two-dimensional bilayer lattice.

As we will show later, the capacitance term has a very high symmetry, SU (4).

One should expect the phase diagram resulting from such interaction to have a lot of

phases in close proximity from each other. This is not necessarily a drawback, since,

in fact, among the properties of the high-Tc cuprates that have long defied explanation

is the proximity of the antiferromagnetic (AF) and d-wave superconducting (DSC)

phases below the critical temperature. A recently proposed concept of an SO (5)

symmetry between AF and DSC phases [78] actually aimed to explain the former as

well as the resonance mode observed in spin-flip neutron scattering on YBCO [79].

Several groups [80, 81, 82, 83, 84, 85] have constructed microscopic models with
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exact SO (5) symmetry, and it has been argued [86] that the 2-D Hubbard model

has approximate SO (5) symmetry. At first sight, this model seems to be artificial

since it implies similar properties of the collective modes in different phases, while

the properties of charge modes are dramatically different in the observed AF and

DSC phases. In a recent modification of the theory [87, 88], Gutzwiller constraint

was implemented exactly so that charge collective mode acquired a finite mass while

magnon and hole-pair modes remained massless.

However, SU (4) is a higher symmetry than SO (5) and actually includes the latter

as a subgroup. In Refs. [89, 90], the large-n limit of SU (n) model has been studied

by using the 1/n expansion. It has been found that in the strong coupling limit the

ground state breaks translational symmetry and represents a density wave in which

each site forms a dimer with one of its nearest neighbors. As the doping increases,

a “kite” state with charge-density wave and no charge gaps forms. In the weak

interaction limit, the flux state with full translational symmetry and gap vanishing

at discrete points in momentum space was predicted. However, it was shown that at

large n the ground state does not have off-diagonal long range order.

A real system that appears to have an SU(4) symmetry is a quantum spin-1/2

antiferromagnet with twofold degenerate orbitals [91]. Such systems can be described

by an SU(4)-symmetric Heisenberg model. Although Schwinger boson mean-field

theory predicts long-range order in this model [92], it appears that the system is

more likely to be a plaquette solid with alternating strong and weak correlations

between the sites [93].

The algebra of SU (4) is isomorphic to that of SO (6). In Ref. [94] an SO (6) model

has been suggested, in which AF, DSC, and flux phases are unified. This and the

subsequent work [95] have shown that the pinning of the Fermi level near a Van Hove

singularity can explain the observed stripe phases [96] in cuprate superconductors.

The essential difference between SU (4) and SO (6) is that a theory with SO (6)
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symmetry assumes the presence of a 6-component vector (superspin) that transforms

according to the adjoint representation. In case of the SU (4) symmetry, there is

no such vector, as one can only define the 5-component superspin for the SO (5)

subgroup.

In our model there are six possible phases that correspond to 15 generators of

the SU (4) algebra. The chemical potential reduces symmetry to SO (4) × U (1).

This forced symmetry breaking leads to two phases and a quantum critical point

between them, one phase unifying various density-wave states and the other unifying

superconducting states. Although initially both phases have equal “rights” and one

should expect the corresponding critical temperatures to be close, we will show that

actually the density-wave phase requires stronger interaction than superconducting

phase, at least in the weak-coupling regime.

3.1 Model

As it has been mentioned in the introduction, we will assume that the two-layer lattice

is bipartite. In order to make the SU (4) symmetry of the Hamiltonian explicit, let

us group the fermion operators on a site into a 4-component operator

Ψ†
j =

(
c
(1)†
j↑ , c

(1)†
j↓ , (−1)j c

(2)
j↑ , (−1)j c

(2)
j↓

)
. (3.1)

Here c
(λ)†
jσ denotes a creation operator for the particle on site j of layer λ with

spin σ. The terms that include only the scalar products of Ψj-operators are SU (4)-

invariant. Those that involve the antisymmetric inner product Ψ†
jαEαβΨ†

jβ reduce the

symmetry of the group to Sp (4), or equivalently, SO (5). As we will see below, such

terms bring about interlayer hopping within the site.
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We will study the model

H = Hkin + Hint + HC + Hchem (3.2)

Here the kinetic (hopping) and the scalar interaction terms are SU (4)-invariant:

Hkin = −t
∑

〈i,j〉λσ

c
(λ)†
iσ c

(λ)
jσ = −t

∑
〈i,j〉

Ψ†
iΨj (3.3)

Hint = g
∑

j

Y 2
j = g

∑
j

(
Ψ†

jΨj − 2
)2

, (3.4)

where the hypercharge operator Yj = n
(1)
j − n

(2)
j = Ψ†

jΨj − 2 and n
(λ)
j =

∑
σ c

(λ)†
jσ c

(λ)
jσ .

Thus, different layers have opposite hypercharge. Also note that the kinetic term is

invariant only globally, since it contains scalar products of the operators on different

rungs, while the interaction term is locally invariant as well. For the given kinetic

term, the free energy spectrum of the fermions is ε (k) = −2t (cos kx + cos ky). How-

ever, one can add ε′ (k) = −4t′ cos kx cos ky to this expression to take into account

next-nearest-neighbor hopping.

The SU (4) → SO (4)×U (1) breaking terms are chemical potential and Coulomb

interaction. The latter can be regarded also as superconductivity–antiferromagnetism

anisotropy, as it can be expressed in terms of the square of the local spin operator:

Hchem = −µ
∑

j

nj, (3.5)

HC = −U
∑

j

[(
n

(1)
j − 1

)2

+
(
n

(2)
j − 1

)2

− 2

]

= −4U

3

∑
j

(∣∣∣S(1)
j

∣∣∣2 +
∣∣∣S(2)

j

∣∣∣2 + nj

)
. (3.6)

Here nj = n
(1)
j + n

(2)
j . One can also introduce other symmetry breaking terms. For

example the interlayer hopping has SO (5) symmetry, therefore, its combination with
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Eqs. (3.5,3.6) should reduce the symmetry to SO (3) × U (1):

Hhop = −t⊥
∑
jσ

c
(1)†
jσ c

(2)
jσ + h. c.

= −t⊥
∑
jσ

Ψ†
jEΨ†

j + h. c., (3.7)

In the absence of interlayer hopping Eq. (3.7), the total hypercharge of the system∑
j Yj is a conserved quantity.

Near the Fermi surface the lattice model Eq. (3.2) can be studied by using the

continuum approximation. In the nodal (π/2, π/2) direction the resulting Hamilto-

nian becomes very similar to that of Luttinger-Thirring [10, 97]. First, we replace

the electron representation of the second layer with the hole one. In this case the

operator Ψ† will combine only creation operators, for electrons in the first layer and

for holes in the second layer:

Ψ†
j =

(
c
(1)†
j↑ , c

(1)†
j↓ , h

†(2)
j↑ , h

†(2)
j↓

)
. (3.8)

Second, we introduce the 4-by-4 “Dirac” matrices

γ0 =


 0 1

1 0


 , γ1 =


 0 −1

1 0


 (3.9)

and the notation Ψ̄ = Ψ†γ0. Finally, the linearized model in the (π/2, π/2) direction

becomes one-dimensional and “relativistic”:

L =

∫
dx ψ̄γµpµψ + µψ̄γ1ψ + g′ (ψ̄ψ

)2
. (3.10)

In this formula pµ = (i∂t, i∂x) is momentum, ψ = (t/a)1/2 Ψ are the continuum fields,
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and g′ = (a/t) g is Gross-Neveu coupling constant. The “mass” term

mψ̄ψ → m
(
c
(1)†
j h

(2)
j + h

†(2)
j c

(1)
j

)
(3.11)

actually does not conserve charge and must be zero. The chemical potential acts

as magnetic field, which is consistent with the detailed analysis of interaction below

(µ couples to one of the generators of the algebra, just like magnetic field couples

to angular momentum). The conservation law for the current ψ̄γ1ψ has physical

meaning of charge conservation and for ψ̄γ0ψ it is the conservation of hypercharge Y .

These conservation laws imply that ψ̄γµψ = εµν∂νφ with φ being a bosonic field [98].

Thus, along (π, π) direction, the behavior of the model can be expressed in terms of

Schwinger bosons.

As it has been mentioned before, the interaction term in Eq. (3.2) can be inter-

preted as the contribution of the capacitor at site j formed by the layers. It can be

written as a sum of 15 generators of SO (6) ∼= SU (4) so that Hint becomes
∑

j Ĥint,j

with

Ĥint,j = g

[
4 − 1

5

5∑
a=0

5∑
b=a+1

(
Ψ†

jMabΨj

)2
]

= 4g

(
1 − 1

5

5∑
a=1

N 2
ja −

1

5

5∑
a=1

5∑
b=a+1

L2
jab

)
. (3.12)

Here Mab are the generators of the matrix representation of SO (6) that acts on the

space of 4-by-4 matrices by conjugation, Lab are the generators of the representation

of SO (5) and Na is the corresponding superspin:

Mab =
1

2
Ψ†MabΨ for a, b = 1 ... 5, (3.13a)

Na =
1

2
Ψ†M0aΨ for a = 1 ... 5. (3.13b)
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It is convenient to choose the following representation for Mab [80]:

M0a =


 σa 0

0 σT
a


 , a = 1, 2, 3,

M04 =


 0 −iσy

iσy 0


 , M05 =


 0 σy

σy 0


 , (3.14)

Mab = − i

2
[M0a,M0b] , a, b = 1 ... 5.

The physical meaning of the components of Na = (mx,my,mz, Re∆Q, Im∆Q)T is

that m = 1
2

(
S(1) − S(2)

)
is AF order parameter and ∆Q = ∆ exp (−iQ · r), where

Q = (π, π), S(λ) = 1
2
c(λ)†σc(λ) and ∆ = ic(1)σyc

(2) is the superconducting order

parameter. Similarly, Lab incorporates spin operator S = S(1) + S(2), π–operator

π† = −1
2
c†σσyd

†, and electric charge density Q = 1
2

(
n(c) + n(d)

)
− 1. In the absence

of SU (4) symmetry breaking, the components of Lab can also evolve into order pa-

rameters, such as ferromagnetic order parameter and π-wave superconducting order

parameter. The presence of the charge density Q among the generators of the algebra

explains why the chemical potential is a symmetry-breaking term in this model. Also

note that if we formally replace c(2)- operators in ∆Q by c(1)-operators, the result

will coincide with the expression for the η-operator that generates SO(3) pseudospin

symmetry in the standard Hubbard model [99].

All 15 generators of SU (4) algebra transform according to the adjoint represen-

tation of SU (4). If it was an SO(n) group, one would say that the generators form

a 15-component superspin. However, this would be misleading in our case, as such a

superspin would not be even an order parameter, since it is known from the theory

of the 2-D standard Hubbard models on a bipartite lattice [100] that at half-filling

below the transition the staggered-spin state has lower ground energy than the spa-

tially homogeneous state. In such a state the SU (4) generators will alternate the
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sign at even and odd sites. Thus, charge-density wave (CDW), spin-density wave

(SDW), and superconductivity (SC) are the only actually possible ordered phases at

half-filling. In the pure SU (4) theory there are totally six phases that can be classi-

fied by the type of order and the interlayer symmetry with respect to the exchange

of c(1) and c(2)-particles. The table below displays the SU (4) generators that vary

as cos (Q · r) for CDW and SDW states and the actual order parameters for the SC

states, according to such a classification:

Order CDW SDW SC

odd interlayer symmetry n(c) − n(d) S(c) − S(d) ∆, ∆†

even interlayer symmetry n(c) + n(d) − 2 S(c) + S(d) π,π†

(3.15)

Note that the odd interlayer symmetry CDW phase takes place only when the coupling

g is negative, while the rest only when it is positive.

In the BM states the generators vary as cos (Q · r), but due to the presence of

(−1)j factor in Eq. (3.1), these generators (such as ∆Q) become naturally related to

the quantities that are constant everywhere in the SC state (such as ∆). The latter

are the order parameters. In the case of CDW and SDW states, the order parameter

is the amplitude of the variation of the corresponding generators between even and

odd sites.

There are also 16 eigenstates of Ĥint [Eq. (3.12)] that can be labeled by the eigen-

values of N 2 =
∑

a N 2
a , L2 =

∑
a

∑
b>a L2

ab, rung spin component Sz, charge density

Q, and hypercharge Y (table 3.1). The ground state of Ĥint is 6-fold degenerate,

consisting of the singlet state |Ω〉 = 1√
2

(
c
(1)†
↑ c

(2)†
↓ − c

(1)†
↓ c

(2)†
↑

)
|0〉 and its five trans-

formations by the components of the SO (5) superspin, corresponding to the triplet

magnetic and particle-hole pair states. Thus, in the ground state of the total inter-

action term Hint, each site is occupied only by c(1) − c(2) pairs.

In the strong coupling limit, the ground state is approximately one of Hint and we
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state N 2 L2 Q Sz Y Eint/U
|Ω〉 20 0 0 0 0 0

(N1 + iN2) |Ω〉 4 16 0 2 0 0
(N1 − iN2) |Ω〉 4 16 0 -2 0 0

N3 |Ω〉 4 16 0 0 0 0
(N4 + iN5) |Ω〉 4 16 2 0 0 0
(N4 − iN5) |Ω〉 4 16 -2 0 0 0

c↑ |Ω〉 5 10 1 -1 -1 1
c↓ |Ω〉 5 10 1 1 -1 1
d↑ |Ω〉 5 10 1 -1 1 1
d↓ |Ω〉 5 10 1 1 1 1

c†↑ |Ω〉 5 10 -1 1 1 1

c†↓ |Ω〉 5 10 -1 -1 1 1

d†
↑ |Ω〉 5 10 -1 1 -1 1

d†
↓ |Ω〉 5 10 -1 -1 -1 1

ΨEΨ |Ω〉 0 0 0 0 -2 4
Ψ†EΨ† |Ω〉 0 0 0 0 2 4

Table 3.1: Classification of the eigenstates of Ĥint.

can derive the analog of the t − J model by computing the second-order correction

to the kinetic term (as zero and first orders vanish in the ground state). Using the

identity Mαβ · Mγδ = 4δαδδβγ − δαβδγδ and taking into account that Yj = 0 in the

ground state of Hint, we find

Ht−J = Hkin + Jg

∑
〈i,j〉

(
Mi · Mj − t†i · tj

)
, (3.16)

where Jg = t2/g, Mj,ab = 1
2
Ψ†

jMabΨj, and tj,ab = 1
2
ΨjMabΨj. Note that in the

given representation for Mab some of the components of tj vanish. The third term in

Eq. (3.16) has a physical interpretation as pair hopping. The analysis of this model

is complicated, since it is necessary to take into account the possibility that inlayer

hopping may pass through a transition as well, so that
〈∑

〈i,j〉 c
(λ)†
i c

(λ)
j

〉
6= 0. In such

a case, the system will split into plaquettes [93].
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3.2 Critical temperature in mean-field theory

The mean-field theory of Eq. (3.2) is a valuable source of information about the phase

diagram of the model. First, we need to find the reduced form of the Hamiltonian

and the corresponding values of the mean-field coupling constants. This can be done

either by analyzing the behavior of interaction vertices under renormalization or by

regrouping the terms in the Hamiltonian. The second approach is easier, but we will

present both for completeness. Second, we will derive the eigenvalues of the reduced

Hamiltonian and the free energy. Minimizing the free energy with respect to the order

parameters gives the phase diagram.

We will allow U to take a small nonzero value. Then it is necessary to split Hint in

Eq. (3.4) into a sum of two terms so that one of them will be similar to the Coulomb

term Eq. (3.6). Introduce two vectors P (1) and P (2) defined as follows: P
(1)
α = 1

for α = 1, 2 and 0 for α = 3, 4 and P
(2)
α = 1 − P

(1)
α . Then each term in Eq. (3.12)

can be represented as
(
Ψ†

jMabΨj

)2

= h̃
(1)
j,ab + h̃

(2)
j,ab, where h̃

(1)
j,ab = M(1)2

j,ab + M(2)2
j,ab ,

h̃
(2)
j,ab = 2M(1)

j,abM
(2)
j,ab, M

(i)
j,ab = Ψ†

jM
(i)
ab Ψj, and M

(i)
ab ≡ Mab · P (i). Thus,

Hint+HC = −1

5
(4g + U)

∑
j

∑
a>b

(
M(1)2

j,ab + M(2)2
j,ab

)
− 4g

5

∑
j

∑
a>b

2M(1)
j,abM

(2)
j,ab, (3.17)

up to an additive constant. In the diagrammatic calculations, the vertices T (1)

and T (2), corresponding to the first and the second terms in Eq. (3.17) respec-

tively, satisfy the identities T (z) = T ◦ U (z), z = 1, 2, where (A ◦ B)(γ1,γ2;γ3,γ4) ≡∑
β1β2

A(γ1,γ2;β1,β2)B(β1,β2;γ3,γ4), and U (z)(γ1,γ2;γ3,γ4) are antisymmetric with respect to
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the interchange γ1 ↔ γ2 and γ3 ↔ γ4 and are defined by the components:

U (1)(12;12) =
1

2
, U (1)(34;34) =

1

2
,

U (2)(13;13) =
1

2
, U (2)(14;14) =

1

2
,

U (2)(23;23) =
1

2
, U (2)(24;24) =

1

2
.

The rest of the components of U (z) that remain undetermined after antisymmetriza-

tion are zero. Then it follows that U (z) and T (z) have the following properties:

U (1) ◦ U (2) = 0, T (z) ◦ U (z) = U (z) ◦ T (z) = T (z), T (z) ◦ T (z) =
(
Γ(z)

)2 U (z), where

Γ(1) = gDW, Γ(2) = gSC and

gDW =
1

5
(4g + U) , (3.18a)

gSC =
4g

5
. (3.18b)

The alternative approach, regrouping terms in Eq. (3.2), immediately produces

the reduced Hamiltonian with the same mean-field coupling constants as in Eq. (3.18):

Hred = Hkin − gDW

∑
j

(
|mj|2 + |Sj|2

)
− gSC

∑
j

(
|∆j|2 + |πj|2

)
. (3.19)

The eigenvalues of the reduced Hamiltonian are ±E (k; s), where

E (k; s) =

{[
s

√
ε (k)2 + M2 + ε′ (k) − µ

]2

+ ∆2

}1/2

, s = ±1, (3.20)

where m and ∆ are density-wave and superconducting order parameters, respectively,
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which turn nonzero at the phase transition. The free energy is

F (m, ∆; T, µ) =
|m|2

gDW

+
|∆|2

gSC

+
∑
s=±1

∫
kx>0
ky>kx

(s |ε (k)| − ε′ (k) − µ

−2T ln

{
2 cosh

[
1

2T
E (k; s)

]})
. (3.21)

Expanding this formula in terms of m and ∆ up to the fourth order leads to the

analog of the Ginzburg-Landau theory. The term of order of |m|2 |∆|2 turns out to

be positive, therefore, the phases do not tend to coexist with each other.

Minimizing the free energy with respect to the order parameters leads to the

gap equations. In particular, the equations on critical temperatures (assuming the

absence of the other order) are

1 =
gDW

2

∫
d2k

(2π)2

1

ε (k)
tanh

(
ε (k) + ε′ (k) − µ

2kBTDW

)
, (3.22)

1 =
gSC

2

∫
d2k

(2π)2

[
1

ε (k) + ε′ (k) − µ
tanh

(
ε (k) + ε′ (k) − µ

2kBTSC

)]
. (3.23)

Apparently, in case of nonzero ε′ (k), the integral of Eq. (3.22) is smaller than the

integral of Eq. (3.23), since the former includes parts near the Fermi surface that

cancel each other, while the expression in the latter always stays positive. Conse-

quently, for the same values of gDW and gSC, the critical temperature of density-wave

transition TDW will be smaller that one for superconducting state TSC. The integrals

can be evaluated for weak interaction and ε′ (k) = 0 (see Appendix C), which gives



68

the following value of the critical temperature:

kBTc ' 2tD exp


− π2

ln
(

2t
|µ|

) 2t

gDW


 ,

kBTc

2t
¿ |µ|

2t
¿ 1, (3.24a)

' 2tD

(
|µ|
2t

)3/8

,
|µ|
2t

¿ kBTc

2t
¿ 1, (3.24b)

where D = γ21/4/π1/2 ≈ 0.387 and γ ≈ 0.577 is Euler’s constant.
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Figure 3.2: Phase diagram for 2t = 1 eV, t′ = −0.05 eV, gDW = 0.1 eV and gSC =
0.05 eV.

This agrees with the phase diagram Fig. 3.2, on which gDW > gSC so that density-

wave transition has higher critical temperature at half-filling, but away from half-

filling the density-wave phase does not survive at all and we can only see the super-

conducting phase there, although at low temperatures due to small gSC. (See Appendix

D for the computation details.) However, one ought to remember that it corresponds
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to the calculation in the weak-interaction regime. In the case of strong interaction,

one must use Eq. (3.16) instead and both superconducting and density-wave states

will have the same energy.
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Figure 3.3: Chemical potential for 2t = 1 eV, t′ = −0.05 eV, gDW = 0.1 eV and
gSC = 0.05 eV at T = 0.006 eV.

Note that the chemical potential µ no longer vanishes at half-filling due to t′ 6= 0,

instead it vanishes approximately at doping x = −0.11 and µ ' −0.13 at doping

x = 0. The dependence of µ on doping is nonmonotonic (Fig. 3.3), which is due to the

fact that mean-field theory does not take into account fluctuations. The fluctuational

corrections restore the thermodynamic inequality ∂µ/∂x < 0, but it is possible to

correct the dependence approximately by using the analog of Maxwell’s construction.

The figure 3.2 also includes a region of coexistence of the phases. If this cor-

responded to true long-range order, it would mean that both order parameters are

nonzero so that the system is superconducting, but the translational and rotational

symmetries are broken. However, the proximity of two quantum critical points should

immediately alert us, as the region of coexistence is likely to be equally affected by

both thermal and quantum effects. In this case the physics at length scales less than
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λT = ~/
√

mT and time scales less than ~/T retains most of the features of quantum

critical behavior and thermal effects begin to dominate only in the opposite limits.

3.3 Discussion

We have studied a simple model on a 2-D bipartite bilayer lattice, which includes an

interaction of the fermions between the layers. This interaction can be interpreted as

energy of the capacitor formed by the layers at each site of the lattice. In this model

the interaction term in the Hamiltonian has very high SU (4) symmerty. The sym-

metry breaking factors include chemical potential and Coulomb interaction, but the

remaining symmetry should be broken spontaneously at the transition. This occurs

at temperatures that is probably lower that the mean-field critical temperature, with

transition being of Kosterlitz-Thouless type with additional elements of a 3-D phase

transition due to interlayer coupling. Between the mean-field critical temperature

and the temperature of the global phase transition, the system remains almost nor-

mal (metallic), but develops several non-Fermi-liquid features when the local order

becomes superconducting. The fermions that belong to different layers have opposite

“hypercharge,” which becomes a symmetry-related quantum number. In the pres-

ence of interlayer hopping the total hypercharge of the system is no longer conserved,

which significantly reduces the symmetry.

Although the symmetry of the model is even higher than SO(5), the physical

meaning of the components of the order parameter is slightly different from those

given in Ref. [78], as the ground state of the “antiferromagnetic” phase is actually a

density wave with varying local Néel vector. In the strong SU (4) interaction limit,

the Hamiltonian resembles one of t− J model, but also includes a pair hopping term

with operators similar to those introduced in Ref. [101].

The condition on the phase transition has been evaluated in weak interaction
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limit in mean-field theory. We have found that in this case the superconducting

phases dominate over the density-wave states. Even if due to Coulomb interaction

the density-wave phase has higher transition temperature than the superconducting

phase at half-filling, the situation becomes the opposite away from half-filling, where

the density-wave eventually disappears. The region of coexistence of the density-wave

and superconducting order is likely to be affected by the proximity of two quantum

critical points.
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Chapter 4 dx2−y2 Density Wave Order

4.1 Introduction

T

x

DSC
AF

Pseudogap

Figure 4.1: The sketch of the experimentally observed phase diagram in High-Tc

cuprates.

The phase diagrams of high-Tc cuprates have many common features, some of

which are shown schematically on Fig. 4.1. One of such features is the decrease of

critical temperature of the superconducting transition Tc with underdoping. It is

natural to explain it by the competition of superconducting order with some other

orders. The latter could be long-range, such as antiferromagnetic order, which is

already residing in the phase diagram in the low-doping region, or it could local

order.
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Another kind of peculiar behavior that the high-Tc cuprates exhibit when under-

doped is that the density of states is depleted at low energies, as if some of the degrees

of freedom of the system were developing a gap. This behavior, observed in optical

conductivity [102, 103], NMR [104, 105], angle-resolved photoemission [106, 107],

c-axis tunneling [108], and specific heat measurements [109], was dubbed the “pseu-

dogap.” The emergence of the pseudogap mimics somewhat the impoverishment of

the low-energy excitation spectrum which accompanies the development of dx2−y2 su-

perconductivity and resembles, more generally, the type of gap formation which is

concomitant with a large class of order parameters. However, it does not — at first

glance — appear to be connected with the formation of an ordered state. Conse-

quently, it was initially believed that the pseudogap was a crossover phenomenon and

the attempts to describe it depended on various approximate methods of treating

states with local, fluctuating order [29, 31, 110, 111, 112]. These theories have a

common difficulty related to the fact that a fluctuating order would normally have to

have a soft mode associated with it, which has not yet been observed experimentally.

However, it has recently been proposed that the ‘pseudogap’ state is actually

a broken-symmetry ordered state, and that the signatures of the order are subtle

enough that the state was able to appear incognito [113, 114, 115]. The absence of

a static charge order at intermediate and high temperatures observed in X-ray and

electronic-transport experiments eliminates the possibility of a charge-density wave

order. Also, the angular resolved photoemission experiments [116, 117] suggest that

the pseudogap has dx2−y2-wave symmetry — just like the order in the superconducting

phase. In Ref. [113], the dx2−y2 density-wave (DDW) state [118, 119, 120, 121] was

advanced as a candidate order.

DDW is a particle-hole condensate characterized by the following correlation func-
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Figure 4.2: Orbital currents in dx2−y2-density-wave phase.

tion taking a nonvanishing mean-field value:

〈
cα† (k + Q, t) cβ (k, t)

〉
= δα

β Φf (k) , (4.1)

where Q = (π/a, π/a), a is lattice spacing. This would be a charge density wave

(CDW) for f (k) = 1, but the DDW order is characterized by a different angular

symmetry, f (k) = 1
2
(cos kxa − cos kya). Like CDW, DDW does not break any con-

tinuous symmetries, but it does break three discrete Z2 symmetries: time-reversal,

translational, and rotational by π/2. This phase is described phenomenologically by

a pattern of the alternating orbital currents (Fig. 4.2), which has to be associated

with a staggered magnetic field of order of 10 gauss [113, 122, 123, 124].

The realization that pseudogap being a DDW state is a realistic possibility has

led to a re-examination of the experimental circumstances. Recent elastic neutron

scattering experiments, which directly probe the symmetries broken by DDW order

— time-reversal and translation by one lattice spacing — appear to have observed
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it [125]. A number of other experiments are consistent with the proposal [113], espe-

cially measurements of the superfluid density as a function of doping [28].

The results of the experiment by Mook et al. [125] have been analyzed theoretically

in Ref. [126].1 The observed Bragg scattering rods from small momenta at the in-

plane vector Q = (π/a, π/a) indicate the presence of a two-dimendional (2-D) static

order, which breaks time-reversal and translational symmetries. In principle, this pic-

ture could certainly agree not only with DDW, but also with other orders, notebly,

antiferromagnetic one. However, the magnitude of observed magnetic moments was

50 times smaller than in the undoped antiferromagnet, therefore, if it was in fact an

antiferromagentic phase, it would not agree with high temperature T ∗ (about 190 K)

at which the pseudogap state begins to evolve. The scattering intensity decreased

rapidly with scattering wavevector qz, which implies that the size of magnetic mo-

ments was large, i.e., it was of order of the current loops on Fig. 4.2 rather than

of order of a single Cu atom. Finally, an antiferromagnetic order breaks continuous

rotational symmetry, therefore, according to Mermin-Wagner-Coleman theorem, it

should be three-dimensional (3-D). Instead, the order remained 2-D even at low tem-

peratures and no Goldstone mode that would have been associated with spontaneous

breaking of a continuous symmetry had been observed.

The experimental situation seems promising, which is strong incentive to recon-

sider the theoretical state of affairs. If the ‘pseudogap’ state is, indeed, an ordered

state, then we should be able to study it within mean-field theory, as we would study

the antiferromagnetic state, superconducting state, or any other ordered state. Mean-

field theory is unlikely to explain the detailed shape of the phase boundary, but one

can hope that it will capture the broad features of the phase diagram, such as its

topology and the basic temperature scales. Deep within any phase, with T → 0 and

far from any quantum phase transitions, the mean-field Hamiltonian should be the

1See also the earlier work by Hsu et al. [124].
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correct Hamiltonian, although the parameters in it may need to be renormalized from

their mean-field values. Thus, it seems natural to simultaneously study the antifer-

romagnetic (AF), dx2−y2-wave superconducting (DSC), and DDW order parameters

in mean-field theory. The interplay and possible coexistence of these orders should

be qualitatively and semi-quantitatively explained by mean-field theory. Phase tran-

sitions, quantum or thermal, may not be accurately described in their asymptotic

limits, but the AF, DDW, and DSC phases will, as will possible phases with coexist-

ing AF, DDW, and DSC orders.

However, there is an immediate problem faced by such a program. What mi-

croscopic Hamiltonian should be used? In the early days of high-Tc, it was hoped

that the important physics of strong local repulsion and superexchange, which is

present in the simplest models, such as the Hubbard and t − J models, would be

sufficient to explain all of the interesting physics of the cuprates. This appears not to

be the case. Monte Carlo studies have not found superconductivity in the Hubbard

model [127, 128, 129], while Monte Carlo calculations, exact diagonalization, and

density-matrix renormalization-group (DMRG) calculations give conflicting results

for the t − J model [130, 131, 132]. DMRG studies have found that the behavior

of n-leg ladders depends sensitively on the strength of, for instance, second-neighbor

hopping [133], as have Monte Carlo studies [134]. Indeed, some numerical results

are sensitively dependent on boundary conditions [135], which is further indication

of the instability of many of these models to relatively small changes in the parame-

ters. Furthermore, the physics of charge-ordering is probably not correctly described

by the t − J model without near-neighbor (and possibly long-range) Coulomb repul-

sion [30, 136, 137, 138]. Indeed, it is also clear from experiments that relatively small

changes — such as those associated with substituting Nd for La [96, 139], which is

off the radar screen of the t−J and Hubbard models — can radically change at least

some aspects of the behavior of these materials. In short, the detailed form of the
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underlying Hamiltonian matters.

Fortunately, we are not completely in the dark about the nature of the microscopic

Hamiltonian. Local Coulomb repulsion, both on-site and near-neighbor, is clearly an

important part of the physics. This is known from microscopic calculations of the

Hubbard parameters t, U , and also from the fact that the undoped parent compounds

are antiferromagnetic insulators. The other important clue, which derives entirely

from experiments, is that the cuprates superconduct. The correct microscopic model

(or models) must support d-wave superconductivity when doped away from half-

filling. If the Hubbard and t − J do not have this property — and it appears that

they do not for t/U small — then they cannot describe the cuprates fully.

Our strategy will be to take a generalization of the Hubbard model which includes

next-neighbor repulsion and, most importantly, pair-hopping (or correlated hopping).

The pair-hopping term favors superconductivity. Even when it is relatively small,

it stabilizes superconductivity in the Hubbard model, as we will see. There are a

variety of ways in which such a term — or another term with similar effect — could

arise, either from quantum chemistry [140, 141, 142] or in the passage to an effective

description such as the t − J model; in both cases, it is essentially a result of strong

local Coulomb repulsion, as superexchange is. In any event, it appears that such

physics is necessary to stabilize superconductivity, so we will incorporate it in our

model. We will find that such a term also leads to DDW order.

Since the experiments suggest that the DDW order has an antisymmetric con-

figuration with respect to the layers, we will study a bilayer model. Of course, the

main reason why antisymmetric configuration has lower energy than symmetric one

is because interlayer repulsive interactions renormalize the coupling constants so that

the interaction that favors the DDW phase appears to be stronger for antisymmetric

case and weaker for the symmetric one. We will also study the role of the interlayer

tunneling.
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To summarize, we consider a model which is chosen so that it incorporates the

basic physics of strong local repulsion and so that will have a phase diagram which

includes AF at half-filling and DSC at some finite doping. We find that it natu-

rally supports DDW order. In mean-field theory, we find a phase diagram in the

temperature-doping plane which resembles the experimental phase diagram of the

cuprates, with the DDW phase boundary playing the role of the experimental pseudo-

gap onset line. This DDW line continues into the DSC state, so that the underdoped

superconducting state is characterized by both DSC and DDW orders. At low doping,

there is also a region of coexistence between AF and DDW orders. We comment on

the interpretation of experiments vis-à-vis our findings.2

4.2 Model Hamiltonian

We consider the following bilayer lattice model of interacting electrons [122]:

H = Hkin+Hint, (4.2)

where

Hkin = −tij
∑
〈i,j〉

(
c
(λ)†
iσ c

(λ)
jσ + h.c.

)

+
t⊥
16

∑
i

(
c
(1)†
i+x̂+ŷ,σc

(2)
iσ + c

(1)†
i+x̂−ŷ,σc

(2)
iσ

−c
(1)†
iσ c

(2)
iσ − c

(1)†
i+2x̂,σc

(2)
iσ + x → y + 1 → 2 + h.c.

)
, (4.3)

and

Hint = U
∑

i

n
(λ)
i↑ n

(λ)
j↓ + V

∑
〈i,j〉

n
(λ)
i n

(λ)
j − tc

∑
〈i,j〉,〈i′,j〉

i6=i′

c
(λ)†
iσ c

(λ)
jσ c

(λ)†
jσ c

(λ)
i′σ . (4.4)

2The following sections in this chapter are from Ref. [143].
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In the formulas above, tij is hopping with tij = t for nearest neighbors, tij = t′ for next

nearest neighbors and tij = 0 otherwise. The other parameters are the tunneling t⊥,

the on-site repulsion U , the nearest-neighbor repulsion V , and next-nearest-neighbor

correlated hopping tc. The indices i, j correspond to a lattice site, σ to the spin, and

λ to the layer.

The next-nearest-neighbor correlated hopping term is physically kinetic, but since

it is also quartic, we are going to treat it as interaction. It hops an electron from

i′ to j when j is vacated by an electron hopping to i. These two hops are corre-

lated by virtue of Coulomb interaction between the electrons. The presence of this

term in the cuprates has been shown in band-structure calculations [141]. Correlated

hopping has been discussed in Refs. [142, 144, 145, 146] as a possible mechanism of

superconductivity, but it has also been found [122] that it favors DDW order as well.

The tunneling term is momentum conserving [146, 147]. We consider a CuO2

bilayer because the pseudogap has been best characterized in bilayer materials such

as YBCO and Bi2212.

To derive a mean-field theory, it is convenient to take the Fourier transform of Eq.

(4.2) and regroup the terms. This task would be particularly simple if there were only

one phase at a given set of parameters. For example, a DDW reduced Hamiltonian

would look like

HDDW = −gDDW

∫
k,k′

f (k) f (k′) c
(λ)†
k+Q,σc

(λ)
kσ c

(λ)†
k′σ′c

(λ)
k′+Q,σ′ , (4.5)

where f (k) = cos kx − cos ky (the lattice spacing has been set to unit) and the DDW

mean-field coupling constant is

gDDW = 8V + 24tc. (4.6a)

Similar values of the mean filed coupling constants can be derived for other phases as
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well. Thus, for antiferromagnesm, d-wave superconductivity and (π, π) charge-density

wave we derive:

gAF = 2U, (4.6b)

gDSC = 12tc − 8V, (4.6c)

gCDW = 16V + 24tc − 2U. (4.6d)

In fact, the interaction part of the Hamiltonian Eq. (4.4) can be further generalized

to include the interlayer Coulomb interactions:

H′
int = U ′ ∑

i

n
(λ)
i n

(λ′)
j + V ′ ∑

〈i,j〉
n

(λ)
i n

(λ′)
j , (4.7)

where λ 6= λ′. Then for the given interlayer configuration of the order parameters

(antisymmetric for AF and DDW and symmetric for DSC), the mean field coupling

constants become

gDDW = 8V + 8V ′ + 24tc, (4.8a)

gAF = 2U + 2U ′, (4.8b)

gDSC = 12tc − 8V + 8V ′. (4.8c)

For the opposite configuration (symmetric for AF and DDW and antisymmetric

for DSC), the contributions of U ′, V ′ would be negative, which is the main reason why

such configurations have generally higher energy and are not observed. On the other

hand, the fact that five interaction terms produce only three phases means that we

can have the same phase diagrams (corresponding to a given set of gp’s) for a range

of values of the interaction constants. In the following section we will assume that

U ′ = V ′ = 0, so that each phase diagram will correspond to a unique set of U, V, tc.
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The total Hamiltonian contains the reduced parts corresponding to these phases

as well as the interactions between the order parameters. However, since we expect

gCDW to be negative so that the corresponding order parameter is always zero, we

will ignore the term corresponding to this phase. The final form of the reduced

Hamiltonian is

Hred =

∫
k

εkλλ′c
(λ)†
kσ c

(λ′)
kσ

− gAF

∫
k,k′

c
(λ)†
k+Q,σc

(λ)
kσ c

(λ)†
k′σ′c

(λ)
k′+Q,σ′

− gDDW

∫
k,k′

f (k) f (k′) c
(λ)†
k+Q,σc

(λ)
kσ c

(λ)†
k′σ′c

(λ)
k′+Q,σ′

− gDSC

∫
k,k′

f (k) f (k′) c
(λ)†
k↑ c

(λ)†
−k↓c

(λ)
k′↑c

(λ)
−k′↓, (4.9)

where εk11 = εk22 = εk + ε′k, εk = −2t (cos kx + cos ky), ε′k = −4t′ cos kx cos ky, εk12 =

εk21 = εk⊥ = (t⊥/4) f (k)2.

The standard Hubbard-Stratonovich mean-field-theoretical treatment of Eq. (4.9)

is to assume the presence of a bosonic mean field, defined as an order parameter,

neglect the fluctuations, find the eigenvalues of the Hamiltonian and finally, integrate

out the fermion degrees of freedom to derive the free energy.

We define the order parameters of DDW, AF and DSC phases as follows:

φλ = gDDW

∫
k

f (k) c
(λ)†
k+Q,σc

(λ)
kσ , (4.10a)

Mλ = gAF

∫
k

c
(λ)†
k+Q,σc

(λ)
kσ , (4.10b)

∆λ = gDSC

∫
k

f (k) c
(λ)†
k↑ c

(λ)†
−k↓. (4.10c)

We assume that φλ and Mλ are anti-symmetric in the bilayer index. Then, the



82

free energy of the system is

f =
|M |2

gAF

+
|φ|2

gDDW

+
|∆|2

gDSC

+
∑

s1,s2,s3=±1

∫
kx>0
ky>kx

[s1εk + ε′k + s2εk⊥ − µ

− 2T ln

(
2 cosh

{
1

2T

[
{f (k) ∆}2 +

(
s1

{
[εk + s2εk⊥]2

+ [f (k) φ + s3M ]2
}1/2

+ ε′k − µ
)2

]1/2
})]

. (4.11)

As we expand this expression for small values of the order parameters, we can

construct a Ginzburg-Landau theory:

f (T ) = f0 (T ) +
∑

p

ap |Φp|2 +
∑

p

bp |Φp|4 +
∑
p 6=p′

cpp′ |Φp|2 |Φp′ |2 , (4.12)

where p denotes the kind of the order parameter (AF, DDW or DSC) and Φp is the

order parameter (M , φ or ∆, respectively). The ap coefficients cross zero at the

transitions so that ap = 0 are the equations that determine critical temperature Tc:

ap =
1

gp

−
∑

s1,s2,s3=±1

∫
kx>0
ky>kx

Kp (k) , (4.13)

where

KAF (k) =
1

2 |ε̄k|
tanh

(∣∣ξ̄k

∣∣
2T

)
, (4.14a)

KDDW (k) = f (k)2 KAF (k) , (4.14b)

KDSC (k) =
f (k)2

2
∣∣ξ̄k

∣∣ tanh

(∣∣ξ̄k

∣∣
2T

)
. (4.14c)

Here ξ̄k = s1εk + s2εk⊥ + ε′k − µ and ε̄k = εk + s2εk⊥. The bp coefficients are positive:

bp =
∑

s1,s2,s3=±1

∫
kx>0
ky>kx

K ′
p (k) , (4.15)
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where

K ′
AF (k) =

η1 (k)

8 |ε̄k|3
, (4.16a)

K ′
DDW (k) = f (k)4 K ′

AF (k) , (4.16b)

K ′
DSC (k) =

f (k)4 η2 (k)

8
∣∣ξ̄k

∣∣3 , (4.16c)

where

η1 (k) = tanh

(∣∣ξ̄k

∣∣
2T

)
− |ε̄k| /2T

cosh

(
|ξ̄k|
2T

)2 , (4.17a)

η2 (k) = tanh

(∣∣ξ̄k

∣∣
2T

)
−

∣∣ξ̄k

∣∣ /2T

cosh

(
|ξ̄k|
2T

)2 . (4.17b)

Finally, the cpp′ coefficients are

cpp′ =
∑

s1,s2,s3=±1

∫
kx>0
ky>kx

K ′′
pp′ (k) , (4.18)

where

K ′′
AF,DSC (k) =

f (k)2

4
∣∣ξ̄k

∣∣2 |ε̄k|
η2 (k) , (4.19a)

K ′′
DDW,DSC = f (k)2 K ′′

AF,DSC (k) , (4.19b)

K ′′
AF,DDW (k) =

3f (k)2

4 |ε̄k|3
η1 (k) . (4.19c)

The fact that all K ′′
pp′ > 0 implies that the phases compete with each other.
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4.3 Phase diagram

The mean-field phase diagram can be derived by minimizing Eq. (4.11) at fixed dop-

ing.

0
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Figure 4.3: Phase diagram for t = 0.5 eV, t′ = −0.025, t⊥ = 0.05 eV, U ' 0.03 eV,
V = 0 eV, tc ' 0.8 × 10−3 eV. (gAF = 0.06 eV, gDDW = 0.02 eV, gDSC = 0.01 eV.)

Since there is a large number of parameters in our model, there is substantial

variety in the possible diagrams. One such diagram, generated with t = 0.5 eV,

t′ = −0.025 eV, t⊥ = 0.05 eV, gAF = 0.06 eV, gDDW = 0.02 eV, gDSC = 0.01 eV,

is shown on the figure 4.3. The corresponding values of the interaction constants

are U ' 0.03 eV, V = 0 eV, tc ' 0.8 × 10−3 eV. Note that for these values of the

constants, gCDW = −0.04 eV < 0, which is consistent with our assumption that a

(π, π) charge-density wave is not energetically favorable.

Another diagram, shown on the figure 4.4, was generated with t = 0.5 eV, t′ =

0, t⊥ = 0.1 eV, gAF = 0.084 eV, gDDW = 0.038 eV, and gDSC = 0.017 eV. The
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Figure 4.4: Phase diagram for t = 0.5 eV, t′ = 0, t⊥ = 0.1 eV, U ' 0.042 eV,
V ' 1.7 × 10−4 eV, tc ' 1.5 × 10−3 eV. (gAF = 0.084 eV, gDDW = 0.038 eV, gDSC =
0.017 eV.)

corresponding values of the interaction constants are U ' 0.042 eV, V ' 1.7 × 10−4

eV, tc ' 1.5 × 10−3 eV, and also gCDW ' −0.045 eV.

As we can see, in both diagrams the antiferromagnetic transition temperature

at half-filling is close to 1000 K. This should be understood as the scale at which

two-dimensional antiferromagnetic correlations develop locally. Due to the Mermin-

Wagner-Coleman theorem, which states that a continuous symmetry cannot be bro-

ken spontaneously at finite-temperature in 2-D, the transition temperature is zero

for a single bilayer. The coupling between different bilayers (which is not included

in our single-bilayer calculation) stabilizes the antiferromagnetic phase with a transi-

tion temperature around 410 K. In lightly-doped cuprates, the presence of impurities

causes the misalignment of locally ordered antiferromagnetic clusters, thereby forming

a spin glass. Thus, if we interpret our TN as the scale of local 2-D antiferromagnetic
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order, which could become 3-D antiferromagnetic order or spin glass order, then the

phase diagrams of Figs. 4.3 and 4.4 are very reasonable, indeed.

Experiments might lead us to expect that DDW order would occur in the range

of doping between 0.07 and 0.19. This range is smaller than one shown on Fig. 4.4

and a bit larger than that shown in Fig. 4.3. The temperature scale for this phase on

Fig. 4.3 is very reasonable; it is almost three times higher on Fig. 4.4. This change

occurred primarily as a result of the increased value of tc. If we further increase tc to

1.9 × 10−3 eV, the DDW phase will begin to suppress the AF phase and will expand

up to half-filling at finite temperatures. In general, varying the interaction constants

by less that 20–30% does not change the phase diagram qualitatively. However, larger

variations lead to completely different classes of phase diagrams, such as those with

the AF phase suppressed or without a DDW phase at all. For example, Fig. 4.5 shows

the case when due to the smaller value of correlation hopping, both DDW and DSC

phases disappear and only AF phase remains in the diagram.

The DSC phase occupies a doping range away from half-filling primarily as a result

of band structure effects associated with the bilayer splitting, i.e., by the fact that

t⊥ 6= 0. In the absence of other orders, it would extend all the way to half-filling, but

it is suppressed at low doping by DDW and AF order. In a more realistic calculation,

superconductivity would be suppressed close to half-filling by no-double-occupancy

constraint, i.e., by strong local Coulomb repulsion. However, the DSC phase never

even makes it that close to half-filling because the DDW phase intervenes.

An important feature common to both diagrams is the existence of regions with

two simultaneous kinds of order. Namely, there is a region with DDW+AF order

and a region with DDW+DSC order. The system is an insulator in the AF state at

half-filling, a metal in the DDW and DDW+AF states, and a superconductor in the

DSC and DDW+DSC states.

All of the transitions are of second order at the mean-field level because of the
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Figure 4.5: Phase diagram for t = 0.5 eV, t′ = −0.025, t⊥ = 0.05 eV, U = 0.05 eV,
V = 0 eV, tc ' 3.3 × 10−4 eV. (gAF = 0.1 eV, gDDW = 0.008 eV, gDSC = 0.004 eV.)

signs of the cpp′ couplings between the order parameters in the Ginzburg-Landau

theory Eq. (4.12).

The calculated dependence of the chemical potential µ on the doping x inside the

DDW phase and in its proximity is nonmonotonic. This is due to the rapid devel-

opment of the DDW gap, which causes the chemical potential to be lower than in

the normal state. The thermodynamic inequality (∂µ/∂x)T,V ≤ 0 implies that when

this is violated, mean-field theory should be corrected using Maxwell’s construction,

which signals that fluctuations drive the transitions first-order as a function of µ.

Consequently, we would expect the underdoped side of the DSC phase to be char-

acterized by a smaller than expected chemical shift, as has been observed [148]. A

first-order phase transition as a function of chemical potential is manifested as phase

separation in a two-phase coexistence region spanning a range of dopings when the

doping is held fixed instead. It has been argued that such phase separation will be
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precluded by Coulomb interactions, thereby leading to stripe formation [136, 137].

4.4 Conclusion

We have studied the phase diagram of a bilayer lattice model using mean field theory.

Since we have focused on ordered phases, this should be a valid approximation. We

found that for certain ranges of the values of the interaction constants the phase

diagram agrees well with the experimentally observed phase diagram of YBCO if

the ‘pseudogap’ is associated with DDW order. The diagram remains in qualitative

agreement with the experimental data when the parameters of our model vary by less

than 20 – 30% and becomes qualitatively different for larger variations. Clearly, such

a phase diagram is reasonably robust, but is hardly inevitable. This is reassuring

because high-temperature superconductivity is stable, but only appears in a special

class of materials (to the best of our knowledge).

There are some systematic errors associated with mean-field theory, on which we

now comment. It underestimates the effect of fluctuations. Thus, the Néel tem-

perature is very large in mean-field theory, while it should actually be zero in any

strictly two-dimensional system. However, the Néel temperature which we find should

be regarded as the temperature below which a renormalized classical description is

valid [149]. The Néel temperature observed in experiments is associated with the

crossover from 2D to 3D. Mean-field theory also overestimates the coupling which

drives antiferromagnetism, which it takes to be essentially U . For small U , this is

correct, but for large U , it should be replaced by J ∼ t2/U . Indeed, the large-U limit

is generally somewhat problematic near half-filling since the Gutwiller constraint is

not enforced in mean-field theory. The dx2−y2 symmetry of the DDW and DSC states

lead one to the erroneous conclusion that they are completely unaffected by large U .

This cannot, of course, really be true; clearly, mean-field theory underestimates the
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tendency of large-U to push these ordered states away from half-filling. The seem-

ingly small value of U taken in our calculation should be interpreted in light of these

observations. Other mean-field treatments which incoporate strong local Coulomb

repulsion more prominently have also found DDW order in a generalization of the

t − J model [150] and in the Hubbard model with nearest neighbor attraction [151].

We find that the scale associated with superconductivity is largely determined by

the strength of correlated hopping. At the moment, this is rather ad hoc, but we had

little choice but to introduce some term of this sort in order to have a phase diagram

which includes superconductivity. It is possible that the superexchange coupling J

plays a more important role than we have accorded it in setting Tc, but superexchange

is beyond a mean-field treatment.

As we have seen, the very term which stabilizes superconductivity also supports

the development of DDW order. One way of interpreting our results begins with the

observation that the DDW order parameter, when combined with the real and imagi-

nary parts of the DSC order parameter form a triplet under an SU(2) group of trans-

formations [122, 152]. If this ‘pseudospin’ SU(2) is a symmetry of the Hamiltonian,

then DDW and DSC orders will be equally favored. Thus, one can envision that the

important order-producing term in the Hamiltonian is SU(2)-symmetric while small

symmetry-breaking terms drive the system into either the DDW or DSC states. Our

result shows that pair-hopping is of this form. Are all physically reasonable mecha-

nisms for dx2−y2 superconductivity similarly invariant under pseudospin SU(2)? This

is an open problem; we have answered in the affirmative for one particular class of

Hamiltonians.
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Chapter 5 Conclusion

While the Fermi-liquid theory successfully agrees with experimental observations in

the majority of metals, there is number of materials whose metallic behavior is as-

sociated with enigmatic non-Fermi-liquid peculiarities. These materials include cer-

tain heavy-fermion systems, high-Tc superconductors, and two-dimensional electron

gas systems. In order to explain their properties, one has to classify the possible

mechanisms in which the system develops non-Fermi-liquid features while remaining

metallic. We have considered several examples of the scenario in which the non-

Fermi-liquid behavior is induced by the presence of an order. In most of the known

materials ordering is marked with a number of explicit and prominent changes of the

physical properties, as a result of which the ordered phases become either insulating

or superconducting. Therefore, the order has to be “hidden,” i.e., not manifesting

itself in a way common to usual phase transitions.

In the first example we have shown that odd-frequency (or, equivalently, odd-time)

dependence of an order parameter falls into the “pattern” of a hidden-order scenario,

indeed. The same-time correlation functions vanish, therefore, the system has a

conventional Fermi surface and must be metallic at zero temperature. However, finite-

frequency correlations are nonzero, therefore thermal excitations are able to “sense”

them, leading to the development of order at intermediate finite temperatures. For

odd-frequency density-wave, the resistivity of the system will increase in the ordered

phase as if part of it became insulating.

The fact that the largest correlation functions are those with nonzero difference in

imaginary time (i.e., finite temperature) implies that at zero temperature the system

should have a peculiarity at a certain short-time scale. When the motion of electrons
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is characterized by a similar time scale, they will develop the same features as at

finite temperatures. Thus, one should expect strong frequency dependence of physical

properties, such as conductivity, at low temperatures. The measurements should also

depend on the magnetic field. For example, when the period of the cyclotron motion

of the fermionic quasiparticles approaches the characteristic time scale, the T1 lattice-

relaxation time measured by NMR experiments should diverge, as it does in the case

of ordinary density-wave or superconducting phase transitions.

Note that the frequency anomaly does not have to be associated with odd-frequency

dependence of an order parameter. In fact, even-frequency order can achieve maxi-

mum at some finite characteristic frequency, too, leading to a short-time scale men-

tioned above. However, in this case the system is likely to be nonmetallic at T = 0.

The second example that we studied aimed to explain the non-Fermi-liquid fea-

tures in the pseudogap phase of high-Tc cuprates. The dx2−y2-density-wave order

corresponds to a metallic state, because the gap vanishes at the nodes, where the

quasiparticles can reach the Fermi surface. On the other hand, this order is not easy

to detect, since it is not associated either with charge or spin order. This phase is

characterized by a pattern of alternating circular currents and is associated with weak

magnetic field induced by these currents.

An important result of our work is that we have shown that next-nearest-neighbor

correlated hopping stabilized both d-density-wave and d-wave superconducting phases.

As we have mentioned, the presence of this kinetic term has been shown in the band-

structure calculations. Are there other interactions that lead to both phases? It

has been long suspected that the mechanism of high-temperature superconductivity

is related to the properties of the “normal” phase in the high-Tc cuprates. The d-

density-wave model does not explain these properties on its own. However, there is

a possibility that the underlying microscopic interaction that is responsible for the

peculiarities in the normal phase and that induces the superconducting transition at
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the same time favors the d-density-wave phase. Investigation of such a possibility is

certainly the project of the future.

Although we have not devoted much space to third-order phase transitions, this

is quite an interesting subject. In the presented model the behavior of the system is

characterized by a long-range interaction and a short-scale coherence length (for the

superconducting order). An obvious scenario that realized such a model is a model

with strong long-range interaction. A more subtle scenario can take advantage of

strong quantum fluctuations that suppress the coherence in the system, for example,

due to the proximity of a quantum critical point. The associated third-order phase

transition is not as explicit as the second- or first-order phase transitions and can

be easily overlooked. It is important to investigate the role of thermal fluctuations,

since they are likely to affect the substantial temperature region below the mean-field

critical temperature. The system will likely remain normal (or metallic) at large scale,

but it will develop non-Fermi-liquid features at short scales.
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Appendix A Third-order phase transition

The existence of a phase transition is usually determined by the strength of the

interaction of the quasiparticles near the Fermi level. In most of the well-studied

cases such interaction is present in the slice around the Fermi surface that is much

thicker than the critical temperature of the transition. Is it possible for the opposite

case to take place, when interaction that favors particular phase exists in the region

that is much smaller than critical temperature? We will show that such possibility

exists, indeed.

For simplicity, consider a two-dimensional isotropic system with the following

Hamiltonian at half filling:

H =

∫
k

εkc
†
kck −

∫
k

∫
k′

gδ|k|,|k′|c
†
k+Q,σckσc

†
k′σ′ck′+Q,σ′ . (A.1)

This model corresponds to an extreme case, when interaction is allowed only between

the particles with the same absolute value of momentum. As we will see later, in fact,

this is a good approximation provided that such interaction is significant only in the

region where |εk − εk′| ¿ g, i.e., when it is long-ranged in real space.

The traditional order parameter in the mean-field theory could be defined as

φk = φ|k| = g

∫
k̂

c†k+Q,σckσ, (A.2)

where
∫

k̂
denotes integration over all directions of k, while |k| remains fixed. Note

that order parameter explicitly depends on |k|, which makes it possible for φ|k| to

be nonzero near Fermi surface and zero away from Fermi surface. This is qualita-

tively different from the abovementioned case of short-ranged interaction, in which
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transition occurs in entire Fermi-liquid so that φ|k| becomes nonzero everywhere.

The difference between the free energy of the ordered state and that of disordered

state, i.e., the condensation energy, is

∆F =

∫
|k|

[
|φk|2

g
− 2T

∫
k̂

ln
cosh (Ek/2T )

cosh (εk/2T )

]
, (A.3)

where Ek =
(
ε2
k + |φk|2

)1/2
. Varying this equation by φk, we derive the “gap equa-

tion”:

1

g
=

∫
k̂

1

2Ek

tanh

(
Ek

2T

)
. (A.4)

This equation looks very similar to the gap equation for the CDW at half filling,

with one essential exception: integration does not span over all values of |k|. As a

result, there is only one solution for the energy of quasiparticles, if any:

Ek = ζ(T ). (A.5)

The quantity ζ(T ) is a true Ginzburg-Landau order parameter of the model and the

mean field parameter introduced above is just φ|k| = (ζ(T )2 − ε2
k)

1/2
for |εk| < ζ(T ).

In BCS theory the coherence length at T = 0 is related to the order parameter as

ξ(T = 0) = vF / [π∆(0)], where ∆(T ) is the single-particle excitation gap and is the

order parameter. Therefore, we should expect the coherence length in our model to

be ξ(T = 0) ∼ vF /ζ(0) ∼ vF /g. This is very short, indeed. We conclude that the

model describes the superconductivity with short coherence length, specifically, with

coherence length much smaller than the real-space range of interaction.

As we substitute the solution for ζ(T ) back into free energy, we find that

∆F (T ) =

∫ ζ

0

dεNε

[
2π

ζ2 − ε2

g
+ 2T ln

cosh (ε/2T )

cosh (ζ/2T )

]
, (A.6)
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where Nε is density of states.

The critical temperature of the transition, at which φ|k| becomes nonzero at Fermi

surface (remaining zero for the rest of the phase space), is

Tc =
πg

2
. (A.7)

Thus the transition takes place at relatively high temperature, compared to BCS

theory, while condensation energy remains of the same order, ∆F (0) ∼ NF T 2
c . How-

ever, the entire theory is valid only when interaction is limited to the area, where

|εk − εk′| ¿ Tc ∼ g.

A very interesting consequence of this model is that transition is of third order.

One can derive that directly from the expression for ∆F (taking into account that

ζ > 0) or by computing specific heat directly. The latter varies as (Tc − T )1/2 at

critical temperature. The reason is that phase transition initially involves only small

part of the Fermi liquid and slowly expands as temperature goes down. If ζ(0) < εF ,

then even at zero temperature the low-energy part of the system remains normal. Of

course the mean field theoretical description is only approximate, since it does not

take into account fluctuations. The latter are substantial, since |∆F (T )| < T in a

large interval of temperatures, of order of ∆F (0) (Fig. A.1).
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Figure A.1: Condensation energy for third-order phase transition.
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Appendix B Odd-frequency superconductivity

The derivation of the Green functions for supreconductivity with odd-frequency de-

pendence of the order parameter is similar to the derivation of Eq. (2.18). We start

with the reduced action, in which the interaction term has already been factorized:

S =

∫
dτ

{∫
k

δαβcα† (k, τ) (∂τ − εk + µ) cβ (k, τ)

+
λ

Ω2
c

∫
k

[
cα† (k, τ) gαβ∂τc

β† (−k, τ)
]
c
[cα (−k, τ) gαβ∂τcβ (k, τ)]c

}
, (B.1)

where

gαβ =


 0 1

−1 0


 (B.2)

and [. . .]c assumes existence of a high-frequency cutoff Ωc so that for high frequencies

the interaction vanishes. We now introduce the order parameter α:

λ

Ω2
c

∫
k

[cα (k, τ) i∂τcβ (−k, τ)]c = αgαβ. (B.3)

This allows us to write the interaction part of the action as

SMF = T
∑

n

∫
k

αωngαβcα† (k, ωn) cβ† (−k, ωn) +

∫
k

α∗ωngαβcα (−k, ωn) cβ (k, ωn) .

(B.4)

The equation of motion for c follows by varying the action by cα†:

(iωn − εk + µ) cα (k, ωn) + αωngαβcβ† (−k, ωn) = 0. (B.5)
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This gives the first Eliashberg-like equation:

(iωn − εk + µ) G (k, ωn) + αωnF † (k, ωn) = 1, (B.6)

where the Green functions G (k, τ) and F † (k, τ) are defined as

〈
Tcα (k, τ) cβ† (k, 0)

〉
= G (k, τ) δβ

α, (B.7)

gαγ

〈
Tcγ† (−k, τ) cβ† (k, 0)

〉
= F † (k, τ) δβ

α. (B.8)

Again, the right-hand side of Eq. (B.6) is 1 because of the time-ordering in the

definition of G (k, ωn).

Similarly, the equation of motion for c† follows by varying the action by cα:

(−iωn − εk + µ) c†α (k, ωn) + α∗ωngαβcβ (−k, ωn) = 0. (B.9)

Note that this equation could be derived from Eq. (B.5) just by taking complex

conjugate. Thus, since gαβgαγ = δγ
β , gαβ = −gβα and εk = ε−k, we obtain the second

Eliashberg-like equation:

(iωn + εk − µ) F † (k, ωn) + α∗ωnG (k, ωn) = 0. (B.10)

As we can see, the sign in front of the second term in Eq. (B.10) has not changed.

Naively, from our BCS experience, we could expect to see ∆ (−ωn)∗ there, therefore,

it seems to contradict to the fact that for an odd-frequency-dependent gap, ∆ (−ω) =

−∆ (ω). To understand what has happened, consider it at real frequencies: ∆ (ω) ∼

iω is being replaced with ∆ (−ω)∗ = −∆ (ω)∗ ∼ iω. Thus, the sign has not changed at

real frequencies. Since the equations are analytical in frequency, the same statement

should hold for Matsubara frequencies ωn, too. The mistake is the very expectation
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to see the gap ∆ (−ωn)∗ in the second equation, because this function is not analytical

in frequency (it depends on ω∗) and can not possibly appear in the odd-frequency

case. It is order parameter α∗ that appears.

As a result, we have obtained the Green functions:

G (k, ωn) =
iωn + µ + εk

(iωn)2 − (εk − µ)2 − α2ω2
n

, (B.11a)

F † (k, ωn) =
α∗ωn

(iωn)2 − (εk − µ)2 − α2ω2
n

. (B.11b)

The theory with these Green functions is free from contradicions discussed in Refs. [62,

63, 64, 67], in particular, the Meissner effect is positive.
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Appendix C Integral evaluation

In this Appendix the integral that appears in the right-hand side of Eq. (3.22) is

evaluated:

I =

∫ π

0

dkx

2π

∫ π

0

dky

2π

tanh
(

ε(k)−µ
2kBT

)
ε (k) − µ

. (C.1)

First, we make a substitution k+ = (kx + ky) /2, k− = (kx − ky) /2 and expand the

energy in terms of k+ about the Fermi level ε (k) = µ:

ε (k) − µ ' −
√

(4t cos k−)2 − µ

×
[
k+ − arccos

(
µ

4t cos k−

)]
. (C.2)

In the limit of µ/2t → 0, the integral I diverges logarithmically. The internal

integral can be taken by parts, which results in a logarithmic part and a convergent

integral. In the latter the limits can be replaced by ±∞. Then there will be a region

of integration at kx = 0, ky = π/2 that will not be covered and a symmetric region

that will be covered twice. However, the expression in the integral takes the same

value in both regions, therefore the result remains unchanged and after the limit

replacement no corrections will be necessary:

I =
1

π2

∫ 1
2

arccos( µ
2t
−1)

0

dk−√
(4t cos k−)2 − µ

ln

{[
π + arccos

(
µ

4t cos k−

)
− k−

]

×
[
arccos

(
µ

4t cos k−

)
− k−

] [
(4t cos k−)2 − µ

](
γ

π

1

kBT

)2
}

. (C.3)

Here Euler’s constant γ ≈ 0.577 and µ is assumed to be positive. Furthermore,
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Eq. (C.1) does not depend on the sign of µ, thus, we can replace µ by |µ|. The

asymptotic expansion at |µ| /2t → 0 is

I =
1

4π2t
ln

(
2t

|µ|

)
ln

(
γ21/4

π1/2

2t

kBT

)
− 3

32π2t
ln

(
2t

|µ|

)2

+ O

[(
|µ|
2t

)0
]

. (C.4)
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Appendix D Computation of the phase diagram

in the SU(4)-symmetric model

The phase diagram corresponding to the free energy Eq. (3.21) has been computed

numerically. The Fortran program listed below is based on Numerical Recipes [153].

The expression for the quasiparticle energy has been slightly generalized in order to

take into account interlayer tunneling ε⊥. For the antisymmetric configuration of

order parameters between the layers, this energy becomes

E (k; s1, s2) = E (k; s) =

({
s1

√
[ε (k) + s2ε⊥]2 + M2 + ε′ (k) − µ

}2

+ ∆2

)1/2

,

s1, s2 = ±1. (D.1)

One can suggest ways to impose the constraint on the number of particles. One

way is to minimize the free energy F (m, ∆; T,N) = F (m, ∆; T, µ)+µN with respect

to the order parameters m and ∆ only and enforce the constraint prior to each

computation of F (m, ∆; T,N). The other way is to take advantage of the fact that

∂

∂µ
F (m, ∆; T, µ) = N. (D.2)

Naively, to implement the second approach, one only needs to minimize F (m, ∆; T,N)

formally as a function of µ. The problem is that F (N) does not have a minimum

when Eq. (D.2) is satisfied, it actually has a maximum there! In some cases, it is pos-

sible to use a trick, which is to take advantage of the Luttinger theorem to construct

a new function with a minimum at the point Eq. (D.2) and which leads to the same

gap equation when one varies m or ∆. Due to the theorem (or by direct verification),
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Eq. (D.2) is valid for the same values of µ and N and any values of m and ∆. Thus,

we can minimize

F̃ = F (m, ∆; T,N) − 2F (0, 0; T,N) − µN (D.3)

with respect to m, ∆, µ and the corresponding Euler’s equations will be the gap

equations and the constraint on the particle number. The practical implementation

of the second method in our problem shows, however, that it produces poor results

and is not significantly faster than the first one. In our case, Luttinger’s theorem is

not valid either, therefore, we can not take advantage of this trick. Therefore, the

code below is an implementation of the first approach.

! Source of the program pd.F

! Language: FORTRAN 77

#define NT 21

#define NX 21

program PD

CU USES powell

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (NK = 262144)

parameter (TOL = 1E-5)

real x,mu,t,t0,tl,cosx(0:NK),p(2),xi(2,2),ftol,xmax,xmin

real outp1(NX),outp2(NX),outp3(NX)

real p1max,p2max

integer n

common mu,t,/cosdat/cosx,/g/g1,g2,/hop/t0,tl,tprime,/x/x
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data n,p1max,p2max/2,0.0,0.0/

do 10, i=0,NK

cosx(i) = cos(pi*i/(2*NK))

10 continue

!Enter the values of the constants

write (*,*) ’Calculation of order parameters (SC, DW)’

t0 = 0.5

write (*,*) ’Hopping is set to t0 =’, t0

write (*,*) ’t_perp = ’

read (*,*) tl

write (*,*) ’t^prime = ’

read (*,*) tprime

write (*,*) ’g(SC) = ’

read (*,*) g1

write (*,*) ’g(DW) = ’

read (*,*) g2

write (*,*) ’doping (x) varies from’

read (*,*) xmin

if (xmin .LE. 0.0) xmin = 1.0E-5

write (*,*) ’ to’

read (*,*) xmax

write (*,*) ’T start = ’

read (*,*) tstart

if (tstart .LE. 0.0) tstart= 1.0E-4

write (*,*) ’T end = ’

read (*,*) tend

!Beginning the main loop
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open (9, FILE=’pd0.dat’)

open (10, FILE=’pd1.dat’)

open (11, FILE=’pd2.dat’)

open (12, FILE=’pd3.dat’)

t = tstart

ftol = TOL

do 15, i=1,NX

outp1(i) = g1**2

outp2(i) = g2**2

15 continue

do 30, j=1,NT

x = xmin

do 20, i=1,NX

!Initial values of order parameters are inherited from

!the previous computation at higher temperature.

p(1) = outp1(i)

p(2) = outp2(i)

if (p(1).lt.1E-4) p(1)=g1**2

if (p(2).lt.1E-4) p(2)=g2**2

xi(1,1)=0.1

xi(1,2)=0.0

xi(2,1)=0.0

xi(2,2)=0.1

call POWELL(p,xi,n,n,ftol,iter,fret)

if (p(1) .LT. 0.0) p(1)= -p(1)

if (p(2) .LT. 0.0) p(2)= -p(2)

outp1(i) = p(1)
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outp2(i) = p(2)

outp3(i) = mu

write(*,*) ’Finished x=’,x,’ after ’,iter,’ iterations’,

* ’ mu,p1,p2’,mu,p(1),p(2)

x = x + (xmax-xmin)/(NX-1)

20 continue

!Saving the results of the computation at given T.

write (9,40) (xmin+(i-1)*(xmax-xmin)/(NX-1), t, outp1(i),

* outp2(i),outp3(i), i=1,NX)

write (9,*) ’ ’

write (10,50) (outp1(i), i=1,NX)

write (11,50) (outp2(i), i=1,NX)

write (12,50) (outp3(i), i=1,NX)

write (*,*) ’T = ’,t,’ finished’

do 25, i=1,NX

if (outp1(i) .GT. p1max) p1max = outp1(i)

if (outp2(i) .GT. p2max) p2max = outp2(i)

25 continue

t = t + (tend-tstart)/(NT-1)

30 continue

close (9)

close (10)

close (11)

close (12)

write (*,*) ’The phase diagram has been generated’

write (*,*) ’Maxima of the order parameters Delta,M:’,

* p1max,p2max
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write (*,*) ’pd0.dat contains data in format

* {x,T,Delta,M,mu}’

write (*,*) ’pd1.dat is a’,NX,’ by’,NT,’ matrix of Delta(x,T)’

write (*,*) ’pd2.dat is a’,NX,’ by’,NT,’ matrix of M(x,T)’

write (*,*) ’pd3.dat is a’,NX,’ by’,NT,’ matrix of mu(x,T)’

open (14, FILE=’params.txt’)

write (14,60) ’t_perp’,tl,’t^prime’,tprime,’xmax’,xmax,

* ’g_SC’,g1,’g_DW’,g2

close (14)

40 format ((F5.3,F7.4,2F7.4,F8.4))

50 format (NX F7.4)

60 format ((A,’ = ’,F6.3))

end

real function FUNC(p)

!Computes the free energy for given order parameters

CU USES rtflsp, qgausx

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (ftol = 1E-5)

real p(2)

real a,b,ss

real F1

real mumin,mumax,muacc,mu,t

external F1,FNUM

common mu,t,/g/g1,g2,/pnt/p1(2),/x/x,/hop/t0,tl,tprime

!Determine mu
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p1(1) = p(1)

p1(2) = p(2)

mumax = -3*tprime

mumin = -sqrt(4*x**2+2*p1(1)**2+p1(2)**2

* +50*tprime**2)-0.02

muacc = ftol

mu = RTFLSP(FNUM,mumin,mumax,muacc)

if (mu .EQ. 1E5) then

!Something is wrong

FUNC = 1E7

write(*,*) ’*** mu,p1,p2,FUNC’,mu,p(1),p(2),FUNC

else

!Compute free energy

a = 0.0

b = pi/2.0

call QGAUSX(F1,a,b,ss)

FUNC = 2*((p(1)**2)/g1+(p(2)**2)/g2)+ss-mu*x/2*(2*pi)**2

endif

end

real function F1 (kx)

!Part of computation of free energy.

!Computes and integral over ky for fixed kx.

CU USES qgausy

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (NK = 262144)
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real kx

real a, b, ss

external FREEEN

integer ix

common /ix/ix

a = 0.0

b = kx

ix = kx/pi*(2*NK)

!Above: ROUND rather than TRUNCATE assumed.

!This depends on the compiler.

call QGAUSY(FREEEN,a,b,ss)

F1 = ss

end

real function FREEEN (ky)

!Part of computation of free energy.

!Computes the expression in the integral

CU USES faux

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (NK = 262144)

real ky

real cosx(0:NK), t0, tl, tp

integer ix, iy

common /cosdat/cosx,/ix/ix,/hop/t0,tl,tp

iy = ky/pi*(2*NK)

!Above: ROUND rather than TRUNCATE assumed.
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!This depends on the compiler.

epsl = tl

epsk1 = -2*t0*(cosx(ix)+cosx(iy))

epspk1 = -4*tp*cosx(ix)*cosx(iy)

aux1 = FAUX(epsk1,epspk1,epsl)

epsk2 = -2*t0*(cosx(ix)-cosx(iy))

epspk2 = +4*tp*cosx(ix)*cosx(iy)

aux2 = FAUX(epsk2,epspk2,epsl)

epsk3 = 2*t0*(cosx(ix)-cosx(iy))

epspk3 = +4*tp*cosx(ix)*cosx(iy)

aux3 = FAUX(epsk3,epspk3,epsl)

epsk4 = 2*t0*(cosx(ix)+cosx(iy))

epspk4 = -4*tp*cosx(ix)*cosx(iy)

aux4 = FAUX(epsk4,epspk4,epsl)

!Combining all four quadrants together

FREEEN = aux1+aux2+aux3+aux4

end

real function FAUX (epsk,epspk,epsl)

!Part of computation of free energy.

!Computes the contribution of a single quadrant

CU USES daux2

real epsk, epspk, epsl

real mu, t, dt, M

double precision res1,res2,res3,res4

double precision sr1, sr2

double precision expr1,expr2,expr3,expr4
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common mu,t,/pnt/dt,M,/x/x

double precision DAUX2

!The auxiliary expression in the eigenvalues

sr1 = sqrt( (epsk + epsl)**2 + (M**2) )

sr2 = sqrt( (epsk - epsl)**2 + (M**2) )

!The four eigenvalues

expr1 = sqrt( (sr1 + epspk - mu)**2 + (dt**2) )

expr2 = sqrt( (sr2 + epspk - mu)**2 + (dt**2) )

expr3 = sqrt( (-sr1 + epspk - mu)**2 + (dt**2) )

expr4 = sqrt( (-sr2 + epspk - mu)**2 + (dt**2) )

res1=DAUX2(expr1,t)

res2=DAUX2(expr2,t)

res3=DAUX2(expr3,t)

res4=DAUX2(expr4,t)

FAUX = - 2.0*t*(res1+res2+res3+res4)

end

double precision function DAUX2 (darg,t)

!This function allows to compute the eigenvalues

!at low temperatures when the expression

!in the log() becomes very large.

real t

double precision darg, dmisc

dmisc = darg / (2.0*t)

if (dmisc .LT. 17.0) then

DAUX2 = log( 2.0*cosh( dmisc ))

else
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DAUX2 = dmisc

endif

end

real function FNUM(mu1)

!Calculates the number of particles per volume

!for given chemical potential mu1

CU USES qgausx

double precision pi

parameter (pi = 3.1415926535897932D0)

real mu1,mu,t

real a,b,ss

real F2

external F2

common mu,t,/x/x

mu = mu1

a = 0.0

b = pi/2.0

call QGAUSX(F2,a,b,ss)

!We return the difference between the particle

!number and what is expected from doping x.

FNUM = ss / (2.0*pi)**2 - (1.0 - x)/2

end

real function F2 (kx)

!Part of computation of particle number.

!Evaluates the integral over ky for fixed kx.
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CU USES qgausy

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (NK = 262144)

real kx

real a, b, ss

external FN

integer ix

common /ix/ix

a = 0.0

b = kx

ix = kx/pi*(2*NK)

!Above: ROUND rather than TRUNCATE assumed.

!This depends on the compiler.

call QGAUSY(FN,a,b,ss)

F2 = ss

end

real function FN (ky)

!Part of computation of particle number.

!Evaluates the expression in the integral.

CU USES faux2

double precision pi

parameter (pi = 3.1415926535897932D0)

parameter (NK = 262144)

real ky

real cosx(0:NK), t0, tl
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integer ix, iy

common /cosdat/cosx,/ix/ix,/hop/t0,tl,tp

iy = ky/pi*(2*NK)

!Above: ROUND rather than TRUNCATE assumed.

!This depends on the compiler.

epsl = tl

epsk1 = -2*t0*(cosx(ix)+cosx(iy))

epspk1 = -4*tp*cosx(ix)*cosx(iy)

aux1 = FAUX2(epsk1,epspk1,epsl)

epsk2 = -2*t0*(cosx(ix)-cosx(iy))

epspk2 = +4*tp*cosx(ix)*cosx(iy)

aux2 = FAUX2(epsk2,epspk2,epsl)

epsk3 = 2*t0*(cosx(ix)-cosx(iy))

epspk3 = +4*tp*cosx(ix)*cosx(iy)

aux3 = FAUX2(epsk3,epspk3,epsl)

epsk4 = 2*t0*(cosx(ix)+cosx(iy))

epspk4 = -4*tp*cosx(ix)*cosx(iy)

aux4 = FAUX2(epsk4,epspk4,epsl)

!Combining all four quadrants together

FN = aux1+aux2+aux3+aux4

end

real function FAUX2 (epsk,epspk,epsl)

!Part of computation of particle number.

!Evaluates the contribution of a single quadrant.

CU USES daux3

real epsk, epspk, epsl
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real mu, t, dt, M

double precision res1,res2,res3,res4

double precision sr, sr1, sr2, temp

double precision expr1,expr2,expr3,expr4

common mu,t,/pnt/dt,M

double precision DAUX3

!Auxiliary expression

sr1 = sqrt( (epsk + epsl)**2 + (M**2) )

sr2 = sqrt( (epsk - epsl)**2 + (M**2) )

!Contributions from four eigenstates

expr1 = sqrt( (sr1 + epspk - mu)**2 + (dt**2) )

expr2 = sqrt( (sr2 + epspk - mu)**2 + (dt**2) )

expr3 = sqrt( (-sr1 + epspk - mu)**2 + (dt**2) )

expr4 = sqrt( (-sr2 + epspk - mu)**2 + (dt**2) )

res1 = (sr1 + epspk - mu)*DAUX3(expr1,t)

res2 = (sr2 + epspk - mu)*DAUX3(expr2,t)

res3 = (-sr1 + epspk - mu)*DAUX3(expr3,t)

res4 = (-sr2 + epspk - mu)*DAUX3(expr4,t)

FAUX2 = 4.0 - (res1+res2+res3+res4)

end

double precision function DAUX3 (darg,t)

!An auxiliary function

real t

double precision darg

DAUX3 = tanh(darg/(2.0*t))/darg

end
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block data

parameter (NGAUS=16)

real w(NGAUS),x(NGAUS)

common /gaus/w,x

! Gauss-Chebyshev method of integration

C data x/4.906768E-02, 0.1467305, 0.2429802, 0.3368899, 0.4275551,

C * 0.5141028, 0.5956993, 0.6715590, 0.7409511, 0.8032075, 0.8577286,

C * 0.9039893, 0.9415441, 0.9700313, 0.9891765, 0.9987954/

C data w/9.805688E-02, 9.711254E-02, 9.523296E-02, 9.243622E-02,

C * 8.874927E-02, 8.420762E-02, 7.885501E-02, 7.274298E-02,

C * 6.593039E-02, 5.848286E-02, 5.047211E-02, 4.197527E-02,

C * 3.307421E-02, 2.385461E-02, 1.440528E-02, 4.817239E-03/

! Gauss-Legendre method of integration

data x/4.830766E-02, 0.1444720, 0.2392874, 0.3318686, 0.4213513,

* 0.5068999, 0.5877157, 0.6630443, 0.7321821, 0.7944838, 0.8493676,

* 0.8963212, 0.9349061, 0.9647623, 0.9856115, 0.9972638/

data w/9.654000E-02, 9.563863E-02, 9.384431E-02, 9.117379E-02,

* 8.765201E-02, 8.331185E-02, 7.819382E-02, 7.234573E-02,

* 6.582216E-02, 5.868404E-02, 5.099801E-02, 4.283586E-02,

* 3.427383E-02, 2.539204E-02, 1.627438E-02, 7.018603E-03/

end

SUBROUTINE qgausx(func,a,b,ss)

!Gauss method of integration of the function func.

parameter (NGAUS=16)

REAL a,b,ss,func
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EXTERNAL func

INTEGER j

REAL dx,xm,xr

COMMON /gaus/w(NGAUS),x(NGAUS)

xm=0.5*(b+a)

xr=0.5*(b-a)

ss=0

do 11 j=1,NGAUS

dx=xr*x(j)

ss=ss+w(j)*(func(xm+dx)+func(xm-dx))

11 continue

ss=xr*ss

return

END

SUBROUTINE qgausy(func,a,b,ss)

!Gauss method of integration of the function func.

!This subroutine is identical to qgausx

!and is included to avoid recursion.

parameter (NGAUS=16)

REAL a,b,ss,func

EXTERNAL func

INTEGER j

REAL dx,xm,xr

COMMON /gaus/w(NGAUS),x(NGAUS)

xm=0.5*(b+a)

xr=0.5*(b-a)
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ss=0

do 11 j=1,NGAUS

dx=xr*x(j)

ss=ss+w(j)*(func(xm+dx)+func(xm-dx))

11 continue

ss=xr*ss

return

END

! The modules below are from Numerical Recipes in FORTRAN

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)

!Minimizes FUNC(p) (see above) by varying p(n).

FUNCTION rtflsp(func,x1,x2,xacc)

!Finds the root of func between x1 and x2.

SUBROUTINE linmin(p,xi,n,fret)

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)

FUNCTION f1dim(x)

FUNCTION brent(ax,bx,cx,f,tol,xmin)
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