103

Chapter 6

Significant Goal Network Verification
Examples

6.1 Introduction

The three verification methods introduced so far are applied to two examples in this chapter. The first
example is a goal network for a complex rover system that is based on autonomous robotic systems
such as the DARPA Grand (or Urban) Challenge vehicles. This example has twelve state variables
and twenty-one controlled goals, so is not too large for the conversion procedure and PHAVer verifi-
cation method. It is difficult to apply the failure probability calculation method without some model
reduction techniques, however. This example is described in Section 6.2. The second example,
described in Section 6.3, is a goal network for an example mission to Titan, a moon of Saturn. The
autonomous aerobot probe must explore the lower atmosphere of Titan and map its surface while
staying safe and performing other tasks. This example is sizable; over 500 locations are found using
the conversion procedure. The number of passively constrained state variables after some model
reduction techniques is nine, but that proves to be too much for the conversion procedure because of
the number of failure transitions. The conversion procedure is able to convert the goal network after
applying a restricting assumption, but even then, PHAVer is not able to verify the system (though
resorting to overapproximation and other abstraction techniques may have helped). So, this example
is redesigned and verified using the novel verification method described in Chapter 4. The failure
probability calculation must be approximated for this example following the Markov Chain Monte

Carlo technique outlined in Chapter 5.

104

. , p1 P2 p3

Figure 6.1: A depiction of the example task where the rover must traverse a path and reach the end point,
which is marked with a star

6.2 Complex Rover Example

This example is based on a possible set of commands for autonomous rovers such as Mars explo-
ration robots or DARPA Grand Challenge vehicles. The problem size is small but the system has
enough complexity to begin to test the capabilities of the conversion software and the verification

method.

6.2.1 Goal Network Design

This example involves an autonomous rover whose ultimate goal is to follow a given path to a
specified end point, shown in Figure 6.1. This rover has three main sensor systems: GPS, LADAR,
and an inertial measurement unit (IMU). The path choice and speed limit along the chosen path is
dependent on the combined health of these sensors. Each sensor degrades or fails in a specified
way. The GPS can experience periods of reduced accuracy (satellite dropouts) or failure (electrical
or structural signal interference), and these can both be modeled as recoverable stochastic events.
The health of the LADAR depends on the location of the sun in the sky. If the sun is shining
directly into the LADAR, its measurements cannot be used. Some degradation of the LADAR’s
capabilities occur at less direct sun angles, as well. Finally, the health of the IMU is dependent on
the temperature of the device. If the temperature of the IMU is too low, a heater can be used to heat
the sensor. If the IMU temperature gets too high, the unit must be powered off. The state effects
diagram listing all the state variables important to the system is shown in Figure 6.2. State variables,
measurements, and commands are shown and the arrows between these indicate modeled effects on
the accepting state variables or measurements.

The state variable types for each state variable can be found in Table 6.1. The goal network for
this task is shown in Figure 6.3 and the individual goal trees are shown in Figures 6.4—6.6. The first
goal tree describes the path the robot will take, the second constrains the speed limits that will apply

to the robot, and the third describes the IMU temperature management method.

105

Legend

@ Statevariable
A Measurement

W Command

Figure 6.2: State effects diagram for the complex rover example

Table 6.1: State Variable Data

State Variable Abbreviation Type
Position X Controllable
Heading 0 Controllable

IMU Power ps Controllable

Heater Switch hs Controllable

IMU Health IH Dependent

Rel. Sun Orientation SO Dependent

LADAR Health LH Dependent

System Health SH Dependent

IMU Temperature IT Dependent
GPS Health GH Uncontrollable
Ambient Temp. AT Uncontrollable
Sun Angle SA Uncontrollable

'GetToP1 (x — P1

I
I

*GetToP3 (x — P3

2 5

Turn to 8, @ ‘ ‘GetToP2 (x - P2) ()" Turnto 8, ® Maintain P3

"Maint Nom IT

® SpeedLimit

Figure 6.3: Goal network for the complex rover example

106

@ GetToP2 (x— P2)—0Q)
|
| |
1 |° Upper Path > |"' Lower Path
'° Turn to 8,, Turnto 8,,
! SH == GOOD i * SH#GOOD |
Figure 6.4: Path goal tree
@®—1® Speedlimit —@
| |
¥ High 2 | Low a |* Stop
® SH==GOOD 7 SH==FAR | ® SH==POOR |
Figure 6.5: Speed limit goal tree
@O— "Maint Nom IT | —©)
| |
'3 power = ON > |"> Power = ON s |Y Power = QOFF
* Heater = OFF '® Heater= ON '® Heater = OFF

> 15<1T<20

Figure 6.6: IMU Temperature goal tree

107

LHG & (IHG | GHG)
GOOD (LHF & (G | GHa)) | FAIR
| (LHF & IHF & GHF)

LHG & (IMG |
GHG) LHP | (IHP & IGHG)

| (GHP & lIHG)
POOR
LHP | (IHP & IGHG) HF & (IHG | GHG)
(GHP & 1IHG) | LHF & IHF & GHF

Figure 6.7: A finite state machine that describes the model of the SystemHealth derived state variable.
IHG = IMUHealth is GOOD, GHF = GPSHealth is FAIR, LHP = LADARHealth is POOR, etc.

GetToPt2
Upper

GetToPt1 GetToPt3 | x=p; | MaintPos

[sHF- TsHe

GetToPt2
Lower

Figure 6.8: The path automaton. One of three automata that are composed into the control system for the
rover. These four sets of locations represent groups 1-4.

6.2.2 Conversion and Verification

The goal network control program for this example consists of twenty-one controlled goals, includ-
ing eight root goals, and twelve state variables. The conversion software found thirty-eight locations
(including the Success location) in four groups in the goals automaton. Figures 6.8 and 6.9 show
the hybrid systems whose composition creates the goals automaton. In addition to this, there are
eight other automata that describe the state models of the dependent and uncontrollable state vari-
ables. One of these, the SystemHealth state variable model, is shown in Figure 6.7. In all, the
composition of the nine automata creates a discrete state space with over 200,000 states. The unsafe

set for this problem consists of the following conditions:

1. The rover is not stopped (& # 0) when the IMU is off (ps == OFF) and the GPS is degraded
(GH # GOOD).

2. The rover moves forward (& # 0) when the sun is pointing directly into the LADAR unit

(LH == POOR).

While the conversion software took less than five seconds to generate the PHAVer code for this

system, PHAVer was not able to handle the large state space without resorting to overapproximation.

108

Speed Limit: SHP
R —
FullSpeed Shik HalfSpeed SHP Stopped
SHG SHF
’\\—“—‘1—__
SHG
IMU Temperature: ITH
R —
Heat Off ik Heat On Ll Heat Off
Power On ITN | Power On ITL Power Off
N\‘ik
ITN

Figure 6.9: The speed limit and IMU temperature automata; all locations in the two automata span groups
1-3

So, several reduction techniques were employed. The first reductions were in the uncontrollable
and dependent state variable automata. The SunAngle and RelativeSunOrientation state
variables, which were modeled with stochastic transitions, were removed and the LADARHealth
state variable’s model became stochastic. Since these two state variables were not used else-
where in the goal network, this simplification did not affect the quality of the model. Next, the
AmbientTemperature state variable was removed as was the IMUTemperature state vari-
able’s dependence on it, simplifying the model. In the last model reduction, the SystemHealth
state variable was removed in favor of using the three sensor health state variables in its place.
These reductions made the discrete state space a more manageable 3726 states. The final reduction
was to verify the goals automaton group by group, which is possible because the unsafe set did
not constrain the progress of the Position or Orientation state variables, though the initial
condition problem must be handled carefully.

The goals automaton could be verified after making some corrections. The verification software
found reachable states in the automata that entered the unsafe set, so the goals automaton had to
be corrected to ensure that the unsafe set was not entered. The transitions into the locations where
the IMUPower is off (ip == OFF) and the speed is not zero (& # 0) must also have a condition
that the GPSHealth is GOOD or FAIR (GH # POOR)) to satisfy the unsafe set. These changes were
added, verified, and then translated back into the goal network by adding a new tactic in the speed
limit goal tree, which can be found in Figure 6.10. This makes the control program conservative
(more states than necessary are constrained to have zero rate) but verifiable with respect to the given

unsafe set.

109

D—{® SpeedLimit G

t [High 2 | low 3 2 stop 4 [2 stop
°SH=GOOD | |’ SH==FAR | [®SH==POOR | [IH==POOR |
S HsPOOR | [IH#POOR | [IHzPOOR |

Figure 6.10: Redesigned speed limit goal tree

6.2.3 Uncertainty Analysis

The goal network verified in the previous section can now be analyzed for safety in the presence of
state estimation uncertainty. The unsafe set specified in the previous section continues to be the set
of conditions that the uncertainty analysis will use. Since the first three groups, Vi, V5, and V3, are
essentially the same set of locations repeated, only V; will be analyzed. The velocity in V} is con-
strained to be zero, so there is no way to enter the unsafe set based on the uncertain state variables;
the failure probability for this group is W(4) = 0. The system has four uncertain state variables
(IMUTemperature, GPSHealth, LADARHealth, and IMUHealth), each with three possi-
ble state values ({GOOD, FAIR, POOR} for the health state variables and {LOW, NOMINAL, HIGH} for
IMUTemperature). Since that translates into 3% = 6561 complete system states, simplification
is necessary. Instead, if the SystemHealth state variable with three states replaces the two of the
sensor health state variables and a two state IMUHealth is used ({POOR, NOTPOOR}), the number
of complete system states reduces to 22 x 3 = 324.

Another observation is that the IMUHealth depends on the IMUTemperature. Since there
is a model that controls what the IMUHealth is estimated to be given the IMUTemperature, the
estimated IMUHealth is known given the IMUTemperature. However, the actual IMUHealth
may not always be known given the actual IMUTemperature due to modeling errors. In certain
cases, such as when the estimated IMUTemperature causes the IMUPower to be turned OFF,
that the actual IMUHealth state is known given the estimated IMUTemperature. This depen-
dence of an uncertain state variable on another causes the number of complete system states to be
further reduced. Dependencies between two state variables is handled by creating a new composi-
tion state variable that consists of all the possible actual and estimated states that the two variables
can take given the dependencies. For this problem, the new state variable is called TI and has 18

states, which are made up of estimated and actual values of IMUTemperature and IMUHealth.

110

With the nine possible states for the estimated and actual values of the SystemHealth state vari-

able, the new total number of complete system states is 18 x 9 = 162.

1
> 90

The group V; is a non-uniform completion group with three different contribution values, 1
and 0, that correspond to the Full Speed, Half Speed, and Stopped speed limit tactics, respectively.
The completion time for V] is assumed to be ¢; = 5. Based on the unsafe set specification and the
composed hybrid automaton control system, the nominal set, =1, has 120 complete system states,
the Safing set, F7, is empty, and the unsafe set, {2; contains the remaining 42 complete system states.
The state transitions of the two remaining uncertain state variables are modeled as stationary Markov
processes; in this case the models were chosen to have what was considered to be realistic values,
but in practice, these models would be chosen based on simulations or tests of the hardware. For this
example, several different estimator uncertainty values were chosen and the failure probability was
calculated for each. Using these models, uncertainty values, and the sets of complete system states,
the appropriate vectors and matrices were calculated. The initial failure probability, a1, is the sum
of the initial probabilities of all 42 unsafe complete system states. There are three initial probability
vectors W7 corresponding to the three contribution values; the dimensions of W is 1 x 6, W is
1x12and W13 is 1 x 102. There are nine)1 matrices between the 3 groups and three W, 1 vectors,
with the same dimensions as the W7 vectors.

Since this case has a set of locations that has zero contribution value, there are an infinite number

of failure paths. However, by using the power series equation,
o0
YT =1-Q7, (6.1)
=0

each failure path can be accounted for in the failure probability calculation. The failure probability

was calculated for several values of estimation uncertainty and the results are shown in Fig. 6.11.

6.3 Titan Aerobot Example Mission

Titan is the largest moon of Saturn and is remarkable for its dense atmosphere that has an estimated
composition of 95% nitrogen, 3% methane, and 2% argon. The surface pressure on Titan is about
1.5 bars, which is 1.5 times the surface pressure on Earth. The thick atmosphere and the methane
haze make surface observation difficult; however, near infrared observations and pictures from the

Huygens probe suggest that interesting terrain is present and is made of solid rock and frozen water

111

o
o
)

o©

o

a
/

o S~

: .

Group Failure Probability

0.02 :
0.8 0.85 0.9 0.95 1

System Health Certainty
Figure 6.11: Group failure probability vs. SH estimation certainty

ice littered with liquid methane and ethane bodies. Cryovolcanism has been conjectured, as has a
methane and ethane cycle like the water cycle present on Earth [82].

A proposed mission to Titan consists of a satellite of Titan that would release an aerobot probe to
the lower atmosphere. This lighter-than-air vehicle would use wind currents to explore the moon by
taking advantage of Titan’s unique atmosphere. The probe would have the capability to fly to points
while simultaneously mapping Titan’s surface; it would also be able to stationkeep. In addition
to wind profiling, surface and atmospheric observations, and atmospheric composition testing, the
probe would also have the capability to collect samples from the surface without landing [1].

Because the Saturn system is far away from Earth, there is a significant light-time delay of
about 2.6 hours round-trip [82]. This means long communication latencies between the aerobot
and Earth. Having an autonomous vehicle that can execute a relatively long mission plan without
human interference is important. This autonomous control system must be able to function without
human intervention and be able to identify and handle many types of faults and failures in a safe
manner. The verification of the fault-tolerant control plans against sets of unsafe conditions will be

extremely important and useful for a Titan exploration mission.

6.3.1 Problem Statement

A simplified model of the Titan aerobot was used as an example for the conversion and verification
procedure. The aerobot used in this example has a mission to fly to a specific area while maintaining
at least 10% power, position awareness, and appropriate safe altitudes, and while being aware of
spontaneous science observation opportunities. The example aerobot has several sensors, including
two cameras, a laser range finder (LRF), a radar, a hygrometer, and a motion sensor. The cameras

and laser range finder allow the aerobot to localize and map the surface of Titan while maintaining

Radar
ol @ State variable

A Measurement

‘W Command

Precip-
itation

Figure 6.12: State effects diagram for the aerobot example

a safe altitude above Titan’s surface features. The radar, hygrometer, and motion sensor are used
to detect spontaneous science events such as cloud formation, precipitation, and cryovolcanism.
Figure 6.12 gives the state effects diagram for this example problem. The state effects diagram lists
all pertinent state variables, commands, and measurements that are used to control the system. The
arrows between the different bodies in the diagram indicate that the originating body has a modeled
effect on the accepting body.

Most of the models between state variables or between state variables and measurements or
commands are fairly obvious. The aerobot is able to localize using the existing map, which is gen-
erated by the orbiting satellite and to which details are added by the aerobot. The map uncertainty is
a measure of the scale of the surface feature information in an area; the uncertainty is high in areas
only covered by satellite images and is low in areas imaged by the aerobot. The position uncertainty,
then, is a measure of how well the aerobot can constrain its position relative to the existing map.
Sunlight intensity and ground visibility are affected by the aerobot’s absolute altitude, and these
state variables affect the quality of the measurements taken by the cameras. Relative altitude is the
height that the aerobot is above the ground and is the state that the LRF is measuring. The aerobot’s
position is controlled by the thrust and altitude commands and affected by the wind vector. Power
is also affected by the wind vector because more or less control effort may be needed to drive the
aerobot based on the direction and magnitude of the wind. The aerobot is assumed to have some
regenerative power capability based on solar energy, so sunlight intensity also affects the percentage

of power remaining on the probe. (However, with Titan located so far from the sun, solar energy

113

LFlyTo (X = P)

> SLAM

% Power Mgmt

!> spont Science

20 Maintain Alt

Figure 6.13: Goal network for Titan example

could at best be a back-up power system for an actual mission.) It is also assumed that altitude
affects sunlight intensity, with more intensity near the top of the atmosphere.

A derived state variable is a non-physical state variable that depends only on other state vari-
ables. The SpontaneousScience state variable with four states (NONE, MOTION, PRECIP, CF)
is a derived state variable that depends on seven state variables (Motion, Precipitation,
CloudForming, RelativeHumidity and the accompanying sensor health state variables).
The SpontaneousScience state variable prefers the rarer events; if motion is sensed, then that
is the value of the state variable regardless of the presence of precipitation or cloud formation. The

next preferred event is precipitation followed by cloud forming.

6.3.2 Goal Networks

The goal network for this example problem, shown in Figure 6.13, is based on the control of the
position and altitude of the aerobot as it flies to a specified point. The Position state variable
(X) is controlled via three modes: a “fly to” mode where the aerobot heads towards the constrained
area; a “stationkeeping” mode where the aerobot maintains its current position; and a “float” mode
where the aerobot drifts without controlling its position. There are also five control modes for the
Altitude state variable (Z) that refer to different absolute altitudes; from lowest to highest, these
altitudes are ground observation, detailed mapping, minimum en route, maximum terrain clearance,

and service ceiling. The abbreviations used for the passive state variables can be found in Table 6.2.

The first concurrently executed goal tree, shown in Figure 6.14, involves the task of flying to a
specified area. There are two tactics available for doing this that are chosen based on the relative
wind vector. When the wind vector is favorable or small, the aerobot attempts to maintain a mini-

mum velocity in the direction of the specified area. When the wind vector is large and unfavorable,

114

o—[imonan |—0

2 *MU==HIGH | 3{° PU==LOW |

e ——
]
|
I
L

5 PU== LOW 7 MU == LOW !

Det Map (Z=2)

Figure 6.15: Goal tree for simultaneous localization and mapping

the aerobot instead attempts to stationkeep; in a more complex example, the aerobot would profile
the wind to find a new altitude at which to fly.

How well the aerobot can constrain its position on the existing map contributes to the position
uncertainty; when the uncertainty is high, the aerobot must ensure that it is at a safe altitude to avoid
controlled flight into terrain. The second goal tree, shown in Figure 6.15, gives tactics that help to
accomplish the task of simultaneous localization and mapping (SLAM). When position uncertainty
is high, the aerobot ascends so as to clear all possible obstacles and to match its position with the
less detailed satellite map. Execution continues as usual when the position and map uncertainty are
low. If the position uncertainty is low and the map uncertainty is high, the aerobot flies at a lower
altitude to achieve more detailed mapping.

The third task for the aerobot is power management, which is controlled in the goal tree shown
in Figure 6.16. Overall, the aerobot must maintain at least 10% power; if it does not, the aerobot
safes to floating until the power increases. While the power value is above 10%, there are several
tactics to ensure that the power level does not drop to the safing level. When the power drops
below 50%, the aerobot climbs to increase the sunlight intensity that it is receiving. If the power
dips below 30%, the aerobot discontinues its trek to the specified point and instead stationkeeps to
preserve power.

Spontaneous science observation is an important part of the Titan aerobot’s mission, so the goal

115

oot |
\

|
2> | Power 2 10%

1 igPower e [10.30)3 2 imPowere [30,50)
[}

I
I
I
el 1

Hstationkeep (X) " Ceiling (Z = 5)

Figure 6.16: Goal tree for power management

0 [zl ©

el | Pl EaE————

“sC==NONE | 2 [”SC==MOTION| * [“sc==PRECIP| ¢ |® sc==CF

“Stationkeep (X) Bstationkeep (X) Bstationkeep (X)
'° GndObs (Z=1) " GndObs (2= 1) " Ceiling (Z = 5)

Figure 6.17: Goal tree for observing spontaneous science

tree shown in Figure 6.17 deals with this task. When no motion, precipitation, or cloud formation
is detected, the aerobot continues on with its current task. However, if motion on the surface (such
as cryovolcanism) or precipitation is detected, the aerobot descends and stationkeeps to observe it.
Likewise, if cloud formation is detected, the aerobot ascends to observe it.

Several other factors also affect the altitude at which the aerobot flies, such as the health of
the position sensors (the cameras and the LRF), the ground visibility, and sunlight intensity. These
conditions make up the five tactics of the final goal tree controlling the altitude of the aerobot; this
is shown in Figure 6.18.

Each of the goal trees presented are executed concurrently in the aerobot’s goal network. It
is assumed that when the aerobot has positive control (i.e., the position and map uncertainties are
low, the wind vector is low, etc.), the low-level position controllers successfully avoid terrain at the
low altitudes. When two goals constraining altitude are merged (executed concurrently), the higher
altitude is taken; likewise, when two goals constraining position are merged, float constraints take

priority, and then stationkeeping constraints are preferred over fly to constraints.

1 |'°CH#POOR | s [CH==FAR | s ** CH==GOOD |
Y si==10W | LH==POOR | ** LH==POOR |
» " CH#POOR + [CH#POOR |
I LH == GOOD | 1 py == LOW |
*° GV == HIGH | °Gv==1L0W |
L Sl== HIGH | %7 LH == GOOD |

| S ———
*GndObs (Z = 1)

Figure 6.18: Goal tree for controlling the altitude of the aerobot

6.3.3 Verification

The control system for the Titan aerobot mission designed in Section 6.3.2 was converted to a
hybrid automaton with 544 locations and thousands of transitions (using a restrictive simplifying
assumption that only a single passive state can change per time step) and an input file to the PHAVer
symbolic model checker was automatically generated. The unsafe set for the goal network, Z =

{¢1, ¢2}, had two sets of constraints:

1. Power is less than 10%, (; = {(Power, <, 10)}.

2. The altitude is lower than maximum terrain clearance while the ground visibility is low and

the position uncertainty is high, (o = {(z, <,4), (GV, ==,L0W), (PU, ==, HIGH) }.

PHAVer was not able to handle the automaton along with the nine passive state variable model
automata due to the large state space that results (over 2.5 million discrete states). The list of

passive state variables and the number of discrete states in the model of each are given in Table 6.2.

To handle the large verification effort, the method introduced in Chapter 4 was used. The first
step of that procedure is to ensure that the goal network has state-based transitions. Each root
goal and its goal tree were run through the SBT Checker and the software found that the altitude

controlling goal tree was missing a tactic with passive constraints as follows:

LH == GOOD A SI == HIGH A GV == LOW A PU == HIGH A CH # POOR.

1

—

7

Table 6.2: Passively Constrained State Variables

State Variable Abbreviation | Number of States | Estimator Accuracy
Camera Health CH 3 0.95
LRF Health LH 2 0.95
Sun Intensity SI 2 0.99
Ground Visibility GV 2 0.99
Wind Vector wv 2 0.99
Position Uncertainty PU 2 0.9
Map Uncertainty MU 2 0.9
Spontaneous Science SC 4 0.8
Power 6
: 0
I E— — R —
+ {™®CH=POOR | 3 |2 CH==FAR | 5 | CH==GOOD |
I —————— ! e—————
17 Sl==LOW | > LH==POOR | 12 LH == POOR |
[— T —— T —
! Ceiling (2 = 5) “MaxTer (Z = 4) **MinER (Z=3)
,Foneroor | . [fonsroor | . Paiaroon |
' LH == GOOD | 5 py==10W | PU==HIGH |
&tﬁt‘i‘,—,—,t‘:i_l L:‘:‘:,m'—-::::-:'::l ,,,,,,,,,,,,,,,,,
”° GV== HIGH | GV ==L0W | 2 GV==LOW |
———— e et ————
ilzl Sl== HIGH | 12’ LH == GOOD | 133 LH == GOQD |
“iGndobs (Z = 1) ' Sl==HIGH |

e —
* MaxTer (Z = 4)

Figure 6.19: Redesigned altitude control goal tree

The unsafe set, (3, dictates that the altitude must be constrained in this tactic to be either the max-
imum terrain clearance altitude or the service ceiling (z = 4 or z = 5, respectively). Since the
sun intensity is high, the maximum terrain clearance altitude is the appropriate constraint. The new
tactic in the redesigned altitude control goal tree is shown in Figure 6.19.

The goal network was then verified using the InVeriant software. More than 600 locations
were generated and no inconsistent controlled constraints were found. The verifier composed the
converted automaton with the Power state variable’s model automaton for the first unsafe set, (;.
The verifier found locations in which the unsafe power constraint was possible when 10 < Power <
30 AWV == HIGH A SI == LOW. In order to most efficiently use the software, the unsafe power

constraint, (7, was converted into two equivalent constraints: 10 < Power < 30 A %(Power) > 2.

118

@ % Power Mgmt (@)

1 1® Power < 10% | 2 |° Power 2 10%
| ————
® Float(X) ‘]

I
I
I
________________ i

|
|
‘26Ceiling (2=5) ‘ ‘ZBCeiIing (2=3) ‘

27

Float (X) |

stationkeep (X)‘

Figure 6.20: Redesigned power management goal tree

The constraint on the power rate is equivalent to a medium or high power use state; if these power
rates are present in a location where the power falls into the given constraint, it is possible to achieve
a power state that is less than 10%. Because the Power state variable is a continuous, rate-driven
dependent state variable, a path from the initial condition (Power = 100) to the unsafe condition
(Power < 30) must be found to prove that the unsafe locations are reachable. The software was
able to find a path of three locations whose invariants included the appropriate power constraints
(Power > 50, 30 < Power < 50, and 10 < Power < 30) and whose power rates were negative,
proving that the unsafe conditions were reachable. The software also output the goals that were
common to all the unsafe locations, which triggered the redesign of the power management goal
tree to include a tactic that commands the aerobot to float at the service ceiling when the Power is
less than 30% and the SunIntensity is LOW. This new power management goal tree is shown in
Figure 6.20. Verification of the redesigned goal network confirmed its correctness.

The SBT checker and InVeriant verification software package is superior to the conversion soft-
ware and PHAVer for this application. The conversion software was able to handle the large goal
network to linear hybrid automaton conversion with the transition restriction, taking just under five
hours on a 2.0 GHz Intel Core 2 Duo CPU with 4.0 GB of RAM. However, many verification at-
tempts using PHAVer proved to be unfruitful. While this does not show that PHAVer could not
complete the task, abstraction, model reduction, and overapproximation would be necessary. The
SBT Checker, however, took nearly no time to run once the appropriate data were entered and
the output of that software was useful to the design process, unlike the output of the conversion

procedure. Then, the InVeriant software was able to convert the goal network into locations and

119
invariants in about fifteen minutes, followed by about two minutes of verification work. Whereas
PHAVer outputs conditions on the state variables that allow at least one of the unsafe conditions to
be true, InVeriant gives that information along with the unsafe constraint satisfied and the goals and

tactics that are responsible for the failure.

6.3.4 Uncertainty Analysis

The uncertainty analysis was completed for the Titan aerobot mission. The large number of po-
tentially uncertain state variables caused an explosion in the number of complete system states.
Assuming that all state variables in Table 6.2 except Power are uncertain, the number of complete
system states was almost 600,000. Only the second unsafe set condition was analyzed for simplicity.

The failure probability of the second unsafe set condition was calculated using the automatic
complete system state sorting software. The fourth column of Table 6.2 gives the probability that the
state variables’ estimators are correct. Stationary Markov chains with no mixing time were assumed
for the state propagation models for each of the uncertain state variables. After about 65 hours of
computation on the computer described above, a stationary unsafe probability of p,, = 0.00915 £
0.005 was found. Since the problem can be estimated as a uniform completion problem, the failure
probability of the goal network with respect to the unsafe condition chosen can be calculated as a

function of the number of time steps the goal network executes:
Ck
Wy =pux Y _ph, (6.2)
=0

where p, = 0.99085+0.005 is the stationary nominal probability. Given the estimator uncertainties,
these failure probabilities are fairly low, which suggests a well-designed system. The failure prob-
ability as a function of completion time is shown in Figure 6.21; the failure probability approaches

one as the completion time goes to infinity.

6.4 Conclusion

The example goal networks presented in this chapter were very useful in driving the design and
improvement of the verification methods introduced in the previous chapters. The rover example in
Section 6.2 validated the conversion software and pushed the capabilities of the failure probability

calculation procedure. The Titan aerobot example goal network was significantly larger and more

120

Failure Probability
o
(6}

0 L
0 100 200 300
Completion Time

Figure 6.21: Failure probability of the Titan example as a function of completion time

complex and it drove the creation of the SBT Checker and InVeriant verification method due to
the inability of the conversion procedure and PHAVer to verify the goal network. Both examples

illustrate the techniques in this dissertation well.

