
75

Chapter 5

Probabilistic Safety Analysis of
Sensor-Driven Hybrid Automata

5.1 Introduction

The verification of control programs for autonomous robotic systems would be incomplete if the

effect of state estimation uncertainty was not discussed. Autonomous systems see themselves and

their environment through their sensors and estimators; all the state variables that drive the branch-

ing of the control program are, in fact, estimations of the true states. Because the control system is

designed and verified for the actual states, an analysis of what may happen when the estimators are

wrong is an important verification tool.

This chapter deals with the analysis of linear hybrid systems that have invariants and transi-

tion conditions that depend on the states of several uncontrollable and passively constrained state

variables. Each uncontrollable state variable, which describes the environment or the health of the

system (or anything that the system does not actively control), can reach some countable number

of discrete states (or discrete sets of states) and the transitions between these states can be modeled

as a stationary Markov process. These state variables’ states are estimated by the system and these

estimates of state are used by the linear hybrid automaton (LHA) to drive the discrete switching

between locations. For a given LHA, there may be some combination of states and locations that

are unsafe. In the perfect knowledge case (the estimator is always correct) when the LHA has been

verified by a model checker, these unsafe conditions will never be met. However, when the accuracy

of the estimator is not perfect, there exists some probability of reaching the unsafe condition. This

chapter describes a method to calculate this failure probability for different types of LHA control

systems.

76

It must be stated that the addition of uncertainty due to the estimation of the state variables driv-

ing the discrete transitions in the hybrid system adds some stochasticity to the problem. However,

the problem is not effectively described as a stochastic hybrid system; as described later, it is better

to think of the problem as an LHA with deterministic transitions and uncertainty. Stochastic hybrid

systems include uncertainty in the transitions of the hybrid automaton as probabilistic transition

conditions. Many methods to verify stochastic hybrid systems exist, some of which are referenced

in Chapter 1. The method described here somewhat abstracts the transitions of the LHA, reducing

the complexity of the problem dramatically.

The methods described in this chapter allow the analysis of the safety of a control program

against the given unsafe set when the estimation of important state variables is not perfect. If these

states were known exactly, a traditional hybrid system verification would be a sufficient test of

the safety of this system. However, a full analysis of this system must include the calculation of

the failure probability due to the estimation uncertainty. Section 5.2 sets up the failure probability

calculation problem while Section 5.3 describes the steps of the calculation. Variations on this

calculation procedure are discussed in Section 5.4. Because this method is very sensitive to problem

complexity, reduction techniques are described in Section 5.5, followed by a discussion on methods

to find an approximation of the failure probability in Section 5.6. Section 5.7 summarizes the

contributions of this chapter.

5.2 Problem Definition

5.2.1 Automata Specification and Models

The architecture of the LHA control system involves a string of high-level completion tasks, such as

driving a robot to a series of waypoints, that are executed in parallel with several minor tasks, such

as maintaining the temperature of an instrument, limiting the robot’s overall speed, or monitoring

a sensor’s health value. Thus, the locations in the hybrid automaton, vi, can be sorted into disjoint

groups, V1, V2, ..., VK , based on which of the K high-level completion tasks that the location is

trying to achieve. Then, each of the locations in a group Vk describes one method or tactic to

complete the kth high-level task and all subtasks, and these tactics are chosen based on the states of

the environment or uncontrollable states of the autonomous system that may affect the completion

of the task. For example, the high-level task may be to drive the robot to a waypoint. One of

the concurrent low-level tasks may be to maintain the temperature of the wheel motors above a

77

certain level through the use of two redundant strings of heaters. So, there are at least two tactics to

accomplish the set of tasks; the first uses the primary set of heaters and the second uses the back-up

heaters. The transition between these two locations is driven by the health of the primary string of

heaters.

The flow of the linear hybrid automaton is

ψif (tf)τif if−1
...ψi2(t2)τi2i1ψi1(t1)X0 (5.1)

where X0 is the set of initial conditions on the controlled state variables, ψin(tn) is the flow associ-

ated with location vin for tn time steps, and τinin−1 is the transition from location vin to vin−1 . The

flow of a location is based on the high-level and minor tasks that the location is trying to achieve.

These dynamical equations are the continuous control actions that a particular tactic use in the com-

pletion of the appropriate task. Discrete control actions in the form of resets are grouped with the

entry transition for a given location.

There are two types of transitions between the locations of an LHA with this group structure.

First, transitions from a location, vi ∈ Vk, to a location in the following group, vj ∈ Vk+1, are

called completion transitions, τ cji,k. The transition conditions in this case are based both on the

state of the uncontrollable state variables of the system and on the completion of the high-level

task that defines the group, Vk. The second type of transitions are transitions between locations

in the same group, vi, vj ∈ Vk, and these are called failure transitions, τ fji,k. These transition

conditions are between different tactics achieving the same high-level task and are based solely on

the states of the uncontrollable state variables. Sometimes, the state of the system becomes such

that there is no way to safely continue achieving a task; in that case, the automaton can transition

from a location vi to a special location called Safing and these failure transitions are labeled τ fSi,k.

All failure transition conditions must be entirely state-based; they cannot be based on the order of

tactics attempted except in special circumstances described later. This restriction is not a serious

one; in general, completely deterministic state-based transitions are a characteristic of more robust

control programs. First, the definition of the complete system state of the uncertain state variables

is given. Each of the uncontrollable state variables that is involved in failure transitions in the kth

group of locations is called an uncertain state variable, χ ∈ Uk, where Uk is the set of all uncertain

state variables in Vk.

Definition 5.2.1. A complete system state, sj , is both the estimated and actual state values of each

78

uncertain state variable χi ∈ Uk at a point in time in a possible execution of the LHA control system.

The set of all possible complete system states is S. Each complete system state has two functions

associated with it.

1. est(sj , χi) ∈ Λi returns the estimated value of χi in sj .

2. act(sj , χi) ∈ Λi returns the actual value of χi in sj .

Definition 5.2.2. For a hybrid automaton with completely deterministic state-based transitions,

all states in a location’s initial set, sξi ∈ init(vj), must satisfy the location’s invariant, est(sξi) |=

inv(vj). No transition τjl,k originating from the location can be satisfied by any states satisfying the

location’s invariant,

est(sξi) |= inv(vj)⇒ est(sξi) 2 τjl,k,

for all vl ∈ V , vl 6= vj . Also, for any location vj ∈ Vk, there is only one transition τjl,k such that

est(sξi) |= τjl,k for all sξi ∈ Ξk.

It is assumed that certain statistical information is known about the system. For each of the

uncertain state variables, there must be a way to model the propagation of the state variable as a

stationary Markov process; since these state variables are not controlled, oftentimes this approx-

imation is a good one. Each state variable χi ∈ Uk has a set Λi = {λi1, λi2, ..., λini} of discrete

state values (or discrete sets of state values) that can achieved by χi. The actual value of the state

variable χi can be accessed by using its associated val(χi) ∈ Λi function. The probability of these

state transitions, ρi are given by the following equation:

ρi(l, j) = P (val(χi)[κ] = λij |val(χi)[κ− 1] = λil), (5.2)

for all χi ∈ Uk and for all λij , λ
i
l ∈ Λi. The stationary probabilities give the probability that the state

variable has a certain value in the steady state model, and these probabilities, αi, are

αi(j) = P (val(χi) = λij), (5.3)

for all χi ∈ Uk and for all λij ∈ Λi.

For each uncertain state variable, χi ∈ Uk, there exists an estimator for that state variable

that has some non-zero amount of uncertainty. This uncertainty can be stated as a probability of

79

correctness of the estimated value. Furthermore, this probability can be broken up for each state

value λij ∈ Λi into the probability that if the value of the actual state, val(χi) is λil , then the value

of the estimated state, val(χ̂i) is λij , for all λij , λ
i
l ∈ Λi. This probability, ρei , is

ρei (l, j) = P (val(χ̂i)[κ] = λij |val(χi)[κ] = λil). (5.4)

The problems of measuring the uncertainty of an estimator and finding the probability of which state

is estimated given an actual state are very real in practice. Methods such as simulation and testing

can estimate these values; since the final failure probability should be used as a relative value, these

probability values do not have to be exact. Much can be learned about the system by using these

values as parameters that can be varied in the failure probability calculation.

5.2.2 Unsafe System States

When a LHA executes, that execution follows some path through the different locations based on, in

this case, only the states of the system and time. For the automata described above, within a group

the location that is executing is chosen based on the estimated system state alone; time only affects

transitions out of groups. The execution path within a group, then, consists of a list of the estimated

system state values and their associated locations at each time point; the length of the path is related

to the completion time of the group, which will be defined in Section 5.2.3.

The conditions (states and locations) that should never occur in conjunction are called the unsafe

set.

Definition 5.2.3. The unsafe set is a set of conditions Z = {ζ1, ζ2, ..., ζn} that should never be

reached in an execution of the LHA. Each condition ζj contains a set of constraints on the uncon-

trollable state variables’ values and a set of locations loc(ζj) ⊂ V in which the set of constraints

should not hold. This information can be accessed using the following functions:

1. plc(ζj , χi) ⊆ Λi returns a set of discrete values that the state variable, χi, is constrained to

be, val(χi) ∈ plc(ζj , χi), to satisfy the unsafe condition. If χi does not affect this unsafe

condition, plc(ζj , χi) = Λi.

2. loc(ζj , vi) returns true if vi ∈ loc(ζj) and false otherwise.

In a verified system, the unsafe set is unreachable when the estimated system state is accurate;

failure can occur, however, when state estimation uncertainty is added. While the execution path for

80

a group of locations depends only on the estimated system state at each time point, determining if

an execution path reaches the unsafe set requires both the estimated and actual system states. The

estimated system state still determines which location will be executing at a given time, and the

combination of the executing location and the actual system state dictate entrance into the unsafe

set. The lemma that follows states exactly this.

Definition 5.2.4. Each location vn ∈ Vk has a function associated with it that returns the state

values that each uncertain state variable, χi ∈ Uk, must take in order for that location to be executed,

ucons(vn, χi) ⊆ Λi. This is the location’s passive invariant in the state-based transitions case. If a

state variable χi is unconstrained in a location vn, ucons(vn, χi) = Λi.

Lemma 5.2.5. Let Ωk ⊂ S be the set of complete system states that drive the automaton execution

from group Vk into the unsafe set Z. For a complete system state sω ∈ S , sω ∈ Ωk if and only if

there exists ζj ∈ Z and vn ∈ Vk such that

 ∧
χi∈Uk

act(sω, χi) ∈ plc(ζj , χi)

 ∧
 ∧
χi∈Uk

est(sω, χi) ∈ ucons(vn, χi)

 ∧ loc(ζj , vn) (5.5)

is true.

Proof. Let sω ∈ Ωk but assume there is no vn that satisfies (5.5). By the definition of the unsafe

set, there must exist some ζj ∈ Z such that

∧
χi∈Uk

act(sω, χi) ∈ plc(ζj , χi)

is true, since entrance into the unsafe set is always driven by the actual system state. Since the

unsafe set specifies the total system state, including the location in the automaton, there must exist

some vn such that loc(ζj , vn) is true. To enter location vn and thus the unsafe set from complete

system state sω, ∧
est(sω, χi) ∈ ucons(vn, χi)

must be true since the transitions in the automaton are state driven by definition and because the

estimated state drives the transitions in the hybrid automaton execution. Therefore, vn does satisfy

(5.5). The other direction of the proof is obvious by the definition of the unsafe set.

Complete system states that cause the automaton to transition from a location vi ∈ Vk to Safing

81

Figure 5.1: A representation of the classifications of complete system states. The nominal set of states is Ξk,
which is Sk \ (Ωk ∪ Fk), where Fk is the set of Safing states and Ωk is the set of unsafe states.

are elements of the safing set for group Vk, sf ∈ Fk. Complete system states that allow the execution

of the group to occur normally are elements of the nominal set, sξ ∈ Ξk. For each group of locations

Vk,

S = Ξk ∪ Fk ∪ Ωk, (5.6)

where S is the set of all complete system states, and the sets Ξk, Fk, and Ωk are disjoint. Figure 5.1

illustrates this.

5.2.3 Failure Path Specification

The completion time of a group Vk depends on the completion task that defines the group. The type

of completion time (uniform or non-uniform) depends on the presence of rate limiting tasks that

affect the completion task in the group.

Definition 5.2.6. A nominal execution path of a group Vk is a path sξ1s
ξ
2...s

ξ
r ∈ Nk in which only

nominal complete system states are visited before the group is exited and execution continues in

group Vk+1. The set of all nominal execution paths in group Vk is Nk.

Definition 5.2.7. Given the set of nominal execution paths Nk for group Vk, the completion time,

ck, is the minimum length of nominal execution path,

ck = min
ν∈Nk

length(ν). (5.7)

The completion time of a group is the time it takes to achieve the group’s completion task at the

fastest constrained rate.

82

Figure 5.2: Hybrid control system for speed limit example

Definition 5.2.8. In a uniform completion group, Vk,

ck = min
ν∈Nk

length(ν) = max
ν∈Nk

length(ν). (5.8)

The uniform completion case holds in groups that have only one rate of completion of the task;

in this case, all tactics contribute the same amount towards the completion of the task. Another way

to define the uniform completion case is that the contribution values of each location in the group

are the same.

Definition 5.2.9. The contribution value of a location vi ∈ Vk, cval(vi) ∈ R, is the normalized

contribution towards the achievement of the completion task in Vk that location vi gives each time

step. In uniform completion groups, for each vi ∈ Vk, cval(vi) = 1.

Definition 5.2.10. A non-uniform completion group is one in which

min
ν∈Nk

length(ν) 6= max
ν∈Nk

length(ν). (5.9)

In the non-uniform completion, for each location vi ∈ Vk, cval(vi) ≤ 1. In this case, the group

would have more than one rate that constrains the achievement of the completion task. An example

of non-uniform completion would be a rover that is assigned to reach a certain waypoint, but whose

maximum velocity is related to the laser sensor’s health value. One time step in a location would

drive the rover a distance that is different than the distance achieved in a different location that

constrains the rover to a different maximum velocity. Figure 5.2 shows the simple hybrid system

for this example; assuming that v1 = 2v2, the contribution value of the first location would be 1 and

the contribution of the second location would be 1
2 .

The definition of failure path is now given.

Definition 5.2.11. A failure path in group Vk is a sequence of nominal complete system states, sξi ,

83

i = 0, ..., n, followed by an unsafe system state, sω. The number of nominal complete system states

is n = 0, ..., r−1, where r = ck in the uniform completion case and depends on the completion time

and the contribution values of the locations visited along the path for the non-uniform completion

case.

From Definition 5.2.2 of completely deterministic state-based transitions, it is clear that there

can be a function cloc(sξ, k) ∈ Vk that returns the location associated with the nominal complete

system state sξ in group Vk.

Lemma 5.2.12. For every failure path π = sξ1s
ξ
2...s

ξ
r−1s

ω ∈ Πk, where Πk is the set of all failure

paths in group Vk,
r−1∑
i=1

cval(cloc(sξi , k)) < ck. (5.10)

Proof. The proof of this lemma is simple; if the sum of the contribution values of the nominal states

visited in a failure path equals or exceeds ck, the execution continues into the next group by the

definition of completion time. In order for the path to lead to the unsafe set within a group, the sum

of the contribution values of the nominal states must ensure that the path is fully contained within

the group; entrance into the unsafe set is always the last state transition in a failure path.

Each failure path has some probability of occurring during an execution of that group of the

hybrid automaton. This is called the failure path probability, and the sum of these over all possible

failure paths is the failure probability of a group. Details of these calculations will be described in

the next section.

5.3 Probability Calculations

The failure probability is calculated from the sum of all the failure path probabilities in a group; the

paths in a group depend on the completion time, and the procedure for finding all the failure paths in

a group depends on whether it is a uniform or non-uniform completion group. The failure paths for

the uniform completion case are easy to find; the procedure for the non-uniform completion case is

more involved. Both will be described in this section.

First, a combined Markov process-like transition probability matrix and a set of initial proba-

bilities are calculated for each complete system state. The stationary probabilities of the individual

Markov chains are used to calculate initial condition probabilities of each complete system state in

84

a group. By having this information, the separate group failure probabilities may be combined into

a failure probability for the entire hybrid automaton, as will be shown later.

For a given complete system state, the initial probability, P (s), is given by the following:

P (s) =
∏
χi∈Uk

P (val(χi) = act(s, χi))P (val(χ̂i) = est(s, χi)|val(χi) = act(s, χi)). (5.11)

The transition probability of going from one complete system state to another, P (sl|sj), is given by

the following:

P (sl|sj) =
∏
χi∈Uk

P (val(χi)[κ] = act(sl, χi)|val(χi)[κ− 1] = act(sj , χi))×

P (val(χ̂i)[κ] = est(sl, χi)|val(χi)[κ] = act(sl, χi)). (5.12)

5.3.1 Uniform Completion Case

For the uniform completion case, collections of stationary and transition probabilities between nom-

inal and unsafe system states can be created. First, the probability of executing a failure path of

length one in group Vk (i.e., starting in the unsafe set) is

ak =
∑
sωj ∈Ωk

P (sωj). (5.13)

Likewise, let Wk be a vector of probabilities whose elements are the initial probabilities of each

nominal system state, sξj ∈ Ξk. Thus, the jth element of vector Wk is

Wk(j) = P (sξj). (5.14)

Next, transition probability constructs are defined. The matrix of transition probabilities be-

tween all nominal complete system states is Qk, where the probability of a transition between sξi to

sξj is

Qk(i, j) = P (sξj |s
ξ
i). (5.15)

Since all unsafe complete system states are accepting states, only the transitions into these states

from the nominal complete system states are considered. The vector Wu,k contains the probabilities

85

of transitions from each nominal complete system state to every unsafe complete system state,

Wu,k(j) =
∑
sωi ∈Ωk

P (sωi |s
ξ
j). (5.16)

Proposition 5.3.1. The failure probability for the uniform completion case in group Vk can be

calculated using the following formula, for ck ∈ [2,∞),

Ws(k) = ak +Wk · (
ck−2∑
i=0

Qik)Wu,k. (5.17)

When ck →∞, the equation becomes

Ws(k) = ak +Wk · (I −Qk)−1Wu,k. (5.18)

Proof. The failure probability is the sum of all the failure path probabilities; for the uniform com-

pletion case and the definitions of ak, Wk, Qk, and Wu,k given above, Eq. (5.17) sums the path

probabilities of all failure paths of length one to length ck. If a path has length ck + 1, ck of the

path elements must be nominal states; because for the uniform completion case, cval(sξ) = 1 for

all sξ ∈ Ξk and by Lemma 5.2.12, a path of length ck + 1 is not possible in group Vk. Therefore,

Eq. (5.17) is the sum of all possible failure paths in Vk. Using

∞∑
i=0

Qi = (I −Q)−1, (5.19)

one can derive (5.18) from (5.17).

In the infinite time case, the failure probability approaches 1 − Wf (k), where Wf (k) is the

probability of entering the Safing location from group Vk.

5.3.2 Non-Uniform Completion Case

In the uniform completion case, the number of failure paths considered was greatly reduced by

the creation of the probabilistic transition matrix and vectors. Since all locations contributed the

same amount to the completion of the group, the path length did not depend on which individual

locations were visited. This is not the case in the non-uniform completion case, where the execution

86

path length does depend on which locations are executed and in what order. Like the uniform

completion case, there is a way to reduce the number of failure paths that must be considered by

grouping together locations by contribution values.

Let Bk = {b|b = cval(vi),∀vi ∈ Vk} be the set of contribution values in a group, where all

b ∈ Bk are unique (for all bi, bj ∈ Bk, bi 6= bj) and ordered (Bk = {b1, b2, ..., bn} such that

b1 > b2 > ... > bn). Since cval(vi) is the rate of location vi ∈ Vk normalized by the maximum rate

in group Vk, b1 = 1. Now, let there be n sets βi, where

βi = {sξj |cloc(sξj , k) = vi ∧ cval(vi) = bi,∀sξj ∈ Ξk} (5.20)

where each βi is the set of locations that have a contribution value bi. Then, failure paths can be

created using βi instead of using the individual nominal system states, sξ, where for failure path

βi1βi2 ...βir−1s
ω
r ,

r−1∑
j=1

bij < ck. (5.21)

All possible failure paths can be found using a simple algorithm that is based on a breadth-

first search. A branch of the search tree is complete when adding any set βi, i = 1, ..., n, to the

path, π, would cause the sum of the contribution values of the path elements to equal or exceed the

completion time, ∑
βi∈π

bi ≥ ck − bn. (5.22)

Also, the paths as they stand at each level of the search are added to the set Π of all potential failure

paths. The algorithm is outlined below:

1. Initialize the search tree with the initial failure path placeholder, β∅. The initial failure path is

the failure path with no nominal transitions. The placeholder, β∅, has no contribution value

and is ignored in any path containing other β sets. Add this path to set Π1. Set the level

counter l = 1.

2. For each branch, πli, on level l, compute the sum of the contribution values,

cval(πli) =
∑
βj∈πli

bj . (5.23)

87

Figure 5.3: The search tree of potential failure paths for the speed limit example

(a) For each bj ∈ Bk, if cval(πli) + bj < ck, append βj to the path, πli + βj ∈ Πl+1.

(b) If bn = 0, for each path πli whose last set is βn, βn may not be added to that path.

3. Increment l.

4. Repeat steps 2 and 3 until Πl = ∅.

5. Create the set of all potential failure paths,

Π =
l−1⋃
i=1

Πi. (5.24)

This algorithm can be demonstrated with the simple speed limit example shown in Figure 5.2.

Let ck = 2 and B = {1, 1
2}, where the location with the higher speed limit has a velocity constraint

twice the other location’s. The breadth-first search tree can be found in Figure 5.3 with the search

levels denoted. The final set of potential failure paths is Π = {β∅, β1, β2, β1β2, β2β1, β2β2, β2β2β2}.

Each path in Π would need to be followed by a transition into the unsafe set for it to become a failure

path; the element β∅ would simply be replaced by an initial condition in the unsafe set.

In the case that bn = 0, the failure path algorithm has an exception. Because the execution can

remain in the zero rate locations for an infinite number of time steps, once βn is added to a path,

the next set added to the path, βj , must have a contribution value bj > 0. This step avoids the path

creation algorithm from becoming an infinite loop; the infinite number of failure paths is accounted

for in the path probability calculation step.

The calculation of failure path probabilities is similar to the method described for the uniform

completion case. The scalar value ak is again the probability of starting in the unsafe set. Instead

88

of one vector of initial probabilities for the nominal states, Wk, there are n vectors, one for each set

βi, i = 1, ..., n. Each vector W i
k has an initial probability for each nominal complete system state

sξj ∈ βi, calculated in (5.14). The Qk transition matrix is broken up into several smaller matrices

to account for all possible transitions between the β sets. For all βi, βj , i, j = 1, ..., n, in a group,

there exists a matrix Qi,jk that contains the transition probabilities from each nominal complete

system state sξl ∈ βi to each sξm ∈ βj . Finally, the vector of transition probabilities from nominal

complete system states to the unsafe set, Wu,k is also broken up into n vectors W i
u,k, i = 1, ..., n,

that are associated with the β sets.

The failure path probabilities are calculated using the initial and transition vectors and matrices

described above and then all path probabilities are summed to find the group’s failure probability.

For the speed limit example, there are seven failure paths whose individual path probabilities must

be calculated and summed to find the group’s failure probability, as follows:

Ws(1) = a1 +W 1
1 ·W 1

u,1 +W 2
1 ·W 2

u,1 +W 1
1 · (Q

1,2
1 W 2

u,1)+

W 2
1 · (Q

2,1
1 W 1

u,1) +W 2
1 · (Q

2,2
1 W 2

u,1) +W 2
1 · (Q

2,2
1 Q2,2

1 W 2
u,1). (5.25)

In the case that bn = 0, each time a transition into βn is encountered in a failure path, it is

replaced by an infinite series of paths with increasing numbers of transitions into that set. Whereas

a single transition into set βj , bj > 0 from set βi is generally indicated in the failure path probability

calculation by Qi,jk , a transition from βi to βn, bn = 0 would be represented by

Qi,nk

(∞∑
x=0

(
Qn,nk

)x)
. (5.26)

By (5.19), this becomes Qi,nk
(
I −Qn,nk

)−1. Likewise, if βn is the first set of locations visited, its

probability value is represented by Wn
k ·
(
I −Qn,nk

)−1.

5.3.3 System Failure Probability

The overall hybrid automata failure probability can be calculated by summing the probabilities of

all the failure paths through the automata. To do this, the probability of each group reaching the

Safing location, Wf (k), must be calculated. The procedure for doing this is the same as for finding

the failure probability, however, sfi ∈ Fk are used as the accepting states instead of sωi ∈ Ωk. The

89

probability of traversing group Vk nominally is then

Wn(k) = 1−Ws(k)−Wf (k). (5.27)

Proposition 5.3.2. The failure probability of the system of K > 1 groups is given by

Ws = Ws(1) +
K∑
i=2

(
i−1∏
j=1

Wn(j))Ws(i). (5.28)

Proof. The failure probability of the hybrid system is the sum of the failure path probabilities

through the system. Since the failure paths can only consist of zero to K − 1 nominal group

transitions followed by a failure, Eq. (5.28) gives all failure paths through the hybrid system. Any

entrance into Safing removes the execution from the hybrid system and precludes failure in the

future, and so is excluded from the failure probability calculation.

5.4 Variations on the Failure Probability Problem

5.4.1 Subgroups

Some groups may have two or more disjoint sets of locations; once execution enters one of the sets

of locations in group Vk, the execution can only exit that set of locations to go to Safing or the next

group, Vk+1. These disjoint sets of locations are called subgroups. Each subgroup, Vk,h ⊂ Vk,

has a set Ik,h ⊂ Ξk of complete system states that cause the execution of the automaton to enter

the subgroup Vk,h upon entering the group Vk. The initial transition into a subgroup allows only a

subset of all nominal complete system states, however once in a subgroup, every complete system

state continues the execution in that subgroup. Therefore, the Wk probability vector must be broken

up into separate, disjointWk,h vectors for each subgroup. Once the execution enters a subgroup, the

unsafe set of complete system states may be different between the subgroups and from the initial

set of unsafe complete system states; therefore, each subgroup has its own Fk,h, Ξk,h, and Ωk,h for

the non-initial transitions within the subgroup. This triggers separate transition probability matrices

and nominal to unsafe transition vectors for each subgroup as well.

An example of this subgroup structure can be found in the following example. Suppose that

there is a rover that must follow a path to a point, but the path branches and the choice of the

final point is based on the rover’s system health. Figure 5.4 shows the task and Figure 5.5 gives

90

Figure 5.4: Depiction of the path for the simple rover task

Figure 5.5: Hybrid control system for the simple rover task

the hybrid control system. Once the robot reaches point C1 and makes the choice to go to P1

or P2, this choice cannot be reversed. The set of all complete system states for this task is S =

{GG, GF, GP, FG, FF, FP, PG, PF, PP} (actual then estimated system health state), and the unsafe set is

as follows:

1. ẋ > 0 and SystemHealth is POOR, and

2. ẋ > v2 and SystemHealth is FAIR.

The initial unsafe set is Ω2 = {FG, PG, PF}. The initial set that allows transitions into the top location

(going to P1) is I2,1 = {GG}; the initial set for the other location (going to P2) is I2,2 = {GF, FF}.

The remaining complete system states are initially Safing, F2 = {GP, FP, PP}.

Once the execution transitions into the first subgroup, all complete system states can be reached,

and the unsafe, safing, and nominal sets for this subgroup are as follows: Ω2,1 = {FG, PG}, F2,1 =

{GF, GP, FF, FP, PF, PP}, and Ξ2,1 = {GG}. For the second subgroup, these sets are Ω2,2 = {PG, PF},

F2,2 = {GP, FP, PP}, and Ξ2,2 = {GG, GF, FG, FF}.

Though a group may be have non-uniform completion, each subgroup within that group may be

uniform or non-uniform. In the example above, group V2 as a whole is a non-uniform completion

group, but each subgroup, V2,1 and V2,2, is a uniform completion group. Once the initial transition

91

into a subgroup is taken, the subgroup can be treated like any other group when calculating the

failure probability within the subgroup. These subgroup failure probabilities, Ws(k, h), are calcu-

lated in the same way as the group failure probability for a connected group except that there is no

initial failure probability (ak) in the failure path probability sum. Then, the overall group failure

probability for a group that has H subgroups is the sum of the initial failure probability and all the

subgroup failure probabilities,

Ws(k) = ak +
H∑
h=1

Ws(k, h). (5.29)

The safing probability, Wf (k), for a group Vk with subgroups is calculated in the same way; the

nominal probability is Wn(k) = 1− (Ws(k) +Wf (k)). These group probabilities can then be used

to calculate the system failure probability as described in Eq. (5.28).

5.4.2 Completion Time Uncertainty

It may not be possible to exactly know the completion time for a group. If there is a probability

distribution over a finite number of possible completion times, the failure probability for that group

can be calculated by finding the failure probability for each possible completion time. The total

failure probability for the group is the sum of the failure probabilities for each possible completion

time multiplied by the completion time probability. This procedure works for both the uniform and

non-uniform completion cases.

Let H be a hybrid automaton with stochastic differential equations,

dxc = l(v, xc)dt+ σ(v, xc)dw (5.30)

that dictate the controllable state evolution for the completion task in each location. The drift,

l : V × Xc → R is the linear flow condition for the continuous completion state variable and

σ : V × Xc → R1×p is a dispersion vector for the Rp-valued Wiener process w(t). It is assumed

that for any vi, vj ∈ Vk, σ(vi, xc) = σ(vj , xc). For each group, Vk, let Lk = {l(v, xc)|∀v ∈ Vk},

the set of all completion rates in a group. Let lk = minli∈Lk li; the completion time,

ck =
|inv(v, xc)|

lk
, (5.31)

92

is the invariant distance that the completion state variable must travel in order for the execution to

move onto the next group. By definition, for all vi, vj ∈ Vk, inv(vi, xc) = inv(vj , xc). However,

with the addition of the Wiener process, w(t), the actual completion rate of the location, l̃(v, xc),

now is a normally-distributed random variable with mean l(v, xc). Since the invariant is strictly de-

terministic in this formulation, the completion time for the group, c̃k, is also a normally-distributed

random variable with mean ck.

It is possible to approximate the failure probability of a group with this completion time un-

certainty to varying degrees of accuracy. For uniform completion groups, the failure probability

can be computed for a range of completion times centered about ck, Cnk = {ci|ci ∈ Z+ ∧ ci ∈

[ck−nσ, ck +nσ]}. Each potential completion time ci ∈ Cnk has an associated adjusted probability

of occurring,

p(ci) =
∫ ci

ci−1
ρ(y)dy − ρ(ci − 1) (5.32)

where ρ is the probability density function of c̃k. Each potential completion time also has an asso-

ciated group failure probability, W̃s(k, ci), which is calculated according to equation (5.17).

With this information, one can calculate the estimated group failure probability,

Ŵn
s (k) =

∑
ci∈Cnk

p(ci)W̃s(k, ci). (5.33)

This is only a lower bound on the true group failure probability; as n → ∞, Ŵn
s (k) → Ws(k).

However, the lower end of the completion time distribution can be overestimated by taking

p(cimin) =
∫ ci

−∞
ρ(y)dy (5.34)

where

cimin = min
ci∈Cnk

ci.

The failure probability W̃s(k, ci) increases as ci increases, so a similar overapproximation is not

possible with cimax.

For the non-uniform completion case, the same process as described for the uniform completion

case can be used, however, this assumes that the uncertainty in the different contribution values does

not affect the failure paths. For contribution values that are well separated, for example, 1
2 and 1

3 , this

assumption is good for sufficiently small σ. However, as the differences between the contribution

93

Figure 5.6: Hybrid automaton for the missing state transition example

values get smaller or the uncertainty gets larger, this assumption may no longer apply. In that case,

the estimated failure probability will still be a lower bound on the actual failure probability, but

increasing nwill not make the estimated failure probability converge to the actual failure probability.

5.4.3 Missing State Transitions

The failure probability procedure works for LHA that have discrete transitions based solely on the

state of the system. It can be adapted for certain small problems that may have transitions that are

also based on the order in which the locations are visited; an example of this is shown in Figure 5.6.

This is a similar velocity-controlled rover driving task to the one shown in Figure 5.2, however, once

the execution enters into the HalfSpeed location, it must continue there until the task is completed.

This extra restriction causes there to be no transition from the HalfSpeed location to the FullSpeed

location upon the LaserHealth becoming GOOD; thus, this is called a missing state transition

case.

The complication that arises in missing state transition cases is that assigning each complete

system state to just one location becomes impossible. In the example introduced in Figure 5.6, the

set of complete system states can be represented by S = {GG, GF, FG, FF}. While the complete

system states with an estimated state of FAIR can only occur in the HalfSpeed location, due to

the missing transition, the complete system states with estimated values that are GOOD are possi-

ble in both locations (though they are only possible in the FullSpeed location initially). In order

to accommodate this, copies of the ambiguous complete system states must be added to S. If

cloc(sξ, k) = {vj |
∧

est(sξ, χi) ∈ ucons(vj , χi)} has n > 1 members, then each sξ ∈ S must be

replaced by n copies identified by location, s̃ξ = {(sξ)vj |vj ∈ cloc(sξ, k)}. Then, the adjusted state

space becomes S̃ = S ∪ s̃ξ for all adjusted sξ.

In addition to augmenting S, the initial and transition probability vectors and matrices must also

94

be modified. Let sξi have an augmented set s̃ξi and let vj ∈ cloc(sξi , k) be the location such that

est(sξi) ∈ init(vj). Then, the initial probability for each (sξi)
vl ∈ s̃ξi is

P ((sξi)
vl) =

 P (sξi) l = j

0 l 6= j.
(5.35)

Likewise, the conditional probabilities must be adjusted. Let ejl ∈ E exist if and only if there exists

a valid transition from location vj to vl.

Lemma 5.4.1. For all vj , vl ∈ cloc(sξi , k), vj 6= vl, P ((sξi)
vl |(sξi)vj) = 0.

Proof. Assume that est(sξi) |= τjl,k and vj 6= vl. Since both vj , vl ∈ cloc(sξi , k), sξi |= inv(vj) ∧

sξi |= inv(vl). Since the transition scheme is still deterministic and except for the missing transitions,

it is state-based, so if the transition does exist, by definition sξi 2 inv(vj). So, the only location

reachable from vj with a state sξi is vl = vj , which negates the starting assumption.

Lemma 5.4.2. For each sξm ∈ S̃, there exists a unique (sξi)
vj ∈ s̃ξi such that there exists an

edge enj ∈ E with an associated transition condition τnj,k such that est(sξm) |= τnj,k, where

vn ∈ cloc(sξm, k).

Proof. If the unadjusted state sξm |= inv(vj), then vn = vj and there are no appropriate transition

conditions τnj,k such that est(sξm) |= τnj,k by the definition of state-based transitions. If sξm 2

inv(vj), then there exists some transition edge enj and condition τnj,k that is satisfied by est((sξi)
vj)

and by the definition of state-based transitions, this transition is unique.

In summary, each complete system state sξi can transition to only one copy of sξj with set

s̃ξj because of the overlapping of invariant sets of the locations. In the example, the set S̃ =

{GG1, GG2, GF, FG1, FG2, FF}. If the original transition matrix for the set S = {GG, GF, FG, FF} for

the similar example shown in Figure 5.2 looked like this,

T =


0.5 0.05 0.05 0.4

0.4 0.3 0.05 0.25

0.25 0.05 0.3 0.4

0.4 0.05 0.05 0.5

 , (5.36)

95

then the adjusted matrix for set S̃ for the current example looks like this,

T̃ =



0.5 0 0.05 0.05 0 0.4

0 0.5 0.05 0 0.05 0.4

0 0.4 0.3 0 0.05 0.25

0.25 0 0.05 0.3 0 0.4

0 0.25 0.05 0 0.3 0.4

0 0.4 0.05 0 0.05 0.5


. (5.37)

From this point, the failure probability calculation follows the same procedure for both the

uniform and non-uniform completion cases as described previously.

5.5 Problem Complexity and Reduction Techniques

5.5.1 Problem Complexity

The failure probability found using the method described here is exact in the sense that it is not an

approximation of or an upper bound on the actual failure probability given the initial information.

Although the initial information, like the estimator uncertainty measure and the stationary Markov

processes that describe state propagation, are generally approximations, a powerful use for this

method is to understand how the failure probability is affected by changes in this initial information.

Unfortunately, the complexity of the failure probability calculation method is exponential in

the number of uncertain state variables. Let y(χi) be the number of discrete states in Λi for each

uncertain state variable χi ∈ Uk. Then, the number of complete system states is

∏
χi∈Uk

y(χi)2. (5.38)

To simplify the problem, let each of the n uncertain state variables, χi ∈ Uk, i = 1, ..., n, have y

discrete states in Λi. Then, the number of complete system states is y2n. The number of complete

system states affects the size of the transition matrices and vectors. The classification of each

system state, the calculation of its stationary probability, and the creation of the transition probability

matrices and vectors have been automated, however, which allows larger problems to be explored.

Another contributing factor to problem complexity in the non-uniform completion case is the

number of distinct contribution values in a group. In general, the number and size of the contribution

96

values and the completion time affect the number of failure path groups that are possible. The

number of failure path groups increases as the number of contribution values and the completion

time increase, and decreases as the actual contribution values increase. However, the failure path

creation algorithm is very efficient and can handle finding the path groups with little problem. The

difficulty then becomes the number of math operations needed to find the failure probability, which

is based on the number of complete system states and the number of failure path groups.

5.5.2 Complete System State Reduction Techniques

Because the complexity of the failure probability calculation depends on the number of uncertain

state variables and states, techniques to reduce that number are important. One such reduction

method is the introduction of derived state variables. A derived state variable is a non-physical state

variable whose state propagation completely depends on two or more uncertain state variables. Let

χ̄ ⊂ Uk be a set of two or more uncertain state variables. Let Λ̄ be the set of all combinations of

discrete states of these state variables,

Λ̄ =
∏
χi∈χ̄

Λi.

In some cases, the control of the hybrid automaton may be based on collections of states, λ̄i ⊂ Λ̄.

If this is the case, a new derived state variable, δ, may be created with discrete sets of states, Λ̄δ =

{λ̄1, λ̄2, ..., λ̄m}, where

m <
∏
χi∈χ̄

ni,

the number of individual states in Λ̄. Therefore the contribution to the problem complexity of the

derived state variable would be

m2 <
∏
χi∈χ̄

n2
i . (5.39)

An example of this is the SystemHealth state variable that is modeled on three sensor health

state variables (IMU, GPS, and LADAR), each having two discrete states (GOOD and POOR). The

model of the SystemHealth state variable, with three states, and its corresponding hybrid control

system is shown in Figure 5.7. In this example, m = 3 and
∏
ni = 8, so the complexity reduction,

9 < 64 is significant.

Another way to reduce the complexity of the failure probability calculation is to leverage the

state models of composite uncertain state variables. Unlike derived state variables, these uncer-

97

Figure 5.7: Model for derived system health state variable and corresponding hybrid automaton control
system

tain state variables are physical and may be adequately described by a stationary Markov process.

However, a better model for the state propagation of these state variables may be based on other

uncertain state variables. For example, assume that the LADARHealth state variable (LH) for a

robotic system depends on the position of the sun relative to the sensor and the amount of dust on

the sensor. This state variable’s state propagation can be adequately modeled as a stationary Markov

process; however, if the relative position of the sun (SP) independently affects the hybrid control

system, some reduction in the number of complete system states may be possible. For example,

assume that LH = χ1 has the set of discrete states Λ1 = {GOOD1, FAIR1, POOR1} and SP = χ2

has the set Λ2 = {DIRECT2, INDIRECT2}. Assume also that the model of state propagation of LH

dictates that if val(χ2) = DIRECT2 then val(χ1) = POOR1. In this case, there can be no complete

system state, s, such that

(act(s, χ1) 6= POOR1 ∧ act(s, χ2) = DIRECT2) ∨ (est(s, χ1) 6= POOR1 ∧ est(s, χ2) = DIRECT2)

is true. This knowledge reduces the total number of complete system states.

5.6 Approximate Methods

5.6.1 Stochastic Hybrid Model Verification

Since methods for verifying certain classes of stochastic hybrid systems exist, it is worth some ef-

fort to attempt to construct a suitable stochastic hybrid model for the type of problem solved in

this chapter. The hybrid systems treated here assume discrete time execution, so the same assump-

98

tion will apply to the stochastic hybrid model. The definition for discrete-time switching diffusion

processes used in this section is given in Definition 2.3.1.

The hybrid control systems without estimator uncertainty can easily be converted into a type of

stochastic hybrid model with probabilistic transitions and deterministic flow equations. The loca-

tions, edges, resets, continuous state space and flow equations are one to one between the original

hybrid system and the stochastic system; Vn = Vo, En = Eo, Xn = Xo, and φ(Xn,Vn) =

ψ(Xo, Vo), where the subscripts stand for “new” and “old,” respectively. The transition conditions

of the original automaton were based on the discrete states of environment state variables whose

state propagation could be modeled by a stationary Markov process. In the conversion, these tran-

sition conditions become the transition probabilities between the environment states that satisfy the

originating location’s invariant and the states that satisfy the accepting location’s invariant. For ex-

ample, let there exist an edge eij between locations vi and vj and let Γi = {s ∈ S|s |= inv(vi)} and

Γj = {s ∈ S|s |= inv(vj)}. Since the transition condition associated with edge eij is

τij =
∧
s∈Γj

s

and since for the perfect knowledge case, act(s) = est(s), let the transition probability associated

with edge eij be

µij =
∑
sn∈Γi

∑
sm∈Γj

∏
χl∈Uk

P (val(χl)[κ] = act(sm, χl)|val(χl)[κ− 1] = act(sn, χl)). (5.40)

How to add the estimation uncertainty to the stochastic models of the environment variables is

not as obvious. Because the hybrid system was verified against the unsafe set in the perfect knowl-

edge case, it is important to distinguish between the actual and estimated states of the system since

failure can only occur when these are different. In the uncertain system, the actual and estimated

system states have different jobs; the estimated state drives the transitions between the locations of

the control system and the actual state in a location can cause the system to reach an unsafe state.

In order to differentiate between executing a location nominally and in an unsafe way, a new loca-

tion, vu, must be created in each group to account for the unsafe states. So, in the uncertain case,

Vk = Vk ∪ {vu}.

The transition probabilities between the locations that are not unsafe would also depend on

estimation uncertainty in addition to the state propagation probability models. An edge eiu would

99

be added to each location vi from which a direct transition into the unsafe set is possible; the

transition probability associated with that edge would be the sum of the transition probabilities from

each nominal execution state whose estimated state values satisfies the original location’s invariant,

sξ |= inv(vi), to each unsafe execution state, sω. Let Γξi = {sξ ∈ Ξk| est(sξ) |= inv(vi)}, then

µij =
∑
sξn∈Γξi

∑
sξm∈Γξj

P (sξm|sξn) (5.41)

and

µiu =
∑
sξn∈Γξi

Wu,k(n). (5.42)

The overall group failure probability would be the probability of reaching the unsafe location. An

upper bound of this probability could be found using a variety of existing stochastic hybrid system

verification methods.

The problem constructed in this way gives few advantages over the method described previously.

The transition probabilities between the locations would need to be calculated for the stochastic hy-

brid system in much the same way as described previously. Depending on the verification method

used, paths through the group may not need to be found explicitly, which may reduce the problem

complexity slightly, but the number of complete system states continues to drive the problem com-

plexity. Also, though the number of locations is basically hidden in the previously described failure

probability calculation, it is important and even increased slightly in the stochastic hybrid model

formulation. Many of the stochastic verification methods available are affected by the number of

reachable locations. Finally, most stochastic hybrid system verification methods can only find an

approximation of the failure probability, whereas the original method presented here is exact; how-

ever, because of the complexity issues with this failure probability calculation, Markov Chain Monte

Carlo simulation is a natural next step.

5.6.2 Markov Chain Monte Carlo Simulation

Monte Carlo simulation is a useful way of approximating the failure probability of systems that are

too large to reason about using the method described here. Stochastic hybrid systems like those

described in the previous section are set up for Monte Carlo simulation; however, getting a system

into that form may take more time and/or memory than one has available. The complexity of this

problem is exponential in the number of uncertain state variables.

100

Some systems can be approximated even more. There is an automatic way to enumerate each of

the complete system states for a problem and even to sort these states into the appropriate set (Ξk,

Ωk, or Fk) for each group Vk, k = 1, ...,K. However, calculating the individual transition proba-

bilities for each complete system state can be difficult for large systems. Instead, if the stationary

Markov chains modeling the uncertain state variables converge quickly, the equilibrium probabil-

ity of each complete system state can be automatically calculated and summed over the sets (Ξk,

Ωk, and Fk) up to a specified accuracy. For the nominal set, the probability could be broken down

further based on the different contribution values.

Let the state propagation models for each uncertain state variable, χi ∈ Uk, be stationary,

ergodic, finite-state Markov processes whose transition matrices, Pi, satisfy

Pi = lim
n→∞

Pni . (5.43)

Let the estimation uncertainty matrix, Eχ,i, for each uncertain state variable be symmetric; also, let

the probability of estimating the correct state be the same for each possible state. Finally, let the

augmented probability matrix for each state variable, Pχ,i, be the matrix that gives the transition

probability between complete states of the individual uncertain state variable. By abuse of notation,

let s ∈ Λi × Λi be a complete state of single uncertain state variable χi, and let act(s) ∈ Λi and

est(s) ∈ Λi. For any two states sj , sl ∈ Λi × Λi, the augmented transition probability is

Pχ,i(j, l) = P (val(χi)[κ] = act(sl)|val(χi)[κ− 1] = act(sj))×

P (val(χ̂i)[κ] = est(sl)|val(χi)[κ] = act(sl)). (5.44)

Proposition 5.6.1. The augmented transition probability matrix, Pχ,i, satisfies

Pχ,i = lim
n→∞

Pnχ,i (5.45)

if the original transition probability matrix Pi also satisfies the same equation.

Proof. Because Pi satisfies Eq. (5.43), ni × ni matrix is a column vector ni 1× ni vectors, π,

Pi =


π
...

π

 , (5.46)

101

where π is the stationary distribution of Pi,

π = πPi. (5.47)

Therefore, the jth column of Pi is a ni × 1 vector of value π(j). Since the estimation probability

is based on the actual value of the state variable at time κ instead of at time κ − 1, the augmented

matrix is created as follows. The jth column of Pχ,i corresponding to a state s such that act(s) = λj

and est(s) = λl is

Pχ,i(j) = ~π(j)P (val(χ̂i) = λl|val(χi) = λj) (5.48)

where ~π(j) is a column vector of ni π(j) values. Since the constant row vector is multiplied by a

constant, the resulting column vector of Pχ,i is also a constant vector. This is true for all columns

of Pχ,i; therefore,

Pχ,i =


πχ
...

πχ

 , (5.49)

where πχ is the stationary distribution of the augmented transition probability matrix and Pχ,i sat-

isfies Eq. (5.45).

Proposition 5.6.2. The composition of augmented matrices, P̃χ = Pχ,1 ◦Pχ,2 ◦ ... ◦Pχ,Nk , satisfies

P̃χ = lim
n→∞

P̃nχ . (5.50)

Proof. The proof is by construction and is similar to the proof of Proposition 5.6.1. Since the

column vectors of each of the augmented matrices are constant vectors, the column vectors of P̃χ

are also constant vectors. Therefore,

P̃χ =


π̃
...

π̃

 (5.51)

where π̃ is the stationary distribution of P̃χ and P̃χ satisfies Eq. (5.50).

These two well-known results show that manipulating the stationary Markov chain in the given

ways does not change its desired properties. By Proposition 5.6.2, the Markov chain that controls

the transitions between complete system states has reached its stationary or equilibrium distribution

102

initially if each uncertain state variable’s stationary Markov chain modeling its state propagation

also starts out at the stationary distribution. Thus, the mixing time (time to reach the stationary dis-

tribution within a given error) is zero and the stationary probabilities can safely be used in the failure

probability estimation. There is an automatic algorithm that can find each complete system state,

calculate its stationary probability, and place it into the appropriate set (Ξk, Ωk, and Fk). Then, the

stationary probability of each set can be calculated from the sum of the stationary probabilities of its

elements. Since there may be many complete system states with a negligible stationary probability,

the algorithm sorts the elements so that those with greater probability values are placed into the sets

first, and once the sum of the set probabilities reaches a pre-determined value, the algorithm aborts.

The pre-determined value must be chosen so that the remaining probability can be assigned to the

unsafe set without too much conservatism.

In a uniform completion case, the paths could easily be found and an approximation of the

failure probability calculated. For more complicated examples, including non-uniform completion

cases and cases with uncertain completion times, Markov Chain Monte Carlo simulation is a useful

way to find the failure probability approximation.

5.7 Conclusion

A formal method for calculating the probability of a verifiable sensor-driven hybrid system entering

into a specified unsafe set due to estimation uncertainty was presented. The calculation of the

failure probability of this system gives the designer some information about the control system. If

the failure probability of a given system is too high for the design requirements, several changes

could be made. First, the estimator for the state variable could be improved; for some cases, a

better sensor could be used to reduce the probability of failure; and finally, the control system

could be designed to depend less on a relatively unknown state variable. The verification of control

systems in the presence of different forms of uncertainty, including estimation uncertainty, is an

important problem, and this approach seems promising as a design tool for hybrid control systems

with state-based transitions. These techniques have been applied on two significant examples which

are described in the next chapter.

