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Abstract

The propagation of nonlinear surface elastic waves, or Rayleigh waves, is studied
in the case of a harmonic elastic material. In the linear theory Rayleigh waves are
non-dispersive, and linear profiles of any shape are acceptable. When nonlinear
effects are taken into consideration, special restrictions on the permissible wave
profiles need to be imposed. Parker and Talbot investigated the possibility of steady-
shape profiles within the second-order approximation of the Rayleigh problem. They
established numerically the existence of several families of periodic Rayleigh waves
of a permanent form, which may move at phase speeds that differ from the linear
Rayleigh wave velocity or at speeds that equal the Rayleigh wave velocity. The
distinguishing feature of the Parker-Talbot numerical solutions is that plots of the
surface horizontal displacement have singularities which resemble finite corners.

The goal of our work has been to gain an understanding of the Rayleigh wave
solution structure, particularly in the context of the second-order theory. We pro-
pose that there exist infinite families of steady-profile periodic solutions moving at
speeds equal to or differing from the linear Rayleigh wave velocity. We present
various examples of such solutions, and discuss a simple numerical procedure for
generating any member of the infinite families of solutions. The nature of the sin-
gularities of the presented numerical profiles is examined, and empirical evidence
is provided that the surface horizontal displacements display fractional singularity
behavior rather than the corner-like behaviour of the corresponding Parker-Talbot
profiles. The numerical approach is then modified to accommodate the proposed
singular behavior.

We use a solvability condition of a Fredholm type to perform a local study

of the surface displacement singularities of Rayleigh waves on an infinite interval.



The hypothesis of the existence of fractional singularities in the surface horizontal
displacement is tested using two different approximations of the solvability condition.
We show that within the second-order theory the steady-profile Rayleigh waves can
have only one type of fractional singularity behavior, whether they move at the

linear Rayleigh wave velocity or not.
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Chapter 1 Introduction

The Rayleigh waves considered here are waves which propagate along the free surface
of an elastic half-space. They are characterized by a high level of energy concentra-
tion in the surface layer of the elastic material, and by a rapid exponential decay of
the elastic disturbances as one moves away from the free surface of the solid.

One of the most important applications of Rayleigh waves is in modeling earth-
quakes, since surface elastic waves represent one of the most destructive high-energy
components of seismic disturbances. Rayleigh waves are also of important use in
determining the location of various geophysical phenomena, such as earthquakes
and underground nuclear explosions, as well as in nondestructive testing of the con-
stituent properties of the Earth. Until recently, nonlinear effects were not generally
included in seismic wave propagation studies. However, new laboratory and exper-
imental observations of seismic wave propagation, such as the ones discussed in [1],
reveal the importance of nonlinear effects in Rayleigh waves.

The study of nonlinear Rayleigh waves has also become increasingly important
in the development of surface acoustic wave devices used for signal processing. This
particular application was prompted by the nonlinear signal processing capabilities
of such devices, for example parametric amplification, convolution, etc.

Nonlinear Rayleigh waves represent a very intriguing physical system due to the
complex structure of the boundary value problem which describes them. The gov-
erning partial differential equations are coupled and highly nonlinear, and so are the
boundary conditions. In the linear version of the problem the differential equations
uncouple to a set of two stretched Laplace equations, while the boundary conditions

remain coupled. The resulting lincar horizontal and vertical displacements &(z,y)



and n(x,y) can be shown to be of the following form:

- {E(z,py) — 0’E(z, sy) },
1 2 (1.1)

{—pN(z,py) + %N(ﬂ:, sy)},

§(z,y) =

n(z,y) = 73

where F(z,y) and N(x,y) are conjugate harmonic functions, and p, s and o are con-
stants which depend on the properties of the elastic media, as well as on the velocity
of the linear Rayleigh waves. The derivation of (1.1), using the linear differential
equations and boundary conditions, is discussed in Section 2.2.2. Notably, it turns
out that the linear Rayleigh wave problem has only non-dispersive solutions which
propagate with constant velocity ¢ = cg. The velocity cg is the only physically
acceptable real positive solution of an algebraic equation, and it only depends on
the elastic properties of the solid material.

Several aspects of the presented formulas for £(z,y) and n(z,y) deserve further
consideration. Each of the elastic displacements £ and 7 is expressed in terms of a
linear combination of the same function stretched in two different ways in y. Due
to the presence of two different stretchings and to the complex structure of the
nonlinear Rayleigh wave equations, any analysis performed using (1.1) with y > 0
ends up being very complicated. However, these formulas simplify significantly on
the surface of the elastic material when y = 0. This suggests that a possible way
to tackle the nonlinear boundary value problem is to reduce it to a set of equations
valid on the surface of the half-space by getting rid of the dependence on y.

This approach was first used by Kalyanasundaram et al. in [11], where the
method of multiple scales was applied to the Rayleigh wave problem for an isotropic
material. By imposing a solvability condition on the second-order equations, Kalyana-
sundaram et al. obtained an infinite set of coupled first-order PDEs for the evolution
of the Fourier coeflicients of a periodic profile. They used the resulting equations to

study the evolution of the first two or three harmonics of a periodic Rayleigh wave.



Parker and Talbot in [16] were the first to use a solvability condition type of
argument in a detailed study of steady-profile periodic Rayleigh waves. Zabolot-
skaya et al. [20] later derived the coupled-amplitude evolution equations using the
Hamiltonian formalism, while in his later publications Parker et al. [15], [17], as well
as Tonov [7], [8], employed Fourier transforms along with a solvability condition to
the same end.

It is also very significant that the functions E(z,y) and N(z,y) in (1.1) are
related to the surface horizontal displacament £(z,0) = & (z) through the following
Poisson-type formula:

i —__fo(w) dw

E($ay)+iN(ch,Q)=i/w_(x+iy) (1.2)

e ’
~o0
with E(z,0) = &/(z). This relation implies that as long as the &(z) profile is known,
the full linear Rayleigh wave solution can be reconstructed within the entire elastic
material. Therefore, each linear Rayleigh wave solution is uniquely determined by
its horizontal surface displacement. Linear theory does not impose any restrictions
on the shapes of the displacements & (z), and therefore any linear Rayleigh wave
profile is acceptable. Since linear surface elastic waves are also non-dispersive, any
displacement profile will travel at ¢ = cg without distortion or attenuation. Thus,
within the realms of linear theory, Rayleigh waves of any possible shape are allowed
to exist.

This does not prove to be the case when nonlinear cffects are taken into consid-
eration. When steady shape profiles are considered, Parker et al. in [15], [16], and
[17], show that the second-order equations dictate that only linear displacements of
certain special shapes can be used as first-order terms in a perturbation expansion
of the nonlinear solutions.

The most detailed study of steady-profile Rayleigh waves was performed by

Parker and Talbot in [16], and it contributed greatly to the understanding of the



importance of nonlinear effects in modeling Rayleigh waves. They considered steady-
profile solutions in a Fourier series form and obtained an infinite system of quadratic
equations for the Fourier coefficients of the considered profiles. Their analysis
showed the existence of steady-profile solutions which may move with phase speeds
different from the linear Rayleigh wave velocity, as well as those which propagate at
the Rayleigh wave velocity. Parker and Talbot went on to solve numerically trun-
cated forms of the infinite systems for the Fourier coefficients. They determined
four different steady-profile solutions. Two of these numerical solutions have speeds
different from cg, and the other two have speeds equal to the linear Rayleigh wave
velocity. Plots of the surface displacements £(z,0) of the Parker-Talbot solutions
are given on Figures 1.1 through 1.4. The plots were generated using all of the
Fourier coefficients given in [16] for each of the numerical solutions.

The most intriguing feature of the Parker-Talbot numerical solutions is the pres-
ence of horizontal displacement singularities which resemble finite angles in the plots
of £(z,0). The nature of these singularities, as well as the possibility of the existence
of additional solutions to the Rayleigh wave problem, have not been explored until
now.

The motivation for our work has therefore been to gain an understanding of
the Rayleigh wave solutions structure, particularly in the context of second-order
elasticity theory. To this end, we proceed in Chapter 2 to reformulate the full
nonlinear equations describing the propagation of Rayleigh waves in an isotropic
harmonic material. A solvability condition for the resulting equations is determined
using a Fredholm alternative type of argument.

Assuming small-amplitude steady-state displacements, the second-order formu-
lation of the Rayleigh problem is derived. Then we use the solvability condition for
the full problem to obtain a restriction on the corresponding linear profiles, which
can be used as first-order terms in small-amplitude expansions of the steady-profile

Rayleigh waves. In the periodic case the consistency condition is used to derive in-
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Figure 1.1: The horizontal displacement &(x,0) of the Parker-Talbot numerical so-
lution 1 for ¢ = ¢p with 12 Fourier modes.
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Figure 1.2: The horizontal displacement &(z, 0) of the Parker-Talbot numerical so-
lution 2 for ¢ = ¢p with 12 Fourier modes.
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Figure 1.3: The horizontal displacement &(xz,0) of the Parker-Talbot numerical so-
lution 1 for ¢ # cr with 18 Fourier modes.
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lution 2 for ¢ # cp with 25 Fourier modes.



finite quadratic systems for the Fourier coefficients of the prescribed linear Rayleigh
wave profiles. We then discuss two approximations for the infinite systems proposed
by G.B. Whitham.

The infinite systems for the Fourier coefficients of the linear elastic displacements
are studied numerically in Chapter 3 using the Newton-Raphson method with spe-
cially constructed initial guesses. We propose that there exist infinite families of
solutions to the systems, and we present various examples of such solutions in the
case of ¢ = cg and ¢ # cg. In both cases we examine the nature of the singularities of
the surface profiles of the numerical solutions, and provide empirical evidence show-
ing that they display fractional singularity behavior. The computational scheme is
modified to accommodate the proposed singular behavior, and improved numerical
solutions to the Rayleigh wave problem are presented.

In Chapter 4 we examine the second-order Rayleigh wave problem on an infinite
interval. The solvability condition derived in Chapter 2 is used in a local study of
the surface displacement singularities. The possibility of the existence of fractional
singularities in the surface horizontal displacement is studied using two different
approximations of the solvability condition. The resulting equations are solved for
the fractional singularity power, which is then compared with its corresponding
numerically predicted values. It is shown that within the second-order theory the

fractional singularities for ¢ = cg and ¢ # cg are of the same form.



Chapter 2 Basic Equations

2.1 The Full Nonlinear Rayleigh Wave Equations

The equations describing the propagation of Rayleigh waves are derived from the

variational principle
o0 X0
g
-o0 0 0

where &(x,y,t) and n(z, y,t) are the horizontal and vertical displacements from the

p(&+m)* —W(En)}dedydt =0, (2.1)

DO | =

coordinates z and y in the unstrained material, while p is the density of the half-
space. W (&, n) is the strain-energy density, chosen to correspond to the isotropic

harmonic elastic material proposed by F. John in [9], given by
1
W&, n) = 5(/\ +2p)(wy — 2)% + 2u(wy — wo — 1), (2.2)

where ) and p are Lamé’s constants, and wi(z,y,t) and wq(z,y,t) are defined by

the following equations:

wi(§,1) = \/(2 + &+ my)? A+ (& — )2

1+¢,
wlem = | T (2.3)

Uz I+ Thy



The corresponding equations of motion from (2.1) are

5 _8T11+87_21 _3 514 _*_g oW
PSt = "os dy  O0x \ 0, oy \ ag, )’

8T12 07’22 8 (8W) 8 <8W> (24)
P = —F/— + = ;

dx Ay T oz 0N, 5& —OTy

where in the middle expressions we have related the terms on the right to the stress

components 7;;. The expressions for wy and wq in (2.3) make it natural to introduce

the physically significant quantities

D =& + My C= §y =Nz, J = Eany — ,fynan (2'5)

so that

wi(&,1) =2+ D)2 +C? wy(&,n)=1+D+J. (2.6)

Then (2.2), (2.4) and (2.6) give

G, B (2+ D) oy
Pl = o [(/\ +2u)D +2(A + p) (1 J2+ Dy +02) 24 iyJ +
0 20
g O O~ ) ] 29

4 2C
pmt:_ﬁ_x[MCHHM)(C_\/<2+D)2+C2)—2“§y}+
9 . (2+D .
+a—y[(/\+2,u)D+2()\+u)(1 \/(2+D)2+02) 2,@} (2.8)

The terms explicitly in & and 7 in (2.7) and (2.8) come from the Jacobian J and they
cancel out in these equations. However, they play a crucial role in the boundary

conditions. The boundary conditions can be read off by comparing (2.4), {2.7),
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and (2.8). They are

2+ D
Top = ()\+2,U)D+2()\+u)(1 — \/(72+ D)2+C2) —2u, =0,
(2.9)
2C
7’21:MC+()\+M)(C* )+2w7$20.

V(2+ D)%+ C?

From (2.7) and (2.8) we can deduce the equations for D(z,y,t) and C(z,y,t),

namely,
24+ D
Dy = (A + 20)AD + 2(\ + ) A(1 - ,
o0 (2.10)
Cy = pAC + (A + )A(C — )
p tt H ( ,u) ( \/(7+D)2+02)

We get the benefits of the physical interpretations of terms in C and D, as well
as including the expressions for £ and 7 needed in (2.9), by introducing the potential

functions P(z,y,t) and S(z,y,t), defined by

) 7t :P-'L' S?
&(x,y,1) + Oy (2.11)

U(ﬂf;yat) = Py - Sz

For then

D(z,y,t) = AP(z,y,t), C(z,y,t) = AS(z,y,1), (2.12)

and the derivatives of & and 7 in the boundary conditions (2.9) are written simply

in terms of P and S. The equations (2.10) may then be written as

B 3 2+ AP
PPtt—(/\+2#)AP+2()\+N)(1 \/(2+AP)2+(AS)2)’ 213)
pSi = PAS + (A + p) (AS - = )’

V(2 +AP)2 + (AS)?
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while the boundary conditions (2.9) become
2+ AP
V(2 +AP)2 4 (AS)?

2AS
V(2 +AP)?+ (AS)Q) + 20y — Sie) = 0.

A +20)AP + 200+ p) (1 — ) = 24(Pyy + Sye) = 0,
(2.14)

PAS + (A + p) (AS —

The expressions on the right-hand sides of the differential equations (2.13) are
present in the boundary conditions (2.14). Therefore, we can substitute the equiv-

alent left-hand sides of (2.13) into (2.14), to produce the linear equations

Pptt - 2//’(Pzz + Syz) =0, on y=0,

pSu + 2u(Pyy — Szz) =0, ony=0.

Thus, perhaps surprisingly, the boundary conditions are linear in this form.
From cither equations (2.10) for C and D or equations (2.13) for P and S we
see that in the linear theory D and P satisfy wave equations with wave speed ¢;,

while C' and S satisfy wave equations with wave speed ¢, where

A+2u . . .
I = P s the compression wave velocity,
p
5 = P is the shear wave velocity.
p

These wave equations are only coupled through the boundary conditions.
We shall focus on studying the propagation of steady-profile Rayleigh waves,
and, therefore, we shall make the assumption that all considered functions are of

the form

f($7y7t) = f(!E —ct, y)a

where ¢ denotes the velocity of the steady-profile waves. After introducing in our

equations the new variable X = x — ct, we reduce the Rayleigh wave problem to
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two spatial dimensions, X and y.

Then equations (2.13) can be written out in the form

3 c? 2+ D
2Pyx+ P, =22 "% (1 _ , 2.16
P o ( \/(2+D)2+C2) (216)
2 2 20
$2Sxx + 8, = 29 (0 _ , 92.17
T T ( \/(2+D)2+C2) (2.17)

and the boundary conditions (2.15) reduce to

02px+5y20, ony =20,
(2.18)

0’Sx ~P,=0, ony=0,

after they have been integrated once with respect to X. In equations (2.16), (2.17),

and (2.18) we have introduced the notation:

[
[\

o
[

2 _ ¢ 2 _
p*l—?, s =1-—

ol =1- -, (2.19)

%)
S 3

2.2 The Linear Rayleigh Wave Problem

The linear version of the steady-profile surface wave problem on an elastic half-space
was first studied by Lord Rayleigh in 1885. In his honor these waves are nowadays
referred to as Rayleigh waves.

In the following analysis we shall revert to using z in place of X in order to
simplify our notation. We should remember, however, that now z will denote a

coordinate in the moving frame of reference.
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2.2.1 The Periodic Solution to the Linear Rayleigh Wave
Problem
In the linear case, the differential equations (2.16) and (2.17) uncouple to the

stretched Laplace equations

P*Prs + Py =0,

(2.20)
$28,, + Syy =0,
along with the coupled boundary conditions
02P1+Sy:0, ony =0,
(2.21)

azSz—Py:O, on y = 0.
The differential equations (2.20) have periodic, bounded solutions of the form
P(z,y) = Ae " coskr, S(z,y) = Be *¥sinkz. (2.22)

Substituting the above expressions for P and S in the boundary conditions (2.21),

we obtain from the first equation

2
B = —UA, where A is an arbitrary constant, (2.23)
s

and then from the second equation
o' = ps. (2.24)

Equation (2.24) can be rewritten in the form

o2 4 o2 o2
1-—) ={1-)({1-% 2.25
( 2) < )( ) (2.25)
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which prescribes the velocity of propagation of linear Rayleigh waves. This equation,
commonly referred to as the Rayleigh condition, has only one real positive root
¢ = cg, which is physically acceptable. Since the Rayleigh velocity cr does not
depend on the wavenumber &, Rayleigh waves are non-dispersive in the linear case.

General Fourier series solutions for P(x,y) and S(z,y), and the corresponding

£(z,y) and 7(z,y), are easily developed by linear superpositions of the form:
P(z,y) = Z(Ak cos kx + By sin kx) e_k”y,

1
S(z,y) = Z(Ck cosnz + Dy sin kx) e 7.
1

2.2.2 The Complex Variable Solution to the Linear Rayleigh
Wave Problem

An alternate approach to deriving the solutions of the linear Rayleigh wave prob-
lem is to use complex variable theory. The equations (2.20) and the boundary
conditions (2.21) with p, s, 0 = 1 are essentially Laplace equations and the Cauchy-
Riemann equations (with the sign of S in (2.21) changed). Accordingly, we introduce
the analytic function f(z,y) + ig(x,y), where f and g are solutions to the Laplace

equation, and satisfy the Cauchy-Riemann equations

fl(% ?/) :92($,y)7

f2(35;21) = —q1(z,y),

for all y. (In this section the subscripts j = 1,2 will denote differentiation with
respect to the j-th argument of a given function.)

We then take

02

P(z,y) = f(z.py), S(z,y)= ——9(@,sy), (2.26)
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as the solutions of the linear Rayleigh wave problem. The scaling factors p, s, and

o in (2.26) are related through the Rayleigh condition (2.24). Since

| L[ fw,0) L[ P
1 _1 d 2.27
f(x,y)+zg($,y) iﬂ/w—(x'J’"Zy Z7T/w I+Zy v ( )

then P(z,y) and S(z,y) in (2.26) are fully determined in terms of P(z,0), the value
on the surface.

The displacements are then

g - Px + Sy - fl(m7py) - 0292($7 Sy) = fl(xvpy) - szl(xasy)v

) 2 (2.28)

g
n=P,— S, =pfz,py) + ;gl(m, sy) = —pg1(z, py) + ;gl(ﬂs, sY).

For these it is convenient to introduce an equation similar to (2.27), but with f,(z,0)

replacing f(z,0). i.e

T e e (2.20)

Since acccording to (2.28) the value of £(z,y) on the surface is
&(@) = €(2,0) = (1 = 0*) fi(2,0) = (1 - o) Pi(2,0), (2.30)
we introduce the functions
E(x,y) = (1= 0")filz,y), Nl(z,y)=(1-0")g(z,y). (2.31)

Then (2.28) become

(2.32)
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and (2.29) is equivalent to

_ L[ &w)
L N = — ————dw. 2.33
(@) + i) = - [ (2.33)
Using (2.32) the curl and divergence are

2c3
D(ray):@z‘f‘ny: C—QEI(Eapy)v (234)

1
202 -
Clz,y) =& — 1w = - Ni(z, sy). (2.35)

If we differentiate equation (2.33) with respect to z, and introduce the functions

U(z,y) and V (z,vy), defined as

Ulz,y) +iV(z,y) = Ey(z,y) + iNi(z,y) = i / _f,EIL(L dw, (2.36)

i ) w—(z+y)
the relations in (2.34) and (2.35) can be recast as
2c2
D(T7y) = ?2—2_ U(.’I?,py),
! (2.37)
202
Cla,y) = ——— Vlz,sy)

The Delta Function Solution

A particular solution which will be used later is found by taking P(z,0) = n6(x—z,)

in (2.27). Then,
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2.3 The Solvability Condition

The linear theory imposes no restrictions on the shape of the Rayleigh wave displace-
ment profiles. Fourier modes, such as (2.22), can be superposed to produce general
profiles moving with the speed cg, as given by (2.25). We can determine a restric-

tion on the expected wave profiles when we consider the full nonlinear Rayleigh wave

problem

2P:rz+P :202 01 - :F .’L', 9 239
Py vy C% ( \/(2 D)+ CQ) (z,y) ( )

2 _¢? 2C
2S00 + Sy = 2L (C - = G(z,y), 2.40
vy 2 ( \/(2+D)2+C’2) (z,9) (2.40)
o’P,+S,=0, ony=0, (2.41)
0°S, — P, =0, ony=0. (2.42)

The differential operator which corresponds to the equations (2.39) and (2.40) is

p28_2 o7

. ozx?  Oy?

L= ("% W (2.43)
20 0
0z2  Oy?

It can easily be shown that the operator L and the boundary conditions (2.41)
and (2.42) are self-adjoint. Therefore, a Fredholm alternative type consistency con-
dition has to be imposed on the forcing terms F'(z,y) and G(z, y) of equations (2.39)
and (2.40) to ensure that they have non-trivial solutions. The proposed solvability
condition restricts the shapes which can be assumed by a steady-profile Rayleigh
wave.

We shall obtain the “orthogonality” or “solvability” condition by forming the
inner product of the P, S problem with families of test functions based on the linear

Rayleigh wave solutions. First, we consider the infinite interval case —oo < z < oo,
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using the following family of test functions:

5 Py

P(z,y) = TR (2.44)
~ O'2 r — Tg
S = —— 2.45

with —oo < 2y < oo. These test functions are solutions of the linear Rayleigh wave

equations (2.20) and they also satisfy the boundary conditions

o’Py+ S, =0, (2.46)
4 ,
25, — b= % 2.47
o y s (T o x0)27 ( )
along with P(z,0) = 78(z — o).
If we take ¢ = cp in the test functions P(z,y) and S(z,y), the expression

o' — ps on the right-hand side of equation (2.47) becomes zero. The boundary
conditions (2.46) and (2.47) then coincide with the boundary conditions (2.21) of
the linear Rayleigh problem. Therefore, to require that ¢ = cg in ﬁ(x, y) and §(m, Y)
is equivalent to taking a linear Rayleigh wave solution as a test function in the or-
thogonality condition. However, at this point of the analysis we do not want to
restrict the value of ¢, so the set of test functions which we shall consider is broader
than the set of linear Rayleigh wave solutions.

The solvability condition, corresponding to the nonlinear problem in (2.39)

to (2.42), is determined by considering the inner product

(LP,P) = / /{(szm + P,)P + (5°Sus + Syy) S} dady, (2.48)

—oo 0

where P = (P, S) is the solution to the full Rayleigh wave problem, and P = (15, §)
is any of the test functions pairs given in (2.44) and (2.45). We integrate equa-

tion (2.48) by parts using the boundary conditions (2.41), (2.42), (2.46), and (2.47),



19

as well as the fact that P satisfies LP = 0. The resulting orthogonality condition is

/ /{F(:r,y) P+ Gz, y) §} dzdy = — ol —S—ps / (f(_x;;g? dz, (2.49)

for any choice of 7o in —o0 < g < co. Here, P and S are given by (2.44) and (2.45),
and F(z,y) and G(z,y) are the forcing terms of the full non-linear Rayleigh wave
equations (2.39) and (2.40).

Following the same idea, we shall derive an orthogonality condition for the
Rayleigh wave problem in the periodic case. Here, the following choice of test

functions is made:

P(z,y) = e " cos nz, (2.50)
S(z,y) = ——e€ "¥sinnz, (2.51)
s
with n = 1,...,00. Each of these test function pairs satisfy the linear Rayleigh

wave equations as well as the coupled boundary conditions

o°Py+ 5, =0, (2.52)
—~ —~— 4 —_ t‘
%S, — P, = 2 " cos ne, (2.53)
s
forn =1,...,00. Once again, the value of ¢ is not restricted.

The inner product (LP, 75), where P = (P, S) is the solution to the full Rayleigh
wave problem and P = (P, S) is any of the test function pairs given in (2.50)
and (2.51), is integrated by parts using the boundary conditions and the periodicity

requirements on P and P. The resulting solvablity condition is

27 oo 27

- _ 4
//{F(:I:, y) P+ G(z,y) S} dedy = S /nP(a:, 0) cos nz dz, (2.54)
0 0

0

S
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where P and S are given by (2.50) and (2.51) for any choice of n = 1,... 0.
This is the solvability condition corresponding to the periodic formulation of the

full nonlinear Rayleigh wave problem.

2.4 The Second-Order Theory

In the previous section we derived the solvability conditions corresponding to the
full Rayleigh wave equations. Here, we shall focus on the second-order problem in
the small amplitude aproximation.

We shall study nonlinear Rayleigh wave solutions of the following form:

D(z,y) =eDW(z,y) + 2D (z,y) + O(c),
C(z,y) =eCW(z,y) + 2CP(z,y) + O(Y),
P(z,y) =ePY(z,y) + 2PP(z,y) + O(Y),
S(z,y) =S (z,y) + 25 (z,y) + O(e%).

Substituting these expansions into the full nonlinear differential equations (2.39)
and (2.40) and the boundary conditions (2.41) and (2.42), we see that the leading-
order terms P1(z,y) and SM(z, y) are solutions of the linear Rayleigh wave prob-
lem discussed in Section 2.2.

When the forcing terms F'(z,y) and G(z,y) are expanded out in powers of £, we

get
2 .2
Flz,y) = g?% cMWcW 4 O, (2.55)
1
2 _ 2 )
G(z,y) = 62(—2?1) cWDW 1+ 0@, (2.56)
2

where DU (z, y) = APW (z,y) and CV(z,y) = ASD(z, y). Then the second-order
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equations are
2 2
2p) 4 p@ _ (G =) ~yo ;
PPy + P = i ctvCcH, (2.57)
2 _ 2
2 (2) @ _ (3 — cf) (1) (D =
S Sg:z -+ Syy = “703—' c\ DY (208)
When solutions with ¢ = cg are considered, the second-order boundary conditions
are simply

o?P? 4 5152) =0, ony=0,
(2.59)

- Py(z) =0, ony=0.

When solutions with ¢ # cg are considered, we bear in mind that p, s, and o are
defined in terms in ¢. In the first-order solutions PM)(z,y) and SM(z,y) we want
to take ¢ = cg. Therefore, terms from small changes ¢ = cg + &7 could appear in
the second order boundary conditions.

In accordance with the notation introduced in [16] by Parker and Talbot, we

define the quantity

K(e)= -~ (2.60)

In the linear theory, ¢ = cg is defined through K(cg) = 1. Parker and Talbot allow
small changes of order ¢ in the wave speed ¢, i.e., ¢ = ¢cg + v, which will also be
included here. It is important to note that this change ~ is specified in advance to
broaden the class of solutions; 7 is not required nor determined from the equations

of the problem. Changes O(e) in ¢ will correspond to K(¢)—1 = O(g). We introduce

K(c) -1 =ex, (2.61)



22

following the notation of Parker and Talbot in [16]. The precise relation between

c=cp+ey and K(c)—1=¢k

is k=vK'(cg).

The boundary conditions (2.59) are then be modified to

2

J%Pf) + SZ(,Q) = % PY ony=0,
_ 2
038 _ Py@) = UQRH S ony=0.

However, we no longer need to solve the second-order boundary value problems
in detail. To find the linear shapes that are acceptable to generate a nonlinear
steady shape, we need only refer to the solvability conditions (2.49) and (2.54).

We substitute the expansions (2.55) for F(z,y) and (2.56) for G(z,y) in the
solvability condition (2.49). Picking up the first-order component of the resulting

expansion of the orthogonality condition in powers of ¢, we get

(C%_Cg)]o/oo 2 (1 5 ral o' —ps O?P(l)(xyo)

L2 2oWoWp 4 9200 DWSY drdy — dz

4cic? {e A } dady se (x — )2 ©
—o0 0 —00

(2.62)

for any choice of zy in —co < zy < oo with I” and S given by (2.44) and (2.45).
The factor (0! — ps)/s, found on the right-hand side of (2.62), can also be

expanded out in powers of £ to produce

ot — ps

= ekpr + O(?), (2.63)

where pr = p(cg).

Substituting the expansion (2.63) in (2.62), and then integrating by parts the
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single integral on the right-hand side, we finally obtain

(cf—cg)// 2 (1 D 3 Py (,0)
20McWp 4 9:20M DM dordy — L et A
133 {cz + 2¢] } Tay = KPR (@ — o)

—oo 0 —0

dr, (2.64)

for any choice of z in —0o < 2y < co with P and S given by (2.44) and (2.45).
The condition (2.64), which corresponds to the infinite interval formulation of the
second-order Rayleigh wave problem, will be used in Chapter 4 to perfom a local
study of the surface singularities of steady-profile linear Rayleigh waves.

Similarly, we can substitute the expansions (2.55) and (2.56) in the solvability

condition for the periodic case (2.54) to produce

27 oo 27

(3 — &) 2 ~(1) (1) D 2(1) (1) S _ o' —ps (1) ,
e {cWeWp 4 22cWp S} dady = nP'"(z,0) cos nx dz,
4cics s€
0 0 0
(2.65)
for every choice of n = 1,... co. The right-hand side of equation (2.65) can be

rewritten in terms of x using (2.63) to yield the final form of the periodic solvability

condition
9 5 2m oo o
5 —c ~ _
( 26%051)//{03()(1)0(1)13 12200 DG} dudy — ,{pR/ 2 POz, 0) cos na d.
0 0 0

(2.66)

where P and S are given by (2.50) and (2.51) for all possible choices of n = 1,. .. , oc.

It is important to note that for both the periodic and the infinite interval or-
thogonality conditions, a shift from the lincar velocity of propagation changes the
nature of the equations in a non-trivial manner. When the velocity shift is equal to
zero, 1.e., when x = 0, the right-hand sides of equations (2.64) and (2.66) are also

equal to zero. However, when x # 0, the single integral components in either of the
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solvability conditions must be included.

2.4.1 The Solvability Condition in the Fourier Series Case
with ¢ = Cr

In both this and the next section, the p, s and o coefficients will actually denote
the values of these scaling factors at ¢ = cp. Normally, we would refer to these as
PR, Sr, and og. However, since the equations examined here are quite long, we shall
drop the subscripts g to simplify notation.

When the nonlinear wave velocity ¢ is equal to the linear Rayleigh velocity cp,

the solvability condition (2.66) simplifies down to

27 oo

//{cgc(”cmﬁ +2c;CDWSY dady = 0. (2.67)

0
We will use the solvability condition (2.67) to determine the set of linear wave
profiles which are acceptable within the second-order formulation of the Rayleigh
wave problem with ¢ = cp.

The Fourier series of the linear profiles are taken to be of the following form:

23
DW (g, y) = % ZQk e *PY cos kz, (2.68)
cf

~—20

CW(z,y) kY sin k. (2.69)

Substituting the expansions for D (z,y) and CO(z,y), as well as the expressions

(2.50) and (2.51) for P(z,y) and S(z,y) in equation (2.67), we get

k=1 j=1

27 oo o 50
//{ZZQ’CQ ¢ [(+) s*"p]ysinkxsinjxcosnx}dxdy+
0 0
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27 00

- 2//{2 Z Qi Qe FFSTmPlY Gipy ki cos ma sin nx} drdy =0, (2.70)
k=1 m=1
for all choices of n with n = 1,... , co. We expand the products of sines and cosines

using trigonometric identities, and then we integrate with respect to  to produce

oo

o0 x> o0 ¢}
/{Z ZQ’CQJ' e Wk+i)s+nply Z ZQng‘ e~ [(k+i)s+nply |
0 k=1 j=1 1 j=1
k—j=n —j=-n
-3 0u0 0 230 3
k=1 j=1 k=1 m=1
/H—j_n k+m=n
#2530 b 35 S0, ik g
k=1 m=1 k=1 m=1
k—m=n k—m=—n
foralln =1,...,00. We now integrate with respect to ¢, and introduce a uniform

notation for all of the summation indices. This results in the infinite system of

equations,

1 1 1
kz:; QkQ”+k[(2k+n)s+np + n+k)s+kp (n—}—k)(p—l—s)} *

1 . 1
+ kz:; Qk@n—k [(k -+ 72,)8 -+ (Tl _ k)p - 2n(p+ 8):’ - O, n = 17 e, 00, (271)

which is equivalent to the solvability condition for the case of ¢ = cr. It is convenient
to multiply the coefficients of the system above by 2n(p + s), and to introduce the

following notation:

o — 2n(p + s) _q
")t -y .
2n(p + s) 2n(p + s) 2n '

Bkn = - .
ok (2k+n)s+np  (n+k)s+kp n+k

The coefficients «y , and Br.» differ by a minus sign from the (2 system coefficients
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introduced by Parker and Talbot in [16]. As defined in (2.72) the o’s and §’s are
always positive; Parker and Talbot worked with negative values.

The final form of the infinite system (2.71) for the Fourier coefficients of the

steady-profile Rayleigh profiles is

-1

3

i Qk@nk + Y Prn@QrQnis =0, n=1,...,00. (2.73)

k=1 k=1

This system prescribes the linear Rayleigh wave profiles, which can be used as first-
order terms in a small-amplitude expansion of a nonlinear Rayleigh wave solution

moving with velocity cg.

2.4.2 The Solvability Condition in the Fourier Series Case
with ¢ # cgr

In the case of ¢ # cg, we get a slightly more complicated system of equations due
to the presence of the single integral on the right-hand side of equation (2.66). The
Fourier series for P()(z, ), corresponding to the choice of DM (z,y) and CM(x, y)
in (2.68) and (2.69), is

2
PW(z,y) = — 2 Z @k e~ P cos k. (2.74)

Upon substitution of this Fourier series into the integral on the right-hand side

of (2.66), we obtain the expression

9 o 2w
2c; Qr
——=Kp — [ ncosnzcoskx dx
k2 '
k=1
0

26 o O (2.75)



27

Substituting the result in (2.75) into equation (2.66), we obtain the infinite system

of equations for the coefficients Q,,, corresponding to the case of ¢ # cp:

n—1
4Ks

p—S

Q., n=1,... oo (2.76)

Ok QeQn—i + Z Brn QrQnir =
k=1

k=1

The system (2.76) reduces to the system (2.73) for the special case of ¢ = cr, Kk = 0.
We can further simplify the equations (2.76) by rescaling the @, in the following

manner:

4s ~
Q= — Qn, n=1,..., 00 (2.77)
S

This produces the final form of the system for the case of ¢ # cp:

n—1

x
D QQn i+ B QuOnin = £Gny n=1,... 0. (2.78)
k=1 k=1

In all subsequent analysis of the system above, we shall drop the hats from the
coefficients @k in order to simplify notation.

An alternative approach to deriving the infinite systems (2.73) and (2.78) is to
substitute the Fourier series directly into the equations and the boundary conditions,
and examine the resulting set of algebraic equations for the Fourier coefficients. The
left-hand side of these equations is linear with a singular matrix, and the right-hand
side is a nonlinear correction. Since the matrix is singular, the right-hand side must
satisfy an orthogonality condition. Thus, the solvability requirement occurs at a
later stage.

It appears that Parker and Talbot, who were the first to derive the systems (2.73)
and (2.78), used a similar approach in [16]. Parker rederived these systems in [17]
based on an orthogonality condition type of argument along with Fourier trans-
forms. Later in [15], Parker et al. described a generalized “projection method,”

which produces the evolution equations for electro-elastic surface waves, of which
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the systems (2.73) and (2.78) can be considered as a special case.

We derived the systems (2.73) and (2.78) from the forcing terms F(z,y) and
G(z,y) in (2.55) and (2.56). In our formulation, they have a particularly simple
form in terms of C(x,y) and D(z,vy). Accordingly, this form of the boundary value
problem is easy to use, and the resulting solvability condition is produced using a

straightforward application of the Fredholm alternative orthogonality requirement.

2.5 Remarks on the Infinite Systems for the Lin-
ear Rayleigh Wave Fourier Coefficients

5o far no analytic solutions of the solvability condition systems (2.73) and (2.78) have
been determined. The application of familiar analytical methods to these equations
is obstructed by the complicated structure of the axn and the § , coefficients, and

their non-trivial dependence on the scaling factors p and s.

2.5.1 The Constant Coefficient Systems

G.B. Whitham proposed looking at two simpler systems related to the systems (2.73)
and (2.78). For both of those systems, terms in the first sum can be combined, e.g.,
Upn QrQn_r and oy k., Qn_rQr are products of the same ()’s. In this case, the
coefficients oy, + v, &, are roughly constant and, therefore, the following constant

coefficient systems are suggested:

n—1

AY QuQuk+ A QuQuik = £Qu, 71 odd,
k= h=t (2.79)

n—1

2 1 o0
A QrQnk +-AQ% + A QrQnir =Kk Qpn, n even.
k=1 2 e

k=1
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The goal is to obtain an overall view of the behavior of such systems, with the hope
of gaining some understanding of their underlying structure, even if there may be
considerable differences in the detailed behavior and numerical values of the constant
coefficient and the real @) systems solutions. It was found that (2.79) can be solved
analytically. The results turned out to be extremely useful, including getting a good
initial guess for the numerical treatment of the real @Q systerns.

A reasonable choice for A in (2.79) ranges between 2(s+3p)/(p+3s) and (p+s)/s.
For an elastic material of Poisson ratio v = 1/4, the scaling factors p and s are

p = 0.8475 and s = 0.3933. Therefore, A is in the range between
2(s+3p)/(p+ 3s) =2.8961 and (p+s)/s = 3.1548.

Also, the factor A can be scaled out of the equations using a transformation of the
form @ = @k/A

If the velocity of propagation ¢ does not equal the Rayleigh velocity cp, then
k # 0 and the linear terms in the right-hand side of the equations (2.79) must
be retained. However, for ¢ = cp we have k = 0, and so the constant coefficient

approximation reduces to

n—1
IR 00
D QuQuok+ Y QeQuix =0, nodd,

n—1

2 1 o
Z QrQn—k + 5@% + Z QrQn+r =0, n even.
k=1 k=1

(2.80)

We shall refer to either one of (2.79) and (2.80) as the constant coefficient systers,
or in shorthand - the C'Q) systems.

The analytical solutions of the C'Q systems were determined by G.B. Whitham.
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He proved that when the generating function,
q(0) = ZQk cos k8, (2.81)
k=1
is introduced, the system (2.79) reduces to the equation

B o0
AG*(9) — kq(0) = 3 where B = Z @ is a constant, A > 0, (2.82)

k=1

while the system (2.80), which already has the A normalized out, reduces to

00
q*(0) = g, where once again B = ZQ% (2.83)
k=1
The solutions to either one of the ¢(#) equations are pure constants which we shall
denote by r; and ry. The corresponding surface horizontal displacements &(z, 0) are..
plecewise linear with slopes given by the constants 7, and 7.

The solutions of the simpler equation (2.83), corresponding to the ¢ = cp case,
are vy = —ry = \/WQ‘ This implies that the corresponding surface horizontal
displacement singularities are symmetric corners. There is no restriction on the
number of singularities that the C'Q) system solutions can have, as long as they have
the prescribed symmetric form. Therefore, the set of solutions to the CQ) system
with ¢ = ¢ is infinite. Two of these solutions are shown in Figures 2.1 and 2.2.

For the case of ¢ # cg, the horizontal displacement singularities are also corners;
however, this time they are non-symmetric. As determined by G.B. Whitham, the
slopes of the piece-wise linear sections of the solutions to (2.82) are related through
the relation r,7, = —B/(2A), and the special “shock-like” condition 7| + ry = KA.

In analogy to shock dynamics, a positive shift in the velocity of propagation, i.e.,
k£ > 0, implies that the positive non-symmetric corners in &(z,0) steepen forward,
as illustrated in Figure 2.3. Similarly, when x < 0, the solution profiles move at

speeds slower than the Rayleigh velocity cg, and so the positive corners of &(z,0)
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Figure 2.1: A solution to the constant coefficient system for ¢ = cg with 2 symmetric
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Figure 2.2: A solution to the constant cocflicient system for ¢ = cp with 8 symmetric
corners.
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steepen backward, as in Figure 2.4. Once again, there is no restriction on the
number of singularities in the solutions to the C'Q) system for ¢ # cg. Thus, the CQ
system system (2.79) has an infinite family of solutions, just as was the case with
the solutions of (2.80).

The analytical solutions to the constant coefficient systems were employed in
a numerical procedure designed to compute solutions to the Rayleigh wave equa-
tions (2.73) and (2.78). The details of the computational approach which was used
are described in Chapter 3. Without loss of generality we rescaled the Q in (2.78)
and (2.79) to take A out of (2.79), and k out of both equations (2.78) and (2.79).
Thus, the numerical results presented in Chapter 3 correspond to x = 1, and be-
cause of that choice of k, the ¢ # cg numerical solutions presented there steepen
forward, as in Figure 2.3. However, the x # 1 solutions can be easily produced from

the x = 1 solutions through an appropriate rescaling.

2.5.2 The Ad Hoc Systems

The second set of equations proposed by G.B. Whitham to approximate (2.73)
and (2.78) are the ad hoc systems whose coeflicients are chosen to have the same
asymptotic behavior for n — oo and k — oo as the g, and S, in (2.72). Therefore,
the ad hoc systems are expected to be very good approximations to the actual @
systems (2.73) and (2.78).

The ad hoc system corresponding to ¢ # cg is

n—1

2 oo n
A QuQn r+AY  ——QkQnir = £Q,, 7 odd,
k=1 k=

“n+ k
s (2.84)
2 1 o0 n
AZ QrQn-r + 514@2% + AZ oy kaQn+k =k(Q,, neven,
k=1 k=1



34

and for ¢ = cgr, k = 0 the ad hoc equations reduce to

n—1

2 o]
n
n—k + nik = 0, nodd,
;chz " ;Hk@c@ "

(2.85)

n—1

2 1 oo
2
Qr@n—r + ng + kE
1 —1

k=

n
n+k

QkQnek =0, n even.

As in the case of the system (2.79), for an elastic material with a Poisson ratio of
v =1/4 a reasonable range for A is 2.8961 < A < 3.1548.

In Chapter 3 both of the ad hoc systems (2.84) and (2.85) are solved numerically
for an elastic material with v = 1/4, p = 0.8475, s = 0.3933. We show that the
resulting numerical solutions are very close to the numerical solutions of the actual
Rayleigh systems (2.73) and (2.78).

We experimented by solving the real and the ad hoc systems for other values of
p and s, and those studies showed that the behavior of the numerical solutions does
not change significantly as p and s are varied. Since changes in the scaling factors
do not affect the numerical solutions significantly, then the ad hoc systems, which
do not include the p and s scalings, must be appropriate approximations for the real
Q equations (2.73) and (2.78).

At present there are no available exact solutions to the ad hoc systems (2.84)
or (2.85). However, they appear to be more amenable to analysis since the p and s
factors are not present in their equations. Our numerical studies provide empirical
evidence that if analytic solutions to the ad hoc equations are found, they can be
used as accurate approximations of steady-profile periodic Rayleigh waves in many

practical applications.
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Chapter 3 Numerical Results

Because of the inherent difficulty in solving the infinite systems (2.73) and (2.78)
for the Fourier coeflicients of the Rayleigh wave solutions exactly, we shall now
proceed to study them numerically using the Newton-Raphson method for nonlinear
equations.

First we shall describe in detail our numerical approach for the case of ¢ = ¢y,
and then shall go on to discuss issues specific to the systems with ¢ # cg. This
particular order of presentation was chosen because the solutions to the systems
with ¢ = cg have a simpler structure than those of the systems with ¢ # cg.

The predominant part of the numerical results presented in this chapter will be
concerned with the behavior of the solution profiles on the surface of the elastic
half-space, i.e., on y = 0. As discussed in Chapter 1, in relation to equations (1.1)
and (1.2), the surface horizontal displacement £(z,0) uniquely determines the cor-
responding Rayleigh wave solutions for all z and y.

In the context of the periodic formulation of the problem, once we solve the
systems (2.73) and (2.78) for the coefficients Qx, we can construct the linear Rayleigh

wave profiles using the following formulas:

1 o
E(x,y) = %sin kx(e FPv — g% k), 3.1
1 —o? k
k=1
o’ = Qk - ks
n(z,y) = oy E ~ cos kx(oe ™Y — e FY), (3.2)
k=1
2c2 - —kpy
D(z,y) = 2 g Qr e "PY cos kx, (3.3)
1 k=1
C(z,y) = — g Qr e " sin kx (3.4)
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Judging by the form of these expansions, the most singular type of behavior of the
periodic wave profiles occurs when y = 0. For y > 0, the exponentials in the Fourier
series smooth out the Rayleigh wave surface discontinuities. Therefore, the most
challenging aspect of our numerical studies is to accurately resolve the Rayleigh
wave solutions on the surface of the elastic half-space.

The Fourier series in (3.1) through (3.4) correspond to steady-profile linear
Rayleigh wave solutions with surface horizontal displacements which are antisym-
metric about the point x = 7. This seems to illustrate all essential features and
simplifies the details somewhat. In fact, we also take the surface horizontal dis-
placements to be symmetric about the point x = 7 /2. This results in a further
simplification of the ) equations since it reduces all even-numbered Fourier coef-
ficients (Jy,, to zero. These choices of symmetry are made in accordance with the

Parker and Talbot original work in [16].

3.1 Computational Treatment of the Q Systems
with ¢ = cp

The first step we need to take in solving the @ system (2.73) numerically is to sim-
plify the problem by truncating it to /V equations with /N unknowns. The truncation
number N has to be significantly large for a number of reasons. Due to the special
structure of the solutions to the constant coeflicient system (2.80), their Fourier
coefficients behave like 1/k. Comparing the real @ system with the CQ system, we
can argue that the Q; of the former will decay slower than the )y of the latter. The
coefficients fy , already decay with k; therefore, the combined term Sy ,,QxQrn+k can
only match the order of the term (), _x in the constant coefficient case with a
smaller decay in the ()x. Therefore, we expect the @ system coeflicients to decay
slower than 1/k with k.

On the other hand, the numerically determined (), will be used to generate the
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Fourier series of the curl and the divergence of the Rayleigh wave solutions. Since
the @ have a very slow rate of decay, we need to employ a very large number of
Fourier modes to reproduce the divergence and the curl within a reasonable level of
accuracy. Thus, we need to consider a trucation number N which is quite large.

We shall iteratively generate a numerical solution of the form

Q/(:H) _ Ql(ci) n 5Ql(ci’+1) (3.5)

where Q,(f) is the value of the coefficient (), at the ¢-th iteration step, and 6Q§:+1) is

the correction generated at the : +1 step. The numerical method we shall use is the
Newton-Raphson method for systems of nonlinear equations. However, this method
does not converge unless the initial guess for Q,(CO) is close enough to the solution we
are looking to determine. We can now make use of the family of exact solutions to
the constant coeflicient system.

In fact, each one of the constant coeflicient profiles can be successfully employed
as an initial guess in the application of the Newton-Raphson method to the real @)
system. The particular choice of a constant coefficient initial guess will be based on
the expected properties of the horizontal displacement &(x,0) for the profile to be
determined. For example, if we want to produce a Rayleigh wave solution which has
a &(z,0) with two humps per period, located at specified positions along the z axis,
we shall choose as an initial guess a solution to the constant coefficient system which
has two corner singularities located exactly at the prescribed points. If we attempt to
solve the () system with an initial guess which does not have a structure resembling
that of the corresponding solution to the C'Q) system, the proposed iterative method
does not converge.

At each step of the iterative procedure the expression for Q,(:H) from (3.5) is
substituted in the truncated version of the () system, which is linearized about the

already known values of the Q,(:). The resulting linear system of N equations for the
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unknowns (5Q,(:) is given by
M Q™) 6QM Y = R(QV), k=1... N, (3.6)

where M(Q,(:)) is a non-singular N x N real matrix and R(Q,(f)) is a vector in RV.
We solve the linear system (3.6) for the 5@,(:“) using LU-matrix decomposition with
relative maximum pivoting. The numerical scheme is terminated when a fixed point
of the iterative process is reached. The procedure outlined here will be referred to

as the numerical method I.

3.1.1 Numerical Solutions to the CQ System with ¢ = cg
Numerical Method I

The performance of the numerical method I is tested first on the truncated constant
coefficient system. We shall solve the truncated C'Q system numerically, and then
we shall compare the determined numerical solution with the corresponding exact
solution of the infinite C'Q) system. Our goal is to find out how many Fourier modes
are needed to reproduce the exact solution profiles with reasonable accuracy, and
whether truncating the infinite C'Q) system affects the numerical solution in any
significant way.

As discussed before, for ¢ = cg we shall work with solutions which are symmetric
about z = 7/2. Therefore, the even-numbered @} will be equal to zero and the odd-
numbered equations of the constant coefficient system (2.80) drop out. Accordingly,

the constant coefficient system reduces to

m—1 [o9]
1
Eop: 5 ZO Q2j+1Q2m—2j—1 + ZQ2j+1Q2m+2j+1 =0, m=1,...,00. (3-7)
]i

=0

Here E,,, denotes the 2m-th equation of the original C'() system (2.80).
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Solution 1

First, we shall consider the simplest exact solution to the C'Q) system with

(kT CWV i kisodd, k=2j+1, j=0...,00
Qk:smig): 2+1 (3.8)

0 if £ is even.

The Fourier series of the surface profiles corresponding to this particular solution
to the CQ equations can be determined by substituting the formula (3.8) into the
Fourier expansions (3.1) through (3.4). In this manner we obtain the following

expressions for the Rayleigh wave profiles on the surface of the elastic half-space:

00 - L o9
n(z,0) = ~§J§Z (_1)1‘(;;121])-; De. (3.10)
D(z,0) = -2—2—3 ig (=1) ;jsflj iz (3.11)
C(z,0) = —2:2 i@ =1y ;nff Uz (3.12)

We shall employ 1500 Fourier modes of the form (3.8) as an initial guess for
the iterative scheme. After determining the corresponding numerical solution, we
resubstitute it back into the truncated C@Q) equations. The equations are satisfied to
the order of 107'2, which confirms that the iteratively generated solution has high
degree of accuracy. It is important to note that in this case only four iterations of
the numerical procedure are required to reach a fixed point solution. Indeed, since
we use the exact solution to the infinite C'Q) system as an initial guess, we expect
the iterative scheme to converge very fast when applied to the truncated version of

the same system.

In Figures 3.1 through 3.4 we show the &(z,0), n(z,0), D(x,0), and C(z,0)
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generated using the computed @ in the Fourier expansions (3.1) through (3.4).
A direct comparison of these profiles with the corresponding profiles of the exact
solution 1 to the C'Q system reveals that they are extremely close. If we add plots
of the exact solution profiles to those of the numerically determined profiles in
Figures 3.1 through 3.4, the two sets of plots would be indistinguishable.

In the first two columns of Table 3.1, the (Jx computed via the currently dis-
cussed numerical method I are compared to their corresponding exact values. We
have chosen to denote a jump in the value of the index k in Table 3.1 and all subse-
quent tables by a double horizontal line. The first two columns of Table 3.1 reveal
some notable differences between the numerical and the exact Fourier coefficients.
As evident from (3.8) the exact values for the () monotonically decrease with k.
However, only up to about two-thirds of the computed coefficients decrease mono-
tonically with k. In fact, the later portion of these coefficients, as illustrated in
column 2 of Table 3.1, grow in absolute value as k increases. This effect is caused
by the truncation of the infinite CQ system to a finite system which excludes the
higher-order modes. The later portion of the modes which are included in the com-
putations try to accommodate for the missing higher-order modes by changing in
value.

To illustrate this, let us study the equations used to compute a five mode numer-
ical solution to the C'Q system consisting of @)y, @3, @5, @7, and QJg. In this case all
modes higher than the ninth are taken to be zero, so we end up with the following

truncated system:

Q32 +Q1Q3 + Q3Q5 +Q5Q7 + Q7Qs+ 0 =0, (3.13)
L o a a "~
Q1’Q3+Q1+Q5 + Q?fQ? +Q5+Q9 + 0 + 0 =0, (3.14)
Q1Q5+Q§/2+Q1Q7+Q3Qg+ 0O + 0 + O :O, (315)
i _ i

_Jr_

Q7+ QQ:+Q:1Qs+ 0 + 0 + 0 + 0 =0 (3.16)
- - +
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Figure 3.1: The horizontal displacement &(x,0) of numerical solution 1 to the CQ
system with ¢ = cp.
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Figure 3.2: The vertical displacement 7(x,0) of numerical solution 1 to the CQ
system with ¢ = cpg.
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Figure 3.4: The curl C(z,0) of numerical solution 1 to the C'Q} system with ¢ = c.
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[ Qx [ Qr exact I Qr numericalﬂ (Qr numerical HJ
Qi 1.00000000 1.00000000 1.00000000
Qs |-0.33333333 |  -0.33329642 -0.33333129
Qs 0.20000000 0.19995578 0.19999755
Q: |-0.14285714 |  -0.14280986 -0.14285453
Qs 0.11111111 0.11106217 0.11110841
Qi1 | -0.09090909 |  -0.09085913 -0.09090633

[ Q21 | 0.04761905 |  0.04756722 [  0.04761622 |

| Qs [-0.03225807 |  -0.03220593 | -0.03225527 |

| Qu | 0.02439024 |  0.02433822 |  0.02438751 |
| Qs [-0.01960784 | -0.01955611 ]  -0.01960518 |
| Qi1 | 0.00990099 |  0.00985151 |  0.00989883 |
| Qoo | -0.00502513 |  -0.00498093 |  -0.00502418 ]
| Q501 | 0.00199601 | 0.00196904 | 0.00199967 |
| Q1 | -0.00133156 |  -0.00131949 [ -0.00133974 |
| Quoo1 | 0.00099900 |  0.00100285 |  0.00101238 |
| Qi251 | -0.00079936 |  -0.00082083 |  -0.00081878 |
| Qus01 | 0.00066622 |  0.00070807 |  0.00069283 |
| Q751 | -0.00057110 | -0.00063781 |  -0.00060653 |
Q1997 | 0.00050075 0.00059932 0.00054737
Q1999 | -0.00050025 | -0.00059912 -0.00054697
| Qas01 | 0.00039984 |  0.00062398 [ 0.00048750 |
| Q2751 | -0.00036350 |  -0.00076845 [  -0.00050373 |
Q2993 | 0.00033411 0.00414600 0.00130050
Q2005 | -0.00033389 |  -0.00496911 -0.00149457
Q2997 | 0.00033367 0.00661723 0.00188259
Q2099 | -0.00033344 | -0.01321747 -0.00343400

Table 3.1: A comparison of the exact coefficients of solution 1 to the C(Q system
with ¢ = c¢p with the coefficients determined via the original (I) and the modified
(IT) numerical methods.

where () is fixed to 1 and @3, @5, @7 and Q9 are the unknowns. The zeros in
equations (3.13) through (3.16) denote products of one of the coefficients Q3, Qs, Q7
and @y with a higher-order coefficient which has been set to zero.

For the numerical solution which we are considering now, namely solution 1 as
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given in Figure 3.1, the terms @1 Q7 and Q3Q5 in (3.16) are negative while Q,Qy =
Qg is positive; therefore, the truncation of the C'() system to five modes requires
that Q1Q7 + Q3Q5 = —Qg. For the exact C() system, however, the positive sum
Q1Q7 + Q3Qs is balanced by the infinite negative sum

Z Q25+10Q2j+9, (3.17)
1=0

of which Qg is just the first term. Thus when we take Q) with £ > 9 in (3.16) to
be zero, we are forcing the numerically computed ()9 to be considerably larger than
()g-exact. A higher value of @y in turn influences the balance of terms in (3.15)
and correspondingly alters the value of |Q7|. A change in the values of ()7 and Q)
then affects equation (3.14), which we solve for @5, and so the effect of “tainting”
propagates from the higher-order modes to the lower-order modes. The further away
we get from the last equation of the truncated system, the less perceptible the effect
of tainting. The coefficient which is most significantly affected by the truncation is
the highest-order one; in this case Q.

This brief example indicates that no matter how we truncate the infinite @
systems, we shall not be able to avoid some level of “tainting,” which will be more
pronounced in the case of the higher-order computed coefficients Q. It helps to
consider a very large number of cquations which confines the sizeable effects of
“tainting” to the higher-order coefficients. If we include the high-order “tainted”
modes in the Fourier representations of the numerical profiles, we do not produce
profiles which are consistent with the known exact solutions. But if we consider only
a portion of the computed coefficients, in our case the first two-thirds of the Q;’s,
the numerically determined profiles check very well with the known exact profiles.

In all subsequent analysis and generation of plots, we shall disregard the last
third of the determined Fourier coefficients. The higher the number of the Fourier

modes we solve for, the less perceivable the impact of “tainting” for the higher-order
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Fourier modes. The importance of computing a large enough number of Fourier
modes is amplified by the fact that we can only retain two-thirds of the generated
coefficients. As a consequence the linear systems of the form (3.6), solved as part of

the iterative scheme, end up being significantly large.

The Modified Numerical Method I1

One way to improve the accuracy of our scheme is to make use of the fact that we
know the exact form of the Fourier coefficients for the analytic solution to the C'Q)
system. Our ultimate goal is to produce accurate numerical solutions to the real
Q) system, and certainly in that case we do not have an available analytic solution.
However, as will be discused in Section 3.1.4, we can get an approximate formula for
the higher-order Fourier coefficients of the real () system solutions. Thus, we can
modify our numerical approach to incorporate approximate forms for the higher-
order ), in the numerical computation of the lower-order Q. We shall describe the
relevant modifications for the real @ system in Section 3.1.5. First, we shall focus
on the modifications pertinent to the C'QQ system.

For simplicity, we shall describe the proposed improvement on the C() system
with five modes. When we examined the equations (3.13) through (3.16), we saw
that by taking all O with £ > 11 to be equal to zero, we induce a sizable shift
in the computed values for the higher-order coefficients. Now, we shall once again
solve a system of four equations for four unknowns, namely Q3, @5, Q)7 and()g, but
this time we shall include the exact values for @iy, @13, @15 and ()17 in the equations

we solve. We end up with the system
Q%/Z +Q1Q3 + Q3Qs5 + Q:Q7 + Q7 Qs + Q9@11 + @11@13 + @13@15 + @15@17 =0,
4 _ - g - _ _ i )

Qs+ Q1Q5 + Q3Q7 + QsQ9 + Q?@n + @9@13 + @11@15 + @13@17 =0,
— + + + + + + +

Q1+Q5 +Q3/2+ Q1Q7 + Q3Q + Qs@n + Q7C~213 + QQ@IS + @11@17 =0,
i - " h - - —
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Q1Q7 4+ Q3Q5 + Q1Qg + Q3@11 =+ Q5C§13 =+ Q?@ls + QQ@N =0,
— - + + + + +

where the @k, k = 11,13,15,17 denote the exact values for the solution 1 coethi-
cients, as given by the formula (3.8). The same formula is also used to generate
the initial guess Qx, &k = 1,...,17, where k is odd. Then the modified system
is solved for @3, Qs, Q7 and Q, using the Newton-Raphson method. The @k with
k = 11,13,15,17 are kept fixed to their initial (and exact) values in the course of
all iterations.

In summary, we intend to include in the truncated CQ equations twice as many
modes as we solve for. We keep the later half of the modes fixed to the exact values
prescribed by the analytic solution to the CQ system used as an initial guess. In
this manner, the “tainting” of the higher order modes, though not fully eliminated,
is greatly diminished. To illustrate this, in the third column of Table 3.1 we give
the values of the Qy generated using the proposed modification. Clearly, the degree
of accuracy increases, and the effect of tainting goes down significantly.

The numerical results presented in this chapter were generated by solving sys-
tems of 1500 equations with 1500 unknowns, and then employing only the first 1000
of the computed coefficients. We experimented with solving systems of 100, 200,
300, 500, 750, 1000, 1500, and 2000 modes. The numerical solutions employing 1000
out of a total of 1500 generated modes seemed to provide the best resolution with-
out becoming computationally cumbersome. We also compared the surface profiles
generated with increasing numbers of modes, and made sure that the computational
scheme produces consistent results at different levels of resolution.

We determined that the Fourier series of the horizontal and vertical displace-
ments of the considered solutions do not require as many as a thousand modes to be
properly resolved. In fact, adding modes higher than Qs does not seem to visibly
alter the surface displacement profiles. It is the divergence and the curl of the so-

lutions to the constant coefficient system which require on the order of a thousand
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modes for their Fourier representations to be accurate.

Another way to estimate the validity of using the first M Fourier modes in repre-
senting the solutions to the C'Q system is to substitute the numerically determined
(2j+1, 0 < j < M — 1 in the CQ equations, and to compare the resulting values
with the corresponding analytical expressions for the remainders. The remainder of

equation Ey, of the CQ system (3.7), with M Fourier modes included, has the form

3 3 (="
Ry, = Qoj-2m11Qojr1 = . , ; (3.18)
j=M j=M (2J —2m+ 1)(2] + 1)

which telescopes to

(—1)m M ]
RM =X 7 E j . 3.19
2m 2m Plcval 27 +1 ( )

If we substitute the exact values for Q211,00 <7< M—1in equation E,,, of the
CQ system, we will get exactly —RY . If we substitute the numerically determined
(211, 0 < j < M — 1 in E,,,, we need to obtain a value which is very close to
_RM |

We compared the numerically predicted with the analytical values for RY for
various m and M. When the numerical computations are performed with 1500
Fourier modes, the best approximation for the remainders is provided by taking 1000
modes of the total 1500 generated modes. This is illustrated in Table 3.2. The results
presented there indicate that the remainders for the CQ) system are reproduced with
an accuracy of 1074, except for the first 25 cquations where the level of accuracy
goes down to 1073, Also, the remainders computed using the modified numerical
method II represent a considerable improvement over the remainders computed via
the numerical method 1.

The exact solution to the constant coefficient system indicates that the surface

singularities in the curl are logarithmic in nature, and therefore the expected value
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[2m | —RP™ exact | —RJO° numerical I | ~R}2° numerical II |
2 -0.00025013 -0.00050748 -0.00023802
4 0.00025025 0.00047061 0.00023611
6 -0.00025038 -0.00044855 -0.00023502
8 0.00025050 0.00043285 0.00023428
10 -0.00025063 -0.00042068 -0.00023374

|20 | 0.00025126 | 0.00038310 | 0.00023230 |

150 | -0.00025318 | -0.00033486 | -0.00023157 ||

1100 | 0.00025647 | 0.00030087 | 0.00023299 |

| 250 | -0.00026706 | -0.00026422 | -0.00024148 ||

500 | 0.00028768 | 0.00025243 | 0.00026120 ||

[750 | -0.00031334 | -0.00026221 | -0.00028726 ||

[ 1000 [ 0.00034657 | 0.00028767 | 0.00032223 |

[ 1250 | -0.00039233 | -0.00033264 | -0.00037178 ||

| 1500 | 0.00046210 | 0.00041137 | 0.00044915 ||

[ 1750 | -0.00059413 | -0.00057355 | -0.00059796 ||

| 1996 | 0.00155426 | 0.00175796 | 0.00166370 ||

| 1998 | -0.00171954 | -0.00195698 | -0.00184485 ||

Table 3.2: Comparison of the exact and the numerically determined remainders for
the CQ) system with ¢ = cg. The numerical remainders are computed using 1000
out of 1500 generated Fourier modes.

for the curl at the singular points is infinity. From the plot of the curl on Figure 3.4,
we can see that the infinite value for the curl at the singular points 7 and 37” is ap-
proached. The larger the number of modes included in the Fourier expansion for the
curl, the better its approximation at the singular points. There is a limit, however,
on how many modes we can efficiently handle at present with the numerical iterative
procedure. We feel that with 1000 Fourier coefficients the qualitative behavior of
the curl at the surface singularities is captured with a satisfactory level of accuracy.

The proposed numerical scheme was tested with a variety of profiles representing
solutions to the C'Q) system. In all of the cases examined, the numerical solutions
reproduced the displacements, curl, and divergence of the exact solutions with very

high levels of accuracy.
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Figure 3.5: The horizontal displacement &(z,0) of numerical solution 2 to the CQ
system with ¢ = cg.
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Figure 3.6: The vertical displacement 7(z,0) of numerical solution 2 to the C'Q)
system with ¢ = cg.
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Figure 3.7: The divergence D(z,0) of numerical solution 2 to the CQ system with
C =Cpg.
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Figure 3.8: The curl C(xz,0) of numerical solution 2 to the CQ system with ¢ = cg.
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Solution 2

As an example of a C'Q system numerical solution with a more complex structure
than solution 1, in Figures 3.5 through 3.8 we show the numerically determined
profiles corresponding to the initial guess

Op — sin £ (1 — 2cos ka) + (sink(a + b) — sin kb)(1 — cos k)
b k(1 —2coska+ 2sink(a + b) — 2sin kb)

, 1 <k <3000,

where a = 0.15 and b = 0.48. Since every even-numbered @ defined by this formula
is zero, then the total number of Fourier coefficients which we consider is 1500.
Once again, if superimposed, plots of the exact and the numerical solutions can-
not be distinguished. Even though the surface profiles have a reasonably compli-
cated structure in this case, the numerical solution still captures the exact solution

behavior very accurately.

3.1.2 Numerical Solutions to the Real Q System with ¢ = cg

Having established that our numerical procedure reproduces correctly the solutions
to the C'Q) system, we now go on to find solutions to the real Q) equations, as given
by (2.73). We consider the case of a harmonic material of a Poisson ratio v = 1/4.
The corresponding values for p and s are p = 0.8475 and s = (0.3933.

On Figures 3.9 through 3.30, we display the surface displacements, curl, and

divergence for a selection of our numerical solutions to the real @ system (2.73).

Solution 1
Solution 1 was generated using as an initial guess the simplest constant coefficient
periodic profile £(z,0), as given by

3000 . kr

sin L sin kx
§(x,0) = Z ;kz—

k=1
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Figure 3.9: The horizontal displacement &(x,0) of solution 1 to the @) system with
C = Cp.
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Figure 3.10: The vertical displacement n(z,0) of solution 1 to the () system with
C = Cpg.
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Figure 3.11: The divergence D(z,0) of solution 1 to the @ system with ¢ = cg.
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Figure 3.12: The curl C(z,0) of solution 1 to the @ system with ¢ = cg.
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where

sin &7

Qr = - 2 1<k <3000. (3.20)

In the formula above we have reverted to the k notation. Once again, all even-
numbered @y are zero due to the sin %’5 factor, and effectively we are considering
1500 modes.

The resulting numerical solution to the real @ system displays a qualitatively new
behavior at the singularities of its horizontal displacement. While the C'() system
solution (3.9) has singularities which are corners, the corresponding solution to the
real () system has cusps. In fact, for all of our numerically determined solutions to
the real () system, the general features of the constant coefficient profile used as an
initial guess are preserved, but the type of singularity changes from a corner to a
cusp.

Since a cusp in the surface horizontal displacement translates to a higher or-
der singularity in the curl and divergence, the need to employ a significantly large

number of modes in resolving the solution profiles is further amplified.

Solutions 2 and 3

The surface horizontal displacement £(z,0) of solution 1 has the simplest possible
shape at the surface - a positive cusp at §, and a negative cusp at 32-’5 The horizontal
displacements of solutions 2 and 3 have a more complicated structure. They were
chosen to correspond to the numerical solutions of the real ¢ system presented by

Parker and Talbot in [16]. Solution 2 was generated using the initial guess

_sin®T 1 — 2c0s0.15k

= 1<k < 3000 3.21
k E 1—=2cos015 ~— "= ’ (3-21)

and the initial guess used to compute solution 3 is
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Figure 3.13: The horizontal displacement &(z, 0) of solution 2 to the ) system with
C = CR.
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Figure 3.14: The vertical displacement 7(z,0) of solution 2 to the @ system with
C = CR.
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Figure 3.15: The divergence D(x,0) of solution 2 to the @ system with ¢ = cp.
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Figure 3.16: The curl C(z,0) of solution 2 to the @ system with ¢ = cg.
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. sin 27 (1 — 2 cos ka) + (sink.(a +b) — sin k’b?(l — COS k7r)’ 1 < & < 3000.
k(1 —2coska-+2sink(a+ b) — 2sin kb)

(3.22)

In the original work of Parker and Talbot, where a maximum of 20 non-zero
Fourier modes were considered, the horizontal displacement singularities resemble
finite corners, as displayed in Figures 1.1 and 1.2. The number of modes used to
represent these profiles being small, some of the peaks in the computed &(z, 0) could
also be interpreted as numerical instabilities. In fact, Parker and Talbot noted in [16)
that their surface displacement profiles with ¢ = ¢ might have inaccuracies as large
as 0.02, so that the details of these profiles could possibly be erroneous.

However, when 1000 Fourier modes are used to represent the numerical solu-
tions, the surface singularities clearly develop a cusp-like appearance. It also be-
comes evident that what could have been considered as numerical solution errors, or
instabilities in the Parker-Talbot solutions, are actually genuine peaks in the surface
horizontal displacements. As more modes are employed, the singular behavior of
the surface horizontal displacements becomes more pronounced, and it increasingly
exhibits fractional singularity characteristics.

The most important step in generating solutions 2 and 3 with our numerical
scheme was to determine the counstant coefficient system solutions to be employed
as initial guesses. As discussed in Chapter 2, the solutions to the C'Q) system with
¢ = cpr can have any number of symmetrically shaped corners in their horizontal
displacements. So in order to generate the required initial guesses, we place a
symmetrically shaped corner at cach location along the horizontal displacements
of the Parker and Talbot solutions, where there is indication of singular behavior.
To illustrate this, in Figures 3.21 through 3.26 we provide a comparison of the
horizontal displacements of solutions 2 and 3 as given by Parker and Talbot, and
the corresponding initial guesses for our numerical scheme. In each case we have

plotted the Parker-Talbot profiles using all Fourier coefficients given in [16].
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Figure 3.17: The horizontal displacement &(z,0) of solution 3 to the () system with
C = Cpg.
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Figure 3.18: The vertical displacement n(z,0) of solution 3 to the ) system with
C = CR.
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Figure 3.19: The divergence D(zx,0) of solution 3 to the ) system with ¢ = cg.
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Figure 3.20: The curl C(z,0) of solution 3 to the Q system with ¢ = ¢p.
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Parker and Talbot computed their numerical solutions using an iterative pro-
cedure based on the Newton-Raphson method applied to a system of N equations
with N unknowns, with N being successively increased. After the iterative proce-
dure converges approximately for N equations, the number of unknowns is increased
to N + m. The starting values of the additional m unknowns are taken to be zero,
while the first N coefficients are set to equal the values found as a solution to the
previous N equations. Parker and Talbot increased the number of unknowns by
m = 5, since that choice of m produced an acceptable rate of convergence. The
initial guess for their numerical iteration is determined by analytically solving the
@ equations truncated to just three modes: (1 = 1, ()3, and J5. The resulting
equations can be reduced to a single quadratic equation which has two different
solutions for the set of unknowns (Y3 and )5. Thus Parker and Talbot had two
possible ways of initiating their iterative procedure, and therefore they generated
two different solutions corresponding to the ) equations with ¢ = cz. However, the
three mode initial guesses used by Parker and Talbot did not produce the simplest
possible solution to the ) system, namely solution 1 in Figure 3.9.

In the case of our numerical procedure, there is an infinite family of possible
initial guesses, namely the exact solutions to the constant coefficient system with
¢ = cg. We can start the iteration with as many modes as we wish as long as we can
efficiently handle the matrices involved in the Newton-Raphson procedure. With
1500 modes it took on the order of 40 minutes to complete one iteration, and about
20 iterations were needed to reach a fixed point solution. One should also keep in
mind that the more complicated the &(x,0) in the initial guess, the longer it takes
for the iterative process to reach a fixed point solution.

It should be stressed that it is important to consider a significantly large number
of () in order to properly resolve the singularities in the surface displacements, curl
and divergence, since the last third of the numerically determined coefficients have to

be discarded due to “tainting.” It appears that Parker and Talbot also encountered
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Figure 3.21: The horizontal displacement £(z,0) of the first Parker-Talbot solution plot-
ted using 12 Fourier modes.
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Figure 3.22: The horizontal displacement £(z,0) of the constant coeflicient profile we
used as an initial guess to generate a solution corresponding to the one in Figure 3.21.
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Figure 3.23: Comparison of the horizontal displacements £(z,0) of the first Parker solu-
tion to the @ system — and the corresponding constant coefficient profile we used as an
initial guess in our iterative scheme - - - .
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Figure 3.24: The horizontal displacement £(z,0) of the second Parker-Talbot numerical
solution plotted using 12 Fourier modes.

Figure 3.25: The horizontal displacement &(x,0) of the constant coefficient profile we
used as an initial guess to generate a solution corresponding to the one in Figure 3.24.

Figure 3.26: Comparison of the horizontal displacements ¢(z,0) of the second Parker
solution to the Q system — and the corresponding constant coeflicient profile we used as
an initial guess in our iterative scheme - - - .
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the effect of “tainting,” since they did not seem to include in their final analysis
and plots the last 8 coefficients of either one of their 20-mode numerical solutions.
This is why the plots of the Parker and Talbot £(z, 0) profiles, given in Figures 3.23
and 3.26, are generated using only 12 Fourier modes. From these plots one could
infer that the surface singularities in the £(z,0) are best approximated by corners.
However, when a larger number of Fourier modes is considered, it becomes clear that
the singularities in the horizontal displacement are in fact cusps. One should also
keep in mind that the curl and divergence corresponding to these solutions are even
more singular, and they require on the order of at least 500 modes to be reasonably
well-resolved.

We propose that in the case of ¢ = ¢g there exists an infinite family of solutions
to the @ system which is directly related to the infinite family of exact solutions to
the constant coefficient () system. For every solution to the CQ system which we
use as an initial guess in our numerical procedure, there exists a numerical solution
to the truncated @) system. In fact, the two families of solutions appear to be related
according to a simple rule of correspondence - the symmetric corners of the constant
coefficient system solutions become symmetric cusps in the solutions to the trun-
cated @) system. It is even more intriguing that this same type of transition is also
observed when ¢ # cg, only that there we have non-symmetric corners transitioning

into non-symmetric cusps.

Solution 4

To illustrate our argument for the existence of an infinite family of numerical solu-
tions to the real @) system, on Figures 3.27 through 3.30 we show the displacement
profiles, curl, and divergence of one more representative of the proposed family, cho-
sen to have a more complicated surface structure. Once again, the general shape
of this solution 4 is predetermined by the constant coefficient solution used as an

initial guess to generate it. In this case, the initial guess for £(z, 0) is characterized



64

1.5

0.5

AN
v

. &(x0)

o

8] o
Trl<l1ll‘[|1—ﬁl|—rﬁ1_r—|’r|xll

'
—_

—
(8]
olll!lllfllﬁl

s o vy b e b e e oy g by
1 2 3 4 5 6
X

‘
N

Figure 3.27: The horizontal displacement £(z, 0) of solution 4 to the () system with
C = CR.
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Figure 3.28: The vertical displacement n(z,0) of solution 4 to the () system with
C = CR.
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Figure 3.29: The divergence D(z,0) of solution 4 to the @ system with ¢ = cg.

|

[e2]
o

[o23
[=]

Eo
<

n
[«]

A
Y Y h

C(x,0)

S
o

'
[22] n
(=) [«

Oﬁlxﬁlllﬁll—rllﬁ—rllvul WLEE BRERS LR LEaRS nast

&
&)

L b e v e by by
1 2 3 4 5 6
X

Figure 3.30: The curl C(z,0) of solution 4 to the @ system with ¢ = cp.
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by 3 positive and 3 negative corners of varying amplitudes. Its Fourier coefficients
are given by the equation

_ sin® 1 —2cos1.35k

= 1 <k< . 2
k K 1 2cosizs L SHk=3000 (3.23)

We observed that whenever the solution profiles have more surface singularities, the
numerical scheme takes longer to settle to a solution. Nonetheless, it is interesting
that for all of the numerical solutions presented here, including solution 4, the nu-
merical procedure always settles to a fixed point solution. For each of the discussed
numerical solutions, it took on the order of 20 iterations or less to reach a fixed
point of the iteration with 1500 Fourier modes. This seems to indicate that the
constant coefficient profiles represent an extremely good choice of initial guesses for
the proposed numerical scheme.

The plots of the curl and the divergence of all presented numerical solutions to
the () system indicate that those quantities are infinite at the singular points of the
numerical solution. This behavior is expected since the curl and the divergence are
linear combinations of elastic displacement derivatives, which become infinite at the

cusps.

3.1.3 Numerical Solutions to the Ad Hoc Q System with
C =CRr

The ad hoc system was proposed by G.B. Whitham as an approximation to the
real ) system which retains the important features of the @ system coefficients.
The ad hoc equations have a simpler structure than the actual @ equations, and
we believe that an exact solution to the ad hoc system can be obtained. Since the
structure of the ad hoc system resembles that of the real system very closely, the ad
hoc system solutions should in turn resemble the solutions to the real () equations.

Thus, our next step is to compare numerical solutions to the ad hoc @ system with
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the numerical solutions to the real ) system.

We use the Newton-Raphson iterative scheme to compute a solution to the ad
hoc system (2.85), employing the horizontal displacement in (3.20) as an initial
guess. The generated numerical solution satisfies the truncated ad hoc Q) equations
to the order of 1072, Plots of the corresponding surface displacements, curl and
divergence are given in Figures 3.31 through 3.34.

By comparing these profiles to those of the numerical solution 1 to the real )
system generated with the same initial guess (3.20), we see that the two systems
have almost identical surface profiles. We can also directly compare the Fourier
coefficients of the two solutions, as is done in Table 3.3. The corresponding Q)
agree on the order of 1073 to 1072 which demonstrates that the ad hoc system is
indeed a very close approximation to the actual @ system. The ad hoc system,
however, does not include the p and s scalings, and that renders it more amenable
to analysis.

In a similar manner, we can generate numerical solutions to the ad hoc ) system
which correspond to each of the solutions 2, 3, and 4 of the real ) system. In each
case, we would have to start the numerical procedure with the exact same initial
guess as the one used in generating the respective solution to the real ) system.
The resulting numerical solutions to the real and the ad hoc systems appear to be
very closely related.

This leads us to believe that if analytic solutions to the ad hoc system are
determined in the future, they will represent very good approximations for the
corresponding Rayleigh wave solutions. The numerical study presented in the next
section indicates that the real and the ad hoc @) systems exhibit very similar singular
behavior on the surface of the elastic half-space. Consequently, any analytical results
concerning the nature of the surface singularities of the ad hoc system will have direct

implications for the nature of the Rayleigh wave solution singularities.
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Figure 3.31: The horizontal displacement £(z, 0) of solution 1 to the ad hoc @ system
with ¢ = cg.
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Figure 3.32: The vertical displacement n(z,0) of solution 1 to the ad hoc @ system
with ¢ = cp.
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Figure 3.33: The divergence D(z,0) of solution 1 to the ad hoc @ system with
C = CRp.
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Figure 3.34: The curl C(z,0) of solution 1 to the ad hoc @ system with ¢ = cp.
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]Q;c [ Qy ad hoﬂ Qr realJ
O 1.00000000 | 1.00000000
Qs -0.50726126 | -0.50183716
Qs 0.36249473 | 0.35923333
Q7 | -0.28994445 | -0.28752456
Qo 0.24529041 | 0.24331014
Q| -0.21459481 | -0.21289011
[ Qs | 0.13942381 ] 0.13833697

[Qs1 [ -0.07709946 | -0.07649897

[Qi00 | -0.03097041 [ -0.03072239

[Qs01 | 0.01662488 | 0.01648353

[ Qyg9 [ -0.01052831 [ -0.01044834

|
J
[ Qior | 0.04881565 [ 0.04843306 |
J
|
J
|

[ Qus01 | 0.00828683 | 0.00825419

Q1995 | -0.00745505 | -0.00746426
Qro97 | 0.00745392 | 0.00746327
Q1999 | -0.00745280 | -0.00746229
[ Qus01 | 0.00807780 | 0.00809829
Q2001 | -0.07673814 | -0.07419873
Qaovs | 0.09174870 | 0.08863365
Qaaos | -0.11742275 | -0.11353972
(Jaoo7 | 0.17485050 | 0.16983723
Q2999 | -0.53050990 | -0.50969231

Table 3.3: A comparison of the numerical solutions to the ad hoc and the real
systems with ¢ = cg, generated using the numerical procedure I with 1500 Fourier

modes.

3.1.4 Singularities in the Real and Ad Hoc Solutions with
C = Cr

The special form of the horizontal displacements £(z,0) of the numerical solutions
to both the real and the ad hoc () systems scems to suggest a power law type of
behavior near the singularities. This hypothesis can be tested by checking whether
the numerically determined Fourier coeflicients )y display a power law behavior.

Without loss of generality, we can take the singularity to be located at x = 7/2, as
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is the case with our solution 1 profiles. We assume that the local behavior has the

following form:

£(z,0) ~Ejz —7/2], o — g (3.24)

The leading order terms of the Fourier coefficients @, corresponding to this surface
horizontal displacement are

~ @ sin &%
The factors gand @ in formulas (3.24) and (3.25) are appropriately chosen constants
and 0 < A < 1.

The Equation Fit for A

Although (3.25) is posed initially as an asymptotic formula strictly as k — 00, it
fits remarkably well for all but the first few ; and the first few equations. In fact,
one way to proceed is to substitute (3.25) for all £ into each equation and determine
the A which makes (3.25) exact for that particular equation. This parameter study
for A will be referred to as the individual equation fit.

We tested our hypothesis on equations number 2 through 10, 20, 50, 100, 1000,
and 1500 using various numbers of Fourier modes of the form (3.25) with 0 < A < 1.
A selection of the numerically determined values for A providing the best fit to the
respective equations of the real and the ad hoc systems are given in Table 3.4. The
performed parameter study indicates that the appropriate value for A lies in the
range of (0.63,2/3) for both the real and the ad hoc systems.

Interestingly, the A, for small £ are not drastically different from the ), for large
k, with the maximum registered difference between them being about 0.03. Indeed,
the first several )\ increase very quickly with k, and as early as & = 10 the value

for Ay is greater than 0.66. The remaining values of the \; remain within a range
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equation | A real | A ad hoc
2 0.6365 | 0.6299
1 0.6503 | 0.6491
6 0.6560 | 0.6558
8 0.6590 | 0.6590
10 0.6608 | 0.6608
| 20 [ 0.6642 | 0.6642
[ 50 [ 0.6659 | 0.6660

[ 1000 ][ 0.6664 | 0.6664
[1500 ] 0.6662 | 0.6662

1
[100 ] 0.6664 | 0.6664 J’
|
!

Table 3.4: Values for A generated using the individual equation fit and a profile with
100000 coefficients of the form (3.25).

which is very close to 0.66. This seems to indicate that there exists a unique value
for A, that is close to 0.66, which, when substituted in (3.25), approximates the Q)
of the steady profile Rayleigh waves with a high level of accuracy.

We also experimented by varying the number of coefficients @k employed in the
individual equation fit for A\. This helped us verify that as the number of coefficients
is increased, the respective value of A corresponding to each of the studied equations

approaches 2/3.

The @, Fit for A

A different way to test whether the numerically determined coefficients Q) have the

form (3.25) is to compute the expression

log | Qx|
Ap = — 3.26
i logk ~’ (3:26)
using our numerically determined Q. The corresponding values for A are given in
Table 3.5. This test produces (0.62,2/3) as an approximate range for the appropriate

values of A\. This range is indeed quite close to the A range generated before by the
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Ap real

Ar ad hoc

0.62759137

0.61780586

0.63611224

0.63049673

0.64054705

0.63624002

} [ 0.64971200 | 0.64714155 |
[51  ]0.65376196 | 0.65177330 |
[ 101 ]0.65601162 | 0.65430672 |
[199 [0.65795638 | 0.65643737 |
| | 0.66039150 | 0.65901790 |
| 751 ]0.66091830 | 0.65964690 |
1999 ]0.66041317 | 0.65930924 |
[ 1251 [ 0.65879070 | 0.65793523 |
[ 1501 ] 0.65588025 | 0.65534075 |
[ 1751 | 0.65130209 | 0.65112184 |

1997 | 0.64449315 | 0.64465804
1999 | 0.64442544 | 0.64459288

k
3
5
7
21
ol
1
199
501
7

Table 3.5: Values for Ay determined using formula (3.26) with the numerically de-
termined coefficients corresponding to solutions 1 of the real and ad hoc @) systems
with ¢ = cp.

In the case of solution 1 to the real () system, the Ay grow with k£ up to Az =
0.66091830, then they start to decrease with k. In the case of the corresponding
solution 1 to the ad hoc () system, the maximum is reached at Agg; = 0.65965502.
The subsequant decrease is due to “tainting” from the finite cutoff. Later, we shall
demonstrate that certain modifications in the numerical procedure result in much
more uniform values for Ag.

We also determined a single value for A which when used in (3.25) produces
the best overall fit to all of the numerically computed coefficients @),. Comparing
the first one thousand @ of the real system solution 1 to the proposed @k, we

determined that A = 0.655 gives the the best overall fit. This is not surprising since

0.655 can be considered as an average of the A\ given in Table 3.5. In fact, all of the
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k Qy numerical | Qg, A = 0.655 | Q, A = 2/3
1 1.00000000 1.00000000 | 1.00000000
3 -0.50183716 -0.48695135 | -0.48074986
) 0.35923333 0.34847742 | 0.34199519
7 -0.28752456 -0.27955083 | -0.27327588
9 0.24331014 0.23712162 | 0.23112042
11 -0.21289011 -0.20791594 | -0.20218001
21 0.13833697 0.13612765 | 0.13137734
ol -0.07649897 -0.07612749 | -0.07271431
101 0.04843306 0.04865971 | 0.04610901
199 -0.03072239 -0.03120694 | -0.02933805
001 0.01648353 0.01704536 | 0.01585288
999 -0.01044834 -0.01084637 | -0.01000667
1501 0.00825419 0.00830751 | 0.00762803
1995 -0.00746426 -0.00689505 | -0.00631013
1997 0.00746327 0.00689053 | 0.00630591
1999 -0.00746229 -0.00688601 | -0.00630171

Table 3.6: A comparison of the numerically determined @), of solution 1 to the real
@ system with ¢ = ¢p and the approximate Q; generated using formula (3.25) with
A = 0.655 and A = 2/3.

A-fits examined in this section are just different ways to estimate the same fractional
power A. It is reassuring that they agree to a significant degree.

In Table 3.6 we provide a comparison of the actual Q) to their proposed ap-
proximations Q generated using formula (3.25) with A = 0.655. To illustrate the
differences of using various choices for A, we have also included the @k computed
with A = 2/3. Although there are strong indications that the actual asymptotic
value for A might in fact be 2/3, the numerically determined Q) are better approx-
imated overall using A = 0.655.

The approximate formula for @k in (3.25) corresponds to a horizontal displace-
ment &(z,0) with just two fractional singularities in the range 0 < z < 27, i.e., the
simplest possible profile expected to fit the simplest numerically generated Rayleigh
wave solution. The above reasoning, however, appears to also be valid for more

complicated profiles, provided that the numerator of formula (3.25) is modified to



allow for the existence of additional surface singularities. It appears that the best-fit
values for A remain in the range of 0.6 < A < 2/3, no matter how complicated the

considered profiles are.

3.1.5 Modification: Numerical Method II with ¢ = cgr

In the previous section we presented empirical evidence that the higher order Fourier
coefficients of the solutions to the real and ad hoc @) systems can be approximated
by a power law dependence similar to the one in (3.25) with A in the range of
(0.63,2/3).

We now propose to employ the approximate form of the Fourier coefficients
in (3.25) as an initial guess for the numerical procedure applied to the truncated
version of the ) systems with ¢ = cg. In this manner we account for the special
structure of the Rayleigh wave solutions, as suggested by the numerical results
generated so far.

In addition, we will include in the modified computations twice as many modes
as we intend to solve for. The latter half of the @, will be fixed to the approximate
values for Qx given by formula (3.25) with A = 2/3. The motivation for this modified
approach is discussed in detail in Section 3.1.1 within the context of the C'() system.
The only difference between the modified method applied to the C'Q system and
the modified method for the real or ad hoc @) systems is the form assumed for the
higher order Fourier coefficients. While in the case of the C'QQ system we used the
exact formula for the ;, here we employ an approximate formula for the Fourier
coefficients Qy, such as the one given in (3.25).

We tested the modified method on solution 1 to the real ) system with ¢ = cpg.
A comparison of the ), coefficients computed using the original and the modified
numerical procedures is given in Table 3.7. It should be noted that the more precise
initial guess, employed in the modified method, reduced the number of iterations

needed to reach a fixed point.
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[ Qx I (Qx numerical I [ () numerical Iﬂ
Q. 1.00000000 1.00000000
Qs -0.50183716 -0.50186315
Qs 0.35923333 0.35927069
Q7 -0.28752456 -0.28756959
Qo 0.24331014 0.24336114
Qun -0.21289011 -0.21294605 |
[@x | 013833697 |  0.13841054 |
[Qsi | -0.07649897 |  -0.07660302 |
[Qu1 | 0.04843306 |  0.04856754 |
[Qio | -0.03072239 [  -0.03089191 |
[@sr | 0.01648353 [  0.01668075 |
[Qoo | -0.01044834 |  -0.01056441 |
| Qison | 0.00825419 | 0.00817068 ]
Quovs | -0.00746426 -0.00700176
Q1997 0.00746327 0.00699857
Qo | -0.00746229 -0.00699539
[ Qas01 [ 0.00809829 [  0.00661144
Q2991 -0.07419873 -0.02377340
Q2993 0.08868365 0.02753548
Q2995 -0.11353972 -0.03398364
Qa997 0.16983723 0.04857040
Q2999 -0.50969231 -0.13651528

Table 3.7: A comparison of the numerical solutions to the real Q) system with ¢ = cp
generated using the original (I) and the modified (IT) numerical methods.

More importantly, the effect of “tainting” is significantly reduced. This can
be observed by comparing the higher order )i, documented in Table 3.7. The
reduction of “tainting” also becomes evident when the ), from the modified method
are substituted into formula (3.26). A selection of the relevant values for ), is given
in Table 3.8. We observe that the modified ), are more uniformly distributed, and
the higher order ones appear to be considerably less affected by “tainting” than the
A determined using the results of the original numerical method.

These results lead us to believe that the modified version of the numerical scheme
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k Ax numerical [ | Ay numerical I1
3 0.62759137 0.62754423

5 0.63611224 0.63604763

7 0.64054705 0.64046657 |
(21 | 0.64971200 | 0.64953737 |
|51 | 0.65376196 [ 0.65341626 |
101 | 0.65601162 | 0.65541081 |
(199 | 0.65795638 [ 0.65691680 |
501 | 0.66039150 | 0.65847827 |
| 751 | 0.66091830 | 0.65887299 |
1999 | 0.66041317 | 0.65881365 |
| 1251 | 0.65879070 [ 0.65830199 |
| 1501 | 0.65588025 | 0.65727064 |
| 1751 | 0.65130209 | 0.65556525 |
1997 | 0.64449315 0.65295267

1999 | 0.64442544 0.65292642 |

Table 3.8: Values for Ay computed using (3.26) and the Fourier coefficients @y
of solution 1 to the real ) system. The values used for the @, coefficients were
determined via the original (I) and the modified (I) numerical methods.

is an efficient approach to generating numerical solutions to the truncated versions

of the infinite Q) systems with ¢ = cp.
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3.2 Computational Treatment of the Q Systems
with ¢ # cr

The system (2.78) for the Fourier coefficients of a steady-profile periodic Rayleigh
wave with a velocity shift is solved numerically following a procedure similar to the
one outlined in the case of ¢ = cp.

The infinite system (2.78) is truncated to a finite number of equations with a
finite number of unknowns. The resulting truncated system is solved numerically
using the Newton-Raphson method. The only difference from the ¢ = cy case is the
choice of initial guess for the iterative procedure. This time the initial guesses are so-
lutions to the constant coeflicient @) system with ¢ # cg. As discussed in Chapter 2,
the C'Q-profiles corresponding to ¢ # cg are characterized by horizontal displace-
ments with non-symmetric finite-angle singularities. The slopes on either side of
the £(z,0) singularities are related through the “shock-like” condition determined

by G.B. Whitham.

3.2.1 Numerical Solutions to the CQ System with ¢ # cg

Just as we did in the case of ¢ = cg, we shall start off by testing the accuracy of the

numerical method on the truncated version of the constant coefficient system

3
—

pOt

QiQni+ Y QuQnik=Qn, n=1,...,00 (3.27)
k=1

>
Il

1

Once again, we want to estimate how strong the cffect of “tainting” is, and how
well the numerically determined solutions reproduce the exact solutions to the C'@)

system.
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Solution 1

We shall consider the simplest possible exact solution to the C'@Q) system for ¢ # cp

with Fourier coefficients of the following form:

9 sinkb
St E=1....

=5 s 5 , , 00. (3.28)

Qk

The corresponding surface horizontal displacement £(z,0) has one non-symmetric
positive corner at © = bm, and a second non-symmetric negative corner at r =
(2 — b)w. A choice of b = /2 would result in the corners becoming symmetric,
which is not allowed for the solutions of the CQ system with ¢ # cg. Therefore, the
value b = 7/2 is not acceptable, which is highlighted by the fact that formula (3.28)
blows up when b = 7/2.

We choose to consider the case b = 0.87 since it is relevant to our later analysis.
Due to this choice of b, the exact value of every fifth coefficient @)y is equal to
zero. We use 1500 Fourier modes of the form (3.28) to start the iterative procedure.
Six iterations are needed before a fixed point solution is reached. The numerically
determined coefficients satisfy the truncated equations to the order of 10712,

The surface profiles of numerical solution 1 to the CQ system (3.27) are shown in
Figures 3.35 through 3.38. If superimposed, the surface profiles of the numerically
generated solution and those of the corresponding exact solution to the C'Q) system
are once again impossible to distinguish.

To examine the effect of “tainting” in this case, we compare the values of the
computed and the exact Fourier coefficients (Jx, as given in Table 3.9. This com-
parison reveals that “tainting” is once again present. The highest-order computed
coefficient Q1599 is equal to 0.01518621 — not a very good approximation for the
exact value of Q1500 = 0. Moreover, in the exact solution, every coefficient of the
form Qsne1, m = 1,...,00 has a positive sign. The numerical solution, however,

has positive Qs,,11 only up to Qgse where m = 171. All numerically determined
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Figure 3.35: The horizontal displacement &(z,0) of solution 1 to the constant coef-
ficient @) system with ¢ # cg.
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Figure 3.36: The vertical displacement n(z, 0) of solution 1 to the constant coeflicient
Q) system with ¢ # cg.
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Figure 3.37: The divergence D(z,0) of solution 1 to the constant coefficient @
system with ¢ # cg.
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Figure 3.38: The curl C(z,0) of solution 1 to the constant coeflicient () system with

¢ # cR.
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’ Qr l Q. exact | (2x numerical 1 | @ numerical II—’
Q1 0.62365952 0.62247771 0.62336159
Q2 [-0.50455115 |  -0.50380724 -0.50436936
Qs 0.33636743 0.33623390 0.33634256
Qi | -0.15591488 |  -0.15635240 -0.15603324
Qs 0.00000000 0.00077615 0.00019959
Qs 0.10394325 0.10316523 0.10374904
Q7 | -0.14415747 ]  -0.14369329 -0.14404764
Qs 0.12613779 0.12616710 0.12615493
Qo |-0.06929550 |  -0.06979977 -0.06943121
Qw0 | 0.00000000 0.00077571 0.00019964
Q11| 0.05669632 0.05595517 0.05651155

| @2 | 0.02969807 [  0.02897826 | 0.02951874 |

| @s1 [ 0.02011804 |  0.01940605 | 0.01994070 |
| Qu | 0.01521120 |  0.01450340 | 0.01503493 |
| @s1 | 0.01222862]  0.01152349 [  0.01205304 |
Qo | 0.00000000 0.00076896 0.00020095
Qi | 0.00617484 0.00547608 0.00600104
| @201 [ 0.00310278 ] 0.00240866 | 0.00293067 |
| @301 [ 0.00207196 |  0.00137930 | 0.00190082 |

[ Qa1 | 0.00155526 ] 0.00086200 | 0.00138453 |

[@s0r | 0.00124483]  0.00054894 | 0.00107392 |

| @751 | 0.00083043]  0.00011735 | 0.00065564 |
Qoes | 0.00101112 0.00116181 0.00116283
Qogy | -0.00062428 | -0.00124197 -0.00089198
Q1000 | 0.00000000 0.00084891 0.00028142

| Quoor | 0.00062304 [ -0.00013270 | 0.00043560 |
| Quio1 | 0.00056645 [ -0.00022098 | 0.00036872 |
| Qro01 | 0.00051928 [ -0.00031762 [ 0.00030468 |
| Quz01 [ 0.00047937 [ -0.00044487 | 0.00023350 |
| Qui1 | 0.00044515 [ -0.00068396 [ 0.00012191 |
Q498 | 0.00067363 0.00735094 0.00371365
Q1499 | -0.00041605 | -0.01230829 -0.00552702
Q1500 | 0.00000000 0.01518621 0.00632020

Table 3.9: A comparison of the exact coefficients of solution 1 to the CQ system
with ¢ # cg with the coeflicients determined via the original (I) and the modified
(IT) numerical methods.
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@5m+1 with m > 172 are negative. Thus, the numerically determined values for the
sm+1, m > 172 are not just inaccurate in value, they also carry the wrong sign.

As in the case of ¢ = cg, we modify the numerical procedure so that the exact
form for the higher-order Fourier coefficients is used in computing the lower-order
Q. Once again, we employ twice as many Fourier coefficients as we solve for, and
the second half of the considered @ is fixed to the exact values given by the initial
guess (3.28). We include a portion of the resulting numerical solution in the third
column of Table 3.9.

By comparing the ), computed with the two numerical approaches to the exact
values for the Qx, we observe that the modified results improve the original results by
an order of accuracy. Also, the effect of “tainting” is greatly diminished. The earliest
change in sign in the (Js,,.1 coefficients computed using the modified approach
occurs only after (J451. Such a change does not affect any of the analysis performed
using the first two-thirds of the Q. The higher-order Q; produced with the modified
scheme seem to approximate the exact values for the Fourier coefficients to a much

greater degree than the original Q.

3.2.2 Numerical Solutions to the Real Q System with c # cgr

We begin the study of the real ) equations for ¢ # cg and k = 1,

-1

3

o QeQnt + Y B QuQnik = Qn, n=1,... 00, (3.29)
k=1

k=1

by using our numerical procedure to reproduce the two solutions originally deter-

mined by Parker and Talbot in {16].

Solutions 1 and 2

Plots of the horizontal displacement profiles of the Parker-Talbot numerical solutions

are given in Figures 1.3 and 1.4. Our solution profiles for &(z,0) are shown in
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Figures 3.39 and 3.43. Notice the main change is in the cusped peaks replacing what
looked like corners in Figures 1.3 and 1.4. The other figures in 3.39 through 3.46
show the related quantities n(z,0), C(x,0), D(z,0).

As in the case of ¢ = cp, in order to reproduce the Parker-Talbot solutions
for ¢ # cp, we had to determine the appropriate initial guesses for our numerical

procedure. For solution 1 we used the initial guess given by

B 10 sin 0.8%k7

= —_— 1 < k <1500 .30
3r k ’ - ’ (3.30)

Qk

which is the same as (3.28) with b = 0.87. For solution 2 we employed the constant

coeflicient solution with

10 (sin 0.4k — sin 0.8k
g, = 10 (sin Z sin08k7) 1 _ < 1500. (3.31)
w

These initial guesses were generated by matching the Parker-Talbot horizontal dis-
placements given in Figures 1.3 and 1.4 to solutions of the constant coefficient sys-
tem (3.27) with similarly positioned singularities. The surface horizontal displace-
ment of solution 1 has two singularities: one at x = 0.87 and another at x = 1.27.
The respective £(x,0) of solution 2 has four singularities: at 0.47, 0.87, 1.27, and
1.67. In each case, the slopes of the initial guesses on either side of the singularities
have to be related through the “shock-like” condition noted earlier. The separation
of the surface singularities of the considered profiles also depends on the choice of
surface displacement slopes.

Our experience shows that in the case of ¢ # cg we need to be very careful
in the choice of initial guess, making sure that all requirements on the slopes and
the location of the singularities are taken into consideration. Any failure to use
the proper initial guess prevents the iterative procedure from converging. Once we
have chosen the correct initial guess, however, the numerical procedure takes less

iterations to reach a fixed point solution than was the case when ¢ = cg. We believe
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Figure 3.39: The horizontal displacement £(z, 0) of solution 1 to the @ system with
c % cg.
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Figure 3.40: The vertical displacement n(z,0) of solution 1 to the @ system with
¢ # cp.
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Figure 3.41: The divergence D(z,0) of solution 1 to the Q system with ¢ # cp.
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Figure 3.42: The curl C(z,0) of solution 1 to the @ system with ¢ # cp.
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Figure 3.43: The horizontal displacement &(z, 0) of solution 2 to the ) system with
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Figure 3.44: The vertical displacement n(x,0) of solution 2 to the ) system with
¢ # cg.
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Figure 3.45: The divergence D(z,0) of solution 2 to the @ system with ¢ # cg.
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Figure 3.46: The curl C(z,0) of solution 2 to the @ system with ¢ # cg.
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this increased sensitivity to the initial guess can be explained by the presence of the
linear term on the right-hand side of system (3.29).

The surface horizontal displacement singularities of our solutions 1 and 2 turn
out to be cusps, similar to the singularities in the case of the ¢ = cp system. This
finding is certainly not unexpected, and it reemphasizes the need to consider a
significantly large number of Fourier coefficients in order to properly resolve the
surface displacements and their derivatives. In [16], Parker and Talbot appear to
have used on the order of 20 Fourier modes to produce the &(x,0) plots given in
Figures 1.3 and 1.4. This number of modes is not enough to reproduce the cusps
in the surface horizontal displacement singularities, let alone the corresponding curl
and divergence. To resolve the surface profiles with a significantly higher degree
of accuracy, we used 1000 out of our 1500 numerically determined Q. The last
one-third of the computed coefficients was dropped in order to avoid “tainting.”

Parker and Talbot generated their two solutions for the ¢ # cp case using the
same numerical approach as the one described for ¢ = ¢g in Section 3.1.2. The only
difference is in the choice of initial guess. For ¢ # cg the initial guesses used by
Parker and Talbot represent exact solutions to the system (3.29) truncated to three
equations with three unknowns: ()1, (2, and Q3. Once again, the truncated system
is equivalent to a quadratic equation with two different solutions, which correspond
to the two numerical solutions of Parker and Talbot.

Our numerical approach entails the use of the constant coefficient system (3.27)
solutions as initial guesses for the iterative procedure. Once again, since there
is an infinite family of solutions to the C'Q system (3.27), we expect there to be
an infinite family of numerical solutions to the Rayleigh wave system (3.29). The
correspondence between the two sets of solutions is described by the development
of the anti-symmetric corners in the surface horizontal displacements of the CQ

solutions into cusps in the solutions of the actual () equations.
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Solution 3

To illustrate this point, and to show a typical new solution, we start with the initial

guess

10 (sin 0.2k7 — sin 0.4k7 + sin 0.8k7)
Qk - kT >

1 < k < 1500. (3.32)

The resulting solution profiles are given in Figures 3.47 through 3.50.

The structure of the surface horizontal displacement of this new solution is more
complicated than that of the previous two solutions. Remarkably, it only takes 9
iterations for the numerical procedure to produce this solution - almost twice as fast
as it would take for the method to converge when a comparably complicated initial
guess is used in the ¢ = cp case.

Just as expected, the surface horizontal displacement of the new solution 3 has
singularities which are cusps. The solution 3 profiles display very similar features
to those of numerical solutions 1 and 2. The most significant difference between
solutions 1, 2, and 3 is the number and location of their surface singularities.

This, along with the study of various other numerical solutions to system (3.29),
leads us to believe that the use of the constant coefficient initial guesses can poten-

tially result in a rich infinite family of Rayleigh wave solutions.

3.2.3 Numerical Solutions to the Ad Hoc Q System with
C # Cr

We now turn our attention to the ad hoc system

—

n—

AQiQni+ Y  AQkQnik =Qn, n=1,... 00, (3.33)

1 k=1

N |
o
Il

where A is taken to be the average of 2(s + 3p)/(p+ 3s) = 2.8961 and (p+ s)/s =
3.1548.
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| Qr ‘ @, ad hoc ‘ Qy real '
Q: | 0.26190516 | 0.26908696
Q. | -0.31555745 | -0.32396285
Qs | 0.25497382 | 0.26411294
Qs | -0.13541201 | -0.14249193
Qs | 0.00491311 | 0.00817393
Qs | 0.09661847 | 0.09723819
Q; | -0.14435361 | -0.14757356
Qs | 0.13307494 | 0.13700927
Qo | -0.07631449 | -0.07923769
Oy | 0.00009560 | 0.00100033
Qi1 | 0.06662186 | 0.06780628
[ Qs [ 0.04449095 [ 0.04557496 |
Qs | 0.03496546 | 0.03587782 |
[Qu | 0.02950271 | 0.03028911 |
[Qs | 0.02590571 | 0.02660036 |
Q100 | -0.00325934 | -0.00332602
Qi1 | 0.01761013 | 0.01807352
Qa1 | 0.01247304 | 0.01278559 |
[Qs01 | 0.01041466 | 0.01067008 |
[Quor | 0.00921917 | 0.00944749 |
[Qs01 | 0.00838334 [ 0.00859940 ]
[Qrs | 0.00693452 | 0.00715298 |
Qogs | 0.00371030 | 0.00378575
Q1000 | -0.00595099 | -0.00614716

[ Q1100 | -0.00613722 | -0.00635844 |

[ Q1200 | -0.00646967 | -0.00671598 |

[ Q300 [ -0.00719018 [ -0.00745988 |

[ Quaoo | -0.00935039 | -0.00963880 |

[ Qus00 | -0.23244752 [ -0.23468195 |

Table 3.10: A comparison of the numerical solutions to the ad hoc and the real @
systems with ¢ # cg generated using the numerical procedure I with 1500 Fourier
modes.
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We generate a numerical solution to the ad hoc system, which is to be compared
with the corresponding solution of the real @ system (3.29). We want to examine
whether the ad hoc system solutions are good approximations to the real system
solutions. In Section 3.1.3 we demonstrated that the ad hoc approximation works
very well in the case of ¢ = cg. Now we want to complete our study of the ad hoc
systems by examining the ¢ # cg case.

We employ 1500 Fourier coefficients of the form (3.28) as an initial guess for the
Newton-Raphson iterative procedure applied to the ad hoc system (3.33). Plots of
the resulting surface profiles are given in Figures 3.51 through 3.54. Comparing the
computed ad hoc solution with solution 1 of the real @ system, we observe that
on the surface of the elastic material the real and the ad hoc solution profiles are
impossible to distinguish.

A different way to estimate how close the two solutions are is to directly compare
their Fourier coefficients (Qx, as is done in Table 3.10. It can be seen that the
respective QQy agree up to an order of 1073 to 1072, which implies that the considered
numerical solutions are indeed quite close.

Based on the presented comparison, we can suggest 