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Science is built upon facts, as a house is built of stones;

but an accumulation of facts is no more a science

than a heap of stones is a house.

– Henri Poincaré
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Abstract

This thesis considers the problem of estimating a sparse signal from a few (possibly

noisy) linear measurements. In other words, we have

y = Ax+ z

where A is an m×n measurement matrix with more columns than rows, x is a sparse

signal to be estimated, z is a noise vector, and y is a vector of measurements. This

setup arises frequently in many problems ranging from MRI imaging to genomics to

compressed sensing.

We begin by relating our setup to an error correction problem over the reals,

where a received encoded message is corrupted by a few arbitrary errors, as well

as smaller dense errors. We show that under suitable conditions on the encoding

matrix and on the number of arbitrary errors, one is able to accurately recover the

message.

We next show that we are able to achieve oracle optimality for x, up to a log

factor and a factor of
√
s, when we require the matrix A to obey an incoherence

property. The incoherence property is novel in that it allows the coherence of A to

be as large as O(1/ log n) and still allows sparsities as large as O(m/ log n). This

is in contrast to other existing results involving coherence where the coherence can

only be as large as O(1/
√
m) to allow sparsities as large as O(

√
m). We also do

not make the common assumption that the matrix A obeys a restricted eigenvalue

condition.

We then show that we can recover a (non-sparse) signal from a few linear mea-

surements when the signal has an exactly sparse representation in an overcomplete

dictionary. We again only require that the dictionary obey an incoherence property.
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Finally, we introduce the method of `1 analysis and show that it is guaranteed to

give good recovery of a signal from a few measurements, when the signal can be well

represented in a dictionary. We require that the combined measurement/dictionary

matrix satisfies a uniform uncertainty principle and we compare our results with the

more standard `1 synthesis approach.

All our methods involve solving an `1 minimization program which can be written

as either a linear program or a second-order cone program, and the well-established

machinery of convex optimization used to solve it rapidly.
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Chapter 1

Introduction

As scientists and engineers, we are often faced with large, complicated systems.

These systems only become tractable if we are able to distill out a few key com-

ponents that characterize the entire system. Thus sparsity, the notion that only a

few components are important out of many, often determines whether a system can

be efficiently modeled or is hopelessly complex. In our attempts to understand the

world around us we are always trying to simplify and reduce to essentials. In other

words, we are always on the lookout for sparsity.

Sparsity is thus one of the themes of this thesis. More specifically, we will be

concerned with sparsity as it relates to signal processing and statistics. We begin

with a discussion of how sparsity is important in signal compression, approximation

and estimation.

1.1 Sparsity and compression

As technology improves, the demands of digital data storage and transmission in-

crease. However, because there are only finite resources for storage and transmission,

we would like to store and transmit only the data essentials. In other words, we

would like to somehow take digital signals and compress them. This is possible

because signals in general contain redundant information; the actual content of a

signal is often much less than the ambient size of the signal.

For example, if one could find an orthobasis in which many signals of interest

are almost sparse, then one could compress them by setting small entries to zero.

This strategy underlies transform coders, where a signal is transformed into a basis
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where it has quickly decaying coefficients, the small coefficients are set to zero, and

only the large coefficients are recorded.

1.1.1 A familiar example: JPEG compression of digital images

To be more concrete, photos taken with a digital camera are usually stored as JPEG

files on the memory card. Simplifying the inner workings of a digital camera greatly,

when a photo is taken a large array of numbers is generated, corresponding to the

pixels of the image. (Actually, three arrays of numbers are generated, corresponding

usually to YCbCR colorspace, but we neglect these details.) Almost none of these

numbers are close to zero because for natural images the light intensity at each pixel

is usually not small (or a small variation from an average intensity).

The image is then divided into 8×8 blocks of pixels and each block is transformed

by a discrete cosine transformation (DCT)—an orthonormal transform closely re-

lated to the Fourier transform. For a one-dimensional signal of length N , it is given

by

X0 =

√
1
N

N−1∑
n=0

xn

Xk =

√
2
N

N−1∑
n=0

xn cos(π/N(n+ 1/2)k) k = 1, . . . , N − 1

where the Xj are the DCT coefficients and the xj are the signal entries. The two-

dimensional transform is just two 1-d transforms, one along each dimension.

The transformed version of the image has only a few large coefficients, and only

the largest coefficients are stored on the camera’s memory card. See Figure 1.1

for a grayscale image and its block DCT transform. (We note that what we have

stated here is is not a strictly correct. The coefficients first undergo quantization

and then entropy encoding before being stored. In the quantization stage, the dif-

ferent frequencies of the DCT coefficients are divided by different constants and

then rounded. The constants are larger for the high frequency components because

the human eye is not as sensitive to high frequency brightness variation. This step

causes many of the high frequency coefficients, which are in general smaller than the

low frequency components anyway, to be rounded to zero, and is where the compres-
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(a) Original Boats image (b) Block DCT transform of Boats

(c) Reconstruction from 10% of block DCT
coefficients

(d) Reconstruction from 4% of block DCT
coefficients

Figure 1.1. 1.1a shows the standard test image Boats [2]. 1.1b shows the block
DCT transform of Boats, where dark blue signifies small coefficients and lighter red
and yellow signifies larger coefficients. Clearly most of the coefficients are small. 1.1c
is a reconstruction of Boats from only the largest 10% of the block DCT coefficients.
1.1d is the reconstruction of Boats from only the largest 4% of the block DCT
coefficients. At this compression blocky artifacts become apparent, although the
image is still recognizable.
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Figure 1.2. Block DCT coefficients of the Boats image sorted by magnitude. Note
that almost all of the coefficients are very small, while relatively few are significant.

sion occurs. The higher the desired compression, the larger the constants, causing

more and more coefficients to be rounded to zero. For a more complete description

of the JPEG standard including entropy encoding, which we have neglected entirely

here, see [91].)

The amount of savings from the compression can be seen in the difference in file

sizes from an image stored in RAW format (no compression) and JPEG format. To

view the photo on your computer, the inverse process is applied. JPEG is a lossy

form of compression, but if the coefficients that are set to zero are very small there

is not too much visual loss of quality.

We mention this example of the digital camera not only because it highlights

the importance of sparsity in compression, but also because it introduces another

theme of this thesis, namely that of fast algorithms. There exist algorithms for

rapidly applying the DCT that are only O(n log n), while matrix-vector multiplica-

tion is ordinarily an O(n2) operation. In the specific case of JPEG compression,

in multiplying each 64 pixel image block by a 64 × 64 matrix, O(n log n) versus

O(n2) makes little difference (and depending on what the constants are and how

the fast algorithm is implemented, the fast algorithm could actually be slower than

the standard method of matrix-vector multiplication for this small of n), but later

we will encounter scenarios where having a computationally reasonable approach is

critical.
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1.1.2 A second example: the unit step function

However, while the discrete cosine basis seems to do a good job of sparsifying dig-

ital natural images, the story does not stop there. For example, consider the step

function depicted in Figure 1.3a. The DCT coefficients of this signal are plotted in

Figure 1.3b and in Figure 1.3c we show the coefficients of a Haar transformation

of the signal. The Haar transform takes neighboring signal values and computes

their averages and differences. The differences are recorded and the procedure is

repeated on the averages. The differences of the averages are recorded and the pro-

cedure is again repeated. Eventually, one is left with the global signal average and

the differences of the signal with the average signal computed at different scales.

The transform is invertible.

Intuitively, recording the differences of neighboring signal values is a reasonable

approach because usually adjacent values show strong correlations—for typical sig-

nals, only at a few locations are there large jumps. This is certainly the case for

our step function, and in fact its Haar transform contains only eight nonzero coef-

ficients. In contrast, many of the step function DCT coefficients are nonzero. In

Figure 1.3d we show the reconstruction of the step function from its eight largest

DCT coefficients. The reconstruction from the eight largest Haar coefficients is, of

course, exact.

To be better able to quantify this sparsifying property of the Haar transform,

we turn to the language of approximation theory.

1.2 Sparsity and approximation

In order to make precise our observations about the DCT and Haar transforms, we

first introduce some mathematical formalism. Let {ψi}i=1,2,... be the elements of an

orthonormal basis Ψ of a Hilbert space H. Then we can write, for any f ∈ H,

f =
∑
i

〈f, ψi〉ψi.

Let IM ⊂ {1, 2, ...} be a fixed set of size M and fM be the orthogonal projection
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(c) Haar transform coefficients
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(d) Reconstruction of signal from the eight largest
DCT coefficients.

Figure 1.3. 1.3a shows a unit step function with a jump at x = 2/3. 1.3b shows
the DCT coefficents of the signal. 1.3c shows the Haar coefficients; note that all but
eight are exactly zero. 1.3d shows the reconstruction of the signal from the eight
largest DCT coefficients. Because there are only eight non-zero Haar transform
coefficients, reconstruction from the eight largest Haar coefficients is exact.
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of f over the space generated by {ψi}i∈IM . This gives

fM =
∑
i∈IM

〈f, ψi〉ψi,

and our approximation error measured in the L2 metric is

‖f − fM‖2L2 =
∑
i/∈IM

|〈f, ψi〉|2.

Thus, if a signal concentrates most of its energy in the space spanned by the {ψi}i∈IM
and |〈f, ψi〉| decays quickly outside of IM , the approximation will be good. This is

a linear approximation because IM is fixed in advance.

It is possible to do better if instead a nonlinear approximation is made by letting

IM be the set that contains the M biggest coefficients of f in the basis Ψ. Then fM

is what one has by transforming f , setting all but the M biggest terms to zero and

transforming back. This is typically what is done in compression schemes. If the

coefficients of a signal in an orthobasis decay quickly then fM will approximate f

well. If the reordered coefficients of a class of signals decay faster in one basis than

the coefficients in another basis, we expect that the first basis will provide better

compression.

1.2.1 The step function example revisited

We return now to our example of a step function. To examine the coefficient decay

we will consider the continuous step function defined on the unit interval as

f(t) =


0 0 ≤ t < 2

3

1 2
3 ≤ t < 1.

For simplicity, instead of considering sinusoids we will take the Fourier basis of

complex exponentials as our orthonormal basis of L2[0, 1],

ψk(t) = e−i2πkt, k ∈ Z.
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Thus we have

〈f, ψk〉 =
∫ 1

0
f(t)ei2πktdt

=
∫ 1

2/3
ei2πktdt

=
1

2πik
(1− ei4πk/3)

and

|〈f, ψk〉|2 =


1/3 k = 0

1
2π2k2

(
1− cos

(
4πk
3

))
k 6= 0.

Keeping the M = 2n+ 1 lowest frequencies in the Fourier basis (which corresponds

to keeping |k| ≤ n) gives a linear approximation error of

‖f − fM‖2L2 =
∑
|k|>n

1
2π2k2

(
1− cos

(
4πk
3

))
≤
∑
|k|>n

1
π2k2

≤ 2
π2n

.

Thus

‖f − fM‖2L2 = O(M−1).

Now we turn to calculating the approximation error in the Haar basis. The

orthonormal Haar basis for L2[0, 1] is [56]


ψj,n(t) = 2j/2ψ

(
t−2−jn

2−j

)
j ≥ 0, 0 ≤ n < 2j

φ(t) = 1 0 ≤ t ≤ 1

where

ψ(t) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 else.

The φ(t) element of the Haar basis is rather special, and we must include it only
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Figure 1.4. Haar basis elements at scales j = 0, 1, 2. Note that each wavelet has
zero average and compact support, the width of which depends on j. The height
also varies with j to ensure each element has unit norm.

because we want a basis of the interval [0, 1]. If we wanted a basis of the real line,

for example, we would not need it. The important things to note about the basis

elements ψj,n(t) are that each ψj,n is nonzero only in t ∈ [n2−j , (n+ 1)2−j ] and has

zero average. See Figure 1.4 for depictions of some elements of the Haar basis at

different j, or scales, and n, or translations.

We now calculate the inner products of our step function f(t) with the elements

of the Haar basis. We have 〈φ(t), f(t)〉 = 1/3. To calculate the inner products of

f(t) with the ψj,n(t) basis elements, we notice that for each j, only one n = n′ will

have a nonzero coefficient, because only one n will have a support that overlaps

with the discontinuity of f(t). The other inner products will be zero because on the

support of the other basis elements, f(t) will be constant, and the average of each

Haar basis element ψj,n is zero. The nonzero inner product will be bounded by

|〈ψj,n′(t), f(t)〉| ≤ (height of ψj,n′(t))×
1
2
(support of ψj,n′(t))

= 2j/2 · 1
2
· 2−j = 2−j/2−1,

which decays as j increases.

Thus if we keep the M terms consisting of 〈f, φ〉 and the M − 1 smallest j (for
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whatever n is nonzero) we have

‖f − fM‖2L2 =
∞∑

j=M−1

|〈ψj,n(t), f(t)〉|2

≤ 1
4

∞∑
j=M−1

2−j

which implies

‖f − fM‖2L2 = O(2−M ).

Thus we have shown that the approximation error in the Haar basis decays more

quickly than in the Fourier basis for our example step function.

1.2.2 The wavelet revolution

Our step function example is, of course, very contrived. The result that the approx-

imation error of the Haar basis decays more quickly than the Fourier basis would

only be of interest if it held for all signals in a given class and not just one particular

signal. What is somewhat amazing is that similar results do hold for more general

classes of functions and even more general transforms than the Haar. In fact, the

Haar transform is actually the simplest example of an orthonormal wavelet trans-

form, although Haar studied it in 1910 long before the term wavelet was coined. We

will not discuss wavelets in great detail here (this has been the topic of many other

Ph.D. theses) but we will mention that, like the Haar, wavelets consist of a function

of zero average, ψ(t), that is then scaled and translated. An excellent book on the

topic is [65]. We also recommend [81] for a good introduction to filter banks and

their relation to wavelets. (This relation connects our description of the discrete

Haar transform and the continuous version.)

Wavelets are important for precisely the property that they tend to sparsify

signals with discontinuities, while sinusoids, good at approximating uniformly reg-

ular functions, do not. Intuitively, this can be seen because smooth functions are

very similar to just a few low frequency sinusoids. However, because sinusoids have

support over the whole real line, each basis function will see any discontinuity in

the signal. As we saw in our example, sinusoid coefficients decay slowly around
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discontinuities. Wavelets, however, have a varying support that becomes more con-

centrated at finer scales. Because they have zero average, on the smooth parts of

the signal the fine scale wavelets give small coefficients (here the signal is almost

constant over the support of the fine scale wavelet) and only have large coefficients

at the discontinuities. Because they have concentrated support, only a few number

of wavelets at each scale will see a discontinuity.

More precisely, for f ∈ L2[0, 1], we say that the approximation error in the

Fourier basis obeys

‖f − fM‖2L2 = O(M−2s)

if and only if f ∈W s[0, 1] where W s[0, 1] is a Sobelev space [65]. The linear Fourier

approximation decays quickly if and only if f has a large regularity exponent in the

sense of Sobelev. Moreover, if f is discontinuous then f /∈ W s[0, 1] for any s > 1/2

and so the approximation error must decay more slowly than O(M−1). (Note that

we have only been discussing linear approximation error in the Fourier case; we have

been projecting onto the M lowest frequencies. It is possible that if one makes a

nonlinear approximation, i.e., projects onto the M largest coefficients, one could do

better.)

However, wavelet coefficients still decay quickly around discontinuities in one

dimension. Using a wavelet basis adapted to L2[0, 1] (so they behave nicely at the

boundaries) are compactly supported and are Cq with q vanishing moments, then

if f has a finite number of discontinuities on [0, 1] and is uniformly Lipschitz α < q

between the discontinuities, then the nonlinear approximation error obeys [65]

‖f − fM‖2L2 = O(M−2α).

Thus if α > 1/2 then the wavelet decay is faster than the Fourier decay. The more

regular f is between its discontinuities, the more dramatic the improvement over

Fourier is.

All of these results lead us to the slogan

“Wavelets sparsify piecewise smooth functions in one dimension.”
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It is precisely this sparsifying property of wavelets that make them so important.

Because discontinuities play such an important role in images (often changes

in intensity mark edges), the wavelet transform replaced the discrete cosine as the

transform used in JPEG-2000 [75], leading to better compression schemes.

1.2.3 The search for a better signal representation

Because of the great success of wavelets, there soon developed an entire industry of

people creating new representations with good coefficient decay for certain classes

of signals. (We mention here in particular that curvelets [20, 21] have optimal

coefficient decay for C1 curves in R2, which has important consequences in image

processing.)

However, it soon became clear that most signals of interest contain combinations

of features that are not expressed well in any one basis. By considering an over-

complete representation, known as a dictionary, one could hope to develop richer

and more flexible signal representations. Unfortunately, without a basis, signals no

longer have unique representations and so focus turned to finding the sparsest signal

representation in a given dictionary.

In this thesis we are almost always concerned with finite, discrete signals. In

other words, the signal f ∈ Rn is a vector and the dictionary Ψ ∈ Rn×N is a

matrix with more columns than rows. We would like to find the sparsest x such

that Ψx = f . Denoting ‖ · ‖`0 as the `0 quasi-norm, which counts the number of

nonzero elements in a vector (our notation is somewhat misleading as it is not an

actual norm), we write this as

min
x̃
‖x̃‖`0 such that Ψx̃ = f.

This can be viewed as trying to find the sparsest solution to an underdetermined

system of linear equations, computationally no easy task [35, 70]. To the best of our

knowledge it involves a combinatorial search—checking to see if the signal is one of

the elements/columns of the dictionary. If not, extracting all pairs of elements of

the dictionary and seeing if the signal lives in the subspace spanned by them. If not,

taking all triplets of elements of the dictionary, etc. We note that in the very least
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the signal will be able to be represented by n elements, as the dictionary is always

assumed to be full rank.

Alternatively, one might be satisfied with a sparse representation that is merely

close to f . In other words, we would like to find the sparsest x such that ‖Ψx−f‖`2
is small, i.e., find the solution to

min
x̃
‖x̃‖`0 such that ‖Ψx̃− f‖`2 < ε.

Solving either of these problems seems very difficult, and so we pause here to discuss

some closely related problems that arise in statistics.

1.3 Sparsity and statistical estimation

Not only is sparsity useful in compression and approximation, but also in statisti-

cal estimation and nonparametric regression. We have observations y ∈ Rn of an

unknown signal s ∈ Rn in noise. In other words, we have the setup

y = s+ z.

We assume that the noise is i.i.d. white noise, z ∼ N(0, σ2I). We would like

to estimate s. If nothing at all is known about s, a reasonable estimate of s, ŝ,

computed via maximum likelihood, is ŝ = y. This gives an expected mean squared

error of

E‖ŝ− s‖2`2 = nσ2.

However, if s is sparse, by which we mean most components of s are zero or close

to zero, this information can be used to construct an estimator that exploits this as

much as possible, possibly lowering the expected mean squared error.

More specifically, by using a thresholding rule, we can obtain an estimate that

is almost as good as what we would obtain with the assistance of an oracle. An

oracle, in the spirit of the Greeks, is something that provides information that is

not normally available.

Say the oracle tells us which coefficients of s are above the noise level, i.e.,
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the oracle gives the set J? ⊂ {1, . . . , n} such that |sj | > σ ∀j ∈ J?. Using this

information we obtain the ideal estimate ŝIdeal (ideal because in reality we do not

have access to the oracle information), which is just the minimized empirical risk,

ŝIdeal = arg min
s̃:supp(s̃)=J?

‖y − s̃‖2`2 .

This gives

ŝIdeal =


yj |sj | > σ

0 |sj | ≤ σ,

and a simple calculation shows

E‖ŝIdeal − s‖2`2 = σ2|J?|+
∑
j /∈J?

s2j .

Now obviously this is not a real estimator as it depends on the unknown s (which

is what we are trying to estimate!), but we note that it has an MSE close to |J?|σ2.

(Off of J? the signal is below the noise level.) If the sparsity is small, this MSE

could be considerably smaller than nσ2. Thus we would be very happy if we could

find a real estimate such that

E‖ŝ− s‖2`2 ≈ E‖ŝIdeal − s‖2`2 .

In fact, in [46], they essentially do just that when the estimate comes from hard

or soft thresholding. Hard thresholding is implemented with

ŝhard =


yj |yj | > λ

0 |yj | ≤ λ,
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while soft thresholding is implemented with

ŝsoft =


yj − λ yj > λ

yj + λ yj < −λ

0 |yj | ≤ λ.

The threshold λ is generally chosen so that there is a high probability that it is just

above the maximum level of the noise coefficients. For our Gaussian noise vector z,

this implies that λ = σ
√

2 log n.

What is proven in [46] is that

E‖ŝ− s‖2`2 ≤ (2 log n+ 1)
(
σ2 + E‖ŝIdeal − s‖2`2

)
,

where ŝ is either the hard or soft thresholding estimate. This is what is known as

an oracle inequality. The expected mean squared error of the estimate achieves the

ideal expected mean-squared error up to constants and a log factor, all without the

use of an oracle. In other words, neglecting the log factor and constants, the hard or

soft thesholding estimate MSE is about sσ2 instead of nσ2, which is what we would

get from the naive maximum likelihood estimate. We have managed to exploit the

sparsity of the signal to find an estimate with a lower MSE.

It is important to note that this method works not only if the signal is sparse,

but also if it has a sparse representation in an orthonormal basis. To see this, take

W to be the orthonormal basis, and write f = W ∗s, where f is the (non-sparse)

signal and s is the sparse representation of it in the basis W . Then we have

y = f + z ⇐⇒ ỹ = s+ z̃

where ỹ = Wy and z̃ = Wz. Because z̃ ∼ N(0, σ2I), and s is sparse, we can apply

thresholding to obtain ŝ. Transforming back gives f̂ = W ∗ŝ. Because ‖ŝ − s‖`2 =

‖f̂ − f‖`2 via Parseval, we also have oracle optimality for f .

We have already noted that certain signals have coefficients that decay very

rapidly in a wavelet basis. Thus thresholding can be an effective way to denoise these

signals; this is the famous wavelet thresholding result of Donoho and Johnstone [46].
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(See also [58] for a nice introduction and description of the results.)

1.3.1 Connection with model selection and linear regression

What we have just been discussing has close connections with model selection.

Model selection is the task of selecting a model from a list of potential models,

balancing goodness of fit and complexity (bias and variance). When dealing with

a sparse signal, it makes sense to consider a model to consist of all exactly sparse

signals with a given support J and the collection of models to contain all possible

subsets J . In other words, a given model S(J) can be written

S(J) = {s ∈ Rn : sj = 0 ∀j /∈ J}.

For a given model S(J), we calculate the best estimate of s as

ŝ(J) = arg min
s̃∈S(J)

‖s̃− y‖2`2

=


yj j ∈ J

0 else.

Ideally, an oracle would then select among all the models the one which minimizes

the expected error between s and ŝ(J), i.e.,

J? = arg min
J⊂{1,...,n}

E‖ŝ(J)− s‖2`2

= arg min
J⊂{1,...,n}

|J |σ2 +
∑
j /∈J

s2j

= {j : |sj | > σ}.

This gives the ideal estimate ŝ(J?) as

ŝ(J?) =


yj |sj | > σ

0 else
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and

E‖ŝ(J?)− s‖2`2 =
n∑
j=1

min(σ2, s2j ).

Again, we would like to find a real estimator ŝ so that

E‖ŝ− s‖2`2 ≈ E‖ŝ(J?)− s‖2`2 .

Now, it is not hard to show that the hard thresholding estimate is the solution to

the following optimization program

min
s̃
‖y − s̃‖2`2 + λ2‖s̃‖`0 ,

and that soft thresholding estimate is the solution to

min
s̃
‖y − s̃‖2`2 + 2λ‖s̃‖`1 ,

where the `1 norm is ‖x‖`1 =
∑

i |xi|. We point out that these optimizations involve

minimizing a tradeoff between goodness of fit, the squared error between y and the

estimate, and a penalty that measures the complexity in either the `0 or `1 norms,

weighted by a parameter λ. This tradeoff characterizes model selection problems.

There are some very nice results in the model selection literature that achieve

oracle inequality results for more general setups than what we have discussed (more

general classes of models, non Gaussian noise, etc.) and explore under what con-

ditions an oracle inequality is obtainable and what the value of λ should be, see

[6, 9] and the references therein. See also [88] for a very readable discussion of

thresholding and oracle inequalities.

One common theme of all these model selection results is that the complexity

term in the minimization is always measured by `0. This makes a lot of intuitive

sense, as `0 is the natural measure of the size of the model—the number of nonzero

elements it contains. In the simple case of hard thresholding that we discussed

above, the minimization can be performed and the estimate explicitly calculated.

In more general setups, however, this is no longer the case.

More specifically, in the case of linear regression where there are more regressors



18

than parameters, one is faced with the problem of solving

min
x̃
‖Ax̃− y‖2`2 + λ‖x̃‖`0 ,

which seems to have no computationally feasible way to determine x̂. Again, we are

stymied by the computational intractability of `0.

1.4 Problem setups at the focus of this thesis

Thus far we have been motivating why sparsity is interesting through examples

in signal processing, approximation theory and statistics, emphasizing the impor-

tance of fast algorithms and finding sparse signal representations, where sparsity

can be thought of as having only a few nonzero coefficients, or coefficients that

decay quickly. In searching for sparse signal representations for a general class of

signals, the problems became much more difficult when the dictionary became over-

complete. Similarly, in model selection/sparse linear regression, when the number of

regressors became more than the number of response variables, easily computable

solutions ceased to exist. These types of problems are exactly the focus of this

thesis. (We pause here to briefly mention that the difficulty really arises when the

dictionary elements or regressors are no longer orthogonal, which can also happen

in the undercomplete case. In fact, many of the results we will discuss also apply to

undercomplete setups. However, we will mostly focus on the overcomplete case be-

cause until recently it was not as well-studied, while a growing number of important

problems fit into this setup.)

We will almost exclusively be interested in real-valued, finite dimensional, dis-

crete signals, hence our signals are vectors x ∈ RN and A ∈ Rn×N is a matrix with

more columns than rows. A is always assumed to be full rank and, unless otherwise

stated, has unit normalized columns. We are interested in both noisy and noiseless

setups, where the noise term z ∈ Rn is stochastic (in which case we will always

assume that it is Gaussian) or deterministic (in which case we will always assume

that it is bounded, i.e., ‖z‖`2 ≤ ε for some ε > 0). The signal x is of course sparse,

meaning that it has only a few nonzero terms. Sometimes we will say that a signal
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Figure 1.5. Depiction of problem setups at the heart of this thesis. Note that the
matrix A has more rows than columns. From y we would like to find a good estimate
of x, or possibly Ax in the case of noise, using a computationally reasonable method.

is sparse when it has only a few large terms and the rest are small but maybe not

zero. We will also refer to signals with decaying coefficients as sparse. Which precise

definition of sparsity we mean should be clear from context.

In this setup, we are interested in estimating x or Ax in a computationally

tractable way. We would like to know under what conditions on A and the sparsity

of x can we achieve good estimates? In other words, when can we guarantee that

‖x̂−x‖`2 or ‖Ax̂−Ax‖`2 is small? How close can we come to what can be achieved

with an oracle?

Sometimes to emphasize that we are thinking of A as a dictionary we will write

it as Ψ. Similarly, to emphasize that we are thinking of A as a measurement matrix,

we will write it as Φ. This idea of taking linear measurements of sparse signals arises

in the field of compressed sensing which we describe further in Section 1.7.2.

1.5 Computationally tractable algorithms

We turn now to the problem of finding computationally tractable methods to attack

our problems. There have been several different approaches, and in the sequel we

discuss two that have met with some success, namely greedy methods in the form
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matching pursuits and its cousins, and methods that replace the `0 quasi-norm with

the convex `1 norm. We by no means want to suggest that these are the only

techniques available, but they are of interest to us because they have met with the

most provable successes.

1.5.1 Greedy algorithms

In the context of finding a sparse representation of a signal in a dictionary Ψ con-

taining N > n vectors {ψi} in Rn, Mallat and Zhang introduced a greedy algorithm

they called Matching Pursuit [66]. In what follows we will assume the elements

of the dictionary have unit norm and the dictionary has full rank. Matching Pur-

suit selects the element of the dictionary that is most correlated with the signal f ,

projects the signal onto that element and then selects the element of the dictionary

that is most correlated with the residual. This process is then repeated.

In other words, letting r0 = f , we have

ψn+1 = arg max
ψi∈Ψ

|〈rn, ψi〉|

rn+1 = rn − 〈rn, ψn+1〉ψn+1.

We note that rn+1 is orthogonal to ψn+1.

By summing the second equation from n = 0 to n = M − 1 we have

f =
M−1∑
n=0

〈rn, ψn+1〉ψn+1 + rM .

It can be shown that for finite dimensional signals the residual converges exponen-

tially to zero as the number of iterations goes to infinity [35], and so we have

f =
∞∑
n=0

〈rn, ψn+1〉ψn+1.

However, the rate of convergence of the residual decreases as the dimension of the

signal increases, and for infinite dimensional signals the convergence is no longer

exponential. Also, even in the case of finite dimensional signals, an infinite number

of iterations is necessary to completely reduce the residual. This is because the
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element of the dictionary selected on the nth iteration, ψn, is not guaranteed to

be orthogonal to the previously selected dictionary elements {ψi}1≤i<n. Thus even

though the new residual is orthogonal to ψn, when subtracting the projection of

rn−1 over ψn the algorithm reintroduces new components in the directions of the

{ψi}0≤i<n.

This procedure can be improved by implementing a version called Orthogonal

Matching Pursuit (OMP) [73, 36] where the residual is orthogonally projected onto

the space spanned by all the previously selected elements of the dictionary. In other

words we have

ψn+1 = arg max
ψi∈Ψ

|〈rn, ψi〉|

rn+1 = rn − arg min
f̃∈span{ψi}1≤i≤n+1

‖rn − f̃‖`2 .

This procedure is guaranteed to give a zero residual after at most n steps because

f ∈ Rn and after n steps the n selected elements of the dictionary span Rn. One

of the most attractive features of OMP is that it is computationally feasible and

admits simple, fast implementations.

We conclude this section by noting that greedy methods have different names

in different fields. In signal processing, as we have been discussing, they are known

as pursuits, in statistics they are known as forward stepwise regression, and in

approximation theory they are called greedy algorithms.

1.5.2 Convex relaxation algorithms

Besides greedy methods, another popular computationally tractable approach to

our problems is to replace `0 with the convex norm `1. For example, in the case of

finding a sparse representation of a signal in a dictionary, instead of looking for the

solution of

min
x̃
‖x̃‖`0 such that Ax̃ = y

we would solve

min
x̃
‖x̃‖`1 such that Ax̃ = y. (1.1)

This is often called Basis Pursuit [31].
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(a) `0 penalty (b) `1 penalty (c) `2 penalty

Figure 1.6. Plots of the `0, `1 and `2 penalty functions. Note that `1 maximally
penalizes small but nonzero terms, while still maintaining convexity.

In the context of linear regression and model selection, instead of looking for the

solution of

min
x̃
‖Ax̃− y‖2`2 + λ‖x̃‖`0

we would solve

min
x̃
‖Ax̃− y‖2`2 + λ‖x̃‖`1 . (1.2)

This is called the lasso [83].

Another popular setup for noisy measurements y = Ax + z, where z satisfies

‖z‖`2 < ε, is

min
x̃
‖x̃‖`1 such that ‖Ax̃− y‖`2 < ε. (1.3)

The advantage of using the `1 norm is that it is convex (a function is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for any x, y in the domain of f and any 0 ≤ t ≤ 1) and so (1.1), (1.2) and (1.3)

can be written as convex programs and all the well established machinery of convex

optimization can be used. In particular, there exist fast interior point and log barrier

algorithms [10] that can be employed.

The use of `0 always involves sparsity, whether looking for a sparse dictionary

representation of a signal or a simple model that well represents given data. But

why do we expect intuitively that by minimizing an `1 norm we will arrive at a
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Figure 1.7. 1.7a shows a sparse signal with ten nonzero terms. We form y = Ax
where A is a 256 × 512 matrix with i.i.d. Gaussian entries. 1.7b is the minimum
energy solution, i.e., the solution to minx̃ ‖x̃‖`2 such that y = Ax̃. Minimizing `1
instead of `2, however, recovers the sparse signal exactly.

sparse solution? In some sense this is because `1 penalizes small but nonzero terms

as much as possible while maintaining convexity, and so instead of favoring solutions

with many small terms, it favors solutions with terms that are either zero or not—

in other words, sparse solutions. This should be compared with the `2 penalty, for

example, which is also convex, but which penalizes small but nonzero terms less and

tends to produce dense solutions, see Figures 1.6 and 1.7.

We mention here that the sparsity promoting properties of `1 had been empiri-

cally observed for decades in geophysics. In reflection seismology, `1 minimization

had been proposed and sucessfully used to determine the boundaries between sub-

surface layers of the earth [82, 32, 78], while results quantifying the ability of `1 to

recover sparse reflection traces began to appear in [48, 47].

1.6 Brief survey of known results

We give now a brief survey of known results in the field. We make no pretense

of being exhaustive, but instead try to give a sense of what types of results have

been proven, with an emphasis on results that have inspired or are closely related

to results in this thesis. A good review article on some of the early work is [11].
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1.6.1 Coherence results

All of the earliest sparse recovery results rely on a property known as coherence.

The coherence of a matrix A is

µ(A) = max
i6=j

|〈ai, aj〉|
‖ai‖`2‖aj‖`2

,

where the ai are columns of the matrix A ∈ Rm×N . Coherence is basically a measure

of how similar the columns of a matrix are. Notice that µ ≤ 1, and for an orthogonal

matrix µ(A) = 0. In fact, one can show that for a general matrix A

√
N −m

m(N − 1)
≤ µ(A) ≤ 1.

Some of the earliest sparse recovery results [43, 55] showed that in the noiseless

case, y = Ax, if the sparsity s of x was smaller than the inverse of the coherence

of A, s < c/µ(A), for a given constant c, then exact recovery of x using the convex

relaxation (1.1) was possible. As for greedy methods, for awhile it was thought that

greedy algorithms were unpromising as tools for sparse recovery because researchers

found examples of specific A and sparse x when a greedy approach returned a fully

dense x̂ [37]. However, progress was made in [54] and refined in [84] that also showed

that if s < O(1/µ(A)), then exact recovery of x using OMP was achieved.

Slightly later, [44] showed stability results in the noisy setup y = Ax + z for

‖z‖`2 < ε, for both OMP and `1 methods. In this case, exact recovery of x is no

longer possible, but it is shown that x̂ is still close to x. For example, in the case of

`1, they showed that if s < 1/4(1/µ+ 1) then

‖x− x̂‖`2 ≤
ε√

1− µ(s− 1)
.

A result of a similar flavor for `1 is given in [85]. In the case of stochastic noise,

[12, 13] develop oracle inequality bounds on ‖Ax − Ax̂‖`2 and ‖x − x̂‖`1 using the

lasso, again assuming s < O(1/µ).

However, these results did not seem to be capturing the whole story. For ex-

ample, a dictionary made up of n spikes and n sines, Ψ = [I F ∗], has coherence
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µ = 1/
√
n. Restricting s < O(1/µ) gives s < O(

√
n) and examples of signals could

be constructed so that if s =
√
n then recovery of the signal was not possible. How-

ever, numerical experiments [48, 45] seemed to show both `1 and greedy methods

working well for much larger sparsities, and that the the example signals where re-

covery was not possible were somehow pathological. Focus then turned to showing

that the methods could work well for larger sparsities.

1.6.2 Uniform uncertainty results

The first paper to show good recovery for less restrictive sparsities was [26]. They

show that if A is a Fourier matrix with randomly selected rows and x is a sparse

vector with random support of size s, then by solving the `1 minimization program

(1.1), if s < Cm/ log(N), one recovers x with high probability. The key to their

proof was showing that submatrices of A formed by selecting columns of A had well

behaved singular values.

Similar results were obtained in [42] and [87] for A a Gaussian matrix with

i.i.d. entries where one solves Basis Pursuit or OMP, repectively. Again, the results

hinged on the singular values of submatrices of A. In [29] and [28] these singular

value conditions were formalized as the restricted isometry property (RIP), also

refered to as the uniform uncertainty principle (UUP), a condition on the restricted

isometry constants of the matrix A, which are defined as

Definition 1.6.1. For each integer s = 1, 2, . . . , define the isometry constant δs of

a matrix A as the smallest number such that

(1− δs)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δs)‖x‖2`2

for all s-sparse vectors x. A vector is said to be s-sparse if it has at most s nonzero

entries.

This basically says that A acts almost like an isometry on sparse vectors. An

equivalent way to state it is as a condition on the singular values of AT ,

1− δs ≤ λ(A∗TAT ) ≤ 1 + δs,
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where T ⊂ {1, . . . , N}, |T | ≤ s.

In the noiseless case, it was shown in [28] that if A had sufficiently small re-

stricted isometry constants, then for all s-sparse x, solving (1.1) would determine x

exactly. Moreover, it was shown that for various ensembles of matrices, the isometry

constants δs are small. For example, consider A drawn from the following ensembles

of matrices:

• The Gaussian ensemble. The entries of A are i.i.d. Gaussian N ∼ (0, 1/m).

• The binary ensemble. The entries of A are i.i.d. entries from the Bernoulli

distribution, P(Aij = ±1/
√
m) = 1/2, or some other subguassian distribution.

• The Fourier ensemble. A is a N × N Fourier matrix with m rows sampled

uniformly at random.

In the case of the first two ensembles, the restricted isometry property is satisfied

with high probability if [28, 69]

s ≤ Cm/ log(N/m),

while in the third it is satisfied if [29]

s ≤ Cm/ log(N)6.

Attention then shifted to showing stable recovery in the presence of noise for

larger sparsities. Results include [41, 27] for the case of deterministic noise, ‖z‖`2 <

ε, when one solves (1.3). The results in [27] and refined in [19] required that the

isometry constant δ2s be sufficiently small, and were particularly nice in that even

if x was not exactly sparse one could still show

‖x̂− x‖`2 < Cδ1
‖x− xs‖`1√

s
+ Cδ2ε

where Cδ1 and Cδ2 are constants that can be explicitly stated in terms of the re-

stricted isometry constant δ2s, and xs is the best s-term approximation of x.

In the case of stochastic noise, [30] again required that the restricted isometry

constants be sufficiently small, but instead of solving (1.2) or (1.3), it introduced
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the following linear program, called the Dantzig selector

min
x̃
‖x̃‖`1 such that ‖A∗(Ax̃− y)‖`∞ < λ. (1.4)

Nice oracle inequality bounds were achieved for ‖x − x̂‖`2 . The Dantzig selector is

a close cousin of the lasso, and it is no surprise that there are many similar results

for the solution of (1.2); we mention in particular [8, 94, 68, 93]. These results all

require that a UUP-like requirement on the singular values of A be met in order to

achieve good recovery.

On the greedy algorithm front, in [72] it was shown that a greedy algorithm

called ROMP was able to achieve similar results as in [27], again requiring that

the restricted isometry constants of A be sufficiently small, with some spurious log

factors. In [71] these log factors were removed using a greedy algorithm called

CoSaMP.

1.6.3 And back to coherence

While the uniform uncertainty results are impressive because they hold for all suffi-

ciently sparse x, they also have drawbacks. For example, while it is possible to show

that a matrix drawn from one of the ensembles discussed earlier obeys the UUP with

high probability, for a particular matrix of interest it can be a difficult condition

to check, likely involving calculating the singular values of all submatrices of the

matrix—a combinatorial calculation. Also, because of its uniformity property, it is

a rather strong requirement on all of the submatrices of A. Perhaps we would be

satisfied if, instead of for any x, we had a signal model for x, and would be happy

instead of being guaranteed good reconstruction, we got good reconstruction with

high probability. Finally, there are matrices such as [I F ∗] that can be shown to

violate the UUP for fairly small sparsities, but numerically still seem to perform

well.

There are results that show for a specific matrix of interest, one can still achieve

good reconstruction if x is taken from a random signal model. (See [26, 15], for

example.) It would be nice to find a condition that is easily verifiable that would

capture some of this behavior for sparsities greater than O(1/µ). A result along
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these lines is [22] where the concept of coherence again comes into play. They show

that if the coherence of A is sufficiently small

µ(A) ≤ c0 · (logN)−1,

and x comes from a suitable statistical model, then the solution to (1.2) achieves

an oracle inequality for Ax with high probability if s ≤ c1N/(‖A‖2 logN). Chapter

3 of this thesis extends these results to the Dantzig selector and oracle inequalities

involving x.

1.7 Applications

We have already mentioned that our problems of interest are motivated by signal

compression, approximation, and linear regression problems. However, we pause

here to mention a few more example applications in greater detail.

1.7.1 Error correction

At first glance, it may appear that error correction has very little to do with the

types of problems and setups we have been discussing. After all, in a typical error

correction setup, redundancy is added to the message signal to be sent in hopes

that the redundancy will help remove errors. Thus linear coding matrices have

more rows than columns, the exact opposite situation of our matrix A. In addition,

the messages to be sent typically are not at all sparse. However, it is reasonable to

assume that the errors are sparse, and this is the connection with our problems.

In an error correction setup over the reals with a linear encoding matrix one has

y = Mf + e

where y ∈ RN is the received, corrupted message, M ∈ RN×n is the rull rank

encoding matrix with N > n, f ∈ Rn is the message to be sent, and e ∈ RN is

a vector of sparse errors. If one multiplies through by an annihilation matrix A

such that A ∈ R(N−n)×N and AM = 0 (take, for example, A to be the orthogonal
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projection onto the null space of M) then we have

ỹ = Ae

where ỹ = Ay and A has more columns than rows. If we can solve for (or well-

approximate) the sparse e then we can reconstruct f because M is known. In [28]

the problem is explored when e is exactly sparse, and in Chapter 2 of this thesis, the

problem is explored when e is a combination of sparse arbitrary errors and smaller

dense errors.

1.7.2 Compressed sensing

A much discussed example of our setup is known as compressed sensing or com-

pressive sampling [40, 18]. In the traditional method of signal compression which

we have discussed earlier, a signal is sensed or sampled, transformed into a basis

where it is sparse, and then most of the transformed data thrown out. This raises

the question, why go through all the effort of acquiring so much data when in the

end so much is discarded? Is it possible to somehow take clever measurements of

a signal so that the number of measurements is close to the amount of important

information contained in the signal?

In the language of our setup, we view A as a measurement matrix, which tradi-

tionally is called Φ. In other words, we take linear measurements of a sparse signal

x (or a signal f that can be sparsely represented in a basis) and look for answers to

questions like: How few measurements can we take and still be able to reconstruct

x or estimate it well? What should these measurements be?

This type of setup arises in real-world applications when measurement devices

naturally acquire encoded samples rather than direct signal samples, and taking

many samples is undesirable or impractical. This is the case, for example, in MRI

imaging, where the scanner measures Fourier coefficients of the object being scanned.

(See [92] for an introdution to MRI imaging and [64] for a discussion of its relation

to compressed sensing.)

One shortcoming of all the known results discussed earlier when applied to the

compressed sensing setup is that it is required that the signal to be measured is
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sparse or sparse in a basis. However, as noted before, sometimes it is preferable to

consider signals that can be well represented in an overcomplete dictionary instead

of a basis. In Chapters 4 and 5 of this thesis, we will describe compressed sensing

results when the measured signal is sparse in a dictionary. In other words, we have

Φf = ΦΨx where x is sparse.

1.8 Organization of thesis

In Chapter 2 we discuss an error correction problem over the reals where a received

encoded message is corrupted by a few arbitrary gross errors, as well as smaller

errors affecting all the entries. We show that under suitable conditions on the

encoding matrix and on the number of gross errors, one is able to accurately recover

the message by solving either of two convex optimization programs. We note that

Chapter 2 has appeared in [24], and also in a condensed form in [23].

In Chapter 3 we examine the statistical estimation problem of recovering a signal

from noisy measurements, y = Ax + z. We would like to estimate x or Ax. We

explore how close one can get to oracle optimality where the estimate x is required

to be computed in a computationally tractable way.

In Chapter 4 we consider the problem of reconstructing a signal from a limited

number of random linear measurements, where the signal can be sparsely represented

by the elements in a dictionary and the dictionary obeys an incoherence property.

We show that by solving an `1 minimization program one can recover the signal

exactly from the measurements.

Finally, in Chapter 5 we again explore the problem of estimating a signal from

a limited number of linear measurements. However, we no longer require that the

signal be exactly sparsely represented by the dictionary. We show that if the com-

bined measurement/dictionary matrix obeys certain requirements then by solving

a convex optimization program known as analysis, the signal can be accurately re-

covered. This nicely complements known results for the more standard synthesis

approach.

We conclude this introduction by noting that all work in this thesis is joint with

Emmanuel Candès. Also, we are grateful to Peter Stobbe for sharing his Gabor
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dictionary code used in Chapter 5. Finally, we have done our best to make each

chapter self-contained. This has led to some redundancy in definitions and proofs;

we hope this will not be distracting but will instead facilitate the readability of the

thesis.
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Chapter 2

Highly robust error correction
by convex programming

2.1 Abstract

This chapter discusses a stylized communications problem where one wishes to trans-

mit a real-valued signal x ∈ Rn (a block of n pieces of information) to a remote

receiver. We ask whether it is possible to transmit this information reliably when

a fraction of the transmitted codeword is corrupted by arbitrary gross errors, and

when in addition, all the entries of the codeword are contaminated by smaller errors

(e.g., quantization errors).

We show that if one encodes the information as Ax where A ∈ Rm×n (m ≥ n) is

a suitable coding matrix, there are two decoding schemes that allow the recovery of

the block of n pieces of information x with nearly the same accuracy as if no gross

errors occur upon transmission (or equivalently as if one has an oracle supplying

perfect information about the sites and amplitudes of the gross errors). Moreover,

both decoding strategies are very concrete and only involve solving simple convex

optimization programs, either a linear program or a second-order cone program. We

complement our study with numerical simulations showing that the encoder/decoder

pair performs remarkably well.

2.2 Introduction

This chapter discusses a coding problem over the reals. We wish to transmit a block

of n real values—a vector x ∈ Rn—to a remote receiver. A possible way to address
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this problem is to communicate the codeword Ax where A is anm by n coding matrix

with m ≥ n. Now a recurrent problem with real communication or storage devices

is that some portions of the transmitted codeword may become corrupted; when

this occurs, parts of the received codeword are unreliable and may have nothing to

do with their original values. We represent this as receiving a distorted codeword

y = Ax+z0. The question is whether one can recover the signal x from the received

data y.

It has recently been shown [28, 16] that one could recover the information x

exactly—under suitable conditions on the coding matrix A—provided that the frac-

tion of corrupted entries of Ax is not too large. In greater details, [28] proved that

if the corruption z0 contains at most a fixed fraction of nonzero entries, then the

signal x ∈ Rn is the unique solution of the minimum-`1 approximation problem

min
x̃∈Rn

‖y −Ax̃‖`1 . (2.1)

What may appear as a surprise is the fact that this requires no assumption whatso-

ever about the corruption pattern z0 except that it must be sparse. In particular,

the decoding algorithm is provably exact even though the entries of z0—and thus

of y as well—may be arbitrary large, for example.

While this is interesting, it may not be realistic to assume that except for some

gross errors, one is able to receive the values of Ax with infinite precision. A better

model would assume instead that the receiver gets

y = Ax+ z0, z0 = e+ z, (2.2)

where e is a possibly sparse vector of gross errors and z is a vector of small errors

affecting all the entries. In other words, one is willing to assume that there are

malicious errors affecting a fraction of the entries of the transmitted codeword and

in addition, smaller errors affecting all the entries. For instance, one could think

of z as some sort of quantization error which limits the precision/resolution of the

transmitted information. In this more practical scenario, we ask whether it is still

possible to recover the signal x accurately. The subject of this chapter is to show



34

that it is in fact possible to recover the original signal with nearly the same accuracy

as if one had a perfect communication system in which no gross errors occur upon

transmission. Further, the recovery algorithms are very concrete and practical; they

involve solving very convenient convex optimization problems.

Before expanding on our results, we would like to comment on the practical rel-

evance of our model. Coding theory generally assumes that data take on values in

a finite field, but there are a number of applications where encoding over the reals

is of direct interest. We give two examples. The first example concerns Orthogonal

Frequency-Division Multiplexing for wireless and wideband digital communication.

Here, one can experience deep fades at certain frequencies (because of mulipathing

for instance) and/or frequency jamming because of strong interferers so that large

parts of the data are unreliable. The second example is in the area of digital com-

putations. Here, researchers are currently interested in error correction over the

reals to protect real-valued results of onboard computations which are executed by

circuits that are subject to faults due, for example, to radiation. As we will see, our

work introduces an encoding strategy which is robust to such errors, which runs in

polynomial time, and which provably obeys optimal bounds.

To understand the claims of this chapter in a more quantitative fashion, suppose

that we had a perfect channel in which no gross errors ever occur; that is, we assume

e = 0 in (2.2). Then we would receive y = Ax + z and would reconstruct x by the

method of least-squares which, assuming that A has full rank, takes the form

xIdeal = (A∗A)−1A∗y. (2.3)

In this ideal situation, the reconstruction error would then obey

‖xIdeal − x‖`2 = ‖(A∗A)−1A∗z‖`2 . (2.4)

Suppose we design the coding matrix A with orthonormal columns so that A∗A = I.

Then we would obtain a reconstruction error whose maximum size is just about that

of z. If the smaller errors zi are i.i.d. N(0, σ2), then the mean-squared error (MSE)
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would obey

E‖xIdeal − x‖2`2 = σ2Tr((A∗A)−1).

If A∗A = I, then the MSE is equal to nσ2.

The question then is, can one hope to do almost as well as this optimal mean

squared error without knowing e or even the support of e in advance? This chapter

shows that one can in fact do almost as well by solving very simple convex programs.

This holds for all signals x ∈ Rn and all sparse gross errors no matter how adversary.

Two concrete decoding strategies are introduced: one based on second-order cone

programming (SOCP) in Section 2.3, and another based on linear programming (LP)

in Section 2.4. We introduce two different decoding strategies because in certain

situations it may be preferable to solve an LP over an SOCP or vice-versa. Also, we

show theoretically that the two methods scale differently, so in a particular setup one

method could outperform the other. For instance, it is an open question whether

or not the SOCP decoder can achieve the adaptive bounds of the LP decoder. In

Section 2.5 we compare the empirical performances of the two decoders in a series

of numerical experiments before proving our results in Section 2.6, followed by a

discussion in Section 2.7.

We conclude the introduction by noting that this chapter is part of a larger body

of work. In particular, besides the obvious connections with [28, 16], it draws on

recent results [27, 30] showing that the theory and practice of compressed sensing

(also known as compressive sampling) is robust vis a vis noise. The connection with

this work should become clear in our proofs.

2.3 Decoding by second-order cone programming

To recover the signal x from the corrupted vector y (2.2) we propose solving the

following optimization program:

(P2) min ‖y −Ax̃− z̃‖`1 subject to ‖z̃‖`2 ≤ ε, (2.5)

A∗z̃ = 0,



36

with variables x̃ ∈ Rn and z̃ ∈ Rm. The parameter ε above depends on the magni-

tude of the small errors and shall be specified later. The program (P2) is equivalent

to

min1∗ũ, subject to − ũ ≤ y −Ax̃− z̃ ≤ ũ, (2.6)

‖z̃‖`2 ≤ ε,

A∗z̃ = 0,

where we added the slack optimization variable ũ ∈ Rm. In the above formulation,

1 is a vector of ones and the vector inequality u ≤ v means componentwise, i.e.,

ui ≤ vi for all i. The program (2.6) is a second-order cone program and as a result,

(P2) can be solved efficiently using standard optimization algorithms, see [10].

The first key point of this chapter is that the SOCP decoder is highly robust

against imperfections in communication channels. Here and below, V denotes the

subspace spanned by the columns of A, and Q ∈ Rm×(m−n) is a matrix whose

columns form an orthobasis of V ⊥, the orthogonal complement to V . Such a matrix

Q is a kind of parity-check matrix since Q∗A = 0. Applying Q∗ on both sides of

(2.2) gives

Q∗y = Q∗e+Q∗z. (2.7)

Now if we could somehow get an accurate estimate ê of e from Q∗y, we could

reconstruct x by applying the method of Least Squares to the vector y corrected for

the gross errors:

x̂ = (A∗A)−1A∗(y − ê). (2.8)

If ê were very accurate, we would probably do very well.

The point is that under suitable conditions, (P2) provides such accurate esti-



37

mates. Introduce ẽ = y −Ax̃− z̃, and observe the following equivalence:

(P2) ⇔ min ‖ẽ‖`1
subject to ẽ = y −Ax̃− z̃,

A∗z̃ = 0, ‖z̃‖`2 ≤ ε,

⇔ (P ′2) min ‖ẽ‖`1
subject to ‖Q∗(y − ẽ)‖`2 ≤ ε.

(2.9)

We only need to argue about the second equivalence since the first is immediate.

Observe that the condition A∗z̃ = 0 decomposes y − ẽ as the superposition of an

arbitrary element in V (the vector Ax̃) and of an element in V ⊥ (the vector z̃) whose

Euclidean length is less than ε. In other words, z̃ = PV ⊥(y − ẽ) where PV ⊥ = QQ∗

is the orthonormal projector onto V ⊥ so that the problem is that of minimizing the

`1 norm of ẽ under the constraint ‖PV ⊥(y − ẽ)‖`2 ≤ ε. The claim follows from the

identity ‖PV ⊥v‖`2 = ‖Q∗v‖`2 which holds for all v ∈ Rm.

The equivalence between (P2) and (P ′2) asserts that if (x̂, ẑ) is solution to (P2),

then ê = y −Ax̂− ẑ is solution to (P ′2) and vice versa; if ê is solution to (P ′2), then

there is a unique way to write y − ê as the sum Ax̂+ ẑ with z ∈ V ⊥, and the pair

(x̂, ẑ) is solution to (P2). We note, and this is important, that the solution x̂ to

(P2) is also given by the corrected least squares formula (2.8). Equally important is

to note that even though we use the matrix Q to explain the rationale behind the

methodology, one should keep in mind that Q does not play any special role in (P2).

The issue here is that if ‖PV ⊥v‖`2 is approximately proportional to ‖v‖`2 for all

sparse vectors v ∈ Rm, then the solution ê to (P ′2) is close to e, provided that e is

sufficiently sparse [27]. Quantitatively speaking, if ε is chosen so that ‖PV ⊥z‖`2 ≤ ε,

then ‖e − ê‖ is less than a numerical constant times ε; that is, the reconstruction

error is within the noise level. The key concept underlying this theory is the so-called

restricted isometry property.

Definition 2.3.1. Define the isometry constant δk of a matrix Φ as the smallest

number such that

(1− δk)‖x‖2`2 ≤ ‖Φx‖
2
`2 ≤ (1 + δk)‖x‖2`2 (2.10)
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holds for all k-sparse vectors x (a k-sparse vector has at most k nonzero entries).

In the sequel, we shall be concerned with the isometry constants of A∗ times a

scalar. Since AA∗ is the orthogonal projection PV onto V , we will be thus interested

in subspaces V such that PV nearly acts as an isometry on sparse vectors. Our first

result states that the SOCP decoder is provably accurate.

Theorem 2.3.2. Choose a coding matrix A ∈ Rm×n with orthonormal columns

spanning V , and let (δk) be the isometry constants of the rescaled matrix
√

m
n A

∗.

Suppose ‖PV ⊥z‖`2 ≤ ε. Then the solution x̂ to (P2) obeys

‖x̂− x‖`2 ≤ C2 ·
ε√

1− n
m

+ ‖xIdeal − x‖`2 (2.11)

for some C2 = C2(c) provided that the number k of gross errors obeys δ3k + 1
2δ2k <

c
2(mn − 1) for some c < 1; xIdeal is the ideal solution (2.3) one would get if no gross

errors ever occurred (e = 0).

If the (orthonormal) columns of A are selected uniformly at random, then with

probability at least 1−O(e−γ(m−n)) for some positive constant γ, the estimate (2.11)

holds for k � ρ ·m, provided ρ ≤ ρ∗(n/m), which is a constant depending only n/m.
1

This theorem is of significant appeal because it says that the reconstruction

error is in some sense within a constant factor of the ideal solution. Indeed, suppose

all we know about z is that ‖z‖`2 ≤ ε. Then ‖xIdeal − x‖`2 = ‖A∗z‖`2 may be

as large as ε. Thus for m = 2n, say, (2.11) asserts that the reconstruction error

is bounded by a constant times the ideal reconstruction error. In addition, if one

selects a coding matrix with random orthonormal columns (one way of doing so is

to sample X ∈ Rm×n with i.i.d. N(0, 1) entries and orthonormalize the columns by

means of the QR factorization), then one can correct a positive fraction of arbitrarily

corrupted entries, in a near ideal fashion.

Note that in the case where there are no small errors (z = 0), the decoding is

exact since ε = 0 and xIdeal = x. Hence, this generalizes earlier results [28]. We

1Analysis shows ρ∗ to be of the form ρ∗ = O
“

n/m−1
log(1−n/m)

”
but this is not informative because

the constant is unknown. Determining the constant is extremely challenging; for an analysis with
sparse errors see [39, 49].
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would like to emphasize that there is nothing special about the fact that the columns

of A are taken to be orthonormal in Theorem 2.3.2. In fact, one could just as well

obtain equivalent statements for general matrices. Our assumption only allows us

to formulate simple and useful results.

While the previous result discussed arbitrary small errors, the next is about

stochastic errors.

Corollary 2.3.3. Suppose the small errors are i.i.d. N(0, σ2) and set

ε :=
√

(m− n)(1 + t) · σ for some fixed t > 0. Then under the same hypotheses

about the restricted isometry constants of A and the number of gross errors as in

Theorem 2.3.2, the solution to (P2) obeys

‖x̂− x‖2`2 ≤ C ′
2 ·m · σ2, (2.12)

for some numerical constant C ′
2 with probability exceeding 1− e−γ

2(m−n)/2 − e−m/2

where γ =
√

1+2t−1√
2

. In particular, this last statement holds with overwhelming

probability if A is chosen at random as in Theorem 2.3.2.

Suppose for instance that m = 2n to make things concrete so that the MSE of

the ideal estimate is equal to m/2 · σ2. Then the SOCP reconstruction is within a

multiplicative factor 2C of the ideal MSE. Our experiments show that in practice

the constant is small: e.g., when m = 2n, one can correct 15% of arbitrary errors,

and in the overwhelming majority of cases obtain a decoded vector whose MSE is

less than 3 times larger than the ideal MSE.

2.4 Decoding by linear programming

Another way to recover the signal x from the corrupted vector y (2.2) is by linear

programming:

(P∞) min ‖y −Ax̃− z̃‖`1 subject to ‖z̃‖`∞ ≤ λ, (2.13)

A∗z̃ = 0,
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with variables x̃ ∈ Rn and z̃ ∈ Rm. As is well known, the program (P∞) may also

be re-expressed as a linear program by introducing slack variables just as in (P2);

we omit the standard details. As with (P2), the parameter λ here is related to the

size of the small errors and will be discussed shortly. In the sequel, we shall also be

interested in the more general formulation of (P∞)

‖y −Ax̃− z‖`1 subject to |z̃|i ≤ λi, 1 ≤ i ≤ m, (2.14)

A∗z̃ = 0,

which gives additional flexibility for adjusting the thresholds λ1, λ2, . . . , λm to the

noise level.

The same arguments as before prove that (P∞) is equivalent to

(P ′∞) min ‖ẽ‖`1 subject to ‖QQ∗(y − ẽ)‖`∞ ≤ λ, (2.15)

where we recall that PV ⊥ = QQ∗ is the orthonormal projector onto V ⊥ (V is

the column space of A); that is, if ê is solution to (P ′∞), then there is a unique

decomposition y − ê = Ax̂ + ẑ where A∗ẑ = 0 and (x̂, ẑ) is solution to (P∞). The

converse is also true. Similarly, the more general program (2.14) is equivalent to

minimizing the `1 norm of ẽ under the constraint |PV ⊥(y − ẽ)|i ≤ λi, 1 ≤ i ≤ m.

In statistics, the estimator ê solution to (P ′∞) is known as the Dantzig selector

[30]. It was originally introduced to estimate the vector e from the data y′ and the

model

y′ = Q∗e+ z′ (2.16)

where z′ is a vector of stochastic errors, e.g., independent mean-zero Gaussian ran-

dom variables. The connection with our problem is clear since applying the parity-

check matrix Q∗ on both sides of (2.2) gives

Q∗y = Q∗e+Q∗z

as before. If z is stochastic noise, we can use the Dantzig selector to recover e from

Q∗y. Moreover, available statistical theory asserts that if Q∗ obeys nice restricted
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isometry properties and e is sufficiently sparse just as before, then this estimation

procedure is extremely accurate and in some sense optimal.

It remains to discuss how one should specify the parameter λ in (2.13)–(2.15)

which is easy. Suppose the small errors are stochastic. Then we fix λ so that the

true vector e is feasible for (P ′∞) with very high probability; i.e., we adjust λ so that

‖PV ⊥(y − e)‖`∞ = ‖PV ⊥z‖`∞ ≤ λ

with high probability. In the more general formulation, the thresholds are adjusted

so that sup1≤i≤m |PV ⊥z|i/λi ≤ 1 with high probability.

The main result of this section is that the LP decoder is also provably accurate.

Theorem 2.4.1. Choose a coding matrix A ∈ Rm×n with orthonormal columns

spanning V , and let (δk) be the isometry constants of the rescaled matrix
√

m
n A

∗.

Suppose ‖PV ⊥z‖`∞ ≤ λ. Then the solution x̂ to (P∞) obeys

‖x̂− x‖`2 ≤ C1

√
k · λ

1− n
m

+ ‖xIdeal − x‖`2 (2.17)

for some C1 = C1(c) provided that the number k of gross errors obeys δ3k + δ2k <

c
(
m
n − 1

)
for some c < 1; xIdeal is the ideal solution (2.3) one would get if no gross

errors ever occurred.

If the (orthonormal) columns of A are selected uniformly at random, then with

probability at least 1−O(e−γ(m−n)) for some positive constant γ, the estimate (2.17)

holds for k � ρ ·m, provided ρ ≤ ρ∗(n/m).

In effect, the LP decoder efficiently corrects a positive fraction of arbitrarily

corrupted entries. Again, when there are no small errors (z = 0), the decoding is

exact. (Also and just as before, there is nothing special about the fact that the

columns of A are taken to be orthonormal.) We now consider the interesting case in

which the small errors are stochastic. Below, we conveniently adjust the thresholds

λj so that the true vector e is feasible with high probability, see Section 2.6.4 for

details.

Corollary 2.4.2. Choose a coding matrix A with (orthonormal) columns selected
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uniformly at random and suppose the small errors are i.i.d. N(0, σ2). Fix

λi =
√

2 logm ·
√

1− ‖Ai,·‖2`2 · σ

in (2.14), where ‖Ai,·‖`2 = (
∑

1≤j≤nA
2
i,j)

1/2 is the `2 norm of the ith row. Then if

the number k of gross errors is no more than a fraction of m as in Theorem 2.4.1,

the solution x̂ obeys

‖x̂− x‖2`2 ≤ [1 + C ′
1s]

2 · ‖xIdeal − x‖2`2 , (2.18)

with very large probability, where C ′
1 is some numerical constant and

s2 =
k

m
· logm
n
m(1− n

m)
.

In effect, ‖x̂ − x‖2`2 is bounded by just about [1 + C ′
1s]

2 · nσ2 since ‖xIdeal − x‖2`2
is distributed as σ2 times a chi-square with n degrees of freedom, and is tightly

concentrated around nσ2.

Recall that the MSE is equal to nσ2 when there are no gross errors and, therefore,

this last result asserts that the reconstruction error is bounded by a constant times

the ideal reconstruction error. Suppose for instance that m = 2n. Then s2 =

4k(logm)/m and we see that s is small when there are few gross errors. In this

case, the recovery error is very close to that attained by the ideal procedure. Our

experiments show that in practice, the constant C ′
1 is quite small: for instance, when

m = 2n, one can correct 15% of arbitrary errors, and in the overwhelming majority

of cases obtain a decoded vector whose MSE is less than 3 times larger than the

ideal MSE.

Finally, this last result is in some way more subtle than the corresponding result

for the SOCP decoder. Indeed, note the explicit dependence on k of the scaling factor

in (2.18) that is not present in the corresponding expression for the SOCP decoder

(2.12). This says that in some sense the accuracy of the LP decoder automatically

adapts to the number k of gross errors which were introduced. The smaller this

number, the smaller the recovery error. For small values of k, the bound in (2.18)

may in fact be considerably smaller than its analog (2.12).
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2.5 Numerical experiments

As mentioned earlier, numerical studies show that the empirical performance of the

proposed decoding strategies is noticeable. To confirm these findings, this section

discusses an experimental setup and presents numerical results. The reader wanting

to reproduce our results may find the matlab file available at

http://www.acm.caltech.edu/∼emmanuel/ConvexDecode.m useful. Here are the

steps we used:

1. Choose a pair (n,m) and sample an m by n matrix A with independent stan-

dard normal entries; the coding matrix is fixed throughout.

2. Choose a fraction ρ of grossly corrupted entries and define the number of

corrupted entries as k = round(ρ ·m); e.g., if m = 512 and 10% of the entries

are corrupted, k = 51.

3. Sample a block of information x ∈ Rn with independent and identically dis-

tributed Gaussian entries. Compute Ax.

4. Select k locations uniformly at random and flip the signs of Ax at these loca-

tions.

5. Sample the vector z = (z1, . . . , zm) of smaller errors with zi i.i.d. N(0, σ2),

and add z to the outcome of the previous step. Obtain y.

6. Obtain x̂ by solving both (P2) and (P∞) followed by a reprojection step dis-

cussed below [30].

7. Repeat steps (3)–(6) 500 times.

We briefly discuss the reprojection step. As observed in [30], both programs (P ′2)

and (P ′∞) have a tendency to underestimate the vector e (they tend to be akin to

soft-thresholding procedures). One can easily correct for this bias as follows:

1. Solve (P ′2) or (P ′∞) and obtain ê.

2. Estimate the support of the gross errors e via I := {i : |êi| > σ}, where σ is

the standard deviation of the smaller errors; recall that y′ := Q∗y = Q∗e+Q∗z
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and update the estimate by regressing y′ onto the selected columns of Q∗ via

the method of least squares:

ê = argmin ‖y′ −Q∗ẽ‖2`2 subject to ẽi = 0, i ∈ Ic.

3. Finally, obtain x̂ via (A∗A)−1A∗(y − ê) where ê is the reprojected estimate

calculated in the previous step.

In our series of experiments, we used m = 2n = 512 and a corruption rate

of 10%. The standard deviation σ is selected in such a way that just about the

first three binary digits of each entry of the codeword Ax are reliable. Formally

σ = median|Ax|/16. Finally and to be complete, we set the threshold ε in (P2) so

that ‖Q∗z‖`2 ≤ ε with probability .95; in other words, ε2 = χ2
m−n(.95) · σ2, where

χ2
m−n(.95) is the 95th percentile of a chi-squared distribution with m − n degrees

of freedom. We also set the thresholds in the general formulation (2.14) of (P∞) in

a similar fashion. The distribution of (QQ∗z)i is normal with mean 0 and variance

s2i = (QQ∗)i,i · σ2 so that the variable z′i = (QQ∗z)i/si is standard normal. We

choose λi = λ · si where λ obeys

sup
1≤i≤m

|z′i| ≤ λ

with probability at least .95. In both cases, our selection makes the true vector e of

gross errors feasible with probability at least .95. In our simulations, the thresholds

for the SOCP and LP decoders (the parameters χ2
m−n(.95) and λ) were computed

by Monte Carlo simulations.

To evaluate the accuracy of the decoders, we report two statistics

ρIdeal =
‖x̂− x‖

‖xIdeal − x‖
, and ρOracle =

‖x̂− x‖
‖xOracle − x‖

, (2.19)

which compare the performance of our decoders with that of ideal strategies which

assume either exact knowledge of the gross errors or exact knowledge of their lo-

cations. As discussed earlier, xIdeal is the reconstructed vector one would obtain if

the gross errors were known to the receiver exactly (which is of course equivalent to
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having no gross errors at all). The reconstruction xOracle is that one would obtain

if, instead, one had available an oracle supplying perfect information about the lo-

cation of the gross errors (but not their value). Then one could simply delete the

corrupted entries of the received codeword y and reconstruct x by the method of least

squares, i.e., find the solution to ‖yOracle −AOraclex̃‖`2 , where AOracle (resp. yOracle)

is obtained from A (resp. y) by deleting the corrupted rows.

The results are presented in Figure 2.1 and summarized in Table 2.1. These

results show that both our approaches work extremely well. As one can see, our

methods give reconstruction errors which are nearly as sharp as if no gross errors

had occurred or as if one knew the locations of these large errors exactly. Put in

a different way, the constants appearing in our quantitative bounds are in practice

very small. Finally, the SOCP and LP decoders have about the same performance

although upon closer inspection, one could argue that the LP decoder is perhaps a

tiny bit more accurate.

median of ρIdeal mean of ρIdeal median of ρOracle mean of ρOracle

SOCP decoder 1.386 1.401 1.241 1.253
LP decoder 1.346 1.386 1.212 1.239

Table 2.1. Summary statistics of the ratios ρIdeal and ρOracle (2.19) for the Gaussian
coding matrix.

We also repeated the same experiment but with a coding matrix A consisting

of n = 256 randomly sampled columns of the 512× 512 discrete Fourier transform,

and obtained very similar results. The results are presented in Figure 2.2 and

summarized in Table 2.2. The numbers are remarkably close to our earlier findings

and again both our methods work extremely well (again the LP decoder is a tiny bit

more accurate). This experiment is of special interest since it suggests that one can

apply our decoding algorithms to very large data vectors, e.g., with sizes ranging in

the hundred of thousands. The reason is that one can use off-the-shelf interior point

algorithms which only need to be able to apply A or A∗ to arbitrary vectors (and

never need to manipulate the entries of A or even store them). When A is a partial

Fourier transform, one can evaluate Ax and A∗y by means of the FFT and, hence,

this is well suited for very large problems. See [14] for very large scale experiments
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Figure 2.1. Statistics of the ratios (2.19) ρIdeal (first column) and ρOracle (second
column) which compare the performance of the proposed decoders with that of
ideal strategies which assume either exact knowledge of the gross errors or exact
knowledge of their locations. The first row shows the performance of the SOCP
decoder, the second that of the LP decoder.
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Figure 2.2. Statistics of the ratios ρOracle for the SOCP decoder (first column) and
the LP decoder (second column) in the case where the coding matrix is a partial
Fourier transform.

of a similar flavor.

median of ρIdeal mean of ρIdeal median of ρOracle mean of ρOracle

SOCP decoder 1.390 1.401 1.244 1.262
LP decoder 1.337 1.375 1.195 1.230

Table 2.2. Summary statistics of the ratios ρIdeal and ρOracle (2.19) for the Fourier
coding matrix.

2.6 Proofs

In this section, we prove all of our results. We begin with some preliminaries which

will be used throughout, then prove the claims about the SOCP decoder, and end

this section with the LP decoder. Our work builds on [27] and [30].

2.6.1 Preliminaries

We shall make extensive use of two simple lemmas that we now record.

Lemma 2.6.1. Let Yd ∼ χ2
d be distributed as a chi-squared random variable with d
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degrees of freedom. Then for each t > 0

P(Yd − d ≥ t
√

2d+ t2) ≤ e−t
2/2 and

P(Yd − d ≤ −t
√

2d) ≤ e−t
2/2.

(2.20)

This is fairly standard [62], see also [60] for very slightly refined estimates. We

will use (2.20) as follows: for each ε ∈ (0, 1) we have

P(Yd ≥ d (1− ε)−1) ≤ e−ε
2d/4 and

P(Yd ≤ d (1− ε)) ≤ e−ε
2d/4.

(2.21)

A consequence of these large deviation bounds is the estimate below.

Lemma 2.6.2. Let (u1, u2, . . . , um) be a vector uniformly distributed on the unit

sphere in m dimensions and Zn = u2
1 + . . . + u2

n be the squared length of its first n

components. Then for each t < 1

P
(
Zn ≤

n

m
(1− t)

)
≤ e−nt

2/16 + e−mt
2/16, (2.22)

and

P
(
Zn ≥

n

m

1
1− t

)
≤ e−nt

2/16 + e−mt
2/16. (2.23)

Proof. A result of this kind would essentially follow from the measure concentration

on the sphere [7], but we prefer giving a short and elementary argument. Suppose

X1, X2, . . . , Xm are i.i.d. N(0, 1). Then the distribution of (u1, u2, . . . , um) is that

of the vector X/‖X‖`2 and, therefore, the law of Zn is that of Yn/Ym, where Yk =∑
j≤kX

2
j . For a fixed t ∈ (0, 1), define the events A = {Ym ≥ m/(1 − t/2)} and

B = {Yn/Ym ≤ n/m(1− t)}. We have

P(B) = P(B |Ac)P(Ac) + P(B |A)P(A)

≤ P(Yn ≤ n(1− t)/(1− t/2)) + P(Ym ≥ m/(1− t/2)).
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For 0 ≤ t ≤ 1, we have (1− t)/(1− t/2) ≤ 1− t/2 and thus

P(Zn ≤ n/m(1− t))

≤ P(Yn ≤ n(1− t/2)) + P(Ym ≥ m/(1− t/2))

≤ e−nt
2/16 + e−mt

2/16,

which follows from (2.21).

For the second inequality, we employ a similar strategy with A = {Ym ≤ m(1−

t/2)} and B = {Yn/Ym ≥ n/m (1− t)−1}, which leads to

P(Zn ≥ n/m (1− t)−1)

≤ P(Yn ≥ n/(1− t/2)) + P(Ym ≤ m(1− t/2))

≤ e−nt
2/16 + e−mt

2/16,

as claimed.

2.6.2 Restricted isometries

For a matrix Φ, define the sequences (ak) and (bk) as respectively the largest and

smallest numbers obeying

ak‖x‖`2 ≤ ‖Φx‖`2 ≤ bk‖x‖`2 , (2.24)

for all k-sparse vectors. In other words, if we list all the singular values of all the

submatrices of Φ with k columns, ak is the smallest element from that list and bk

the largest. Note of course the resemblance with (2.10)—only this is slightly more

general.

Restricted extremal singular values of random orthonormal projections will play

an important role in the sequel. The following lemma states that for an r × m

random orthogonal projection, the numbers ak and bk are about
√
r/m.

Lemma 2.6.3. Let Φ be the first r rows of a random orthogonal matrix (sampled



50

from the Haar measure). Then the restricted extremal singular values of Φ obey

P
(
ak(Φ) ≤ 7

8

√
r

m

)
≤ c0 e

−γ0r (2.25)

and

P
(
bk(Φ) ≥ 9

8

√
r

m

)
≤ c′0 e

−γ′0r (2.26)

for some universal positive constants c0, c′0, γ0, γ
′
0 provided that k ≤ c1r/ log(m/r)

for some c1 > 0.

Proof. Put Σk for the set of all unit-normed k-sparse vectors. By definition

ak(Φ) = inf
x∈Σk

‖Φx‖`2 .

Take a fixed vector x in Σk. Then ‖Φx‖2`2 is distributed as Zr in Lemma 2.6.2. To see

why this is true, note that Φx are the first r components of Ux where U is an m×m

random orthogonal matrix. The claim follows from the fact that Ux is uniformly

distributed on the (m− 1)-dimensional unit sphere. This is useful because Lemma

2.6.2 can be employed to show that for a fixed x ∈ Σk, ‖Φx‖`2 can not deviate much

from
√
r/m. To develop an inequality concerning all sparse vectors, we now employ

a covering number argument.

Consider an ε-net N (ε) of Σk. An ε-net is a subset N (ε) of Σk such that for

all x ∈ Σk, there is an x0 ∈ N (ε) such that ‖x − x0‖`2 ≤ ε. In other words, N (ε)

approximates Σk to within distance ε. For each x ∈ Σk,

‖Φx‖ ≥ ‖Φx0‖`2 − ‖Φ(x− x0)‖`2 ≥ ‖Φx0‖ − ε,

for some x0 ∈ N (ε) obeying ‖x − x0‖`2 ≤ ε, where the last inequality follows from

the fact that the operator norm of Φ is bounded by 1. Hence,

ak(Φ) ≥ inf
x0∈N (ε)

‖Φx0‖ − ε.
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Now set ε = 1/16 ·
√
r/m. Then

P
(
ak(Φ) <

7
8

√
r

m

)
≤ P

(
inf

x0∈N (ε)
‖Φx0‖`2 ≤

√
r

m

(
1− 1

16

))
≤ |N (ε)| ·P

(
Zr <

r

m

(
1− 1

16

)2
)
,

which comes from the union bound together with ‖Φx0‖2`2 ∼ Zr for each x0. Further,

one can find N (ε) obeying

|N (ε)| ≤ (3/ε)k
(
m

k

)
.

The reason is simple. First, one can find an ε-net of the k − 1-dimensional sphere

whose cardinality does not exceed (3/ε)k, see [74, Lemma 4.16]. And second, Σk is

a union of
(
m
k

)
k − 1-dimensional spheres. We then apply this fact together with

Lemma 2.6.2, and obtain

P
(
ak(Φ) <

7
8

√
r

m

)
≤ 48k (m/r)k/2

(
m

k

)
e−r/133.

Next, there is a bound on binomial coefficients of the form log
(
m
k

)
≤ k(log(m/k)+1)

so that

48k (m/r)k/2
(
m

k

)
≤ exp (k(5 + 0.5 log(m/r) + log(m/k))) .

One can check that if k ≤ c0 · r/(logm/r) for c0 sufficiently small, the right-hand-

side of the last inequality is bounded by eβ0r for some β0 < 1/133. This establishes

the first part of the theorem, namely, (2.25).

The second part is nearly identical and is only sketched. We have that

bk(Φ) = sup
x∈Σk

‖Φx‖`2 ≤ sup
x0∈N (ε)

‖Φx0‖`2 + ε.

The proof now proceeds as before noting that (2.23) gives a bound on the probability

that for each x0, ‖Φx0‖2`2 exceeds r/m times a small multiplicative factor.

Note that in this proof, we have not tried to derive the optimal constants, and
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a more refined analysis would surely yield far better numerical constants.

2.6.3 The SOCP decoder

We begin by adapting an important result from [27].

Lemma 2.6.4 (adapted from [27]). Set Φ ∈ Rr×m and let (ak) and (bk) be the

restricted extremal singular values of Φ as in (2.24). Any point x̃ ∈ Rm obeying

‖x̃‖`1 ≤ ‖x‖`1 , and ‖Φx̃− Φx‖`2 ≤ 2ε, (2.27)

also obeys

‖x̃− x‖`2 ≤
√

6 ε
a3k(Φ)− 1√

2
b2k(Φ)

, (2.28)

provided that x is k-sparse with k such that a3k(Φ)− 1√
2
b2k(Φ) > 0. holds

The proof follows the same steps as that of Theorem 1.1 in [27], and is omitted.

In particular, it follows from (2.6) in the aforementioned reference with M = 2|T0|

and aM+|T0| (resp. bM ) in place of
√

1− δ|T0|+M (resp.
√

1 + δM ) in the definition

of C|T0|,M .

2.6.3.1 Proof of Theorem 2.3.2

Recall that the solution (x̂, ẑ) to (P2) obeys (2.8) where ê is the solution to (P ′2).

Replacing y in (2.8) with Ax+ e+ z gives

x̂− x = (A∗A)−1A∗(e− ê) + (A∗A)−1A∗z

= (A∗A)−1A∗(e− ê) + xIdeal − x, (2.29)

and since A∗A = I,

‖x̂− x‖`2 ≤ ‖A∗(e− ê)‖`2 + ‖xIdeal − x‖`2 .

To prove (2.11), it then suffices to show that ‖e− ê‖`2 ≤ C ε√
1− n

m

since the 2-norm of

A∗ is at most 1.
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By assumption ‖Q∗(y − e)‖`2 = ‖Q∗z‖`2 ≤ ε and thus, e is feasible for (P ′2)

which implies ‖ê‖`1 ≤ ‖e‖`1 . Moreover,

‖Q∗e−Q∗ê‖`2 ≤ ‖Q∗(y − e)‖`2 + ‖Q∗(y − ê)‖`2 ≤ 2ε.

We then apply Lemma 2.6.4 (with Φ = Q∗) and obtain

‖e− ê‖`2 ≤
√

6 ε
a3k(Q∗)− 1√

2
b2k(Q∗)

. (2.30)

Now since the m×m matrix obtained by concatenating the columns of A and Q is

an isometry, we have

‖A∗x‖2`2 + ‖Q∗x‖2`2 = ‖x‖2`2 ∀x ∈ Rm,

whence

a2
k(Q

∗) = 1− b2k(A
∗),

b2k(Q
∗) = 1− a2

k(A
∗).

Assuming that a3k(Q∗) ≥ 1√
2
b2k(Q∗), we deduce from (2.30) that

‖e− ê‖`2 ≤
√

6 ε ·
a3k(Q∗) + 1√

2
b2k(Q∗)

1− b23k(A
∗)− 1

2(1− a2
2k(A

∗))

≤ 2
√

6ε · a3k(Q∗)
1
2 + 1

2a
2
2k(A

∗)− b23k(A
∗)
.

(2.31)

Recall that (δk) are the restricted isometry constants of
√

m
n A

∗, and observe that

by definition for each k = 1, 2, . . .,

a2
k(A

∗) ≥ n

m
(1− δk), b2k(A

∗) ≤ n

m
(1 + δk).

It follows that the denominator on the right-hand side of (2.31) is greater or equal
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to

1
2

+
n

2m
(1− δ2k)−

n

m
(1 + δ3k)

=
1
2

(
1− n

m

)
− n

m

(
δ3k +

1
2
δ2k

)
.

Now suppose that for some 0 < c < 1,

δ3k +
1
2
δ2k ≤

c

2
·
(m
n
− 1
)
.

This automatically implies a3k(Q∗) ≥ 1√
2
b2k(Q∗), and the denominator on the right-

hand side of (2.31) is greater or equal to 1
2(1− c)(1− n

m). The numerator obeys

a2
3k(Q

∗) = 1− b23k(A
∗) ≤ 1− a2

3k(A
∗) ≤ 1− (1− δ3k)

n

m
.

Since n
m δ3k ≤ c

2(1− n
m), we also have a2

3k(Q
∗) ≤ (1+ c

2)(1− n
m). In summary, (2.31)

gives

‖e− ê‖`2 ≤ C2 ·
ε√

1− n
m

,

where one can take C2 as 4
√

6(1 + c/2)/(1 − c). This establishes the first part of

the claim.

We now turn to the second part of the theorem and argue that if the orthonormal

columns of A are chosen uniformly at random, the error bound (2.11) is valid as

long as we have a constant fraction of gross errors. Put r = m− n and let X be an

m by r matrix with independent Gaussian entries with mean 0 and variance 1/m.

Consider now the reduced singular value decomposition of X

X = UΣV ∗, U ∈ Rm×r and Σ, V ∈ Rr×r.

Then the columns of U are r orthonormal vectors selected uniformly at random and

thus U and Q have the same distribution. Thus we can think of Q as being the left

singular vectors of a Gaussian matrix X with independent entries. From now on,
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we identify U with Q. Observe now that

‖X∗(ê− e)‖`2 = ‖V ΣQ∗(ê− e)‖`2 = ‖ΣQ∗(ê− e)‖`2

≤ σ1(X) ‖Q∗(ê− e)‖`2 ,

where σ1(X) is the largest singular value of X. The singular values of Gaussian

matrices are well concentrated and a classical result [34, Theorem II.13] shows that

P
(
σ1(X) > 1 +

√
r

m
+ t

)
≤ e−mt

2/2. (2.32)

By choosing t = 1 in the above formula, we have

‖X∗(ê− e)‖`2 ≤ 3‖Q∗(ê− e)‖`2 ≤ 6ε

with probability at least 1− e−m/2 since ‖Q∗(ê− e)‖`2 ≤ 2ε. We now apply Lemma

2.6.4 with Φ = X∗, which gives

‖e− ê‖`2 ≤
3
√

6 ε
a3k(X∗)− 1√

2
b2k(X∗)

=
√
m

r
· 3

√
6 ε

a3k(Y ∗)− 1√
2
b2k(Y ∗)

,

(2.33)

where Y =
√

m
r X. The theorem is proved since it is well known that if k ≤

c0 · r/ log(m/r) for some constant c0, we have a3k(Y ∗) − 1√
2
b2k(Y ∗) ≥ c1 with

probability at least 1−O(e−γ
′r) for some universal constants c1 and γ; this follows

from available bounds on the restricted isometry constants of Gaussian matrices

[29, 28, 42, 77].

2.6.3.2 Proof of Corollary 2.3.3

First, we can just assume that σ = 1 as the general case is treated by a simple

rescaling. Put r = m− n. Since the random vector z follows a multivariate normal

distribution with mean zero and covariance matrix Im (Im is the identity matrix

in m dimensions), Q∗z is also multivariate normal with mean zero and covariance

matrix Q∗Q = Ir. Consequently, ‖Q∗z‖2`2 is distributed as a chi-squared variable
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with r degrees of freedom. Pick λ = γ
√
r in (2.20), and obtain

P
(
‖Q∗z‖2`2 ≥ (1 + γ

√
2 + γ2)r

)
≤ e−γ

2r/2.

With t = γ
√

2 + γ2 so that γ = (
√

1 + 2t − 1)/
√

2, we have ‖Q∗z‖`2 ≤
√
r(1 + t)

with probability at least 1− e−γ2(m−n)/2. On this event, Theorem 2.3.2 asserts that

‖x̂− x‖`2 ≤ C
√
m(1 + t) + ‖x− xIdeal‖`2 .

This essentially concludes the proof of the corollary since the size of ‖x − xIdeal‖`2
is about

√
n. Indeed, ‖x − xIdeal‖2`2 = ‖A∗z‖2`2 ∼ χ2

n as observed earlier. As a

consequence, for each t0 > 0, we have ‖x−xIdeal‖`2 ≤
√
n(1 + t0)·σ with probability

at least 1 − e−γ
2
0n/2, where γ0 is the same function of t0 as before. Selecting t0 as

t0 = m/n, say, gives the result.

2.6.4 The LP decoder

Before we begin, we introduce the number θk,k′ of a matrix Φ ∈ Rr×m for k+k′ ≤ m

called the k, k′-restricted orthogonality constants. This is the smallest quantity such

that

|〈Φv,Φv′〉| ≤ θk,k′ · ‖v‖`2 ‖v′‖`2 (2.34)

holds for all k and k′-sparse vectors supported on disjoint sets. Small values of

restricted orthogonality constants indicate that disjoint subsets of columns span

nearly orthogonal subspaces. The following lemma which relates the number θk,k′

to the extremal singular values will prove useful.

Lemma 2.6.5. For any matrix Φ ∈ Rr×m, we have

θk,k′(Φ) ≤ 1
2

(b2k+k′(Φ)− a2
k+k′(Φ)).

Proof. Consider two vectors v and v′ which are respectively k and k′-sparse. By
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definition we have

2a2
k+k′(Φ) ≤ ‖Φv + Φv′‖2`2 ≤ 2b2k+k′(Φ),

2a2
k+k′(Φ) ≤ ‖Φv − Φv′‖2`2 ≤ 2b2k+k′(Φ),

and the conclusion follows from the parallelogram identity

|〈Φv,Φv′〉| = 1
4

∣∣‖Φv + Φv′‖2`2 − ‖Φv − Φv′‖2`2
∣∣

≤ 1
2

(b2k+k′(Φ)− a2
k+k′(Φ)).

The argument underlying Theorem 2.4.1 uses an intermediate result whose proof

may be found in the Appendix. Here and in the remainder of this chapter, xI is the

restriction of the vector x to an index set I, and for a matrix X, XI is the submatrix

formed by selecting the columns of X with indices in I.

Lemma 2.6.6. Let Φ be an r ×m-dimensional matrix and suppose T0 is a set of

cardinality k. For a vector h ∈ Rm, we let T1 be the k′ largest positions of h outside

of T0. Put T01 = T0 ∪ T1 and let Φ∗
T01

and hT01 be the coordinate restrictions of Φ∗

and h to T01, respectively. Then

‖hT01‖`2 ≤
1

a2
k+k′(Φ)

‖Φ∗
T01

Φh‖`2 +
θk′,k+k′(Φ)
a2
k+k′(Φ)

√
k′
‖hT c

0
‖`1 (2.35)

and

‖h‖2`2 ≤ ‖hT01‖2`2 +
1
k′
‖hT c

0
‖2`1 . (2.36)

2.6.4.1 Proof of Theorem 2.4.1

Just as before, it suffices to show that ‖e− ê‖`2 ≤ C
√
k ·λ·(1−n/m)−1. Set h = ê−e

and let T0 be the support of e (which has size k). Because e is feasible for (P ′∞) we
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have on the one hand ‖ê‖`1 ≤ ‖e‖`1 , which gives

‖eT0‖`1 − ‖hT0‖`1 + ‖hT c
0
‖`1 ≤ ‖e+ h‖`1 ≤ ‖e‖`1

⇒ ‖hT c
0
‖`1 ≤ ‖hT0‖`1 .

Note that this has an interesting consequence since

‖hT c
0
‖`1 ≤ ‖hT0‖`1 ≤

√
k · ‖hT0‖`2 (2.37)

by Cauchy Schwarz. On the other hand

‖QQ∗h‖`∞ ≤ ‖QQ∗(ê− y)‖`∞ + ‖QQ∗(y − e)‖`∞ ≤ 2λ. (2.38)

The ingredients are now in place to establish the claim. We set k′ = k, apply

Lemma (2.6.6) with Φ = Q∗ to the vector h = ê− e, and obtain

‖h‖`2 ≤
√

2 ‖hT01‖`2 , and

‖hT01‖`2 ≤
1

a2
2k(Q

∗)− θk,2k(Q∗)
‖QT01Q

∗h‖`2 .
(2.39)

Since each component of QT01Q
∗h is at most equal to 2λ, see (2.38), we have

‖QT01Q
∗h‖`2 ≤

√
2k · 2λ. We then conclude from Lemma 2.6.5 that

‖h‖`2 ≤ 2
√
k · 2λ

a2
2k(Q

∗) + 1
2a

2
3k(Q

∗)− 1
2b

2
3k(Q

∗)
. (2.40)

For each k, recall the relations a2
k(Q

∗) = 1− b2k(A∗) and b2k(Q
∗) = 1− a2

k(A
∗) which

give

‖h‖`2 ≤ 4
√
k · λ

D
,

D := 1− b22k(A
∗)− 1

2
b23k(A

∗) +
1
2
a2

3k(A
∗).

Now just as before, it follows from our definitions that for each k, b2k(A
∗) ≤ n

m(1+δk)
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and a2
k(A

∗) ≥ n
m(1− δk). These inequalities imply

D ≥ 1− n

m
(1 + δ2k + δ3k).

Therefore, if one assumes that

δ2k + δ3k ≤ c
(m
n
− 1
)
,

for some fixed constant 0 < c < 1, then

‖e− ê‖`2 = ‖h‖`2 ≤
4
√
k

1− c
· λ

1− n
m

.

This establishes the first part of the theorem.

We turn to the second part of the claim; if the orthonormal columns of A are

chosen uniformly at random, we show that the error bound (2.17) is valid with large

probability as long as we have a constant fraction of gross errors. To do this, it

suffices to show that the denominator D in (2.40) obeys

D ≥ 3
2
a2

3k(Q
∗)− 1

2
b23k(Q

∗) ≥ r

2m
.

This follows from Lemma 2.6.3. If k is sufficiently small, we have that a2
3k(Q

∗) ≥

(7/8)2r/m and b23k(Q
∗) ≤ (9/8)2r/m except on a set of exponentially small proba-

bility, which gives

D ≥ r

m

(
3
2

(
7
8

)2

− 1
2

(
9
8

)2
)
≥ r

2m
.

2.6.4.2 Proof of Corollary 2.4.2

First, we can just assume that σ = 1 as the general case is treated by a simple

rescaling. The random vector QQ∗z follows a multivariate normal distribution with

mean zero and covariance matrix QQ∗. In particular (QQ∗z)i ∼ N(0, s2i ), where

s2i = (QQ∗)i,i. This implies that z′i = (QQ∗z)i/si is standard normal with density

φ(t) = (2π)−1/2e−t
2/2. For each i, P(|z′i| > t) ≤ φ(t)/t and thus

P
(

sup
1≤i≤m

|z′i| ≥ t

)
≤ 2m · φ(t)/t.
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With t =
√

2 logm, this gives P(sup1≤i≤m |z′i| ≥
√

2 logm) ≤ 1/
√
π logm. Better

bounds are possible but we will not pursue these refinements here. Observe now

that s2i = ‖Qi,·‖2`2 = 1− ‖Ai,·‖2`2 , and since λi =
√

2 logm ‖Qi,·‖`2 , we have that

|QQ∗zi| ≤ λi, ∀i (2.41)

with probability at least 1− 1/
√
π logm.

On the event (2.41), Theorem 2.4.1 then shows that

‖x̂− x‖`2 ≤ C
√
k · (m/r) ·max

i
|λi|+ ‖x− xIdeal‖`2 . (2.42)

We claim that
maxi |λi|√

2 logm
= max

i
‖Qi,·‖`2 ≤

√
3r
m

(2.43)

with probability at least 1− 2e−γm for some positive constant γ. Combining (2.42)

and (2.43) yields

‖x̂− x‖`2 ≤ 2C ·
√
m logm
m− n

·
√
k + ‖x− xIdeal‖`2 .

This would essentially conclude the proof of the corollary since the size of ‖x −

xIdeal‖`2 is about
√
n. Exact bounds for ‖x − xIdeal‖`2 are found in the proof of

Corollary 2.3.3 and we do not repeat the argument.

It remains to check why (2.43) is true. For r ≥ m/3 and since ‖Qi,·‖`2 ≤ 1, the

claim holds with probability 1 because 3r/m ≥ 1! For r ≤ m/3, it follows from

‖Qi,·‖2`2 + ‖Ai,·‖2`2 = 1 that

P
(

max
i
‖Qi,·‖2`2 ≥

2r
m

)
= P

(
min
i
‖Ai,·‖2`2 ≤

n

m

(
1− r

n

))
≤ mP

(
‖A1,·‖2`2 ≤

n

m

(
1− r

n

))
.

The claim follows by applying Lemma 2.6.2 since r/n ≤ 1/2.
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2.7 Discussion

We have introduced two decoding strategies for recovering a block x ∈ Rn of n pieces

of information from a codeword Ax which has been corrupted both by adversary and

small errors. Our methods are concrete, efficient and guaranteed to perform well.

Because we are working with real valued inputs, we emphasize that this work has

nothing to do with the use of linear programming methods proposed by Feldman

and his colleagues to decode binary codes such as turbo-codes or low-density parity

check codes [51, 53, 52]. Instead, it has much to do with the recent literature on

compressive sampling or compressed sensing [26, 29, 40, 87, 33, 76], see also [90, 67]

for related work.

On the practical end, we truly recommend using the two-step refinement dis-

cussed in Section 2.5—the reprojection step—as this really tends to enhance the

performance. We anticipate that other tweaks of this kind might also work and pro-

vide additional enhancement. On the theoretical end, we have not tried to obtain

the best possible constants and there is little doubt that a more careful analysis

will provide sharper constants. Also, we presented some results for coding matrices

with orthonormal columns for ease of exposition but this is unessential. In fact, our

results can be extended to nonorthogonal matrices. For instance, one could just as

well obtain similar results for m× n coding matrices A with independent Gaussian

entries.

There are also variations on how one might want to decode. We focused on

constraints of the form ‖PV ⊥ z̃‖ where ‖·‖ is either the `2 norm or the `∞ norm, and

PV ⊥ is the orthoprojector onto V ⊥, the orthogonal subspace to the column space of

A. But one could also imagine choosing other types of constraints, e.g., of the form

‖X∗z̃‖`2 ≤ ε for (P2) or ‖XX∗z̃‖`∞ ≤ λ for (P∞) (or constraints about the individual

magnitudes of the coordinates (XX∗z̃)i in the more general formulation), where the

columns of X span V ⊥. In fact, one could choose the decoding matrix X first, and

then A so that the ranges of A and X are orthogonal. Choosing X ∈ Rm×r with

i.i.d. mean-zero Gaussian entries and applying the LP decoder with a constraint on

‖XX∗z̃‖`∞ instead of ‖z̃‖`∞ would simplify the argument since restricted isometry

constants for Gaussian matrices are already readily available [29, 28, 42, 77]!
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Finally, we discussed the use of coding matrices which have fast algorithms, thus

enabling large scale problems. Exploring further opportunities in this area seems a

worthy pursuit.

2.8 Appendix: Proof of Lemma 2.6.6

The proof is a variation on that of Lemma 3.1 in [30]. In the sequel, T0 ⊂ {1, . . . ,m}

is a set of size k, T1 is the k′ largest positions of h outside of T0, T01 = T0 ∪ T1.

Next, divide T c0 into subsets of size k′ and enumerate T c0 as n1, n2, . . . , nm−|T0| in

decreasing order of magnitude of hT c
0
. Set Tj = {n`, (j − 1)k′ + 1 ≤ ` ≤ jk′}. That

is, T1 is as before and contains the indices of the k′ largest coefficients of hT c
0
, T2

contains the indices of the next k′ largest coefficients, and so on.

Observe that ΦhT01 = Φh−
∑

j≥2 ΦhTj so that

‖ΦhT01‖2`2 = 〈ΦhT01 ,Φh〉 −
∑
j≥2

〈ΦhT01 ,ΦhTj 〉.

On the one hand, we have

|〈ΦhT01 ,Φh〉| = 〈hT01 ,Φ
∗
T01

Φh〉 ≤ ‖hT01‖`2 ‖Φ∗
T01

Φh‖`2 ,

and on the other

|〈ΦhT01 ,ΦhTj 〉| ≤ θk+k′,k′‖hT01‖`2‖hTj‖`2 .

This gives

a2
k+k′‖hT01‖2`2 ≤ ‖ΦhT01‖2`2

= ‖hT01‖`2 (‖Φ∗
T01

Φh‖`2 + θk+k′,k′
∑
j≥2

‖hTj‖`2),
(2.44)

where for simplicity, we have omitted the dependence on Φ in the constants ak(Φ)

and θk,k′(Φ). We then develop an upper bound on
∑

j≥2 ‖hTj‖`2 as in [27]. By

construction, the magnitude of each coefficient in Tj+1 is less than the average of
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the magnitudes in Tj ,

‖hTj+1‖`∞ ≤ ‖hTj‖`1/k′ ⇒ ‖hTj+1‖2`2 ≤ ‖hTj‖2`1/k
′.

Therefore, ∑
j≥2

‖hTj‖`2 ≤
∑
j≥1

‖hTj‖`1/
√
k′ = ‖h‖`1(T c

0 )/
√
k′. (2.45)

Hence, we deduce from (2.44) that

‖hT01‖`2 ≤
‖Φ∗

T01
Φh‖`2

a2
k+k′

+
θk+k′,k′ ‖h‖`1(T c

0 )

a2
k+k′

√
k′

,

which proves the first part of the lemma.

For the second part, it follows from (2.45) that

‖hT c
01
‖`2 = ‖

∑
j≥2

hTj‖`2 ≤
∑
j≥2

‖hTj‖`2 ≤ ‖hT c
0
‖`1/

√
k′.
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Chapter 3

Incoherence and sparsity oracle
inequalities

3.1 Abstract

This chapter is concerned with the problem of recovering a sparse signal x ∈ Rn from

a few noisy linear measurements y ∈ Rn, or, alternatively, recovering a noisy signal

f ∈ Rm that has a sparse representation, f = Ax. In other words, if y = Ax + z,

where A ∈ Rm×n, m < n, and z ∈ Rm is a noise vector, we would like to find good

estimates of x or Ax. We require that the estimates be found in a computationally

reasonable manner.

We explore what types of results are even possible by deriving loss bounds as-

suming one is provided with additional information. These bounds are known as

sparsity oracle inequalities. We then detail existing results and examine under what

conditions they come close to achieving oracle optimality, without access to the

oracle information.

Finally, we introduce our results which obtain oracle optimality when estimating

x up to log factors and a factor of
√
s. We do this by solving convex optimization

programs—the Dantzig selector if the noise is Gaussian, and a second-order cone

program if the noise is deterministic and has a bounded `2 norm. We require A

to obey an incoherence property, which allows the coherence of A to be as large as

O(1/ log n) and still allows sparsities as large as O(m/ log n). This is in contrast to

other existing results involving coherence where the coherence can only be as large

as O(1/
√
n) to allow sparsities as large as O(

√
n). We also do not make the common
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assumption that the matrix A obeys a uniform uncertainty principle, or some other

eigenvalue restriction.

3.2 Introduction

We are interested in the following setup: we have noisy linear measurements of a

sparse signal. The signal can be sparse in the sense that it has only a few non-

zero coefficients, or sparse in the sense that its coefficients quickly decay. We will

consider both stochastic noise, in which case we will assume the noise is Gaussian,

z ∼ N(0, Iσ2), and deterministic noise with bounded `2 norm, ‖z‖`2 < ε. Because

the measurements are linear, we think of having a measurement matrix A ∈ Rm×n.

We are interested in the case where we take fewer measurements than the dimension

of the signal, so m < n. Finally, we assume that the columns of A have unit norm.

In the language of statistics, we are in the linear regression setup where the

number of observations or samples is less than the number of parameters,

Ax+ z = y.

This is also called parametric regression with fixed linear design, where A is the

design matrix, the columns of A are predictors, x is a vector of model coefficients

or variables, and y is a vector of observations called the response.

We would like to estimate the signal x and quantify the coefficient loss, or esti-

mate Ax and quantify the prediction loss. We require that the method of obtaining

the estimates be computationally tractable. In this chapter, we derive estimates for

x using a linear program known as the Dantzig selector [30] in the case of stochastic

noise, and a second-order cone program in the case of deterministic noise, that are

oracle optimal up to log factors and factors of
√
s. What is novel about our results

is that we require the matrix A to obey an incoherence property instead of the more

common uniform uncertainty principle, or some other similar eigenvalue restriction.
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3.2.1 Organization of chapter

The rest of this chapter is organized as follows. In Section 3.3 we discuss the notion

of oracle optimality and derive benchmark estimates for various scenarios. In Section

3.4 we show that under a condition known as the uniform uncertainty principle, all

the benchmark estimates can be met. In Section 3.5 we discuss a coherence condition

and mention results that are able to achieve some oracle optimality success. In

Section 3.6 we introduce our contributions and in Section 3.7 we briefly mention

other, related work. In Section 3.8 we prove our theorems and, finally, in Section

3.9 we conclude with a discussion of our results.

3.3 Oracles and optimality

We are interested in finding good estimates of x or Ax, but it is worthwhile to pause

and first ask what types of results are even possible. The standard benchmark for

problems of this type is to compare the performance of a particular method to what

is possible if a little extra information is provided by an oracle. An oracle, in the

tradition of the Greeks, is something that can provide information beyond what is

usually known. We begin by calculating how well we can estimate x or Ax with the

assistance of an oracle.

3.3.1 Exactly sparse signal, stochastic noise

For example, assuming that x is sparse, if an oracle were to tell us the support T of

x in advance, one could reconstruct an estimate of x, call it x?, using least-squares

projection onto the support. This is a reasonable reconstruction strategy as x? is

the maximum-likelihood estimator over all signals supported on T . The estimate x?

is then given by

x? =


(A∗TAT )−1A∗T y on T

0 on T c,

where AT , T ⊂ {1, . . . , n}, is the m × |T | submatrix obtained by extracting the

columns of A corresponding to the indices in T . In other words, recalling that



67

y = ATxT + z (we have used the fact that x is only supported on T ), we would have

x?T = xT + (A∗TAT )−1A∗T z

and x?T c = 0. Assuming that the noise is Gaussian, the estimated mean-squared

error is then

E‖x? − x‖2`2 = E‖(A∗TAT )−1A∗T z‖2`2 = σ2Tr((A∗TAT )−1).

Making the reasonable assumption that the eigenvalues of A∗TAT are well-behaved

(meaning that they are clustered together away from zero), the ideal expected mean

squared error obeys

E‖x? − x‖2`2 ≥ λmin((A∗TAT )−1) · s · σ2 ≥ C · s · σ2.

In other words, we expect ‖x? − x‖`2 ≈ O(σ
√
s). If we can achieve something

similar to this bound for a method that does not know the support of x in advance,

we declare the method to be `2 oracle optimal.

However, the `2 norm is not the only metric by which to measure the reconstruc-

tion error. Instead of measuring the error between x and x̂ in the `2 norm, we could

measure it in the `1 norm. Let c = (A∗TAT )−1A∗T z and cj = e∗j (A
∗
TAT )−1A∗T z =

〈AT (A∗TAT )−1ej , z〉, where ej is the jth canonical unit vector. Again, assuming the

noise is Gaussian, we note that

cj ∼ N(0, ‖AT (A∗TAT )−1ej‖2`2σ
2),

and so write cj = ‖(ATA∗T )−1/2ej‖`2σ · w where w ∼ N(0, 1). Thus we have

E‖(A∗TAT )−1A∗T z‖`1 =
s∑
j=1

E|cj |

= E|w|σ
s∑
j=1

‖(A∗TAT )−1/2ej‖`2

≥ s · σ · E|w|√
‖A∗TAT ‖
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where E|w| is some known constant. We have used the fact that

‖(A∗TAT )−1/2ej‖`2 ≥
√
λmin((A∗TAT )−1) = 1/

√
λmax(A∗TAT )

and, again, the eigenvalues of A∗TAT are well-behaved. Thus, we have

E‖x? − x‖`1 ≥ C · s · σ.

Finally, it is possible that instead of being interested in how well the oracle can

estimate x, one is interested in how well it can estimate Ax. In this case, a simple

calculation shows that the expected mean-squared error is

E‖Ax? −Ax‖2`2 = σ2Tr(AT (A∗TAT )−1A∗T ) = s · σ2.

In all of the cases we have discussed so far, the oracle has always given the

support of x. However, if many of the coefficients of x are very small, it is possible

get a smaller expected mean squared error if the oracle instead provides the support

of the significant coefficients of the signal. For example, consider the case where the

non-zero entries of x are such that |xi| � σ for all i. With this information we could

set x? = 0. The `2 squared loss is then ‖x‖2, which is smaller than Csσ2.

More generally, if the oracle gives the support of x such that x is above the noise

level, i.e., the support I of x such that |xi| > σ, we could estimate x using this

information as

x? =


(A∗IAI)

−1A∗Iy on I

0 on Ic,

where y = AIxI +AIcxIc + z. This gives

‖x− x?‖2`2 = ‖xI − x?I‖2`2 + ‖xIc − x?Ic‖2`2

= ‖(A∗IAI)−1A∗IAIcxIc + (A∗IAI)
−1A∗Iz‖2`2 + ‖xIc‖2`2

= ‖(A∗IAI)−1A∗IAIcxIc‖2`2 + ‖(A∗IAI)−1A∗Iz‖2`2

+ 2〈(A∗IAI)−1A∗IAIcxIc , (A∗IAI)
−1A∗Iz〉+ ‖xIc‖2`2 ,
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and, again assuming that the noise is Gaussian,

E‖x− x?‖2`2 = ‖(A∗IAI)−1A∗IAIcxIc‖2`2 + σ2Tr((A∗IAI)
−1) + ‖xIc‖2`2

≥ C
(
σ2 · |I|+ ‖xIc‖2`2

)
= C ·

∑
i

min(x2
i , σ

2).

In other words, we have

‖x− x?‖2`2 ≈ O

(∑
i

min(x2
i , σ

2)

)

which is potentially much smaller than O(sσ2). In some sense this gives a near

optimal trade-off between the bias and variance coordinate by coordinate.

In this discussion we have restricted our attention to the `2 loss of x for the more

refined oracle bound, but similar relations also hold for the `1 loss and the Ax loss.

We will not go into them here in the interest of space considerations, but they take

the expected form.

3.3.2 Extension to nearly sparse x

Thus far we have only considered estimating a signal x that is exactly sparse. This

is a bit unrealistic as many x of interest probably do not satisfy this requirement. A

perhaps more reasonable condition is that x has only a few “large” components and

the rest, while being non-zero, are small. For example, it is common to consider the

situation where the entries of x decay at a given rate.

In this case, instead of giving the support of x, the oracle might give the support

T of the s largest components of x, in absolute value. One could estimate x using

this information in exactly the same way as for exactly sparse x, as

x? =


(A∗TAT )−1A∗T y on T

0 on T c,

where y = ATxT + AT cxT c + z. The math to calculate the expected mean squared

error is exactly the same as for when the oracle gives the support of the significant
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components of a sparse signal, and gives

E‖x− x?‖2`2 = ‖(A∗TAT )−1A∗TAT cxT c‖2`2 + σ2Tr((A∗TAT )−1) + ‖xT c‖2`2

≥ C · (σ2 · s+ ‖xT c‖2`2).

In other words, we have

‖x− x?‖2`2 ≈ O(σ
√
s+ ‖xT c‖`2).

If we assume the coefficients of x decay at a given rate, for example if the entries

of x are rearranged by order of decreasing magnitude |x1| ≥ |x2| ≥ . . . ≥ |xn| and

the kth largest entry satisfies

|xk| < Ck−r (3.1)

for some positive constant C and r ≥ 1, we note that

‖xT c‖`2 ≤ C ′s−r+1/2

where C ′ is another constant.

3.3.3 Other extensions: deterministic noise, no noise

So far we have only considered the case where the noise z is Gaussian. However, it

is possible to imagine situations where the only thing one knows about the noise is

that its `2 norm is bounded, i.e., ‖z‖`2 < ε. In this case, following similar reasoning

as above for Gaussian noise, it is not hard to show that one has the following

approximate bounds for sparse x and signals whose coefficients decay like (3.1),

respectively. (See [27] for more details.)

‖x? − x‖`2 ≈ O(ε)

‖x? − x‖`2 ≈ O(ε+ s−r+1/2).

Finally, we mention the case where there is no noise at all and x is exactly s-

sparse, so we have y = Ax = ATxT . In this situation, if the oracle gives the support
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of x we expect to be able to recover x exactly, as xT = (A∗TAT )−1A∗T y.

3.3.4 Summary of benchmarks

So in summary, we have the following benchmarks. If the noise is Gaussian and x

is exactly sparse, then with the assistance of an oracle we can achieve

‖x? − x‖`2 ≈ O(σ
√
s) (3.2)

‖x? − x‖`1 ≈ O(σs) (3.3)

‖Ax? −Ax‖`2 ≈ O(σ
√
s) (3.4)

which we refer to as `2, `1 and Ax optimality for s-sparse x, respectively.

If x is sparse but with coefficients below the noise level, we also have the refined

benchmark

‖x? − x‖2`2 ≈ O

(∑
i

min(σ2, x2
i )

)
. (3.5)

If x is not exactly sparse but has coefficients that decay like (3.1) we have

‖x? − x‖`2 ≈ O(σ
√
s+ s−r+1/2), (3.6)

which we refer to as `2 optimality for non-sparse x. We reiterate that in the case of

decaying coefficients, s is the size of the set the oracle returns, whether it be the s

largest coefficients of x (in absolute value) or the number of entries of x above the

noise level.

If the noise instead is deterministic and satisfies ‖z‖`2 < ε we have the following

`2 optimality benchmarks

‖x? − x‖`2 ≈ O(ε) (3.7)

‖x? − x‖`2 ≈ O(ε+ s−r+1/2), (3.8)

for exactly s-sparse x and x with decaying coefficients, respectively. Finally, if there

is no noise and x is s-sparse, we have that x? = x.

We stress that we are being very imprecise here and only intend these bench-

marks to roughly indicate how well we could hope to do with the assistance of an
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oracle. We would of course like to know how close we can get to these optimal

behaviors without the use of an oracle, using only computationally efficient meth-

ods. Clearly, one could not hope to do as well as with an oracle, but as we will see,

it is possible to do nearly as well, up to possible log factors and other additional

factors which we will discuss later, by solving convex optimization programs. One

can informally think of these additional factors as being the price one pays for not

knowing support information about the signal in advance.

3.4 The uniform uncertainty principle

In this section we show that if one assumes that the measurement matrix obeys

a condition called the uniform uncertainty principle, also sometimes called the re-

stricted isometry property, which we define below, one can achieve all the oracle

inequality benchmarks up to log factors by solving either a linear program in the

case of Gaussian noise or a second-order cone program in the case of `2 bounded

noise.

All of the results involving the restricted isometry property rely on the following

definition, which we now state.

Definition 3.4.1. The s-restricted isometry constant δs of A is the smallest quantity

such that

(1− δs)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δs)‖x‖2`2

holds for all s-sparse vectors. A vector is said to be s-sparse if it has at most s

non-zero entries.

If the s-restricted isometry constant δs is small, this implies that the matrix

A acts almost like an isometry on s-sparse vectors, hence the name. Another way

to interpret the isometry constants is to view them as restrictions on the singular

values of submatrices of A. If T ⊂ {1, 2, . . .}, is a set that indexes the columns of A,

and AT is the matrix formed from the columns of A in T , then for all eigenvalues λ

of A∗TAT we have

1− δs ≤ λ(A∗TAT ) ≤ 1 + δs

for all sets T such that |T | ≤ s.
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Using this definition, we are now able to state the existing uniform uncertainty

principle results.

3.4.1 Existing oracle inequality uniform uncertainty results

3.4.1.1 Stochastic noise

If the noise z is Gaussian, we let the estimate x̂ be the solution to the following

linear program, known as the Dantzig selector [30].

(P1) min
x̃
‖x̃‖`1 such that ‖A∗(y −Ax̃)‖`∞ ≤ λn · σ

where λn is a parameter that must be chosen. We will always select it to be
√

2 log n

for reasons we discuss below.

The next three theorems presented in this section are minor modifications of

Theorems 1.1, 1.2, and 1.3 of [30]. These modifications are not important to our

discussion here, but might be of independent interest to other researchers, so we

detail them in Appendices A and B at the end of this chapter.

Theorem 3.4.2 (Theorem 1.1 of [30]). Suppose x ∈ Rn is any s-sparse vector

and δ2s <
√

2− 1. Choose λn =
√

2 log n. Then the solution x̂ to (P1) obeys

‖x̂− x‖2`2 ≤ Cδ · log n · s · σ2

with probability greater than 1 − (
√
π log n)−1, where Cδ is a constant that can be

explicitly stated in terms of the constant δ2s.

This theorem shows that ‖x̂ − x‖`2 ≈ O(
√
sσ log n), and should be compared

with (3.2). Thus, if the 2s-restricted isometry constant of A satisfies δ2s <
√

2− 1,

then the solution x̂ to the Dantzig selector is `2 optimal for all s-sparse vectors x.

We point out that the scaling is not exactly the same as for the oracle because of

the presence of the log n term, but it is somewhat remarkable that without knowing

anything at all in advance about the support of x we are able to achieve anything

close to the oracle bound.

We will subsequently refer to any bound requiring that a combination of re-

stricted isometry constants be sufficiently small as the uniform uncertainty prin-
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ciple, also sometimes referred to as the restricted isometry property. We take this

liberty because it might be possible to improve the precise statement of the bound,

however the role of the bound in the theorem is always the same.

We would also like to draw attention to the manner in which probability enters

Theorem 3.4.2. If we assume that x is a feasible solution to the Dantzig selector,

in other words that ‖A∗(Ax− y)‖`∞ = ‖A∗z‖`∞ < σ · λn, then the result would be

deterministic. The probability only enters in because for Gaussian noise,

P
(
‖A∗z‖`∞ > σ

√
2 log n

)
≤ (π log n)−1/2,

hence our choice that λn =
√

2 log n.

Finally, we point out that if there is no noise, then Theorem 3.4.2 guarantees

exact recovery of s-sparse x. This can be seen by letting σ = 0 in the theorem,

which implies that x̂ = x. In this case (P1) reduces to

(P2) min
x̃
‖x̃‖`1 such that Ax̃ = y.

In addition to showing exact noiseless recovery, `2-optimality, and Ax-optimality

(this follows trivially as ‖Ax̂−Ax‖`2 ≤ ‖A‖ ‖x̂−x‖`2 and x̂ is `2-optimal), Theorem

3.4.2 also shows that the solution to the Dantzig selector is `1-optimal for Gaussian

noise. To see this, we note that in the course of the proof of Theorem 3.4.2, it is

shown that

‖hT01‖`2 ≤ Cδ ·
√
s ·
√

2 log n · σ

where h = x̂−x and T01 = T ∪T1, where T is the support of x and T1 ⊂ {1, . . . , n},

|T1| = s. Cδ is, as usual, a constant that can be stated in terms of restricted isometry

constants.

Thus we have

‖x̂− x‖`1 ≤ ‖hT ‖`1 + ‖hT c‖`1

≤ 2‖hT ‖`1

≤ 2‖hT01‖`1

≤ Cδ ·
√

2 log n · σ · s
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where the second inequality follows from ‖hT c‖`1 ≤ ‖hT ‖`1 (the well known cone-

constraint relation [45]) and we have used the fact that ‖hT01‖`1 ≤
√

2s‖hT01‖`2 .

Comparing ‖x̂ − x‖`1 ≈ O(
√

log n · s · σ) with (3.3) shows that the solution to the

Danzig selector is also `1 optimal, up to the factor of log n.

In addition to showing `2 optimality, there is even a result in [30] that shows

optimality for the more refined oracle estimate.

Theorem 3.4.3 (Theorem 1.2 of [30]). Choose t > 0 and set λn = (1 +
√

2t−1)
√

2 log n. Suppose that x ∈ Rn is any s-sparse vector with δ2s <
√

2− 1− t.

Then the solution x̂ to (P1) obeys

‖x̂− x‖2`2 ≤ C2
δ

(
1 +

∑
i

min(x2
i , λ

2
nσ

2)

)

with large probability, where Cδ depends only on δ2s.

This result should be compared with (3.5). We note in particular that the result

is oracle optimal up to a log factor in the variance term only. This is slightly different

than what appeared in [30] and we refer the reader to Appendix B of this chapter

for an explanation of the minor differences.

Thus if the matrix A satisfies the uniform uncertainty principle, the four types

of optimality for stochastic noise and exactly s-sparse x are achieved, up to factors

of log n.

If x is not exactly sparse, but instead has coefficients that decay like (3.1), [30]

also proves the following result.

Theorem 3.4.4 (Theorem 1.3 of [30]). Suppose x ∈ Rn has coefficients that

decay like (3.1) and δ2s <
√

2− 1 for some fixed s. Choose λn =
√

2 log n. Then x̂,

the solution to (P1), satisfies

‖x− x̂‖2`2 ≤ Cδ · log n · (sσ2 + C2
δ s
−2r+1)

with high probability, where Cδ is a constant which can be stated in terms of the

restricted isometry constant δ2s.

This theorem shows that ‖x̂ − x‖2`2 ≈ O(log n · s · σ2 + s−2r+1) which should
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be compared with (3.6). We see that `2 oracle optimality for signals with decaying

coefficients is achieved, up to a factor of log n.

3.4.1.2 Deterministic noise

In the case where it is only known that the noise is bounded, i.e., ‖z‖`2 < ε, we let

the estimate x̂ be the solution to the following convex program, a second-order cone

program.

(P3) min
x̃
‖x̃‖`1 such that ‖Ax̃− y‖`2 < ε

In [27], and later slightly improved in [19], the following theorems are proven.

Theorem 3.4.5 (Theorem 1 of [27]). Suppose x ∈ Rn is any s-sparse vector, A

satisfies δ2s <
√

2− 1 and ‖z‖`2 ≤ ε. Then the solution x̂ to (P3) obeys

‖x̂− x‖`2 ≤ Cδε

where Cδ is a constant that can be stated in terms of the restricted isometry constant

δ2s.

This result should be compared with (3.7).

Theorem 3.4.6 (Theorem 2 of [27]). Suppose x has coefficients that decay like

(3.1), δ2s <
√

2− 1, and ‖z‖`2 ≤ ε. The the solution x̂ to (P3) obeys

‖x̂− x‖`2 ≤ Cδ,1ε+ Cδ,2s
−r+1/2

where Cδ,1 and Cδ,2 constants that can be stated in terms of the restricted isometry

constant δ2s.

This result should be compared with (3.8). We note that oracle optimality is

achieved in these two theorems, without even spurious factors of log n.

Thus we have shown in this section that if A obeys the uniform uncertainty

principle, all of the oracle optimality benchmarks are achieved via the solution of

convex optimization programs, up to possible factors of log n.
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3.5 The coherence property and a statistical description

of x

Whether a matrix obeys the uniform uncertainty principle or not may be difficult

to check. For classes of random matrices one can show that the uniform uncertainty

principle holds with high probability [28, 29, 34, 42]. For example, if the entries of A

are i.i.d. Gaussian ∼ N(0, 1/m) then the uniform uncertainty principle holds with

high probability if s ≤ Cm/ log(n/m). Similar results hold for Bernoulli matrices

(i.i.d. entries ±1/
√
m with probability 1/2) or a matrix formed from a Fourier

matrix with randomly sampled rows.

However, for a given matrix of interest, it may be very difficult to verify that the

uniform uncertainty principle holds and one could possibly be reduced to computing

the singular values of all AT for |T | ≤ s. The UUP is a very strong condition on the

matrix and gives correspondingly strong results—results that are uniformly true for

any s-sparse x.

It is potentially appealing, then, to weaken the condition on the matrix to some-

thing that is easily verified, and in return for this, accept results that are only true

for an overwhelming majority of x. In other words, we will have weaker require-

ments on the matrix A, but will require a statistical description of x and our results

will only hold with a given high probability. The results discussed in this section

no longer make use of the uniform uncertainty principle, but instead rely on an

incoherence property which we now describe.

We denote by Xi the ith column of a matrix X with r columns and introduce the

notion of coherence, which essentially measures the maximum correlation between

normalized columns of X, and is given by

µ(X) = max
1≤i<j≤r

|〈Xi, Xj〉|
‖Xi‖`2‖Xj‖`2

.

We have the following definition:

Definition 3.5.1. A matrix X with r columns is said to obey the incoherence prop-

erty with constant c0 if

µ(X) ≤ c0 · (log r)−1.
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We also introduce a statistical description of exactly s-sparse x.

Definition 3.5.2. If x is exactly s-sparse, we say it comes from the following generic

s-sparse model if:

1. The support T ⊂ {1, . . . , n} of x is selected uniformly at random.

2. Conditional on T , the signs of the entries of x on T are independent and

equally likely to be ±1.

Later, when we consider signals that are not exactly sparse, we will also need

the following statistical model.

Definition 3.5.3. If x is not exactly s-sparse, we say it comes from the following

generic s-support model if:

1. The support T ⊂ {1, . . . , n} of the s largest (in absolute value) coefficients of

x is selected uniformly at random.

2. Conditional on T , the signs of the entries of x on T are independent and

equally likely to be ±1.

Using these definitions, we are now able to state several results that rely on the

incoherence property of a matrix instead of the uniform uncertainty principle.

3.5.1 Existing incoherence results

For Gaussian noise and s-sparse x, oracle optimality up to a log factor for Ax̂ is

achieved in [22], when x̂ is the solution of the following convex optimization program

(P4) min
x̃

1
2
‖y −Ax̃‖2`2 + 2λnσ‖x̃‖`1 .

This quadratic program, which is known as the lasso [83], is closely related to the

Dantzig selector. Again, λn is a parameter that must be chosen in advance.

What is proven in [22] is the following result showing Ax optimality for s-sparse

x.
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Theorem 3.5.4 (Theorem 1.2 of [22]). Suppose that A obeys the incoherence

property and x is taken from the generic s-sparse model. Suppose that s ≤ c0n/(‖A‖2 log n).

Then the solution to (P4) with λn =
√

2 log n obeys

‖Ax−Ax̂‖2`2 ≤ C · λn · s · σ2

with probability at least 1− 3n−2 log 2 − n−1(4π log n)−1/2.

Oracle optimality of s-sparse x in `2 and `1 is also shown in [22], assuming the

values of the non-zero components of x are sufficiently above the noise level. This

is a straightforward consequence of the following theorem.

Theorem 3.5.5 (Theorem 1.3 of [22]). Let T be the support of x and suppose

that

min
i∈T

|xi| > 8σ
√

2 log n.

Further suppose that A obeys the incoherence property, x is taken from the generic

s-sparse model, and s ≤ con/(‖A‖2 log n). Then the solution to (P2) with λn =
√

2 log n obeys

supp(x̂) = supp(x)

sgn(x̂) = sgn(x)

with probability at least 1− 2n−1((2π log n)−1/2 + sn−1)−O(n−2 logn).

Because the lasso returns the correct support of x, one has the same information

as given by the oracle and thus can obviously return oracle optimal results, without

even having to pay the price of a log factor.

3.6 Contributions of this chapter

To summarize what we have discussed so far, if the matrix A obeys the uniform

uncertainty principle we have shown that, in the case of stochastic noise, the solution

of the Dantzig selector (P1), obeys our benchmarks (up to log factors) for exactly

sparse x, and also if x has decaying coefficients. If the noise is deterministic and
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bounded in `2, then the solution to the second-order cone program (P3) is oracle

optimal for sparse x and for x with decaying coefficients. Finally, if the matrix A

instead satisfies the incoherence property, x is s-sparse and comes from a proper

statistical model, and the noise is Gaussian, we have shown that the lasso achieves

Ax optimality. In addition, if we assume that the non-zero entries of x are sufficiently

above the noise level, we also have `2 and `1 optimality.

This begs the following questions, which this chapter attempts to answer.

• Assuming A satisfies the incoherence property and x is exactly sparse, how

close can we come to `2 and `1 optimality using the Dantzig selector if we

don’t assume the non-zero coefficients of x are large? What if x is not exactly

sparse?

• What can we say if A satisfies the incoherence property and we have bounded

noise?

3.6.1 Common hypotheses of our theorems

All of the theorems we present in this section will require that a common set of

hypotheses hold, which we now detail. The first two requirements are conditions on

the coherence of A and the sparsity of x.

H1. µ(A) <
c0

log n

H2. s <
c1n

‖A‖2 log n

where c0 and c1 are positive constants. H1 requires that A obeys the incoherence

property while H2 is a limit on the sparsity of x. Furthermore, we require that the

constants c0 and c1 that appear in H1 and H2 be sufficiently small so that they

satisfy the following two relations

H3. 30c0 + 12
√

2c1 +
2c1

log n
<

1
4

H4. 4c0 +
√
c1 <

1
2
√

8(2 log 2 + 1)
.

These last two relations are by no means optimal—they come from probability

bounds which could most likely be improved, but which would complicate the proofs
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of our theorems, and so we have chosen to leave them in this form. These hypotheses

appear in all our theorems because for each theorem we need to show that the same

certain conditions hold with high probability.

Finally, we point out that while Theorem 3.5.4 and Theorem 3.5.5 (Theorem 1.2

and 1.3 of [22]) also assume H1 and H2, it appears at first glance that H3 and H4

are not necessary in those results. However, a similar requirement that c0 and c1 be

sufficiently small is actually implicitly assumed in their proofs.

With these assumptions in mind, we now are able to introduce our results.

3.6.2 No noise

We begin by considering the noiseless case, Ax = y. We show that if x is from

the generic s-sparse model and A obeys the incoherence property, than the solution

of (P2) recovers x with high probability. We should point out that this result is

essentially contained in Theorem 1.2 of [22], but it was not explicitly stated or

proved there, and our proof of it, which is quite different than the proof given in

[22], provided much inspiration for our other proofs in this section. Thus we include

it here for completeness.

Theorem 3.6.1. Suppose x is taken from the generic s-sparse model and that hy-

potheses H1–H4 hold. Then the solution to

min
x̃
‖x̃‖`1 such that Ax̃ = y

satisfies x̂ = x with probability at least 1− 8n−2 log 2.

Thus we are able to show optimality in the case of s-sparse x if the matrix obeys

the incoherence property.

3.6.3 Stochastic noise

In the following theorem, we are also able to show oracle optimality, almost, if

the measurements are corrupted with Gaussian noise and the matrix A obeys the

incoherence property.
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Theorem 3.6.2. Suppose x is taken from the generic s-sparse model and that hy-

potheses H1–H4 hold. Then the solution to

min
x̃
‖x̃‖`1 such that ‖A∗(y −Ax̃)‖`∞ ≤ λn · σ

with λn =
√

2 log n satisfies the following bounds

1. ‖x− x̂‖`2 ≤ s ·
√

2 log n · σ
(
4/
√
s+ 16

)
2. ‖x− x̂‖`1 ≤

√
2 log n · σ · s3/2 (8 + 12/s)

with high probability.

The first result of the theorem is of interest as it says that by simply solving

the Dantzig selector, a linear program, the `2 error between x and its estimate is

proportional to the true number of unknowns times the noise level σ (up to log

factors), where we have only assumed that the measurement matrix A obeys the

incoherence property. In other words, we have ‖x̂ − x‖`2 ≈ O(sσ
√

2 log n), which

should be compared with (3.2). Without the assistance of an oracle and by finding

an estimate x̂ in a computationally reasonable manner, we have been able to achieve

the ideal oracle `2 behavior, up to a log factor and a factor of
√
s.

For the second part of the theorem we have ‖x − x̂‖`1 ≈ O(
√

2 log n · σ · s3/2),

which should be compared with (3.3). Like in the `2 case, we achieve the ideal `1

benchmark, up to a log factor and a factor of
√
s.

We also have the following result when x is not exactly s-sparse.

Theorem 3.6.3. Suppose x is taken from the generic s-support model and has

coefficients that decay like (3.1). Further suppose that hypotheses H1–H4 hold. Then

the solution to

min
x̃
‖x̃‖`1 such that ‖A∗(y −Ax̃)‖`∞ ≤ λn · σ

with λn =
√

2 log n satisfies

‖x− x̂‖`2 ≤ s ·
√

2 log n · σ
(
4/
√
s+ 16

)
+O(s−r+1)
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with high probability.

This shows that ‖x − x̂‖`2 ≈ O(sσ
√

2 log n + s−r+1) and should be compared

with (3.6). Again, we see that we have achieved the ideal oracle behavior up to a

factor of
√
s (plus a log factor).

3.6.4 Bounded noise

We now consider the case of deterministic instead of stochastic noise. If x is exactly

sparse we have the following theorem.

Theorem 3.6.4. Suppose x is taken from the generic s-sparse model and ‖z‖`2 < ε.

Further suppose that hypotheses H1–H4 hold. Then the solution to

min
x̃
‖x̃‖`1 such that ‖Ax̃− y‖`2 < ε

satisfies

‖x− x̂‖`2 ≤ (2 + 8
√
s)
√

6ε

with high probability.

We also have the following result when x is not exactly sparse but has decaying

coefficients.

Theorem 3.6.5. Suppose x is taken from the generic s-support model and has

coefficients that decay like (3.1). Further suppose that hypotheses H1–H4 hold and

‖z‖`2 < ε. Then the solution to

min
x̃
‖x̃‖`1 such that ‖Ax̃− y‖`2 < ε

satisfies

‖x− x̂‖`2 ≤
(
2/
√
s+ 8

)√
6ε+O(s−r+1)

with high probability.

These results should be compared with the oracle benchmarks (3.7) and (3.8).

We see once again that we have achieved oracle optimality up to log factors and a
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factor of
√
s, using only a computationally tractable method to find the estimate of

x.

3.7 Connections with other work

Thus far in relation to our statistical estimation problem, we have almost exclusively

mentioned results by Candès, Tao, Romberg, and Plan. This is by no means meant

to imply that their work is the only that exists in this field, and we pause here to

briefly mention other related results. We are of course unable to be exhaustive, but

we hope to at least put our work in a better, more complete perspective.

We mentioned earlier that the restricted isometry constants that play a role in

the uniform uncertainty principle can be thought of as bounds on the singular values

of submatrices of A, where the submatrices are formed by taking subsets of columns

of A. There are several results [68, 93, 94, 8] that also essentially impose restrictions

on the singular values of submatrices of A. In [68] by solving the lasso they are

able to get a bound on ‖x̂ − x‖`2 by imposing what they call a sparse eigenvalue

condition. In [93], a similar eigenvalue condition is imposed, which they call the

sparse Riesz condition. They do not assume x is exactly sparse but almost exactly

sparse and get bounds on ‖Ax−Ax̂‖`2 and ‖x− x̂‖`p for p ≥ 1. Similar results are

also shown in [94] for ‖x− x̂‖`p . Finally, under a more general eigenvalue restriction,

in [8] they bound ‖x− x̂‖`p for 1 ≤ p ≤ 2 and show oracle inequalities of ‖f −Ax̂‖`2
for both Dantzig and lasso in the non-parametric regression model.

In addition to papers that impose eigenvalue constraints, there are also papers

that instead impose a mutual coherence requirement [12, 13, 44]. Their requirement

is different from the incoherence property we require, in that they assume s ≤

c/µ(A). In [12, 13] they are able to get oracle inequality bounds on ‖Ax−Ax̂‖`2 and

‖x−x̂‖`1 using a lasso-like penalty with stochastic noise. In the case of deterministic

noise, [44] proves similar results. However, in order to allow as large of a sparsity as

possible (the results are of course most interesting and widely applicable when x does

not have to be that sparse), the coherence must be minimal, i.e., µ ≈ 1/
√
n. Even in

this maximum sparsity case, it is still required that s .
√
n because s ≤ O(1/µ(A)).

In contrast, the incoherence property of this chapter allows the coherence to be
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as large as O((log n)−1), and still has the possibility that the result will hold for

sparsities as large as s = O(m/ log n). We discuss this further in Section 3.9.

We conclude this section by mentioning that in addition to the linear regression

setup of this chapter, there are many related results involving variations on this

theme, including non-parametric setups, extensions where the goodness of fit term

is not the residual sum of squares [89], model selection scenarios where it is not

required that the estimate be determined in a computationally feasible manner

[9, 6], and regression with random instead of fixed design [61], to name just a few.

To elaborate this last result a little further, [61] is able to extend the results

of [30] when the regression matrix has random design. In [30], as we have been

discussing, it is shown that if the regression matrix satisfies the UUP then oracle

optimality is achieved up to log factors and constants. Also, it is known that the

UUP holds with high probability if the matrix has i.i.d. Gaussian or Bernoulli

entries, for example. In [61], however, it is assumed that the columns of the design

matrix are ak(Xj) where the Xj are i.i.d. random variables in a measurable space

with distribution Π. This of course includes Gaussian and Bernoulli matrices. Then

the restricted isometry constants are given a slightly different definition of

(1− δ)‖x‖`2 ≤ ‖
p∑
j=1

xjaj‖L2(Π) ≤ (1 + δ)‖x‖`2

for all s-sparse x. We note that in this new definition of restricted isometry, Gaussian

or Bernoulli matrices have δs(Π) = 0 because sparse column subsets are orthonormal

systems in L2(Π), even though they are not orthornormal in `2.

What [61] shows is that if δ3s in this new definition is sufficiently small, oracle

optimality is achieved. This extends the results of [30] to random design matrices

beyond Gaussian and Bernoulli.

3.8 Proofs

All of our proofs require that the following three deterministic conditions hold.

Define w as w = AT (A∗TAT )−1sgnxT .

1. Invertibility condition. The eigenvalues of A∗TAT satisfy λ(A∗TAT ) ∈ [1/2, 3/2].
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The bounds 1/2 and 3/2 are arbitrary; we just need that the smallest eigen-

value is bounded away from zero. Requiring λ(A∗TAT ) ∈ [1 − α, 1 + α] for

0 < α < 1 would also work.

2. Duality condition. The vector w obeys ‖A∗T cw‖`∞ < 1/2. Again, the number

1/2 is arbitrary; we just need ‖A∗T cw‖`∞ < α for some 0 < α < 1.

3. Noise condition. The noise vector z obeys ‖A∗z‖`∞ ≤ λn.

Note that an immediate consequence of the invertibility condition is that the

submatrix A∗TAT is invertible (and thus w exists) and obeys

‖(A∗TAT )−1‖ ≤ 2.

We also have ‖A∗T ‖ = ‖AT ‖ ≤
√

3/2.

We denote the columns of A by vj , j = 1, . . . , n and point out that ‖A∗T cw‖`∞ <

1/2 is equivalent to |〈vj , w〉| < 1/2 for j ∈ T c, and also that A∗Tw = sgnxT is

equivalent to 〈vj , w〉 = sgnxj for j ∈ T . We will find it convenient in the course of

the proofs to switch back and forth between these notations.

We will first prove our theorems assuming these conditions hold, and then prove

that under the hypotheses of our theorems the conditions hold with large probability,

hence proving our theorems.

3.8.1 Proof of Theorem 3.6.1

The proof of Theorem 3.6.1 is basically just a result of duality theory of convex

optimization. Our argument basically follows that in Theorem 1.4 in [28], and is

also related to the proof of Lemma 2.1 in [26].

Because our linear program is convex, we know at least one minimum exists, call

it x̂. Recall that the support of x is T . Let J = T ∪ T c. Because x and x̂ are both

feasible solutions and y = Ax̂ = Ax we have
∑

j∈T xjvj =
∑

j∈J x̂jvj = y.

We need to show that x̂ = x. We will do this by showing first that ‖x̂‖`1 = ‖x‖`1
and then that supp(x̂) = T . Because A∗TAT is invertible, there can only be one x

supported on T such that Ax = y, and so we have that x̂ = x.
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Because x̂ is the minimum of our program, we have that

‖x̂‖`1 ≤ ‖x‖`1 .

We also have that

‖x̂‖`1 =
∑
j∈T

x̂jsgn(x̂j) +
∑
j∈T c

x̂jsgn(x̂j)

≥
∑
j∈T

x̂jsgn(xj) +
∑
j∈T c

x̂j〈vj , w〉

=
∑
j∈T

((x̂j − xj) + xj)sgn(xj) +
∑
j∈T c

x̂j〈vj , w〉

=
∑
j∈T

|xj |+ 〈w,
∑
j∈J

x̂jvj −
∑
j∈T

xjvj〉

=
∑
j∈T

|xj |+ 〈w, y − y〉

=
∑
j∈T

|xj | = ‖x‖`1 .

(3.9)

Thus we have that ‖x̂‖`1 = ‖x‖`1 and so the above inequality must hold with

equality. So we have

∑
j∈T

x̂jsgn(x̂j) +
∑
j∈T c

x̂jsgn(x̂j) =
∑
j∈T

x̂jsgn(xj) +
∑
j∈T c

x̂j〈vj , w〉.

This can also be written as

∑
j∈T

x̂j(sgn(x̂j)− sgn(xj)) +
∑
j∈T c

x̂j(sgn(x̂j)− 〈vj , w〉) = 0.

A subtle but important point to note is that each term in each sum is nonneg-

ative, and hence each term must be zero. Specifically, in the second sum, we must

either have x̂j = 0 or sgn(x̂j) − 〈vj , w〉 = 0. However, because |〈vj , w〉| < 1 for all

j ∈ T c, we must have x̂j = 0 and thus the support of x̂ is T , and the theorem is

proven.
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3.8.2 Proof of Theorem 3.6.2

We begin by proving the first part of Theorem 3.6.2, the `2 bound ‖x̂ − x‖`2 . Let

h = x̂− x. We have that

‖x− x̂‖`2 = ‖h‖`2 ≤ ‖hT ‖`2 + ‖hT c‖`2 .

We also have the following bound on ‖hT ‖`2 ,

‖hT ‖`2 ≤ 2‖A∗TAThT ‖`2

≤ 2‖A∗TAh‖`2 + 2‖A∗TAT chT c‖`2

≤ 2‖A∗TAh‖`2 + ‖hT c‖`1 .

(3.10)

The first inequality follows from

‖hT ‖2`2 = 〈hT , hT 〉 = 〈(A∗TAT )−1A∗TAThT , hT 〉

= 〈A∗TAThT , (A∗TAT )−1hT 〉

≤ 2‖A∗TAThT ‖`2‖hT ‖`2 ,

and the last inequality follows from

‖A∗TAT chT c‖`2 = ‖
∑
j∈T c

A∗T vjhj‖`2

≤
∑
j∈T c

‖A∗T vj‖`2 |hj |

≤ max
j∈T c

‖A∗T vj‖`2‖hT c‖`1

≤ 1/2‖hT c‖`1 .

We turn now to deriving a bound on ‖hT c‖`1 . We begin by noting that

|x̂j | = x̂jsgn(x̂j) ≥ x̂jsgn(xj)

= (x̂j − xj)sgn(xj) + |xj |

= hjsgn(xj) + |xj |,
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which gives

‖x̂T ‖`1 ≥ ‖xT ‖`1 + 〈sgnxT , hT 〉.

Because ‖A∗(Ax− y)‖`∞ = ‖A∗z‖`∞ ≤ λn by the noise condition, we have that x is

feasible, and thus we know that ‖x̂‖`1 ≤ ‖x‖`1 which implies

‖x‖`1 ≥ ‖x̂T ‖`1 + ‖x̂T c‖`1

≥ ‖x‖`1 + 〈sgn(xT ), hT 〉+ ‖hT c‖`1

where we have used the fact that x is only supported on T . This implies

‖hT c‖`1 ≤ |〈hT , sgn(xT )〉|.

We turn now to bounding the inner product.

|〈hT , sgn(xT )〉| = |〈(A∗TAT )−1(A∗TAT )hT , sgn(xT )〉|

= |〈A∗TAThT , (A∗TAT )−1sgn(xT )〉|

≤ |〈A∗TAh, (A∗TAT )−1sgn(xT )〉|+ |〈A∗TAT chT c , (A∗TAT )−1sgn(xT )〉|

≤ ‖A∗TAh‖`2‖(A∗TAT )−1sgn(xT )‖`2 + |〈hT c , A∗T cw〉|

≤ 2
√
s‖A∗TAh‖`2 + 1/2‖hT c‖`1 .

Thus we have the following bound on ‖hT c‖`1 ,

‖hT c‖`1 ≤ 4
√
s‖A∗TAh‖`2 . (3.11)

This implies

‖h‖`2 ≤ (2 + 8
√
s)‖A∗TAh‖`2 ,
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and the first part of the theorem is proven as

‖A∗TAh‖`2 ≤
√
s‖A∗TAh‖`∞

=
√
s‖A∗(Ax̂− y)−A∗(Ax− y)‖`∞

≤
√
s(‖A∗(Ax̂− y)‖`∞ + ‖A∗z‖`∞)

≤ 2
√
sλn.

(3.12)

This concludes the proof of the first part of Theorem 3.6.2. The proof of the

second part of Theorem 3.6.2 is almost identical to the proof of the first part. We

have

‖x̂− x‖`1 = ‖h‖`1 ≤ ‖hT ‖`1 + ‖hT c‖`1

≤
√
s‖hT ‖`2 + ‖hT c‖`1 .

The bounds on ‖hT ‖`2 , ‖hT c‖`1 , and ‖A∗TAh‖`2 go through in exactly the same

way as in the proof of the first part of the theorem. Thus combining (3.10), (3.11),

(3.12) gives

‖h‖`1 ≤ λn(8s3/2 + 12s)

and the theorem is proven.

3.8.3 Proof of Theorem 3.6.3

The proof of Theorem 3.6.3 is very similar to the proof of Theorem 3.6.2, and so we

only outline here the differences which arise in the bound of ‖hT c‖`1 . We have

‖hT c‖`1 = ‖x̂T c − xT c‖`1 ≤ ‖x̂T c‖`1 + ‖xT c‖`1 .

Because x is feasible by the noise condition, we know that ‖x̂‖`1 ≤ ‖x‖`1 which

implies

‖x‖`1 = ‖xT ‖`1 + ‖xT c‖`1 ≥ ‖x̂T ‖`1 + ‖x̂T c‖`1

≥ ‖xT ‖`1 + 〈sgn(xT ), hT 〉+ ‖hT c‖`1 − ‖xT c‖`1 .
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Rearranging terms and canceling the ‖xT ‖`1 implies the following bound on hT c ,

‖hT c‖`1 ≤ 2‖xT c‖`1 − 〈hT , sgn(xT )〉 ≤ 2‖xT c‖`1 + |〈hT , sgn(xT )〉|.

The bound on the inner product proceeds the same as Theorem 3.6.2 and thus

we have the following bound on ‖hT c‖`1

‖hT c‖`1 ≤ 4
√
s‖A∗TAh‖`2 + 4‖xT c‖`1 .

This implies

‖h‖`2 ≤ 2
√
sλn(2 + 8

√
s) + 8‖xT c‖`1 .

Because the coefficients of x decay like (3.1) we know

‖xT c‖`1 < Cs−r+1

and the theorem is proven.

3.8.4 Proof of Theorems 3.6.4 and 3.6.5

The proof of Theorems 3.6.4 and 3.6.5 is identical to the proofs of Theorems 3.6.2

and 3.6.3 except in the bounding of the term ‖A∗TAh‖`2 . Instead we now have

‖A∗TAh‖`2 ≤ ‖A∗T ‖‖Ah‖`2

≤
√

3/2‖Ax− y − (Ax̂− y)‖`2

≤
√

3/2(‖z‖`2 + ‖Ax̂− y‖`2

≤
√

3/2 · 2ε,

where the first inequality follows from the invertibility condition and the last because

both x and x̂ are feasible. Thus the theorems are proven.

3.8.5 With high probability

We now turn to showing that our deterministic conditions hold with high probabil-

ity under the hypotheses of our theorems. Our arguments basically follow proofs
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presented in [22].

The proof of this relies on the following result of Joel Tropp [86]. The result we

state is a slightly refined version which is explained in Section 3.3 of [22].

Theorem 3.8.1. Suppose that I ⊂ {1, . . . , n} is a random subset of columns of a

matrix X with at most s elements, where the columns of X have unit-norm. For

q = 2 log n,

(E‖X∗
IXI − Id‖q)1/q ≤ 21/q

(
30µ(X) log n+ 12

(
2s‖X‖2 log n

n

)1/2

+
2s‖X‖2

n

)
.

(3.13)

In addition, for the same value of q

(Emax
i∈Ic

‖X∗
IXi‖q`2)

1/q ≤ 21/q

(
4µ(X)

√
log n+

√
s

n
‖X‖

)
. (3.14)

Now we state and prove that our two conditions hold with high probability under

the hypotheses of our theorems.

Lemma 3.8.2. ‖(A∗TAT )−1‖ ≤ 2 with probability greater than 1− 2n−2 log 2.

Proof. Note that T is a random set and put Z = ‖A∗TAT − Id‖. Clearly, if Z ≤ 1/2,

then all the eigenvalues of A∗TAT are in the interval [1/2, 3/2] and ‖(A∗TAT )−1‖ ≤ 2.

Note that when µ(A) and s obey the hypotheses of the theorem, we have

30µ(A) log n+ 12
(

2s‖A‖2 log n
n

)1/2

+
2s‖A‖2

n
< 30c0 + 12

√
2c1 +

2c1
log n

<
1
4
.

By Markov’s inequality and (3.13) we have

P(Z > 1/2) ≤ 2qEZq ≤ 2(1/2)q.

Letting q = 2 log n, the invertibility condition thus holds with probability exceeding

1− 2n−2 log 2.

Lemma 3.8.3. ‖A∗T cw‖`∞ < 1 with probability greater than 1− 4n−2 log 2.
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Proof. We have the following relation

‖A∗T cw‖`∞ = ‖A∗T cAT (A∗TAT )−1sgnxT ‖`∞

= max
i∈T c

|Zi|,

where Zi =
∑

j∈T Wijsgnxj and Wi = (A∗TAT )−1A∗T vi. Note that Zi has two sources

of randomness—the set T and the signs of the entries of xT .

Recall the definition of Z from Lemma 3.8.2 and consider the event

E = {Z ≤ 1/2} ∩ {max
i∈T c

‖A∗T vi‖`2 ≤ γ},

for some positive γ. On this event we have

‖Wi‖`2 ≤ ‖(A∗TAT )−1‖‖A∗T vi‖`2 ≤ 2γ.

Now

P({|Zi| ≥ t} ∩ E) = E(1E1|Zi|≥t)

= ET (1EEsgnxT 1|Zi|≥t)

= ET (1EPsgnxT (|Zi| ≥ t)).

In order to show that Zi is small on the event E with high probability we will

use a theorem of Hoeffding [57].

Theorem 3.8.4 (Hoeffding’s inequality). If X1, X2, . . . , Xn are independent

random variables and ai ≤ Xi ≤ bi (i = 1, 2, . . . , n), then for t > 0

P(S −ES ≥ t) ≤ e−2t2/
Pn

i=1(bi−ai)
2
,

where S =
∑n

i=1Xi.

For fixed T , Zi is a sum of independent random variables with zero mean because

we have assumed that the signs of the entries of xT are i.i.d. symmetric variables.

Also, clearly for each j ∈ T we have −|Wij | ≤ Wijsgnxj ≤ |Wij |. Thus, applying

Hoeffding’s inequality we have
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P({|Zi| ≥ t} ∩ E) ≤ 2e−
t2

8γ2 .

Setting t = 1 and applying the union bound, we have

P({‖(A∗T cw‖`∞ ≥ 1} ∩ E) ≤ 2(n− s)e−
1

8γ2 .

Now

P(‖A∗T cw‖`∞ ≥ 1) ≤ P({‖A∗T cw‖`∞ ≥ 1} ∩ E) + P(Ec)

≤ 2(n− s)e−1/8γ2
+ P(Z > 1/2) + P

(
max
i∈T c

‖A∗T vi‖ > γ

)
≤ 2ne−1/8γ2

+ 2n−2 log 2 + P
(

max
i∈T c

‖A∗T vi‖ > γ

)
.

For the first term, if γ satisfies

γ <
1√

8(2 log 2 + 1)
√

log n
,

then ne−1/8γ2
< n−2 log 2.

We treat the last term using Markov’s inequality. Letting q = 2 log n, under the

hypotheses of the theorems we have

P
(

max
i∈T c

‖A∗T vi‖ > γ

)
≤ γ−q E

(
max
i∈T c

‖A∗T vi‖q
)
≤ 2(γ0/γ)q

where

γ0 =
4c0 +

√
c1√

log n

and we have used (3.14).

Therefore, if γ0 < γ/2 we have that the last term does not exceed 1− 2n−2 log 2.

We have indeed that γ0 < γ/2 as one of the hypotheses of the theorems is that

4c0 +
√
c1 < 1/(2

√
8(2 log 2 + 1)).

Thus the duality condition holds with probability exceeding 1− 6n−2 log 2.



95

3.9 Discussion

In this chapter we have derived bounds on the loss of signal estimates for both

deterministic and stochastic noise, and with exactly sparse signals and signals with

decaying coefficients, when the measurement matrix obeys an incoherence property

instead of the more standard uniform uncertainty principle. Having a condition that

involves the mutual coherence of a matrix instead of a condition on the singular

values of subsets of columns of the matrix is potentially appealing because it is

easier to check for a given matrix of interest. Also, uniform uncertainty results are

very strong in the sense that they hold uniformly for all sufficiently sparse signals.

Introducing a statistical signal model and getting results for signals “on average”

has the potential to give results that hold for larger sparsities and are more in line

with what is observed in numerical experiments, even for matrices and sparsities for

which the UUP no longer holds.

Our results are especially interesting because the incoherence property we require

allows the coherence of a matrix to be as large as O((log n)−1), and still permits

sparsities as large as O(m/ log n). This sparsity bound comes from the fact that

we require that s < O(n/‖A‖2 log n) and ‖A‖2 ≥ n/m when A has unit-normed

columns. (See Chapter 4 of this thesis for a derivation of this bound.) The bound is

met when A is a Gaussian matrix, for example [22]. Sparsities as large asO(m/ log n)

are also attained when A is the catenation of the spike orthobasis and the Fourier

matrix, A = [IF ]. In this case, ‖A‖ =
√

2 and m = 2n. (Again, see Chapter 4 for

more details.) This is an improvement of other results involving coherence which

require minimal coherence of O(1/
√
n) in order to achieve maximal sparsities of

O(
√
n), as discussed in Section 3.7.

The major deficiency of our results is that they are all a factor of
√
s from the

ideal oracle inequality behavior. It is an open question whether it is possible to

remove this undesirable factor.

3.10 Appendix A

In this appendix we show that the form of the uniform uncertainty principle stated

in Theorems 3.4.2, 3.4.3, and 3.4.4 comes from a simple modification of the proofs
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of Theorems 1.1, 1.2 and 1.3 of [30]. We will need the following definition of the

s, s′-restricted orthogonality constants.

Definition 3.10.1. The s, s′-restricted orthogonality constant θs,s′ of A for s+s′ <

n is the smallest quantity such that

|〈ATx,AT ′x′〉| ≤ θs,s′ · ‖x‖`2‖x′‖`2

holds for all disjoint sets T, T ′ ⊆ {1, . . . , n} of cardinality |T | ≤ s and |T ′| ≤ s′.

Roughly speaking, a small value of the restricted orthogonality constant θs,s′

indicates that disjoint subsets of columns of A of size s and s′, respectively, span

nearly orthogonal subspaces.

In Theorems 1.1, 1.2, and 1.3 of [30], the uniform uncertainty principle is stated

as δ2s + θs,2s < 1, instead of as δ2s <
√

2 − 1 as it is in Theorems 3.4.2, 3.4.3,

and 3.4.4 of this chapter. However, the orthogonality constant θs,2s only enters the

proofs of Theorems 1.1, 1.2, and 1.3 of [30] in the following bound

|〈AhT01 , AhTj 〉| ≤ θs,2s‖hTj‖`2‖hT01‖`2

where T01 = T0 ∪ T1 and T0, T1, Tj are disjoint sets of size s.

Now, we claim that

|〈AhT01 , AhTj 〉| ≤
√

2δ2s‖hTj‖`2‖hT01‖`2 ,

and so wherever θs,2s appears in a proof in [30], it can be replaced by
√

2δ2s. This

then gives the form of the UUP that appears in this chapter.

This modified form of the UUP is perhaps preferable because it does not require

the introduction of orthogonality constants, and so the theorem can be stated only

in terms of the restricted isometry constant δ2s. It is also appealing to write the

UUP as δ2s <
√

2 − 1 ≈ 0.414 because in order to guarantee uniqueness of the

sparse x we need δ2s < 1. Thus we require δ2s to be just slightly smaller than what

is required for uniqueness. (See [30, 28] for a further discussion of this.)

To prove our claim we will need the following lemma.
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Lemma 3.10.2 (Lemma 2.1 of [19]). We have

|〈Ax,Ax′〉| ≤ δs+s′‖x‖`2‖x′‖`2

for all x, x′ supported on disjoint subsets T, T ′ ⊂ {1, . . . , n} with |T | ≤ s, |T ′| ≤ s′.

Proof. This is an application of the parallelogram identity. Suppose x and x′ are

unit vectors with disjoint support of size s and s′, respectively. Then restricted

isometry gives

2(1−δs+s′) = ‖x±x′‖2`2(1−δs+s′) ≤ ‖Ax±Ax
′‖2`2 ≤ ‖x±x

′‖2`2(1+δs+s′) = 2(1+δs+s′).

(3.15)

Now the parallelogram identity asserts that

|〈Ax,Ax′〉| = 1
4

∣∣‖Ax+Ax′‖2`2 − ‖Ax−Ax′‖2`2
∣∣ ≤ δs+s′

where the inequality follows from (3.15). Thus we have

|〈Ax,Ax′〉| ≤ δs+s′

for all unit vectors with disjoint support, and the lemma follows from the fact that

for any x, we can form a unit vector x/‖x‖`2 , combined with the linearity of the

inner product.

Now we can prove the claim. We have

|〈AhT01 , AhTj 〉| ≤ |〈AhT0 , AhTj 〉|+ |〈AhT1 , AhTj 〉|, (3.16)

and from Lemma 3.10.2 we know

|〈AhTx , AhTj 〉| ≤ δ2s‖hTj‖`2‖hTx‖`2 (3.17)

for x = 0, 1. Again using the fact that T0 and T1 are disjoint we also know that

‖hT0‖`2 + ‖hT1‖`2 ≤
√

2‖hT01‖`2 ,
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and the claim follows by combining this with (3.16) and (3.17).

3.11 Appendix B

In this appendix we show how minor modifications of the proof of Theorem 1.2 in [30]

give the form of Theorem 3.4.3 presented in this chapter. This form is preferable

to what appears in [30] because the log factor only multiplies the variance term,

instead of both the bias and variance terms. (See [94] for further discussion.)

For ease of exposition, we restate Theorem 3.4.3 here.

Theorem 3.11.1. Choose t > 0 and set λn = (1 +
√

2t−1)
√

2 log n. Then if x is

s-sparse, y = Ax+z where z ∼ N(0, Iσ2), δ2s < (1−t)(
√

2−1) and x̂ is the solution

of

min
x̃
‖x̃‖`1 such that ‖A∗(Ax̃− y)‖`∞ < λnσ (3.18)

then

‖x̂− x‖2`2 ≤ C2
δ

(
1 +

∑
i

min(x2
i , λ

2
nσ

2)

)

with large probability, where Cδ depends only on δ2s.

Remark 3.11.1. The 1 in the bound on ‖x̂−x‖`2 can be removed from the theorem

if it is assumed that the largest entry of β is strictly greater than the second largest.

Alternatively, it can be replaced with any ε > 0.

Remark 3.11.2. We replace θs,2s with δ2s in the theorem without further comment.

(See Appendix A.)

Proof. Without loss of generality let σ = 1 and order the xis in decreasing order of

magnitude

|x1| ≥ |x2| ≥ . . . ≥ |xn|.

Set λ =
√

2 log n and let S0 be the largest integer such that

λ2S0 − 1 ≤
∑
j

min(x2
j , λ

2). (3.19)



99

This implies

λ2(S0 + 1)− 1 ≥
∑
j

min(x2
j , λ

2).

As

(S0 + 1) min(x2
S0+1, λ

2) ≤
S0+1∑
j=1

min(x2
j , λ

2) ≤ λ2(S0 + 1)− 1,

we have

min(x2
S0+1, λ

2) ≤ λ2 − 1
S0 + 1

< λ2,

which in turn implies that xj < λ for all j > S0.

Write x = x(1) + x(2) where

x
(1)
j = xj · 11≤j≤S0

x
(2)
j = xj · 1j>S0 .

Note that x(1) is the hard-thresholded version of x on the set T0 = {1, . . . S0}. As

x(2) is s-sparse (this is immediate as x is s-sparse) and

‖x(2)‖2`2 =
∑
j>S0

min(x2
j , λ

2) ≤ λ2(S0 + 1)− 1 ≤ 2λ2S0, (3.20)

we can apply Corollary 6.3 of [30] and decompose x(2) = x′ + x′′, where

‖x′‖`2 ≤
1 + δ2s

1− δ2s(1 +
√

2)

√
2λ
√
S0

‖x′‖`1 ≤
1 + δ2s

1− δ2s(1 +
√

2)

√
2λS0

‖A∗Ax′′‖`∞ <
1− δ22s

1− δ2s(1 +
√

2)

√
2λ.

Noting that

A∗(A(x(1) + x′)− y) = −A∗z −A∗Ax′′,

we have

‖A∗(A(x(1) + x′)− y)‖`∞ ≤
(

1 +
1− δ22s

1− δ2s(1 +
√

2)

√
2
)
λ.

By assumption, t < 1− δ2s(1 +
√

2) which implies x(1) + x′ is a feasible solution of
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(3.18).

The rest of the proof of the theorem is identical to that of Theorem 1.2 of [30],

carrying around extra factors of
√

2 which come from the extra factor of 2 in (3.20).

We will not repeat these details here. Eventually one has

‖x− x̂‖`2 ≤ CδS
1/2
0 λ (3.21)

where Cδ is a constant that can be explicitly stated in terms of δ2s.

Rearranging (3.19) gives

λ2S0 ≤ 1 +
∑
i

min(x2
i , λ

2)

and combining this with (3.21) proves the theorem.
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Chapter 4

Compressed sensing of signals
with sparse dictionary
representations

4.1 Abstract

This chapter considers the problem of reconstructing a generic signal f ∈ Rn from

a limited number of random linear measurements. We are interested in signals

that can be sparsely represented by an overcomplete dictionary Ψ ∈ Rn×p. Instead

of requiring that the dictionary obey a restricted isometry property, which loosely

speaking requires that the matrix norm of every sparse subset of columns from Ψ

be well behaved, we only require that it obey a weaker incoherence property. This

incoherence property basically ensures that the columns of the dictionary are not

too colinear.

We show that by solving a linear program, we have that f̂ = f with high

probability if the signal representation in the dictionary is sufficiently sparse, and

we explore under what conditions we will be able to reconstruct the signal from

an optimal number of measurements. By optimal we mean that the number of

measurements is proportional to the sparsity of the signal up to log factors.

We also explore the implications of our results for several example dictionaries

and complement our study with numerical simulations showing our method works

well.
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4.2 Introduction

In the past, there has been much interest in finding orthobases in which large classes

of signals are sparse or nearly sparse. This is because if a signal has a sparse or nearly

sparse representation, compression, approximation and estimation are possible. For

example, what underlies JPEG compression of images and transform coders is that

a signal is transformed into a basis where it has quickly decaying coefficients and

then the small coefficients are set to zero.

Eventually, however, there was a move away from orthobases to overcomplete

signal representations as it was realized that certain features of signals are extremely

well represented with certain representations (sinusoids by Fourier, point-like singu-

larities by wavelets [65], curves by curvelets [20, 21]), but one single basis seemed un-

able to represent well all features of interest. It was hoped that by forming an over-

complete dictionary of waveforms—a union of several representations, perhaps—one

would be able to well-approximate large classes of more complicated signals. How-

ever, in an overcomplete dictionary signals no longer have a unique representation,

and focus turned to finding the sparsest representation of a signal in a dictionary

[31, 66].

Relatively recently there has also been considerable interest in compressed sens-

ing, also known as compressive sampling. Here it is asked whether from relatively

few measurements of a sparse signal, it is possible to reconstruct the signal, see

[40, 18] and references therein.

This chapter in some sense combines sparse representations and compressed

sensing and asks whether from just a few measurements of a signal known to be well

represented by a given dictionary, is it possible to reconstruct the signal.

Of course if the combined measurement/dictionary matrix obeys the uniform

uncertainty principle, also known as the restricted isometry property, the answer

is yes [27, 19]. However, in some sense this isn’t very realistic. Classes of matri-

ces known to obey the uniform uncertainty principle with high probability are all

random, and while random measurements may make sense, random dictionaries do

not. This is because, generally speaking, the waveforms that make up the dictionary

need to look like various features of the signal. Random waveforms will look like



103

noise, and it is unlikely that signals of interest will resemble noise.

In this chapter, instead of requiring the dictionary to obey the uniform uncer-

tainty principle, we require that it obey a weaker incoherence property, which we

show is obeyed by dictionaries of interest. For example, an often discussed dictio-

nary is the spikes and sines dictionary, Ψ = [I F], where I is the identity matrix

and F is a basis of sinusoids (a discrete cosine transform). If n is a perfect square,

this dictionary does not obey the uniform uncertainty principle for sparsities greater

than
√
n (basically because the Dirac comb can be expressed as a superposition of

√
n terms in the canonical basis or in the sinusoid basis), but it does obey our in-

coherence property. We ask whether, if we have a signal that is sparse in the spikes

and sines dictionary, it is possible from optimally few measurements (by which we

mean that the number of measurements is proportional to the number of dictionary

elements in the sparse representation of the signal, up to log factors) to perfectly

reconstruct the signal with high probability. The answer this chapter gives is yes.

Before explaining this further, we first turn to detailing our setup and precisely

stating our theorem.

4.2.1 Setup and statement of theorem

We are interested in the following setup: We have a signal f ∈ Rn that is a sparse

superposition of elements of a dictionary Ψ ∈ Rn×p, so that f can be written as

f = Ψx, where x ∈ Rp is an s-sparse vector with support T . We further assume

that x comes from a random signal model defined as follows:

1. The support T ⊂ {1, . . . , p} of the s nonzero coefficients of x is selected uni-

formly at random.

2. Conditional on T , the signs of the nonzero entries of x are independent and

equally likely to be ±1.

We assume without loss of generality that Ψ has unit-normed columns. This

is possible because we are only interested in estimating f = Ψx and not x. By

rescaling Ψ we rescale x but do not affect f : f =
∑

i ψixi =
∑

i ψi/‖ψi‖`2 ·xi‖ψi‖`2 .

We further assume that Ψ obeys an incoherence property which we now describe.
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We denote by Xi the ith column of a matrix X ∈ Rt×r and introduce the

notion of coherence, which essentially measures the maximum correlation between

normalized columns of X, and is defined by

µ(X) = max
1≤i<j≤r

|〈Xi, Xj〉|
‖Xi‖`2‖Xj‖`2

.

We have the following definition:

Definition 4.2.1. A matrix X with r columns is said to obey the incoherence prop-

erty with constant c0 if

µ(X) ≤ c0 · (log r)−1.

We are interested in obtaining an estimate f̂ from measurements y = Φf . We

will assume the measurement matrix Φ ∈ Rm×n is a Gaussian matrix properly nor-

malized, i.e., φij ∼ N(0, 1/m). This Gaussian assumption is not strictly necessary;

what we need is that the entries of Φ are i.i.d. random variables that obey cer-

tain moment bounds, which in turn can be used to show that the random variables

satisfy certain concentration inequalities. We will discuss this further in Section

4.7, but note that other random matrix ensembles, such as random projections

and the Bernoulli ensemble, would also work. We will also assume that Φ obeys

m > m0 = O(log p/ε2) with ε = (log p)−(1+α) for some fixed α > 0. Thus when α is

small, m ≈ (log p)3.

Finally, we will assume that the combined measurement/dictionary matrix A is

the product ΦΨ which then has its columns normalized to one, so A = ΦΨD where

D = diag(1/‖ΦΨi‖`2). This assumption is not at all necessary, but we make it to

simplify the statement of our theorem and our proofs. (In fact, a simple calculation

shows that E(‖ΦΨi‖2`2) = 1 and so the columns of A are close to being unit-normed

without any normalization.)

To get our estimate f̂ we first solve the following linear program

(P1) min
x̃
‖x̃‖`1 such that Ax̃ = y

to obtain an estimate x̂, and then let f̂ =
∑

i Ψix̂i/‖ΦΨi‖`2 .
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Theorem 4.2.2. Suppose that Ψ obeys the incoherence property with constant c0

and assume that x is taken from the generic s-sparse model. Suppose that

s ≤ c1p(1− ε)
(1 +

√
n/m+ δ)2‖Ψ‖2 log p

for some positive numerical constants c1 and δ. Finally, suppose that c0, c1 and p

satisfy the following two relations:

1. 30c0 +
60(log p)−α

1− (log p)−(1+α)
+ 12

√
2c1 +

2c1
log p

<
1
4

2. 4c0 +
8(log p)−α

1− (log p)−(1+α)
+ c1 <

1
2
√

8(2 log 2 + 1)
.

Then the solution to (P1) satisfies f̂ = f with probability at least 1 − 2e−mδ
2/2 −

4e−
m
2

(ε2/2−ε3/3) − 8p−2 log 2.

4.2.2 Organization of the chapter

The rest of this chapter is organized as follows. In Section 4.3 we discuss the relation

between recovery from an optimal number of measurements and the norm of the

dictionary, in Section 4.4 we discuss several example dictionaries, in Section 4.5 we

perform numerical experiments to show our method works well, in Section 4.6 we

prove our theorem, and, finally, in Section 4.7 we discuss how this work fits in with

other, prior work.

4.3 Signal recovery from optimal number of measure-

ments

As s, the sparsity of the signal, depends on the matrix norm of the dictionary,

it is interesting to ask what conditions on ‖Ψ‖ lead to signal recovery from an

optimal number of measurements. Again, by optimal we mean that the number of

measurements is proportional to the sparsity of f , up to log factors.

We first prove the following proposition:

Proposition 4.3.1. For any n×p dictionary Ψ with unit normed columns, we have
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that √
p

n
≤ ‖Ψ‖ ≤ √p.

Proof. We have the following relation between the standard matrix norm and the

Frobenius norm, where the Frobenius norm of a matrix is the square-root of the

sum of the squares of all of its entries. For a matrix X with p columns we have

‖X‖ ≤ ‖X‖F ≤
√
p‖X‖.

Because all the columns of Ψ have unit-norm, we know ‖Ψ‖F =
√
p and thus

‖Ψ‖ ≤ √p follows directly.

This upper bound is actually achieved for a dictionary with all identical columns.

Let ψi be the column that is repeated p times to make up Ψ. Then we have

‖Ψ‖ = max
‖x‖`2

=1
‖ψi

p∑
i=1

xi‖`2 = max
‖x‖`2

=1

∣∣∣∣∣
p∑
i=1

xi

∣∣∣∣∣ = √
p.

For the lower bound on ‖Ψ‖, again, because the Frobenius norm of the matrix

is
√
p, we know that

n∑
i=1

‖ψTi ‖2`2 = p

where ψTi is the ith row of Ψ. Thus, there exists a row such that ‖ψTi ‖`2 ≥
√
p/n,

and we have

‖Ψ‖ = ‖Ψ∗‖ = max
‖x‖`2

=1
‖Ψ∗x‖`2

≥ max
x=ei

‖Ψ∗x‖`2

= max
i
‖ψTi ‖`2

≥
√
p/n,

where ei is the ith standard basis vector.

This lower bound is achieved for a union of orthobases. For a dictionary that

is a union of k n × n orthobases, Ψ = [O1O2 · · ·Ok] (so p = kn), we have that

‖Ψ‖ =
√
k =

√
p/n. This follows from
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‖Ψ‖2 = ‖Ψ∗‖2 = max
‖x‖`2

=1
‖Ψ∗x‖2`2

= max
‖x‖`2

=1

∥∥∥∥∥∥∥∥∥∥∥∥

O∗
1x

O∗
2x
...

O∗
kx

∥∥∥∥∥∥∥∥∥∥∥∥

2

`2

= max
‖x‖`2

=1

k∑
j=1

‖O∗
jx‖2`2

= k =
p

n

and thus the proposition is proven.

If ‖Ψ‖ is close to its lower bound of
√
p/n, our theorem gives, ignoring ε, δ, and

assuming
√
n/m� 1,

s ≤ Cp

n/m · p/n · log p
≤ C

m

log p

and we attain recovery from an optimal number of measurements.

If ‖Ψ‖ is instead close to its upper bound of
√
p, we have (again, ignoring ε, δ,

and assuming
√
n/m� 1)

s ≤ C
m

n log p

and we no longer have a guarantee for recovery from a limited number of measure-

ments as the number of measurements must now be greater than an expression that

depends on n, the length of the signal.

However, it is very important to note that in order to reconstruct f with the

optimal number of measurements, we still require that Ψ obey the incoherence

property. It is possible that if our dictionary elements are somehow “too similar”

the incoherence requirement will not be met even if the dictionary norm is well-

behaved. For example, consider the union of two copies of the same orthobasis.

Obviously the incoherence property is not satisfied as µ(Ψ) = 1, and so our theorem

does not apply, despite the fact that ‖Ψ‖ =
√
p/n is optimal.
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It is interesting to note, however, that while ‖Ψ‖2 = p/n does not imply that the

incoherence property will be met, ‖Ψ‖2 = p implies that the incoherence property

will not be met. We show this fact in the next proposition.

Proposition 4.3.2. If ‖Ψ‖2 = p then the incoherence property will not hold.

Proof. We can write the coherence of Ψ as µ(Ψ) = ‖Ψ∗Ψ − I‖max where the max

norm is the maximum of the absolute values of a matrix. We have the following

relation between the standard matrix norm and the max norm of a matrix X ∈ Rr×t

1√
rt
‖X‖ ≤ ‖X‖max.

Because Ψ∗Ψ ∈ Rp×p we thus have

1
p
‖Ψ∗Ψ− I‖ ≤ µ(Ψ).

A simple calculation shows that ‖Ψ∗Ψ− I‖ = max{1, ‖Ψ‖2 − 1}. Now, if ‖Ψ‖2 = p

then ‖Ψ‖2 − 1 > 1 for any reasonable sized p and so we have

1− 1
p
≤ µ(Ψ) ≤ 1.

Thus µ(Ψ) will not satisfy the incoherence condition if ‖Ψ‖ = p for reasonable sized

p.

4.4 Example dictionaries

We discuss in this section several example dictionaries that highlight the uses and

limitations of Theorem 4.2.2.

4.4.1 Spikes and sines

Returning to the example dictionary of spikes and sines mentioned in the introduc-

tion, we first note that the coherence of this dictionary is µ(Ψ) =
√

2/n = 2/
√
p.

So we will have µ(Ψ) ≤ c0/ log p with small c0 for reasonable sized p, and hence

our coherence requirement will be satisfied. Also, we have that ‖Ψ‖ =
√

2. Thus,
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ignoring ε, δ, and assuming
√
n/m� 1, we have that if

s ≤ C
m

log p

we will be able to reconstruct f with high probability. In other words, if the number

of measurements is just slightly more than the sparsity of f in our dictionary, up to

log factors, we will be able to recover f , and thus we attain optimal recovery.

4.4.2 Fourier, wavelet, and ridgelet dictionary

As another example, consider a dictionary that is the union of a Fourier basis, the

fine scales of a 2-dimensional orthonormal wavelet basis, and the fine scales of the

orthonormal ridgelet basis [38]. In the frequency domain, the basis elements of

ridgelets are localized near angular wedges which, at radius r = 2j , have radial

extent ∆r ≈ 2j and angular extent ∆θ ≈ 2−j . In the spatial domain they look like

sums of ridge functions.

This dictionary should be good at representing signals that are combinations of

point-singularities, oscillations and curves or edges. (We should mention that or-

thonormal ridgelets are precursors of curvelets [20, 21] which have provably optimal

coefficient decay for C1 curves in R2, i.e., curvelets optimally represent edges. This

would be the ideal representation to use, but unfortunately curvelets in their current

form are redundant and have high coherence, even at fine scales. We thus choose

orthonormal ridgelets which have zero coherence with each other. However, if in the

future someone constructs an almost orthonormal representation of curvelets, this

could be used in place of ridgelets.)

This dictionary will also satisfy our incoherence requirement, assuming the scales

of wavelets and ridgelets are taken to be sufficiently fine. To justify this claim, we

first show that sinusoids are incoherent with fine scale wavelets. We will illustrate

this in 1-d; the extension to 2-d will be straightforward. Labeling the scales of

the wavelet transform by j ≥ j0, where j = j0 is the coarsest scale and larger j

correspond to increasingly fine scales, and labeling the shift parameter k = 1, 2, . . .,

we have

ψj,k(t) = 2j/2ψ(t2j − k),
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see [65] for more details about wavelets. Thus we have

ψ̂j,k(ξ) = 2−j/2ψ̂(2−jξ)e−i2π2−jkξ

where ψ̂(x) is some bounded function, |ψ̂(x)| < C, and so

|〈ψj,k, fξ〉| ≤
C

2j/2

where fξ is an element of the Fourier basis at frequency ξ. The extension to 2-

d wavelets and 2-d sinusoids is similar and gives |〈ψj,k, fξ〉| ≤ C2−j . As long as

C2−j < c0/ log p, which it will be for sufficiently large j (sufficiently small wavelet

scales), our coherence condition will be met for fine scale wavelets and sinusoids of

any frequency. Intuitively, this is because at finer and finer scales wavelets start to

look like diracs, which are of course incoherent with sinusoids.

Similar calculations for Fourier and ridgelets at scale j give [45]

|〈ρλ, fξ〉| < C2−j/2

and for ridgelets and wavelets

|〈ρλ, ψj,k〉| < C2−j/2.

Thus, as long as we only include sufficiently fine scale ridgelets and wavelets in

our dictionary (sufficiently fine so that the incoherence property is satisfied by the

dictionary), we will be able to reconstruct signals that are a sparse superposition of

these dictionary elements.

Another possibility instead of including only the fine scale wavelets and ridgelets

in the dictionary is, if the coarse scale elements of the different representations span

the same space which is orthogonal to the space spanned by the rest of the elements

in the dictionary, to measure the projection of the signal onto that space directly

and then take random measurements of the residual signal. In other words, measure

PΨ0f directly (i.e., low pass filter the signal and then finely sample it) and then solve

(P1) using Φ(f − PΨ0f) = y.
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4.4.3 Tight-frame dictionaries

So far we have only discussed example dictionaries where the dictionary elements

have unit-norm. As we mentioned earlier, this is not at all a necessary assump-

tion. In fact, one frequently gives up the assumption of unit-normed columns and

instead is interested in tight-frame dictionaries with frame-bound 1. This means the

dictionary is an isometry and obeys a generalized Parseval’s formula

‖Ψ∗f‖`2 = ‖f‖`2 ,

for all f ∈ Rn. Thus we have ‖Ψ‖ = 1.

If we require Ψ to be a tight frame instead of having unit-normed columns, the

proof of Theorem 4.2.2 goes through exactly the same as when we assume unit-

normed dictionary elements, only we require instead that

s ≤
c1p(1− ε) mini ‖Ψi‖2`2
(1 +

√
n/m+ δ)2 log p

.

If the tight-frame dictionary has a redundancy related to the length of the dic-

tionary elements, for example p = cn or p = cn log n for some constant c, we again

will be able to achieve reconstruction with the optimal number of measurements,

assuming that the column norms do not scale too badly.

The only problem that might arise is if the coherence of the dictionary is too

high, and it is possible that a dictionary of interest does not satisfy our incoherence

requirement. For example, consider the time-frequency Gabor dictionary whose

elements consist of a scaled, translated and modulated window function. One would

expect this dictionary to be good at representing signals composed of pulses—for

example reflection radar signals.

However, the coherence of the dictionary is almost maximal, i.e., µ(ΨGabor) ≈ 1.

This is because dictionary elements that are at the same location but neighboring

scales will have large absolute inner product. To motivate this, we will consider

continuous-time Gabor dictionary elements and let the window function be Gaussian

and the scales be dyadic. In other words, let the dictionary elements of our Gabor
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dictionary look like

gj,u,ξ(t) = e
−π

“
t−u

2j

”2

eiξt.

A simple calculation shows ‖gj,u,ξ‖2`2 = 2j−1/2. Also, we have

〈gj,u,ξ, gj+1,u,ξ+∆ξ〉 =
∫ ∞

−∞
e
−5π/4

“
t−u

2j

”2

e−i∆ξt dt

=
2j+1

√
5
e−

(∆ξ)222j

5π e−i∆ξu.

Putting this all together gives

|〈gj,u,ξ, gj+1,u,ξ+∆ξ〉|
‖gj,u,ξ‖`2 ‖gj+1,u,ξ‖`2

=
1√

1 + 2−2
e−

(∆ξ)222j

5π .

Thus for our dictionary, µ(ΨGabor) & 0.8944 for two elements at different scales, even

when they are off-frequency, as long as ∆ξ is not too big and so the exponential

term is ≈ 1. Hence the Gabor dictionary does not obey the incoherence property of

our theorem, and our theorem does not apply.

4.5 Numerical experiments

In order to investigate how well our method performs empirically, we performed a

series of experiments designed as follows:

1. Select n (the size of the input signal) and m (the number of measurements).

Select the dictionary Ψ ∈ Rn×p. Sample the measurement matrix Φ ∈ Rm×n

with i.i.d. Gaussian entries.

2. Select s, the sparsity of x. Select the support of x of size s at random and

sample x on its support with i.i.d. Gaussian entries. (The entries do not need

to be Gaussian, they should just have random signs.)

3. Make f = Ψx and y = Φf .

4. Solve (P1) to obtain f̂ and compare f to f̂ . Declare success if ‖f−f̂‖`2 < 10−3.

5. Repeat 100 times for each s.

6. Repeat for various sizes of n and m and various dictionaries Ψ.
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Figure 4.1. Empirical frequency of recovery of an input signal from y = Φf where
Φ is an m by n matrix with independent Gaussian entries and f is sparse in the
spikes and sines dictionary. Here m = 100 is fixed, p = 2n, and p varies.

The results are presented in Figure 4.1. Figure 4.1 examines the situation where

the signal f has a sparse representation in the spikes and sines dictionary, Ψ =[I

F]. Here the number of measurements m is kept fixed, p = 2n, and p is allowed to

vary. Our experiments show that the cutoff point where one no longer recovers f

is further out the smaller p is. This agrees with the idea that the sparsity needs to

be smaller than something that depends inversely on p, i.e., s ≤ Cm/ log p, if m is

fixed.

4.6 Proof of Theorem 4.2.2

Our proof requires that the following two deterministic conditions hold. Recall that

A = ΦΨ and define w ≡ AT (A∗TAT )−1sgnxT .

1. Invertibility condition. The submatrix A∗TAT is invertible (and thus w exists)

and obeys

‖(A∗TAT )−1‖ ≤ 2.
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The number 2 is arbitrary; we just need the smallest eigenvalue of A∗TAT to

be bounded away from zero.

2. Duality condition. The vector w obeys ‖A∗T cw‖`∞ < 1.

We will first prove our theorem assuming these conditions hold, and then prove

that under the hypotheses of our theorem the conditions hold with large probability.

4.6.1 Proof assuming deterministic conditions

The proof of Theorem 4.2.2, assuming the invertibility and duality conditions, is the

same as the proof of Theorem 3.6.1 of Chapter 3 of this thesis, and so we will not

repeat the details here.

4.6.2 With high probability

We now turn to showing that our deterministic conditions hold with high probability

under the hypotheses of Theorem 4.2.2. Our general strategy follows the methods of

Section 3.8.5 of Chapter 3 of this thesis, only now we have the added complication

of the measurement matrix Φ combined with the dictionary Ψ.

Before we begin, however, we need the following lemma, which we will use to

relate the coherence of A to the coherence of Ψ.

Lemma 4.6.1. (Johnson-Lindenstrauss.) [59, 3, 5] Let Ω be the set of vectors

Ω = {v | v = Ψi −Ψj , i < j or Ψj = 0}.

Then because we have assumed m > m0 = O(log p/ε2) for the measurement matrix

Φ, where ε = (log p)−(1+α), we have

(1− ε)‖v‖2`2 ≤ ‖Φv‖
2
`2 ≤ (1 + ε)‖v‖2`2

for all v ∈ Ω with probability greater than 1− 2e−
m
2

(ε2/2−ε3/3).

The lemma allows us to show that if Ψ obeys the incoherence property, then A
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also obeys the incoherence property with high probability, as we have

µ(A) = max
1≤i<j≤p

|〈Ai, Aj〉|

= max
1≤i<j≤p

|〈ΦΨi,ΦΨj〉|
‖ΦΨi‖`2 ‖ΦΨj‖`2

= max
1≤i<j≤p

|‖ΦΨi‖2`2 + ‖ΦΨj‖2`2 − ‖Φ(Ψi −Ψj)‖2`2 |
2‖ΦΨi‖`2 ‖ΦΨj‖`2

≤ max
1≤i<j≤p

|(1 + ε)(‖Ψi‖2`2 + ‖Ψj‖2`2)− (1− ε)‖Ψi −Ψj‖2`2 |
2(1− ε)‖Ψi‖`2 ‖Ψj‖`2

≤ max
1≤i<j≤p

|‖Ψi‖2`2 + ‖Ψj‖2`2 − ‖Ψi −Ψj‖2`2 |
2‖Ψi‖`2 ‖Ψj‖`2

+
ε

1− ε

‖Ψi‖2`2 + ‖Ψj‖2`2
‖Ψi‖`2 ‖Ψj‖`2

= µ(Ψ) +
2ε

1− ε

(4.1)

with probability greater than 1− 2e−
m
2

(ε2/2−ε3/3).

We will also need the following theorem of Joel Tropp. The result we use is a

slightly refined version of what appears in [86], explained in section 3.3 of [22].

Theorem 4.6.2. Suppose that I ⊂ {1, . . . , n} is a random subset of columns of a

matrix X with at most s elements, where the columns of X have unit-norm. For

q = 2 log n,

(E‖X∗
IXI − Id‖q)1/q ≤ 21/q

(
30µ(X) log n+ 12

(
2s‖X‖2 log n

n

)1/2

+
2s‖X‖2

p

)
.

(4.2)

In addition, for the same value of q

(Emax
i∈Ic

‖X∗
IXi‖q`2)

1/q ≤ 21/q

(
4µ(X)

√
log n+

√
s

n
‖X‖

)
. (4.3)

Now we state and prove that our two deterministic conditions hold with high

probability under the hypotheses of our theorem.

Lemma 4.6.3. ‖(A∗TAT )−1‖ ≤ 2 for sufficiently large p and n, with probability

greater than 1− 2p−2 log 2 − 2e−
m
2

(ε2/2−ε3/3) − e−mδ
2/2.

Proof. Let Z = ‖A∗TAT − Id‖ and note that it has two sources of randomness—T is

a random set and Φ is a random matrix. Clearly, if Z ≤ 1/2, then all the eigenvalues

of A∗TAT are in the interval [1/2, 3/2] and ‖(A∗TAT )−1‖ ≤ 2.
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Let E1 be the event E1 = {∀v ∈ Ω : | ‖Φv‖2`2 − ‖v‖
2
`2
| < ε‖v‖2`2} and E2 be the

event E2 = {‖Φ‖ ≤ 1 +
√
n/m+ δ}.

We have

P(Z > 1/2) = P(Z > 1/2 ∩ E1 ∩ E2) + P(Z > 1/2 ∩ (E1 ∩ E2)c)

≤ P(Z > 1/2 ∩ E1 ∩ E2) + P(Ec1) + P(Ec2).

We will first show that

P(Z > 1/2 ∩ E1 ∩ E2) = EΦ(1Z>1/21E1∩E2) = EΦ(1E1∩E2ET1Z>1/2) ≤ 2p−2 log 2.

Using Markov’s inequality and (4.2) we have

ET1Z>1/2 ≤ 2qETZ
q ≤ 2q+1

(
30µ(A) log p+ 12

(
2s‖A‖2 log p

p

)1/2

+
2s‖X‖2

p

)q

where q = 2 log p.

On event E1, ‖D‖ = maxi 1/‖ΦΨi‖`2 ≤ 1/
√

1− ε (recall that ‖Ψi‖`2 = 1, ∀i),

and on event E2, ‖Φ‖ ≤ 1 +
√
n/m+ δ. Thus on {E1 ∩ E2} we have that

‖A‖ = ‖ΦΨD‖ ≤ ‖Φ‖‖Ψ‖‖D‖ ≤ (1 +
√
n/m+ δ)‖Ψ‖/

√
1− ε.

At first glance, bounding the norm of the product by the product of the norms

in this step might seem to be too mild—perhaps ‖ΦΨ‖ � ‖Φ‖‖Ψ‖. However, we are

primarily interested in cases where Ψ is a union of orthobases and/or tight frames.

In this situation, it is not hard to show that in fact ‖ΦΨ‖ = ‖Φ‖‖Ψ‖.

Also on event E1 we have

µ(A) ≤ µ(Ψ) +
2ε

1− ε
≤ c0

log p
+

2ε
1− ε

where the second inequality follows because Ψ obeys the incoherence property and

we have used (4.1).
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Thus we have

EΦ(1E1∩E2ET1Z>1/2) < 2q+1

(
30c0 +

60(log p)−α

1− (log p)−(1+α)
+ 12

√
2c1 +

2c1
log p

)q
< 2q+1

(
1
4

)q
= 2p−2 log 2

where the last inequality follows from the hypotheses of our theorem.

Now, as P(Ec1) ≤ 2−
m
2

(ε2/2−ε3/3) by Lemma 4.6.1, we turn to showing P(Ec2) ≤

e−mδ
2/2. To do this we will use the well-known Gaussian concentration inequal-

ity. (See, for example, [63].) Given i.i.d. standard normal random variables

X1, X2, . . . , Xn, a Lipschitz function F : Rn → R with Lipschitz constant L, i.e.,

|F (x)− F (x′)| ≤ L‖x− x′‖2 for every x, x′ in Rn,

and letting Y = F (X1, X2, . . . , Xn) we have

P(Y −EY ≥ t) ≤ e−t
2/2L2

.

The function F we are interested in for our purposes is the matrix norm, which

has Lipschitz constant 1 as

| ‖M1‖2 − ‖M2‖2 | ≤ ‖M1 −M2‖2 ≤ ‖M1 −M2‖F

where M1 and M2 are matrices in Rm×n and ‖ · ‖F is the Frobenius norm (the

Euclidian norm for the matrix treated as a vector in Rmn).

Letting Z ∈ Rm×n, Zij ∼ N(0, 1), gives

P(‖Z‖ > E‖Z‖+ t) ≤ e−t
2/2.

In Theorem 2.13 of [34] it is shown that

E‖Z‖ ≤
√
m+

√
n.
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As Φ = 1/
√
m Z, we have

P(‖Φ‖ > 1 +
√
n/m+ δ) ≤ e−mδ

2/2,

as desired, and hence the lemma is proven.

Lemma 4.6.4. ‖A∗T cw‖`∞ < 1 with probability greater than 1−6p−2 log 2−4e−
m
2

(ε2/2−ε3/3)−

2e−mδ
2/2 for sufficiently large n, p.

Proof. We have the following

‖A∗T cw‖`∞ = ‖A∗T cAT (A∗TAT )−1sgnxT ‖`∞

= max
i∈T c

|Zi|,

where Zi =
∑

j∈T Wijsgnxj and Wi = (A∗TAT )−1A∗TAi.

Recall the definition of Z from Lemma 4.6.3 and consider the event

E3 = {Z ≤ 1/2} ∩ {max
i∈T c

‖A∗TAi‖`2 ≤ γ},

for some positive γ.

On this event we have

‖Wi‖`2 ≤ ‖(A∗TAT )−1‖‖A∗TAi‖`2 ≤ 2γ.

Note that Zi is a sum of independent random variables with zero mean because

we have assumed that the signs of the entries of xT are i.i.d. symmetric variables.

Also, clearly for each j ∈ T we have Wijsgnxj ∈ [−|Wij |, |Wij |]. Thus, applying

Hoeffding’s inequality we have

P({|Zi| ≥ t} ∩ E3) ≤ 2e−
t2

8γ2 .

Setting t = 1 and applying the union bound, we have

P({‖(A∗w)T c‖`∞ ≥ 1} ∩ E3) ≤ 2(p− s)e−
1

8γ2 ,
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and thus

P(‖(A∗w)T c‖`∞ ≥ 1) ≤ P({‖(A∗w)T c‖`∞ ≥ 1} ∩ E3) + P(Ec3)

≤ 2(p− s)e−1/8γ2
+ P(Z > 1/2) + P

(
max
i∈T c

‖A∗TAi‖`2 > γ

)
≤ 2pe−1/8γ2

+ P(Z > 1/2) + P
(

max
i∈T c

‖A∗TAi‖`2 > γ

)
.

For the first term, if γ satisfies

γ <
1√

8(2 log 2 + 1)
√

log p
,

then pe−1/8γ2
< p−2 log 2. Also, we have already shown in Lemma 4.6.3 that P(Z >

1/2) ≤ 2p−2 log 2 + 2e−
m
2

(ε2/2−ε3/3) + e−mδ
2/2.

Thus we need to just bound the last term. With an application of Markov’s

inequality similar to what is done in the proof of Lemma 2.1 we have

P
(

max
i∈T c

‖A∗TAi‖`2 > γ

)
≤ EΦ

(
ET1maxi∈Tc ‖A∗TAi‖`2

>γ1E1∩E2

)
+ P(Ec1) + P(Ec2)

≤ 2
(
γ0

γ

)q
+ e−mδ

2/2 + 2−m/2(ε
2/2−ε3/3),

where q = 2 log p and

γ0 =
4c0√
log p

+
8(log p)−α−1/2

1− (log p)−(α+1)
+
√

c1
log p

.

Therefore, if γ0 < γ/2 we have that the last term does not exceed (γ0/γ)q ≤

2p−2 log 2. Indeed, γ0 < γ/2 if

4c0 +
8(log p)−α

1− (log p)−(α+1)
+ c1 <

1
2
√

8(2 log 2 + 1)
,

which is precisely one of the hypotheses of Theorem 4.2.2.

Thus the duality condition holds with probability exceeding 1 − 6p−2 log 2 −

4e−m/2(ε2/2−ε3/3) − 2e−mδ
2/2.
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4.7 Discussion

4.7.1 Contributions and relationship to prior work

The main contribution of this chapter is to show that it is possible to recover a signal

from measurements when it is known that the signal is sparse in a given dictionary,

and where the dictionary is not required to obey the uniform uncertainty principle

but is instead required to obey a weaker incoherence condition. Results not requiring

the uniform uncertainty principle or some other strict, difficult to verify condition are

not very common and we mention here three other works and discuss this chapter’s

relationship to them.

In [25] it is shown that if a signal has a sparse representation in Ψ = [I F]

then by solving a linear program one can recover the sparse representation of the

signal with high probability. As noted earlier, Ψ = [I F] does not obey the uniform

uncertainty principle. As in this chapter, is required that the sparse representation

have random support and signs. This is nearly the identical setup to what we have

in this chapter, only now we take measurements of the signal and want to recover

the signal itself. (Although it is interesting to note that we end up recovering the

sparse representation and from that we obtain the signal.)

The paper [15] is also related to this work. Before we detail how the two are re-

lated, we recall what was mentioned in the introduction of this chapter, namely that

the assumption that the measurement matrix Φ is a Gaussian matrix is not strictly

necessary. From an examination of the proof of Theorem 4.2.2, it is easy to see

that what is actually required is that the matrix obeys the Johnson-Lindenstrauss

requirement (see Lemma 4.6.1) and has a well-behaved top singular value. Other

matrices that satisfy these requirements are random orthogonal matrices and ma-

trices from the Bernoulli ensemble, to name a few.

Now, an application given in the introduction of [15] is to let M and Ψ be orthog-

onal matrices and let Φ be m randomly sampled rows of M . Thus, for comparison

with this chapter, we will let Φ be the first m rows of a random orthogonal matrix.

Letting y = ΦΨx where x has random support and signs and then solving

min
x̃
‖x̃‖`1 such that ΦΨx̃ = y
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gives x = x̂ with high probability if m ≥ Cµ̄2s log n where µ̄ = maxj,k |〈Ψk,Φj〉|

and is a rough measure of how similar Φ and Ψ are.

Applying this setup to this chapter and noting that µ(Ψ) = 0 and hence trivially

obeys our incoherence property, and that ‖Φ‖ = 1, we get that x̂ = x with high

probability if m ≥ Cs log n, where we have ignored δ and ε. Thus if µ̄ = O(1),

then [15] can be viewed as a special case of this chapter where the dictionary is

taken to be an orthonormal matrix. Note that this is not entirely a fair comparison,

as the results in [15] apply to any orthogonal Φ, while in our comparison we have

taken Φ to be a random orthogonal matrix. However, the results in this chapter

are in some sense nicer, because they apply to any matrix that obeys the Johnson-

Lindenstrauss requirement, and not just orthogonal matrices. (It is also of interest

to note that in [4] an algorithm is given to quickly apply a matrix that satisfies the

Johnson-Lindenstrauss property, which could have practical applications.)

Finally, [22] also has connections with this work. The setup is similar to that

of this chapter in that x is a sparse vector with random support and signs and Ψ

obeys our same incoherence property, but there is added noise so y = Ψx + z. If

the noise is set to zero, however, Theorem 1.3 of [22] basically says that x̂ = x with

high probability. Again, the main difference with this chapter is that we recover the

signal from measurements y = ΦΨx.

4.7.2 Future work

In this chapter we require that the signal f be an exactly sparse superposition of

dictionary elements. This is a clear shortcoming as usually signals are not exactly

sparse in a dictionary but only compressible, meaning that there is a representation

of f in Ψ, f = Ψx, such that the coefficients of x decay quickly. Thus x has only a

few large coefficients, but it is not exactly sparse. Ideally, one would like to be able

to estimate f well given measurements y = Φf where f is only compressible in a

dictionary Ψ. Note that one gives up being able to reconstruct f exactly.

Also, it is unclear if incoherence is the correct condition to put on the dictionary

Ψ even if f is an exactly sparse superposition of dictionary elements, if one is only

interested in reconstructing f and does not care about getting a good reconstruction

of x. A simple example is the dictionary consisting of one element (column) Ψ1
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repeated p times. This matrix clearly does not obey the incoherence property, but

because f = Ψx = Ψ1
∑n

i=1 xi, when we solve

min
x̃
‖x̃‖`1 such that ΦΨ1

n∑
i=1

xi = ΦΨ1

n∑
i=1

x̃i

we will always get that f̂ = f , even if x̂ 6= x.
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Chapter 5

Compressed sensing and the
method of `1-analysis

5.1 Abstract

This chapter deals with the problem of recovering a signal f ∈ Rn from a few noisy

measurements y ∈ Rm,

y = Φf + z,

where m� n and Φ is a measurement matrix. We assume the signal f can be well

represented by a dictionary Ψ and the noise z satisfies ‖z‖`2 < ε.

We show that the method of `1-analysis is guaranteed to give good recovery,

where the analysis formulation of the problem derives an estimate f̂ for the signal

f from the solution to the following optimization problem

min
f̃
‖Ψ∗f̃‖`1 such that ‖Φf̃ − y‖`2 < ε.

This can be written as a convex optimization problem and the well-established

machinery of convex optimization used to solve it efficiently.

A typical result in this chapter says that if the combined matrix ΦΨ satisfies a

condition called the uniform uncertainty principle, also referred to as the restricted

isometry property, then we are guaranteed good recovery, both when f is an exactly

sparse superposition of dictionary elements, and in the more realistic case when f

can only be well represented by the dictionary, meaning that Ψ∗f decays quickly.

We compare our results with the more standard `1-synthesis approach, where the
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estimate of f is synthesized from an estimate of weights of elements in the dictionary,

and complement our study with numerical experiments. Our results are of interest

because numerically `1-analysis seems to show promise in certain scenarios, but

unlike `1-synthesis, very little is known about the method theoretically.

5.2 Introduction

A standard method of data acquisition and compression is to sample a signal, trans-

form it into a basis where it has only a few large coefficients (in other words, it has

a sparse representation), throw away most of the transformed coefficients, and keep

only the very few large coefficients. To reconstruct the signal, one simply applies

the inverse transformation, and as long as the coefficients that were thrown away

were small, one gets a close approximation of the signal. However, it seems somehow

wasteful to take so many signal samples and keep so few coefficients. This raises the

following question. Is it possible to combine the sampling and compression steps,

and instead just take very few “compressed samples”? This is the subject of a

growing field, known as compressed sensing or compressive sampling [40, 18].

To be more precise, in this chapter we are interested in estimating a signal

f ∈ Rn from a few linear measurements y ∈ Rm which may or may not be noisy.

In other words, y = Φf or y = Φf + z, where Φ ∈ Rm×n is a measurement matrix,

m� n, and z ∈ Rm is a noise vector such that ‖z‖`2 < ε. From these measurements,

we would like to find a good reconstruction of the signal. (Of course we are only

interested in reconstructing the signal in a computationally feasible way!)

It is standard in compressed sensing scenarios to assume that the signal f can be

sparsely represented in an orthonormal basis, meaning that it has an exactly sparse

representation, or perhaps more realistically, has coefficients that quickly decay in

the basis. This is reasonable if the signal is very smooth (in which case Fourier

is a good choice of basis) or is piecewise continuous (in which case wavelets are a

good choice of basis [65]). However, for larger classes of more complicated signals

with combinations of features, frequently no one basis is suitable. For example,

the Fourier basis is good at representing sinusoids, while the Dirac basis is good at

representing impulses. However, neither basis is good at representing signals that
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contain both sinusoids and impulses.

Thus, in this chapter we will not assume signals can be well represented in a basis,

but instead will focus on overcomplete signal representations, known as dictionaries.

A dictionary is a collection of elements, also known as atoms, that is full rank.

Because they are overcomplete, dictionaries allow more flexibility and richness in

signal representations and are able to well represent larger, more interesting classes

of signals. Also, for a given application, there is often a dictionary that arises

naturally from the problem. For example, reflected radar signals are often a train of

pulses of different widths at different frequencies. In this case the Gabor dictionary,

whose elements are an overcomplete collection of translated windowed sinusoids

where the windows have various widths and the sinusoids have various frequencies,

is a natural choice of dictionary.

For the purposes of this chapter, we will assume we have a tight-frame dictionary

Ψ ∈ Rn×p, p � n, with frame bound 1. Thus ΨΨ∗ = I. (Note that obviously

Ψ∗Ψ 6= I.) Many dictionaries of interest are tight frames or can be designed to

be a tight frame, for example, curvelets, the Gabor dictionary, wavelet frames, the

overcomplete discrete cosine transform, etc. However, unlike in a basis, signals no

longer have a unique representation in a dictionary. There are infinitely many α

such that f = Ψα, and this adds another layer of complexity to the problem.

5.2.1 The method of `1-synthesis

Our challenge, then, is to reconstruct a signal that can be well represented by a

dictionary, from measurements of the signal. The standard way of approaching

this problem is known as synthesis. From the measurements, one first determines a

“good” set of dictionary coefficients, α̂, and then builds the signal as a superposition

of these atoms, f̂ = Ψα̂. In other words, the signal is synthesized from atoms in the

dictionary.

In the noiseless case, y = ΦΨα, a popular and successful method of selecting the

set of dictionary coefficients is given by the solution of the following linear program

min
α̃
‖α̃‖`1 such that ΦΨα̃ = y, (5.1)
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while in the noisy case, y = ΦΨα+ z where ‖z‖`2 < ε, the estimate is given by the

following second-order cone program

min
α̃
‖α̃‖`1 such that ‖ΦΨα̃− y‖`2 < ε. (5.2)

Both of these optimization programs are convex, and can be solved using the stan-

dard tools of convex optimization [10]. These synthesis methods work by achieving

an estimate α̂ which leads to a good estimate f̂ = Ψα̂.

There are many known results for the `1-synthesis setup, but we pause here and

mention three in particular. In [27] it is shown that if ΦΨ obeys a condition called

the uniform uncertainty principle, also known as the restricted isometry property,

then α̂ is a good estimator of α. The uniform uncertainty principle requires that the

restricted isometry constants of A = ΦΨ be sufficiently small, where the restricted

isometry constants of a matrix are defined as follows.

Definition 5.2.1. For each integer s = 1, 2, . . . , define the restricted isometry con-

stant δs of a matrix A as the smallest number such that

(1− δs)‖x‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δs)‖x‖2`2

holds for all s-sparse vectors x. A vector is said to be s-sparse if it has at most s

nonzero entries.

These restricted isometry constants are named as such because for every s, δs

essentially measures how far from an isometry A is, acting only on s-sparse vectors.

What is proved in [27] and slightly refined in [19] is the following theorem.

Theorem 5.2.2 ([27, 19]). Assume δ2s(ΦΨ) <
√

2 − 1. Let αs be the truncated

vector corresponding to the s largest (in absolute value) coefficients of α. Then the

solution α̂ to (5.2) obeys

‖α− α̂‖`2 ≤ C0s
−1/2‖α− αs‖`1 + C1ε

where the constants C0 and C1 are given in terms of restricted isometry constants.
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Because Ψ is a tight frame with frame bound 1 we have

‖f − f̂‖`2 = ‖Ψ(α− α̂)‖`2 = ‖α− α̂‖`2 ,

and so the theorem relates the estimation error of f to the s-term approximation

error of α, plus a noise term.

This result is appealing because it handles the case where α is exactly sparse

and also when α has decaying coefficients. In addition, the measurements may

or may not be noisy. (If they are not noisy, then ε = 0 and (5.2) reduces to

(5.1).) The most obvious drawback of the result is that it requires the combined

measurement matrix/dictionary to obey a restricted isometry property. (We refer to

any condition that requires the restricted isometry constants to be sufficiently small

as a restricted isometry property or uniform uncertainty principle.) It is possible

that for measurements and dictionaries of interest this condition will not hold.

A result that addresses this shortcoming is Theorem 4.2.2 of Chapter 4 of this

thesis. Theorem 4.2.2 assumes that the measurement matrix obeys a restricted

isometry property, while the dictionary must only obey a weaker coherence property,

which essentially says that the columns of the dictionary can not be too colinear. In

compressed sensing setups like we have discussed, this is a bit more realistic as the

dictionary is usually determined by the types of signals in which one is interested,

while one has a bit more freedom in the design of the measurements. Unfortunately,

the result in Chapter 4 requires that α be exactly sparse. This is a bit unrealistic

as many signals of interest will probably not be an exact superposition of just a few

dictionary elements. It is more reasonable to expect that signals of interest can be

well-approximated by just a few dictionary elements, so that there is a representation

of the signal with α quickly decaying, but this situation is not dealt with in that

result.

Finally, we mention a result that assumes the joint measurement/dictionary

matrix ΦΨ obeys a coherence property, namely Theorem 1.3 of [22]. It is a nice

result in that neither the measurements nor the dictionary must obey a restricted

isometry property, but it also suffers from the requirement that α be exactly sparse,

and even adds the requirement that the nonzero coefficients of α be sufficiently large.
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5.2.2 The method of `1-analysis

All of the synthesis results we have mentioned rely on finding a good estimate of α,

which in turn leads to a good estimate of f . In some sense, however, it seems strange

to estimate α at all, when what we would really like is to estimate f . Moreover, it

is possible that there are times when a good estimate of α does not exist, but good

estimates of f do exist. For example, if two atoms in the dictionary are identical

and equal to f , then, forgetting the measurements, it is impossible to estimate α

well—we do not know which atom formed f . But obviously the dictionary is still

able to well represent f . This leads to the question, if we are interested in f , why

bother estimating α in the first place?

To address this, we introduce the `1-analysis formulation of the problem. In the

noiseless case, y = Φf , the estimate f̂ is given by the minimizer of the following

linear program

min
f̃
‖Ψ∗f̃‖`1 such that Φf̃ = y, (5.3)

while in the noisy case, y = Φf + z where ‖z‖`2 < ε, the estimate f̂ is given by

min
f̃
‖Ψ∗f̃‖`1 such that ‖Φf̃ − y‖`2 < ε. (5.4)

Note that in this case the estimator for f is acquired directly as the minimum of

a convex optimization program. Instead of being synthesized from atoms in the

dictionary, analysis associates each signal f̃ with a vector of coefficients Ψ∗f̃ . It

is the `1 norm of this vector that analysis minimizes. Heuristically, this seems like

a reasonable strategy, as `1 is known to be sparsity promoting [31] and Ψ∗f̃ is

correlating the candidate signal f̃ with the elements of the dictionary. Since we

are assuming f can be well represented by the dictionary, it makes sense that Ψ∗f

would be “sparse.”

It is interesting to note that analysis and synthesis are actually closely related.

In fact, because any function f can be written as f = Ψα for some α, we can rewrite

(5.4) as

min
α̃
‖Pα̃‖`1 such that ‖ΦΨα̃− y‖`2 < ε

where P is the projector Ψ∗Ψ. This is very similar in form to (5.2), only instead of
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minimizing over all vectors in Rp, the minimum is taken over p-dimensional vectors

projected into an n-dimensional subspace determined by the dictionary Ψ.

5.2.3 Statement of results

Besides avoiding estimating α, there are other compelling reasons for considering the

analysis method. In addition to involving fewer unknowns than `1-synthesis, numer-

ical simulations show `1-analysis works well, and in certain situations outperforms

synthesis. For example, in [50], when the dictionary is an overcomplete discrete

cosine transform and the signals are standard test images, analysis performs better

than synthesis, and the improvement increases as the redundancy of the dictionary

increases. Also, in [17] when the dictionary is a Gabor tight frame and the signals

are pulses, analysis seems to slightly outperform synthesis. When `1 reweighting is

added, the increase in performance becomes more dramatic. See also [79, 80] for

other analysis-based numerical experiments.

As far as we know, however, no results exist giving conditions on the measure-

ments or dictionary that guarantee good recovery of f . (Although [50] does give

theoretical results showing differences between the analysis and synthesis methods.)

The contribution of this chapter is to make a first modest step at addressing this

gap. Our results are of interest because, while the synthesis setup has been exten-

sively studied, the analysis setup is not very well understood and seems to show

promise in certain scenarios.

More specifically, we show that if the combined matrix ΦΨ obeys a uniform

uncertainty principle, then by solving (5.3) or (5.4), one gets a good estimate of f .

We are also able to get similar, slightly stronger, results if we assume a particular

form for the measurement matrix Φ, that takes the dictionary into account.

We have the following theorem:

Theorem 5.2.3. Assume δ2s(ΦΨ) <
√

2 − 1. Let (Ψ∗f)s be the truncated vector

corresponding to the s largest (in absolute value) coefficients of Ψ∗f . Then the

solution f̂ to (5.4) obeys

‖f − f̂‖`2 ≤ C0s
−1/2‖Ψ∗f − (Ψ∗f)s‖`1 + C1ε
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with constants C0 and C1 given explicitly in terms of restricted isometry constants

in the proof.

Theorem 5.2.3 relates the approximation error in f to the best s-term approx-

imation error of Ψ∗f , measured in the `1 norm, plus a noise term, when f̂ is the

solution to `1-analysis.

If something is known about Ψ∗f , either that it is sparse or compressible (mean-

ing that its reordered coefficients quickly decay), we have the following corollaries.

Corollary 5.2.4. Under the same conditions as Theorem 5.2.3, if Ψ∗f is exactly

s-sparse, we have

‖f − f̂‖`2 ≤ Cε.

Moreover, if the measurements of f are noiseless, we recover f exactly.

The proof of the corollary is immediate, as if Ψ∗f is exactly s-sparse, then

Ψ∗f = (Ψ∗f)s, and if the measurements are noiseless, ε = 0. If Ψ∗f is not exactly

sparse, but instead has decaying coefficients, we have the following corollary.

Corollary 5.2.5. Under the same conditions as Theorem 5.2.3, if the kth largest

coefficient in absolute value of Ψ∗f , |Ψ∗f |(k), satisfies

|Ψ∗f |(k) ≤ Cr · k−r

for r ≥ 1, then the solution to (5.4) satisfies

‖f − f̂‖`2 ≤ C0s
−r+1/2 + C1ε

for constants C0 and C1 in terms of restricted isometry constants and r.

This follows from Theorem 5.2.3 because, approximating the sum ‖Ψ∗f−(Ψ∗f)s‖`1
as an integral and integrating, gives

‖Ψ∗f − (Ψ∗f)s‖`1√
s

≤ Cr · s−r+1/2.

Similarly, we have ‖Ψ∗f − (Ψ∗f)s‖`2 ≤ C ′
r · s−r+1/2. Thus the result says that our

approximation error is almost the same as the approximation error made by keeping
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the s largest coefficients of Ψ∗f . The faster the entries of Ψ∗f decay, the better our

approximation.

These results should be compared with the synthesis result, Theorem 5.2.2, which

relates the approximation error of f to the decay of the coefficients of α. We have

already mentioned earlier that an exactly sparse α is not very realistic in applications

because signals in general will not be an exact superposition of a handful of elements

in the dictionary. It is reasonable, however, to assume that α decays; after all, we

are assuming that the dictionary is able to well represent signals of interest. It is

also reasonable to assume that the coefficients of Ψ∗f decay. This is, again, because

our signals can be well represented by the dictionary. Ψ∗f takes the atoms of the

dictionary and correlates them with the signal. It is reasonable to assume that

a few atoms are highly correlated with the signal, while the rest are only weakly

correlated.

We would also like to point out that for certain applications it might even be

reasonable to assume that Ψ∗f is exactly sparse. While it might not be that the

signal is exactly a superposition of dictionary elements, it might very well be that

only relatively few dictionary elements have a non-zero correlation with the signal—

think of the Gabor dictionary with a signal that is a fairly narrow pulse that looks

similar to an element in the dictionary, but is not the exact element. Each dictio-

nary element has a finite support, and only elements whose support intersects the

support of the pulse signal will have a non-zero inner product, while the rest of the

correlations will be zero.

There is of course a relation between the coefficient decay of α and Ψ∗f . In

fact, if Ψ∗f decays, then there exists an α that also decays. (Take α = Ψ∗f . Then

Ψα = ΨΨ∗f = f .) The reverse is not necessarily true, however. If α quickly decays,

then there is no guarantee that Ψ∗f = Ψ∗Ψα = Pα also decays, although of course

it is possible for this to be true in certain cases.

Finally, we mention that our result suffers from the same drawback as Theo-

rem 5.2.2 in that it requires that the combined measurement/dictionary matrix ΦΨ

obeys the uniform uncertainty principle, which might not hold for measurements

and dictionaries of interest. As an attempt to address this shortcoming, we are also

able to prove a similar result to Theorem 5.2.3 if we assume a particular form of the
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measurement matrix Φ, namely that Φ = AΨ∗ where only A is required to obey the

uniform uncertainty principle.

Theorem 5.2.6. Assume Φ = AΨ∗, and δ2s(A) <
√

2 − 1. Let (Ψ∗f)s be the

truncated vector corresponding to the s largest (in absolute value) coefficients of

Ψ∗f . Then the solution f̂ to (5.4) obeys

‖f − f̂‖`2 ≤ C0s
−1/2‖Ψ∗f − (Ψ∗f)s‖`1 + C1ε

with constants C0, C1 given explicitly in the proof.

Note that Theorem 5.2.6 is not just a specific case of Theorem 5.2.3 because if

we simply let Φ = AΨ∗ in Theorem 5.2.3 we require that δ2s(AP ) <
√

2− 1 where

P is the projector Ψ∗Ψ, as opposed to requiring that δ2s(A) <
√

2− 1.

An nice feature of this second result is that there is no condition at all on

the dictionary Ψ. Our method works even if Ψ has extremely highly correlated

columns, or even identical columns. Also, if Ψ can be quickly applied to vectors,

then Φ = AΨ∗ = (ΨA∗)∗ can be built efficiently.

5.3 Numerical Experiments

In order to further explore our theoretical results, we performed the following numer-

ical experiments. We took as our dictionary the Gabor dictionary. This dictionary

consists of windowed sinusoids where the windows have dyadic widths and the si-

nusoids varying frequencies. In other words the elements look like

ψj,k,l(t) = w

(
t− uk

2j

)
sin (2πωl(t− uk)) .

The window w(t) is taken to be an iterated sine function so it forms a partition

of unity (and hence the dictionary is a tight frame), while the translations uk and

frequencies ωl are three and two times redundant at each scale, respectively.

Thus the elements of the Gabor dictionary look like pulses of varying widths and

frequencies and we expect that this dictionary will be good at representing trains of

pluses. The test signals we considered are shown in Figure 5.1. We emphasize that
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Figure 5.1. Four sample test pulses. We expect that the Gabor dictionary will be
able to well represent these signals. We note, however, that none of the signals is
an exact element of the dictionary, or the sum of a few elements.
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Figure 5.2. The coefficients of Ψ∗f , when f is the test pulse shown in Figure 5.1b.
In 5.2a we see the coefficients, and in 5.2b we see the coefficients sorted by absolute
value. All of the test signals in Figure 5.1 showed similar fast decay of Ψ∗f .
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Figure 5.3. Numerical experiment results. 5.3a shows the averaged relative error
of 20 experiments for various numbers of measurements m when the measurement
matrix Φ = ZΨ∗ and Z is Gaussian. The blue solid line shows the results for `1-
synthesis, while the broken red line shows the results of `1-analysis. 5.3b shows the
same, only Φ is simply taken to be a Gaussian matrix.

these test signals are not elements of the dictionary or exactly sparse combinations

of elements of the dictionary. Figure 5.2 shows that indeed Ψ∗f has quickly decaying

coefficients.

We considered the noiseless case y = Φf , and let the measurement matrix Φ be

either a matrix with i.i.d. N(0, 1) entries, or Φ = ZΨ∗ where Z is a matrix with

i.i.d. N(0, 1) entries. (This second measurement matrix satisfies the conditions of

Theorem 5.2.6 with high probability.) We then solved both `1 analysis (5.3) and

`1 synthesis (5.1) using optimization code which can be found at [1], formed the

estimate f̂ , and calculated the relative error

errrel =
‖f̂ − f‖`2
‖f‖`2

.

We did this for various number of measurements m, and for each m we repeated the

experiment 20 times and averaged the result. Our results are presented in Figure

5.3. The results we show are for the test signal Figure 5.1b, although all the test

signals we tried showed similar behavior.

We see that analysis slightly outperforms synthesis, and that surprisingly both

methods do about the same when the measurements are simply Gaussian versus
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when they take into account the dictionary. This is particularly interesting because

in this case ΦΨ certainly does not obey the uniform uncertainty principle, and

suggests that our results should be able to be extended.

5.4 Proofs

5.4.1 Proof of Theorem 5.2.3

Note that the proof of Theorem 5.2.3 is basically contained in [19] which in turn

is based on a proof in [28]. However, it is interesting to note that in (5.4) we

are minimizing the `1 norm over an n-dimensional subspace of Rp (vectors in the

orthogonal complement of the range of Ψ) instead of all of Rp, yet because f and

f̂ live in that subspace, we are still able to follow the methods of the proof. We

include the proof here for completeness.

Before proving the theorem, however, we start with some notation. Throughout

the chapter, xT is a vector equal to x on an index set T and zero elsewhere. Set h =

f̂−f and decompose Ψ∗h into a sum of vectors (Ψ∗h)T0 , (Ψ
∗h)T1 , (Ψ

∗h)T2 , . . . , where

T0 corresponds to the largest (in absolute value) s coefficients of Ψ∗f , T1 corresponds

to the largest (in absolute value) s coefficients of Ψ∗h in T c0 , T2 corresponds to the

next largest (in absolute value) s coefficients of Ψ∗h in T c0 , etc. Set T01 = T0 ∪ T1.

In the proof of the theorem we will twice make use of the following lemma.

Lemma 5.4.1. We have the following

∑
j≥2

‖(Ψ∗h)Tj‖`2 ≤ ‖(Ψ∗h)T01‖`2 + 2s−1/2‖(Ψ∗f)T c
0
‖`1 .

Proof. Because f̂ is a minimum of (P1) and f is feasible, we must have

‖Ψ∗f‖`1 ≥ ‖Ψ∗f̂‖`1

= ‖Ψ∗(f + h)‖`1 =
∑
i∈T0

|(Ψ∗f)i + (Ψ∗h)i|+
∑
i∈T c

0

|(Ψ∗f)i + (Ψ∗h)i|

≥ ‖(Ψ∗f)T0‖`1 − ‖(Ψ∗h)T0‖`1 + ‖(Ψ∗h)T c
0
‖`1 − ‖(Ψ∗f)T c

0
‖`1
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This gives

‖(Ψ∗h)T c
0
‖`1 ≤ ‖(Ψ∗h)T0‖`1 + 2‖(Ψ∗f)T c

0
‖`1 . (5.5)

Also, because of how the (Ψ∗h)Tj are defined, we have the following for j ≥ 2,

‖(Ψ∗h)Tj‖`2 ≤ s−1/2‖(Ψ∗h)Tj−1‖`1 .

Thus we have

∑
j≥2

‖(Ψ∗h)Tj‖`2 ≤ s−1/2
∑
j≥2

‖(Ψ∗h)Tj−1‖`1 = s−1/2‖(Ψ∗h)T c
0
‖`1 . (5.6)

Combining (5.5) and (5.6) and using

‖(Ψ∗h)T0‖`1 ≤
√
s‖(Ψ∗h)T0‖`2 ≤

√
s‖(Ψ∗h)T01‖`2

gives the lemma.

Now to prove the theorem. Note the following

‖f − f̂‖`2 = ‖h‖`2 = ‖Ψ∗h‖`2 ≤ ‖(Ψ∗h)T01‖`2 + ‖(Ψ∗h)T01c‖`2 , (5.7)

where we have used the fact that ΨΨ∗ = I.

We will prove the theorem by first bounding ‖(Ψ∗h)T c
01
‖`2 by ‖(Ψ∗h)T01‖`2 and

then bounding ‖(Ψ∗h)T01‖`2 .

The bound on ‖(Ψ∗h)T c
01
‖`2 basically follows from Lemma 5.4.1:

‖(Ψ∗h)T01c‖`2 = ‖
∑
j≥2

(Ψ∗h)Tj‖`2

≤
∑
j≥2

‖(Ψ∗h)Tj‖`2

≤ ‖(Ψ∗h)T01‖`2 + 2s−1/2‖(Ψ∗f)T c
0
‖`1 .

(5.8)

Now we turn to bounding ‖(Ψ∗h)T01‖`2 . We will use the following relation

‖Φh‖`2 = ‖Φ(f̂ − f)‖`2 ≤ ‖Φf̂ − y‖`2 + ‖y − Φf‖`2 ≤ 2ε, (5.9)
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which follows from the triangle inequality and the fact that f and f̂ are feasible, as

well as the following lemma which is proved in [19].

Lemma 5.4.2 (Lemma 2.1 of [19]). We have

|〈Xx,Xx′〉| ≤ δs+s′(X)‖x‖`2‖x′‖`2

for all x, x′ supported on disjoint subsets T, T ′ with |T | ≤ s, |T ′| ≤ s′.

We have

(1− δ2s(ΦΨ))‖(Ψ∗h)T01‖2`2 ≤ ‖ΦΨ(Ψ∗h)T01‖2`2

= 〈ΦΨ(Ψ∗h)T01 ,Φh〉 − 〈ΦΨ(Ψ∗h)T01 ,
∑
j≥2

ΦΨ(Ψ∗h)Tj 〉

≤ |〈ΦΨ(Ψ∗h)T01 ,Φh〉|+
∑
j≥2

(|〈ΦΨ(Ψ∗h)T0 ,ΦΨ(Ψ∗h)Tj 〉|

+ |〈ΦΨ(Ψ∗h)T1 ,ΦΨ(Ψ∗h)Tj 〉|).

(5.10)

Using Cauchy-Schwarz, the restricted isometry property, and (5.9) we get the

following bound on the first term

|〈ΦΨ(Ψ∗h)T01 ,Φh〉| ≤ ‖ΦΨ(Ψ∗h)T01‖`2‖Φh‖`2

≤ 2ε
√

1 + δ2s(ΦΨ)‖(Ψ∗h)T01‖`2 .
(5.11)

By Lemma 5.4.2 we have

|〈ΦΨ(Ψ∗h)T0 ,ΦΨ(Ψ∗h)Tj 〉| ≤ δ2s(ΦΨ)‖(Ψ∗h)T0‖`2‖(Ψ∗h)Tj‖`2 , (5.12)

and a similar bound replacing T0 with T1. Using (5.12), ‖(Ψ∗h)T0‖`2 +‖(Ψ∗h)T1‖`2 ≤
√

2‖(Ψ∗h)T01‖`2 , and Lemma 2.1 we get the following bound on the second term

∑
j≥2

(|〈ΦΨ(Ψ∗h)T0 ,ΦΨ(Ψ∗h)Tj 〉|+ |〈ΦΨ(Ψ∗h)T1 ,ΦΨ(Ψ∗h)Tj 〉|)

≤ δ2s(ΦΨ)
√

2‖(Ψ∗h)T01‖`2(‖(Ψ∗h)T01‖`2 + 2s−1/2‖(Ψ∗f)T c
0
‖`1).

(5.13)
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Combining (5.10), (5.11), and (5.13), and rearranging terms we get the following

bound on ‖(Ψ∗h)T01‖`2

‖(Ψ∗h)T01‖`2 ≤ (1− ρ)−1(αε+ 2ρs−1/2‖(Ψ∗f)T c
0
‖`1) (5.14)

where

α ≡
2
√

1 + δ2s(ΦΨ)
1− δ2s(ΦΨ)

, ρ ≡
√

2δ2s(ΦΨ)
1− δ2s(ΦΨ)

.

Note that when rearranging terms we divide by 1−ρ and thus require that 1−ρ

be positive, which it is since δ2s(ΦΨ) <
√

2− 1 by the hypotheses of the theorem.

Finally, the conclusion of the theorem follows from (5.7), (5.8) and (5.14) and

we have

‖f − f̂‖`2 ≤
2

1− ρ
s−1/2‖(Ψ∗f)T c

0
‖`1 +

2α
1− ρ

ε. (5.15)

5.4.2 Proof of Theorem 5.2.6

The proof of 5.2.6 is very similar to the proof of 5.2.3 and we only outline here the

main differences. Instead of (5.10) we have

(1− δ2s(A))‖(Ψ∗h)T01‖2`2 ≤ ‖A(Ψ∗h)T01‖2`2

= 〈A(Ψ∗h)T01 , AΨ∗h〉 − 〈A(Ψ∗h)T01 ,
∑
j≥2

A(Ψ∗h)Tj 〉

≤ |〈A(Ψ∗h)T01 ,Φh〉|

+
∑
j≥2

(|〈A(Ψ∗h)T0 , A(Ψ∗h)Tj 〉|+ |〈A(Ψ∗h)T1 , A(Ψ∗h)Tj 〉|)

where we have used the fact that AΨ∗ = Φ in going from the equality to the

second inequality. This is exactly the same form as (5.10) with every instance of

ΦΨ replaced by A. Thus the rest of the proof goes through exactly the same as the

proof of Theorem 5.2.3, with ΦΨ replaced by A. In particular, we now have

α ≡
2
√

1 + δ2s(A)
1− δ2s(A)

, ρ ≡
√

2δ2s(A)
1− δ2s(A)

and need only δ2s(A) <
√

2− 1 so that 1− ρ is positive.
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