
Essays on Law and Economics

Thesis by

Alan D. Miller

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended April 6, 2009)



ii

c© 2009

Alan D. Miller

All Rights Reserved



iii

To my parents.



iv

Acknowledgements

I would like to thank the members of my dissertation committee, Preston McAfee, Matt Spitzer,

Bill Zame, Chris Chambers, and John-Laurent Rosenthal, each of whom dedicated countless hours

and without whom this work would not have been possible. They each went above and beyond the

call of duty and I am grateful for their help and guidance.

Also at Caltech I would also like to particularly thank Kim Border, Federico Echenique, Phil

Hoffman, Matias Iaryczower, and John Ledyard, whose doors were always open to discuss my re-

search and whose input proved invaluable over the past few years. Jaksa Cvitanic and Jacob Goeree

both took the time to read drafts of manuscripts and to help in the revising process. Laurel Aucham-

paugh, Rod Kiewiet, Bob Sherman, and Susan Davis each helped guide me through the rules and

regulations to ensure that I did not stumble on this path. Many others at Caltech were also very

helpful, including, but not limited to, Yaser Abu-Mostafa, Ken Binmore, Andrew Daugherty, Tim

Groseclose, Jonathan Katz, Dan Klerman, Morgan Kousser, Bruce Lehman, Yuanchen Lien, Ed

McCaffery, Stuart McDonald, Peter Ordeshook, Charlie Plott, Dinakar Ramakrishnan, Jennifer

Reinganum, Matthew Shum, Eran Shmaya, Simon Wilkie, and Leeat Yariv.

Outside of Caltech there were also many individuals who spent their valuable hours helping me

with my research. First and foremost, I would like to thank Dov Samet for his efforts guiding me

on the second chapter of this dissertation. I was fortunate to be invited by Itzhak Gilboa to the

Cowles Foundation Workshop on Aggregation of Opinions, where I benefited from the comments

of many including himself, Eyal Beigman, Eddie Dekel, Elad Dokow, Ron Holzman, Gil Kalai,

Christian List, Philippe Mongin, and Klaus Nehring. I would particularly like to thank Ben Polak,

whom attended that workshop and who has since spent hours upon hours assisting me with the final

chapter of this dissertation. Dan Goroff, Dan Ullman, and the Russell Sage Foundation arranged for

me to attend the workshop on redistricting at the 2009 Joint Mathematics Meetings in Washington,

where I benefited from the comments of many including Micah Altman, Richard Freeman, Charles

Hampton, Sam Hirsch, Nate Persily, Richard Pildes, James Snyder, and Francis Su.

I would also like to thank Jeff Strnad and Matt Jackson for their help in arranging my visit to

Stanford in the fall of 2007, and to Dick Craswell, Mitch Polinsky, Barbara van Schewick, and Barry

Weingast for their help in creating a welcoming environment while I was there.



v

Eyal Winter provided funds for me to attend two summers schools at the Hebrew University

in 2006 and in 2008. I would like to thank him and his co-directors, Kenneth Arrow and Eric

Maskin, for the research advice and encouragement they provided in Jerusalem. I would also like

to thank several of the lecturers, in particular Robert Aumann, Oren Bar-Gill, Yeon-Koo Che, Bob

Cooter, John Geanakoplos, Herbert Scarf, Mark Machina, and Roger Myerson. While in Israel, I

also benefited substantially from the advice of many others, including, but not limited to, Aviad

Heifetz, Avi Bell, Micha Ben-Gad, Sergiu Hart, Todd Kaplan, Michael Landsberger, Bezalel Peleg,

Yair Tauman, Oscar Volij, David Wettstein, and Andriy Zapechelnyuk.

I would also like to thank Steve Lubet and Emerson Tiller from the Northwestern University

School of Law for their encouragement. The people at the University of Southern California Law

Center were also very helpful, in particular Greg Keating, Jonathan Barnett, Ron Harris, Shmuel

Leshem, Bentley MacLeod, Michael Shapiro, Eric Talley, and Nina Walton.

I also could not have made it through the last few years without the support of my classmates at

Caltech, particularly Christoph Brunner, Jon X Eguia, Paul Healy, Ji Hong Lee, Laurent Mathevet,

Guido Maretto, Noah Myung, and Robert Ostling.

I also benefited substantially from the support of my friends from outside of Caltech, many of

whom provided a place for me to stay while conducting my research, and all of whom patiently

listened to my abstruse explanations of my work. In particular I would like to thank Tomer Altman,

Odisse Azizgolshani, Jill Block, Tom Carr, Jeff Chan, Chaim Danzinger, Percy and Rebecca Deift,

Shuky Ehrenberg, Oded Green, Chaim Hanoka, Alon and Lisa Kama, Amit Shah, Cigal Shaham-

Wilensky, James Teiser, Elana Wenocur, and Dovi Wilensky.

While it is not possible to name all those who assisted me in these past few years, I would also

like to thank Itai Arieli, Bret T. Boyce, Rick Brooks, Bruce Bueno de Mesquita, Lidia Ceriani,

Tiberiu Dragu, Paul Edelman, Timothy Feddersen, Ben Golub, Catherine Hafer, Henry Hansman,

Leo Katz, Lewis Kornhauser, Ehud Lehrer, Jacob Leshno, Daniel Polsby, Robert Popper, Remzi

Sanver, Alan Schwartz, Alastair Smith, Henry Smith, Yves Sprumont, Kateryna Sydorova, William

Thomson, and Peyton Young.

Last, but certainly not least, I would like to thank my family for their support, encouragement,

and guidance while in graduate school. I would like to thank my parents, to whom this dissertation

is dedicated, my brothers, Stephen and Marc, my uncle and aunt, Ron and Rochelle, and a close

family friend, Michael Stecker.



vi

Abstract

This thesis studies three legal problems through the lens of economic theory.

In the first chapter, I study a model of group identification in which individuals’ opinions as to

the membership of a group are aggregated to form a list of group members. Potential aggregation

rules are studied through the axiomatic approach. I introduce two axioms, meet separability and

join separability, each of which requires the list of members generated by the aggregation rule to be

independent of whether the question of membership in a group is separated into questions of mem-

bership in two other groups. I use these axioms to characterize a class of one-vote rules, in which

one opinion determines whether an individual is considered to be a member of a group. I then show

that the only anonymous one-vote rule is self-identification, in which each individual determines for

himself whether he is a member of the group.

The second chapter introduces a path-based measure of convexity to be used in assessing the

compactness of legislative districts. Our measure is the probability that a district will contain the

shortest path between a randomly selected pair of its points. The measure is defined relative to

exogenous political boundaries and population distributions.

In the third chapter, I introduce a new model of community standards relevant to the judicial

determination of obscenity. In the model, standards are defined as subjective judgments restricted

only by a simple reasonableness condition. A set of individual standards is then methodically

aggregated to form the community standard. I define several axioms which reflect legal concerns

expressed by the judiciary. The axioms require that the community standard (a) preserve unanimous

agreements about the entire standard, (b) become more permissive when all individuals become more

permissive, and not discriminate, ex ante, (c) between individuals and (d) between works. I then

show that the only method which satisfies these properties is unanimity rule, in which a work is

considered obscene if and only if all members of the community consider it to be obscene. I also

consider several variants of the model and provide characterizations in these related models.
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Chapter 1

Introduction

1.1 Introduction

This thesis consists of three chapters which apply social science methods to legal problems. Two of

these chapters use axiomatic models to study legal institutions, following the work of Spitzer (1979)

who pioneered the use of axiomatic methods in legal analysis. One of these chapters is an axiomatic

study of classification rules. These rules are relevant in several contexts including (a) the allocation

of legal rights and (b) the collection of data for social science research purposes. The other axiomatic

chapter presents a formal model of “community standards” used in obscenity law, and characterizes

the “unanimity rule” as the only aggregation method to satisfy four basic axioms. The “unanimity

rule” closely resembles the unanimity rule used in juries in much of the United States. The remaining

chapter introduces a new measure of compactness of legislative districts. This measure is designed

to be used both by researchers and practitioners in the area of voting rights law.

1.1.1 Group Identification

Classification problems abound in law, policy, social science, and philosophy. Federal agencies classify

individuals for statistical purposes. Legal systems allocate rights and restrictions to groups, whether

these be particular minority groups or the group of licensed drivers. Philosophers try to understand

whether groups exist. Sociologists analyze social groups, anthropologists examine cultures, political

scientists study collective action, and historians use groups to explain past human behavior. In

economics there has been a significant increase in the use of group membership as a variable in

formal modeling following the recent work of Akerlof and Kranton (2000).

Government policymakers and social science researchers share a common interest in finding

objective standards by which individuals can be classified into groups. In some cases this is a

simple problem. Two yardsticks are sufficient to determine whether an individual is in the group

of people not shorter than six feet. In other cases, however, traditional tools of measurement are
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not practical. For example, the U.S. Government maintains that racial and ethnic groups are not

defined by biology or genetics, but rather are a social phenomenon. In these cases, the potential

data available to policymakers and researchers is in the form of subjective beliefs held by members

of the society. The policymakers and researchers need a method to objectively classify individuals

on the basis of these subjective beliefs.

The relevant model of group identification was first introduced by Kasher and Rubinstein (1997).

In this model, individuals have opinions about the composition of groups. These opinions are then

aggregated according to some rule to form a list of group members. Theirs and subsequent papers

study aggregation rules through an axiomatic approach: various properties are proposed and rules

satisfying these properties are characterized.

The most prominent rule studied in the literature is self-identification, in which individuals

are classified into groups on the basis of their opinions about themselves. Self-identification is an

important rule because it is used heavily by the government and by social science researchers. The

literature contains two basic characterizations of self-identification.

Kasher and Rubinstein (1997) first characterized self-identification as the only rule satisfying sym-

metry, a weak independence condition, and the “liberal principle,” which required that individuals

can force certain outcomes.1 Later, Samet and Schmeidler (2003) introduced a separate charac-

terization of self-identification as the only rule satisfying monotonicity, non-degeneracy, a stronger

independence condition, and another property labeled self-determination. Other rules studied in the

literature include consent rules (Samet and Schmeidler, 2003) and recursive rules. (Dimitrov et al.,

2007; Houy, 2006)

I introduce a new characterization of self-identification using a property I call separability, which

requires that social rules preserve certain relationships between groups. To study this concept, I

extend the Kasher-Rubinstein model by introducing multiple groups with predefined relationships.

For example, Federal statistical policy envisions many racial groups, including Asians, Whites,

people who are members of either group (“Asian or White”), and people who are members of both

(“Asian and White”). The set of groups also includes the non-members of each group (e.g., “Non-

Whites” and “Non-Asians”). Opinions must preserve these relationships. A person who believes that

his neighbor is “Asian and White” must also believe that his neighbor is Asian. In this extension,

aggregation rules are allowed to work differently for different groups. A rule need not aggregate

opinions about Asians in the same way that it aggregates opinions about Whites. However, a

consequence of the axioms studied in the chapter is that a rule must be independent of the group

under consideration.

To study separability in this context, I introduce two axioms. Meet separability requires social

rules to yield the same list of “Asian and White” people regardless of which of two possible approaches
1This follows a refinement of the Kasher-Rubinstein characterization by Sung and Dimitrov (2005).
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is used. The first approach is to aggregate opinions about “Asian and White” people. The second

approach is to generate two lists by aggregating opinions about Asians and about Whites separately,

and then to take the intersection of the two lists.

Join separability is similar, except that it is defined with respect to disjunction instead of con-

junction. It requires social rules to yield the same list of “Asian or White” people regardless of

which of two possible approaches is used. The first approach is to aggregate opinions about “Asian

or White” people. The second approach is to generate two lists by aggregating opinions about Asians

and about Whites separately, and then to take the union of the two lists.

In addition to the separability axioms, I require non-degeneracy. This axiom requires that the

opinions be relevant in determining whether each person is a member of a group. Using these three

axioms I characterize a family of rules called one-vote rules. These rules associate with each person

a single opinion that determines whether that person is a member of the group.

An anonymity axiom requires that the qualification of individuals does not depend on their

names. Anonymity is appealing because government policymakers cannot arbitrarily favor some

people above others. Non-governmental researchers gathering data may not be bound by this norma-

tive requirement, but may lack an external scientific basis to draw distinctions between individuals.

I show that self-identification is the only anonymous one-vote rule.

1.1.2 Measuring Bizarreness (joint with Chris Chambers)

Hundreds of years ago, legislators discovered that the ultimate composition of a legislature is not

independent of the means through which district boundaries are drawn. Hoping to stave off un-

employment, legislators learned to master the art of gerrymandering : carefully drawing district

boundaries to increase their electoral chances and political power. Like certain forms of painting

and ballet, this art became more and more noticeable by the odd shapes it produced.2

Past attempts on the part of political reformers to fight gerrymandering have led to the introduc-

tion of vague legal restrictions requiring districts to be “compact and contiguous.”3 The vagueness

of these legal terms has led to the introduction of several methods to measure district “compact-

ness.”4 However, none of these methods is widely accepted, in part because of problems identified

by Young (1988) and Altman Altman (1998). We argue that these laws were introduced with the

aim of eliminating bizarrely shaped districts. To this end we introduce a measure of “bizarreness.”

The primary problem with gerrymandering is that elections become less competitive when legis-
2In 1812 a district was said to resemble a salamander; one hundred eighty years later, another was likened to a

“Rorschach ink blot test.” Shaw v. Reno, 509 U.S. at 633.
3Thirty-five states require congressional or legislative districting plans to be “compact”, forty-five require “conti-

guity”, and only Arkansas requires neither. (NCSL, 2000) There may also be federal constitutional implications. See
Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 959 (1996).

4“Contiguity” is generally understood to require that it be possible to move between any two places within the
district without leaving the district. See for example Black’s Law Dictionary which defines a “contiguous” as touching
along a surface or a point. (Garner, 2004)
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lators draw district lines to strengthen their reelection chances. The “bizarre” shapes which result

are merely a side-effect of this process.5 Reformers have focused on compactness because, while there

is no consensus as to how district boundaries should be drawn, bizarre shapes are clearly identifiable

as a symptom of gerrymandering.

Part of the difficulty of defining a measure of compactness is that there are many conflicting

understandings of the concept. According to one view the compactness standard exists to eliminate

elongated districts. In this sense a square is more compact than a rectangle, and a circle may be

more compact than a square. According to another view compactness exists to eliminate bizarrely

shaped districts.6 According to this view a rectangle-shaped district would be better than a district

shaped like a Rorschach blot.7

We follow the latter approach. While it may be preferable to avoid elongated districts, the classic

sign of a heavily-gerrymandered district is bizarre shape.8 To the extent that elongation is a concern,

it should be studied with a separate measure. These are two separate issues, and there is no obvious

way to weigh tradeoffs between bizarreness and elongation.

The basic principle of convexity requires a district to contain the shortest path between every

pair of its’ points. Circles, squares, and triangles are examples of convex shapes, while hooks, stars,

and hourglasses are not. The most striking feature of bizarrely shaped districts is that they are

extremely non-convex. We introduce a measure of convexity with which to assess the bizarreness of

the district.

The path-based measure we introduce is the probability that a district will contain the shortest

path between a randomly selected pair of its’ points.9 This measure will always return a number

between zero and one, with one being perfectly convex. To understand how our measure works,

consider a district containing two equally sized towns connected by a very narrow path, such as

a road. Our method would assign this district a measure of approximately one-half. A district

containing n towns connected by narrow paths would be assigned a measure of approximately 1/n.10

Ideally, a measure of compactness should consider the distribution of the population in the

district. Population can be incorporated by using the probability that a district will contain the
5However, the U.S. Supreme Court has held that “bizarre shape and noncompactness” of districts is not only

evidence of unconstitutional manipulation of district boundaries but also “part of the constitutional problem.” See
Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 952, 959 (1996).

6Writing for the majority in Bush v. Vera, Justice O’Connor referred to “bizarre shape and noncompactness” in
a manner which suggests that the two are synonymous, or at least very closely related. If so then a compact district
is one without a bizarre shape, and a measure of compactness is a measure of bizarreness.

7The majority opinion in Shaw v. Reno noted that one district had been compared to a “Rorschach ink blot test”
by a lower court and a “bug splattered on a windshield” in a major newspaper. 509 U.S. at 633.

8Note that the term gerrymander was coined in 1812 by a political cartoonist who sought to link then-Massachusetts
Governor Elbridge Gerry to a salamander-shaped legislative district. Had the controversial district merely resembled
a rectangle, the process of district manipulation would possibly be referred to as a gerrytangle.

9A version of this measure was independently discovered by Lehrer (2007).
10Alternatively one might use the reciprocal, where the measure represents the equivalent number of disparate

communities strung together to form the district. The reciprocal will always be a number greater or equal to one,
where one is perfectly convex. A district containing n towns connected by narrow paths would be assigned a measure
of approximately n.
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shortest path between a randomly selected pair of its’ residents. In practice our information will be

more limited — we will not know the exact location of every resident, but only the populations of

individual census blocks. We can solve this problem by weighting points by population density.

One potential problem is that some districts may be oddly shaped simply because the states in

which they are contained are non-convex. We solve this problem by measuring the probability that

a district will contain the shortest path in the state between a randomly selected pair of its’ points.

Districts are not penalized for bizarre shapes which are a consequence of the shape of the state.

Our measure considers whether the shortest path in a district exceeds the shortest path in the

state. Alternatively, one might wish to consider the extent to which the former exceeds the latter. We

introduce a parametric family of measures which vary according to the degree that they “penalize”

deviations from convexity. At one extreme is the measure we have described; at the other is the

degenerate measure, which gives all districts a measure of one regardless of their shape.

The chapter also contains computations of our measure for fifteen districts in three states.

1.1.3 A Model of Community Standards

In 1957, the United States Supreme Court ruled that obscenity is not protected by the U.S. Con-

stitution and that “contemporary community standards” are to be used in determining whether

particular works are obscene.11 The Supreme Court has never explained what “community stan-

dards” are or how, if at all, they are related to the standards of the individuals who comprise the

community.

I introduce a new model in which community standards are formed by aggregating a set of

individual standards. In the model, standards are defined as judgments — categorizations of possible

works as either “obscene” or “not obscene.” Every possible judgment is allowed provided it satisfies

the following restriction: neither individuals nor the community may consider one-hundred percent

of the works to be obscene. I define several basic normative properties of aggregation methods which

reflect legal concerns expressed by the judiciary. I then show that the only method which satisfies

these properties is unanimity rule, in which a work is considered obscene if and only if all members

of the community consider it to be obscene.

Unanimity rule was described as the law of England Lord Patrick Devlin in his classic work, The

Enforcement of Morals (Devlin, 1965). Lord Devlin argued that it was proper for governments to

prohibit behavior felt to be immoral by the community. He suggested that, in some sense, unanimous

agreement within a society is necessary to justify regulation of immorality: “the moral judgment

of society must be something about which any twelve men or women drawn at random might after

discussion be expected to be unanimous.”

To ascertain the moral standards of the community, Lord Devlin’s understanding of the Law of
11Roth v. United States, 354 U.S. 476 (1957), upheld in Miller v. California 413 U.S. 15 (1973).



6

England can be described in the following way. First, the community consists of all “right-minded”

or “reasonable” persons within the society.12 Next, an act is deemed immoral if and only if every

reasonable person believes the act to be immoral. “Immorality then, for the purpose of the law, is

what every right-minded person is presumed to consider to be immoral.” (Devlin, 1965).13

The basic model can be described as follows. First, there is a community, which can be any group

of individuals. The Supreme Court has required that the community be defined in geographic terms

and contain all adults in that community, including the young, the old, the religious, the irreligious,

the sensitive, and the insensitive.14 Lord Devlin (1965) seems to have argued that the community

consists only of reasonable persons. Others might propose to restrict the definition to clerics, to

parents, or to some other community of interest. The model is general enough to include all of these

as special cases.

Next, there is an infinite set of all possible works. We might loosely understand this as the set

of possible artworks but it might also include literary works, scientific publications, and other forms

of human expression. The space of works is modeled as a non-atomic measure space. The decision

to use a non-atomic measure space rather than a discrete space is made to simplify the exposition.

Parallel conclusions would be reached if the space of works were modeled as discrete and appropriate

modifications were made to the axioms.

Individuals from the community have standards as to which works in the set are obscene. An

individual standard is simply a division of the set into two groups: the obscene and the non-obscene

(or permissible). Individual standards are assumed to be well-informed and made after deliberation

and reflection. There is a single restriction on allowable standards: the set of works judged to be

obscene must be of less than full measure. Reasonable individuals should all believe that some

works, even those lacking serious literary, artistic, political, and scientific value, are non-obscene.15

I do not require individuals to believe that some works must be obscene — there is no reason why

individuals must be offended by anything.

These individual standards are then aggregated to form a community standard. The community

standard is subject to the same restriction as the individual standards: the set of works judged to

be obscene must be of less than full measure. I place no other restrictions on the class of allowable

standards. Individual standards and community standards are assumed to be subjective.

The model introduced in this chapter is general and can be applied to problems other than the

question of which works are legally obscene. I will describe three different types of legal standards
12Whether an individual is “right-minded” or “reasonable” does not seem to be directly connected to the specific

content of that individual’s beliefs; otherwise Devlin’s rule would be circular and ill-defined.
13Whether Devlin’s rule is certainly practicable is a debatable proposition. He certainly felt that the rule would

lead to convictions in 1958, but whether that should remain the case in the more tolerant environment of the twenty-
first century is unclear. However, the mere possibility that some communities would find little to prohibit does not
invalidate Devlin’s rule. He argued that a community should be able to prohibit that which it found immoral, and
not that every community must find some works to be immoral.

14See Roth v. United States, 354 U.S. 476 (1957) and Pinkus v. United States, 436 U.S. 293 (1978).
15Individuals who do not satisfy this restriction would be found to be unreasonable as a matter of law.
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to which the model can be applied.

First, standards of offensiveness are used to determine whether speech, or other forms of expres-

sion, may be prohibited on the grounds that it is offensive. Obscenity doctrine provides the clearest

example of a prohibition on offensive expression; other examples include the prohibitions on the

broadcast of indecent and profane speech regulated by the Federal Communications Commission.

Second, standards of proof are used to determine whether defendants are guilty (or liable) in

criminal (and civil) cases. Commonly used standards of proof include (a) the proof beyond a

reasonable doubt standard, (b) the clear and convincing standard, and (c) the preponderance of the

evidence standard. Here, instead of a set of works, we have a set of cases as in Kornhauser (1992a,b)

and Lax (2007), and individuals choose the subset of cases that lead to conviction. The results of

the chapter support the use of unanimity rule in determining which works are obscene.

Third, standards of behavior are used to evaluate behavior in civil and criminal trials. Examples

of standards of behavior include the reasonable person standard studied by Rubinstein (1983), the

business judgment rule, and fiduciary duties. To model this standard, we replace the set of works

with a set of actions. Because the range of allowable behavior depends on the circumstances in

which an actor finds herself, individuals have multiple standards, one for each set of circumstances.

I show in the chapter that the main result does not change in the case of two (or more) standards.

Even if we allow for interdependent aggregation, unanimity rule is the unique aggregation rule that

satisfies the axioms.
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Chapter 2

Group Identification

This chapter has been previously published in Miller (2008).

2.1 Introduction

In 1997, the White House decided that, for purposes of Federal data collection, you are African-

American if you claim you are.1 In addition, the White House decided that you can be both

African-American and White. These policy changes were first implemented in the 2000 decennial

census.

The policymakers charged with revising the policy were guided by several principles. Two of these

principles stand out. First, they rejected the view that race can be objectively defined. Second,

they desired that results be comparable across Federal agencies with different needs. They chose a

standard set of racial categories and allowed agencies to use additional categories “provided they

can be aggregated to” the standard ones. Other principles included minimizing cost, respecting

individual dignity, and the understanding that “the standards are not intended to be used to establish

eligibility for participation in any federal program.”

Increases in the “number of persons born who are of mixed race or ethnicity” led to the relatively

uncontroversial decision to allow individuals to be counted as members of multiple racial groups.

The decision to use self-identification was more controversial. Some Federal agencies were concerned

that changes in the method of data collection could make it difficult to study historical trends.

However, other methods were also known to have problems in this regard and could lead to an

individual being identified differently among data sets.

I argue that the decision to switch to self-identification was appropriate in light of the policymak-

ers’ concerns. To study this question I set forth a model of group identification in which individuals

are classified into groups on the basis of opinions. I introduce several properties which reflect the
1Statistical Policy Directive No. 15, Race and Ethnic Standards for Federal Statistics and Administrative Report-

ing, 62 FR 58782, October 30, 1997.
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policymakers’ concerns and show that self-identification is the only data collection method that

satisfies these properties.

I follow a model of group identification first introduced by Kasher and Rubinstein (1997). Indi-

viduals have opinions as to which members of society are members of a particular group. A social

rule is a systematic method for aggregating opinions of agents. Opinions and outcomes are binary.

Each individual is either believed (or determined) to be a member of the group, or not. Social rules

are studied through an axiomatic approach: various properties are proposed and rules satisfying

these properties are characterized.

I extend the Kasher-Rubinstein model by introducing multiple groups with predefined relation-

ships. Federal statistical policy envisions many racial groups, including Asians, Whites, people who

are members of either group (“Asian or White”), and people who are members of both (“Asian and

White”). The set of groups also includes the non-members of each group (e.g. “Non-Whites” and

“Non-Asians”).

Opinions must preserve these relationships. A person who believes that his neighbor is “Asian

and White” must also believe that his neighbor is Asian. A social rule takes the group label as an

argument, so that it is allowed to work differently for different groups. It need not aggregate opinions

about Asians in the same way that it aggregates opinions about Whites. However, a consequence of

the axioms described below is that a rule must be independent of the group under consideration.

The focus of this chapter is to understand the implications of a property called separability, which

requires that social rules preserve certain relationships between groups. I introduce two axioms which

implement different aspects of this concept.

Meet separability requires social rules to yield the same list of “Asian and White” people regard-

less of which of two possible approaches is used. The first approach is to aggregate opinions about

“Asian and White” people. The second approach is to generate two lists by aggregating opinions

about Asians and about Whites separately, and then to take the intersection of the two lists.

Join separability is a similar, except that it is defined with respect to disjunction instead of

conjunction. It requires social rules to yield the same list of “Asian or White” people regardless of

which of two possible approaches is used. The first approach is to aggregate opinions about “Asian

or White” people. The second approach is to generate two lists by aggregating opinions about Asians

and about Whites separately, and then to take the union of the two lists.

In addition to the separability axioms, I require non-degeneracy. This axiom requires that the

opinions be relevant in determining whether each person is a member of a group. There are cases

when this axiom is not appropriate. To find the group of people whose height exceeds six feet, we

do not need opinions. Two yardsticks are sufficient. In the absence of objective standards, opinions

are needed to classify people into groups.

Using these three axioms I characterize a family of rules called one-vote rules. These rules asso-



10

ciate with each person a single opinion that determines whether that person is qualified (determined

to be a member of the group).

An anonymity axiom requires that the qualification of individuals does not depend on their

names. Anonymity is appealing because government policymakers cannot arbitrarily favor some

people above others. Non-governmental researchers gathering data may not be bound by this norma-

tive requirement, but may lack an external scientific basis to draw distinctions between individuals.

I show that self-identification is the only anonymous one-vote rule.

The problem of group identification extends beyond the sphere of Federal agencies trying to

classify individuals for statistical purposes. Legal systems allocate rights and restrictions to groups,

whether these be particular minority groups or the group of licensed drivers. Philosophers try

to understand whether groups exist. Sociologists analyze social groups, anthropologists examine

cultures, political scientists study collective action,2 and historians use groups to explain past human

behavior. In economics there has been a significant increase in the use of group membership as a

variable in formal modeling following the recent work of Akerlof and Kranton (2000).

2.1.1 Related Literature

The model of group identification was first introduced by Kasher and Rubinstein (1997). Their

paper included a characterization of self-identification as the only rule satisfying symmetry, a weak

independence condition, and the “liberal principle,” which required that individuals can force cer-

tain outcomes.3 Much of the notation in this chapter was introduced by Samet and Schmeidler

(2003), who studied a family of consent rules characterized by anonymity, monotonicity, and a

strong independence condition. They also characterize self-identification as the only rule satisfying

monotonicity, non-degeneracy, the stronger independence condition, and another property labeled

self-determination.

Nearly every paper which considers the Kasher-Rubinstein model studies social rules which satisfy

an independence axiom.4 The stronger version of this axiom, found in Kasher and Rubinstein

(1997), Samet and Schmeidler (2003), Ju (2005), and Çengelci and Sanver (2006), requires that

whether a particular individual is determined to be a member of a group is independent of the

opinions regarding all of the other individuals. A weaker version of this axiom, found in Kasher and

Rubinstein (1997), Sung and Dimitrov (2005), and Dimitrov et al. (2007),5 allows an individual’s

status to be affected by opinions about other individuals if some other individual’s status is also

affected. This chapter departs completely from the requirement of independence.
2See Olson (1971).
3This follows a refinement of the Kasher-Rubinstein characterization by Sung and Dimitrov (2005).
4An exception is Houy (2006) which classifies individuals as members of a group if they are “indirectly designated

by all the individuals in the society.”
5Using the weaker independence condition, Dimitrov et al. (2007) characterize a recursive procedure for determining

group membership.
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The Kasher-Rubinstein framework is applicable in determining which individuals meet a partic-

ular standard, such as the set of students eligible for merit scholarships. A related but conceptually

distinct problem involves ranking individuals according to a standard. For example, a school might

wish to create a ranking of students. The latter problem has been studied axiomatically by Palacios-

Huerta and Volij (2004) in the context of developing a cardinal ranking of scientific publications.

2.2 The Model

2.2.1 The Model and the Notation

I extend the model introduced by Kasher and Rubinstein (1997) and use the notation introduced

by Samet and Schmeidler (2003). There is a set N ≡ {1, ..., n} of individuals, n ≥ 3.6 There is a

set of groups, G , that forms a Boolean algebra under conjunction, disjunction, and negation. Each

element a ∈ G describes membership in a group. For example, if a, w ∈ G are the groups “Asian”

and “White,” respectively, then G also contains the groups a∧w (“Asian and White”), a∨w (“Asian

or White”) and ā (“Non-Asian”). The collection G also contains a minimal group 0 (“no one”) and

a maximal group 1 (“everyone”). I denote by G ≡ G \ {0, 1} this set minus these minimal and

maximal groups.

A categorical view about a group is an N -vector, the j-th component of which is 1 if individual

j is viewed as a member, and 0 otherwise. The set of views is denoted by V ≡ {0, 1}N . A profile is

a vector of views P = (P1, ..., Pn) ∈ VN where Pi represents individual i’s view. I write Pij to denote

individual i’s opinion about individual j. A qualification problem is a pair (P, a) ∈ VN × G. A

social rule is a function f : VN ×G → V which associates each qualification problem with a social

opinion f(P, a) ≡ (f1(P, a), ..., fn(P, a)).

As usual, for a set of the form {0, 1}I , I write x ≥ y if xi ≥ yi for all i ∈ I, x > y if x ≥ y and

x )= y, and (x̄i) = (1−xi). I define the meet (∧) as the coordinatewise minimum, so that (x∧y)i =

min{xi, yi}, and the join (∨) as the coordinatewise maximum, so that (x∨y)i = max{xi, yi}. Lastly,

I denote 0 and 1 as the elements of the set composed entirely of zeros and ones, respectively.

For any two qualification problems (P, a) and (Q, b), I define (P, a) ∧ (Q, b) ≡ (P ∧ Q, a ∧ b),

(P, a)∨ (Q, b) ≡ (P ∨Q, a∨ b), and (P, a) ≡ (P̄ , ā). A direct implication of this definition is that the

opinions with respect to groups a ∧ ā = 0 and a ∨ ā = 1 are represented by (P, a) ∧ (P, a) = (0, 0)

and (P, a) ∨ (P, a) = (1, 1). Everyone believes that no one is a member of the group “no one,” and

that everyone is a member of the group “everyone.” I define f(0, 0) ≡ 0 and f(1, 1) ≡ 1.

A set of qualification problems is consistent if, for any two qualification problems (P, a) and

(Q, b) in the set, the following three properties hold.
6With the exception of Theorem 2.2.6, all results would hold if I allowed the case where n=2.
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1. When a and b encompass the entire set (e.g., “Asian or White” and “Non-Asian”), then

everyone should believe that everyone is a member of a or b.

• If a ∨ b = 1, then (P, a) ∨ (Q, b) = (1, 1).

2. When a and b are mutually exclusive (e.g., “Asian and White” and “Non-White”), then ev-

eryone should believe that no one is a member of both.

• If a ∧ b = 0, then (P, a) ∧ (Q, b) = (0, 0).

3. When a includes b (e.g., “White” includes “Asian and White”), then everyone should believe

that members of b are also members of a.

• If a ∨ b = a, then (P, a) ∨ (Q, b) = (P, a).

I denote by C the set of consistent two-element sets of qualification problems.

2.2.2 The Axioms

Let a and w be the groups of Asians and Whites, respectively, and let (A, a) and (W, w) describe

the opinions about these groups. Then a∧w is the group of “Asian and White” people and (A, a)∧

(W, w) ≡ (A ∧W, a ∧ w) describes the opinions about that group.

There are two ways to generate a list of “Asian and White” people. The single ballot approach

will directly generate a list of “Asian and White” people: f((A, a)∧(W, w)). The two ballot approach

will generate two lists; one of Asians, f(A, a), and one of Whites, f(W, w). One can then generate

a list of “Asian and White” people by taking the names common to both lists. This is the meet of

the two lists: f(A, a) ∧ f(W, w). The first axiom, meet separability, requires that these lists be the

same.

Meet separability: For every consistent set of qualification problems {(P, a), (Q, b)} ∈ C , f((P, a)∧

(Q, b)) = f(P, a) ∧ f(Q, b).

Similarly, a ∨ w is the group of “Asian or White” people and (A, a) ∨ (W, w) ≡ (A ∨W, a ∨ w)

describes the opinions about that group.

There are two ways to generate a list of “Asian or White” people. The single ballot approach

will directly generate a list of “Asian or White” people: f((A, a)∨ (W, w)). The two ballot approach

will generate two lists; one of Asians, f(A, a), and one of Whites, f(W, w). One can then generate

a list of “Asian or White” people by taking the names which appear on either list. This is the join

of the two lists: f(A, a) ∨ f(W, w). The second axiom, join separability, requires that these lists be

the same.

Join separability: For every consistent set of qualification problems {(P, a), (Q, b)} ∈ C , f((P, a)∨

(Q, b)) = f(P, a) ∨ f(Q, b).
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The third axiom is adapted from Samet and Schmeidler (2003). This axiom excludes constant

rules — rules for which there exists an individual who is, or is not, a member of the group regardless

of which names are on the ballots.

Non-degeneracy: For every individual j and every group a ∈ G there exist profiles P, P ′ such that

fj(P, a) = 1 and fj(P ′, a) = 0.

Each of the separability axioms implies monotonicity, which requires that no names be removed

from the list of qualified persons as additional names are added to the ballots.

Monotonicity: For every group a ∈ G, P ≥ P ′ implies that f(P, a) ≥ f(P ′, a).

The proof of the following lemma is straightforward and is left for readers.

Lemma 2.2.1 If a social rule f satisfies either of the meet separability or join separability axioms

then it satisfies monotonicity.

Social rules satisfy group independence if they use the same method to aggregate opinions about

every group.

Group independence: For all groups a, b ∈ G and every profile P , f(P, a) = f(P, b).

None of these axioms directly requires group independence. One might use one method to

aggregate opinions about Asians, a different method to aggregate opinions about Whites, and a

third method to aggregate opinions about “Asians and Whites”. However, rules which satisfy non-

degeneracy and either separability axiom necessarily satisfy group independence, as I show in the

following proposition.7 Every rule discussed in the chapter satisfies this property. To simplify the

notation I will sometimes drop the group label and write “f(P )” in place of “f(P, a) for every a ∈ G”.

Proposition 2.2.2 If a social rule f satisfies the non-degeneracy axiom and either of the meet

separability or join separability axioms then it satisfies group independence.

Proof.

Non-degeneracy and monotonicity directly imply that f(1, a) = 1 for all a ∈ G.

Let the pair {(P, a), (1, b)} ∈ C such that (∗) a )= a ∧ b )= b. By meet separability, f(P, a) ∧

f(1, b) = f(P ∧1, a∧b) and thus f(P, a) = f(P, a∧b). From (∗) it follows that the pair ((1, a), (P, b))

is consistent, and thus f(P, b) = f(P, a ∧ b). Therefore f(P, a) = f(P, b). For every a, b ∈ G such

that (∗) does not hold there exists an element c ∈ G such that a )= a ∧ c )= c )= c ∧ b )= b and thus

f(P, a) = f(P, b) for all a, b ∈ G.

The second half of the proof is the dual of the first and can be proved by replacing “meet” (∧)

with “join” (∨) and 1 with 0.
7To understand why non-degeneracy is necessary, consider any rule where f(P, a) = f(P, a ∧ b) and f(P, b) = 1.

This rule satisfies meet separability but neither non-degeneracy nor group independence.
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2.2.3 The Main Characterizations

I now define three families of rules which are characterized by combinations of axioms from the

preceding subsection. In each family rules associate with each individual a non-empty set of relevant

opinions which uniquely determine whether the individual is qualified. The families differ by the

degree of cohesiveness that the relevant opinions must demonstrate for the individual to be qualified,

as well as by the size of the relevant set. The relevant opinions are neither required to be about nor

otherwise related to the individual with whom the set is associated.

2.2.3.1 Agreement Rules

The first such family of rules are agreement rules. An individual is qualified as a member of a

group if every opinion in the relevant set is in favor of qualification. These rules can equivalently

be defined by associating with each individual a minimal profile P in which Pij = 1 if and only

if i’s opinion about j is relevant.8 This family of rules is characterized by meet separability and

non-degeneracy.

Agreement rules: For every individual j there exists a profile P j− > 0 such that, for all groups

a ∈ G, fj(P, a) = 1 if and only if P ≥ P j−.

These rules are characterized in the following theorem:

Theorem 2.2.3 A social rule f satisfies the meet separability and non-degeneracy axioms if and

only if it is an agreement rule. Moreover, both axioms are independent.

Proof.

By Proposition 2.2.2 rules satisfying meet separability and non-degeneracy are group indepen-

dent. Let P,Q ∈ VN and j ∈ N . Define Pj ≡ {P ∈ VN : fj(P ) = 1}. We know that Pj )= ∅ by the

non-degeneracy axiom.

Define P j− ≡ ∧P∈Pj P . For all profiles P ′, P ′′ ∈ Pj , fj(P ′) = fj(P ′′) = 1. By the meet

separability axiom, fj(P ′ ∧ P ′′) = 1. It follows by an induction argument that fj(∧P∈Pj P ) =

fj(P j−) = 1. Therefore, P j− ∈ Pj .

Clearly, for all profiles P ∈ Pj , P ≥ ∧P∈Pj P = P j−. Furthermore, P j− )= 0, otherwise fj(P ) = 1

for all profiles P , which would violate the non-degeneracy axiom.

Lastly, I show that for all profiles P such that P ≥ P j−, P ∈ Pj . Let P ≥ P j−. By monotonicity,

fj(P ) ≥ fj(P j−). Because fj(P j−) = 1 it follows that P ∈ Pj . Hence P ∈ Pj if and only if P ≥ P j−.

It follows that, for all a ∈ G, fj(P, a) = 1 if and only if P ≥ P j−.

The independence of the axioms is proved in the appendix.
8P is the minimal profile which leads to qualification. Note that the minimal profile cannot be 0; otherwise the

set of relevant opinions would be empty.
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2.2.3.2 Nomination Rules

The second family of rules are nomination rules. An individual is qualified as a member of a group

if any opinion in the relevant set is in favor of qualification. These rules can equivalently be defined

by associating with each individual a maximal profile P in which Pij = 0 if and only if i’s opinion

about j is relevant.9 This family of rules is characterized by join separability and non-degeneracy.

Nomination rules: For every individual j there exists a profile P j+ < 1 such that, for all groups

a ∈ G, fj(P, a) = 0 if and only if P ≤ P j+.

These rules are characterized in the following theorem:

Theorem 2.2.4 A social rule f satisfies the join separability and non-degeneracy axioms if and

only if it is a nomination rule. Moreover, both axioms are independent.

Proof. This is the dual of Theorem 2.2.3 and can be proved by exchanging 0 and 1 and replacing

“meet” (∧) with “join” (∨), ≥ with ≤, and P j− with P j+.

The independence of the axioms is proved in the appendix.

2.2.3.3 One-Vote Rules

The third family of rules are one-vote rules, for which the relevant set associated with each individ-

ual consists of a single opinion. The individual is qualified if that opinion is in favor of qualification.

One-vote rules are characterized by meet separability, join separability, and non-degeneracy.

One-vote rules: For every individual j there exists (i, k) in N ×N such that, for all groups a ∈ G,

fj(P, a) = Pik.

From this follows the main result:

Theorem 2.2.5 A social rule f satisfies the meet separability, join separability, and non-degeneracy

axioms if and only if it is a one-vote rule. Moreover, all three axioms are independent.

Proof. That the one-vote rules satisfy the three axioms is trivial. I show that any social rule

that satisfies the three axioms is necessarily a one-vote rule. Let j ∈ N . Because f satisfies meet

separability and non-degeneracy it must be an agreement rule (by Theorem 2.2.3). Therefore, there

must exist a profile P j− > 0 such that fj(P ) = 1 if and only if P ≥ P j−. This implies that there

exists (i, k) in N × N such that P j−
ik = 1. It follows that if Pik = 0 then fj(P ) = 0 and therefore

Pik ≥ fj(P ).

Because f satisfies join separability and non-degeneracy it must be an agreement rule (by The-

orem 2.2.4). Therefore, there must exist a profile P j+ < 1 such that fj(P ) = 0 if and only if
9P is the maximal profile leading to disqualification. Note that the maximal profile cannot be 1; otherwise the set

of relevant opinions would be empty.
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P ≤ P j+. Let P ∗ ∈ VN such that all elements are 1 except that P ∗
ik = 0. We know that if P ∗

ik = 0

then fj(P ∗) = 0 and therefore P ∗ ≤ P j+. Because P j+ < 1 it follows that P ∗ = P j+ and thus

P j+
ik = 0. This implies that if Pik = 1 then fj(P ) = 1 and therefore fj(P ) ≥ Pik. It follows that

fj(P, a) = Pik for every group a ∈ G.

The independence of the axioms is proved in the appendix.

2.2.4 Other Results

2.2.4.1 Self-identification

Kasher and Rubinstein (1997) introduced self-identification, in which each person decides whether

to qualify herself.10

Self-identification: For every j ∈ N and for every a ∈ G, fj(P, a) = Pjj .

The principle of equality of persons restricts an aggregation rule from making arbitrary dis-

tinctions among members of the society.11 Samet and Schmeidler (2003) applied this principle

through an anonymity condition which requires that the list of the qualified individuals does not

depend on their names.12 Names are switched through a permutation π of N . Thus, for a given

permutation π, i is the new name of the individual formerly known as π(i). For a given profile

P ∈ VN , I let πP be the profile in which the names are switched. Then (πP )ij = Pπ(i)π(j). I denote

πf(P, a) ≡ (fπ(1)(P, a), fπ(2)(P, a), ..., fπ(n)(P, a)). The fourth axiom, anonymity, requires that if

individual i is qualified in profile πP , then individual π(i) is qualified in profile P .

Anonymity: For every permutation π of N and every group a ∈ G, f(πP, a) = πf(P, a).

Self-identification is the only one-vote rule which satisfies the anonymity axiom.13

Theorem 2.2.6 Self-identification is the only rule that satisfies the meet separability, join separa-

bility, non-degeneracy, and anonymity axioms. Moreover, all four axioms are independent.

Proof. That self-identification satisfies the four axioms is trivial. I show that any rule that satisfies

the four axioms must necessarily be self-identification. Let j ∈ N . Let f satisfy the meet separability,
10Self-identification is referred to as “the liberal rule” by Samet and Schmeidler and as the “strong liberal collective

identity function” by Kasher and Rubinstein.
11In axiomatic economic theory this principle dates back at least as far as May (1951). This principle can be

motivated either from a normative belief in equality such as that found in the writings of Locke and Jefferson, or from
a positive concern that a researcher lacks a scientific basis upon which to draw such distinctions. Both motivations
are relevant to government bureaucrats forbidden from arbitrarily preferring some people over others.

12Samet and Schmeidler call this condition symmetry. I have changed the name to minimize confusion with a
different axiom of the same name introduced by Kasher and Rubinstein.

13A different approach to the principle of equality can be found in the symmetry condition of Kasher and Rubinstein
(1997), which requires that if any two individuals are symmetric with respect to their views about others and others’
views toward them, then either both or neither are qualified. Self-identification is not the only one-vote rule which
satisfies the symmetry axiom; however, it is the only one-vote rule which satisfies symmetry and a stronger form of
non-degeneracy. For more explanation and a proof see Miller (2006).
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join separability, non-degeneracy, and anonymity axioms. By Theorem 2.2.5 f must be a one-

vote rule, and therefore there must be a pair of individuals i and k such that fj(P, b) = Pik.

Because the pair of individuals may differ for every individual j, I denote these individuals i(j) and

k(j). Therefore, fj(P ) = Pi(j)k(j). Let π be a permutation of N . Then, fj(πP ) = (πP )i(j)k(j) =

Pπ(i(j))π(k(j)), and fπ(j)(P ) = Pi(π(j))k(π(j)). By the anonymity axiom, it follows that Pπ(i(j))π(k(j)) =

Pi(π(j))k(π(j)), which implies that π(i(j)) = i(π(j)) and π(k(j)) = k(π(j)), which hold if and only if

i(j) = k(j) = j. Thus, for every individual j ∈ N and every issue a ∈ G, fj(P, a) = Pjj .

The independence of the axioms is proved in the appendix.

2.2.4.2 Negation

Individuals in the model vote consistently: if (P, a) describes the opinions about group a, then (P, a)

describes the opinions about the group ā. Then f(P, a) is the list of members of group ā and the

list of non-members of group a is given by f(P, a).

The fifth axiom, negation, requires that these two lists be the same.14

Negation: For all profiles P and all groups a ∈ G, f(P, a) = f(P, a).

The negation axiom has another interpretation: it requires that social rules classify each person

in the society as a member of a group or its complement but not both. The following proposition is

necessary and sufficient to show that Theorems 2.2.5 and 2.2.6 remain true if one of the separability

axioms is replaced by negation.

Proposition 2.2.7 If a social rule f satisfies two of the meet separability, join separability, and

negation axioms it satisfies the third.

The proof is straightforward and is left to readers.

2.3 Conclusion

I have extended the Kasher-Rubinstein model of group identification to allow social rules to aggre-

gate opinions about different groups in different manners. I have introduced a concept of group

separability and have shown that any non-degenerate rule satisfying both of the separability axioms

is necessarily a one-vote rule, in which for each individual there is exactly one opinion which de-

termines whether that person is qualified. The only anonymous one-vote rule is self-identification,
14Negation is related to the self-duality axiom introduced by Samet and Schmeidler. Both axioms require the

social rule to preserve complementation and both are motivated by the view that one should be able to learn who
is a member of a group by asking about the non-members of the group. Because of changes in the model, however,
the axioms have rather different implications. Unlike self-duality, negation does not require a social rule to treat
membership and non-membership in the same manner, nor does it require non-degeneracy.
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under which each person determines for herself whether she is qualified. How we interpret these

results depends on our understanding of the primitive.

The primary motivation set forth is to understand rules used to generate group data for research.

This describes both Federal policy regarding data collection and the creation of data sets by social

scientists. Here researchers decide that group identification should be a function of beliefs, either

because the group cannot be objectively defined, or because the researchers lack other means to

determine who is a member of a group. In this case it is important that seemingly trivial decisions

made (whether to use one survey or two to generate the relevant data) should not have an unknown

effect on the results of the research. Consequently, the results of this chapter recommend the use of

one-vote rules, especially when it is not clear how those later researchers will use the data. In cases

where the researchers lack a basis for preferring some persons over others, self-identification should

be used.

One-vote rules are also particularly nice because they require fewer opinions and therefore may

be cheaper to generate. If the data set contains information on a small subset of S individuals out of

a much larger society of N people, the one-vote rule requires the person creating the data set to seek

out S opinions out of a total of N2. Self-identification has other desirable properties. It is “liberal”

in the sense that each person chooses whether she is a member of a group. Federal policymakers

argued that it respects human dignity because it does “not tell an individual who he or she is, or

specify how an individual should classify himself or herself.”

Another possible understanding of the social rules studied in this chapter is as a voting mecha-

nism used to determine the composition of groups endowed with certain legal rights or obligations.

The anonymity axiom seems desirable when allocating rights in a democratic society; consequently

the separability axioms suggest the use of self-identification. However, it seems rather clear that

individuals may have an incentive to distort their beliefs when group membership leads to a direct

and tangible benefit or cost. Self-identification would not make much sense in this case. This tells

us that sensible aggregation rules used to allocate legal rights will violate the separability axioms.

An agenda setter may be able to influence the allocation of rights by dividing one question into two.

A third understanding is more philosophical. A popular view holds that a group is a social

construct and only exists as a function of the beliefs about its composition. In this sense a social

rule is part of the definition of a group. The separability axioms are very natural in this context

because a given set of beliefs will always lead to a unique list of group members. The results of the

chapter suggest that there are limits on the method through which the beliefs can be aggregated.

There cannot be groups defined by majority opinions, while there can be groups defined by self-

inclusion. An alternate view is that a group is a social construct but that it exists as a function of

beliefs other than the binary views considered in the model. It is impossible to evaluate this claim

without adding more structure to the model. The case where opinions take the form of a totally
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ordered set is discussed next.

2.3.1 Generalizations of the Characterization Theorems

A possible extension to the group identification model would be to weaken the assumption that

opinions about qualification are binary by replacing the domain of possible opinions from {0, 1} to

an arbitrary totally ordered set D containing minimal and maximal elements 0 and 1. Examples

previously examined in the literature include the “trichotomous domain” studied by Ju (2005) in

which D = {0, 1
2 , 1} (here 1

2 has the meaning “no opinion”), and the unit interval [0, 1] studied by

Ballester and Garcia-Lapresta (2005). In this case profiles are elements of DN×N . Social rules are

mappings f : DN×N × G → V. All of the axioms have natural analogues for this more general case.

If D is finite, then Theorems 2.2.3 and 2.2.4 remain unchanged, as the only assumption about D

used in the proof is that D is finite. If D is not finite then neither of these theorems hold, as proofs

rely on a finite induction argument. Proposition 2.2.2, however, is still applicable. In neither case

does Theorem 2.2.5 hold; however, the rules characterized by meet separability, join separability,

and non-degeneracy are very similar. As with one-vote rules, each individual is associated with

a single relevant opinion. The individual is qualified if that opinion exceeds a cutoff point and is

not qualified if the opinion is below that cutoff point. The rule additionally specifies whether the

individual is qualified if that opinion is exactly at the cutoff point. For a definition of these rules

and a proof see appendix B.

2.3.2 Weakening the Axioms

A potential criticism of the result stems from the formulation of the axioms. One might object in

that they govern relationships between irrelevant groups. For example, one might want a rule to

aggregate opinions about British, Americans, and British-Americans consistently but not care about

how the rule aggregates opinions about people who are either British or American. A weaker form

of these axioms would apply only to pairs of groups in a subset of G, where the subset is carefully

chosen so that the axioms only place restrictions on relationships between the relevant groups.

With respect to the relevant groups, the results of Proposition 2.2.2 and Theorems 2.2.3, 2.2.4,

and 2.2.5 would be entirely the same if the weakened forms of the axioms were used. The only

difference would be with respect to the irrelevant groups — these axioms would not apply to them

and therefore any non-degenerate rules would suffice.
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2.3.3 Separating Voters from Issues

This chapter has focused on the question of group identification, in which the binary opinions of

n persons on n issues are simultaneously aggregated.15 Alternatively, one might consider a more

general model involving the simultaneous aggregation of the binary opinions of n persons on m

issues, where n )= m. All of the results in sections 2.3 and 2.4.2 are applicable to the more general

case of simultaneous aggregation of binary opinions on multiple issues.

The special case where m = 1 corresponds a problem in the literature known as “judgment

aggregation”. In this case the set G corresponds to a set of logical propositions. For example, a ∈ G

and b ∈ G might represent two elements of a crime, while a ∧ b ∈ G might represent the crime

itself. A potentially desirable property is that it should not matter whether the court aggregates

judgments about to the elements (a and b) or about the crime (a ∧ b). As is clear from Theorem

2.2.3, only agreement rules satisfy this property.16 The first formal impossibility result in judgment

aggregation was proved by List and Pettit (2002).

The judgment aggregation problem can be extended to the case where m > 1. For example,

we might consider the case of two or more criminal co-defendants. The question of whether one

defendant committed the first element of the crime is potentially related to the question of whether

the other defendant committed that same element. The property discussed above implies that we

must use an agreement rule. In some cases these rules may be plausible. If two defendants are being

tried for conspiracy, for example, it might make sense to require that the jurors unanimously convict

both to convict either.17

2.4 Appendix

2.4.1 Independence of the Axioms

Claim 1 The meet separability, join separability, non-degeneracy, and anonymity axioms are inde-

pendent.

Proof. I present four rules. Each violates one axiom while satisfying the remaining three. This is

sufficient to prove the claim.

Rule 1: Consider the rule f in which, for every j ∈ N , fj(P ) = 1 if and only if Pij = 1 for some

i ∈ N . This is a nomination rule but not a one-vote rule and therefore satisfies join separability and

non-degeneracy but not meet separability (by Theorems 2.2.4 & 2.2.5).
15Each of the n issues is the issue of whether a particular individual is a member of the group.
16When m = 1 agreement rules are also known as oligarchic rules.
17The idea here is that one cannot commit conspiracy without a co-conspirator. In general, American law has dealt

with this problem by establishing rules which determine which opinions are to be aggregated. For example, the law
might require that the court aggregate opinions about the crime and not about the elements. This is possible because
all opinions are known. This solution is less plausible for the case of aggregating opinions about group membership
because in that case it is not necessarily possible to know all opinions at the time they are aggregated.
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Lastly, to show that it satisfies anonymity, let j ∈ N and let π be a permutation of N . According

to this rule, fj(P ) = 1 if and only if Pij = 1 for some i ∈ N . Then fj(πP ) = 1 if and only if

(πP )ij = Pπ(i)π(j) = 1 for some i ∈ N . Because this is true for any i ∈ N , fj(πP ) = 1 if and only

if Piπ(j) = 1 for some i ∈ N . Furthermore, πfj(P ) = fπ(j)(P ) = 1 if and only if Piπ(j) = 1 for some

i ∈ N . Therefore, πfj(P ) = fj(πP ) for all j ∈ N .

Rule 2: Consider the rule f in which, for every j ∈ N , fj(P ) = 1 if and only if Pij = 1 for all

i ∈ N . This is an agreement rule but not a one-vote rule and therefore satisfies meet separability

and non-degeneracy but not join separability (by Theorems 2.2.3 & 2.2.5).

Lastly, to show that it satisfies anonymity, let j ∈ N and let π be a permutation of N . According

to this rule, fj(P, a) = 1 if and only if Pij = 1 for all i ∈ N . Then fj(πP ) = 1 if and only if

(πP )ij = Pπ(i)π(j) = 1 for all i ∈ N . Because this must be true for all i ∈ N , fj(πP ) = 1 if and

only if Piπ(j) = 1 for all i ∈ N . Furthermore, πfj(P ) = fπ(j)(P ) = 1 if and only if Piπ(j) = 1 for all

i ∈ N . Therefore, πfj(P ) = fj(πP ) for all j ∈ N .

Rule 3: Let a ∈ G such that a > b for no b ∈ G. Consider the degenerate rule f in which

f(P, b) = 1 if and only if b ≥ a, and in which f(P, b) = 0, otherwise. This trivially satisfies the meet

separability, join separability, and anonymity axioms, but violates non-degeneracy.

Rule 4: Consider the rule f in which, for every j ∈ N , fj(P ) = 1 if and only if P1j = 1.

This is a one-vote rule but is not self-identification and therefore satisfies the meet separability, join

separability, and non-degeneracy axioms but violates anonymity.

2.4.2 The Generalized Model

Formally, let D be a totally ordered set with a minimal element 0 and a maximal element 1. Let an

aggregation rule be a mapping f : DN×N × G → V.

One-opinion rules: For every individual j there exists (i, k) in N × N and (d, r) ∈ D × {0, 1} \

{(0, 1), (1, 0)}, such that, for all groups a ∈ G, fj(P, a) = 1 if Pik > d and fj(P, a) = 0 if

Pik < d and fj(P, a) = r if Pik = d.

Note that in the case D = {0, 1} a one-opinion rule is equivalent to a one-vote rule.18

Theorem 2.4.1 A social rule f satisfies the meet separability, join separability, and non-degeneracy

axioms if and only if it is a one-opinion rule.

Proof. That one-opinion rules satisfy the axioms is trivial. I show that any rule that satisfies the

three axioms is a one-opinion rule. Let f satisfy the three axioms. By Proposition 2.2.2 f must

satisfy group independence.

Let P,Q ∈ VN and j ∈ N .
18In this case non-degeneracy implies that r = d.
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Define Pj ≡ {P ∈ DN×N : fj(P ) = 1}, P j− ≡ ∧P∈Pj P , and P j+ ≡ ∨P /∈Pj
P .

Note that fj(P ) = 1 implies that P ≥ P j− and that fj(P ) = 0 implies that P ≤ P j+. Therefore,

for all P ∈ DN×N , P ≥ P j− and/or P ≤ P j+.

First, I establish that P j−
ik > 0 for at most one pair (i, k) ∈ N ×N .

Suppose, contrariwise, that
∣∣∣{(i, k) ∈ N ×N : P j−

ik > 0}
∣∣∣ > 1. Without loss of generality, assume

that P j−
11 > 0. Let P ∗ ∈ VN such that all elements are 0 except that P ∗

11 = 1. Because P ∗ )≥ P j−

it follows that fj(P ∗) = 0. Let P ◦ ∈ VN such that all elements are 1 except that P ◦
11 = 0. Because

P ◦ )≥ P j− it follows that fj(P ◦) = 0. Join separability implies that fj(P ∗ ∨ P ◦) = fj(1) = 0.

Meet separability implies that, for all P ∈ DN×N , fj(P ) = fj(P ∧ 1) = fj(P ) ∧ fj(1) = 0. The

contradiction proves that P j−
ik > 0 for at most one pair (i, k) ∈ N ×N . Similarly one can show that

P j+
ik < 1 for at most one pair (i, k) ∈ N ×N .

Second, I establish that P j−
ik > 0 implies that P j+

i′k′ = 1 for all (i′, k′) )= (i, k).

Without loss of generality, assume that (i, k) = (1, 1). Suppose, contrariwise, that P j−
11 > 0 and

that P j+
12 < 1. Let P ◦ be as previously defined. We know that P ◦ )≥ P j− and that P ◦ )≤ P j+. This

contradiction proves that P j−
ik > 0 implies that P j+

i′k′ = 1 for all (i′, k′) )= (i, k). Similarly one can

show that P j+
ik < 1 implies that P j−

i′k′ = 0 for all (i′, k′) )= (i, k).

Third, I establish that there exists (i, k) in N ×N and (d, r) ∈ D × {0, 1} \ {(0, 1), (1, 0)}, such

that fj(P ) = 1 if Pik > d and fj(P ) = 0 if Pik < d and fj(P ) = r if Pik = d. The are four cases.

Case A: P j−
ik > 0 for some (i, k) ∈ N × N . First, it is clear that P j−

ik ≥ P j+
ik ; otherwise

P j+ >> P j− which is a contradiction. Second, it is clear that there is no x ∈ D such that

P j−
ik > x > P j+

ik . Otherwise, there is a profile P ′ such that P ′
ik = x. But P ′ )≥ P j− and P ′ )≤ P j+,

and this is a contradiction. Then P j−
ik = d and fj(P j−

ik ) = r. (Note that if d = 1 then r = 1 due to

non-degeneracy.) Thus fj(P ) = 1 if Pik > d, fj(P ) = 0 if Pik < d, and fj(P ) = r if Pik = d.

Case B : P j+
ik < 1 for some (i, k) ∈ N × N . This is the dual of case A. Then P j+

ik = d and

fj(P j+
ik ) = r. (Note that if d = 0 then r = 0 due to non-degeneracy.) Thus fj(P ) = 1 if Pik > d,

fj(P ) = 0 if Pik < d, and fj(P ) = r if Pik = d.

Case C : P j− = 0. (This case is not possible if D is finite due to non-degeneracy.) There must

be exactly one (i, k) ∈ N × N such that P j+
ik = 0; otherwise P j+ >> P j−, which would be a

contradiction. Thus d = r = 0 and fj(P ) = 1 if Pik > d and fj(P ) = r if Pik = d.

Case D : P j+ = 1. This is the dual of case C. Thus, d = r = 1 and fj(P ) = 0 if Pik < d and

fj(P ) = r if Pik = d.
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Chapter 3

A Measure of Bizarreness

This chapter reproduces the paper “A Measure of Bizarreness,” written jointly with Christopher P.

Chambers. The authors split equally the ideas and the writing of the paper.

3.1 Introduction

The upcoming decennial census will result in a new legislative redistricting process to be completed

in 2012. That year will also mark the two-hundredth anniversary of the Gerrymander — that

monster of American politics — the bizarrely shaped legislative district drawn as a means to certain

electoral ends.

An early diagnosis of this malady did not lead to an early cure. Already in the nineteenth

century, reformers introduced anti-gerrymandering laws requiring districts to be “compact” and

“contiguous”,1 but the disease spread unabated. District shapes have grown more odd over time as

politicians have used modern technology to increase their control over elections. In 1812 a district was

said to resemble a salamander; one hundred eighty years later, another was likened to a “Rorschach

ink blot test.”2

Redistricting reform has been hampered by a lack of agreement among experts as to what a

good district plan should look like (Cipra, 2009). Some believe that legislatures should mirror the

racial, ethnic, or political balance of the population. Others believe that it is more important that

districts be competitive or, alternatively, stable. This lack of an ideal has made it difficult to design

an algorithm which will yield a districting plan that all will accept.

Rather than make districts better by moving them closer to an ideal, we try to make districts “less

worse” by moving them further from an identifiable problem. That problem is bizarre shape. We

introduce a new method to measure the bizarreness of a legislative district. The method provides
1Thirty-five states require congressional or legislative districting plans to be “compact”, forty-five require “conti-

guity”, and only Arkansas requires neither (NCSL, 2000). There may also be federal constitutional implications. See
Shaw v. Reno, 509 U.S. 630 (1993); Bush v. Vera, 517 U.S. 959 (1996).

2Shaw v. Reno, 509 U.S. at 633.
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courts with an objective means to identify the more egregious gerrymanders which weaken the

citizens’ confidence in the electoral system.

As with so many other aspects of redistricting, there is little agreement as to reason for restricting

bizarre shapes. Some argue that while the shape of legislative districts is not important in and of

itself, compactness restrictions constrain the set of choices available to gerrymanderers and thereby

limit their ability to control electoral outcomes. Others believe that bizarrely shaped districts

cause direct harm in that the “pernicious” messages that they send to voters and their elected

representatives.3

Laws restricting the shapes of legislative districts have been unsuccessful, in part because courts

lack objective criteria to determine whether a particular shape is acceptable. Lawyers, political scien-

tists, geographers, and economists have introduced multiple methods to measure district “compact-

ness.”4 However, none of these methods is widely accepted, in part because of problems identified

by Young (1988), Niemi et al. (1990), and Altman (1998).

Part of the difficulty of defining a measure of compactness is that there are many conflicting

understandings of the concept. According to one view the compactness standard exists to eliminate

elongated districts. In this sense a square is more compact than a rectangle, and a circle may be

more compact than a square. According to another view compactness exists to eliminate oddly

shaped districts.5 According to this view a rectangle-shaped district would be better than a district

shaped like a Rorschach blot.

We follow the latter approach. While it may be preferable to avoid elongated districts, the sign

of a heavily-gerrymandered district is bizarre shape. To the extent that elongation is a concern, it

should be studied with a separate measure.6 These are two separate issues, and there is no natural

way to weigh tradeoffs between bizarreness and elongation.

We note that, in some cases, bizarrely shaped districts may be justified by compliance with the

Voting Rights Act of 1965.7 It is not clear whether any of these bizarre shapes could have been

avoided by districting plans which satisfy the constraints of the act.8 Whether a bizarrely shaped

district is necessary to satisfy civil rights law is a matter for the courts.9 Our role is only to provide
3“Put differently, we believe that reapportionment is one area in which appearances do matter.” Shaw v. Reno,

509 U.S. at 647. The direct harm that arises from the ugly shape of the legislative districts is generally referred to as
an “expressive harm” (Pildes and Niemi, 1993).

4“Contiguity” is generally understood to require that it be possible to move between any two places within the
district without leaving the district. See, for example, Black’s Law Dictionary which defines a “contiguous” as touching
along a surface or a point (Garner, 2004).

5Writing for the majority in Bush v. Vera, Justice O’Connor referred to “bizarre shape and noncompactness” in
a manner which suggests that the two are synonymous, or at least very closely related. If so then a compact district
is one without a bizarre shape, and a measure of compactness is a measure of bizarreness.

6Elongated districts are not always undesirable. See Figure 3.5.
7See 42 U.S.C. 1973c.
8Individuals involved in the redistricting process often attempt to satisfy multiple objectives when creating redis-

tricting plans. It may be the case that the bizarreness of these districts could be reduced by sacrificing other objectives
(such as creating safe seats for particular legislators) without hurting the electoral power of minority groups. As a
matter of law, it is not clear that the Voting Rights Act necessarily requires bizarre shapes in any case.

9The Supreme Court has held that, irrespective of the Voting Rights Act, “redistricting legislation that is so bizarre
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a factual standard by which the court can determine whether districts are bizarrely shaped.

The basic principle of convexity requires a district to contain the shortest path between every

pair of its points. Circles, squares, and triangles are examples of convex shapes, while hooks, stars,

and hourglasses are not. (See Figure 3.1.) The most striking feature of bizarrely shaped districts is

that they are extremely non-convex. (See Figure 3.2.) We introduce a measure of convexity with

which to assess the bizarreness of the district.

(a) Convex Shapes

(b) Non-Convex Shapes

Figure 3.1: Convexity

The path-based measure we introduce is the probability that a district will contain the shortest

path between a randomly selected pair of its points.10 This measure will always return a number

between zero and one, with one being perfectly convex. To understand how our measure works,

consider a district containing two equally sized towns connected by a very narrow path, such as

a road. (See Figure 3.3(a).) Our method would assign this district a measure of approximately

one-half. A district containing n equally-sized towns connected by narrow paths would be assigned

a measure of approximately 1/n. 11 (See Figure 3.3(b).) If the n towns are not equally-sized, the

measure is equivalent to the Herfindahl-Hirschman Index (Hirschman, 1964).12

Ideally, a measure of compactness should consider the distribution of the population in the

district. For example, consider the two arch-shaped districts depicted in Figure 3.4. The districts

are of identical shape, thus the probability that each district will contain the shortest path between

a randomly selected pair of its points is the same. However, the populations of these districts are

distributed rather differently. The population of district A is concentrated near the bottom of the

arch, while that of district B is concentrated near the top. The former district might represent two

on its face that it is ‘unexplainable on grounds other than race”’ is subject to a high level of judicial scrutiny. Shaw
v. Reno, 509 U.S. at 643. See Pildes and Niemi (1993).

10A version of this measure was independently discovered by Lehrer (2007).
11Alternatively one might use the reciprocal, where the measure represents the equivalent number of disparate

communities strung together to form the district. The reciprocal will always be a number greater or equal to one,
where one is perfectly convex. A district containing n towns connected by narrow paths would be assigned a measure
of approximately n.

12If xi is the size of town i, then the measure of the district is
Pn

i=1 x2
i

hPn
j=1 xj

i−2
.
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(a) 4th District, Illinois

(b) 13th District, Georgia

Figure 3.2: Congressional Districts, 109th Congress

communities connected by a large forest, while the second district might represent one community

with two forests attached.

Population can be incorporated by using the probability that a district will contain the shortest

path between a randomly selected pair of its residents. In practice our information will be more

limited — we will not know the exact location of every resident, but only the populations of individual

census blocks. We can solve this problem by weighting points by population density. The population-

weighted measure of district A is approximately one-half, while that of district B is nearly one.13

13Note that the population-weighted approach measures the compactness of the districts’ populations, and not
the compactness of their shapes. A district may have a perfect score even though it has oddly shaped boundaries
in unpopulated regions. The ability to draw bizarre boundaries in unpopulated regions is of no help to potential

(a) Two Circular Towns (b) Five Circular Towns

Figure 3.3: Towns Connected with Narrow Paths.
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A B

less more

population density

Figure 3.4: Same Shapes, Different Populations

One potential problem is that some districts may be oddly shaped simply because the states in

which they are contained are non-convex. Consider, for example, Maryland’s Sixth Congressional

District (shown in Figure 3.5 in gray). Viewed in isolation, this district is very non-convex — the

western portion of the district is almost entirely disconnected from the eastern part. However, the

odd shape of the district is a result of the state’s boundaries, which are fixed. We solve this problem

by measuring the probability that a district will contain the shortest path in the state between

a randomly selected pair of its points. The adjusted measure of Maryland’s Sixth Congressional

District would be close to one.

Figure 3.5: 6th District, Maryland, 109th Congress

Our measure considers whether the shortest path in a district exceeds the shortest path in the

state. Alternatively, one might wish to consider the extent to which the former exceeds the latter. We

introduce a parametric family of measures which vary according to the degree that they “penalize”

deviations from convexity. At one extreme is the measure we have described; at the other is the

degenerate measure, which gives all districts a measure of one regardless of their shape.

3.1.1 Related Literature

3.1.1.1 Individual District Compactness Measures

A variety of compactness measures have been introduced by lawyers, social scientists, and geogra-

phers. Here we highlight some of basic types of measures and discuss some of their weaknesses. A

more complete guide may be found in surveys by Young (1988), Niemi et al. (1990), and Altman

(1998).

gerrymanderers.
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Most measures of compactness fall into two broad categories: (1) dispersion measures and (2)

perimeter-based measures. Dispersion measures gauge the extent to which the district is scattered

over a large area. The simplest dispersion measure is the length-to-width test, which compares the

ratio of a district’s length to its width. Ratios closer to one are considered more compact. This test

has had some support in the literature, most notably Harris (1964).14

Another type of dispersion measure compares the area of the district to that of an ideal figure.

This measure was introduced into the redistricting literature by Reock (1961), who proposed using

the ratio of the area of the district to that of the smallest circumscribing circle. A third type of

dispersion measure involves the relationship between the district and its center of gravity. Measures

in this class were introduced by Boyce and Clark (1964) and Kaiser (1966). The area-comparision

and center of gravity measures have been adjusted to take account of district population by Hofeller

and Grofman (1990), and Weaver and Hess (1963), respectively.

Dispersion measures have been widely criticized, in part because they consider districts reason-

ably compact as long as they are concentrated in a well-shaped area (Young, 1988). We point out

a different (although related) problem. Consider two disjoint communities strung together with

a narrow path. Disconnection-sensitivity requires the measure to consider the combined region

less compact than at least one of the original communities. None of the dispersion measures are

disconnection-sensitive. An example is shown in Figure 3.6.15

Perimeter measures use the length of the district boundaries to assess compactness. The most

common perimeter measure, associated with Schwartzberg (1966), involves comparing the perimeter

of a district to its area.16 Young (1988) objected to the Schwartzberg measure on the grounds that

it is overly sensitive to small changes in the boundary of a district. Jagged edges caused by the

arrangement of census blocks may lead to significant distortions. While a perfectly square district

will receive a score of 0.785, a square shape superimposed upon a diagonal grid of city blocks will

have a much longer perimeter and a lower score, as shown in Figure 3.7(a).17 Figure 3.7 shows four

shapes, arranged according to the Schwartzberg ordering from least to most compact.

Taylor (1973) introduced a measure of indentation which compared the number of reflexive

(inward-bending) to non-reflexive (outward-bending) angles in the boundary of the district. Taylor’s

measure is similar to ours in that it is a measure of convexity. Figure 3.8 shows six districts and
14The length-to-width test seems to have originated in early court decisions construing compactness statutes. See

In re Timmerman, 100 N.Y.S. 57 (N.Y. Sup. 1906).
15The length-width measure is the ratio of width to length of the circumscribing rectangle with minimum perimeter.

See Niemi et al. (1990). All measures are transformed so that they range between zero and one, with one being most

compact. The Boyce-Clark measure is
q

1
1+bc , where bc is the original Boyce-Clark measure (Boyce and Clark, 1964).

The Schwartzberg measure used is the variant proposed by Polsby and Popper (1991) (originally introduced in a
different context by Cox (1927)), or ( 1

sc )2, where sc is the measure used by Schwartzberg (1966).
16This idea was first introduced by Cox (1927) in the context of measuring roundness of sand grains. The idea first

seems to have been mentioned in the context of district plans by Weaver and Hess (1963) who used it to justify their
view that a circle is the most compact shape. Polsby and Popper (1991) have also supported the use of this measure.

17The score of the resulting district will decrease as the city blocks become smaller, reaching 0.393 in the limit.
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Figure 3.6: District II is Formed by Connecting District I to a Copy of Itself. Disconnection-
Sensitivity Implies that I is More Compact.

I II

Compactness Measures

Dispersion Measures District: I II
Length-Width 0.63 1.00
Area to Circumscribing Circle 0.32 0.44
Area to Convex Hull 0.57 0.70
Boyce-Clark 0.15 0.29

Other Measures
Path-Based Measure 0.84 0.42
Schwartzberg 0.29 0.14
Taylor 0.40 0.20

(a) 0.432 (b) 0.448 (c) 0.456 (d) 0.503

Figure 3.7: Schwartzberg Measure

their Taylor measures, arranged from best to worst.

Lastly, Schneider (1975) introduced a measure of convexity using Minkowski addition. For more

on the relationship between convex bodies and Minkowski addition, see Schneider (1993).

3.1.1.2 Districting-Plan Compactness Measures

In addition to these measures of individual legislative districts, several proposals have been intro-

duced to measure entire districting plans. The “sum-of-the-perimeters” measure, found in the Col-

orado Constitution, is the “aggregate linear distance of all district boundaries.”18 Smaller numbers

indicate greater compactness. An alternative method was introduced by Papayanopoulos (1973).

His proposal can be described through a two-stage process. First, in each district, the sum total
18Colo. Const. Art. V, Section 47
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(a) 0.75 (b) 0.71 (c) 0.67

(d) 0.60 (e) 0.33 (f) 0.00

Figure 3.8: Taylor’s Measure

of the distances between each pair of residents is calculated. The measure for the plan is then the

sum of these scores across the districts. Smaller numbers again indicate greater compactness. More

recently, Fryer and Holden (2007) have proposed a related measure which uses quadratic distance

and which is normalized so that an optimally compact districting plan has a score of one.

A potential problem, raised by Young (1988), is that these measures penalize deviations in

sparsely populated rural areas much more severely than deviations in heavily populated urban

areas. For example, Figure 3.9 shows five potential districting plans for a four-district state with

sixteen equally sized population centers (represented by dots). The upper portion of the state

represents an urban area with half of the population concentrated into one-seventeenth of the land.

Papayanopoulos scores are given, although we note that the sum-of-the-perimeters and Fryer-Holden

measures give identical ordinal rankings of these districting plans.

According to these measures, the ideal districting plan divides the state into four squares (Figure

3.9(a)). The plan with triangular districts is less compact (Figure 3.9(b)), and the plan with wave-

shaped districts fares the worst (Figure 3.9(c)). However, the measure is more sensitive to deviations

in areas with lower population density. The plan in Figure 3.9(d), which divides the rural area into

perfect squares and the urban area into low-scoring wave-shape districts, is considered more compact

than the plan in Figure 3.9(e), which divides the rural area into triangles and the urban area into

perfect squares.

An alternative approach is to rank state-wide districting plans using the scores assigned to

individual districts. Examples include the utilitarian criterion, which is the average of the districts’

scores (see Papayanopoulos (1973)), and the maxmin criterion, which is simply the lowest of the

scores awarded the districts under the plan. This approach allows for the ranking of both individual

districts and entire districting plans as required by Young (1988).

The ideal criterion depends in large part on the individual district measure with which it is used.

We advocate the use of the maxmin criterion with our path-based measure on the grounds that it will
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(a) 1.000 (b) 1.267 (c) 1.670

(d) 1.134 (e) 1.213

Figure 3.9: Urban Gerrymandering

restrict gerrymandering the most. The maxmin criterion is also consistent with the U.S. Supreme

Court’s focus on analyzing individual districts as opposed to entire districting plans.19 However, if

some districts must necessarily be non-compact (a common problem with the Schwartzberg measure)

then the utilitarian criterion may be more appropriate.

3.1.1.3 Other literature

Vickrey (1961) showed that restrictions on the shape of legislative districts are not necessarily

sufficient to prevent gerrymandering. In Vickrey’s example there is a rectangular state in which

support for the two parties (white and gray) are distributed as shown in Figure 3.10. With one

district plan, the four legislative seats are divided equally; with the other district plan, the gray

party takes all four seats. In both plans, the districts have the same size and shape.

(a) 2 gray, 2 white (b) All gray, no white

Figure 3.10: Vickrey’s Example

Compactness measures have been touted both as a tool for courts to use in determining whether

districting plans are legal and as a metric for researchers to use in studying the extent to which

districts have been gerrymandered. Other methods exist to study the effect of gerrymandering –

the most prominent of these is the seats-votes curve, which is used to estimate the extent to which

the district plan favors a particular party as well as the responsiveness of the electoral system to

changes in popular opinion. For more see Tufte (1973).
19This focus might stem from the Court’s understanding of the right to vote as an individual right, and not a group

or systemic right. This understanding may have influenced other measures used in the redistricting context, such as
the ‘total deviation’ test. See Edelman (2006).
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3.2 The Model and Proposed Family of Measures

3.2.1 The Model and Notation

Let K be the collection of compact sets in Rn whose interiors are path-connected (with the usual

Euclidean topology) and which are the closure of their interiors. Elements of K are called parcels.

For any set Z ⊆ Rn let KZ ≡ {K ∈ K : K ⊆ Z} denote the restriction of K to Z.

Consider a path-connected set Z ⊆ Rn and let x, y ∈ Z. Let PZ (x, y) be the set of continuous

paths g : [0, 1] → Z for which g (0) = x, g (1) = y, and g ([0, 1]) ⊂ Z. For any path g in PZ (x, y),

we define the length l (g) in the usual way.20 We define the distance from x to y within Z as:

d (x, y;Z) ≡ inf
g∈PZ(x,y)

l (g) .

We define d (x, y; Rn) ≡ d (x, y). This is the Euclidean metric.

Let F be the set of density functions f : Rn → R+ such that
∫

K f(x)dx is finite for all parcels

K ∈ K. Let fu ∈ F refer to the uniform density.21 For any density function f ∈ F , let F be the

associated probability measure so that F (K) ≡
∫

K f(x)dx represents the population of parcel K.22

We measure compactness of districts relative to the borders of the state in which they are located.

Given a particular state Z,23 we allow the measure to consider two factors: (1) the boundaries of

the legislative district, and (2) the population density.24 Thus, a measure of compactness is a

function sZ : KZ ×F → R+.

3.2.2 The Basic Family of Compactness Measures

As a measure of compactness we propose to use the expected relative difficulty of traveling between

two points within the district. Consider a legislative district K contained within a given state Z.

The value d(x, y;K) is the shortest distance between x and y which can be traveled while remaining

in the parcel K. To this end, the shape of the parcel K makes it relatively more difficult to get from

points x to y the lower the value of

d (x, y;Z)
d (x, y;K)

. (3.1)

Note that the maximal value that expression (3.1) may take is one, and its smallest (limiting)

value is zero. Alternatively, any function g(d(x, y;Z), d(x, y;K)) which is scale-invariant, monotone
20That is, suppose g : [0, 1] → Z is continuous. Let k ∈ N. Let (t0, ..., tk) ∈ Rk+1 satisfy for all i ∈ {0, ..., k − 1},

ti < ti+1. Define lt (g) =
Pk

i=1 ‖g (tk)− g (tk−1)‖. The length (formally, the arc length) of g is then defined as
l (g) = supk∈N sup{t∈[0,1]k:ti<ti+1} lt (g).

21We define fu(x) = 1.
22Similarly, the uniform probability measure Fu(K) represents the area of parcel K.
23The state Z is typically chosen from set K but is allowed to be chosen arbitrary; this allows the case where Z = Rn

and the borders of the state do not matter.
24The latter factor can be ignored by assuming that the population has density fu.
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decreasing in d(x, y;K), and monotone increasing in d(x, y;Z) is interesting; expression (3.1) can be

considered a canonical example. The numerator d(x, y;Z) is a normalization which ensures that the

measure is affected by neither the scale of the district nor the jagged borders of the state. We obtain

a parameterized family of measures of compactness by considering any p ≥ 0; so that
[

d(x,y;Z)
d(x,y;K)

]p
is

our function under consideration, defining

[
d (x, y;Z)
d (x, y;K)

]∞
=





1, if d(x,y;Z)

d(x,y;K) = 1

0, otherwise
.

Note that for p = 0, the measure is degenerate. This expression is a measure of the relative

difficulty of travelling from points x to y. Our measure is the expected relative difficulty over all

pairs of points, or:

sp
Z (K, f) ≡

∫

K

∫

K

[
d (x, y;Z)
d (x, y;K)

]p f(y) f(x)
(F (K))2

dy dx. (3.2)

We note a few important cases. First, the special case of p = +∞ corresponds to the measure

described in the introduction, which considers whether the district contains the shortest path between

pairs of its points.25 Second, we can choose to measure either the compactness of the districts’ shapes

(by letting f = fu) or the compactness of the districts’ populations (by letting f describe the true

population density). Third, if Z = Rn, our measure describes the compactness of the legislative

district without taking the state’s boundaries into consideration.

3.2.3 Discrete Version

Our measure may be approximated by treating each census block as a discrete point. This may be

useful if researchers lack sufficient computing power to integrate the expression described in (3.2).

Let Z ∈ Rn be a state as described in subsection 3.2.1 and let K ∈ KZ be a district. Let

B ≡ Rn × Z+ be the set of possible census blocks, where each block bi = (xi, pi) is described by

a point xi and a non-negative integer pi representing its center and population, respectively. Let

Z∗ ∈ Bm describe the census blocks in state Z and let K∗ ⊂ Z∗ describe the census blocks in

district K. The approximate measure is given by:

sp
Z∗ (K∗) ≡




∑

bi∈K∗

∑

bj∈K∗

[
d (xi, xj ;Z)
d (xi, xj ;K)

]p

pi pj








∑

bi∈K∗

∑

bj∈K∗

pi pj




−1

.

25Mathematically, there may be two shortest paths in a parcel connecting a pair of residents. The issue arises
when one state is not simply connected. For example, two residents may live on opposite sides of a lake which is not
included in the parcel. In this general case, our measure is the probability that at least one of the shortest paths is
contained in the district for any randomly selected pair of residents.
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3.3 Data

To illustrate our measure we have calculated scores for all districts in Connecticut, Maryland, and

New Hampshire during the 109th Congress. (See Figures 3.11, 3.12, and 3.13.) Because of limitations

in computing power we use the approximation described in Section 3.2.3.

Dark lines represent congressional district boundaries, while shading roughly follows population

distributions. Table 3.1 contains scores for both our path-based measure as well as the Schwartzberg

measure.26 The small numerals in parentheses give the ordinal ranking of the district according

to the respective measure. Thus, according to our measure, Connecticut’s Fourth District is the

most compact, with a nearly perfect score of 0.977, followed by Maryland’s Sixth District (0.926).

Maryland’s Third District is the least compact with a score of 0.140, which makes it slightly less

compact than seven equally sized communities connected with a narrow path. (See Figure 3.3).

The Schwartzberg measure ranks Connecticut’s Second District as most compact and Maryland’s

First District as least compact. For these fifteen districts, the ordinal rankings agree on fewer than

seventy-five percent of the pairwise comparisons.

Table 3.1: Legislative District Scores

District Measure: Path-Based Schwartzberg
Connecticut: 1st 0.609 (8) 0.161 (9)

2nd 0.860 (4) 0.412 (1)

3rd 0.891 (3) 0.235 (4)

4th 0.977 (1) 0.305 (3)

5th 0.481 (12) 0.228 (5)

Maryland: 1st 0.549 (10) 0.016 (15)

2nd 0.294 (14) 0.019 (14)

3rd 0.140 (15) 0.029 (13)

4th 0.366 (13) 0.083 (11)

5th 0.517 (11) 0.066 (12)

6th 0.926 (2) 0.119 (10)

7th 0.732 (6) 0.174 (8)

8th 0.657 (7) 0.204 (7)

New Hampshire: 1st 0.801 (5) 0.228 (6)

2nd 0.561 (9) 0.370 (2)

The measures give strikingly different results with respect to Connecticut’s Fifth District and

Maryland’s Sixth District. Both assign a high rank to one of the districts and a low rank to the

other, but the order is reversed. The difference primarily stems from two factors: state boundaries

and population.
26To calculate perimeters for the Schwartzberg measure we summed the lengths of the line segments that form

the district boundary. In some cases, natural state boundaries (such as the Chesapeake Bay) added significantly to
the total length. The Census data we used did not allow us to calculate district tri-junctions (as recommended by
Schwartzberg (1966)), although it seems unlikely that this would have a substantial effect on the calculation in this
case. We do not know whether practitioners use a different method to calculate these scores.
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Figure 3.11: Connecticut

1st 2nd 3rd 4th 5th

Figure 3.12: Maryland

1st 2nd 3rd 4th

5th 6th 7th 8th
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Maryland’s Sixth District has a very low area-perimeter ratio owing to its location in the sparsely

populated panhandle of western Maryland and to the ragged rivers which makes up its southern

and eastern borders. Our path-based measure, however, takes the state boundaries into account and

thus gives this district a high score.

Connecticut’s Fifth District, however, has a much higher area-perimeter ratio: the generally

square shape of the district compensates for the two appendages protruding from its eastern side.

However, the appendages reach out to incorporate several urban areas into the district. (See for

example, the southeastern portion of the northern appendage and the eastern part of the southern

appendage.) Because the major population centers are relatively disconnected from each other, our

path-based measure assigns this district a low score of 0.481, which is slightly less compact than two

equally sized communities connected with a narrow path. (See Figure 3.3).

3.4 Conclusion

We have introduced a new measure of district compactness: the probability that the district contains

the shortest path connecting a randomly selected pair of its points. The measure can be weighted for

population and can take account of the exogenously determined boundaries of the state in which the

district is located. It is an extreme point in a parametric family of measures which vary according

to the degree that they “penalize” deviations from convexity.
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Figure 3.13: New Hampshire

1st 2nd
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Chapter 4

A Model of Community Standards

4.1 Introduction

In 1957, the United States Supreme Court ruled that obscenity is “utterly without redeeming social

importance” and is not protected by the U.S. Constitution. The court held that “contemporary

community standards” are to be used in determining whether particular works are obscene.1 The

Supreme Court has never explained what “community standards” are or how, if at all, they are

related to the standards of the individuals who comprise the community. Lower courts have provided

only limited guidance describing the community standard as an “aggregation or average”.

I introduce a new model in which community standards are formed by aggregating a set of

individual standards. In the model, standards are defined as judgments — categorizations of possible

works as either “obscene” or “not obscene.” Every possible judgment is allowed provided it satisfies

the following restriction: neither individuals nor the community may consider one-hundred percent

of the works to be obscene. I define several basic normative properties of aggregation methods which

reflect legal concerns expressed by the judiciary. I then show that the only method which satisfies

these properties is unanimity rule, in which a work is considered obscene if and only if all members

of the community consider it to be obscene.

4.1.1 The Problem of Community Standards

In communities that are perfectly homogeneous, where each individual’s belief is identical, it should

be simple to determine the community standard. However, as the Supreme Court has recognized,

few communities are perfectly homogeneous. For this reason the Court has required the jury to

consider the views of a diverse set of individuals, including the young and the old, the religious and

the irreligious, the sensitive and the insensitive.2 But when the community is heterogeneous, it is
1Roth v. United States, 354 U.S. 476 (1957). The Supreme Court retained the community standards test when it

refined the definition of obscenity sixteen years later in Miller v. California 413 U.S. 15 (1973).
2See Roth v. United States, 354 U.S. 476 (1957) and Pinkus v. United States, 436 U.S. 293 (1978).
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not obvious how the conflicting views of the citizenry should be combined.

Some commentators, including Sadurski (1987), have argued that the community standard is an

average or median in a mathematical sense. But as another commentator has pointed out, “the

notion of an average standard ... implies the existence of a spectrum of tolerance that can be ranked

along a single dimension, from least tolerant to most tolerant. The problem with this approach is

that a single dimension of tolerance does not exist.” (Boyce, 2008).3 No court nor commentator

has yet identified an acceptable objective method to order judgments or levels of tolerance along a

single dimension.

A different approach was taken by Lord Patrick Devlin in his classic work, The Enforcement of

Morals (Devlin, 1965). Lord Devlin argued that it was proper for governments to prohibit behavior

felt to be immoral by the community. He suggested that, in some sense, unanimous agreement

within a society is necessary to justify regulation of immorality: “the moral judgment of society

must be something about which any twelve men or women drawn at random might after discussion

be expected to be unanimous.” To ascertain the moral standards of the community, Lord Devlin’s

understanding of the Law of England can be described in the following way. First, the community

consists of all “right-minded” or “reasonable” persons within the society.4 Next, an act is deemed

immoral if and only if every reasonable person believes the act to be immoral. “Immorality then, for

the purpose of the law, is what every right-minded person is presumed to consider to be immoral.”

(Devlin, 1965).5

While the U.S. Supreme Court adopted the principle that certain acts (the distribution and sale

of obscene material) can be criminalized on the grounds of offense to community morals, American

courts have never adopted a specific rule to ascertain the moral standards of the community. Individ-

ual jurors are instructed to ascertain these standards on the basis of their experience and familiarity

with the community, and are not instructed as to the method through which differing beliefs should

be combined.6 For over fifty years the Supreme Court has simply ignored this question, allowing

the incarceration of defendants convicted under a vague and murky legal doctrine.
3Boyce (2008), however, assents to the principle that community standards “must in some sense be an aggregate

of the standards of the individuals who comprise the community.”
4Whether an individual is “right-minded” or “reasonable” does not seem to be directly connected to the specific

content of that individual’s beliefs; otherwise Devlin’s rule would be circular and ill-defined.
5Whether Devlin’s rule is certainly practicable is a debatable proposition. He certainly felt that the rule would

lead to convictions in 1958, but whether that should remain the case in the more tolerant environment of the twenty-
first century is unclear. However, the mere possibility that some communities would find little to prohibit does not
invalidate Devlin’s rule. He argued that a community should be able to prohibit that which it found immoral, and
not that every community must find some works to be immoral.

6The views of the individual jurors themselves are combined through the unanimous jury rule which closely
corresponds to Devlin’s rule: an individual is convicted of an immoral act only when every juror considers the act to
be immoral.
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4.1.2 The Model

The basic model can be described as follows. First, there is a community, which can be any group

of individuals. The Supreme Court has required that the community be defined in geographic terms

and contain all adults in that community, including the young, the old, the religious, the irreligious,

the sensitive, and the insensitive.7 Lord Devlin (1965) seems to have argued that the community

consists only of reasonable persons. Others might propose to restrict the definition to clerics, to

parents, or to some other community of interest. The model is general enough to include all of these

as special cases.

Next, there is an infinite set of all possible works. We might loosely understand this as the set

of possible artworks but it might also include literary works, scientific publications, and other forms

of human expression. The space of works is modeled as a non-atomic measure space. The decision

to use a non-atomic measure space rather than a discrete space is made to simplify the exposition.

Parallel conclusions would be reached if the space of works were modeled as discrete and appropriate

modifications were made to the axioms.

Individuals from the community have standards as to which works in the set are obscene. An

individual standard is simply a division of the set into two groups: the obscene and the non-obscene

(or permissible). Individual standards are assumed to be well-informed and made after deliberation

and reflection. There is a single restriction on allowable standards: the set of works judged to be

obscene must be of less than full measure. Reasonable individuals should all believe that some

works, even those lacking serious literary, artistic, political, and scientific value, are non-obscene.8

I do not require individuals to believe that some works must be obscene — there is no reason why

individuals must be offended by anything.

These individual standards are then aggregated to form a community standard. The community

standard is subject to the same restriction as the individual standards: the set of works judged to

be obscene must be of less than full measure. I place no other restrictions on the class of allowable

standards. Individual standards and community standards are assumed to be subjective.

An aggregation rule is a systematic method of deriving the community standard from the individ-

uals judgments. Aggregation rules are studied through the axiomatic approach: several normative

properties are formalized as axioms and the unique rule satisfying these axioms is characterized.

I suggest two distinct approaches to understanding aggregation rules. First, the aggregation rule

may be understood as an actual procedure used to determine whether a work is obscene. It specifies

how the standards of the members of the community (or of a jury) are to be combined.

Second, an aggregation rule may be understood as a jury instruction. As mentioned above, the

community standards are to be determined by the trier of fact as part of a mental exercise. The
7See Roth v. United States, 354 U.S. 476 (1957) and Pinkus v. United States, 436 U.S. 293 (1978).
8Individuals who do not satisfy this restriction would be found to be unreasonable as a matter of law.
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aggregation rule instructs the trier of fact on how to aggregate these many envisioned individual

standards into a single community standard. Legislators attempting to codify community standards

into law might undertake a similar thought exercise.

4.1.3 The Main Result

I introduce four axioms. Each is, in some way, a desirable property for any objective aggregation

rule.

The first axiom, homogeneity, requires that if there is a single standard shared by every member

of the community, then that standard is also the community standard. In some sense, if this axiom

is not satisfied, then the community standard must be derived from something other than the

individual judgments.

The second axiom, responsiveness, requires the community standard to “respond” in the same

direction (more permissive or less) as the community. If every individual standard becomes more

permissive, then the community standard should become more permissive as well. Responsiveness

prevents the perverse result in which a defendant is convicted because the individuals in the com-

munity became more tolerant.

The third axiom, anonymity, requires that the aggregation rule not discriminate between indi-

viduals. In general, the law requires equal treatment of individuals. More specific to this case, the

Supreme Court has explicitly held that the views of all adult members of the community must be

taken into account in determining the community standard.

The fourth axiom, neutrality, requires that the aggregation rule not discriminate, ex ante, between

works. This axiom assumes that all judgments are subjective and is relevant when there is no method

by which works can be objectively compared. No court nor commentator has yet identified a plausible

method of comparison. The lack of an objective method is largely what makes even personal views

on obscenity difficult to define through a rule. Supreme Court Justice Potter Stewart believed that

only “hard-core pornography” could be prohibited as obscenity but he could not define even that

term. He only knew it when he saw it.9 A natural method to compare works would be to judge

them by their parts; however, this method was expressly disallowed by the Supreme Court.10

Together, these four axioms characterize the unanimity rule, under which a work is deemed

obscene when every individual considers it to be obscene.

4.1.4 Multiple Standards

The U.S. Supreme Court has held that contemporary community standards are to be used in eval-

uating two elements of obscenity: (a) whether the work appeals to the prurient interest, and (b)
9Concurring opinion in Jacobellis v. Ohio, 378 U.S. 184 (1964).

10Roth v. United States, 354 U.S. 476 (1957).
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whether the work is patently offensive.11 This implies that there are, at least, three types of judg-

ments individuals can make: (1) which works appeal to the prurient interest, (2) which works are

patently offensive, and (3) which works are obscene; that is, which both appeal to the prurient

interest and are patently offensive.

The first two types of judgments are not logically related. As a matter of law, a work may appeal

to the prurient interest but not be patently offensive; alternatively, a work may be patently offensive

but not appeal to the prurient interest. Were one judgment to imply the other, there would be no

need for both elements to appear in the test. Each of the first two types of judgments, however, is

clearly related to the third. If a work both appeals to the prurient interest and is patently offensive,

then it also appeals to the prurient interest.

If there is a single community standard for obscenity, as has been assumed in this chapter,

then the judgments being aggregated are of the third type. We might label the resulting standard

the prurient interest and patently offensive community standard. However, one could infer from

the Supreme Court opinions that there are two community standards, (a) the prurient interest

community standard and (b) the patently offensive community standard.

A model of two community standards would take the following form. Individuals would make

two separate judgments about which works (1) appeal to the prurient interest and (2) are patently

offensive. The judgments would then be aggregated to form (a) the prurient interest community

standard and (b) the patently offensive community standard. These two community standards need

not be aggregated independently — it is conceivable, for example, that the individual judgments

about which works are patently offensive are somehow relevant in determining the prurient interest

community standard.

The main result of this chapter does not change in the case of two (or more) standards. Even if

we allow for interdependent aggregation, unanimity rule is the unique aggregation rule that satisfies

the four axioms.

4.1.5 Other Standards

The model introduced in this chapter is general and can be applied to problems other than the

question of which works are legally obscene. I will describe three different types of legal standards

to which the model can be applied.

First, standards of offensiveness are used to determine whether speech, or other forms of expres-

sion, may be prohibited on the grounds that it is offensive. Obscenity doctrine provides the clearest
11Miller v. California, 413 U.S. 15 (1973). The full test provided in Miller is: (a) whether the average person,

applying contemporary community standards would find that the work, taken as a whole, appeals to the prurient
interest; (b) whether the work depicts or describes, in a patently offensive way, sexual conduct specifically defined
by the applicable state law; and (c) whether the work, taken as a whole, lacks serious literary, artistic, political, or
scientific value. The third element is an “objective” standard and does not vary from community to community. The
test provided in Miller remains the current law.
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example of a prohibition on offensive expression; other examples include the prohibitions on the

broadcast of indecent and profane speech regulated by the Federal Communications Commission.

Second, standards of proof are used to determine whether defendants are guilty (or liable) in

criminal (and civil) cases. Commonly used standards of proof include (a) the proof beyond a

reasonable doubt standard, (b) the clear and convincing standard, and (c) the preponderance of the

evidence standard. Here, instead of a set of works, we have a set of cases as in Kornhauser (1992a,b)

and Lax (2007), and individuals choose the subset of cases that lead to conviction. The results of

the chapter support the use of unanimity rule in determining which works are obscene.

Third, standards of behavior are used to evaluate behavior in civil and criminal trials. Examples

of standards of behavior include the reasonable person standard studied by Rubinstein (1983), the

business judgment rule, and fiduciary duties. To model this standard, we replace the set of works

with a set of actions, and individuals have multiple standards, one for each set of circumstances,

describing which actions are unreasonable in that circumstance.

4.2 The Model

4.2.1 Notation and the Model

The community is a set N ≡ {1, ..., n} of individuals. The space of works is denoted by (W,Σ, µ),

where W is the set of works, Σ is the σ-algebra of subsets of works, and µ is a measure on (W,Σ).

The space (W,Σ) is assumed to be isomorphic to ([0, 1],B), where B is the set of Borel subsets of

[0, 1]. I assume that µ is countably additive, non-atomic, non-negative, and finite.12 Let Φ be the

set of all automorphisms of (W,Σ) that preserve the measure µ.

Let J ≡ {J ∈ Σ : µ (J) < µ (W )} be the set of judgments. The requirement that judgments

must be of less than full measure is a reasonableness condition that reflects the idea that not all

works can be obscene, or should be prohibited. Let M ≡ {1, ...,m} denote the set of issues. For

example, if there is only a single standard of obscenity then m = 1, while if there is both a standard

of “appeal to the prurient interest” and “patently offensive” then m = 2. The set M can be finite

or countably infinite. A standard is an M -vector of judgments, one for each issue. The set of

standards is denoted S ≡ JM . A profile is an N -vector of standards, S = (S1, ..., Sn) ∈ SN ,

where Si represent individual i’s standard. I write Sij to denote individual i’s judgment about issue

j. A rule f : SN → S is a function mapping each profile into a community standard, denoted

f(S) = (f1(S), ..., fm(S)).

For K ∈ N and for any two sets S and T of the form JK , I define 0 as the coordinatewise

intersection, so that (S 0 T )k ≡ Sk ∩ Tk, and I define 2 as the coordinatewise union, so that
12The space of actions is taken from the model of non-atomic games studied in Aumann and Shapley (1974) and

Dubey and Neyman (1984).
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(S 2 T )k ≡ Sk ∪ Tk. Note that there exist S, T ∈ JK such that S 2 T /∈ JK . I define S 4 T to

mean that Sk ⊆ Tk for every k ∈ K. When S 4 T I write that S is as permissive as T , because

every work that a particular person permits in profile T is permitted by that person in profile S.13

I define (φS)k ≡ φ (Sk).

4.2.2 Axioms

The first axiom, homogeneity, requires that if the community is perfectly homogeneous, so that every

individual in the community has identical views about the entire standard, then this commonly held

belief is the community standard. In some sense, if this axiom is not satisfied, then the community

standard must be derived from something other than the individual judgments. This axiom excludes

degenerate rules, under which the community standard is predetermined and does not change as a

result of the opinions.14

Homogeneity: If Si = Sj for all i, j ∈ N , then f(S) = S1 = ... = Sn.15

Suppose that the individual standards change and that every individual’s new standard is as

permissive as was that individual’s old standard (so that Si 4 S∗i for all i ∈ N). The second axiom,

responsiveness, requires the resulting community standard to be as permissive as the prior commu-

nity standard (so that f(S) 4 f(S∗)). In other words, the community standard must “respond” in

the same direction (more permissive or less) as the individuals in the community. Responsiveness

prevents the perverse result in which a defendant is convicted because the individuals in the commu-

nity became more permissive. This axiom excludes variable threshold rules, under which the degree

of consent required to deem a work obscene varies.

Responsiveness: If S 4 S∗, then f(S) 4 f(S∗).

The principle of anonymity requires that each individual’s view must be treated equally. Individ-

uals’ names are switched through a permutation π of N . For a given permutation, π(i) is the new

name of the individual formerly known as i. For a given profile S, πS ≡
(
Sπ(1), ..., Sπ(n)

)
is the pro-

file that results once names are switched. The third axiom, anonymity, requires that permutations

of the individuals’ names do not affect the community standard. This axiom excludes dictatorships,

under which a pre-selected individual decides which works are obscene.

Anonymity: For every permutation π of N , f(S) = f(πS)
13Note that for K = 1, the symbols & and ∩ are interchangeable, as are the symbols ( and ∪, and the symbols *

and ⊆.
14The examples provided in this section are not meant as an exhaustive list of all rules excluded by these axioms.
15A weaker axiom would require that, if Si = Sj for all i, j ∈ N , then f(S) * S1 = ... = Sn. All theorems in this

section would remain true if we replaced homogeneity with this weaker axiom.
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The principle of neutrality is similar. It requires that a rule not discriminate, ex ante, between

works on the basis of their names. Differences between works in the community standard should

come from the beliefs and not from the rule. Works’ names switched through an automorphism

φ ∈ Φ. For a given profile S, f(φS) is the community standard derived from the profile that results

when the names are switched; while φf(S) is the community standard that results when the names

are switched only after the aggregation. The neutrality axiom requires that these two community

standards be the same. This axiom excludes rules that deem a particular work obscene regardless

of the opinions.

Neutrality: For every automorphism φ ∈ Φ, φ (f(S)) = f(φS).

4.2.3 The Unanimity Rule

Under the “unanimity rule”, a work is considered obscene if it is considered obscene by every

individual. If there are multiple issues, then for each issue a work is prohibitable only when it is

considered prohibitable by every individual.

Unanimity Rule: For every S ∈ SN , f(S) = 0i∈NSi.

The main result of this chapter is that a rule satisfies all four axioms if and only if it is unanimity

rule.

Theorem 4.2.1 The unanimity rule is the only rule that satisfies homogeneity, responsiveness,

anonymity, and neutrality. Moreover, all four axioms are independent.

Proof.

That unanimity rule satisfies the four axioms is trivial. I will show that any rule which satisfies

the four axioms must be unanimity rule. Let f satisfy the four axioms.

Step 1: I show that any work considered obscene by every individual must be considered obscene

by the community, or that 0i∈NSi 4 f(S) for all S ∈ SN .

Let S ∈ SN . Define S∗ as the profile such that S∗j ≡ 0i∈NSi for all j ∈ N . By homogeneity,

f(S∗) = 0i∈NSi. Because S∗ 4 S, responsiveness implies that f(S∗) 4 f(S). Thus 0i∈NSi 4 f(S).

Step 2: I show that if there is a profile T such that (a) Tik ∪ Tjl = W unless i = j and k = l,

and (b) µ (Tik) = µ (Tjk) for all i, j ∈ N and k ∈ M , then f(T ) 4 0i∈NTi.

Let T ∈ SN such that conditions (a) and (b) are met. Without loss of generality, let w /∈ T11.

To prove that f(T ) 4 0i∈NTi, it is sufficient to show that w /∈ f1(T ).

Suppose, contrariwise, that w ∈ f1(T ). Then, by neutrality, W \T11 4 f1(T ). By anonymity and

neutrality, W \Ti1 4 f1(T ) for all i ∈ N . Thus 2i∈N (W \ Ti1) 4 f1(T ). By step 1, 0i∈NTi1 4 f1(T ),

which implies that f1(T ) = W . But this is a contradiction, which proves that w /∈ f1(T ), and

therefore that f(T ) 4 0i∈NTi.



46

Step 3: I show that any work not considered obscene by every individual must not be considered

obscene by the community, or that f(S) 4 0i∈NSi for all S ∈ SN .

Let S ∈ SN . Without loss of generality, let w /∈ S11. To prove that f(S) 4 0i∈NSi, it is sufficient

to show that w /∈ f1(S). Let T be a profile such that: (1) Tik ∪ Tjl = W unless i = j and k = l, (2)

µ (Tik) = µ (Tjk) for all i, j ∈ N and k ∈ M , (3) w /∈ T11, and (4) S 4 T . By step 2, f(T ) 4 0i∈NTi.

Because S 4 T , responsiveness implies that f(S) 4 f(T ) 4 0i∈NTi. Because w /∈ T11 it follows that

w /∈ f1(S). This proves that f(S) 4 0i∈NSi.

Step 4: Steps 1 and 3 directly imply that f(S) = 0i∈NSi. The independence of the axioms is

proved in the appendix.

4.2.4 Independence

Unanimity rule is clearly independent in the sense that the community standard’s judgment about

a particular work given a particular issue depends only on the individual judgments about that

work given that issue. This independence property can be broken into two strong axioms, work-

independence and issue-independence. A rule is work-independent if the determination as to whether

a particular work is obscene depends only on the opinions about that particular work.

Work-Independence: If there exists w ∈ W and S, S′ ∈ SN such that w ∈ Sij if and only if

w ∈ S′ij for all i ∈ N and j ∈ M , then w ∈ fj(S) if and only if w ∈ fj(S′).

A rule is issue-independent if the collective judgment for each issue depends only on the opinions

about that issue.

Issue-Independence: If there exists j ∈ M and S, S′ ∈ SN such that Sij = S′ij for all i ∈ N , then

fj(S) = fj(S′).

It has long been known that when there is only a single issue (m = 1) and the set of works is finite,

the unanimity rule is the unique rule satisfying homogeneity, responsiveness, anonymity, neutrality,

and work-independence. (Monjardet, 1990; Nehring and Puppe, 2006). If there are multiple issues

(m > 1), then it is clear that unanimity rule would be the unique rule satisfying these five axioms

and issue-independence. In the infinite setting described in subsection 4.2.1, neither of these strong

independence axioms must be assumed, but both are implied by the combination of homogeneity,

responsiveness, anonymity, and neutrality.

Given this prior result, a natural question is whether either independence axiom is somehow

implied by the model or some (non-full) subset of the axioms. The answer to this question is no —

while all four axioms together are sufficient to imply work-independence and issue-independence, all

four are also necessary to rule out non-independent rules.
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Theorem 4.2.2 The combination of the homogeneity, responsiveness, anonymity, and neutrality

axioms is sufficient to imply work-independence and necessary to exclude rules that violate work-

independence.

Theorem 4.2.3 Let m ≥ 2. The combination of the homogeneity, responsiveness, anonymity, and

neutrality axioms is sufficient to imply issue-independence and necessary to exclude rules that violate

issue-independence.

4.3 Other results

4.3.1 Finite Set of Works

In the previous section I assumed that the set of works is continuous and that each judgment must

be of less than full measure. In this subsection I examine the implications of this assumption by

allowing W to be finite and requiring only that there be at least one non-obscene work.

Consider the model specified in Section 4.2.1, with the following changes. Let W describe an

infinite set of works, and let W ⊆ W be a collection of works. For each W ⊆ W, let JW ≡ 2W \W

be the set of non-full subsets of W , and let SW ≡ JN
W be the set of standards over W . For each

W ⊆ W, let fW : SN
W → SW be a function mapping from an N -vector of standards into a single

standard. Let ΦW denote the set of permutations of W .

The axioms all have natural analogues in this setting, where f is replaced by fW , S is replaced by

SW , and Φ is replaced by ΦW . The following characterization of the unanimity rule follows directly

from Monjardet (1990) and Nehring and Puppe (2006).16

Theorem 4.3.1 The unanimity rule is the only rule that satisfies homogeneity, anonymity, neu-

trality, work-independence, and issue-independence. Moreover, all five axioms are independent.

Proof. That unanimity rule satisfies the five axioms is trivial. I will show that any rule which

satisfies the five axioms must be unanimity rule. Let fW satisfy the five axioms.

Issue-independence and work-independence imply that, for each issue j ∈ M and each work

w ∈ W , there exists a group of coalitions Gjw ⊆ 2N such that w ∈ fW
j (S) if and only if

{i ∈ N : w ∈ Sij} ∈ Gjw. Neutrality implies that there exists a single such group of coalitions

Gj for each issue j such that Gj = Gjw for all w ∈ W . Anonymity implies that there is a col-

lection of quotas, Qj ⊆ {0, ..., n}, such that w ∈ fW
j (S) if and only if | {i ∈ N : w ∈ Sij} | ∈ Qj .

Homogeneity implies that Qj )= ∅.
16Both Monjardet (1990) and Nehring and Puppe (2006) used stronger axioms which additionally included respon-

siveness. However, as I show in the proof, responsiveness is implied by the other five axioms.
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Let j ∈ M , let x ∈ {0, ..., n−1}, and let S ∈ SN
W such that, for all w ∈ W , | {i ∈ N : w ∈ Sij} | =

x. Then fW
j (S) = W if x ∈ Qj and fW

j (S) = ∅, otherwise. Clearly fW
j (S) )= W and therefore

{0, ..., n− 1} )⊆ Qj . Because Qj )= ∅ it follows that Qj = {n} and therefore fW (S) = 0i∈NSi.

The independence of the axioms is proved in the appendix.

Without the independence axioms, the four axioms of homogeneity, responsiveness, anonymity,

and neutrality are not by themselves sufficient to characterize the unanimity rule. The other rules

that satisfy these axioms have a special property — their outcomes differ from the unanimity rule

outcome only when individuals consider a very small number of works to be non-obscene.

To formalize this concept, let SW mn = {S ∈ SW : |W \ Sj | ≥ m ∗ n for all j ∈ M} be the set of

standards in which each individual considers at least m ∗ n works to be acceptable for each issue,

where m is the number of issues and where n is the number of individuals in the community. A rule

has the MN-Property if, whenever each individual considers at least m ∗ n works to be acceptable

for each issue, the outcome coincides with the unanimity rule outcome.

MN-Property: For each S ∈ SN
W mn , fW (S) = 0i∈NSi.

The four axioms are sufficient to imply the MN-Property.

Lemma 4.3.2 If an aggregation rule satisfies homogeneity, responsiveness, anonymity, and neu-

trality, then it satisfies the MN-Property.

Proof. Let fW satisfy the four axioms.

Step 1. I show that for any profile S ∈ SN
W mn , 0i∈NSi 4 fW (S).

Let S ∈ SN
W mn . Let S′ ≡ (0i∈NSi)

N , the N -vector for which each element is 0i∈NSi. Clearly,

S′ 4 S. By homogeneity, fW (S′) = 0i∈NSi. Responsiveness implies that 0i∈NSi 4 fW (S).

Step 2: I show that if there is a profile T ∈ SN
W such that (a) Tik ∪ Tjl = W unless i = j and

k = l, and (b) |Tik| = |Tjk| for all i, j ∈ N and k ∈ M , then f(T ) 4 0i∈NTi.

Let T ∈ SN
W such that conditions (a) and (b) are met. Without loss of generality, let w /∈ T11.

To prove that f(T ) 4 0i∈NTi, it is sufficient to show that w /∈ f1(T ).

Suppose, contrariwise, that w ∈ f1(T ). Then, by neutrality, W \T11 4 f1(T ). By anonymity and

neutrality, W \Ti1 4 f1(T ) for all i ∈ N . Thus 2i∈N (W \ Ti1) 4 f1(T ). By step 1, 0i∈NTi1 4 f1(T ),

which implies that f1(T ) = W . But this is a contradiction, which proves that w /∈ f1(T ), and

therefore that f(T ) 4 0i∈NTi.

Step 3: I show that f(S) 4 0i∈NSi for all S ∈ SN
W mn .

Let S ∈ SN
W mn and let w /∈ S11. To show that fW (S) 4 0i∈NSi. it is sufficient to show that

w /∈ fW
1 (S). Let S∗ ∈ SN

W be a profile such that (a) w /∈ S∗11, (b) S∗ik ∪ S∗jl = W unless i = j and

k = l, (c) |W \ S∗ij | = 1 for all i ∈ N and j ∈ M , and (d) S 4 S∗. Note that such a profile S∗ is

guaranteed to exist for all S ∈ SN
W mn . By step 2, f (S∗) 4 0i∈NS∗i . Because S 4 S∗, responsivness

implies that fW
1 (S) 4 fW

1 (S∗), and therefore w /∈ fW
1 (S).
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Step 4: Steps 1 and 3 directly imply that f(S) = 0i∈NSi for all S ∈ SN
W mn .

Lemma 4.3.2 explains why the axioms imply one result in the continuous model and another in

the finite model. Any rule that satisfies the four axioms will coincide with unanimity rule when the

set of non-obscene works is “large” relative to the number of individuals and issues — and not relative

to the size of the entire set of works. In the continuous case, a set F with measure µ(F ) = µ(W )
100 is,

in some sense, the same relative size as a finite single-element set G out of a hundred-element set W .

Both F and G are one percent of the whole. However, while G has one element, F has uncountably

many elements, and thus only F is large relative to any integers n and m. Similarly, if W were

countably infinite and the set of non-obscene works was also required to be countably infinite, the

four axioms would imply unanimity rule.

For every work, it is reasonable to assume that there are similar works about which every indi-

vidual would feel exactly the same way. Take a painting and add a small spot of blue paint; there is

probably a place on the painting (or picture frame) where the spot would not affect any individual’s

judgment about the painting.

Formally, we can describe the set of similar issues in the following way. For each W ⊆ W, let

W ′ ⊆ W be a “similar” set of works, so that |W | = |W ′| and W ∩W ′ = ∅. For each w ∈ W let

w′ ∈ W ′ denote its counterpart. Let ψ : SW → SW∪W ′ be the replication function such that w ∈ Sij

if and only if w, w′ ∈ ψ(S)ij . For each S ∈ SN
W , let ψ(S) = (ψ(S1), ..., ψ(Sn)). For a set W ∈ W, let

ψ(W ) = W ∪W ′.

A natural requirement is that the community standard preserve replications. For a given profile

S, fψ(W ) (ψ(S)) is the community standard derived from the replicated profile, and ψ
(
fW (S)

)
is

the community standard derived from the profile and then replicated. The next axiom, replication

invariance, requires that these two community standards be the same.

Replication Invariance: For each W ⊆ W and S ∈ SN
W , ψ

(
fW (S)

)
= fψ(W ) (ψ(S)).

Replication invariance, when combined with the other four axioms, is sufficient to characterize

the unanimity rule without a direct assumption of independence.

Theorem 4.3.3 An aggregation rule satisfies homogeneity, responsiveness, anonymity, neutrality,

and replication invariance if and only if it is unanimity rule. Furthermore, the five axioms are

independent.

Proof. Let S ∈ SN
W and let z ≡ min {x ∈ N : x ≥ log2(m ∗ n)}. For all x > 1, let ψx(S) =

ψ
(
ψx−1(S)

)
. Repeated application of the replication invariance axiom implies that ψz

(
fW (S)

)
=

fψz(W ) (ψz(S)). Because ψz(S) ∈ SN
ψz(W )mn , it follows from Lemma 4.3.2 that fψz(W ) (ψz(S)) =

0i∈Nψz(Si). Therefore, fW (S) = 0i∈NSi.

The independence of the axioms is proved in the appendix.
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4.3.2 Ordered Works

The neutrality axiom implicitly assumes that there is no objective ordering on the set of works. No

objective method to compare works (with respect to obscenity) has ever been developed by courts

or by commentators. However, there are circumstances in which this assumption might appear to

be too strong. In this subsection I consider the case where there is only a single issue, and the set

of works is simply the real line. The non-obscene sets are taken to be open convex intervals of the

real line, with the interpretation that if x and y are non-obscene, then z ∈ [x, y] should also be

non-obscene.

Consider the model specified in Section 4.2.1, with the following changes. Let the set of works

W = R be the real line, and let J denote the set of convex open intervals in R. Here elements of J

correspond to judgments about which works are non-obscene or permissible. To simplify the model,

let m = 1. Let Φ denote the set of strictly monotonic mappings φ : R → R. When S 4 T I write

that T is as permissive as S. A rule f∗ is the least permissive if, for every rule f and all profiles

S ∈ SN , f∗(S) 4 f(S). Similarly, a rule f∗ is the most permissive if, for every rule f and all profiles

S ∈ SN , f(S) 4 f∗(S).

The median-rule is the rule in which the highest and lowest endpoints of the set of works con-

sidered non-obscene by the community standard are the median highest and median lowest in the

community. (If n is even, then the median-rule uses the n
2

th highest and lowest endpoints.)

Median-rule: For all S ∈ SN

fmed(S) =
{
x ∈ R : |{i ∈ N : Si ∩ [x,∞) )= ∅}|, |{i ∈ N : Si ∩ (−∞, x] )= ∅}| ≥ n

2

}
.

The maximal-rule is the rule in which the highest and lowest endpoints of the set of works

considered non-obscene by the community standard are the highest and lowest in the community.

Maximal-rule: For all S ∈ SN

fmax(S) = {x ∈ R : |{i ∈ N : Si ∩ [x,∞) )= ∅}|, |{i ∈ N : Si ∩ (−∞, x] )= ∅}| ≥ 1}.

The median-rule and the maximal-rule are two of many rules that satisfies the four axioms in this

setting. However, every other rule is more permissive than the median-rule, and is less permissive

than the maximal rule.

Proposition 4.3.4 The median-rule is the least permissive rule that satisfies homogeneity, respon-

siveness, anonymity, and neutrality.

Proposition 4.3.5 The maximal-rule is the most permissive rule that satisfies homogeneity and

responsiveness. It also satisfies anonymity and neutrality.

Proof.
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Part A. I first show that the median-rule and the maximal-rule satisfy all four axioms. For

S ∈ SN , and for t ∈
{
1, n

2

}
, define

f t(S) = {x ∈ R : |{i ∈ N : Si ∩ [x,∞) )= ∅}|, |{i ∈ N : Si ∩ (−∞, x] )= ∅}| ≥ t}.

To show that the f t satisfies homogeneity, let S′ ∈ S and let S ≡ (S′)N . If w /∈ S′, convexity

implies either that Si ∩ [w,∞) = ∅ for all i ∈ N , or that Si ∩ (−∞, x] = ∅ for all i ∈ N , which

implies that w /∈ f t(S). If w ∈ S′, convexity implies either that Si ∩ [w,∞) )= ∅ for all i ∈ N , or

that Si ∩ (−∞, x] )= ∅ for all i ∈ N , which implies that w ∈ f t(S).

To show that the f t satisfies responsiveness, let S, T ∈ SN such that S 4 T , and let w ∈ f t(S).

I will show that w ∈ f t(T ). That w ∈ f t(S) implies both that |{i ∈ N : Si ∩ [w,∞) )= ∅}| ≥ t and

that |{i ∈ N : Si ∩ (−∞, w] )= ∅}| ≥ t. Because Si 4 Ti for all i ∈ N , Si ∩ [w,∞) )= ∅ implies that

Ti ∩ [w,∞) )= ∅, and Si ∩ (−∞, w] )= ∅ implies that Ti ∩ (−∞, w] )= ∅. It follows that w ∈ f t(T ).

To show that the f t satisfies anonymity is trivial. To show that the f t satisfies neutrality, let

S ∈ SN and φ ∈ Φ. It is sufficient to show that either condition (a) Si 0 [x,∞) )= ∅ if and only if

φ(Si) 0 [φ(x),∞) )= ∅, and Si 0 (−∞, x] )= ∅ if and only if φ(Si) 0 (−∞, φ(x)] )= ∅, or condition

(b) Si 0 [x,∞) )= ∅ if and only if φ(Si) 0 (−∞, φ(x)] )= ∅, and Si 0 (−∞, x] )= ∅ if and only if

φ(Si) 0 [φ(x),∞) )= ∅, must be true for all x ∈ R and i ∈ N .

Let i ∈ N and x ∈ R. If x ∈ Si then trivially φ(x) ∈ φ(Si) and both conditions hold. Assume

then that x /∈ Si. Then either condition (1) Si 0 [x,∞) )= ∅ or condition (2) Si 0 (−∞, x] )= ∅ must

be true but not both.

First, assume that φ is monotonically increasing, or that x < y implies that φ(x) < φ(y). If (1),

let y ∈ Si0 [x,∞). Then x < y and therefore φ(x) < φ(y). It follows that φ(y) ∈ Si0 [φ(x),∞), and

that φ(y) /∈ Si0(−∞, φ(x)], and therefore condition (a) holds. If (2), let z ∈ Si0(−∞, x]. Then z < x

and therefore φ(z) < φ(x). It follows that φ(z) /∈ Si 0 [φ(x),∞), and that φ(z) ∈ Si 0 (−∞, φ(x)],

and therefore condition (a) holds.

Alternately, assume that φ is monotonically decreasing, or that x < y implies that φ(y) < φ(x). If

(1), let y ∈ Si0 [x,∞). Then x < y and therefore φ(y) < φ(x). It follows that φ(y) /∈ Si0 [φ(x),∞),

and that φ(y) ∈ Si 0 (−∞, φ(x)], and therefore condition (b) holds. If (2), let z ∈ Si 0 (−∞, x].

Then z < x and therefore φ(x) < φ(z). It follows that φ(z) ∈ Si 0 [φ(x),∞), and that φ(z) /∈

Si 0 (−∞, φ(x)], and therefore (b) holds. This concludes the proof of Part A.

Part B. I show that if a rule f satisfies homogeneity and responsiveness, then f(S) 4 fmax(S)

for all profiles S ∈ SN .

For X ⊆ R, let conv (X) = {y ∈ R : there exists x, z ∈ X such that x ≥ y ≥ z}. Note that

fmax(S) = conv (2i∈NSi).

Let S ∈ SN , and let S′ ≡ (conv (2i∈NSi))
N . By homogeneity, f (S′) = conv (2i∈NSi). Because

S 4 S′, responsiveness implies that f(S) 4 conv (2i∈NSi) = fmax(S). This completes the proof of

Proposition 4.3.5.
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Part C. I show that if a rule f satisfies homogeneity, responsiveness, anonymity, and neutrality,

then fmed(S) 4 f(S) for all profiles S ∈ SN .

Let S∗ ≡
{
S ∈ SN : for all i )= j, Si 0 Sj = ∅ and inf (Si) )= sup (Sj)

}
.

For all S ∈ S∗, let S(i) be the i-th highest element of S, so that i > j implies that x > y for any

x ∈ S(i) and y ∈ S(j). Let z ≡ min
{
x ∈ N : x ≥ n

2

}
.

Step 1. I show that for all S ∈ S∗ and i ∈ N , Si 0 f (S) ∈ {Si, ∅}.

Let S ∈ S∗, i ∈ N , x, y ∈ Si, and φ ∈ Φ such that, for all i ∈ N , φ (inf (Si)) = inf (Si),

φ (sup (Si)) = sup (Si), and where y = φ(x). Then φ(S) = S. By neutrality, x ∈ f(S) if and only if

y = φ(x) ∈ f(φ(S)) = f(S).

Step 2. I show that for all S ∈ S∗ and i ∈ N , S(i) 4 f (S) if and only if S(n+1−i) 4 f (S).

Let S ∈ S∗, i ∈ N , x ∈ S(i), y ∈ S(n+1−i), and φ ∈ Φ such that, for all i ∈ N , φ
(
inf

(
S(i)

))
=

sup
(
S(n+1−i)

)
, φ

(
sup

(
S(i)

))
= inf

(
S(n+1−i)

)
, and where y = φ(x). Let π be the permutation such

that π(j) = n + 1− j for all j ∈ N . Then πφ(S) = S. By anonymity and neutrality, x ∈ f(S) if and

only if y = φ(x) ∈ f(πφ(S)) = f(S).

Step 3. I show that S(z) 4 f(S) for all S ∈ S∗.

Let S ∈ S∗. Suppose, contrariwise, that f satisfies the four axioms but that S(z) 0 f(S) = ∅.

Because f(S) is convex, this implies that S(j)0f(S) = ∅ for either (a) j ≥ z or (b) j ≤ z. It follows

from step 2 that S(j)0f(S) = ∅ for all j ∈ N . Part B implies that f(S) 4 conv (2i∈NSi)\(2i∈NSi).

Let v ∈ f(S), and without loss of generality, assume that v ∈
(
sup

(
S(i+1)

)
, inf

(
S(i)

))
for some

i < n. Construct a profile Sv such that S(j) = Sv
(j) for all j )= i+1 and Sv

(i+1) ≡
(
inf

(
S(i+1)

)
, v + δ

)

for some suitably small δ. Let x ∈ S(i+1).

Let φ ∈ Φ such that, for all j ∈ N , φ (inf (Sj)) = inf
(
Sv

j

)
, φ (sup (Sj)) = sup

(
Sv

j

)
, and v = φ(x).

Then φ(S) = Sv. Because S 4 Sv, responsiveness implies that f(S) 4 f(Sv) and therefore v ∈

f(Sv). Because x /∈ f(S), neutrality implies that v = φ(x) /∈ f(φ(S)) = f(Sv). This contradiction

show that S(z) 4 f(S) for all S ∈ S∗.

Step 4. I show that fmed (S) 4 f (S) for all S ∈ SN .

Let S ∈ SN , and let x ∈ fmed(S). I will show that x ∈ f(S).

For each individual i ∈ N , let ai ≡ inf (Si) and bi ≡ sup (Si). Note that Si = (ai, bi). If bi )= bj

for all i, j ∈ N , construct a profile S+ such that S+
i = (bi − ε, bi), with ε chosen suitably small such

that S+ ∈ S∗, S+ 4 S, and such that x < y for all y ∈ S+
(z). If there exists i, j ∈ N such that bi = bj

then construct the profile S+ so that S+
i = (bi − ε, bi), S+

j = (bi − 3ε, bi − 2ε), etc., again with ε

chosen suitably small such that S+ ∈ S∗, S+ 4 S, and such that x < y for all y ∈ S+
(z).

Similarly, if ai )= aj for all i, j ∈ N , construct a profile S− such that S−i = (ai, ai + ε), with

ε chosen suitably small such that S− ∈ S∗, S− 4 S, and such that x > y for all y ∈ S−(z). If

there exists i, j ∈ N such that ai = aj then construct the profile S− so that S−i = (ai, ai + ε),

S−j = (ai + 2ε, ai + 3ε), etc., again with ε chosen suitably small such that S− ∈ S∗, S− 4 S, and
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such that x > y for all y ∈ S−(z).

By step 3, S+
(z) 4 f(S). By steps 2 and 3, S−(n+1−z) 4 f(S). By convexity, conv

(
S+

(z) 2 S−(n+1−z)

)
4

f(S). By construction, for all w ∈ S+
(z) and y ∈ S−(n+1−z), w > x > y which implies that

x ∈ conv
(
S+

(z) 2 S−(n+1−z)

)
4 f(S). This completes the proof of Proposition 4.3.4.

4.3.3 Related issues

I have assumed that the issues in M are not logically related and do not imply one another. That

would not be a reasonable assumption if, for example, we were to include three issues, “appeal to

prurient interest,” “patent offensiveness,” and “obscenity.” The last issue is the intersection of the

previous two.

To describe this formally, consider the model specified in Section 4.2.1, with the following changes.

Let M ≡ {a, b, a ∧ b}, with the interpretation a=“appeals to the prurient interest”, b=“patently

offensive”, and a∧ b = “obscene”. Let S ⊆ JM be the set of standards such that, for all Si ∈ S and

Sia 0 Sib = Si(a∧b).

If we add an additional assumption of issue-independence, this formal setup allows us to remove

two unecessary axioms: responsiveness and neutrality. The combination of the issue-independence,

homogeneity, and anonymity axioms is sufficient to characterize the unanimity rule. This theorem

is related to the doctrinal paradox of Kornhauser and Sager (1986) which was first formalized by

List and Pettit (2002).

Theorem 4.3.6 An aggregation rule satisfies homogeneity, anonymity, and issue-independence if

and only if it is unanimity rule. Furthermore, the three axioms are independent.

Proof. That unanimity rule satisfies the three axioms is trivial. To prove the converse, let f satisfy

the three axioms. I will show that f must be unanimity rule.

Issue-independence implies that there are functions ga, gb, ga∧b : JN → J such that, for all

S ∈ SN , f(S) =
(
ga

(
(Sia)i∈N

)
, gb

(
(Sib)i∈N

)
, ga∧b

((
Si(a∧b)

)
i∈N

))
such that, for all x, y ∈ JN ,

ga(x) 0 gb(y) = ga∧b(x 0 y). Furthermore, ga∧b(x) must be responsive. To see why, assume that

x 4 z. Clearly, ga(x) 0 gb(z) = ga∧b(x) = ga(z) 0 gb(x). This implies that ga∧b(x) 4 ga(z) 0 gb(z)

and therefore ga∧b(x) 4 ga∧b(z).

Homogeneity implies that, for all x ∈ JN , ga(x) = gb(x) = ga∧b(x). To see why, suppose,

contrariwise, that there is an x ∈ JN such that ga(x) )= gb(x). We know that ga(x)0gb(x) = ga∧b(x),

this implies that either ga(x) > ga∧b(x) or gb(x) > ga∧b(x) or both. Without loss of generality,

assume that ga(x) > ga∧b(x). For all z ∈ JN , ga(x)0 gb(z) = ga∧b(x0 z). Let z ≡ (ga(x))N , the N -

vector for which every element is equal to ga(x). By homogeneity, gb(z) = ga(x) which implies that

ga(x)0ga(x) = ga(x) = ga∧b(x0z). But because ga∧b(x) ≥ ga∧b(x0z), this violates the assumption
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that ga(x) > ga∧b(x) and proves that, for all x ∈ JN , ga(x) = gb(x). Therefore, ga(x) = ga∧b(x).

Let g(x) ≡ ga(x).

Let x ∈ JN , and let π be the permutation such that π(n) = 1 and, for all i < n, π(i) = i + 1.

By anonymity, g(x) = g(πx). It follows that g(x) = g(x) 0 g(πx) = g(x 0 πx). By induction, this

implies that g(x) = g(x 0 πx 0 ππx 0 ...) = g(0i∈Nxi, ...,0i∈Nxi). From homogeneity it follows

that g(x) = 0i∈Nxi which implies that for all S ∈ SN , f(S) =
(
0i∈NSia,0i∈NSib,0i∈NSi(a∧b)

)
=

0i∈NSi.

The independence of the axioms is proved in the appendix.

4.4 Conclusion

I have introduced a new model of community standards used in determining whether potentially

obscene material is protected by the free speech and press guarantees of the United States Con-

stitution. In the model, both individual and community standards are taken to be judgments —

categorizations of possible works as either “obscene” or “not obscene.” Every possible judgment is

allowed provided it satisfies the following restriction: neither individuals nor the community may

consider all works to be obscene. Community standards are derived systematically from the indi-

vidual standards. Every possible method of deriving the community standards is considered. The

methods are then evaluated according to normative axioms.

The axioms require that the community standard (a) preserve unanimous agreements about the

entire standard, (b) become more permissive when all individuals become more permissive, and not

discriminate, ex ante, (c) between individuals and (d) between works. Together, these four axioms

characterize the unanimity rule, under which a work is deemed obscene when every individual

considers it to be obscene. Every other conceivable method of deriving a community standard from

individual standards must violate one or more of these axioms. Whether this result is positive or

negative depends on the specific interpretation of the model.

If the jury is taken to be a perfectly representative sample of the society, then unanimity rule

coincides with the unanimous jury rule, the dominant rule in criminal trials in the United States.17

Similarly, if we assume that the community consists of all reasonable persons who live in a soci-

ety, then the result support Lord Devlin’s argument that community standards are connected to

unanimity rule.

However, there are strong reasons for believing that unanimity rule is not always used in the

United States. The primary reason is that there are still convictions for obscenity. American society
17In civil cases, the unanimous jury rule is used in Federal courts, in the District of Columbia, and in twenty-seven

states out of fifty. In criminal cases, the unanimous jury rule is used everywhere but Puerto Rico. The correspondence
is not perfect, however. The rule generally requires that a jury must unanimously agree to find for either the plaintiff
or the defendant. When the jury is not unanimous the result is a mistrial, which is a victory for the defense except
that the case can be retried.
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has become much more diverse in the past half-century, even in places generally thought to be

conservative bastions. Empirical research supports the claim that many of these convictions are for

material considered non-obscene by a many individuals in the relevant communities. (Linz et al.,

1991, 1995).

There is an additional problem which occurs if the accused is a member of the community. In

most criminal prosecutions the defendant’s incentives are generally not aligned with those of the

tribunal. Lord Devlin dealt with this problem by allowing the court to infer what the defendant’s

honest belief would be if the defendant was reasonable and had thought about the act in question.

If the defendant’s actual views are relevant, then unanimity rule may be unworkable in the United

States. The self-incrimination clause of the Fifth Amendment to the United States Constitution

prevents the court from asking the defendant to reveal facts (including beliefs) that would lead to

conviction.

If, despite this, we decide to press forward with the unanimity rule, and if the relevant community

consists of all reasonable individuals within the relevant geographical region, then the unanimity rule

could be implemented through a jury instruction. Jurors would be instructed to find a work obscene

only if every reasonable person in the community would consider it obscene. However, for this rule to

be meaningful, whether a person is deemed ‘reasonable’ must not depend on that persons judgment.

If unanimity rule is not used, however, then the law can take one of two paths. First, the law

could rely upon a rule that violates one of the four axioms. The rule would not respect unani-

mous judgments of the society, or convict individuals because society becomes more permissive, or

discriminate between individuals or works.

Second, the law could cut the connection between the judgments of individuals in the community

and the applicable legal standard. There is nothing, per se, wrong with such an approach. It would,

however, represent a total sea change in the approach of the Supreme Court.

4.5 Appendix

4.5.1 Proof of Theorem 4.2.1: Independence of the Axioms

Claim The homogeneity, responsiveness, anonymity, and neutrality axioms are independent.

Proof. I present four rules. Each violates one axiom while satisfying the remaining three. This is

sufficient to prove the claim.

Rule 1: Consider the degenerate rule in which fj(S) ≡ ∅ for all j ∈ M and all S ∈ SN . This

trivially satisfies the responsiveness, anonymity, and neutrality axioms but violates homogeneity.

Rule 2: Consider the rule in which f(S) ≡ 2i∈NSi, if 2i∈NSi ∈ S, and 0i∈NSi otherwise.

This trivially satisfies the homogeneity, anonymity, and neutrality axioms. To see why it violates
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responsiveness, let S be a profile such that (a) 2i∈NSi = WM for all i ∈ N , (b) 0i∈NSi = ∅M for all

i ∈ N , and (c) S1j )= ∅ for all j ∈ M . Let S∗ be a profile where S∗i = Si 0 S1 for all i ∈ N . Clearly

S∗ 4 S. Because 2i∈NSi /∈ S, it follows that f(S) = ∅M , while f(S∗) = S1. Because S1 )4 ∅M the

example shows that this rule violates responsiveness.

Rule 3: Consider the rule in which f(S) ≡ S1 for all S ∈ SN . This trivially satisfies the

homogeneity, responsiveness, and neutrality axioms but violates anonymity.

Rule 4: Let w∗ ∈ W . Consider the rule in which, for all issues j ∈ M , fj(S) ≡ (∩i∈NSij) ∪

{w ∈ W : w ∈ ∪i∈NSij and w = w∗}. This trivially satisfies the homogeneity, responsiveness, and

anonymity axioms but violates neutrality.

4.5.2 Proof of Theorem 4.2.2

Proof. Any rule that satisfies the four axioms is necessarily unanimity rule, which satisfies work-

independence. To show that all four axioms are necessary to exclude rules which violate work-

independence, I provide four rules. Each violates one of the four axioms in addition to work-

independence.

Rule 1: Consider the degenerate rule in which, for all j ∈ M , fj(S) ≡ 0i∈NSij if µ(∩i∈NSij) > 0,

else fj(S) ≡ ∅. This trivially satisfies the responsiveness, anonymity, and neutrality axioms but

violates homogeneity and work-independence.

Rule 2: Consider the rule in which f(S) ≡ 2i∈NSi, if 2i∈NSi ∈ S, and 0i∈NSi otherwise. This

satisfies homogeneity, anonymity, and neutrality but violates responsiveness and work-independence..

Rule 3: Consider the rule in which fj(S) ≡ 0{k∈N :µ(S1j∪Skj)<µ(W )}Sk for all S ∈ SN . This

satisfies homogeneity, responsiveness, and neutrality but violates anonymity and work-independence.

Rule 4: Let w′, w∗ ∈ W . Consider the rule in which, for all issues j ∈ M , fj(S) ≡ (∩i∈NSij) ∪

{w ∈ W : {w, w′} 4∪ i∈NSij and w = w∗}. This trivially satisfies the homogeneity, responsiveness,

and anonymity axioms but violates neutrality and work-independence.

4.5.3 Proof of Theorem 4.2.3

Proof. Any rule that satisfies the four axioms is necessarily unanimity rule, which satisfies issue-

independence. To show that all four axioms are necessary to exclude rules which violate work-

independence, I provide four rules. Each violates one of the four axioms in addition to issue-

independence.

Rule 1: Consider the degenerate rule in which, for all j ∈ M , fj(S) ≡ 0i∈NSi1. This trivially

satisfies the responsiveness, anonymity, and neutrality axioms but violates homogeneity and issue-

independence.

Rule 2: Consider the rule in which, for all j ∈ M , fj(S) ≡ 0i∈NSij 0
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{w ∈ W : for all j ∈ M, {i ∈ N : w ∈ Sij} ∈{ ∅, N}}. This trivially satisfies the homogeneity, anonymity,

and neutrality axioms but violates responsiveness and issue-independence.

Rule 3: Consider the rule in which f1(S) ≡ 0i∈NSi1 and, for j > 1, w ∈ fj(S) if and only if

w ∈ S1j and w ∈ Skj for all k ∈ {i ∈ N : w ∈ Si1 if and only if w ∈ S11}. This trivially satisfies the

homogeneity, responsiveness, and neutrality axioms but violates anonymity and issue-independence.

Rule 4: Consider the rule in which f1(S) ≡ (∩i∈NSij) ∪ {w ∈ W : w ∈ ∪i∈NSij and w = w∗}

and, for j > 1, fj(S) ≡ 0i∈NSij . This trivially satisfies the homogeneity, responsiveness, and

anonymity axioms but violates neutrality and work-independence.

4.5.4 Proof of Theorem 4.3.1: Independence of the Axioms

Claim The homogeneity, anonymity, neutrality, work-independence, and issue-independence axioms

are independent.

Proof. I present five rules. Each violates one axiom while satisfying the remaining four. This is

sufficient to prove the claim.

Rule 1: Consider the degenerate rule in which fW
j (S) ≡ ∅ for all j ∈ M and all S ∈ SN . This

trivially satisfies the anonymity, neutrality, work-independence, and issue-independence axioms but

violates homogeneity.

Rule 2: Consider the rule in which fW (S) ≡ S1 for all S ∈ SN . This trivially satisfies the

homogeneity, neutrality, work-independence, and issue-independence axioms but violates anonymity.

Rule 3: Let w∗ ∈ W . Consider the rule in which, for all issues j ∈ M , fW
j (S) ≡ (∩i∈NSij) ∪

{w ∈ W : w ∈ ∪i∈NSij and w = w∗}. This trivially satisfies the homogeneity, anonymity, work-

independence, and issue-independence axioms but violates neutrality.

Rule 4: Consider the rule in which fW (S) ≡ 2i∈NSi, if 2i∈NSi ∈ S, and 0i∈NSi otherwise.

This trivially satisfies the homogeneity, anonymity, neutrality, and issue-independence axioms, but

violates work-independence.

Rule 5: Let U ≡ {w ∈ W : w ∈ Sij whenever w ∈ Skj for all i, k ∈ N and j ∈ M}. Consider

the rule in which fW
j (S) = U 0i∈N Sij . This rule clearly satisfies the homogeneity, anonymity,

neutrality, and work-independence axioms but violates issue-independence.

4.5.5 Proof of Theorem 4.3.3: Independence of the Axioms

Claim The homogeneity, responsiveness, anonymity, neutrality, and replication invariance axioms

are independent.

Proof. I present five rules. Each violates one axiom while satisfying the remaining four. This is

sufficient to prove the claim.
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Rule 1: Consider the degenerate rule in which fW
j (S) ≡ ∅ for all j ∈ M and all S ∈ SN . This

trivially satisfies the responsiveness, anonymity, neutrality, and replication invariance axioms but

violates homogeneity.

Rule 2: Consider the rule in which fW (S) ≡ 2i∈NSi, if 2i∈NSi ∈ S, and 0i∈NSi otherwise.

This trivially satisfies the homogeneity, anonymity, neutrality, and replication invariance axioms but

violates responsiveness.

Rule 3: Consider the rule in which fW (S) ≡ S1 for all S ∈ SN . This trivially satisfies the

homogeneity, responsiveness, neutrality, and replication invariance axioms but violates anonymity.

Rule 4: Let w∗ ∈ W , and let g : W → R be a function mapping each element ofW to a unique el-

ement of the real line, such that (a) g(w) ≥ g(w∗) for all w ∈ ∪∞i=1ψ
k(w∗) and (b) g(w∗) ≥ g(w) for all

w ∈ ∪w∈W\{w∗}∪∞i=1 ψk(w). Without loss of generality, assume that arg maxw∈W g (W \ 0i∈NSij) ∈

S(1)j . Let Xj ≡
{
x ∈ W : g(x) > maxw∈W

(
W \ 0i *=(1)Sij

)}
, and let Vj ≡ {x ∈ W : g(x) ≥ g(w∗)}.

Consider the rule in which, for all issues j ∈ M , fW
j (S) ≡ 0i∈NSij 2 (Xj 0 Vj). This satisfies the

homogeneity, responsiveness, anonymity, and replication invariance axioms but violates neutrality.

Rule 5: Let Pj ≡ {w ∈ W : |{i ∈ N : w ∈ Sij}| ≥ |{i ∈ N : v ∈ Sij}| for all v ∈ W}. Consider

the rule where fW
j (S) ≡ W \ Pj when |W \ Sij | = 1 for all i ∈ N , and where fW

j (S) ≡ 0i∈N

otherwise. This rule satisfies the homogeneity, responsiveness, anonymity, and neutrality axioms

but fails replication invariance.

4.5.6 Proof of Theorem 4.3.6: Independence of the Axioms

Claim The homogeneity, anonymity, and issue-independence axioms are independent.

Proof. I present three rules. Each violates one axiom while satisfying the remaining two. This is

sufficient to prove the claim.

Rule 1: Consider the degenerate rule in which fj(S) ≡ ∅ for all j ∈ M and all S ∈ SN . This

satisfies anonymity and issue-independence but violates homogeneity.

Rule 2: Consider the rule in which f(S) ≡ S1 for all S ∈ SN . This satisfies homogeneity and

issue-independence but violates anonymity.

Rule 3: Let w∗ ∈ W . Consider the rule in which, for issues j ∈ {a, b}, fj(S) ≡ (∩i∈NSij) ∪

{w ∈ W : w ∈ ∪i∈NSij and w = w∗}, and where fa∧b(S) ≡ fa(S)0fb(S). This satisfies homogeneity

and anonymity but not issue-independence.
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