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Abstract

This work introduces a rigorous uncertainty quantification framework that exploits

concentration–of–measure inequalities to bound failure probabilities using a well-defined

certification campaign regarding the performance of engineering systems. The framework

is constructed to be used as a tool for deciding whether a system is likely to perform safely

and reliably within design specifications. Concentration-of-measure inequalities rigorously

bound probabilities-of-failure and thus supply conservative certification criteria, in addi-

tion to supplying unambiguous quantitative definitions of terms such as margins, epistemic

and aleatoric uncertainties, verification and validation measures, and confidence factors.

This methodology unveils clear procedures for computing the latter quantities by means

of concerted simulation and experimental campaigns. Extensions to the theory include

hierarchical uncertainty quantification, and validation with experimentally uncontrollable

random variables.
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Chapter 1

Introduction

1.1 Motivations

The use of probability and statistics in guiding engineering design/maintenance decisions is

a maturing concept with increasing importance. For example, national defense issues such

as maintaining a naval nuclear fleet have significant cost and security effects if components

are not reliable enough to maintain life at sea. Concurrently, the national laboratories in

the USA are renowned for their superior computing resources and advances in computa-

tional science and engineering. This strong computational backbone supports, among other

duties, the stockpile stewardship effort to certify the nuclear stockpile sans the luxuries of

nuclear testing in the post-test era beginning in 1991 [28]. The goal is to certify the safety

and condition of the stockpile, which changes in time due to complicated nuclear physics.

In light of this goal and the test restrictions, certification must be done in confidence.

With above-ground non-critical experiments, historical data, and computational recourse

available, the mission survives, but with hardship and complexity. Superior computational

prowess allows for higher fidelity modeling and large deployments across the lab machines

to assess the predictability of numerical models to extrapolate information about the future

of the stockpile with confidence. It is in the engineers’ hands to maximize the use of compu-
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tational resources to ensure that components and systems will function reliably during their

lifetime. This analysis is crucial for both the design and maintenance processes. Naturally,

performance cannot be exactly predicted by today’s computational methods, and unless

infinite tests are carried out, cannot be known precisely through experiment alone. Thus

engineers require computational tools that can objectively quantify the likelihood of de-

sired performance to guide design and maintenance decisions. Probabilistic and statistical

tools objectify questions addressing likelihood, thus a basic understanding of these fields is

assumed of the reader.

A typical regimen for applying probabilistic techniques to engineering systems is to spec-

ify probability distributions to input parameters, pass them through a computational model,

and compare the output distribution with experiment. With good agreement between com-

putational and experimental results, one can know the likelihood of desired performance and

can thus make engineering decisions with confidence. The previous statement makes use

of subjective terms like “good” and “confidence”, where disparate interpretations of these

terms between experts may result in divergent decision-making agendas. That statement

also assumes one knows the input probability distributions, i.e., that this is a parameter

distributed according to a uniform or Gaussian distribution. And what of the bounds or

mean and variance? Thus, some level of objectivity of the description of uncertainty must

be met to be to applied to a model.

Completely deterministic engineering systems accept known inputs, X = (X1, ..., Xn),

and yield a deterministic response, Y (this notational conventional will be used throughout

this work). Unfortunately, real-world systems contain noise that perturb the response.

Such noise sources can arise from inhomogeneities of the inputs, measurement error, or

experimental error. These sources of noise can be accounted for by applying distributions
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to input parameters. Once again, how certain can one be of the specified distribution?

Also, when computationally modeling an engineering system, noise can be generated from

computational round-off due to machine precision.

The rudimentary technique applied to engineering models to yield the likelihood of

outcomes are Monte Carlo (MC) methods. These simulations produce a probability distri-

bution of outcomes based on the distributions of the inputs using the computational model.

MC methods are meant to estimate the likelihood of responses over the entire input range.

A more complex question is to ask how often an engineering system becomes noncompli-

ant, i.e., responds outside of the desired range of a specified performance measure. Typical

techniques for this problem are MC methods, first- and second-order reliability methods

(FORM and SORM respectively), and importance sampling. These techniques are increas-

ingly complex sampling algorithms with (roughly) increasing accuracy and efficiency.

Given a computational model of a system, Y = F (X), the response Y depends on

inputs X = (X1, ..., Xn) which can be a mix of random and deterministic parameters.

The foundation of this thesis relies on the understanding of the concentration-of-measure

phenomenon (CoM) that provides a subsequent recourse to upper-bound the likelihood of a

system performing poorly. It is suggested that the reader have a comprehensive knowledge

of set theory and probability theory, both of which are critical towards understanding the

CoM theory and its applications.

1.2 Uncertainty quantification

Uncertainty quantification (UQ) is the quantitative assessment of the uncertainties present

in a system, which typically consists of a model that attempts to predict the real-world

outcome of an engineering system. Methods such as Monte Carlo sampling, evidence the-
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ory, and fuzzy logic provide varying approaches to perform UQ. This work is concerned

with the application of concentration-of-measure inequalities to perform UQ regarding the

performance of engineering systems. Specifically, this framework rests on the context of

certification — a mechanism for deciding whether a system is likely to perform safely and

reliably within design specifications.

The certification process is sometimes described in terms of quantification of margins

and uncertainties (QMU) (e.g., [58], [28], [54]). Suppose that a system is required to per-

form at a certain degree, or threshold, for its acceptable (safe) operation. The system is

designed so that its performance under a worst-case scenario of potential operating condi-

tions is somewhat higher than its threshold. This idea is commonly regarded as a safety

factor, e.g., the threshold load of a ladder is usually set lower than load it could take before

failing in order to ensure that its failure never occurs. A suitable measure M of the distance

between the worst-case and desired performance constitutes the performance margin. How-

ever, because the systems of interest—and the conditions they operate in—are subject to

variability, performance measures are stochastic in nature. Therefore, the precise values of

the expected performance level and its threshold are often uncertain. Uncertainty sources

include operating conditions such as loads and physical characteristics including geometry

and material behavior. Let U denote a suitable measure of these uncertainties regarding

the performance measure, then the confidence factor

CF =
M

U
(1.1)

may be taken as a rational basis for certification. Thus, if CF is sufficiently larger than 1, the

system may be regarded as safe and reliable and a candidate for certification. Interpreted
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differently, the system’s expected performance is far from failure with little variability for

the given design specifications.

A first obvious strategy of attempting certification is by means of experimental testing

and statistical sampling. This is indeed the only avenue of certification possible when no

information is available a priori of the system behavior. However, the amount of tests

required for purely empirical certification can be prohibitively high, especially in systems

for which testing is expensive (see §2.2.5) in time and/or money, essentially rendering the

empirical approach impractical. The problem is exacerbated when systems operate under

extreme conditions outside the range of direct laboratory testing, e.g., large space structures

and high-energy systems such as fusion reactors [10].

Under these conditions, numerical modeling can provide a worthwhile alternative to

testing. Complex engineering systems can often be modeled through the application of

sound physical and engineering principles, and the resulting numerical models can be used

to accurately predict the performance of the system. In these cases, the key concern is

how the availability of a model can be exploited in order to achieve certification with the

least number of tests. Model-based certification reduces the number of tests required for

certification if it provides sufficient predictiveness. The assessment of model predictiveness

is typically accomplished through verification and validation (V&V), i.e., through a careful

assessment of numerical modeling and solution errors.

The attractiveness of this scenario is obfuscated by the challenge of rendering it in rigor-

ous and precise mathematical terms, including developing a computational toolbox enabling

its efficient implementation. Rigorous UQ is meant specifically as a set of mathematically

provable inequalities that provide rigorous upper bounds for the probability-of-failure of

a system. While V&V and UQ have been the focus of extensive research in recent years
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(e.g., [51], [58], [53], [28], [54]), a rigorous mathematical and computational framework just

described is nowhere outlined in the literature. For instance, in the context of QMU rig-

orous definitions of M and U — and tractable means of computing them — are often left

unspecified. The problem is compounded when system certification requires the quantifi-

cation of uncertainties in multiple performance measures simultaneously. In these cases,

ad hoc methods for amalgamating uncertainties, e.g., by root-mean squares, are often used

without clear justification. A distinct link between CF and the probability-of-failure is

omitted. Additionally, strict quantitative measures of model predictiveness, the series of

V&V tests required for computing such measures, and the exact manner in which mod-

els supplement rigorous certification are also often absent, effectively reducing the value

of QMU and model-based certification to that of a compelling but imprecise and heuristic

conceptual framework.

The aim of this thesis is to develop, apply, and extend a rigorous theory of uncertainty

quantification and certification in which the desired probability-of-failure upper bounds

are supplied through concentration-of-measure inequalities. Loosely, the concentration-of-

measure phenomenon is a consequence of the phenomenon that functions of a large number

of variables, i.e., functions in high-dimensional spaces, tend to exhibit small local oscillations

with respect to each variable tend to be nearly constant. Moreover, fluctuations can be

controlled through elementary yet powerful and nontrivial quantitative inequalities called

concentration-of-measure inequalities (see [32] for a monograph, [7] for a survey). These

tools have found broad applications in functional analysis, complexity theory, probability,

and statistics. However, the application of concentration-of-measure inequalities to perform

uncertainty quantification lacks to date.

Concentration-of-measure inequalities applied to uncertainty quantification intend to
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supply: probability-of-failure upper bounds resulting in rigorous and conservative certifi-

cation; precise definitions and quantitative measures of margins and uncertainties enabling

such certification; a distinct relationship between the confidence factor and probability-of-

failure; a rigorous framework for model-based certification, including precise quantitative

measures of model predictiveness and the effect of unknown unknowns; and the series of ver-

ification and validation tests required for assessing model predictiveness. Prior to formally

presenting these developments, UQ is presented below as it has evolved, with an emphasis

of using the lexicon adopted by the national laboratories. Specifically, a review of quantifi-

cation of margins and uncertainties (QMU) and verification and validation (V&V) follows

with an introduction to concentration-of-measure in the next section. These descriptions

are provided for the reader to become acclamated to the current lexicon of uncertainty

quantification. It will be noted that this work’s lexicon of verification and validation do not

align exactly with those presented here — the quantification of verification and validation

lie in rigorously defined values denoted as “diameters”.

1.2.1 Quantification of margins and uncertainties

The quantification of margins and uncertainties (QMU) is a formalism for evaluating confi-

dence in estimating reliability of complex engineering systems ([28])—a distinct predecessor

to this work on concentration-of-measure inequalities for uncertainty quantification. QMU

came into being after underground testing (UGT) of nuclear weapons ceased in 1991, and the

effort to stockpile stewardship became science-based (SBSS). Its ebbing history to present

day is outlined in [28], clearly stating that no universally accepted definition of QMU exists,

but identifies advances towards a universally accepted formalism for UQ that is needed to in-

still confidence in decision-makers. They note that some forms of QMU are not statistically
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based; some use or dismiss subjectivity of expert opinion; and that QMU may ultimately

“drive [engineers] into an endless search for impossibly quantitative answers to ill-posed

questions”. QMU is “not itself a procedure for certifying..., but the formal framework it

provides, along with the common language for all parties involved, can be very beneficial to

that process”. This work, besides providing unambiguous rigor to UQ, also benefits from

bridging the formalism gap between this form of UQ and total system certification. The

proceeding is a presentation of the formalism of QMU defined in [28].

QMU relies on three basic functions — metric definition, developing gates, and evalu-

ating uncertainty [58]. Gates formalize the measure of certification through propagation of

uncertainty and allowable margins at the component level. To begin, consider the first-order

Taylor expansion of the function F (x1, . . . , xn) in each of its variables:

δFi =
∂F

∂xi
δxi (1.2)

where uncertainties are accumulated at the component level in some normed sense:

δF =

√√√√ N∑
i=1

(
∂F

∂xi
δxi

)2

. (1.3)

The method presented in this work for defining a rigorous UQ methodology borrows

much of its lexicon and assimilates many of its definitions to QMU. Certification criteria,

margins, and uncertainties are defined for both methods, but the computation and inter-

pretation of these values vary significantly enough to distinguish the methods.

Fundamental assertions of accuracy must be made of the model and between a model

and the real world — precisely the gaol of V&V. These tools are used to certify systems in

both QMU and UQ via CoM frameworks.
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Figure 1.1: QMU definitions marked up on a typical “cliff” chart

1.2.2 Verification, validation, and certification

V&V has been defined in many ways qualitatively, but the lack of a firm quantitative

description has propagated many such acceptable definitions in the literature. This ob-

fuscation has not qualitatively affected the agreed meaning of certification, which is solely

dependent upon passing both verification and validation measures of success, however they

may be defined. For example, [52] briefly describes the evolution of the definitions for V&V

through a multitude of engineering guideline development organizations such as IEEE, ANS,

DoD, AIAA, and ASME. The latest accepted terminology for V&V has evolved to:

Verification: The process of determining that a model implementation accurately rep-

resents the developer’s conceptual description of the model and the solution to the model.

Validation: The process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the model.

Performing V&V succinctly strictly from these definitions could imaginably lead to

strikingly different V&V campaigns between independent parties.
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1.2.2.1 Verification

The premise of verification is to evaluate a numerical model’s ability to accurately and

repeatably produce a solution to the real world application it is intended to model — a task

that bears much emphasis on correctness of the numerical implementation at every possible

level. Firstly, verification can be divided into code and solution verification.

Code verification covers numerical algorithm verification and software quality engineer-

ing (SQE) [52]. A developer of a complex code must demonstrate that the numerical algo-

rithms are implemented correctly and produce expected results, which is a natural request

for computational codes that continually grow in complexity and must critically assessed.

Secondly, SQE is the process of asserting that the architectures of machines being used have

consistent systems operations and source compiling software.

Solution verification pertains to the numerical accuracy of the solution of the partial

differential equations (PDEs), which allow for such complex codes to discretize a general

system, thus providing numerical tractability. Verification benchmarks can serve this pur-

pose with simple geometries and loading cases where perhaps analytical solutions can be

verified against the numerical solution. The two ways this numerical error estimation can be

approached is through a priori and a posteriori error approximation methods ([52]). A pri-

ori methods strictly employ knowledge of the numerical algorithm which approximates the

PDE operators and the corresponding initial and boundary conditions. A posteriori error

approximation uses all of the a priori information, as well as order-of-accuracy methods.

The collection of all these tasks comprises one accepted flavor of verification. Indeed

they are each powerful and provide insight to the accuracy of the code and its solution.

Although this work does not explicitly define verification as above, basic attempts have

been made to have code, algorithmic, and solution correctness, as well as repeatability and
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reproducibility. Lumped together, these provide a model that is acceptable to perform the

uncertainty quantification attempted in this work.

The concentration-of-measure interpretation of verification adds another layer for the

verification tract, relying on these numerical error assessments above to ensure that a code is

formally prepared to be exercised for its intended purpose, but more importantly to define a

rigorous way in making sense of the uncertainties that affect the model and how they affect

the occurrence of interesting events. In the applications of this methodology, the impetus

was on expedient attempts at tractable methodologies while the strict numerical accuracy

checks were left to be done at a later time. Therefore, one will not see these strict numerical

accuracy checks as defined by the national laboratories’ lexicon of verification in this work.

Current work on verification using benchmark examples in the UQ via CoM framework are

being developed, but will not appear in this work.

1.2.2.2 Validation

The premise of validation is to compare the accuracy of a model against its real world coun-

terpart. Institutions that attempt to define and use validation as a decision tool differ in the

accepted activities that comprise the validation campaign. For example, the AIAA guide

([1]) terms validation as only the assessment of model accuracy in comparison to the associ-

ated experiment. In addition, [2] defines validation to include addressing the issue of using

the computational model to extrapolate or interpolate conditions towards the intended use

of the model, and assessing the estimated accuracy against pre-specified accuracy require-

ments in the intended range of use. These additions are earmarked as predictive capability

tasks in [1]. Validation experiments, sometimes referred to as “proof tests” or “system

performance tests” ([52]) are inherently different from scientific discovery or calibration ex-
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periments, where phenomena are being explored or physical parameters are being probed,

respectively. Thus validation experiments deliver predictive capability information to the

computational customer through intimate interworkings between computationalists and ex-

perimentalists. This multidisciplinary, cross-communication culture identifies precedents

needed for clearly defined validation terminology for all parties involved.

It should be noted that among the various lexicography for validation ([55]), one should

be aware of the issue of using data for validation and calibration: “Validation tests against

independent data that have not also been used by calibration are necessary in order to be

able to document the predictive capability of a model.” A separation of available data,

whether historical or readily sampled, must be made for calibration and prediction, other-

wise predictiveness can only be made for the calibration range, a self-defeating purpose for

assessing predictiveness of a model.

The heart of validation is a comparison between model and experimental performance

measures, but what should a comparison of the two entail? It is suggested that high-quality

validation metrics ([52]) be defined to assert confidence in the comparison, which is an active

issue in the literature ([69]).

In this work, a validation campaign is made by clearly defining its goals and expected

results, accounting for experimental limitations, allowing the supposed predictive code to

identify sensitive parameters that may affect experimental capabilities, and quantitatively

computing a validation measure in terms of diameters through rigorous steps guided by

optimization algorithms, all based upon the concentration-of-measure phenomenon. This

is one particular way of doing validation which places emphasis on unambiguous perfor-

mance quantities and rigorous methodologies to compute them, with enough flexibility to

address specific computational and experimental scenarios. For example, in hypervelocity
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impact experiments using light gas guns, velocity cannot be controlled precisely, and the

concentration-of-measure inequalities that guide the validation campaign account for un-

controllable parameters in design space. Also, this framework allows for trivial validation

metrics, i.e., the comparison between nominally similar computations and experiments is

simply their difference.

1.2.2.3 Certification

Certification, in the scope of this work, is the unambiguous measure of the ratio of margins

M to uncertainties U in a system, where uncertainties are computed through verification

and validation campaigns in the form of “diameters”. Certification according to QMU is

defined through each portal of the system, or component-wise, while the concentration-of-

measure-based UQ framework is system-wise with the applicable extension to component-

wise certification (§4.2).

At the end of the day, certification through UQ techniques provides a number or num-

bers for which decisions are to be made from accordingly. Expert opinion, even in this

complete objective UQ framework, must play a role in decision-making. Certification re-

quires confidence of a system to perform within its desired operating specifications given

the conditions it is likely (or unlikely) to experience, which can be gained from verification

and validation assessments. Though certification has a rigorous definition, confidence is an

intrinsic value with different weighting scales between decision-makers, and has a fuzziness

of its own ([58]). Scientific judgment, according to [58], “is always essential in reaching a

decision on the basis of incomplete or inconclusive evidence and therefore has always played

a significant role in certifying”.

Scientific judgment can also play a role early in the UQ process — usually as confidence
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in the values of inputs or models as priors in Bayesian probability theory, subject to the

opinion of the prescribing experts.

1.2.3 Subjective probability theory

The formulation of uncertainty quantification expressions in this work are fundamentally

derived from the axioms of probability theory, whereby the notion of probability is the limit

of a relative frequency of an event occurring and is thus an objective probability measure.

The relative frequency interpretation is usually also fostered by those without sufficient

understanding of the axioms of probability theory, as many would use the limit of the ratio

of heads or tails landing to the number of total coin flips to express the probability of

landing a head or tails. The second interpretation to probability — a degree of belief, or

subjective probability — has gained popularity where expert opinion plays a definitive role

in decision-making for engineering systems. Bayes theorem is the fundamental concept to

subjectivistic theory, where updating the prior distribution p(A) of an event A is based on

new evidence (or expert opinion) E produces a posterior distribution p(A|E):

p(A|E) = p(A)
p(E|A)
p(E)

(1.4)

There is something to be said here for the topic of rare events and systems where few

samples can be recorded and used for relative frequency calculations of interesting (but

rare) events. Dealing with low probabilities-of-failure corresponding to very rare events

may sometimes favor the subjective probability interpretation because the lack of statistical

significance or experimental support rely more heavily on expert opinion to make decisions.

For example, [4] points out that frequencies in geological sciences on the order of 10−11

per year correspond to events that are nearly impossible if the age of the earth is used
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as a reference for occurrence time. This makes sense in their choosing of subjectivistic

theory of probability as the “appropriate framework within which expert opinions, which

are essential to the quantification process, can be combined with experimental results and

statistical observations to produce quantitative measures of the risks from these systems”.

Though the Bayesian framework presents advantages where expert opinion and rare

events preclude the use of subjectivity, expert opinion may be considerably different between

experts and the use of judgment may hinder the believability of the outcome. Thus, decision-

making in subjectivity may have valid fundamentals, but the subjectivity propagated to

posteriors may be considered invalid by other experts, whose subjectivity may adversely

affect decision-making. This work seeks to provide a rigorous framework for uncertainty

quantification, and the reasonable tract blooms from the objective definition of probability

based on probability theory axioms.

1.2.4 Concentration-of-measure

This section presents a background of the concentration-of-measure phenomenon for the

convenience of the reader. The interested reader is referred to [32] for a monograph and to

[7] for a survey.

Recognition of the concentration-of-measure phenomenon as such may be traced back

to an observation by Lévy [33] that functions on high dimensional spheres with small local

oscillations, i.e., whose modulus of continuity can be controlled, are strongly concentrated

around their mean value with respect to the uniform Lebesgue measure on the hypersphere.

The study of this phenomenon was pioneered in the early seventies by V. Milman in his work

on the asymptotic geometry of Banach spaces ([48], [47], [46], [49]). For an isoperimetric

interpretation of the concentration-of-measure phenomenon and powerful applications to
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geometry, refer to [20], [19], and [21]. For early probabilistic results in the context of sums of

independent random variables, refer to [23] (Hoeffding’s inequality), [12] (Chernoff bound),

and to [59] and [15] for quantitative inequalities pertaining to the Glivenko-Cantelli ([11],

[18]) convergence of empirical distributions. Far-reaching extensions, that in particular

provide dimension-free concentration-of-measure inequalities in product spaces, have more

recently been advanced by M. Talagrand (see [67], [65], [63], [64], [62], [61], [56]). For a

selection of relevant articles in probability and statistics, refer to [9], [42], [41], [8], [31], [6],

[30], and [29].

A brief compendium of representative concentration-of-measure inequalities is collected

in the following section. Whereas only the simplest McDiarmid concentration-of-measure

inequalities explained in §2 are employed in this work in §3, the more advanced inequalities

described in §4 supply avenues for extension of the present QMU methodology to systems

including correlated inputs, inputs with known probability distributions, unbounded inputs

and other cases of interest.
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Chapter 2

Concentration-of-Measure

2.1 Concentration-of-Measure Inequalities

The concentration-of-measure phenomenon, an observation of measure tightening in high

dimensions, expresses probabilities of outlier events occurring by means of upper-bounded

inequalities. These inequalities can be rearranged to resemble expressions dependent upon

margins M and uncertainties U of a system. It is easiest to begin with the most fundamental

concentration-of-measure inequality that will be used in most cases in this work:

2.1.1 McDiarmid’s inequality

McDiarmid’s inequality is perhaps the fundamental example of concentration-of-measure

inequality. Let X1, . . . , XM be M random variables with values in spaces E1, . . . , EM . Let

F be a one-dimensional function of X1, . . . , XM . Write

D2
F :=

M∑
i=1

sup
(x1,...,xi−1,xi+1,...xM )∈E1×···Ei−1×Ei+1×···×EM

sup
(Ai,Bi)∈E2

i

|F (x1, . . . , xi−1, Ai, xi+1, . . . xM )− F (x1, . . . , xi−1, Bi, xi+1, . . . xM )|2.

(2.1)

Remark 2.1.1. The computational cost (the speed and the storage requirements) of this

optimization, as well as the quality of its solution, depend on the size of the search space.
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For relatively large dimensional search spaces, this optimization may become impractical due

to several reasons:

1. The computational cost associated with the optimizations prescribed in Eq. (2.1) may

exceed the capabilities of contemporary computational resources for applications of in-

terest. Furthermore, each evaluation of F may be overly computationally extensive

and the uncertainty quantification for such systems may demand considerable compu-

tational resources deep into the peta- and exaflop regime.

2. A single optimization in Eq. (2.1) is not necessarily a convex optimization problem.

Therefore, finding the global optimal is intractable in general. On the other hand,

evolutionary optimization algorithms (such as genetic algorithms [50] and simulated

annealing [27]) provide effective solution strategies for global optimization. Neverthe-

less, their success (convergence to the global optimum and the rate of convergence)

degrades with increasing number of random variables — the curse of dimensionality.

Typically DF is referred to as the diameter of F . In Eq. (2.1) the suprema are taken

with respect to variables in the spaces E1,. . . , EM . (Here and subsequently throughout this

work standard notation of probability theory applies—see e. g., Chapter 2 of [17] for an

introduction.) Let P and E be the measure of probability and expectation associated with

the random variables X1, . . . , XM and taking X := (X1, . . . , XM ). The following theorem

([43]), also known as the bounded-differences inequality, bounds the fluctuations of F (X)

away from its mean without a priori knowledge of the probability distribution of the random

variables X1, . . . , XM .

Theorem 2.1.2 (McDiarmid, 1989). Let the random variables X1, . . . , XM be independent.
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Then

P[F (X)− E[F ] ≥ r] ≤ exp
(
−2

r2

D2
F

)
. (2.2)

Observe that if the spaces Ei = (ai, bi) and

F (X) =
1
M

M∑
i=1

Xi , (2.3)

then Hoeffding’s inequality [23] is recovered as a special case

P

[
1
M

M∑
i=1

Xi −
1
M

M∑
i=1

E[Xi] ≥ r

]
≤ exp

−2M
r2(∑M

i=1(bi − ai)2/M
)
 . (2.4)

2.1.2 Convex-distance inequality

The bounded-differences inequality is a special case of the more powerful convex-distance

inequality [62]. In particular, the convex-distance inequality applies in cases where the

bounded-differences inequality fails. Assume that X1, . . . , XM are independent variables,

each taking values in a measurable set E. Let X = (X1, . . . , XM ) and P[A] := P[X ∈ A],

and A ⊂ EM be an arbitrary measurable subset of E. For α ∈ [0, 1]M , define the weighted

Hamming distance from the point x ∈ EM to A as

dα(x,A) := inf
z∈A

∑
i: zi 6=xi

iM |αi|. (2.5)

Letting ‖α‖2 :=
∑M

i=1 α2
i , define the convex distance of X from the set A as

dT (x,A) := sup
α∈[0,1]M ,‖α‖=1

dα(x,A) (2.6)

then the following theorem holds.
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Theorem 2.1.3. For any subset A ⊂ EM with P[X ∈ A] ≥ 1
2 and t > 0,

min
{
P[A], P[dT (X, A) ≥ t]

}
≤ exp

(
− t2

4

)
. (2.7)

The convex-distance inequality originates in a remarkable series of papers by Talagrand

[65], [62], [66]. The preceding statement of the inequality is taken from [38].

2.1.3 Concentration inequalities with correlated random variables

The concentration-of-measure phenomenon is not limited to the case of independent random

inputs and also arises when the inputs are correlated. Suppose, for definiteness, that Ei =

[0, 1] for all i. Let f
(
X1, . . . , XM ) be the probability density of the inputs and denote by

f
(
Xj , . . . , XM |(X1, . . . , Xi−1, Xi) = (x1, . . . , xi−1, xi)

)
the law of Xj , . . . , XM conditioned

on (X1, . . . , Xi−1, Xi) = (x1, . . . , xi−1, xi). A matrix Γ measuring the correlations between

pairs of random variables Xi may then be defined as follows: Γij := 0 if i > j; Γii := 1;

and, for i < j,

Γji = sup
xi,zi∈[0,1]2

sup
(x1,...,xi−1)∈[0,1]i−1

‖f(Xj , . . . , XM |(X1, . . . , Xi−1, Xi) = (x1, . . . , xi−1, xi))−

f(Xj , . . . , XM |(X1, . . . , Xi−1, Xi) = (x1, . . . , xi−1, zi))‖TV ,

(2.8)

where ‖.‖TV denotes the total variation norm over probability measures. For instance, if

(Xi)1≤i≤M is a Markov Chain on [0, 1] with uniformly contracting transition kernels, i.e.,

α := sup
i,xi−1,zi−1

‖f(Xi|Xi−1 = xi)− f(Xi|Xi−1 = zi)‖TV < 1 , (2.9)
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then

‖Γ‖ ≤ 1

1− α
1
2

. (2.10)

Write ‖Γ‖ for the operator norm of the matrix Γ. Then the following theorem applies:

Theorem 2.1.4. Let F be 1-Lipschitz over [0, 1]M . Then

P[|F − E[F ]| ≥ r] ≤ 2 exp
(
− r2

2‖Γ‖2

)
. (2.11)

Refer to [57] for a proof of the following theorem, and to [39], [40], [31], [24] for related

results.

2.1.4 Concentration inequalities with functions with unbounded oscilla-

tions

Concentration-of-measure inequalities are not limited to functions with bounded differences

or inputs taking their values on compact spaces. General concentration-of-measure inequal-

ities can be obtained by controlling the Lipschitz regularity of the output function and

the tail of the random variables Xi at infinity. This control can be achieved by means of

analytical inequalities called logarithmic Sobolev inequalities [22]. Let f be a nonnegative

measurable function f over a measure space (E,B, µ) such that
∫

f ln(1+f)dµ < ∞. Define

the entropy of f as

Entµ(f) :=
∫

f ln fdµ−
∫

fdµ ln
(∫

fdµ

)
. (2.12)

Refer to Section 5 of [32] for the following theorem and to references therein.
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Theorem 2.1.5. Let µ be a probability measure on the Borel sets of a metric space (E, d)

such that for some C > 0 and all locally Lipschitz function f on E

Entµ(f2) ≤ 2C

∫
|∇f |2dµ (2.13)

with

|∇f |(x) := lim sup
y→x

|f(x)− f(y)|
|x− y|

. (2.14)

Then for every 1-Lipschitz integrable function F : E → R and for every r ≥ 0

µ

(
{Y ≥

∫
Fdµ + r}

)
≤ exp

(
− r2

2C

)
. (2.15)

Eq. (2.13) is deemed the logarithmic Sobolev inequality with constant C. The applica-

tion of Theorem 2.1.5 to product of metric spaces (Ei, di) follows from the observation that

if the measures µi satisfy the logarithmic Sobolev inequality

Entµi(f
2) ≤ 2Ci

∫
|∇if |2dµi (2.16)

for every locally Lipschitz function f on Ei, where |∇if | is the generalized modulus of

gradient on Ei defined as in Eq. (2.14), then the product measure µ = µ1 × · · · × µM

satisfies the logarithmic inequality (see Corollary 5.7 of [32])

Entµ(f2) ≤ 2 max
1≤i≤M

Ci

∫
|∇f |2dµ (2.17)

with |∇f |2 =
∑M

i=1 |∇if |2, for every locally Lipschitz function f on E = E1×· · ·×EM . The

particular application to Gaussian distributions follows simply from the observation that
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a normal centered Gaussian distribution on Rn satisfies the logarithmic Sobolev inequality

with constant 2.

2.1.5 Concentration inequalities for empirical processes

Concentration inequalities can also be used to obtain powerful and very quantitative esti-

mates for empirical processes defined by sampling, ([65], [62], [66], [41]). Let Y 1, . . . , Y N be

independent random variables, not necessarily identically distributed, in some measurable

space (E,B). Let F be some countable family of real-valued measurable functions on (E,B)

such that ‖f‖∞ ≤ b < ∞ for every f ∈ F . Let

Z := sup
f∈F

∣∣ N∑
i=1

f(Yi)
∣∣ (2.18)

or

Z := sup
f∈F

∣∣ N∑
i=1

(f(Yi)− E[f(Yi)]]
∣∣. (2.19)

In addition, let

σ2 := sup
f∈F

N∑
i=1

Var[f(Yi)]. (2.20)

Then the following holds [41].

Theorem 2.1.6. For any positive real number ε and x,

P
[
Z ≥ (1 + ε)E[Z] + σ

√
2κx + κ(ε)bx

]
≤ exp (−x) (2.21)
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with κ = 4, κ(ε) = 2.5 + 32ε−1. Moreover,

P
[
Z ≤ (1− ε)E[Z]− σ

√
2κ′x− κ′(ε)x

]
≤ exp (−x) (2.22)

with κ′ = 5.4 and κ′(ε) = 2.5 + 43.2ε−1.

In the particular case in which the random variables Yi are identically distributed,

theorem 2.1.6 furnishes powerful estimates for the empirical process

µN :=
1
N

N∑
i=1

δYi (2.23)

by observing that

Z = sup
f∈F

N |µN (f)− µ(f)|. (2.24)

2.2 Concentration-of-Measure Inequalities Cases

The setting of a typical UQ problem is as follows: consider a system with possibly multiple

output performance measures Y : Ω → E1×· · ·×EN on a given probability space (Ω,U , P).

In particular, E1, . . . , EN denote Euclidean spaces endowed with the standard metric and P

is a probability measure. Suppose that the safe operation of the system requires that Y ∈ A

for some open admissible set A ⊂ E1 × · · · × EN . Ideally, the support of the probability

measure associated to Y would be contained within A, i.e.,

P[Y ∈ A] = 1. (2.25)

Systems satisfying this condition can be certified with complete certainty. However,

this absolute guarantee of safe performance may be unattainable, e.g., if P lacks compact
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Table 2.1: Number of tests required for certification as a function of the probability-of-failure
tolerance

failure tolerance (ε) number of tests (m)
1 0

10−1 115
10−2 23,025
10−3 3,453,877
10−4 460,517,018
10−5 57,564,627,324
10−6 6,907,755,278,982

support, Y /∈ A for a measurable set of support of the probability measure associated to Y ,

or evaluations prohibitively expensive in practice to obtain. In these cases, the condition in

Eq. (2.25) may be relaxed to

P[Y ∈ Ac] ≤ ε (2.26)

for some appropriate certification tolerance ε, where Ac = E1×· · ·×EN\A is the inadmissible

set. Inequality 2.26 expresses the requirement that the probability of system failure be

acceptably small and gives rigorous mathematical expression to the QMU conceptual view

of certification.

A conservative certification criterion is obtained when the probability-of-failure P[Y ∈

Ac] is bounded from above and the upper bound is verified to be below the certification

tolerance ε. Evidently, for an upper bound to be useful it must be tight, i.e., it must be

close to the actual probability-of-failure P[Y ∈ Ac]. Therefore, the essential mathematical

and computational challenge is to obtain tight upper bounds to the probability-of-failure of

the system.

A first strategy that naturally suggests itself is to bound the probability-of-failure empir-

ically, i.e., solely by means of experimental testing. Suppose that m tests are performed with

outcomes Y 1, . . . , Y m. With this data set the empirical probability measure is extracted
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as

µm =
1
m

m∑
i=1

δY i . (2.27)

Then, an application of Hoeffding’s inequality [23] gives, with probability 1− ε′,

P[Y ∈ Ac] ≤ µm[Ac] +

√
1

2m
log

1
ε′

. (2.28)

Hence, the inequality

µm[Ac] +

√
1

2m
log

1
ε′
≤ ε (2.29)

supplies a conservative certification condition. Note that Inequality 2.28 can be improved

by using Chernoff’s inequality instead of Hoeffding’s inequality when the probability-of-

failure P[Y ∈ Ac] is known. Since that probability-of-failure is unknown, it can’t be used

in practice to give a bound on the necessary number of tests one has to use Hoeffding’s

inequality.

The certification criterion of Eq. (2.29) reveals that the number of experiments required

to certify a system based on statistical sampling alone is of the order of 1
2ε−2 log 1

ε′ . The

number-of-tests requirement is shown in Table 2.1 as a function of the probability-of-failure

tolerance ε with ε′ = ε. It is clear from this table that the number of tests required for

the purely empirical certification of a system can be prohibitively expensive if the tests are

costly and the required probability-of-failure is low.

It is natural to require that the confidence level on the estimation of the probability-of-

failure is at least of the order of the required maximum probability-of-failure. That is why

ε′ = ε is a natural chose. For ε′ > ε the uncertainty on the estimation of the probability-of-

failure would be larger than the probability-of-failure itself, which translates into the fact
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that the probability-of-failure may be, with probability ε′, above the certification threshold

ε.

When empirical certification is not an option, the question that naturally arises is how

models can be employed to reduce the number of tests required for certification. Thus, the

goal of model-based certification is to achieve certification with minimal testing. To frame

this question in mathematical terms, suppose that the behavior of the system is exactly

described by an unknown function Y = G(X, Z) of random input variables (X, Z). For

definiteness, assume that X and Z are independent and range over known intervals, and

that no additional statistical information about the input parameters is available. These

assumptions can be readily relaxed, but such extensions will not be pursued here in the

interest of simplicity. Suppose in addition that the behavior of the system is modeled by

means of a function Y = F (X). Thus X collects the input variables that are accounted

for by the model, whereas Z collects those variables that are unaccounted for, or unknown

unknowns. Evidently, if an exact model were available no testing would be required to

achieve certification. In general, models cannot be expected to be exact and the degree of

predictiveness of the models needs to be carefully assessed with V&V.

The manner in which concentration-of-measure supplies probability-of-failure upper

bounds with the aid of validated models is summarized in this section through a sequence

of representative scenarios of increasing complexity.

2.2.1 Scenario 1: Exact model, single performance measure whose mean

is known

Begin by assuming that the mean performance E[Y ] is known exactly and the model is

perfect, i.e., there exists a random vector X : Ω → χ1 × · · · × χM and a known function
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F : χ1 × · · · × χM → E1 × · · · ×EN such that the relation Y = F (X) describes the system

exactly. These assumptions represent ideal conditions in which all uncertainty regarding the

response of the system is aleatoric uncertainty, i.e., stems from the stochastic variability of

the system, and there is no epistemic uncertainty, i.e., the behavior of the system is known

exactly, including its mean response. Begin by considering the case in which certification

depends on a single performance measure, i.e., N = 1. Under these assumptions, the

admissible set is of the form A = [a,∞), where a is the minimum threshold for safe system

operation. Then, if F is integrable (and that is the only assumption on F ) and the input

parameters are independent McDiarmid’s inequality states that

P [F (X)− E[F (X)] ≤ −r] ≤ exp
(
−2

r2

D2
F

)
(2.30)

where

D2
F :=

M∑
k=1

sup
(x1,...,xk−1,xk+1,...xM )∈χ1×...χk−1×χk+1×···×χM

sup
(Ak,Bk)∈χ2

k

|F (x1, . . . , Ak, . . . xM )− F (x1, . . . , Bk, . . . xM )|2
(2.31)

is the verification diameter of the system. Bound 2.30 can be re-written in the form

P[Y ∈ Ac] ≤ exp
(
−2

(E[Y ]− a)2+
D2

F

)
(2.32)

where x+ := max(0, x), whence it follows that the inequality

(E[Y ]− a)+
DF

≥

√
log

√
1
ε

(2.33)
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Table 2.2: Minimum confidence factor CF required to stay within a pre-specified probability-
of-failure tolerance ε

failure tolerance (ε) 1 10−1 10−2 10−3 10−4 10−5 10−6

confidence factor (CF) 0 1.07298 1.51743 1.85846 2.14597 2.39926 2.62826

supplies a conservative certification criterion.

Comparison of Eq. (2.33) and Eq. (1.1) affords the identification:

M = (E[Y ]− a)+ (2.34a)

U = DF . (2.34b)

Thus, in the absence of epistemic uncertainty, i.e., for systems for which an exact model is

available and whose mean performance is exactly known, the margin M is the difference

between the mean performance and the threshold, or zero if this difference is negative, and

the uncertainty U equals the verification diameter of the system. With these identifications,

the certification criterion can be expressed in the form

CF =
M

U
≥

√
log

√
1
ε
. (2.35)

This inequality establishes a clear correspondence between the probability-of-failure toler-

ance ε and the confidence factor CF. This correspondence is shown in tabular form in

Table 2.2. Thus, concentration-of-measure inequalities supply precise definitions of margin

measures, uncertainty measures, and minimum confidence factors that guarantee the safe

operation of the system to within a pre-specified probability-of-failure tolerance.

Several additional aspects of the certification method described above are noteworthy.

Firstly, the only information about the model that is required for certification is the mean
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performance and the diameter of the system. In particular, the response function F (X) need

not be interpolated or otherwise represented, and can effectively be treated as a black box.

Secondly, only ranges of input parameters, and not their detailed probability distribution

functions, need be known for certification. Thirdly, the present scenario provides an extreme

example of how the availability of a high-fidelity model helps to reduce the number of tests

required for certification: when an exact model is available, the need for experimental

testing is eliminated altogether.

It is also interesting to note that the verification diameter of Eq. (2.31), which provides

a rigorous measure of the aleatoric uncertainty in the response of the system, represents

the largest deviation in system performance that is recorded when each input parameter is

allowed to vary in turn between pairs of values spanning its entire range. Evidently, the

computation of the verification diameter of a system entails an optimization over input-

parameter space seeking to identify those large deviations in the input parameters that

result in the largest deviations in the output parameters. It bears emphasis that considera-

tion of large deviations is essential and that, in particular, linearized sensitivity analysis is

not sufficient for rigorous certification in general. Specific optimization algorithms for the

computation of verification diameters are discussed in §3.2.

It should be noted that this work uses the term verification in a somewhat expanded

sense relative to other conventional uses of the term (see, e.g., [51], [53]), discussed in

§1.2.2.1. Thus, a common use of the term verification is to signify the process of assessing

how well a numerical model approximates the underlying physical laws governing the sys-

tem, often expressed as a system of partial differential equations. However, in the present

context the term verification naturally refers to the process of quantifying all aleatoric

uncertainties, whether arising from numerical errors, from the statistical variability of the
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input parameters, from the intrinsic stochasticity of the model, or from other sources. Thus,

verification aims to quantify how precisely a model can predict the response of the system.

A distinguishing characteristic of verification is that it is achieved solely by exercising the

model and without reference to experimental data. The concentration-of-measure frame-

work renders verification, often a conceptually appealing but ambiguous and imprecise term,

in precise quantitative terms. Thus, as already noted, verification is rigorously quantified

by the verification diameter, in the sense that once the verification diameter of the system

is known, the system can be certified rigorously and conservatively.

For completeness and in order to illustrate the assumptions required for Eq. (2.30) to

hold, a simple version of McDiarmid’s inequality [43] (which is also known as a bounded

differences inequality, and where the constant 2 in the exponential has been replaced by 1
2)

is included with a sketch of its proof. The sharpening of Inequality 2.37 to Eq. (2.30) is

technically involved — refer to [43] for a complete account. Independence is not a necessary

condition for McDiarmid’s inequality — refer to [44] for an extension of that inequality to

centering sequences (for instance to martingales).

Theorem 2.2.1. Assume that the random variables X1, . . . , XM are independent. Then

P[F (X)− E[F ] ≥ r] ≤ exp
(
−1

2
r2

D2
F

)
(2.36)

and

P[F (X)− E[F ] ≤ −r] ≤ exp
(
−1

2
r2

D2
F

)
. (2.37)

Proof. This is an adaptation of the proof of Corollary 1.17 in [32]. By Chebyshev’s

inequality then,

P[F (X)− E[F ] ≥ r] ≤ e−λrE
[
exp

(
λ(F − E[F ])

)]
(2.38)
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for all λ ≥ 0. In addition,

E
[
exp

(
λ(F − E[F ])

)]
= E

[
E
[
exp(λ(F − E[F |Fn−1]))|Fn−1

]
exp(λ(E[F |Fn−1]− E[F ]))

]
(2.39)

where Fk denotes the σ-algebra generated by X1, . . . , Xk. Recall that, for every bounded

function f of zero mean with respect to a measure ν and all λ ≥ 0, Jensen’s inequality gives

∫
eλfdν ≤

∫ ∫
eλ(f(x)−f(y))dν(x)dν(y) ≤

∞∑
i=0

(Dfλ)2i

(2i)
≤ exp(D2

fλ2/2) (2.40)

with Df := supx,y |f(x) − f(y)|. Applying Inequality 2.40 to the integration with respect

to the law of Xn, the following is obtained

E
[
exp(λ(F − E[F |Fn−1]))|Fn−1

]
≤ exp(D2

nλ2/2) (2.41)

where

Dn := sup
x1,...,xn−1,x,y

|F (x1, . . . , xn−1, x)− F (x1, . . . , xn−1, y)|. (2.42)

It follows that

E
[
exp

(
λ(F − E[F ])

)]
= exp(D2

nλ2/2)E
[
exp(λ(E[F |Fn−1]− E[F ]))

]
(2.43)

and, by induction,

E
[
exp

(
λ(F − E[F ])

)]
= exp(D2

F λ2/2). (2.44)
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Combining this inequality with Eq. (2.38) and taking λ = r/D2
F finally gives

P[F (X)− E[F ] ≥ r] ≤ exp
(
−1

2
r2

D2
F

)
. (2.45)

Inequality 2.37 is obtained by replacing F by −F . �

Additionally observe that Hoeffding’s inequality [23]

P

[
1
M

M∑
i=1

Xi −
1
M

M∑
i=1

E[Xi] ≥ r

]
≤ exp

−2M
r2(∑M

i=1(bi − ai)2/M
)
 (2.46)

follows from McDiarmid’s inequality as a special case when the spaces Ei are equal to

intervals (ai, bi) and

F (X) =
1
M

M∑
i=1

Xi. (2.47)

2.2.2 Scenario 2: Exact model, multiple performance measures whose

mean is known

The preceding framework can be extended to the case in which certification depends on

multiple performance measures. To this end, suppose that A is an arbitrary subset of RN ,

i.e., N ≥ 1 and Ei = R, i = 1, . . . , N , and that the mean performance E[Y ] is known and

belongs to the interior of A. Then, the following concentration-of-measure inequality is

deduced from McDiarmid’s inequality

P[Y ∈ Ac] ≤ inf
s,r∈RN : E[Y ]+

QN
i=1(−si,ri)⊂A

N∑
i=1

[
exp

(
−2

r2
i

D2
Fi

)
+ exp

(
−2

s2
i

D2
Fi

)]
(2.48)

where DFi is the verification diameter of the response function Fi and the infimum is

taken over all hyperrectangles contained in A. This inequality follows simply from Mc-
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Diarmid’s inequality by observing that, for all s, r ∈ RN (s := (s1, . . . , sN )) such that

E[Y ] +
∏N

i=1(−si, ri) ⊂ A, one has

Ac ⊂ ∪N
i=1{Yi − E[Yi] ≥ ri} ∪ {Yi − E[Yi] ≤ −si}, (2.49)

whence it follows that

P[Y ∈ Ac] ≤
N∑

i=1

(
P[Yi − E[Yi] ≥ ri] + P[Yi − E[Yi] ≤ −si]

)
. (2.50)

As in the preceding scenario, the inequality

inf
s,r∈RN : E[Y ]+

QN
i=1(−si,ri)⊂A

N∑
i=1

[
exp

(
−2

r2
i

D2
Fi

)
+ exp

(
−2

s2
i

D2
Fi

)]
≤ ε (2.51)

now supplies a conservative certification criterion. It follows that in the case of multiple

performance measures, certification can be achieved by the computation of the verification

diameters of each of the components of the response function.

Suppose, for example, that A =
∏N

i=1(ai,+∞), where ai is the threshold of the ith

performance measure, and suppose that ai ≤ E[Yi], i = 1, . . . , N . Then, the certification

inequality 2.51 reduces to

N∑
i=1

exp

(
−2

(E[Yi]− ai)2+
D2

Fi

)
≤ ε. (2.52)

It should also be noted that Eq. (2.52) is based on the worst-case scenario that these

events do not intersect and therefore the sum of their respective probabilities is an upper

bound for the union. In practical applications, there may be an overlap between the indi-
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Table 2.3: Aggregate confidence factor for a system characterized by two performance
measures with confidence factors CF1 (rows) and CF2 (columns)

CFi 1.0 1.2 1.4 1.6 1.8 2.0
1.0 0.808348 0.909127 0.965192 0.989139 0.997179 0.999381
1.2 0.909127 1.045670 1.135196 1.178736 1.194371 1.198758
1.4 0.965192 1.135196 1.270207 1.352168 1.386639 1.397003
1.6 0.989139 1.178736 1.352168 1.487759 1.563896 1.591443
1.8 0.997179 1.194371 1.386639 1.563896 1.701007 1.772316
2.0 0.999381 1.198758 1.397003 1.591443 1.772316 1.911394

vidual failure events that constitutes this bound. This point is not addressed here, but will

be considered in a sequel work.

By analogy to the case of a single performance measure, margins and uncertainty mea-

sures can be introduced as

Mi = (E[Yi]− ai)+ (2.53a)

Ui = DFi (2.53b)

for each performance measure in turn. Then, Eq. (2.52) can be rewritten in the form

CF =

√√√√√log

 1√∑N
i=1 exp (−2(CFi)2)

 ≥

√
log

√
1
ε

(2.54)

where

CFi =
Mi

Ui
. (2.55)

Evidently, the certification criterion of Eq. (2.54) reduces to Eq. (2.35) in the case of a

single performance measure. It is interesting to note that, in the case of multiple perfor-

mance measures, the confidence factor CF follows as an aggregate of the confidence factors

CFi of each of the performance measures according to the composition rule of Eq. (2.54).



36

However, it should be carefully noted that neither margins nor uncertainties can be aggre-

gated independently of each other to define an overall margin and an overall uncertainty of

the system. The confidence factor aggregation relation is shown in Table 2.3 for a system

characterized by two performance measures. As expected, the aggregate confidence factor

is smaller than each of the confidence factors corresponding to the individual performance

measures. Thus, lack of confidence in individual performance measures compounds and

the overall confidence in the system decreases with the addition of every new performance

measure. However, because the individual confidence factors enter the aggregation relation

of Eq. (2.54) through exponentials, it follows that the aggregate confidence factor—and the

certification process itself—is dominated by those performance measures having the small-

est individual confidence factors. Conversely, performance measures having large confidence

factors have negligible effect on the overall confidence factor of the system and can be safely

removed from consideration in the certification process.

2.2.3 Scenario 3: Exact model, single performance measure whose mean

is unknown

In the foregoing, the mean performance E[Y ] of the system is assumed known a priori.

However, in most situations of practical interest such information is not available and the

mean performance must be estimated instead. Suppose that, to this end, one performs m

evaluations of the model F (X) based on an unbiased sampling of the input parameters, re-

sulting in predicted performances Y 1, Y 2, . . . , Y m. Define the estimated mean performance

corresponding to these calculations as

〈Y 〉 =
1
m

m∑
i=1

Y i. (2.56)
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Start by additionally assuming that there is one single performance measure, N = 1, and

that the safe operation of the system requires that Y ≥ a for some threshold a, i.e., A =

[a,∞). The probability P[Y ∈ Ac] can now only be determined to within confidence intervals

reflecting the randomness of the estimated mean 〈Y 〉. Under these conditions, the following

inequality is obtained

P
[
P[Y ∈ Ac] ≥ exp

(
−2

[〈Y 〉 − a− α]2+
D2

F

)]
≤ ε′ (2.57)

where ε′ is a pre-specified estimation tolerance and

α =
√
− log ε′

DF m
. (2.58)

Inequality 2.57 follows simply from an application of McDiarmid’s inequality to 〈Y 〉, with

the result

P[E[Y ]− 〈Y 〉 ≤ −α] ≤ ε′ (2.59)

whence it follows that, with P probability 1− ε′,

Ac ⊂ {Y − E[Y ] ≤ a + α− 〈Y 〉}. (2.60)

Next observe that Eq. (2.57) simply states that, with probability 1− ε′,

P[Y ∈ Ac] ≤ exp
(
−2

[〈Y 〉 − a− α]2+
D2

F

)
(2.61)
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and the certification criterion of Eq. (2.26) now becomes

[〈Y 〉 − a− α]+
DF

≥

√
log

√
1
ε

. (2.62)

This certification criterion is again of the form of Eq. (2.35) with margin and uncertainty

measure

M = [〈Y 〉 − a− α]+ (2.63a)

U = DF . (2.63b)

Comparison of Eq. (2.34) and Eq. (2.63) shows that the estimation of the mean performance

of the system effectively reduces the margin by the amount α. Evidently, this margin

decrease can be reduced to an arbitrarily small value by carrying out a sufficiently large

number of model evaluations. The certification criterion of Eq. (2.63) again shows that,

as in the case of known mean performance and in the absence of epistemic uncertainty,

certification can be rigorously achieved from the sole knowledge of the verification diameter

of the system and an estimate of its mean performance.

2.2.4 Scenario 4: Exact model, multiple performance measures whose

means are unknown

For completeness, proceed to record the extension of the preceding case to multiple perfor-

mance measures, N ≥ 1, and arbitrary A in RN . In this case, with probability 1− ε′,

P[Y ∈ Ac] ≤ inf
s,r∈RN : E[Y ]+

QN
i=1(−si−αi,ri+αi)⊂A

N∑
i=1

(
exp

(
−2

r2
i

D2
Fi

)
+ exp

(
−2

s2
i

D2
Fi

))
(2.64)



39

where α ∈ RN and

αi = DFi

√
log 2N

ε′

2m
(2.65)

Inequality 2.64 again follows from McDiarmid’s inequality by observing that

P
[
|E[Y i]− 〈Y 〉i| ≥ αi

]
≤ ε′

N
. (2.66)

Hence, |E[Y i] − 〈Y 〉i| ≤ αi for all i with probability 1 − ε′, with the result that for all

s, r ∈ RN such that 〈Y 〉+
∏N

i=1(−si − αi, ri + αi) ⊂ A,

{Y ∈ Ac} ⊂ ∪N
i=1{Yi − E[Yi] ≥ si} ∪ {E[Yi]− Yi ≥ ri} (2.67)

with probability 1− ε′, and the certification criterion finally becomes

inf
s,r∈RN : 〈Y 〉+

QN
i=1(−si−αi,ri+αi)⊂A

N∑
i=1

(
exp

(
−2

r2
i

D2
Fi

)
+ exp

(
−2

s2
i

D2
Fi

))
≤ ε. (2.68)

For example, suppose, as in Scenario 2, that A =
∏N

i=1(ai,+∞), where ai is the threshold

of the ith performance measure, and suppose that ai + αi ≤ 〈Yi〉, i = 1, . . . , N . Then, the

certification inequality of Eq. (2.68) reduces to

N∑
i=1

exp

(
−2

(〈Yi〉 − ai − αi)2+
D2

Fi

)
≤ ε (2.69)

where now

αi = DFi

√
log N

ε′

2m
(2.70)
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in view of the one-side form of the admissible intervals. By analogy to the case of a single

performance measure, introduce the margins and uncertainty measures

Mi = (〈Yi〉 − ai − αi)+ (2.71a)

Ui = DFi (2.71b)

for each performance measure in turn. Then, Eq. (2.69) can be rewritten in the form

of Eq. (2.54) with the individual performance measure confidence factor defined as in

Eq. (2.55). As in the case of a single performance measure, observe that the need to esti-

mate the mean performance has the effect of reducing the individual performance measure

margins in the amounts αi. These are controllable margin decreases that can be reduced to

any desired extent by carrying out a sufficiently large number of model evaluations. Again,

in the absence of epistemic uncertainty, certification can be rigorously achieved from the

sole knowledge of the verification diameters of the individual performance measures and

estimates of their mean performance.

2.2.5 Scenario 5: Inexact model

In practice F denotes a numerical or analytical model of a physical system whose output

is the random vector Y . The model accounts for some of the input parameters X that

determine the performance of the system. If the model were perfect then, for all X, F (X)

would exactly equal the outcome Y of an experiment performed with an identical set of

input parameters. In general, Y and F (X) are not equal owing to:

i) imperfections in the model,

ii) the existence of additional unknown random input parameters, or unknown unknowns,
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not accounted for in the model.

These two sources of error and epistemic uncertainty can be analyzed by supposing that

the exact response of the physical system is governed by a function G(X, Z), generally

unknown, of the random variables X that are accounted for by the model and additional

unknown unknowns Z. Even if no unknown unknowns exist and the model accounts for all

input parameters of the system, in general G(X, Z) 6= F (X) owing to the limited fidelity

of the model F (X). Evidently, these sources of error and epistemic uncertainty, namely,

the existence of unknown unknowns and the limited fidelity of the model, must be carefully

assessed as part of the certification of the system.

To this end, begin by considering the case of a single performance measure, N = 1, and

by noting that

{Y ≤ a} ⊂ {F (X) ≤ a + h} ∪ {G(X, Z)− F (X) ≤ −h} , (2.72)

where G− F may be regarded as a modeling-error function and h is an arbitrary number,

leading to the estimate

P[Y ≤ a] ≤ P[F (X) ≤ a + h] + P[G(X, Z)− F (X) ≤ −h] (2.73)

and to the conservative certification criterion

P[F (X) ≤ a + h] + P[G(X, Z)− F (X) ≤ −h] ≤ ε. (2.74)

Ideally h should be chosen to minimize the sum of the probabilities on the left-hand side of

Eq. (2.74).
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It has been observed in previous sections how to obtain a bound for P[F (X) ≤ a + h],

i.e., for the probability-of-failure predicted by the model (with an additional margin h).

Certification now additionally requires a bound on P[G(X, Z)−F (X) ≤ −h], i.e., the prob-

ability that the predicted and measured performance differ significantly. This probability

measures the deleterious effect on predictiveness of all model imperfections, whether result-

ing from the limited fidelity of the model or from unknown unknowns, and may therefore

be regarded as a measure of epistemic uncertainty. As is evident from Eq. (2.74), the epis-

temic uncertainty has the effect of decreasing the effective probability-of-failure tolerance.

In particular, certification is not possible if the model is not sufficiently faithful, i.e., if

P[G(X, Z)− F (X) ≤ −h] ≥ ε.

The epistemic uncertainty can again be rigorously bounded by means of concentration-

of-measure inequalities. Thus, a direct application of McDiarmid’s inequality to G−F gives

the concentration-of-measure bound

P[G(X, Z)− F (X) ≤ −h] ≤ exp

(
−2

(E[G− F ] + h)2+
D2

G−F

)
(2.75)

where the validation diameter

D2
G−F :=

M∑
k=1

sup
(x1,...,xk−1,xk+1,...xM )∈E1×...Ek−1×Ek+1×···×EM

sup
z∈EM+1

sup
(Ak,Bk)∈E2

k

|F (x1, . . . , xk−1, Ak, xk+1, . . . xM )−G(x1, . . . , xk−1, Ak, xk+1, . . . xM , z)

− F (x1, . . . , xk−1, Bk, xk+1, . . . xM ) + G(x1, . . . , xk−1, Bk, xk+1, . . . xM , z′)|2

(2.76)

supplies a measure of the epistemic uncertainty of the system. In particular, the vali-

dation diameter measures the extent to which the predictions of the model deviate from

observation.
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In practice E[G − F ] and E[F ] are not known and must instead be estimated. Let

〈G − F 〉 and 〈F 〉 be the empirical means of G − F and F , respectively, estimated from m

nominally identical model evaluations and experiments. Take αF := DF m− 1
2 (− log ε′)

1
2 and

αG−F := DG−F m− 1
2 (− log ε′)

1
2 . Then with probability 1− 2ε′ for all h ∈ [0, a],

P[F (X) ≤ a + h] ≤ exp

(
−2

(〈F 〉 − a− h− αF )2+
D2

F

)
(2.77)

and

P[G(X, Z)− F (X) ≤ −h] ≤ exp

(
−2

(〈G− F 〉+ h− αG−F )2+
D2

G−F

)
. (2.78)

It therefore follows that the inequality

inf
h

exp

(
−2

(〈F 〉 − a− h− αF ])2+
D2

F

)
+ exp

(
−2

(〈G− F 〉+ h− αG−F )2+
D2

G−F

)
≤ ε (2.79)

supplies a conservative certification criterion. A near optimal choice for h is given by

matching the expressions in the exponentials, with the result

h =
(〈F 〉 − a− αF )DG−F + (αG−F − 〈G− F 〉)DF

DF + DG−F
(2.80)

whence the certification criterion becomes

CF =
M

U
≥

√
log

√
2
ε

(2.81)
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with

M =
(
〈F 〉 − a− αF − αG−F + 〈G− F 〉

)
+

(2.82a)

U = DF + DG−F ≡ UA + UE . (2.82b)

It is interesting to note that the total uncertainty U is indeed the sum of an aleatoric

uncertainty UA, measured by the verification diameter DF , and an epistemic uncertainty

UE , measured by the validation diameter DG−F . Generalizations to the cases of multiple

performance measures, N > 1, estimated mean performance, and arbitrary admissible set

follow along similar lines as those presented in the preceding scenarios.

Observe that the effect of epistemic uncertainty, whether due to lack of fidelity of the

model or the existence of unknown unknowns, is to decrease the margin M by αG−F +〈G−F 〉

and increase the total uncertainty U by DG−F . It should also be carefully noted that the

determination of the validation diameter DF−G requires the simultaneous and coordinated

execution of the model F and experiments G for equal known parameters X, in order

to assess the fidelity of the model, and the repetition of experiments for equal known

parameters X, in order to assess the effect of the unknown unknowns. Since experiments are

often costly and time consuming, the value and practicality of model-based certification thus

depends critically on the ability to quantify epistemic uncertainties by means of a sufficiently

small number of experiments. However, for a sufficiently predictive model the function G−F

involved in the evaluation of validation diameter DG−F can be expected to exhibit much

less variation than either F or G, thus enabling the computation of DG−F by means of

a rapidly converging iterative scheme requiring a small number of model evaluations and

experiments.
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Thus, the precise manner in which a predictive model cuts down on the number of

experiments required for certification is by restricting the need of testing to the specific

purpose of validation, presumably a much less testing-intensive task than purely empirical

certification of the system regarded as a black box. Evidently, the requisite number of

experiments depends critically on the quality of the model, as well as on the method of

optimization used to determine the epistemic uncertainties. An extreme case is furnished

by a perfect model that accounts for all input parameters, in which case the quantification

of the total uncertainty requires no experiments. In general, the purpose and benefit of

model-based certification is to reduce the number of experiments required for certification

through the formulation of a sufficiently predictive model. Herein lies the promise, as well

as the challenge, of model-based certification.

Fig. 2.1 unambiguously depicts the series of computations required for the various sce-

narios for certification outlined above. Note that if certification is not achieved, improve-

ments must be made on the model or experimental procedures before repeating the iteration

towards certification.
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Figure 2.1: Flowchart of the rigorous steps of V&V suggested by UQ via CoM with switches
for the scenarios discussed in §2.2
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Chapter 3

Applications

The applications in this chapter serve to illustrate the practicality and implementation

of the theory developed for the concentration-of-measure UQ framework in the previous

chapter.

3.1 Linear System

This example is meant to showcase a verification computation according to §2.2.3 that mocks

a stochastic simulation typically encountered in computational engineering applications

where random inputs are propagated through a linear algebra computation. This example

is expandable to take arbitrarily many random inputs that are entries of a stochastic linear

system



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann





x1

x2

...

xn


=



b1

b2

...

bn


. (3.1)

Take the system Ax = b, where A is size n × n and symmetric, and x and b are size

n × 1. The unique entries in A and b are random, resulting in N = n(n+1)
2 + n random



48

variables, which are scaled according to n. Solving for x yields a column vector from which

the performance measure, y = max(x) is taken.

Consider A likened to a stiffness matrix constructed in a finite element scheme, where

one wishes to compute the nodal displacements x, given the forces b at each node. A measure

of performance for the system may be its maximal nodal displacement, consistent with y =

max(x). For example, consider the nodal stiffness matrix of a nonperfect material (i.e., metal

with imperfections or grain structure), represented by A that may have some uncertainty

reflecting these inhomogeneities in its entries. Also consider that the forces b on the nodes

may have uncertainty due to imperfections (e.g., machine precision or bulk material loading

uncertainties) in the numerical model. In this regard, this example represents the core

computation of a typical solid mechanics solution algorithm.

Some numerical considerations should be highlighted. To obtain a nontrivial solution

(x = 0), A and b are controlled to ensure positive definiteness by adding 1 to each entry of

b and to the diagonal entries of A. The bounds given to the random entries in b and A are

normalized by n to maintain consistent order-of-magnitude results when n changes.

3.1.1 Results

Two cases were run using n = 50 (N = 1325), where the bounds on each random entry is

a uniform distribution between [−h, h], where h =1.0e-2 in case 1 and h = 5.0 in case 2.

These cases will serve to illustrate the effect of concentration-of-measure for tightly bounded

(case 1) and loosely bounded (case 2) random variables affecting a system. Intuitively, case

1 will exhibit lower uncertainty interpreted through diameters and a tighter concentration

of Monte Carlo samples about its mean.

If not otherwise specified, all computations in this work were done on the following
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machine:

• Architecture: Intel x86 64 Linux server

• Memory: 32 GB DDR2-667 main memory, 16 x 2 GB

• Processors: 4 Intel R©Xeon TM

• Disk: 500 GB Serial ATA, 7200 RPM HD w/16 MB Databurst Cache

• File System: NTFS, factory

• Operating System: Fedora Core Linux 2.6.13-1.1526 FC4smp

Table 3.1: Concentration-of-measure UQ results for the linear system application
Case Diameter (D2) Mean (E[y])

1 1.256e-4 1.00183
2 2.277e2 2.87929
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Figure 3.1: Case h =1e-2: (a) Individual diameters according to random variable number
and (b) diameters in ascending order
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Figure 3.2: Case h =1e-2: (a) Certification factor versus failure tolerance a and (b) margins
required for certification at a level ε
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Figure 3.3: Case h =1e-2: (a) Probability-of-failure versus failure threshold a and (b) a
histogram of performance measures using 2000 samples
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Figure 3.4: Case h = 5: (a) Individual diameters according to random variable number and
(b) individual diameters in ascending order
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Figure 3.5: Case h = 5: (a) Certification factor versus failure threshold a and (b) margins
needed for certification at a level ε
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Figure 3.6: Case h = 5: (a) Probability-of-failure versus failure threshold a and (b) a
histogram of performance measures using 2000 samples
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3.1.2 Discussion

The figures above are typical presentations of results for a concentration-of-measure UQ

analysis, illustrating individual diameters (Fig. 3.1(a) and Fig. 3.1(b)), confidence factors

for various failure thresholds (Fig. 3.2(a)), margins required for various certification criteria

(Fig. 3.2(b)), comparison of pf estimates from concentration-of-measure to Monte Carlo

sampling for various failure thresholds (Fig. 3.3(a)), and a histogram of Monte Carlo samples

(Fig. 3.3(b)). Note that Scenario 1 (§2.2.1) inequalities are used here, assuming that the

mean calculated is the exact mean.

Fig. 3.1(a) and Fig. 3.4(a) show the magnitude of diameters associated to individual

random variables — the largest individual “subdiameters” can be interpreted as the random

variables that contribute most significantly to the total uncertainty. Note the intuitive lower

order of magnitude for subdiameters in case 1 compared to case 2 — larger uncertainty in

inputs generally results in more uncertainty in the output as collected by subdiameters into a

total diameter. An ordering of subdiameter values in Fig. 3.1(b) and Fig. 3.4(b) exemplifies

some regularity of the magnitude of subdiameters associated to different random variables.

Fig. 3.2(a) and Fig. 3.5(a) show the confidence factor computed for increasing values of

failure threshold. As a tends closer towards E[y], the margin M decreases while the total

diameter D2 is constant, resulting in a lower confidence factor. Fig. 3.2(a) exhibits higher

confidence factors for the range of a compared to Fig. 3.5(a) mostly due to the diameter

value discrepancies, and partly due to the different magnitudes of margins dictated by the

magnitude of the mean.

Fig. 3.2(b) and Fig. 3.5(b) show the margins needed to recover a failure probability upper

bounded by ε — this allows a system designer to interpret how much further the system mean

needs to be from the failure threshold (M = (E[y]−a)+) to recover a desired pf . Note that
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noncertifiable systems may require a margin greater than the maximum difference between

a mean value and legitimate failure threshold, demonstrating the noncertifiable nature of

the system.

Fig. 3.3(a) and Fig. 3.6(a) show the estimates of pf for various failure thresholds a using

Monte Carlo sampling and CoM. Note that the CoM estimate is usually higher than Monte

Carlo sampling estimates when enough samples are available to do Monte Carlo analyses

(see the end of §5 for a discussion of cases which one should and shouldn’t use CoM to do

UQ) and exhibits the conservative nature of CoM pf estimates.

Fig. 3.3(b) and Fig. 3.6(b) show the probability densities of the outcomes for the given

ranges of random variable inputs through histograms using 2000 Monte Carlo samples.

Note the abscissa values show that case 1 is more tightly centered about its mean that case

2. These figures should logically correspond to the pf values computed by Monte Carlo

sampling in Fig. 3.3(a) and Fig. 3.6(a).

The meticulous analysis above, stemming from computations of the diameter and mean,

shows that the CoM framework provides important insight into the interpretation of system

uncertainties and performance. Such analyses are critical in any CoM UQ computation to

completely understanding the effect of system performance by uncertainties, and will be

provided for each application to follow.

3.2 Ring Explosion

This section applies, by way of demonstration, the concentration-of-measure approach to the

problem of predicting the state of maximum compression to an imploding/exploding ring.

The behavior of the ring in the high-energy regime is strongly nonlinear and dynamical and

the calculation of performance measures requires the solution of an initial value problem in
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time. Because the system undergoes multiple bifurcations and generally traverses a rough

energy landscape, the performance measures are expected to depend sensitively on initial

conditions and on the parameters of the system. In addition, in the high-energy regime the

shape of the ring at maximum compression is expected to be highly crumpled and irregular.

Thus, while straightforward in its definition, the example of an imploding ring does pose a

nontrivial and illuminating test of the theory.

That the certification criterion of Eq. (2.62) is indeed conservative, i.e., that if Eq. (2.62)

is satisfied then the probability-of-failure is indeed less than ε with probability 1 − ε′, has

been rigorously proven mathematically. However, several practical questions remain to be

ascertained. A first question concerns whether the bounds furnished by concentration-of-

measure are tight enough to supply a practical means of certification. A second question

concerns the means of calculation of the aleatoric and epistemic uncertainties, as mea-

sured by their corresponding verification and validation diameters, including the relative

efficiencies of optimization algorithms and the number of system evaluations and experi-

mental tests required for the computation of the uncertainty measures. The imploding ring

example presented in this section sheds useful light on these and other related questions.

3.2.1 Test case description

Consider a ring described by means of a bead model consisting of n point masses interact-

ing through two- and three-body potentials. The ring starts from an equilibrium circular

configuration and is imparted an inward radial velocity. The objective of the analysis is to

characterize the state of the ring at the point of maximum compression. Refer to [37] for

details of the numerical modeling of the ring.

A typical trajectory of the ring is shown in Fig. 3.8. As may be observed in the figure, the
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Figure 3.7: Schematic of ring implosion and explosion test

Figure 3.8: Ring implosion test. Crumpling of circular ring resulting from implosion (left
to right, top to bottom)
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ring buckles early on and subsequently undergoes extensive crumpling, with the amplitude of

the resulting crumpling increasing monotonically up to the point of maximum compression.

Suppose that the objective of the analysis is to predict the bending energy Eben at

the point of maximum compression of the trajectory. A natural measure of the extent of

compression of the ring is supplied by the extensional energy Eext. Likewise, the bending

energy Eben provides a natural measure of the degree of crumpling of the ring in compres-

sion. Therefore, an appropriate performance measure is given by the value of the bending

energy Eben of the ring at the time the extensional energy Eext attains its first maximum.

Thus, simulations stop when Eext attains its first maximum in time, at which point the

value of Eben is recorded as the single performance measure Y of interest. Additionally

assume that the proper operation of the system requires Y to be above a certain threshold

a. Thus, the system fails when the bending energy achieved at the point of maximum

compression falls short of the threshold value.

The calculations described earlier implicitly define a response function Y = F (X) that

returns the performance measure Y as a function of the parameters X of the system. These

parameters include material constants, geometry, loading, initial conditions, and numerical

parameters such as the time step used for numerical integration. For definiteness, regard all

parameters to be certain, and therefore treat them as fixed constants, with the exception of

the bending stiffnesses D of the bond-pairs in the ring, which are assumed to be uncertain.

Specifically, divide the circumference of the ring into M segments of equal length. Each

of the beads in a particular section i = 1, . . . ,M is assigned a variable value Xi for the

bending stiffness within a certain range. In order to investigate the effect of the range of

the inputs on the probability-of-failure estimates, the bending stiffness ranges considered are

[0.95, 1.05], [0.99, 1.01], [0.995, 1.005], and [0.999, 1.001]. In addition, in order to examine the
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Table 3.2: Values of fixed parameters used in imploding ring calculations
Parameter Value

Number of beads (n) 256
Extensional stiffness (C) 1.0

Individual bead mass density (m) 1.0
Ring radius (R) 0.25

Initial time step (∆t) 6.14× 10−4

Initial velocity fluctuation (∆V ) V0/3.0
Initial velocity wave number (k) 4

Minimum time step 1.0× 10−6

Richardson extrapolation energy tolerance 1.0× 10−3

corresponding effect of the nonlinearity of the model, the mean initial velocities considered

are V0 = 3, 3× 10−1, 3× 10−2, and 3× 10−3. The remaining values of the parameters used

in calculations are recorded in Table 3.2.

3.2.2 Uncertainty quantification analysis

deformed

undeformed

(a)

deformed

undeformed

(b)

Figure 3.9: Ring configurations considered in the definition of the coarse-grained model.
(a) Exact model; (b) Coarse-grained model

The fundamental calculations to be carried out for purposes of uncertainty quantification
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are: the calculation of the estimated mean performance 〈Y 〉 as in Eq. (2.56); the verification

diameter DF of the response function as in Eq. (2.31); and the validation diameter DG−F

as in Eq. (2.76). In lieu of experimental data, G is taken as the response function of

a higher resolution ring model discretized with 768 beads, with F then representing a

coarse ring discretized with 256 beads obtained by coarse-graining G. As in the case of

actual experimental data, the evaluations of G are expensive, which places a premium on

optimization methods that require the least number of evaluations of G. Considerations

are made towards appropriate scaling of masses, and bending and axial stiffnesses between

F and G as detailed in [37].

For large deviations from a perfect circular configuration, the coarse-grained model F

deviates significantly from the exact model G, especially as a result of the strong nonlinear

dependence of the bending energy on the bond-pair angle and of the inability of the coarse-

grained geometry to resolve fine wrinkles in the deformed configuration of the exact model.

It bears emphasis that the upscaling model described in [37] is not proposed as an accurate

method of coarse-graining but, contrariwise, it is intended as a rough approximation for

purposes of ascertaining the uncertainties introduced by modeling assumptions.

In addition, in order to introduce unknown unknowns of the type that are likely to

be encountered in practice, i.e., arising from fine unresolved length scales, introduce nodal

mass perturbations in fine model G that are subgrid relative to the coarse model F , i.e.,

preserve the aggregate masses of all beads in F . This constraint is satisfied by adding a

mass Z to the beads of G explicitly accounted for in F , and subtracting masses Z/2 to the

remaining beads in G. This distribution of mass over the fine model is indeed undetectable

on the level of resolution of the coarse model. In this manner, the added mass Z becomes

the sole unknown unknown of the system. In calculations, the added mass Z is either zero
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or is varied bead-wise so that the variation of the total mass of the ring is in the range

[−0.1, 0.1].

The estimation of the mean performance 〈Y 〉 can be carried out simply by means of

Monte Carlo sampling. The computation of the diameters DF and DG−F requires an

optimization over parameter space. Owing to the roughness of the energy function landscape

of the ring and the lack of explicit derivatives of the response function, global optimization

methods such as genetic algorithms and simulated annealing naturally suggest themselves

in the computation of DF , but gradient methods are also worth exploring if the function

exhibits regularity in the design space. All calculations employ the quasi-Newton method

and genetic algorithms implemented in Sandia National Laboratories’ DAKOTA Version 4.0

software package. By contrast, the computation of DG−F requires costly experimental tests

and global optimization algorithms are often not viable due to their slow convergence. The

expectation, however, is that for a sufficiently high-fidelity model the function G−F exhibits

much less variation than either F or G, and that, therefore, the computation of DG−F can

be carried out by means of rapidly converging iterative schemes such as a quasi-Newton

iteration.

3.2.3 Results

3.2.3.1 Perfect model

Begin by supposing that the model F is perfect as in §2.2.1. Fig. 3.10 depicts the dependence

of the distribution in performance on the number of random inputs. The distributions are

calculated directly by 103 Monte Carlo samples, with the sampling carried out in two ways:

assuming a uniform distribution of the inputs over their intervals of variation, referred

to as “uniform distribution” in the figure; and assuming that the inputs are at the end
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Figure 3.10: Monte Carlo calculations of the distribution of the performance measure as
a function of the number of random variable inputs of the system. (a) Histograms of the
performance measure. (b) Standard deviation (σ) on the distribution

points of their intervals of variation, referred to as “worst case” in the figure. As expected,

uniform sampling results in a lower probability-of-failure than worst-case sampling. All

Monte Carlo calculations presented subsequently are carried out using worst-case sampling.

The standard deviation of the distribution is found to scale as M−0.43 with the number

of random variable inputs M , Fig. 3.10b. A marked concentration of the performance

histogram as the number of inputs is increased is clearly evident in the figure, which vividly

demonstrates the concentration-of-measure phenomenon on which the present approach is

predicated.

The dependence of the verification diameter DF of the response function on the num-

ber M of input parameters is shown in Fig. 3.11. For linear F one has the scaling

DF ∼ M− 1
2 , and hence the power-law behavior (DF ∼ M−0.4 in the quasi-Newton cal-

culations, DF ∼ M−0.43 in the genetic algorithm calculations) evident in Fig. 3.11 owes
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Figure 3.11: Ring implosion test. Dependence of the verification diameter (as computed by
either quasi-Newton or a genetic algorithm) on the number of random inputs of the system,
showing clear power-law behavior

to the lack of regularity of the response function F (X). This scaling behavior serves to

illustrate one of the principal strengths of the concentration-of-measure approach, namely,

that the uncertainty bounds become sharper as the number of random variables increases.

Therefore, concentration-of-measure bounds are particularly attractive in the context of cer-

tification of large complex systems with many random inputs. It is also interesting to note

from Fig. 3.11 that both the genetic algorithm and quasi-Newton results exhibit ostensibly

identical behavior.

The margin plots in Fig. 3.12 below for Scenario 1 (and Scenario 3 in Fig. 3.13 and

Scenario 5 in Figs. 3.17 and 3.18) apply an initial implosion velocity V0 = 3. They show

the dependence of the required margin on the number of random inputs for four input

ranges: D = [0.95, 1.05], [0.99, 1.01], [0.995, 1.005], and [0.999, 1.001] for the coarse model

F , with corresponding intervals for the fine model G for Scenario 5 figures in Figs. 3.17

and 3.18.
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Figure 3.12: Minimum design margins required in order to guarantee various probabilities-
of-failure for a perfect model and exact mean performance case

A number of features of the results presented in Fig. 3.12 and Fig. 3.13 immediately

come to prominence. Interestingly, despite the extremely nonlinear behavior of the system

the margins required to guarantee its safe performance take modest values which, presum-

ably, should be attainable by practical designs. The modest range and good behavior of

those design margins illustrates the feasibility and practicality of concentration-of-measure

inequalities as a basis for the certification of complex systems. A second feature of in-

terest is the steady decrease of the design margins with the number of random inputs, a

decrease that is in keeping with the expected behavior of concentration-of-measure inequal-
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Figure 3.13: Minimum design margins required in order to guarantee various probabilities-
of-failure for a perfect model and estimated mean performance case

ities. Thus, the concentration-of-measure approach to certification pursued in the present

work, which is based on the simple Hoeffding inequality, is particularly effective for systems

with a large number of uncorrelated or weakly correlated random inputs. Extensions of

concentration-of-measure inequalities to correlated inputs are summarized in Appendix A

but will not be pursued here in the interest of simplicity. A final feature of interest, which

is evident from a comparison of Fig. 3.12 and Fig. 3.13, concerns the small increase of the

required design margins that results from estimating the mean performance of the system

empirically. This small effect suggests that in practice mean performances can be safely
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estimated empirically and that the mean performance of the system need not be known

exactly.

3.2.3.2 Inexact model

Next is the investigation of the effect of modeling uncertainties, including unknown un-

knowns. The precise manner in which the exact model is coarse-grained and unknown

unknowns are introduced has been described in §3.2.1. The determination of the residual

probability-of-failure tolerance requires the estimation of the mean deviation 〈Gi − Fi〉 be-

tween predicted and measured performance measures and the computation of the validation

diameters DGi−Fi . Again, note that this determination requires the simultaneous execution

of nominally identical calculations and experiments, a process that gives precise form to the

notion of validation.
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Figure 3.14: Comparison of the number of objective function evaluations to convergence of
the validation diameter DG−F using a quasi-Newton and a genetic algorithm as function of
the number of random input parameters for the imploding ring case

As stated in §2.2.5, in the context of certification, models are useful precisely because,
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for sufficiently predictive models, the objective function required to compute the validation

diameter, Eq. (2.76), may be expected to exhibit much less variation than the response

function itself, with the result that the evaluation of the validation diameter can be based

on rapidly-convergent iterative procedures, which in turn can greatly reduce the number of

experimental tests required for certification. This working assumption may be tested in the

case of the imploding ring example. Fig. 3.14 shows plots of the number of iterations to

convergence using a quasi-Newton iteration and a genetic algorithm as function of the num-

ber of random input parameters. As may be seen in the figure, for a small number of input

parameters the quasi-Newton iteration converges more rapidly than the genetic algorithm

and the number of iterations to convergence is manageably small. As the complexity of the

system increases, the performance gap between the genetic algorithm and the quasi-Newton

iteration narrow and, for a large number of input parameters the genetic algorithm requires

fewer iterations to convergence.

In a certification context, the effect of the limited model fidelity is an effective reduction

in the probability-of-failure tolerance (see §2.2.5). Thus, the computed probability-of-failure

must now be compared against a reduced tolerance that accounts for modeling errors.

Fig. 3.15 shows that, for the particular choice of upscaling model used in the calculations,

the validation diameter DF−G is greatly in excess of the verification diameter DF . Thus,

the epistemic or modeling uncertainty UE completely overshadows aleatoric uncertainty UA

resulting from the intrinsic variability of the inputs and any stochastic nature of the system.

The reason for the large epistemic uncertainty is clearly illustrated in Fig. 3.16, which shows

that fine crumpling of the ring occurs in the late stages of compression, as in Fig. 3.16(a).

This localized crumpling greatly contributes to the bending energy of the ring, i. e., to the

chosen measure of performance. However, the localized crumpling cannot be resolved by
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Figure 3.15: Ring implosion test. Ratio of validation diameter, DG−F , to verification
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the coarse model and is completely suppressed, as in Fig. 3.16(b), with the result that the

bending energy of the ring is greatly underestimated.
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(a) (b)

Figure 3.16: Closeup of a snapshot of the ring trajectory showing: (a) localized crumpling
in the exact system represented by G(X, Z) and (b) the failure of the coarse-grained model
F (X) to resolve the localized crumpling
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Figure 3.17: Minimum design margins required in order to guarantee various probabilities-
of-failure for an inexact model, estimated mean performance, and no unknown unknowns
case
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Figure 3.18: Minimum design margins required in order to guarantee various probabilities-
of-failure for an inexact model, estimated mean performance, and unknown unknowns added
to the system in the form of added bead masses resulting total ring mass variations in the
range [−0.1, 0.1]
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In order to compensate for the large epistemic uncertainty, the certification of the sys-

tem requires larger margins than otherwise required in the case of the perfect model (see

Fig. 3.17). This is particularly so for large numbers of random input parameters owing to

the lack of concentration exhibited by the inexact model, a behavior that is in sharp contrast

to the perfect model which, as noted earlier, exhibits strong concentration with increasing

system size. The behavior of the system is not significantly altered by the introduction of

unknown unknowns (see Fig. 3.18). Remarkably, despite the large level of epistemic un-

certainty and the introduction of unknown unknowns the minimum margins required for

certification remain within relatively modest values attainable by practical designs. Thus,

while the concentration advantage may be diminished, concentration-of-measure inequali-

ties remain a viable avenue for certification in the context of inexact models and unknown

unknowns.

3.3 Optimal Control Strategies

This example seeks optimal controls that minimize a probability-of-failure upper bound

supplied by concentration-of-measure inequalities. The resulting optimal controls then max-

imize the design margin M , or reduce the uncertainty U in the operation of the system, as

measured by the system diameter, or both. Optimal control within this UQ framework can

be thought of as concentration-of-measure optimal control, or COMOC.

This section assesses COMOC in a specific area of application: positioning accuracy

of robotic arm maneuvers, where the robotic arms are modeled as interconnected three-

dimensional rigid bodies [36, 35]. Uncertainty is introduced by first assuming that the

lengths of the arms are random, and secondly the system also experiences random forcing

due to side wind. A version of McDiarmid’s concentration inequality is used here where the
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mean of the system performance is estimated through an empirical average as in §2.2.3.

Investigated here is a particular robot arm maneuver whose successful operation requires

a minimum arm tip positioning accuracy, where the deterministic analysis of the nominal

geometry of the system without wind forces can be found in [34], as well as details of the

discrete mechanics and optimal control for constrained systems (DMOCC) methodology.

Results of numerical experiments are collected in §3.3.1. In the particular example under

consideration, COMOC reduces the concentration-of-measure probability-of-failure upper

bound by about one order of magnitude with respect to the deterministic optimal control.

3.3.1 Test case: Minimizing the probability-of-failure for a robot arm

maneuver

The deterministic robot arm maneuver from [34] is considered first in the presence of geo-

metrical uncertain arm lengths then in uncertain operating conditions represented by the

presence of uncertain wind forces in addition to the uncertain lengths. All calculations use

the reduced variational time-stepping scheme in [34] obtained via the discrete null space

method with nodal reparameterization. Further DMOCC considerations for this maneuver

are detailed in [34].

The performance measure Y is the placement accuracy of the arm tip, i.e., the distance

from the arm tip and its prescribed location xH at the end of the maneuver’s duration of

tN = 1.5 units of time. Thus, in this case Y = ‖xN − xH‖ is obtained for a candidate

control sequence τd by stepping forward in time and the initial conditions both described

in [34]. From an optimal control point of view, this is similar to a shooting method. Let a

be the acceptable radius of the arm tip from the desired point xH — whereby acceptable

operation is Y ≤ a and failure is Y > a. The goal is to find a control sequence τd for which
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the probability-of-failure P[Y > a] is minimal. Often, however, the probability P[Y > a]

is not known explicitly. In these cases, one seeks instead to minimize a concentration-of-

measure upper bound of the probability-of-failure. The resulting objective function to be

minimized is the probability-of-failure for an assumed perfect model with estimated mean,

as in §2.2.3

pf = exp
(
−2

M2

U2

)
= exp

(
−2

(a− 〈Y 〉 − α)2+
D2

F

)
(3.2)

This choice of objective function in for the optimal control τd seeks to maximize con-

fidence in the safe operation of the system either by increasing the placement margin M ,

i.e., by decreasing 〈Y 〉, or by reducing the uncertainty U of the maneuver, i.e., by reducing

the diameter DF , or the collective ratio.

Each objective function evaluation of Eq. (3.2) requires the computation of the empir-

ical average response 〈Y 〉 and the diameter DF . For all calculations in this example, the

mean response is computed by Monte Carlo sampling and the system diameter and optimal

controls τd are computed by separate simulated annealing schemes described in §A.1. The

starting controls for the algorithm are set to the deterministic controls computed in [34].

3.3.1.1 Uncertain Geometry

Begin with M = 2 uncertain lengths where l1 can vary randomly in a range of 5% and l2

varies randomly in the range of 0.1% around the given value, respectively. These values

ensure that their influence on the system’s uncertainty is of the same order of magnitude.

Fig. 3.19 shows the mean performance evolution, system diameter, and concentration-of-

measure probability-of-failure upper bound along the simulated-annealing algorithm evo-

lution for the determination of the optimal controls. Expectedly, both the positioning

accuracy of the maneuver, measured by the mean response 〈Y 〉 with m = 100, and the
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Figure 3.19: Uncertain geometry: Simulated annealing algorithm evolution for the determi-
nation of the optimal controls. Evolution of: (a) mean performance (b) system diameter
and (c) concentration-of-measure probability-of-failure upper bound

uncertainty in the operation of the maneuver, measured by the diameter DF , show a de-

creasing tendency. The concentration-of-measure probability-of-failure upper bound corre-

spondingly decreases from pf = 0.49 to pbest
f = 0.013 with 〈Y 〉 = 0.0693 and D2

F = 0.00292

corresponding to the best control sequence. This reduction in probability-of-failure can be

interpreted as an increase in the confidence that may be placed in the acceptable operation

of the maneuver, as measured by the confidence factor. For the optimal control sequence

with pbest
f = 0.013 computed via Eq. (2.61), the mean has been recomputed with m = 10000

such that one can assume it to be exactly the mean performance of the system. Then using
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Eq. (2.32) (with M = (a − E[Y ])+), E[Y ] is computed to be E[Y ] = 0.0542 < 〈Y 〉, and

pbest
f = 0.000472 for the same D2

F = 0.00292.

Confidence in the system requires that the design margin be large in relation to the

uncertainty, which underscores the importance of quantifying—and mitigating by means

of optimal control—system uncertainties for purposes of certification. The application of

COMOC to increase design confidence in the particular example of the robot-arm maneuver

becomes obvious.

3.3.1.2 Uncertain Wind Forces and Uncertain Geometry

For this case, in addition to the uncertain lengths (retaining the same bounds), each body

is affected by a random wind force in every time step, hitting the body’s surface around the

center of mass in a prescribed location. Each component of each three-dimensional force

vector varies randomly between in [−0.001, 0.001]. With 15 time steps, two bodies, and three

wind force components on each body, a total of M = 92 uncertain variables are introduced.

Fig. 3.20 shows the mean performance evolution with m = 100, system diameter, and

concentration-of-measure probability-of-failure upper bound along the simulated-annealing

algorithm evolution. Even though only 50 objective function values have been computed,

the probability-of-failure upper bound has been improved from pf = 1.0 to pbest
f = 0.1158

and D2
F = 0.01098. Observe that the pbest

f has been found for a control sequence that leads

to (local) minima in the mean and diameter, respectively. Again, assuming that the mean

resulting from m = 10000 samples yields exactly the mean performance E[Y ], then pbest
f

is computed using Eq. (2.32) (with M = (a − E[Y ])+), where E[Y ] = 0.0545 > 〈Y 〉, with

pbest
f = 0.0567 for the same D2

F = 0.01098. Here, even though E[Y ] > 〈Y 〉, pbest
f decreases

because E[Y ] ≤ 〈Y 〉 + α is satisfied (where α = 0.0225) — thus M decreases when using
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Eq. (2.32) instead of Eq. (2.61).
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Figure 3.20: Uncertain wind forces and uncertain geometry: Simulated annealing algorithm
for the determination of the optimal controls. Evolution of: (a) mean performance (b)
system diameter and (c) concentration-of-measure probability-of-failure upper bound

3.3.2 Remarks

The greatest limitation of the COMOC implementation developed here is its computational

cost. Each evaluation of the objective function (probability-of-failure) requires the calcula-

tion of the system diameter for a particular control, requiring multiple evaluations of the

system’s equations of motion. To reduce the computational expense to a tractable level,

the controls have been constrained to remain close to the initial deterministic solution. The
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MATLAB implementation prohibited use of parallelism in the optimizations, which would

greatly decrease wallclock time of the entire COMOC simulation. It is likely that further

gains in design confidence could be achieved from an unrestricted control optimization, but

the computational resources and infrastructure required for such an optimization are be-

yond the scope of this first attempt. In view of these present limitations, the formulation of

efficient COMOC implementations that alleviate its computational expense clearly suggests

itself as a subject of further research.

3.4 PSAAP Hypervelocity Impact

3.4.1 Problem setting

The overarching PSAAP (Predictive Science Academic Alliance Program) application is

the simulation of hypervelocity impact to be used as part of the uncertainty quantification

campaign at the California Institute of Technology. Ballistic impact can be simulated us-

ing fully-Lagrangian finite-element methodology such as presently available in the Center’s

Virtual Testing Facility (VTF). An extensive Lagrangian methodology has been developed

by Caltech’s ASC/ASAP Center, including: composite finite elements specially designed

for finite-deformation plasticity and ballistic impact dynamic conditions; cohesive elements

for simulating brittle fracture and fragmentation; shear-band and spall elements; thermo-

mechanical coupling; graph-based parallel fracture and fragmentation; variational integra-

tors; variational r and h-adaption; variational contact and friction; and a suite of multiscale

material models.

F (X) represents the computational model that attempts to accurately represent the

physical system, G(X, Z). The system of interest for the PSAAP application is a hyperve-
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locity impact between a 0.070 in-diameter 440c stainless steel sphere projectile and a 304

stainless steel 6 in-square plate 0.105 in thick. The finite-element package Abaqus is em-

ployed, which takes X as a random variable input and is completely deterministic otherwise.

The computational size of the model is characterized by having 29, 414 linear tetrahedral

elements and being symmetric about the y = 0 plane. The model supports a contact al-

gorithm, a plasticity model, and element erosion as elements become overly distorted from

the severe impact (in the absence of a fracture capability).

The performance measure for the system is the resulting perforation area in m2 measured

at a right angle from the plane of the plate. Experimentally, this measurement is made by

shining a light down through the perforation and using software to determine the perimeter

of the perforation and calculate the area inside of that perimeter. Refer to §B for details

of the area measurement.

Computationally, the active elements of the final time step that are above a cutoff

speed of 100 m/s are retained to eliminate disconnected material and ejecta from affecting

perforation area and plotted in the plane of the plate in 2D. MATLAB image processing is

used to calculate the ratio of black (solid) to white (perforated) area and then multiplied

by the known area of the image to obtain total area of perforation. See Fig. 3.22 for a

comparison for a single Abaqus model execution.

3.4.2 Verification

This application of the UQ framework uses six variables for the assessment of verification:

• Projectile Speed (V ): [2147,2888] m/s

• Plate Obliquity (αplate): [0,30] degrees in x-direction (symmetry about the 0◦ taken

into account) — see Fig. 3.23 for the definition of the angle.
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(a)

(b)

Figure 3.21: (a) Mesh used in PSAAP application. (b) Closeup near impact region

Figure 3.22: (a) Abaqus and (b) MATLAB visualizations of PSAAP performance measure
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• Plate yield stress (σyplate
): [3.0e8,5.0e8] Pa

• Mesh size (∆x): Discretized by three mesh sizes of {14087, 29414, 60678} elements

• Plate thickness (hplate): Discretized by four plate thicknesses of {60, 78, 90, 105} thou-

sandths of an inch

• Time step (∆t): [5e-10,1e-9] s

Figure 3.23: Side-view schematic of how obliquity is defined in PSAAP applications. Zero
degrees corresponds to a perfectly perpendicular impact of the projectile to the plate

The study is characterized by doing diameter calculations for each variable with 20

function evaluations using DAKOTA’s single objective function genetic algorithm from the

JEGA package. The diameter is given in terms of m4. The mean was estimated using 40

Monte Carlo samples from DAKOTA’s nondeterministic sampling package.

Both the diameter and mean calculations were computed using two processors for each

execution of Abaqus (v6.7), and six concurrent executions on Caltech CACR’s mind-meld

machine. The time for each execution varied, based heavily on the time step and mesh size

variables. The median execution time was about 15 minutes.

Machine specifications for Caltech CACR’s mind-meld :

• Architecture: Opteron Linux server
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• Memory: 32 GB DDR2-667 main memory, 16 x 2 GB

• Processors: 8 dual core AMD Opteron 8220, 2.8 GHz, 1 MB Level 2 cache per core

• Network Interconnect: PCI-x, PCI-Express, Gigabit Ethernet

• Disk: nfs project work area, SAS home directories

• Operating System: Red Hat Linux 2.6.18-53.1.19

3.4.2.1 Results
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Figure 3.24: PSAAP verification exercise showing (a) individual subdiameters and (b)
normalized subdiameters (D2

i /D2)

3.4.2.2 Discussion

Fig. 3.24(a) illustrates that the dominant contributors to uncertainty from the given do-

main of random variables reside in the plate yield and time step parameters within the given

ranges, while Fig. 3.24(b) shows their relative contributions to the total diameter. These

two figures open a door to many conclusions. First, the physical parameter oscillations with
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Figure 3.25: PSAAP verification exercise showing (a) confidence factors and (b) margins
required for certification

regards to the given input domain are ostensibly larger collectively than those associated

with numerical parameters. This suggests that most of the uncertainty in this model is at-

tributed to the real-world parameters that are the only ones of interest to those performing

experiments. If the majority of uncertainty were associated to the numerical parameters,

then the model’s performance is overly sensitive to numerical inadequacies. This suggests

that the model cannot be verified in this framework because it is nonconvergent with respect

to numerical parameters. This interpretation of verification is not dissimilar to that given

in §1.2.2, since this framework identifies that the numerical parameters/algorithms do not

accurately represent the modeler’s conceptual description of a model by large uncertainties

of performance. The latter years of this project aim to include more complex physics (frac-

ture mechanics, temperature effects, rate sensitivity effects, first-principles parameters, void

nucleation, etc.) that are not included in this model. This would suggest a more accurate

model, but again, this framework will identify if that model can be verified numerically.

Fig. 3.25(b) shows the margin required for certification (CF = M/U > 1) at different
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Figure 3.26: PSAAP verification exercise showing (a) a histogram of Monte Carlo samples
used to estimate the mean and (b) the probability-of-failure computed by CoM UQ

levels of confidence ε. Fig. 3.25(a) shows a very low certification factor for even negative

thresholds — that levels off at 0 for positive threshold values. These figures support the

same interpretation — uncertainties dominate over the margin: M/U < 1 which is not

certifiable for any respectable ε. It is the hope that the more intelligent physics codes will

help reduce uncertainty in the model, as mentioned in the above paragraph. Note that the

physical parameter specifications may be too broad to certify the system even with a perfect

model, and only a shrinking of these bounds could provide the means to verification.

Fig. 3.26(a) shows that, of the 100 Monte Carlo samples taken to estimate the mean, the

most observed perforation areas reside nearer to 0 m2. Fig. 3.26(b) shows the probability-

of-failure computed from McDiarmid’s concentration-of-measure inequality. In this case,

trivial pf s are recovered from meaningful margins, while nontrivial upper bounds of pf are

only obtained for the unobtainable negative perforation area threshold values.
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3.4.3 Validation

Certain limitations of the associated experiments prohibit using velocity as a strictly con-

trollable bounded random variable. Refer to §4.1.2 for a detailed discussion of how un-

controllable random variables are treated in this framework, a slight deviation from the

validation campaign described in §2.2.5. The two-stage light gas gun used by Rosakis et al.

to recover G(X, Z) does not have repeatability or exact control over X. Some reasons for

this are:

• Imprecise amount of hydrogen present in pump tube

• Imprecise amount of atmosphere present in the flight tube and target tank

• Natural variations and defects in material and material processes

• Magnitude of friction between bore and launch package

• Weight and fit of piston in the flight tube

• Head space of the AR section

• Fit of the mylar burst disc

• Potential blowby.

Since this application is characterized by including one controllable variable, XN = V

among the controllable physical variables (X1, X2) = (hplate, αplate), the deviation from the

validation campaign in §2.2.5 uses some theory developed in §4 for exactly this case:

1. Compute D̄G−F,N using Eq. (4.24).

2. For i < N , bound D̄G−F,i using Eq. (4.27).
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3. Bound D̄G using D̄G ≤ D̄F + D̄F−G.

4. Conclude via concentration inequalities Eq. (4.18) and Eq. (4.19).

3.4.3.1 Results

To date, only the subdiameter associated to the plate thickness has been recovered, since the

experiments take nontrivial amounts of man-hours to setup, complete, and catalogue. After

this thesis has been submitted, the last subdiameters should have been attempted and com-

puted to complete the uncertainty quantification of this system — the first UQ campaign

of its kind in the world. With the verification diameter suggesting noncertification, the val-

idation diameter seems unlikely to be small for the given design domain, especially with the

noisy G(X, Z) function that is expected due to the range of competing complex phenomena

of hypervelocity metallic impact — excavation, spall, vaporization, flange petalling, radial

and circumferential crack nucleation and propagation, and shear plugging. Tractability of

this method is shown regardless of the outcome.

The optimizer described in §A.2 was used here because of the noisy objective function.

Tables 3.3–3.6 show the data by steps in the optimization. The columns of “Thickness”,

“Obliquity”, and “Velocity” are given for each shot/simulation done. The experimental

perforation area measurement falls under the “G result” column, and the simulation per-

foration area falls under the “F result” column. Recall that a triplet of values suggested

by the optimizer translates into two pairs of plate thickness and obliquity settings — this

distinction is made in the “Pairs” column where a triplet shares the same obliquity value

between the two shots/simulations with the same pair number. The “Xprime?” column

denotes whether the shot/simulation was associated to the value of the copied, or “primed”,

random variable set (1) or not (0). The “Pair” and “Xprime?” distinctions are necessary
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to build the trajectory of triplets (h, α, h′) suggested by the optimizer in objective function

space in Fig. 3.27.

Table 3.3: PSAAP Validation Initialization Phase Data
Thickness Obliquity Velocity F Result G Result Pair Xprime?

105 0 2480 6.91591275e-06 5.35e-06 4 0
105 10 2719.28 8.32887225e-06 5.75e-06 1 0
105 21 2266.79 2.7426915e-06 0 2 0
105 30 2500 3.42846e-06 0 3 0
90 0 2402.9 6.4514025e-06 5.75e-06 4 1
90 10 1811.36 3.612645e-07 5.61e-06 1 1
90 21 2800 7.95743775e-06 6.77e-06 2 1
90 30 2825.75 1.413011475e-05 5.91e-06 3 1

Table 3.4: PSAAP Validation Iteration 1 Data
Thickness Obliquity Velocity F Result G Result Pair Xprime?

90 15 2509 6.45943725e-06 5.735e-06 6 1
60 15 2567 7.38419175e-06 8.859e-06 5 1
73 11 2635 8.1427455e-06 8.943e-06 3 1
73 15 2507 6.7249935e-06 8.735e-06 1 0
73 15 2631 7.79283225e-06 9.187e-06 1 1
73 15 2701 8.09181675e-06 8.233e-06 2 1
73 18 2260 4.872069e-06 6.752e-06 4 1
90 11 2320 4.93202925e-06 9.094e-06 3 0
90 15 2315 5.277996e-06 5.352e-06 5 0
90 15 2316 5.34094425e-06 6.813e-06 6 0
90 15 2741 8.1811485e-06 6.887e-06 2 0
90 18 2815 8.2037295e-06 8.357e-06 4 0
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Table 3.5: PSAAP Validation Iteration 2 Data
Thickness Obliquity Velocity F Result G Result Pair Xprime?
105 2 2468 6.60886425e-06 3.76e-06 2 0
105 5 2255 4.4346285e-06 0 4 0
105 5 2648 7.73988075e-06 3.04e-06 5 0
105 5 2714 8.64536175e-06 3.24e-06 6 0
105 9 2201 4.103055e-06 0 1 0
73 5 2278 5.55292125e-06 7.4e-06 4 1
73 5 2438 6.5976165e-06 7.68e-06 5 1
90 2 2839 9.49428e-06 9.56e-06 2 1
90 5 2437 6.10914825e-06 5.42e-06 3 0
90 5 2556 7.76476125e-06 7.26e-06 3 1
90 5 2676 8.21572425e-06 8.54e-06 6 1
90 9 2157 3.64620825e-06 4.49e-06 1 1

Table 3.6: PSAAP Validation Iteration 3 Data
Thickness Obliquity Velocity F Result G Result Pair Xprime?

105 0 2146 3.42001575e-06 0 1 0
105 0 2390 5.57693775e-06 4.45e-06 4 0
105 0 2504 6.35877e-06 5.35e-06 5 0
105 0 2888 1.00148895e-05 7.39e-06 5 1
105 4 2344 4.88962575e-06 4.47e-06 3 0
73 0 2445 6.97044375e-06 7.78e-06 2 1
73 0 2782 8.96442975e-06 1.014e-05 4 1
90 0 2445 6.93045225e-06 5.68e-06 1 1
90 0 2767 9.17441775e-06 8.84e-06 2 0
90 4 2408 5.8591935e-06 6.6e-06 3 1
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Figure 3.27: Visualization of the iterations for the PSAAP application using color to denote
the objective function value as in Eq. (4.27) for the plate thickness subdiameter

3.4.3.2 Discussion

The validation diameter is the centerpiece of the UQ framework that has been developed in

this work. It rigorously defines a tractable methodology to assess the uncertainty between

a system and the model meant to predict its performance. It is not expected that the first

attempt at computing a validation diameter suggests a certifiable system, as the system

may inherently not be as uncertain as the validation diameter would suggest, since it is

conservative. Between the noisy experimental results and a model that suggests a relatively

large verification diameter, the expectation is that F and G will differ for every realization
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suggest by the optimizer. The results above show that although the numerical and experi-

mental results are within “ballpark” range of each other, they differ enough to estimate large

subdiameters. The design point that optimizes the objective function is (h, α, h′) = (105

1/1000 in, 0◦, 90 1/1000 in). With more objective function evaluations and unlimited aver-

aging over (V,Z) at each triplet, it is assumed that some other point minimizes the objective

function. The convergence criterion for the optimization algorithm was met at this point,

and now only requires averaging over (V,Z) to confirm the objective function value at that

point. This step will need to be done for each subdiameter computation because of the

noisy objective function.

Fig. 3.27 illustrates the trajectory that the optimizer selected in the (h, α, h′) space.

The color of the points denote the value of the objective function of the optimization as in

Eq. (4.27) for X = (h, α) and x′1 = h′. Note that the first iteration shows a cloud of points

suggested by the optimizer that are relatively small in objective function value compared to

the clouds of points associated to later iterations, suggesting that the optimizer is converging

to a global supremum of the noisy objective function.

3.4.4 General discussion

The PSAAP application is the first of its kind to employ the suite of systematic verification

and validation techniques to provide a measure of certification. Although this system shows

that it cannot be certified for the given ranges, the verification subdiameters suggest where

numerical inadequacies could reduce uncertainty, and the validation subdiameter computed

thus far for plate thickness highlights the discrepancies between model and experiment, and

also suggests improvements to be made for the next stages of the program for the physics

modelers and the control of experiments and data measurement.
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Chapter 4

Extensions to CoM UQ

4.1 UQ in a general setting

Often times, the restrictions of independence between random variables may be too strict

for McDiarmid’s inequality, Eq. (2.1), if there is correlation among them or independence

cannot be verified. There must be a recourse to a concentration-of-measure inequality that

relaxes this restriction. For this, the concentration-of-measure inequalities below exemplify

the flexibility of the theory to adapt to these more general cases.

Let G be an arbitrary function of two random variables X, Z where X may be vector

valued or infinite dimensional random variables and Z is an unknown unknown set of random

variables. The goal is to obtain the sharpest possible bound for

P[G(X, Z) ≥ r] (4.1)

with very limited information on the probability distribution of X and Z. The following

theorems account for limited information in various inequalities.
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4.1.1 Limited-information inequalities

4.1.1.1 Only E[G] and inf G are known

Consider the case that only E[G] and inf G are known and no further assumptions are made

on X and Z; then the sharpest possible estimate is given by the following theorem

Theorem 4.1.1. For all r > infx,z G(x, z)

P[G(X, Z) ≥ r] ≤ min
(

1,
E[G]− infx,z G(x, z)

r − infx,z G(x, z)

)
. (4.2)

The upper bound is optimal in the following sense: for all r > infx,z G(x, z) and all γ >

infx,z G(x, z) if there exists (xr, zr) such that G(xr, zr) = r, then with µ as an arbitrary

probability distribution on (X, Z)

sup
µ : Eµ[G]=γ

Pµ[G(X, Z) ≥ r] = min
(

1,
γ − infx,z G(x, z)
r − infx,z G(x, z)

)
. (4.3)

4.1.1.2 Inequality on distribution of noise deviation

Consider a function that is inherently noisy from epistemic uncertainties, Z. It may be

convenient to frame an inequality in terms of the function’s average over the epistemic

uncertainty. The following theorem is an adaptation of a theorem found in [44]. Assume

that X := (X1, . . . , XN ) where the Xi are independent random variables (not necessarily

identically distributed). Write GZ(x) the average of the variable G(x,Z) with respect to

Z. Take ρ := G(X, Z) − GZ(X) then Eρ is the expectation with respect to that variable,

where ρ can be considered a distribution of the epistemic noise about its mean.



91

Theorem 4.1.2.

P[G(X, Z) ≥ r] ≤ Eρ

[
exp

(
−2

(r − E[GZ(X)|ρ]− ρ)2+
D2

GZ

)]
(4.4)

and

P[G(X, Z) ≤ r] ≤ Eρ

[
exp

(
−2

(E[GZ(X)|ρ] + ρ− r)2+
D2

GZ

)]
(4.5)

where

D2
GZ

:=
N∑

i=1

sup
x1,...,xn,x′i

|GZ(. . . , xi, . . .)−GZ(. . . , x′i, . . .)|2. (4.6)

4.1.1.3 Inequalities on distribution of noise deviation extrema

Now, instead of working with the distribution of noise about its mean, consider the noise

extrema. With

ρmin := inf G(X, Z)−GZ(X) (4.7)

and

ρmax := sup G(X, Z)−GZ(X) (4.8)

Theorems 4.1.3 and 4.1.4 will be useful.

Theorem 4.1.3.

P[G(X, Z) ≥ r] ≤ exp

(
−2

(r − E[G]− ρmax)2+
D2

GZ

)
(4.9)

and

P[G(X, Z) ≤ r] ≤ exp

(
−2

(E[G] + ρmin − r)2+
D2

GZ

)
(4.10)

where DGZ
is defined by Eq. (4.6).
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Theorem 4.1.4. If the entries of X are independent and X and Z are independent, then

P[G(X, Z) ≥ r] ≤ exp

(
−2

(r − E[G])2+
D2

Z + D2
GZ

)
(4.11)

and

P[G(X, Z) ≤ r] ≤ exp

(
−2

(E[G]− r)2+
D2

Z + D2
GZ

)
(4.12)

where DZ := ρmax − ρmin and DGZ
is defined by Eq. (4.6).

4.1.1.4 Numerical model

It follows from Theorem 4.1.3 and 4.1.4 that one only needs to estimate E[G], DZ , and DGZ
.

The estimation of DGZ
can be simplified using a numerical model F (X) and the following

proposition

Proposition 4.1.5.

DGZ
≤ DF + DF−GZ

(4.13)

Let Y 1, . . . , Y q be q independent copies of G(X, Z). Then

< G >q:=
∑q

i=1 Yi

q
. (4.14)

The following theorem is then a straightforward consequence of the results of the previ-

ous sections

Theorem 4.1.6. Write

αε′ :=
D2

Z + (DF + DGZ−F )2√
2q

√
ln

1
ε′

(4.15)
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where DZ := sup(G(X, Z)−GZ(X))− inf(G(X, Z)−GZ(X))

• With probability 1− ε′ on the q samples

P[G(X, Z) ≥ r] ≤ exp
(
−2

(r− < G >q −αε′)2+
D2

Z + (DF + DGZ−F )2

)
(4.16)

or similarly,

P[G(X, Z) ≤ r] ≤ exp
(
−2

(< G >q −r − αε′)2+
D2

Z + (DF + DGZ−F )2

)
. (4.17)

4.1.2 Martingale inequality

Using Theorem 4.1.9, with no assumptions whatsoever made on X1, . . . , XN , Z,

P[G(X, Z) ≥ r] ≤ exp
(
−2

(r − E[G])2+
D̄2

G

)
(4.18)

and

P[G(X, Z) ≤ r] ≤ exp
(
−2

(E[G]− r)2+
D̄2

G

)
(4.19)

where

D̄2
G =

N∑
i=1

D̄2
G,i (4.20)

D̄G,N = sup
z,xN ,...,x1

∣∣∣E [G(X, Z)
∣∣(Z,XN , . . . , X1) = (z, xN , . . . , x1)

]
− E

[
G(X, Z)

∣∣(XN−1, . . . , X1) = (xN−1, . . . , x1)
] ∣∣∣

(4.21)



94

and for i < N

D̄G,i = sup
xi,...,x1

∣∣∣E [G(X, Z)
∣∣(Xi, . . . , X1) = (xi, . . . , x1)

]
− E

[
G(X, Z)

∣∣(Xi−1, . . . , X1) = (xi−1, . . . , x1)
] ∣∣∣

(4.22)

where E[X|Y ] denotes the conditional expectation of X given Y . Recall that if X1, . . . , XN−1, (XN , Z)

are independent then

D̄G,i = sup
xi,...,x1

∣∣∣GZ,XN ,...,Xi+1(xi, . . . , x1)

−GZ,XN ,...,Xi(xi−1, . . . , x1)
∣∣∣

(4.23)

where GZ,XN ,...,Xi stands for the function G averaged with respect to Z,XN , . . . , Xi.

D̄G,N = sup
z,xN ,...,x1

∣∣∣G(z, xN , . . . , x1)

− E [GXN ,Z(xN−1, . . . , x1)]
∣∣∣.

(4.24)

Observe also that if the probability distributions of the random variables X1, . . . , XN−1

are unknown then one can use (for i < N) the more conservative bound

D̄G,i ≤ sup
xN−1,...,xi,x′i,...,x1

∣∣∣GZ,XN
(xN−1, . . . , xi, . . . , x1)

−GZ,XN
(xN−1, . . . , x

′
i, . . . , x1)

∣∣∣.
(4.25)

To reduce computational cost, instead of the averaged expression in Eq. (4.25), use the

noisy version by replacing GZ,XN
(xN−1, . . . , xi, . . . , x1) with G(z, xN , xN−1, . . . , xi, . . . , x1)

and GZ,XN
(xN−1, . . . , x

′
i, . . . , x1) with G(z′, x′N , xN−1, . . . , xi, . . . , x1) where z, z′ are epis-

temic uncertainties. Generally, for a smoothed GZ(X), G(X, Z) = GZ(X) + ω(Z) where
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ω(Z) is considered noise. Then Eq. (4.25) becomes

D̄G,i ≤ sup
x1,...,xi,x′i,...,xN ,z,z′

∣∣∣G(x1, . . . , xi, . . . , xN , z)−G(x1, . . . , x
′
i, . . . , xN , z′)

∣∣∣ (4.26)

Now consider the appropriate expression for validation

D̄G−F,i ≤ sup
x1,...,xi,x′i,...,xN ,z,z′

∣∣∣G(x1, . . . , xi, . . . , xN , z)− F (x1, . . . , xi, . . . , xN )

−G(x1, . . . , x
′
i, . . . , xN , z′) + F (x1, . . . , x

′
i, . . . , xN )

∣∣∣
(4.27)

which that inequality used for the validation campaign, as in §3.4.3.

4.1.3 Proofs of general UQ

4.1.3.1 Proof of Theorem 4.1.1

The proof of Eq. (4.2) follows from the fact that on the subset
{

(X, Z) : G(X, Z) ≥ r
}

one has

G(X, Z)− infx,z G(x, z)
r − infx,z G(x, z)

≥ 1. (4.28)

The proof of Eq. (4.3) follows by choosing a measure µ such that (assuming r > γ)

µ[{(xr, zr)}] =
γ − infx,z G(x, z)
r − infx,z G(x, z)

(4.29)

with a remaining mass near a minimizer of G.

4.1.3.2 Centering sequences with bounded differences

The following lemma is taken from [23], which is also Lemma 3.2 of [44].



96

Lemma 4.1.7. Let X be a real-valued random variable with E[X] = µ with a ≤ X ≤ b

where a and b are constants. Then for any h

E[ehX ] ≤ b− µ

b− a
eha +

µ− b

b− a
ehb

≤ ehµ exp
(

1
8
h2(b− a)2

)
.

(4.30)

Given a sequence X = (X1, X2, . . .) of integrable random variables, the corresponding

difference sequence is Y = (Y1, Y2, . . .), where Yk = Xk−Xk−1 using the convention X0 := 0

and Y1 := X1. Let µk(x) := E[Yk|Xk−1 = x]. Define the distribution of the sequence X to

be centering if for each k = 2, 3, . . ., µk(x) is a nonincreasing function of x.

The following theorem is Theorem 2.3 of [44].

Theorem 4.1.8. Let X1, X2, . . . , Xn be a centering sequence with corresponding differences

Yk = Xk − Xk−1, and suppose that there are constants ak, bk such that ak ≤ Yk ≤ bk for

each k. Then for t > 0

P[Xn − E[Xn] ≥ t] ≤ exp
(
−2

t2∑n
k=1(bk − ak)2

)
(4.31)

and

P[Xn − E[Xn] ≤ −t] ≤ exp
(
−2

t2∑n
k=1(bk − ak)2

)
. (4.32)

The proof of the following theorem is similar to the proof of Theorem 6.7 and Corollary

6.9 of [43].

Theorem 4.1.9. Let F0 ⊂ F1 ⊂ · · · ⊂ Fn be a filter. Let the integrable random variable

X be Fn measurable, and let X0, X1, . . . , Xn be the martingale obtained by setting Xk :=

E[X|Fk]. Suppose that for each k = 1, . . . , n there are constants ak, bk, such that ak ≤
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Xk −Xk−1 ≤ bk. Then for any t > 0, a.s.

P
[
Xn − E[Xn|F0] ≥ t

∣∣∣F0

]
≤ exp

(
−2

t2∑n
k=1(bk − ak)2

)
(4.33)

and

P
[
Xn − E[Xn|F0] ≤ −t

∣∣∣F0

]
≤ exp

(
−2

t2∑n
k=1(bk − ak)2

)
. (4.34)

Proof. Observe that for h > 0

P
[
Xn − E[Xn|F0] ≥ t

∣∣∣F0

]
≤ e−htE

[
exp(h(Xn − E[Xn|F0]))

∣∣∣F0

]
. (4.35)

Since (Fk) is a filter,

E
[
exp(h(Xn − E[Xn|F0]))

∣∣∣F0

]
= E

[
exp(h(Xn−1 − E[Xn|F0]))E[eh(Xn−Xn−1)|Fn−1]

∣∣∣F0

]
.

(4.36)

Using Lemma 4.1.7, a.s.

E[eh(Xn−Xn−1)|Fn−1] ≤ exp
(

1
8
h2(bn − an)2

)
(4.37)

It follows that

E
[
exp(h(Xn − E[Xn|F0]))

∣∣∣F0

]
≤ exp

(
1
8
h2(bn − an)2

)
E
[
exp(h(Xn−1 − E[Xn|F0]))

∣∣∣F0

]
.

(4.38)

By induction, it is deduced that

P
[
Xn − E[Xn|F0] ≥ t

∣∣∣F0

]
≤ e−ht exp

(
1
8
h2

n∑
k=1

(bk − ak)2
)

(4.39)
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and conclude by taking h = 4t/
∑n

k=1(bk − ak)2.

The following theorem is an adaptation of Lemma 3.16 of [45]

Lemma 4.1.10. Let F0 ⊂ F1 ⊂ · · · ⊂ Fn be a filter. the integrable random variable X be Fn

measurable, and let X0, X1, . . . , Xn be the martingale obtained by setting Xk := E[X|Fk].

Write Yk := Xk − Xk−1 the corresponding martingale difference, assume that each Yk is

bounded from above. Let Z be an arbitrary positive random variable. Then for any h

E
[
Zeh

P
k Yk
∣∣F0] ≤ esssupE

[
Z

n∏
k=1

E
[
ehYk

∣∣Fk−1

]]
. (4.40)

4.1.3.3 Proof of Theorem 4.1.2

Observe that

P[G(X, Z) ≥ r] = P
[
GZ(X) ≥ r − ρ

]
. (4.41)

Hence

P[G(X, Z) ≥ r] = Eρ

[
P
[
GZ(X)− E[GZ(X)|ρ] ≥ r − ρ− E[GZ(X)|ρ]

∣∣ρ]]. (4.42)

Let Fn be the σ-algebra generated by ρ,X1, . . . , Xn. Write

Yk := E
[
GZ(X)

∣∣∣Fk

]
. (4.43)

Observe that (Fn) is a filtration (i.e., Fk ⊂ Fk+1). Using Theorem 4.1.9, a.s.

P
[
GZ(X)− E[GZ(X)|ρ] ≥ r − ρ− E[GZ(X)|ρ]

∣∣ρ] ≤ exp

(
−2

(r − E[GZ(X)|ρ]− ρ)2+
D2

GZ

)
(4.44)
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which concludes the proof of the theorem.

4.1.3.4 Proof of Theorem 4.1.3

The proof of Eq. (4.10) follows from McDiarmid’s inequality by observing that

P[G(X, Z) ≤ r] = P [GZ(X) ≤ r − ρ]

≤ P [GZ(X) ≤ r − ρmin] .

(4.45)

4.1.3.5 Proof of Theorem 4.1.4

Observe that

P[G(X, Z) ≥ r] = P [G(X, Z)− E[G] ≥ r − E[G]] . (4.46)

Define

Y1 = E
[
G(X, Z)

∣∣∣X1

]
− E[G] (4.47)

Yk = E
[
G(X, Z)

∣∣∣X1, . . . , Xk

]
− E

[
G(X, Z)

∣∣∣X1, . . . , Xk−1

]
(4.48)

for 2 ≤ k ≤ N and

YN+1 = G(X, Z)− E
[
G(X, Z)

∣∣∣X]. (4.49)

Using the independence between X and Z, E
[
G(X, Z)

∣∣∣X] = GZ(X) and YN+1 = ρ. Using

Theorem 4.1.9 conclude that

P [G(X, Z)− E[G] ≥ r − E[G]] ≤ exp

(
−2

(r − E[G])2+
(ρmax − ρmin)2 + D2

GZ

)
(4.50)

which concludes the proof of the theorem.
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4.1.4 UQ in one dimension

This section proposes theorems for the special case of uncertainty quantification in one

aleatoric dimension. The use of concentration-of-measure phenomenon in one dimension

decreases the sharpness of the inequalities expected in high dimensions but allows for unique

expressions of the theory for such special cases.

Let G be a function of a single known random parameter X and an unknown random

parameter Z; X and Z may be correlated. The goal is to obtain the sharpest possible

bound for

P[G(X, Z) ≥ r]. (4.51)

4.1.4.1 McDiarmid’s inequality.

Using McDiarmid’s inequality,

P[G(X, Z) ≥ r] ≤ exp
(
−2

(r − E[G])2+
D2

G

)
(4.52)

where

DG = sup
x,z

G(x, z)− inf
x′,z′

G(x′, z′). (4.53)

Case: X can’t be precisely controlled. This was the situation for the PSAAP ap-

plication in §3.4 prior to controllable variables such as plate obliquity and thickness being

introduced, and just as (uncontrollable) velocity was being considered.

If the mean E[G] is known, the only thing that needs to be estimated/bounded is DG.

DG given by Eq. (4.53) is the solution of an optimization problem and the value of z can’t be

controlled. The fact that the value of x can’t be precisely controlled does not significantly

affect the strategy (with only one input) since the interest is in estimating supG and
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inf G. Then one can apply the optimization algorithm to the approximate control of x to

achieve/estimate the sup and inf of G. More precisely X is controlled through parameters

λ, in the sense that X = H(λ, Z2) where Z2 is an unknown unknown. (Consider for the

PSAAP example that attempts at controlling the projectile velocity could be by turning a

knob for chamber hydrogen pressure — λ1 — and the mass of the launch package — λ2.)

It follows that

DG = sup
λ,z1,z2

G (H(λ, z2), z1)− inf
λ,z1,z2

G (H(λ, z2), z1) . (4.54)

Use of the numerical model F (X). The numerical model F can be used to estimate

DG through the inequality

DG ≤ DF + DG−F (4.55)

where

DF = sup
x

F (x)− inf
x

F (x) (4.56)

and

DG−F = sup
x,z

(G(x, z)− F (x))− inf
x,z

(G(x, z)− F (x)) . (4.57)

Since the value of x can’t be precisely set (experimentally) one has to measure its precise

value and use it in the numerical simulation in order to evaluate G(x, z)− F (x).

Unknown mean. Let Y 1, . . . , Y q be q independent copies of G(X, Z). Take the average

of these samples to be a mean estimator, < G >q

< G >q:=
∑q

i=1 Yi

q
. (4.58)



102

Using McDiarmid’s inequality,

P [< G >q≤ E[G]− r] ≤ exp
(
−2q

r2

D2
G

)
. (4.59)

It follows that for

αε′ :=
DG√
2q

√
ln

1
ε′

(4.60)

so then

P [< G >q≤ E[G]− αε′ ] ≤ ε′. (4.61)

Hence the following theorem

Theorem 4.1.11. With probability 1− ε′ on the q samples, for all r > infx,z G(x, z)

P [G(X, Z) ≥ r] ≤ exp
(
−2

(r− < G >q −αε′)2+
D2

G

)
(4.62)

with

αε′ :=
DG√
2q

√
ln

1
ε′

. (4.63)

Optimal estimate with an empirical mean. Let Y 1, . . . , Y q be q independent copies

of G(X, Z). Write

< G >q:=
∑q

i=1 Yi

q
. (4.64)

Theorem 4.1.12. With probability 1− ε′ on the q samples, for all r > infx,z G(x, z)

P[G(X, Z) ≥ r] ≤ min
(

1,
< G >q +α′ε − infx,z G(x, z)

r − infx,z G(x, z)

)
(4.65)
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with

αε′ :=
DG√
2q

√
ln

1
ε′

. (4.66)

Theorem 4.1.13. With probability 1− ε′ on the q samples, for all r < supx,z G(x, z)

P[G(X, Z) ≤ r] ≤ min
(

1,
supx,z G(x, z)− < G >q −α′ε

supx,z G(x, z)− r

)
(4.67)

with

αε′ :=
DG√
2q

√
ln

1
ε′

. (4.68)

Optimal bound from the empirical distribution. Write Y = G(X, Z). Let Y 1, . . . , Y q

be q independent copies (samples) of Y . What is the best possible estimate/the sharpest

bound on

P[Y ≥ r] (4.69)

when Y 1, . . . , Y q is the only available information on the probability distribution function?

DG or G itself may be precisely known in this case.

From those q samples one can compute an empirical mean and use McDiarmid’s inequal-

ity, Eq. (4.62) or Eq. (4.65) to bound Eq. (4.69), but it will be shown that those bounds

won’t be optimal.

Y 1, . . . , Y q being i.i.d. the only usable information lies in the empirical distribution

νq :=
δY 1 + · · ·+ δY q

q
. (4.70)
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Let ε′ ∈ (0, 1) be given where 1− ε′ will be the confidence on the estimation. Write

B(r, ε′, q) :=
{

Φ : inf
µ

Pµ

[
Pµ[Y ≥ r] ≤ Φ(r, ε′, νq, q)

]
≥ 1− ε′

}
. (4.71)

In Eq. (4.71), µ stands for an arbitrary distribution on the range of G. An optimal

estimator would minimize the following variational problem

inf
Φ∈B(r,ε′,q)

sup
µ

E
[(

Φ(r, ε′, νq, q)− Pµ[Y ≥ r]
)
+

]
. (4.72)

Optimal estimator Begin with

Ck
n :=

n!
k!(n− k)!

. (4.73)

Write, for p ∈ [0, 1]

h(p, ε′) := max
{

h :
q∑

k=h

Ck
q pk(1− p)q−k ≥ 1− ε′

}
. (4.74)

Using Bernoulli distributions in Eq. (4.72) one obtains that the optimal estimator only

depends on νq[r,∞] and q. To simplify notations, write for that optimal estimator

Ψ(s) := Φ(r, ε′, νq, q)
∣∣∣
qνq [r,∞]=s

(4.75)

s is the number of samples above r among Y 1, . . . , Y q. Ψ(s) is increasing in s and the

“smallest” function such that

For s ≥ h(p, ε′), p ≤ Ψ(s). (4.76)
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It follows that Ψ is the “smallest” function such that

0 ≤ inf
p∈[0,1]

Ψ
(
h(p, ε′)

)
− p (4.77)

which leads to

Ψ(s) := sup
p : h(p,ε′)=s

p. (4.78)

Hence the following theorem

Theorem 4.1.14. Writing sq the number of samples in Y 1, . . . , Y q above the threshold r,

with probability 1− ε′

P[G(X, Z) ≥ r] ≤ sup
p : h(p,ε′)=sq

p (4.79)

where the function h is defined by Eq. (4.74). Furthermore the upper bound/estimate is

optimal if the only available information on the probability distribution function of G is

limited to the q samples Y 1, . . . , Y q.

One can’t expect any sharper result than Eq. (4.79).

These adaptations to bounds on probability-of-failure for various cases exemplifies and

nearly justifies the use of concentration-of-measure framework to develop rigorous UQ ex-

pressions.

4.1.5 PSAAP application

The same setting and goals of computations and experiments hold for this example as

described in §3.4.1, but with application towards performing UQ in a general setting. Un-

controllable velocity remains an issue, as discussed in §3.4.3. Another point must be made

here about the velocity since its measurement precludes some uncertainty as well.
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The speed measurement requires measurement of both distance and time, which are

both discrete because a digital video of the projectile flight is used for both measurements.

The distance is computed by calculating the difference in pixel position of the front of the

rasterized flash created by the projectile breaking through a mylar film. The time is the

frame time difference between the distance measurements.

An attempted nominal value of X ≈ 2500 m/s results in experimental projectile veloci-

ties ranging from X ≈ 2300 m/s to X ≈ 2800 m/s, or ξ = [2300, 2800] m/s with an unknown

probability law (or empirical law if experiments have been done a priori).

The theoretical uncertainty quantification methods described above account for this lack

of control and precise measurement, and the following subsections discuss preparation and

computation of the UQ quantities desired.

4.1.5.1 1-D Verification

The least intensive step in the uncertainty quantification framework besides the estimation

of the mean is to calculate the verification diameter, D2
F . In a 1-D setting, D2

F is simply

calculated in Eq. (4.56). This computation requires two separate optimizations of F (X)

over X. Normally, this would be done using an optimization routine in Sandia National

Laboratory’s DAKOTA. In this example, simply take the max and min values from the

discrete samples taken from the model. This and all following calculations are done with

MATLAB software unless otherwise specified.

Fig. 4.1 shows a portion of the values of F (X) obtained X ∈ [1800, 2800] m/s in incre-

ments of 10 m/s. Execution of the 100 Abaqus models took approximately 1300 minutes

on the Caltech CACR’s (Center for Advanced Computing Research) Shared Heterogeneous

Cluster (SHC) using one AMD Opteron dual core dual processor node, employing parallel
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processing for internal model calculations.

For this reason, all experimental data G(X, Z) taken to this date and computational

results F (X) from the 100 simulations described above within the range defined by ξ are

used to compute all necessary UQ parameters. Thus sup and inf calculations will simply

be max and min calculations of the data and results for X ∈ ξ (Eq. (4.80)).

DF = sup
X∈ξ

F (X)− inf
X∈ξ

F (X) (4.80)

4.1.5.2 1-D Validation

Here, the general CoM expressions developed in §4.1.1 will be employed here for N = 1 in

the 1-D setting of this PSAAP validation example, instead of defaulting to the obvious 1-D

inequalities developed in §4.1.4.

The simplicity of the verification diameter computation is not carried over into the

computation of validation diameters which involve obtaining G(X, Z) because of the lack

of control over X, described in §3.4.3. Therefore, an iterative optimization scheme that

dictates the projectile speed at each successive iteration from the previous iteration’s value

cannot be used because, in general, Xmeasured 6= Xattempted.

A priori available data G(X, Z) is given a priori by the experimentalists, and contains

multiple perforation area measurements for each measure velocity. Given the time costs of

each experiment, there is not statistically sufficient data to compute statistical measures

on G. For this case, assume that the values that are computed are statistically significant.

The values of G(X, Z) given appear as ◦ in Fig. 4.1.

To construct GZ(X), use projectile speeds for which data exists: x : ∃G(x ∈ ξ, Z), and

compute the mean of all Ni samples at xi as in Eq. (4.81). This is the red line in Fig. 4.1.
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GZ(xi) =

∑Ni
j=1 G(xi, zj)

Ni
,∀i : ∃G(xi ∈ ξ, Z) (4.81)

To construct GZ(X)−F (X), first assume that there exist more data points in ξ for F (X)

than for GZ(X), since model executions are generally less expensive in time and cost than

their experimental counterparts to obtain. For each x : ∃F (xi ∈ ξ), compute G∗
Z(xi)−F (xi)

where G∗
Z(xi) is the linear interpolation at vi between the two nearest discrete points in

G∗
Z(X). This is the black line in Fig. 4.1.

The values ρ(X, Z) are computed simply as ρ(X, Z) := G(X, Z) − GZ(X) where X =

Xi, ∀ i : ∃G(Xi ∈ ξ, Z), and appear as + in Fig. 4.1.

With all necessary trendlines constructed, the UQ calculations follow.

UQ Computations Calculated probabilities-of-failure, pf , for Theorems 4.1.2, 4.1.4, and

4.1.6 are straightforwardly defined once diameters are computed, though Theorem 4.1.2

requires expectations on the law of ρ. Recalling that Theorem 4.1.1 does not use diameters,

and that the current application defines failure as perforated area less than a threshold

value, pf in Theorem 4.1.1 becomes Eq. (4.82) from Eq. (4.2).

P [G(X, Z) ≤ r] ≤ min
(
1,

supx,z G(x, z)− E[G]
supx,z G(x, z)− r

)
(4.82)

For Theorem 4.1.2, the expression E[GZ(X)|ρ] is the expectation on the distribution of

GZ(X) given a value of ρ. With statistically few samples, take σρ =
√

var(ρ(x, z) : x ∈ ξ).

Then, assuming for now that the distribution on ρ across all x ∈ ξ are identical (though in

general this may not be true), assign ρ(X, Z) ∼ N(0, σρ). Now, based on the data, a law

can be associated to ρ from which one can sample and evaluate Theorem 4.1.2. For 100
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samples of ρ, pf is evaluated from Eq. (4.5) at various thresholds in Fig. 4.2(a) and various

values of thresholds and E[G] in Fig. 4.3(a).

The margins M needed to achieve pf in Fig. 4.2(b) are also presented. Showcasing

results in terms of margins is intended for informing design decisions when a pf must be

met. For Theorems 4.1.2, 4.1.4, and 4.1.6, the margin is defined in Eq. (4.83). For Theorem

4.1.1, the margin is defined in Eq. (4.84). Note that computing valid margins does not

guarantee that the margins can be achieved in the physical system. One has to be wary not

to accept margins that may lead to “out-of-bounds” responses on the physical system. The

uncertainty U represents the denominator of the CoM inequality being used — U = D2
GZ

for Theorem 4.1.2, U = D2
Z + D2

GZ
for Theorem 4.1.4, and U = D2

Z + (DF + DGZ−F )2 for

Theorem 4.1.6.

M =
√
− log (pf )U/2 (4.83)

M = sup
x,z

G(x, z)− E[G]
1− pf

pf
(4.84)

4.1.5.3 Results

Table 4.1 presents values computed for diameters described above, and the values of veloc-

ity that the respective minimum and maximum values were found. It is also exceedingly

explanatory of the required computations done for the various diameters that have been

recovered from the computations to produce Fig. 4.1. For example, the computation of DZ ,

according to Theorem 4.1.4, suggests that one must find the largest and smallest deviations

of the noise from the epistemically-smoothed experimental curve GZ(X) over all x (ρmax

and ρmin, respectively). The diameter DZ is thus computed as DZ = ρmax − ρmin. Visual
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inspection of Fig. 4.1 shows that ρmin = −2.99 mm2 is found at Vmin = 2770 m/s, and

coincidentally ρmax = 3.73 mm2 at the same speed Vmax = 2770 m/s. DF is the largest

difference between two ordinate values of F (X) over all X. The curve of F (X) shows a

linear trend with some perturbations, which prohibit the min and max values from being

the endpoints of F (X): Fmin = 1.54 mm2 at Vmin = 2410 m/s and Fmax = 2.66 mm2 at

Vmin = 2410 m/s to result in DF = |Fmax−Fmin|. These illustrations should illuminate the

meaning of the remaining diameters presented in Table 4.1.

Table 4.1: Diameter calculation results for PSAAP 1-D UQ using velocity as a random
variable and hole perforation area as a performance measure

Diameter Value [mm2] Amin[mm2] Vmin [m/s] Amax[mm2] Vmax [m/s]
DZ 6.72 -2.9925 2770 3.7275 2770
DF 3.35272 4.6351 2410 7.98783 2760

DGZ−F 4.74424 -5.23434 2400 -0.4901 2510
DG−F 6.72 -5.56052 2770 1.15948 2770
DGZ

5.3425 0 2400 5.3425 2770
D̄F 1.73801 - - - 2410

D̄G−F 3.56101 - - - 2770

Other relevant values computed are E[G] = 4.61067mm2, E[F ] = 6.373mm2, E[G(X, Z)−

F (X)] = −2.1289 mm2, and σρ = 1.32654 mm2.

4.1.5.4 Discussion

Fig. 4.1 provides the basis for which Figs. 4.2-4.4 are created. For the given range of

velocities, the blue curve shows perforation areas for the numerical simulations F (X). The

data points collected by experimentalists, corresponding to G(X, Z), are denoted by red

circles. The smoothed curve over these points is given the by the red curve, denoted GZ(X).

The difference between the smoothed experimental curve and the numerical simulations is

the black curve denoted by GZ(X)−F (X). The difference between the experimental points

and the numerical simulations is given by the magenta circles and is denoted (GX,Z) −
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Figure 4.3: Probabilities-of-failure upper bounds for varying threshold and E[G] values using
Theorems (a) 4.1.1, (b) 4.1.2, (c) 4.1.4 and (d) 4.1.6

F (X). The curve for ρ(X, Z) defined as the points G(X, Z) − GZ(X) is denoted by red

crosses. Scalar values of means are denoted by horizontal dashed lines, blue for E[F (X)], red

for E[G(X, Z)], and magenta for E[G(X, Z)−F (X). Both F (X) and GZ(X) depict a general

increase in perforation area with velocity, though the experiments exhibit more “cliff”-like

behavior, while the numerical simulations do not in this range of velocity. The numerical

simulations generally overestimate the perforation areas when compared to experiment,

which is reflected in the GZ(X)−F (X) curve and G(X, Z)−F (X) points as mostly negative

values, and E[F ] > E[G(X, Z)].
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For the increasing complexity of the system’s pf upper-bound, Figs. 4.2-4.4 compara-

tively depict the various CoM UQ quantities of interest as expressed theoretically in The-

orems 4.1.1, 4.1.2, 4.1.4, and 4.1.6. Generally, a lower pf upper-bound is obtained when

the least amount of information is used. As more information is available, the pf bounds

obviously account for more knowledge of the design space and the conservativeness im-

parted upon the pf inequality compounds and increases the upper-bound, as observed in

Fig. 4.2(a). The margins required for certification at various probability-of-failure thresh-

olds accordingly increase as the complexity of the theorems increases from Theorem 4.1.1

to 4.1.6, as observed in Fig. 4.2(b).

Fig. 4.3 and Fig. 4.4 show surfaces of pf upper-bounds for varying failure thresholds r and

varying values of E[G(X, Z)]. Although E[G(X, Z)] is already a known scalar value, these

plots help to show the effect of both of these affecting the margin and thus the pf upper-

bound. Notice that only the Martingale inequality of Eq. (4.19) decreases the pf upper-

bound as the complexity of the inequalities increases. These figures show trivial estimates

of pf upper-bounds for large failure thresholds r and small E[G(X, Z)], and alternatively
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non-trivial upper-bounds for small r and large E[G(X, Z)], consistent with the inequalities

used.

4.2 Hierarchical UQ

This section proposes a modular uncertainty quantification scheme to perform hierarchi-

cal certification using the concentration-of-measure phenomenon for systems whose input-

output relation is described by graphical models. Though the development here is compre-

hensive, more details and associated proofs can be found in [68].

4.2.1 Introduction

4.2.1.1 Motivation

Computation of the verification diameter DF requires computing DF,i, for i = 1, . . . , N ,

which in turn requires solving the constrained optimization problem in Eq. (2.1) with N+Ni

scalar decision variables where each of the i = 1, . . . , N variables may be vector-valued.

Besides computational considerations as in Remark 2.1.1, the uncertainty quantification for

the input-output map F may not be programmatically feasible. Consider the case where

the map F represents the behavior of a large-scale system which is an interconnection of

multiple subsystems and the models of these subsystems are only available to a different

analyst (say because of organizational or political constraints). In such cases, there is a

need for an uncertainty quantification framework where each analyst executes the analysis

for their subsystem and the overall quantification is done based on the results for the

subsystems.

Furthermore, many physical systems evolve on multiple length and/or time scales: the

characteristics/dynamics at one scale affect those at other scales, enabling a divide-and-
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conquer based approaches for analysis and design. For example, multiscale modeling strate-

gies for advanced materials such as high-purity bcc single crystals are discussed in [13].

See also [3] and [14], which highlight the importance of multiscale modeling and uncer-

tainty quantification for such models. To develop the methodology succinctly, consider the

following electrical circuit example.

4.2.1.2 Electrical circuit example

Consider an LC electrical circuit with a capacitance of C and inductors placed on the edges

of a Sierpinski triangle, a fractal structure with the same geometry on different scales and

many applications such as in multiband fractal antenna technologies [5], suggesting the

possibility for hierarchical analysis. A typical Sierpinski triangle is shown in Fig. 4.5, where

the edges in the triangular structure correspond to inductances labeled by L1, . . . , L27, which

are uncertain parameters taking values in bounded intervals. The goal is to compute the

uncertainty in the performance output such as the equivalent inductance Leq between the

nodes where the capacitance is connected, or the frequency of resonance of the LC circuit

(see §4.2.4.1 for a short list of applications where this resonance effect is exploited). Now

model the relation between Leq and the individual inductances by

Leq = F (L1, . . . , L27). (4.85)

One can obtain an upper bound, for example, on

PL1,...,L27 [Leq ≥ τ ]

for some given τ > 0 by McDiarmid’s inequality, e.g., Eq. (2.1).
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Figure 4.7: The recursive creation of Sierpinski triangles of different depths
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1 2 3 4 5 

Figure 4.8: Operations to reduce the depth of a Sierpinski triangle by one

On the other hand, one can exploit the (geometric) self-similarity in the Sierpinski

triangles of different type for a modular analysis procedure. Fig. 4.7 illustrates the recursive

generation of Sierpinski triangles starting from an equilateral triangle. The ∆−Y transform

[25] in Fig. 4.6 is an invertible map which translates inductive circuit elements from the ∆

configuration to the Y (or star) configuration through L′a = LbLc

La+Lb+Lc
, L′b = LcLa

La+Lb+Lc
,

and L′c = LaLb
La+Lb+Lc

, allowing the generation of two inductive circuit elements with the

same equivalent inductance on two different Sierpinski triangles. Fig. 4.8 illustrates one

such translation where arrow 1 is for the ∆ − Y transform applied to the three small

triangles at the edges, arrow 2 is for simple manipulations, arrow 3 is for another ∆ − Y

transform, arrow 4 is for simple manipulations, and arrow 5 is for the inverse of the ∆− Y

transform. The depth of a Sierpinski triangle is one more than the number of times that the

operations shown in Fig. 4.8 are performed to obtain the configuration of a single triangle.

Specifically, the operations in Fig. 4.8 reduce the level by 1. Thus, the Sierpinski triangles

shown in the top part of Fig. 4.7 are of depths 1, . . . , 5 from left to right.

The geometric (self-)similarity of the Sierpinski triangles of different depths gives the

means to completely modularize each level of the inductive circuit element. For example,

Fig. 4.9 illustrates how certain distinct groups of inductances on a Sierpinski triangle of

depth 3 are mapped to distinct groups on a Sierpinski triangle of depth 2 using the operations

shown in Fig. 4.8. By successive applications of these operations, one obtains the series of

LC circuits with the same equivalent inductances on the Sierpinski triangles of different
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Figure 4.9: Illustration of the modular structure obtained through the application of the
operations in Fig. 4.8
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Figure 4.10: The hierarchical determination of Leq for the inductive circuit element on a
Sierpinski triangle of depth 3 in an LC electrical circuit through successive application of
the ∆− Y transform

depth as shown in Fig. 4.10. Regarding the structure in Fig. 4.10, consider an alternative

model for the relation between Leq and the individual inductances on the edges of the

Sierpinski triangle of depth 3.

Leq = F2(L2,1, L2,2, L2,3)

L2,i = F1,i(L1,1, . . . , L1,9), for i = 1, 2, 3

L1,i = F0,i(L1, . . . , L9), for i = 1, 2, 3

L1,i = F0,i(L10, . . . , L18), for i = 4, 5, 6

L1,i = F0,i(L19, . . . , L27), for i = 7, 8, 9.

(4.86)

Note that each submodule/subsystem (i.e., F0,i, F1,i, and F2) have (at most) 9 scalar
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input parameters, whereas F has 27 scalar input parameters. The goal in this section is

to exploit the modularity in the model in Eq. (4.86) for propagating the uncertainty in

L1, . . . , L27 to Leq (or resonance frequency of the circuit) in a hierarchical and relatively

computationally efficient manner: first determine the uncertainty in L1,i, then in L2,i, and

finally in Leq. §4.2.4 illustrates numerical examples using the LC circuit structure in Fig. 4.5.

A hypothetical running example is introduced next for generality of demonstration, and will

be used along with the electrical circuit example for exposition of the theory.

4.2.1.3 Hypothetical running example

Consider a model for which the dependencies between its variables are represented by the

graph in Fig. 4.11. The “nodes” in the graph represent the random variables in the system,

with node i corresponding to the variable Xi, and the directed edges representing the

dependence between these variables. For example, the edge from node 8 to node 4 indicates

that X4 is an explicit function of X8, and the lack of an edge from node 2 to node 3 indicates

that X3 is not an explicit function of X2. However, having no edge from some node i to

another node j does not imply an independence between Xj and Xi. For example, in

Fig. 4.11 there is no edge from node 14 to node 6 but X6 depends on X14 through X7.

Denote the nodes which do not have any incoming edges as the fundamental nodes. The

variables corresponding to fundamental nodes do not depend on any other variable. The

node from which there is no outgoing edge is called the output node. The model in Fig. 4.11

can be formally expressed in two forms: a direct map from the variables corresponding to

the fundamental nodes to the output X1

X1 = F (X2, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20)
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Figure 4.11: The graph representation of the input-output relations between the “variables”
of a hypothetical model

and a hierarchical description

X1 = H1(X2, X3, X4)

X3 = H3(X4, X5, X6, X7)

X4 = H4(X8, X9, X20)

X5 = H5(X10, X11, X12)

X6 = H6(X7, X12, X13, X14)

X7 = H7(X12, X13, X14)

X8 = H8(X15, X16)

X9 = H9(X17, X18, X19).

(4.87)

In the following subsection, a hierarchical uncertainty propagation scheme will be for-

mally discussed. The following is a preview of the main idea. Referring back to Eq. (2.1),

note that the square of the verification diameter D2
F is the sum of the contributions D2

F,i

due to each fundamental variable (i.e., i = 2, 10, 11, . . . , 20). The main result to be stated

in §4.2.3.1 establishes an upper bound on DF,i by accounting for the uncertainty in x1 due
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Figure 4.12: Distinct paths connecting the fundamental node 12 to the output node 1 are
highlighted as green, black, red, and purple arrows

to each fundamental variable through each path connecting that fundamental variable to

the output x1. As an example, the paths connecting the fundamental node 12 to the output

node 1 are highlighted in Fig. 4.12 by the green, black, red, and purple arrows.

4.2.2 Graph representations

Graph theoretic notions and preliminary results are discussed in the subsequent sections.

4.2.2.1 Graph representation of input-output models

The graph representation in Fig. 4.11 accounts only for the dependencies between the vari-

ables of the systems and currently lacks specific information on the functional relation

between the variables. Such graphical visualization will be utilized in developing the algo-

rithmic procedure for hierarchical uncertainty propagation. The relevant graph theoretic

notions are formally discussed next.

Consider a set of N random variables Xi ∈ Rni labeled by the finite set V of indices

V = {1, . . . , N}. Let G = (V,E) be a directed graph where E is a set of ordered pairs (i, j)

of indices, called the edges of the graph, with i ∈ V and j ∈ V. Each i ∈ V is called a node of
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G and corresponds to the variable/parameter Xi of the underlying physical system and/or

the mathematical model. Each edge (i, j) models the dependence of the variable Xj on the

variable Xi and (i, j) /∈ E if Xj is not an explicit function of Xi. That is, (i, j) ∈ E if and

only if Xj is an explicit function of Xi. The following definitions are used throughout this

section.

• Root of the graph: Each node i of G such that (i, j) /∈ E for all j ∈ V is called a root

of the graph.

• Fundamental node of the graph: Each node i of G such that (j, i) /∈ E for all j ∈ V is

called fundamental node of the graph. The set of all fundamental nodes of the graph

is denoted by F and corresponds to the system variables that do not depend on the

other variables.

• Path: A group of ordered nodes i1, . . . , in such that (ij , ij+1) ∈ E for all j = 1, . . . , n−1

is called a path γ in the graph G. The node i1 is called the initial node of γ and in

is the terminal node of γ. For given nodes i and j, the collection of all paths with the

initial node i and the terminal node j is denoted by P(i, j).

• Ancestor of a node: For each i ∈ V, a node j is called an ancestor of i if (j, i) ∈ E. Ni

denotes the set of all ancestors of i, i.e., j ∈ Ni if and only (j, i) ∈ E. Note that for

each i ∈ F , Ni is the empty set and for the root node, say i, Ni is non-empty.

• Depth of the graph: The depth of a directed, acyclic graph with the output node

ioutput ∈ V is defined as the quantity

max
i∈F

max
γ∈P(i,ioutput)

number of edges in γ.



123

• Tree: A graph is called a tree if from each fundamental node there exists a single path

connecting to the output node.

The root node in the graph in Fig. 4.11 is node 1 and the fundamental nodes are

2, 10, 11, . . . , 20. For the same graph, P(12, 1) is highlighted by the green, black, purple,

and red arrows in Fig. 4.12. The following assumptions are made on the directed graphs

considered in this section.

1. Existence of root (output) variable: There exists a root node of the graph G. Without

loss of generality, label this node with 1. The variable X1 corresponding to the root

of the graph is considered to be the output (performance measure) of the underlying

physical system. For simplicity, assume that there is a single output (performance

measure).

2. Acyclic graph: The graph G is acyclic, i.e., there is no path with identical initial

and terminal nodes. This assumption ensures that the output of the system can be

explicitly computed from all other variables without having to solve implicit equations.

3. The fundamental variables are independent random variables.

Remark 4.2.1. Assumptions (2) and (3) can be removed by using concentration-of-measure

inequalities that are more general than the McDiarmid’s inequality in Eq. (2.1). See [57]

for a discussion on concentration-of-measure inequalities with correlated random variables.

Adaptation of such results in a hierarchical analysis setting is the subject of current research

following from [68]. C
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4.2.2.2 Example: graph representation of the LC electrical circuit model

Recall the LC circuit example introduced in §4.2.1.2. Referring to Figs. 4.5 and 4.10 for

notation, consider two hierarchical models with different graphs due to different grouping

of the variables.

• Ungrouped intermediate variables: Rename the variables as follows:

X1 := Leq

Xi := L2,i−1 for i = 2, 3, 4

Xi := L1,i−4 for i = 5, . . . , 13

Xi := Li−13 for i = 14, . . . , 40.

(4.88)

In this case, F = {14, . . . , 40}, X1, . . . , X40 ∈ R, and the corresponding graph is shown

in Fig. 4.13.
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Figure 4.13: The graph representation of the relations between the variables of the hier-
archical model for the LC circuit example in the case of ungrouped intermediate variables
(i.e., all variables are scalars)
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Figure 4.14: The graph representation of the relations between the variables of the hierar-
chical model for the LC circuit example in the case where the intermediate variables are
grouped (i.e., all variables but the fundamental variables and the output variable are in R3)

• Grouped intermediate variables: Group the variables as

X1 := Leq

X2 := (L2,1, L2,2, L2,3)

Xi+2 :=
(
L1,3(i−1)+1, L1,3(i−1)+2, L1,3(i−1)+3

)
for i = 1, 2, 3

Xi+5 := Li for i = 1, . . . , 27.

(4.89)

In this case, F = {6, . . . , 32}, X1 ∈ R and X2, . . . , X14 ∈ R3, and the corresponding

graph is shown in Fig. 4.14. Note that grouping the variables as in Eq. (4.89) simplifies

the graph to a tree.

Note from Figs. 4.13 and 4.14 that the graph for the case with ungrouped intermediate

variables includes a larger number of paths (81 distinct paths) from the fundamental nodes

to the root node than that for the case with grouped intermediate variables (27 distinct

paths). The hierarchical uncertainty quantification methodology discussed in the following

section is based on propagating the uncertainty along each such path, thereby offering
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computational advantages by reducing the total number of paths when the variables are

grouped in this example.

4.2.2.3 Modulus of continuity

The concept of modulus of continuity will play a pivotal role in the hierarchical/modular

analysis paradigm.

Definition 4.2.2. (modulus of continuity) Let x1 ∈ X1 ⊆ Rn1 , . . . , xN ∈ XM ⊆ RnN ,

x = (x1, . . . , xN ), X = X1 × · · · × XN , and F : X → Rm. The modulus of continuity

ωxi(F, δ,X ) of F with respect to xi is defined as [16, 60]

ωxi(F, δ,X ) := sup
x∈X , x(i)∈X , ‖x−x(i)‖≤δ

‖F (x)− F (x(i))‖. (4.90)

For notational simplicity, replace ωxi(F, δ,X ) by ωi(F, δ) whenever this simplification causes

no confusion. /

Remark 4.2.3. The norms employed in Eq. (4.90) are arbitrary and different choices of

norms ostensibly lead to different values for the moduli of continuity. Thus, it’s possible

to reduce the moduli of continuity by proper choice of norms and consequently to refine

the hierarchical uncertainty quantification results. Finally, note that F : X → Rm, X ⊂

R
PN

i=1 ni , and m is not necessarily equal to
∑N

i=1 ni. Consequently, the two norms used in

Eq. (4.90) may be distinct but are notationally indistinguishable. C

Definition 4.2.4. Let X1 ⊂ Rn1 , . . . ,XN ⊂ RnN , X = X1 × · · · × XN , F : X → RN ,
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Figure 4.15: Illustration of φi,1 and φi,2 in Definition 4.2.4 and Lemma 4.2.5. Lemma 4.2.5
provides a two-step procedure to bound the variations in F due to vk

i ∈ {1, . . . ,m}, and Hi : V ⊆ R` → Xi. Define

φi,1 := sup

xj ∈ Xj , 1 ≤ j ≤ N, j 6= i

v ∈ V, v′ ∈ V

‖F (x1, . . . , xi−1,Hi(v), xi+1, . . . , xN )

− F (x1, . . . , xi−1,Hi(v′), xi+1, . . . , xN )‖

φi,2 := sup

xj ∈ Xj , 1 ≤ j ≤ N, j 6= i

xi ∈ Hi(V), (x(i))i ∈ Hi(V)

‖x− x(i)‖ ≤ r

‖F (x)− F (x(i))‖, (4.91)

where Hi(V) denotes the image of V under Hi, and

r := sup
v∈V, v′∈V

‖Hi(v)−Hi(v′)‖.

C
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Lemma 4.2.5. Let φi,1 and φi,2 be as defined in Definition 4.2.4. Then, φi,1 ≤ φi,2. C

Note that in particular v′ in the definition of φi,1 can be chosen in particular as v′ =

v(k) for some k ∈ {1, . . . , `}. In this case, Lemma 4.2.5 provides a two-step procedure to

propagate the variations in vk to the variations in F as illustrated in Fig. 4.15. This two-

step procedure is potentially conservative (i.e., φi,1 ≤ φi,2) but provides a building block for

the hierarchical uncertainty propagation framework proposed in the following sections.

Proof. (of Lemma 4.2.5) The set containment

{
(ξ, ξ′) ∈ R2ni : ξ = Hi(v), ξ′ = Hi(v′), v ∈ V, v′ ∈ V

}
⊆
{
(ξ, ξ′) ∈ R2ni : ξ ∈ Hi(V), ξ′ ∈ Hi(V), ‖ξ − ξ′‖ ≤ r

}
implies that the feasible set in the optimization problem in the definition of φi,1 is a subset

of that in the definition of φi,2 and consequently φi,1 ≤ φi,2.

4.2.3 Modular uncertainty propagation over acyclic directed graphs

Consider an acyclic directed graph G = (V,E) and associate each node i ∈ V with the

random variable Xi ∈ Xi ⊆ Rni . Introduce some more notation:

Definition 4.2.6. Let X1, . . . , XN be a collection of random variables and S be a vector

with entries that are in {1, . . . , N} and satisfy S(i) ≤ S(j) for i ≤ j where S(i) denotes the

i-th entry of S. Define xV ∈ R
P

i∈V ni by

xV := (xV (1), . . . , xV (N)).

C
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For each i /∈ F , let XNi = (XNi(1), . . . , XNi(M)), where M denotes the length (number of

elements) of Ni. Then, for each i /∈ F (the set of fundamental nodes in G), let xi be related

to the variables corresponding to the nodes in Ni through the map Hi : R
P

j∈Ni
nj → Rni

by

Xi = Hi(XNi).

Furthermore, assume (with no loss of generality) that the entries of F are in ascending

order. Then, the output x1 is related to the variables corresponding to the fundamental

nodes through a map F : R
P

j∈F nj → R by

X1 = F (XF ).

Recall from McDiarmid’s inequality Eq. (2.1) that for given r ≥ 0,

P[X1 − E[X1] ≥ r] ≤ exp
(
−2

r2

D2
F

)
(4.92)

where

D2
F =

∑
i∈F

D2
F,i =

∑
i∈F

sup
xF∈XF , x

(i)
F ∈XF

‖F (xF )− F (x(i)
F )‖2

and for i ∈ F , x
(i)
F is a shorthand notation for

(
x(i)
)
F (i.e., the vector obtained when the

i-th component of x is perturbed and then the perturbed vector is restricted to the indices

in F as in Definition 4.2.6). The next section exploits the relation F (XF ) = H1(XN1) for

developing alternative upper bounds on P [X1 − E [X1] ≥ r] .
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4.2.3.1 The main result

An upper bound DF can now be established on DF that exploits the structure in the

dependence of X1 on the fundamental variables XF through the intermediate variables

captured in the graph G. This upper bound will provide more conservative estimates on the

probability-of-failure compared to that in Eq. (4.92), i.e.,

P[X1 − E[X1] ≥ r] ≤ exp
(
−2

r2

D2
F

)
≤ exp

(
−2

r2

D2
F

)

with a possible reduction of the computational cost as discussed in §4.2.1.

Definition 4.2.7. For each i ∈ F ,

Di := sup
xi∈Xi, x′i∈Xi

‖xi − x′i‖.

DF,i :=
∑

γ∈P(i,1)

ω1,γLγ−1 ◦ ωγLγ−1,γLγ−2 ◦ . . . ◦ ωγ2,i(Di),

where, for γ = (i, γ2, . . . , γLγ−1, 1) ∈ P(i, 1), Lγ denotes the length of γ, ◦ denotes the

composition operator, and for r ≥ 0 and the consecutive nodes i and j in γ, ωγi,γj (r) is

a shorthand notation for ωXγj
(Hγi , r,Xγj ) (the domain Xγj of the argument Xγj of Hγi is

omitted).

D2
F :=

∑
i∈F

D2
F,i

/

The main theorem of this section follows.

Theorem 4.2.8. For DF and DF as defined above, the inequality DF ≤ DF holds. /

Theorem 4.2.8 provides a way for computing upper bounds on DF by induction. For
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each fundamental node i ∈ F with the uncertainty measured by Di, compute ωγ2,i(Di) =

ωXi(Hγ2 , Di,Xi), and then compute ωγ3,γ2 ◦ ωγ2,i(Di) = ωXγ2
(Hγ3 , ωXi(Hγ2 , Di,Xi),Xγ2),

etc. Each step of the inductive procedure requires two types of optimization:

• Once Xj is known for all j ∈ Ni for some i ∈ V , determine the set Xi such that

Hi(XNi) ⊆ Xi.

• Propagate the modulus of continuity. Consider the computation of ωγ3,γ2 ◦ ωγ2,i(Di).

Once ωγ2,i(Di) and XNγ3
are known, ωγ3,γ2 ◦ ωγ2,i(Di) can be computed through the

optimization problem in Eq. (4.90).

A proof of this theorem is detailed in [68].

Remark 4.2.9. The upper bound DF on DF depends on the graphical model (i.e., the

choice of the intermediate variables and His for the nodes that are neither fundamental

nor the output). Nevertheless, this dependence will not be explicitly notated. Similarly, DF

depends on the choice of the norms used in calculating the moduli of continuity and this

dependence will not be explicitly notated. Nevertheless, it is assumed that the same norm is

used throughout the procedure. C

Propagating the ranges through the graph model Note that for each intermediate

variable Xi, Theorem 4.2.8 requires determining a set Xi such that Hi(XNi). To reduce the

conservatism, Xi should be a “tight” superset of Hi(XNi), and for ease of implementation

Xi should have a simple parameterization. Two of the possible strategies for parameterizing

Xi are discussed next.
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• Hyper-rectangle: Define Xi to be a hyper-rectangle of the form

Xi = [ai,1, bi,1]× · · · × [ai,ni , bi,ni ]

ai,j = inf
ξ∈XNi

Hi,j(ξ)

bi,j = sup
ξ∈XNi

Hi,j(ξ).

Then, Xi is the smallest hyper-rectangle containing Hi(XNi).

• Ellipsoid: It may be possible to encode prior information by choosing a fixed shape

ellipsoid and determining the level of this ellipsoid that contains the range of Hi. To

this end, let P be a positive semidefinite matrix and ξc ∈ Rni and set Xi = Et∗ :=

{ξ : (ξ − ξc)T P (ξ − ξc) ≤ t∗}, where

t∗ := inf
t

t subject to Hi(XNi) ⊆ Et

or equivalently

t∗ = sup
v∈XNi

(Hi(v)− ξc)
T P (Hi(v)− ξc) .

Special case: tree of depth 2 Consider the case where G is a tree of depth 2. In this

case the set of intermediate nodes I ⊂ V is I := V \({1}∪F), and x1 is an explicit function

of XF , i.e., N1 = I and

X1 = F (XF ) = H1(XN1) = H1(XI).

Then, the computation of the upper bound DF on DF is simplified as in the following

proposition.
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Proposition 4.2.10.

D2
F ≤ D2

F :=
∑
i=I

∑
j∈Ni

ω1,i(ωi,j(Dj))2 =
∑
j∈Ni

∑
i=I

ω1,i(ωi,j(Dj))2.

C

Proof. of Proposition 4.2.10. With no loss of generality, assume that I = {2, . . . ,M}. Note

that for each j ∈ F there exists a single i ∈ I such that j ∈ Ni and

D2
F,j = sup

xk ∈ Xk, k ∈ I, k 6= i

xNi ∈ XNi , x
(j)
Ni
∈ XNi

|H1(x2, . . . , xi−1,Hi(xNi), xi+1, . . . , xM )

−H1(x2, . . . , xi−1,Hi(x
(j)
Ni

), xi+1, . . . , xM )|2,

and, by Lemma 4.2.5, it follows that D2
F,j ≤ ω1,i(ωi,j(Dj))2. Since for each j ∈ F there

exists a single i ∈ I such that j ∈ Ni, it follows that D2
F ≤ D2

F .

Repeatedly applying the procedure in the proof, Proposition 4.2.10 can be generalized

to the following special case of Theorem 4.2.8 for general tree structure.

D2
F =

∑
i∈F

∑
γ∈P(i,1)

(
ω1,γLγ−1 ◦ ωγLγ−1,γLγ−2 ◦ . . . ◦ ωγ2,i(Di)

)2

The tree structure enables complete parallelization of the computations in the hierar-

chical uncertainty propagation since the propagation along any path is decoupled from that

on any other path (paths with different initial nodes can only share the terminal node).

Special case: simple graph structure When G is a tree, the variables corresponding

to the fundamental nodes as well as the intermediate variables are independent. Now
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consider a slightly more general case where the intermediate variables are allowed to be

correlated because two (or more) different intermediate variables may explicitly depend on

the same fundamental variable. Formally, the graph structure that is considered satisfies

the properties: (i) Nj ∈ F for each j ∈ N1, and ∩j∈N1 = F . This simple case features the

main point of the general case in Theorem 4.2.8 yet with a simpler proof. For each i ∈ F ,

let Mi ⊆ I denote the set of intermediate variables such that, for each j ∈Mi, i ∈ Nj .

Proposition 4.2.11. Let G = (V,E) satisfy the assumptions above. Then,

D2
F ≤ D2

F :=
∑
i∈F

∑
j∈Mi

ω1,j (ωj,i(Di))

2

.

C

Proof. of Proposition 4.2.11. With no loss of generality, let I = {2, . . . ,M} and F =

{M + 1, . . . ,M + N}. Then, for each i ∈ F

D2
F,i = sup

xF∈XF , x
(i)
F ∈XF

|F (xF )− F (x(i)
F )|2

≤


∑

j∈Mi

sup
xNj

∈XNj
, x

(i)
Nj
∈XNj

|H1(. . . , Hj(xNj ), . . .)−H1(. . . , Hj(x
(i)
Nj

), . . .)|


2

≤

∑
j∈Mi

ω1,j (ωj,i(Di))

2

,

where the first inequality follows from the triangle inequality and the sub-additivity of

supremum and the second inequality follows from Lemma 4.2.5. Consequently,

D2
F =

N∑
i=1

D2
F,i ≤

∑
i∈F

∑
j∈Mi

ω1,j (ωj,i(Di))

2

= D2
F .
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4.2.3.2 Algorithmic summary of the methodology

The application of the main result can be summarized in a pseudo-algorithmic form. To

this end, let X1, . . . , XN be the random variables in the model such that Xi = Hi(X), where

X = (X1, . . . , XN ).

1. Generate the graphical model:

(a) Collect the variables in three groups:

• Output variable: The variable that is not an input to any other variable and

represents the performance measure of interest.

• Fundamental variables: The variables that are not explicit functions of other

variables. The ranges (admissible values) for all fundamental variables must

be known.

• Intermediate variables: The variables that are neither output nor fundamen-

tal.

(b) Enumerate the variables such that X1 is the output variable, X2, . . . , XnI+1 are

the intermediate variables, and XnI+2, . . . , XN are the fundamental variables.

(c) Let V = {1, . . . , N} denote the set of indices of the variables X1, . . . , XN and

define G = (V,E) to be a graph with the set of edges determined by

(i1, i2) ∈ E if and only if Hi2 is an explicit function of Xi1 .

2. Initialize the calculations for the hierarchical analysis: Find all paths in G

with the initial node in {nI + 2, . . . , N} and terminal node 1 and label them by

γ1, . . . , γNpath
, where Npath is the number of such paths. Here, a path in G is defined
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go = 1
repeat while go = 1

• for i = 1, . . . , N

– if the ranges for all the variables which Hi is an explicit function of are known
∗ determine the smallest hyper-rectangle Xi that contains the range of Hi

∗ for j = 1, . . . , Npath

· if γj contains i
....... let k be the index of i in γj and compute

MCj(k) = ωi,γj(k−1)(MCj(k − 1)).

1

Figure 4.16: The pseudo-code to propagate the ranges and moduli of continuity along the
paths from the fundamental nodes to the output node

as in §4.2.2.1. For each i ∈ {1, . . . , Npath}, let

MCi(1) = sup
ξ∈Xγi(1)

, ξ′∈Xγi(1)

‖ξ − ξ′‖,

where for a positive integer j, MCi(j) and γi(j) denote the j-th entry in MCi and γi,

respectively.

3. Execute the pseudo-code in Fig. 4.16 to propagate the ranges and moduli of continuity

along the paths from the fundamental nodes to the output node.

4. Compute the upper bound DF on the verification diameter DF : For each

i ∈ F

D2
F,i =

∑
j : γj(1)=i

MCj(Lγj )
2,

where Lγj is the length of γj and

D2
F =

∑
i∈F

D2
F,i.
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A more detailed discussion of the application of Theorem 4.2.8 regarding the LC elec-

trical circuit example and the hypothetical running example is in order.

4.2.3.3 Illustration of the main result

(a)

For i = 6, . . . , 14,
Di = |bi − ai|,

ω3,i(D9) = sup ‖X3(ξ)−X3(ξ(i))‖
ξ = (X6, . . . , X14) ∈ X6 × · · · × X14

ξ(i) ∈ X6 × · · · × X14

Determine X3 ∈ R3 as described in §4.2.3.1

(b)

For i = 6, . . . , 14,
ω2,3◦ω3,i(Di) = sup ‖X2(X3, X4, X5)−X2(X3, X

′
4, X5)‖

(X3, X4, X5) ∈ X3 ×X4 ×X5

X ′
4 ∈ X4

‖X4 −X ′
4‖ ≤ ω3,i(Di)

Repeat for X3 and X5

Determine X2 as discussed in §4.2.3.1

(b)

1

(b)

Figure 4.17: (a) Detailed view of the module from the fundamental variables X6, . . . , X14

to the variable X4. (b) Computations for the module shown in part (a) of the figure

The LC electrical circuit example Consider the hierarchical model in Eq. (4.89)

and the corresponding graph structure in Fig. 4.14 where the fundamental variables (i =

6, . . . , 32) satisfy

Xi ∈ Xi = [ai, bi] ⊂ R.

Modules connected to the fundamental variables: These modules correspond to

the transitions shown in Fig. 4.9 (and partially repeated in Fig. 4.17(a)). More formally,

for a Sierpinski triangle of depth s, the inputs for these modules are the inductances on the

depth s circuit and the outputs are the equivalent inductances on the circuit of depth s−1.
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X
4 

X
5 

X
3 

X
2 

(a)

For i = 6, . . . , 14,
Di = |bi − ai|,

ω3,i(D9) = sup ‖X3(ξ)−X3(ξ(i))‖
ξ = (X6, . . . , X14) ∈ X6 × · · · × X14

ξ(i) ∈ X6 × · · · × X14

Determine X3 ∈ R3 as described in §4.2.3.1

(b)

For i = 6, . . . , 14,
ω2,3◦ω3,i(Di) = sup ‖X2(X3, X4, X5)−X2(X3, X

′
4, X5)‖

(X3, X4, X5) ∈ X3 ×X4 ×X5

X ′
4 ∈ X4

‖X4 −X ′
4‖ ≤ ω3,i(Di)

Repeat for X3 and X5

Determine X2 as discussed in §4.2.3.1

(b)

1

(b)

Figure 4.18: (a) Detailed view of the module from the fundamental variables X3, X4, and
X5 to the variable X2. (b) Computations for the module shown in part of (a) of the figure

Fig. 4.17(b) summarizes the computations for the transition shown in Fig. 4.17(a).

Intermediate modules: Fig. 4.18(b) summarizes the computations for the module shown

in Fig. 4.18(a) for X4 (computations for X3 and X5 are similar). For Sierpinski triangles

of depth larger than 3, the calculations can be repeated until the modules connected to the

output node are reached.

The module connected to the output variable: This step requires the calculation

of the moduli of continuity of H1 with respect to X2 along all the paths connecting the

fundamental nodes to the root node 1 passing through node 2.

4.2.3.4 The hypothetical running example

The underlying graphical model in §4.2.3.3 is ostensibly a tree — thus computations (range

and moduli of continuity calculations) at each level can be parallelized. The parallelization
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of computations of non-tree graphs may be limited, and the order in which the compu-

tation is performed is dependent upon the specific graph structure. For the hypothetical

running example introduced in §4.2.1.3 (see Fig. 4.11), the computation of the range and

all moduli of continuity for the intermediate variable X6 needs information about ranges

of X7 and X12 concurrently. Respecting such requirements, Table 4.2 shows the order in

which computations can be executed in parallel.

Table 4.2: The order in which computations can be executed in parallel (i.e., moduli of
continuity and range calculations for the respective nodes can be carried out)

step
modules for which computations

can be executed in parallel
1 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
2 5, 7, 8, 9
3 4, 6
4 3
5 1

4.2.4 Uncertainty quantification for the electrical circuit example

A demonstration the hierarchical computation of the upper bounds on the verification

diameter on the LC electrical circuit example is introduced in §4.2.1.2.

4.2.4.1 Performance measures

When a capacitor of capacitance C and an inductive circuit element with an equivalent in-

ductance Leq are connected together as shown in Fig. 4.5, an electrical current can alternate

between them at circuit’s (angular) resonant frequency

Ωr :=
1√

CLeq

.
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This resonance effect has applications in tuning/antenna technologies (tuning the radio to

a particular station can be achieved by adjusting the resonant frequency of a corresponding

LC circuit), voltage or current amplification, and induction heating. Now fix a real number

Ωt > 0 and ask the question:

What is a provable upper bound on P [Ωr ≥ Ωt]?

An upper bound on this probability can be obtained using the McDiarmid’s inequality

as

P [Ωr ≥ Ωt] ≤ exp

(
−2

(Ωt − E [Ωr])
2
+

D2
F1

)
, (4.93)

where F1(ξ) = 1/
√

Cξ. On the other hand, note that Ωt > 0 and Ωr ≥ Ωt if and only if

Ω2
r ≥ Ω2

t . Consequently,

P [Ωr ≥ Ωt] = P
[
Leq ≤ 1

CΩ2
t

]
≤ exp

−2

„
E[Leq ]− 1

CΩ2
t

«2

+

D2
F2

 ,
(4.94)

where F2(ξ) = ξ.

4.2.4.2 Results

Numerical results for F1 and F2 and Sierpinski triangles of depth 2 and 3 are presented next.

The ranges [ai, bi] of Li are chosen so that 0.1(bi + ai) = bi − ai (i.e., 10% uncertainty) and

the mean equivalent inductance (i.e., the equivalent inductance for the case Li = (ai+bi)/2)

is equal to 1). Two cases are considered:

1. ai = aj and bi = bj for all i, j = 1, . . . , 3d (homogeneously distributed)
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2. a3(i−1)+1 = a3(i−1)+2 = a3(i−1)+3 and b3(i−1)+1 = b3(i−1)+2 = b3(i−1)+3 for all i =

1, . . . , 3d−1 (non-homogeneously distributed),

where d denotes the depth of the Sierpinski triangle. In all calculations, C = 1.

The verification diameters for F1 and F2, computed using the following procedures, are

shown in Figs. 4.19(a) and 4.19(b), respectively:

1. The hierarchical method with grouped intermediate variables as explained in §4.2.2.2

(“+” markers);

2. The hierarchical method with ungrouped intermediate variables (“�” markers);

3. Direct McDiarmid calculation, i.e., without using the hierarchical method (“◦” mark-

ers).

Expectedly, the verification diameter by direct computation is the smallest (i.e., least

conservative) in each case and that with ungrouped intermediate variables is less conser-

vative compared to that with grouped intermediate variables. Recall that grouping the

intermediate variables leads to a smaller number of paths along which the uncertainties

have to be propagated in the hierarchical analysis. Figs. 4.19(a) and 4.19(b) illustrate that

this computational advantage is at the resolution which results in more conservative upper

bounds on the probability-of-failure.

Remark 4.2.12. In §4.2.4.1, upper bounds for the same performance measure, namely

P [Ωr ≥ Ωt], are established applying the McDiarmid’s inequality on two different func-

tions F1 and F2. This example illustrates an important fact that the upper bounds on the

probability-of-failure from the McDiarmid’s inequality can be refined using right choice of co-

ordinate transformations (for example ξ → 1/
√

Cξ in this case). To see this, fix Ωt = 1.05.
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Figure 4.19: The verification diameters for (a) F1 and (b) F2. In the horizontal axis, 2 and
3 refer to the depth of the Sierpinski triangle and “H” and “NH” refer to the homogeneous
and non-homogeneous distribution of the inductances on the triangle

Then,

P [Ωr ≥ 1.05] ≤ 0.135

by the McDiarmid’s inequality applied to F1 and

P [Ωr ≥ 1.05] ≤ 0.240

by the McDiarmid’s inequality applied to F2. The exploitation of this observation to system-

atically construct “optimal” coordinate transformations for concentration-of-measure based

upper bounds on the probability-of-failure is the subject of ongoing research. C

4.2.4.3 Description of the optimization algorithm

Computing the verification diameters, the moduli of continuity, and the ranges involves

solutions to certain nonconvex global optimization problems, e.g., those in Eq. (4.91) and

in §4.2.3.1. The solutions of these problems for the results reported in §4.2.4.2 are obtained
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using the basic simulated annealing algorithm [26] adapted for appropriately generating

random “neighbors” in the feasible set of the optimization problems (defined through the

bound and ellipsoid constraints as well as the “disk” constraints of the form ‖xcurrent −

xneighbor‖ ≤ r where xcurrent is the current iterate, xneighbor is the next iterate, and r

is a real scalar). A detailed description of the algorithm is presented in §A.1. Let T

denote the “temperature” and N be the number of function evaluations. A default cooling

schedule of Tnew = 0.8 × T old with T0 = 1.0 is used. The optimization stops if T ≤ 10−8,

N > Nmax = 2000, or NR > 300 where NR is the number of successive rejected states.

Temperature decrease happens if NT > 30 or NS > 20, i.e., if 30 function evaluations are

made or if there are 20 successive accepted optimal states found at the current temperature.

The Boltzmann constant is set to 1.0.

4.2.5 Discussion

This modular and hierarchical analysis scheme is especially suitable for systems whose

input-output behavior is characterized by multiscale models which have found applications

in an increasingly broader range of fields, such as materials science, biology, and power

networks, to name a few. It also provides practical advantages by enabling independent

analysis of the modules, as well as repeated usage of the uncertainty quantification results

for the modules in different context/systems.

A model validation procedure was developed in [37] building on the concentration-of-

measure-based probability-of-failure upper bounds. If the actual behavior of a system,

characterized by a map G, is modeled by a map F , this validation procedure is based

on computing a “validation diameter” for G − F . The hierarchical analysis methodology

proposed here can be adapted for model validation when G is in a modular form conforming
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with that of F and each module of G can be exercised in isolation from the rest of G.
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Chapter 5

Conclusions

Certification is a process that seeks to establish whether the probability-of-failure of a

system is below an acceptable tolerance. Often, certification is expressed in a language of

quantification of margins and uncertainties, with the understanding that a system is certified

if its performance uncertainty is less than its performance margin. Appealing as the QMU

conceptual framework is, the precise quantitative definition of uncertainty measures, the

precise means by which the uncertainty measures can be determined in practice, be it

experimentally, by computer simulation or a combination of both, and the precise manner

in which mitigating and controlling uncertainties guarantees the safe operation of a system,

are often left unspecified.

A method of certification has been developed, predicated upon the use of concentration-

of-measure inequalities as a means of bounding performance uncertainties. These uncer-

tainty bounds are mathematically rigorous and, therefore, can be taken as a basis for for-

mulating conservative certification criteria. In addition, the approach is unambiguous and

supplies precise quantitative definitions for a number of terms of art that are often loosely

used in ad hoc certification methodologies, including the following:

i) Margins. When the mean performance of the system is known, the margin in a

performance measure is simply the difference between the mean performance and
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its threshold for safe operation, Eq. (2.34a). When the mean performance of the

system is estimated by way of a model, the margin is the difference between the mean

performance and an increased threshold, Eq. (2.63a). This threshold increase accounts

for uncertainties in the estimation of the mean performance and effectively results in

a net loss of margin.

ii) Uncertainty. The total uncertainty of the system follows as the sum of an aleatoric

uncertainty and an epistemic uncertainty, Eq. (2.82b). The aleatoric uncertainty

measures the spread in predicted performance arising from numerical errors, from the

statistical variability of the input parameters, the intrinsic stochasticity of the model,

or from other sources. The epistemic uncertainty measures the deviation between

predicted and observed performance due to the limited fidelity of the model and

existence of unknown unknowns.

iii) Aleatoric uncertainty. The aleatoric uncertainty in a performance measure is quanti-

fied by its verification diameter, Eq. (2.31), i. e., the largest deviation in performance

that is computed when each input parameter is allowed to vary in turn between pairs

of values spanning its entire range. The aleatoric uncertainty is computed directly

from the model without reference to experimental data. It bears emphasis that classi-

cal linearized sensitivity analysis is not sufficient to quantify aleatoric uncertainties in

general. Instead, worst-case scenario large deviations in the system input parameters,

resulting in likewise large deviations in system performance, must systematically be

identified and taken into account. Finally, note that aleatoric uncertainties can be

determined on the sole basis of input parameter ranges without precise knowledge of

their probability density functions.
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iv) Epistemic uncertainty. The epistemic uncertainty in a performance measure is quan-

tified by its validation diameter, Eq. (2.76), i. e., the largest deviation in the difference

between computed and measured performance that is recorded when each input pa-

rameter is allowed to vary in turn between pairs of values spanning its entire range.

The determination of the validation diameter is an optimization problem in which

the evaluation of the objective function requires the execution of nominally identi-

cal calculations and experiments. The algorithm employed in the solution of this

optimization problem, be it a stochastic algorithm such as simulated annealing or

a genetic algorithm or an iterative algorithm such as a quasi-Newton iteration, de-

termines the precise sequence of calculations and experiments to be performed. It

should be noted that, in executing nominally identical calculations and experiments,

unknown-unknown input parameters are assigned random values within their respec-

tive ranges, which adds to the computed modeling uncertainties and systematically

and automatically accounts for the effect of unknown unknowns.

v) Confidence factor. With the preceding definitions, the confidence factor is simply the

quotient of margin to total uncertainty, Eq. (2.33). However, it should be carefully

noted that what is specifically asserted through this definition is the mathematical

fact that concentration-of-measure inequalities rigorously guarantee that a system

whose confidence factor is above a well-defined threshold will operate safely within a

pre-specified probability-of-failure tolerance. This stands in contrast to QMU method-

ologies based on ad hoc definitions of margins, uncertainties, and confidence factors

which, while eminently reasonable and intuitive appealing, may lack a similar math-

ematical guarantee and, therefore, fail provide a sound basis for certification.
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vi) Aggregation of uncertainties. In cases in which the safe operation of a system requires

multiple performance measures to be above their respective thresholds, certification

can still be expressed in terms of an overall confidence factor for the system. In

the concentration-of-measure approach to certification, the overall confidence factor

follows as a well-defined function of the individual confidence factors of each of the

performance measures, Eq. (2.54). It bears emphasis that neither margins nor uncer-

tainties can be aggregated in separation of each other. Instead, individual performance

measure confidence factors, which naturally weigh individual margins against their

corresponding uncertainties, are to be compounded into an overall confidence factor

for the system. In particular, ad hoc formulae for aggregating uncertainties, such as

root mean square (RMS) formulae, fail to provide a sound basis for certification in

general.

It bears emphasis that, in a certification context, the purpose and utility of devising

models of the highest possible fidelity is to minimize the number of—presumably costly—

tests that are required for certification. Predictive Science may then be regarded as the

art of formulating such models. Some of the benefits of the concentration-of-measure QMU

framework towards the goal of achieving predictive science are worth noting carefully.

The computation of the verification and validation diameters of system requires a global

optimization over parameter space. Global optimization algorithms such as simulated an-

nealing and genetic algorithms exhibit a very high degree of concurrency, since at every step

of the algorithms large populations of replicas of the model can be evaluated independently.

This concurrent evaluation can be accomplished by running a large number of indepen-

dent jobs on relatively small processor counts (∼500–1000). Bottlenecks should be rare

in this mode and exceedingly high efficiencies are expected. Petascale computing capacity
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presently under development will enable the running of vast numbers of such jobs simul-

taneously. Thus, concentration-of-measure uncertainty analysis lends itself ideally to—and

provides a potentially important use of—petascale computing.

The calculation of aleatoric and epistemic uncertainties, as measured by the verification

and validation diameters of the system, entails a systematic exploration of parameter space,

and thus identifies where the critical large-perturbation sensitivities of the system and

modeling errors reside. Thus, one important outcome of uncertainty quantification through

the computation of the verification and validation diameters is the identification of bad

actors, i. e., the components of the model, be they numerical, physics models, or otherwise,

responsible for the highest system uncertainties. Those model components can then be

targeted for refinement through the addition of higher-fidelity physics laws, higher-accuracy

numerical algorithms, or by other means. In this manner, QMU systematically guides

model development and provides a rational basis for allocating modeling and experimental

priorities and resources. Such systematic and prioritized model development is an integral

and indispensable part of predictive science.

There is a need to list some of the present limitations of the proposed approach and

possible extensions and enhancements thereof. For simplicity, this work has considered

input parameters that are independent and supposed that all that is known about the

variability in the input parameters is that they lie within certain intervals. However, the

concentration-of-measure phenomenon is not limited to the case of independent random

inputs and it is possible to devise concentration-of-measure inequalities that account for

correlations between inputs (see e.g., Theorems 2.1.4 and 2.1.5). It is also possible to devise

concentration-of-measure inequalities that take as input probability density functions of the

input variables, and take the resulting inequalities as a basis for formulating conservative
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certification criteria (see e.g., Theorem 2.1.5).

An additional concern is whether the concentration-of-measure inequalities supply a

sufficiently tight upper bound on the probability-of-failure. The test case of an imploding

ring shows that the simplest concentration-of-measure inequalities, namely, those based on

Hoeffding’s inequality, can significantly overestimate the probability-of-failure. There are

a number of alternative concentration-of-measure inequalities, such as Chernoff’s inequal-

ity, that provide tighter upper bounds on the probability-of-failure. Another possibility is

to exploit special characteristics of the system. For instance, a case that often arises in

practice concerns systems that are composed of coupled components or subsystems. Each

subsystem can then be modeled separately and an integrated model of the entire system

can subsequently be obtained by modeling the coupling between the subsystems. Hierar-

chies of models in which the subsystems can themselves be recursively decomposed into

finer subsystems are also encountered in practice. In these cases, concentration inequal-

ities can be applied recursively in order to bound uncertainties in the integrated system.

The uncertainties in the subsystems can be computed through experiments tailored to each

subsystem and through numerical simulations based on subsystem models, presumably an

easier task than testing and modeling the integrated system itself. The resulting bounds on

the subsystem uncertainties exhibit Gaussian tails. The uncertainty of subsystems higher

in the hierarchy can then be controlled by means of powerful concentration inequalities

for Gaussian random variables. Recall that concentration inequalities having independent

Gaussian random variables as input parameters return back Gaussian tail estimates. In

this manner, uncertainties can be propagated recursively up the system hierarchy using

concentration inequalities for Gaussian random variables.

It should be carefully noted that the present approach requires the determination of
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the epistemic uncertainties, as measured by the validation diameter, through the execution

of a sequence of identical simulations and experiments. While this aspect of the method

may be regarded as a strength—it supplies precise guidelines for model validation and leads

to rigorous and conservative certification—it also limits the applicability of the method to

systems for which integral tests can be conducted on demand. This raises the question of

whether it is possible to extend the present approach—and, more generally, whether rigorous

certification is possible at all—when only historical integral data is available and the possi-

bility of acquiring new integral data does not exist. From a mathematical standpoint, the

main difficulty is that in general there is no guarantee that historical integral data samples

parameter space adequately, especially when certifying new designs, and that performance

uncertainties are not underestimated as a result. The situation improves significantly if

component testing is possible. Thus, if the system consists of a number of components and

interfaces between the components, and if each component and interface can be tested, then

it is possible to derive rigorous uncertainty bounds, leading to conservative certification, by

methods similar to those outlined in the preceding paragraph.

Finally, a remark on the likely range of applicability of concentration-of-measure inequal-

ities relative to other competing approaches. In cases in which the probability-of-failure is

large, sampling methods such as Monte Carlo or quasi-Monte Carlo require a relatively

small number of samples and are likely to enjoy a competitive advantage. Sampling meth-

ods are also advantageous when large data sets are available or are inexpensive to obtain.

However, methods based on direct sampling become impractical if the probability-of-failure

is small, i.e., if failure is a rare event, and if sampling is costly. By way of contrast, the

effort required for the computation of the verification and validation diameters is indepen-

dent of the size of the probability-of-failure and concentration-of-measure inequalities can
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conveniently be applied—and enjoy a competitive advantage—when probabilities-of-failure

are small. Furthermore, concentration-of-measure inequalities are just about the only avail-

able certification tools for systems with a large number of inputs whose probability density

function is not fully known.
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Appendix A

Optimization Algorithms

In the CoM framework of UQ, computation of a diameter, i.e.,

D2
F =

N∑
i=1

sup
x,x′i

|(F (x)− F (x′))|2 (A.1)

requires that a global optimization must be done for the sup. Typically a global optimization

method will require intrusive adaptation for specific features of this framework. Here, x

may be a vector-valued set of N random variables and x′ = (x1, . . . , x
′
i, . . . , xN ) where

x′i is an independent copy of xi. F (x) is a numerical model that attempts to accurately

represent G(x, z), the real-world system that is affected by unknown unknown parameters

z (and z′) that cannot be accounted for in a numerical model. For example, in the PSAAP

setting, x is the projectile velocity, F (x) is a numerical model (e.g., Abaqus) and G(x, z)

is the hypervelocity impact experiment. The diameter finds the parameters x and x′i for

which a system differs the most over the entire range of x and the pairwise xi and x′i, a

direct translation of how much “uncertainty” resides in the system based on the randomness

introduced by the random variables.

§A.1 describes a simulated annealing algorithm used for the robotic controls and multi-

scale UQ applications. §A.2 illustrates an algorithm used for the PSAAP validation appli-
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cation.

A.1 Simulated Annealing

A.1.1 Parameters

The main simulated annealing algorithm is that described in [26], but with a few modifica-

tions to suit the needs for robotic control and multiscale UQ applications.

Options:

Value [expression]: Description [default value]

1. Cooling schedule [T new = T (T old)]: Any function relating T old to T new can be supplied

that generally decreases T at any rate. [0.8× T old]

2. Neighbor generator [xnew = Neighbor(x)]: Any function that creates a neighbor state

xnew locally from x.

3. Initial temperature [T0]: Starting temperature of optimization. [1]

4. Stopping temperature [T stop]: Minimum temperature before ending optimization.

[1.0e− 8]

5. Maximum successive successful attempts [Nmax
S ]: Number of successive neighbor ac-

ceptances before decreasing temperature. [20]

6. Maximum function evaluations [Nmax]: Overall number of function evaluations before

exiting optimization. [1000]

7. Maximum consecutive rejections [NR]: Number of consecutive rejections of new state

before exiting optimization. [300]
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8. Maximum function evaluations per temperature [Nmax
T ]: number of function evalua-

tions per temperature before decreasing temperature. [Nmax/30]

9. Boltzmann constant [B]: Constant in probability expression. [1.0]

10. Supremum/infimum: Allows control to perform either supremum or infimum opti-

mization. [supremum]

11. Stopping value [ystop]: State at which to end optimization if a better state is found.

[supremum:∞, infimum:−∞]

A.1.2 Constraints

Not only do bound constraints need to be enforced

xnew : x ∈ X = X1 × . . .×XN = [a1, b1]× . . .× [aN , bN ] (A.2)

but also disk constraints. Given a hyper-rectangle xd ∈ Xd ⊂ Rd ⊂ X , for d ≤ N and some

r > 0, then xnew is “disk constrained” according to

xnew : ‖xd − xnew
d ‖ ≤ r. (A.3)

There may also be “ellipsoid constraints” which are currently only defined for use over all

x ∈ X . Constrain a generated point to remain about an ellipsoid centered at xc for a new

state xnew such that

xnew : (xc − xnew)T P (xc − xnew) ≤ 1 (A.4)

where P is a positive semidefinite matrix. These last two constraints are justified in §4.2.3.1

and employed in §4.2.4.
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The neighbor-finding routine intelligently seeks out neighboring states that assert com-

pliance of these constraints to find a new neighbor for all permutations of bound, disk, or

ellipsoid constraints efficiently. The following list denotes how these constraints are enforced

independently when a neighbor state is generated:

• Bound:

1. For each i = {1 . . . N}, given the bounds xi ∈ Xi = [ai, bi], calculate σxi = bi−ai√
12

(according to uniform distribution).

2. Generate an offset from xi as xoffset
i = Tα to recover xnew∗

i = xi + xoffset
i where

T is the current temperature and α ∼ N (0, σxi).

3. Move back into Xi from xnew∗
i through xnew

i = xnew∗
i + βT (bi − ai) towards the

interior of Xi from the exceeded bound where β ∼ U [0, 1].

• Disk:

1. Identify the random variables D ⊂ {i . . . N} participating in the disk constraint,

‖xD − xnew
D ‖ ≤ r.

2. Generate a new point xnew∗, where the new unconstrained points are generated

xnew∗
i ∼ TN (0, 1) ∀i /∈ D.

3. Generate a random direction in s ∈ RD.

4. Transform xnew∗
D to xnew

D through xnew
D = xD + r

|xD−xnew∗
D |

‖xD−xnew∗
D ‖s.

• Ellipsoid:

1. Generate a random direction in s ∈ RN .

2. Given the positive semidefinite RN×N matrix P , and the center of an ellipse xc,

identify the coefficients a = sT Ps, b = −2sT P (xc− x), and c = (xc− x)T P (xc−
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x)− 1 of the quadratic equation at2 + bt + c = 0 which identifies distances along

s about x that intersect the ellipse.

3. Take t1 = −b+
√

b2−4ac
2a and t2 = −b−

√
b2−4ac

2a .

4. Advance x through xnew = x + s(αt1 + (1− α)t2) for α ∼ U [0, 1].

The enforcement of multiple constraints at a time intelligently suggests a new neighbor

point based on the most limiting constraint that is violated for each xi on an individual

basis.

A.1.3 Algorithm

The meta-algorithm outline below is the simulated annealing scheme in [26] that iteratively

computes the minimum of a multi-dimensional function.

1. Supply initial state x = xbest = x0, compute y = ybest = y0.

2. Set T = T0.

3. Set number of evaluations n = 1 and nT = 0 and nS = 0.

4. Set finished = false.

5. While(finished == false).

(a) Create new neighbor xnew = Neighbor(x).

(b) Evaluate ynew = y(xnew).

(c) If ynew better than ystop, set ybest = ynew and xbest = xnew, set finished = true.

(d) If ynew better than ybest, set y = ybest = ynew and x = xbest = xnew and

nS = nS + 1.
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(e) If exp
(
{y−ynew}

B∗T

)
> u ∼ U [0, 1], y = ynew and x = xnew and nS = nS + 1.

(f) If T <= T stop or N >= Nmax NR >= Nmax
R , set finished = true.

(g) If nT >= Nmax
T or nS >= Nmax

S , update temperature T new = T (T ) and set

nS = nT = 0.

(h) Increment function evaluations n = n + 1 and nT = nT + 1.

6. Return best solution ybest.

A.2 Global Optimization for Noisy Functions

A.2.1 General setup

Let f be a C3 function in a domain A ⊂ Rd. To estimate ∇f(x0) for x0 ∈ A which in turn

helps us to find the extrema of our function. Assume for x ∈ A there’s no direct access

to f(x) but the noisy representation f(x) + Y (x, ω) where Y (x, ω) is a N (0, σ(x)) random

variable. Assume that σ is constant (or slowly varying with respect to x).

A.2.2 Algorithm

First assume f(a1, ..., ad) where A = (a1, ..., ad) and σ are given.

1. Choose a random direction in A and sample 4 points to fit in a degree 3 polynomial.

Calculate the third degree partial derivatives as they are described in §A.2.5.

2. Calculate the distance from point A using the formula in section §A.2.3
(
r = 3

√
3σ

2f ′′′x

)
.

3. Try to sample function values at points which have the distance calculated in step 2

from A. This requires 2d number of points in order to account for the noise.
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4. Using the points from step 3, perform a least-squares method for the following function

to find the optimal gradient: g(∇f(A)) =
∑

k[f(xk)−f(A)−
∑d

i=1(
∂f
∂xi

(A))xki
] where

xk = (xki
)d
i=1 are the points.

5. Use the gradient in last step and current step (e.g., conjugate gradient method) to

find a new point. In the first step there is no gradient information available, so use

2r as the length of the step where r is found in step 2.

6. Iterate and check for convergence.

A.2.3 Optimal points in one dimension

Consider the problem in case of d = 1. Using Taylor expansion, write

δ = f ′(x)− f(x + r)− f(x− r)
2r

=
1
2r

[
Y (x + r) + Y (x− r) +

1
3
r3f ′′′(x)

]
(A.5)

then minimize

E
[
δ2
]

=
1

4r2
[2σ2 +

1
9
r6f ′′′(x)2]. (A.6)

Manipulation of Eq. (A.6) results in r = 3

√
3σ

2f ′′′(x) .

A.2.4 Higher dimensions

In higher dimensions the number of terms in the equations increase very fast according to

the curse of dimensionality. For example, even in two dimensions an attempt to use only

3 points will produce about 60 terms in a rational function of 6 variable and of degree 6

in numerator and degree 4 in denominator. This is mainly because the method requires
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Hessian and all third-order derivative information. Therefore, some simplifications are in

order.

The first trick in one dimension is to consider opposite points in the same direction

which cancels any Hessian information. Thus, one needs d independent directions and 2d

points.

The second step to simplify the equations is to reduce the number of variables. If one

can assume that the response function is well behaved or has a similar behavior in any d

independent directions then choose them as parallel to the Cartesian axes.

The third step is to assume that all third-order derivatives have the same magnitude,

which is highly dependent upon the response function.

The demonstration of this method in two dimensions begins with the gradient calculation

and the assumption that the initialization point is the origin. Take ∆x and ∆y as permissible

perturbations to x and y.

x0 =

 0

0

 (A.7)

The perturbed points about x0

x+
0 =

 ∆x

0

 , x−0 =

 −∆x

0

 , y+
0 =

 0

∆y

 y−0 =

 0

−∆y

 (A.8)
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are used to obtain the following equations (again using the Taylor expansion):

δ =
[
∇f(x0)−∇f̂(x0)

]T

=
[
−f(x+

0 )− 1
3
∆xf ′′′x + f(x−0 )− f(y+

0 )− 1
3
∆yf ′′′y + f(y−0 )

] 2∆x 0

0 2∆y


−1

(A.9)

where f ′′′x1
and f ′′′x2

are the partial third derivatives of f with respect to the first and second

coordinates at origin. The next section will discuss the measurement the magnitude of these

parameters. Minimizing E
[
δ2
]

results in

∆x = 3

√
3σ

2f ′′′x

, ∆y = 3

√
3σ

2f ′′′y

. (A.10)

Thus the optimal distance is given by the coordinates in Eq. (A.10) in each direction.

A.2.5 Magnitude of the third-order partial derivatives

To find the magnitude of third-order partial derivatives, assume that the response function

is approximately a polynomial of degree three. Choose four points in a random direction

such that one can fit a polynomial of degree three and consequently find the third partial

derivative representative of the response function. Again, consider the case for dimension

two. Assume that one needs to project the response function onto the direction [rcosθ rsinθ]

where θ is constant. A general third-degree polynomial in two variables x and y looks like

P (x, y) = a3,0x
3 + a2,1x

2y + . . . . (A.11)
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By substituting the above coordinates one obtains

P (r) = a3,0cos
3θr3 + a2,1cos

2θsinθr3 + . . . . (A.12)

Therefore, to approximate f ′′′(x, y) one calculates P ′′′(r).
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Appendix B

PSAAP Experimental
Hypervelocity Perforation Area
Measurement

The following is a transcription of the procedure and results for measuring the perforated

areas of the 0.105 in steel plates used for the PSAAP example in §3.4.

• An Olympus SZ61 model microscope equipped with a 5.0 megapixel digital camera

by Soft Imaging System (Olympus) was used to capture the images.

• A diffuse light source was placed on the microscope bench.

• To ensure normality with respect to the microscope bench plane, equal height props

were used to hold sample plate approximately 2.75 in above the microscope bench

(for clearance between light source and sample plate).

• The microscope was focused onto the undeformed entry/exit plane of the plate.

• A ruler (general) with spacing of 1/100 in was placed near the area of interest.

• The image was captured.

• Processing of image was performed with ImageJ from NIH.
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• First a scale was set by drawing a line corresponding to 0.05 in on the ruler.

• The image was digitally magnified.

• The perforated area contour was traced with the Pencil tool. The image remains

focused on a portion of the undeformed plane shown by the yellow rectangle. The

vertical yellow line is used to define scale (i.e., 420 pixels per 0.05 in). The red arrow

points to the traced contour of the perforated area.

Figure B.1: Experimental photograph showing the measured perimeter of the resulting
perforation area

• A mask of the selected contour was generated and the black pixels were counted,

giving the area of the perforated area.

• Main Sources of Error:
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Figure B.2: Mask of the selected contour to count black pixels

– Setting the scale on the image by drawing a line along the ruler.

– Focusing on the undeformed plane for repeatability prohibits focusing and cap-

turing important boundary information above and below the focal plane, such

as lipping and spalling.

– An upper bound and lower bound for area were obtained from this image by

taking the innermost possible contour and the outermost possible contour. The

resulting areas from the two methods, keeping all other parameters (i.e., scale)

constant are 3.73(9) mm2 (outermost) and 3.26(6) mm2 (innermost). This rep-

resents the worst possible image sample, as a large chunk of material (spalled

metal) is not even considered in one of the measurements. The error percent

between the two is 14.5.
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Figure B.3: The contour does not capture the piece of spalled metal on the top right of the
perforated area. The contour in the image represents the outer-most possible contour
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Appendix C

PSAAP Validation Computation
Checklist

C.1 PSAAP Numerical Algorithm Checklist

This section explicitly outlines the procedure for a validation diameter calculation according

to those listed in §3.4.3 as entry number 2 in that section’s list, referring to a subdiameter

computation for controllable variables according to Eq. (4.26) and uncontrollable parameters

according to Eq. (4.24).

It is not known a priori whether the initialization point x0 in the algorithm will be near

a global or even local optimum for the PSAAP application, especially when considering that

the large scatter in the experimental data may distort the search direction and magnitude of

the quasi-Newton method. For these issues, a version of quasi-Newton with BFGS updates

accounting for noise will be used, which samples optimally offset points from xk to eliminate

the effect of noise based on f ′′′(xk) (or simply f ′′′(x0), assuming f ′′′(x0) is a good represen-

tation of every f ′′′(xk)). It is the hope that the noise does not significantly affect the travel

towards a local optimum, but this may very well be the case. The noise may even allow the

algorithm to “jump” towards a global optimum without necessarily converging towards the

local optimum, but lots of jumping around will severely inhibit convergence in a reason-



177

able number of steps. For algorithmic expediency, assume that the noise associated with

the optimization objective function (not necessarily just the experimental measurements) is

nearly Gaussian, with variance σ2 at all points in the design space. Thus σ(x) ≈ σ, which

needs to be computed in the initialization step.

The PSAAP application meta-algorithm for validation computations, taking M = 2 for

the controllable variables (α, h) = (X1, X2) and uncontrollable variable v = XN follows:

• Compute diameters of controllable (α, h) variables.

• Compute σ from historical data.

1. Use any existing data, and assuming it to be Gaussian, calculate σ from these

points.

• Let the space of variables be X =α ×H = X1 ×X2 ⊂ RM for α ∈α, h ∈ H.

1. For i = 1..M .

2. Set X = X ×Xi.

3. Let f(x̄ = (. . . , xi, x
′
i, . . .)) = |G(. . . , xi, . . .)− . . .

. . . F (. . . , xi, . . .)−G(. . . , x′i, . . .) + F (. . . , x′i, . . .)|2 (a very noisy function!). Let

x̄ replace references to x below.

(a) Set k = 0 .

(b) Choose x0.

(c) Normalize the parameter space to the dimensionless space X̄ = [0, 1]M+1.

(d) Normalize x0 to be within X̄.

(e) Set B−1
0 = I. OR

(f) Compute B−1
0 .
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i. For the ith diagonal entry in B0, perturb x0 along the ith direction with

two points and compute the quadratic coefficient a of the unique curve

through these points. Set λi = 2a.

ii. Do 3(f)i for each variable.

iii. Compute B−1
0 from B0 = diag(λ).

(g) Compute f ′′′(x0) according noisy optimization method.

i. Obtain a random direction xrand in X̄.

ii. Add xrand to x0 such that the middle of xrand is at x0, thus creating

xslice.

iii. Shrink xslice so that xslice is within X̄.

iv. Choose three random points along xslice, and compute their associated

values .

v. Fit a degree 3 polynomial through the three points in 3(g)iv above along

with x0 and recover the cubed coefficient as f ′′′(x0).

(h) Compute search radius r = max
(

3

√
3σ

2|f ′′′(x0)| , σ
)

that will be used to opti-

mally sample points around xk with respect to the noise, assuming f ′′′(x0) ∼

f ′′′(x)∀x.

(i) Compute ∇f(x0) using perturbations about x0.

i. Perturb x0 about its M orthogonal directions to compute ∆x0i = x0 −

x′0i
, ∀i ∈ M .

ii. Compute ∆f0i = f(x0)− f(x′0i
), ∀i ∈ M .

iii. Compute ∇f(x0) as the least-squares solution to ∆x0∇f(x0) = ∆f0.

(j) Set αk = 1 (this may be found via line search in later implementations) .
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(k) Compute ∆xk = −αkB
−1
k ∇f(xk).

(l) Compute xk+1 = xk + ∆xk.

(m) Compute ∇f(xk+1) using perturbations about xk+1 .

i. Perturb xk+1 about it’s M orthogonal directions to compute ∆xk+1i
=

xk+1 − x′k+1i
, ∀i ∈ M .

ii. Compute ∆fk+1i
= f(xk+1)− f(x′k+1i

), ∀i ∈ M .

iii. Compute ∇f(xk+1) as the least-squares solution to ∆xk∇f(xk+1) =

∆fk+1.

(n) Set yk = ∇f(xk+1)−∇f(xk).

(o) Compute B−1
k+1.

(p) Set k = k + 1 .

(q) Go to 3i or until “convergence”.

4. Recover D̄2
G−F,i.

• Compute diameter of uncontrollable variable v.

• Let the space of variables be X =α ×H × V = X1 × X2 × X3 ⊂ RM+1 for α ∈ α,

h ∈ H, v ∈ V .

1. Set X = X × V .

2. Let m=(# of samples) and f(x, z) = supX1,X2
|G(x, z)− F (x)− . . .

. . .
∑m

j=1(G(xj , zj)− F (xj)/m)|2 (a very noisy function!).

3. Do steps 3a–3p above.

4. Recover D̄2
G−F,N .

5. Compute D̄2
G−F = D̄2

G−F,N +
∑N−1

i=1 D̄2
G−F,i.
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C.2 PSAAP Experimentalist Checklist

The numerical side is physically separated from the experiments that must be done to

compute each G − F , thus the experimentalists will seemingly be given random values

at which to set their random variables, but will be ultimately guided and informed by

the algorithm above. The keen experimentalist will note that there will be sampling points

perturbed about a nominal xk in order to compute the gradient to move to the next nominal

point xk+1 where the Hessian will be updated and the process will continue. Firstly an

initialization point must be chosen and sampled about before entering the quasi-Newton

iterations. After G is computed in each step, F will be executed for the value of velocity

recorded from that experiment, and using the controllable parameters. Thus numerical

simulations cannot be performed in parallel with experiments.

Given that historical data is available before any new shots will be done, the com-

putationalists will perform a statistical analysis of this data to compute σ, the standard

deviation, which will guide the optimization routine in best selecting new points knowing

that there is scatter in the data. This is done before any new shots.

Start a validation loop with three variables: x = [V, α, h] where V is nominal projectile

velocity, α is plate tilt, and h is plate thickness (discrete variable).

The checklist for experimentalists:

• Compute diameters of controllable (α, h) variables according to Eq. (4.25). (Note

that a V will be set to the nominal velocity V0 for the duration of this diameter

computation since the range of V will be given by the fluctuations of V around V0.)

1. Let computationalists compute σ from historical data

2. For i = 1..M do 3 below



181

3. Take x′ = xi (an independent copy of xi)

(a) Initialization

i. Computationalists choose a nominal x0 = [V, α0, h0] and x′0 whereby x′i

replaces the ith variable of x0. Take shots at these points to obtain

G(x0) and G(x′0). Report this back to computationalists.

ii. If the initial Hessian is decided to be the identity matrix the next few

steps can be skipped, otherwise these steps should be taken for a decent

guess at the initial Hessian.

– Choose H0 = I, OR

– Compute H0

A. Do a shot each at 2 points about x0 and 2 points about x′0 for the

ith variable, record G for each of these points. Report these back

to computationalists.

B. Do A. for each variable

C. Computationalists will compute H0 from this data.

iii. Compute optimal radius (steps 3g-3h in §C.1)

A. Computationalists will provide 6 new points

B. Do a shot each at 3 different points. Report these back to computa-

tionalists (points associated to x0).

C. Do a shot each at 3 different points. Report these back to computa-

tionalists (points associated to x′0).

iv. Compute initial gradient (step 3i in §C.1)

A. Computationalists will suggest a new point x0′ . Do two shots at this
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point.

B. Computationalists will suggest a new point x′0′ . Do two shots at this

point.

C. Do 3(a)ivA-3(a)ivB M − 1 more times and report this back to com-

putationalists.

(b) Iterations

i. The values xk = [Vk, αk, hk, x
′
i] and G(xk, z) are known at this point

ii. Compute gradient at xk (step 3m in §C.1)

A. Computationalists will suggest a new point xk′ . Do two shots at this

point.

B. Computationalists will suggest a new point x′k′ . Do two shots at this

point.

C. Do 3(b)iiA-3(b)iiB M − 1 more times and report the results back to

computationalists.

iii. Computationalists compute and use gradient to suggest new points xk+1

and x′k+1 and do updates (steps 3j-3p in §C.1).

iv. Take a shot at xk+1. Report G(xk+1, z) back to computationalists.

v. Take a shot at x′k+1. Report G(x′k+1, z) back to computationalists.

vi. Repeat steps 3(b)i-3(b)v until the computationalists tell you to stop.

• Compute diameter of uncontrollable variable v. Assume that m number of samples

at each (nominal) point must be taken and averaged, as suggested by Eq. (4.24).

1. Take x′ = v

(a) Initialization
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i. Choose a nominal x0 = [V0, α0, h0], take m number of shots and aver-

age them to obtain G(x0) =
∑m

j=1 G(x0)j/m. Report all samples and

average back to computationalists.

ii. If the initial Hessian is decided to be the identity matrix the next few

steps can be skipped, otherwise these steps should be taken for a decent

guess at the initial Hessian.

– Choose H0 = I, OR

– Compute H0

A. Do m shots each at 2 points about x0 and average the value of G

for each of the 2 points of m shots, record this average for each of

these points. Report all samples and the average back to computa-

tionalists.

B. Computationalists will compute H0 from this data.

iii. Compute optimal radius (steps 3g-3h in §C.1)

A. Computationalists will provide 3 new points

B. Do m shots each at 3 different points and average the value G for each

of the 3 sets of m shots. Report all samples and the average back to

computationalists.

iv. Compute initial gradient (step 3i in §C.1)

A. Computationalists will suggest a new point x0′ . Do m shots at this

point and average the value of G over the m shots.

(b) Iterations

i. The values xk = [Vk, αk, hk] and G(xk, z) are known at this point
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ii. Compute gradient at xk (step 3m in §C.1)

A. Computationalists will suggest a new point xk′ . Do m shots at this

point and average the value of G over the m shots.

iii. Computationalists compute and use gradient to suggest new point xk+1

and do updates (steps 3j-3p in §C.1).

iv. Take m number of shots at xk+1 and average them to obtain G(xk+1) =∑m
j=1 G(xk+1)j/m. Report this back to computationalists.

v. Repeat steps 1(b)i-1(b)iv until the computationalists tell you to stop.
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