
57

Chapter 4

Efficient Verification for Systems with
State-Based Transitions

4.1 Introduction

Goal network control programs can be converted to hybrid systems using the bisimulation procedure

introduced in Chapter 3 and then verified using existing model checking software. However, this ap-

proach is restricted by the symbolic model checker used in the verification; oftentimes, to use these

software programs to verify real systems, abstraction, model reduction, and overapproximation of

the system is necessary. The limiting factor in the use of these symbolic model checkers is often

the number of state variables in the system, which for real systems can be very large. The conver-

sion procedure also has difficulty handling many passive state variables because of the way failure

transitions are created. Some limiting assumptions can improve the performance of the conversion

software, but at a cost.

The main contribution of this chapter is the design for verification software tool and the resulting

verification algorithm. The design tool used to create goal networks with state-based transitions

(defined in Section 4.2), the SBT Checker, is introduced in Section 4.3. The verification software,

InVeriant, is described in Section 4.4. The application of the InVeriant model checker to a class of

linear hybrid systems is discussed in Section 4.5. The capabilities, strengths and weaknesses of this

verification approach are discussed in Section 4.6, followed by a summary of the contributions in

Section 4.7.



58

4.2 State-Based Transitions

A class of goal networks, ones with state-based transitions, have special properties in the bisimilar

automata.

Definition 4.2.1. Let Dk = {d1, d2, ..., dnk} be the set of state variables constrained by passive

goals in Uk. Then, let Γk be the passive state space, Γk = Λ1 × Λ2 × ... × Λnk . If for each

state γi ∈ Γk, there exists some executable set, θj ∈ Θk such that the passive state satisfies the

passive constraints, γi |= pcons(θj) for each group, k = 1, ...,K, and the elaboration conditions for

each parent goal are based only on the states of the system, then the goal network has state-based

transitions.

An example goal tree that does not have state-based transitions is shown in Figure 4.1. The

speed limit root goal has three tactics constraining two passive state variables, SystemHealth

and PositionUncertainty, whose models are included in Figure 4.1. The passive state space

is also shown; it is obvious that two states (SH == GOOD∧PU == HIGH and SH == POOR∧PU ==

LOW) do not satisfy the passive constraints in any tactic. Therefore, this goal tree does not have state-

based transitions. While this construction is valid, there is no way to predict what will happen to the

execution when these states occur; the current tactic would fail but since there is no tactic associated

with these states, any of the tactics may be chosen as the execution of the goal network breaks down.

However, with two changes, the goal tree in Figure 4.2 does have state-based transitions, which is

obvious from the passive state representation.

The assumption that the goal elaboration is based only on the states of the system follows the

design philosophy of State Analysis and MDS. This simply says that there is no predefined order

to the tactics of any goal; instead, the passive state constraints control goal elaboration. Since goal

networks are bisimilar with hybrid systems, the definition of state-based transitions also applies

to them. In a converted hybrid system with state-based transitions, each passive state γi ∈ Γk

satisfies the invariant, γi |= inv(vj), of some location vj ∈ Vk for all k = 1, ...,K. Because of

the elaboration condition on goal networks with state-based transitions and because of the structure

of goal networks, the invariants of the locations in a hybrid system with state-based transitions

completely describe all transitions into and out of the locations. It is this property that is useful

when trying to verify the hybrid system. Instead of finding all the transitions of the hybrid system,

which can be prohibitive, the invariants could be used in the verification instead. This property also

gives interesting results about the reachability of locations, which will be described in Section 4.4.



59

Figure 4.1: Goal tree that does not have state-based transitions with associated passive state models and
passive state space

Figure 4.2: Goal tree with state-based transitions and associated passive state space



60

Therefore, goal networks that are designed to have state-based transitions can be verified using a

very simple search algorithm that can handle complex systems.

While designing goal networks to have state-based transitions does impose some structure on

the goal network, one could argue that the requirement is a good design practice. In the case where

one or more passive states are not associated with an executable set of goals, it is unclear what would

happen with the execution in that state. When state-based transitions are present, the goal network is

maximally fault tolerant given the state model since every possible passive state is accounted for. In

the case that there are passive states that satisfy the passive constraint of more than one executable

set (or the invariant of more than one location), a non-deterministic execution scheme with weak

fairness may be used and verified using the same method presented here.

4.3 SBT Checker

The conversion to hybrid systems and verification using symbolic model checkers presented in

Chapter 3 is one approach to the verification of goal networks. However, the conversion procedure

creates an automaton that captures all possible executions of the goal network; this can cause an

explosion in the number of discrete modes (locations) relative to the numbers of goals and tactics

present in the goal networks. While symbolic model checkers such as PHAVer handle large numbers

of locations more easily than large numbers of state variables, there is still a limit. Abstractions and

simplifications of the hybrid system can be used to aid in its verification, but another approach is

to design the system for verification initially. To ensure that a goal network can be verified by the

procedure described in this chapter, the goal network must have state-based transitions. For complex

goal networks, this is not always easy to do by hand; therefore, the software program, SBT Checker,

has been created to aid in the design process.

One way to verify that a goal network has state-based transitions is to convert it to a hybrid

system and then compare each passive state to the locations’ invariants in each group. However,

for large systems with many locations and many states, this check can be time-consuming and

ineffective for the iterative design process. Based on the following theorem, however, it is possible to

check that the individual goal trees of each root goal in a goal network have state-based transitions,

and that implies that the goal network has state-based transitions.

Let Dk be the set of state variables constrained by the passive goals in group Uk. Let Rk =

{g0,0
r1 , g

0,0
r2 , ..., g

0,0
rN } be the set of root goals that are in or have children in group Gk. Let Sr,k be the



61

set of descendants of g0,0
r , including passive goals and the root goal itself.

Gk ⊆
⋃

g0,0r ∈Rk

Sr,k, (4.1)

because there may be extra root goals in Sr,k. Let Dr,k = {svc(uim,jmm )|uim,jmm ∈ Sr,k} be a

set of all state variables constrained passively in Sr,k. For some Dr,k = {dn1 , dn2 , ..., dnD}, let

Γr,k = Λn1 × Λn2 × ... × ΛnD be the passive state space of Sr,k. Let γri ∈ Γr,k be a passive state

of the state variables in Dr,k.

Let Lr,k be the set of executable branches of goals in Sr,k. An executable branch of goals

Lj ∈ Lr,k has the following properties:

1. All goals gin,jnn ∈ Lj are also in Sr,k ∩ Gk.

2. If gin,jnn ∈ Lj , its parent is also in Lj , g
iin ,jin
in

∈ Lj .

3. If gin,jnn ∈ Lj , all its siblings are also in Lj .

4. If gin,jnn ∈ Lj and gin,jnn has at least one child goal in Sr,k, then at least one child goal of

gin,jnn , gim,jmm ∈ Sr,k, im = n, is in Lj , g
im,jm
m ∈ Lj .

5. All goals in Lj are compatible.

6. All goals in Lj are consistent.

Lemma 4.3.1. For each pair of executable branches from different root goals, Li ∈ Lri,k, Lj ∈

Lrj ,k, ri 6= rj , Li is compatible with Lj .

Proof. The general idea is that since the executable branches are drawn from different root goals,

there are no shared parent goals across the executable branches. Assume that Li ∈ Lri,k is incom-

patible with Lj ∈ Lrj ,k, ri 6= rj . This means that there exists some gin,jnn ∈ Li and gim,jmm ∈ Lj

that have the same parent, in = im. Since all parent goals of each goal in an executable branch are

also in that set by definition, this means that Li and Lj have the same root goal, which negates the

original assumption that ri 6= rj .

Lemma 4.3.1 shows that executable branches from different root goals are compatible, and so

they can be combined. The proposition introduced next says that if executable branch combinations

are consistent, they are equivalent to executable sets of goals.



62

Proposition 4.3.2. Let Υk = Lr1,k×Lr2,k× ...×LrN ,k be the set of all combinations of executable

branches from each root goal’s set of goals. Let υ ∈ Υk; if all goals in υ are consistent, υ ≡ θj for

some θj ∈ Θk. Moreover, let Υ′k = {υ|υ is consistent}. Then, Υ′k ≡ Θk.

Proof. Because Θk contains all possible executable sets in Gk, if υ satisfies the definition of an

executable set, there exists some θj ∈ Θk such that υ ≡ θj . By the definition of the executable

branches L ∈ Lr,k, properties 1 and 3-5 of the executable set specification in Definition 3.4.3 are

satisfied. All goals in each L are also in Gk by definition, so all the goals in the composition,

gin,jnn ∈ υ are also in Gk (property 1). Likewise, all parent goals, sibling goals, and at least one

child goal are represented in each branch, so the composition of these branches originating from

different root goals will have the same properties (properties 3–5). Property 6 of executable sets is

satisfied by the composition of Υk; since all root goals with children in group Gk are represented

by a set Lr,k, at least one goal from each root goal with children in the group is represented in each

υ. Property 2 is satisfied in a similar manner; if the root goal g0,0
r ∈ Gk, then for each L ∈ Lr,k,

g0,0
r ∈ L because of the parent goal requirement in the definition of L. Property 7 is satisfied by

Lemma 4.3.1 and Property 8 is satisfied by the assumption above. Therefore, υ ≡ θj for some

θj ∈ Θk.

The above result can be applied to every υ ∈ Υ′k since each υ in that set is consistent. So, to

prove that Υ′k ≡ Θk, assume that there exists some θj ∈ Θk such that there is not a corresponding

υ ∈ Υ′k. By definition, each goal in θj is either a root goal in Gk or descended from a root goal

that has child goals in Gk. Also by definition, each of those goals are present in a branch in the

corresponding root goal’s branch set, Lr,k. Since there exists a set υ ∈ Υ′k that corresponds with

every consistent combination of branches from each root goal g0,0
r ∈ Rk, the executable set must

either be missing a branch from at least one root goal’s set or have more than one branch from at

least one root goal’s set. However, missing a branch from a root goal’s set would violate either

property 2 or 6 from Definition 3.4.3 of executable sets since either a root goal or descendants from

a root goal would be missing from θj ; so, θj must have two or more branches from at least one

root goal’s set. Let both Ln ∈ Lr,k and Lm ∈ Lr,k be subsets of θj ; this implies that Ln and Lm

are compatible. There must be some goals gin,jnn ∈ Ln and gim,jmm ∈ Lm such that gin,jnn /∈ Lm

and gim,jmm /∈ Ln because one branch cannot be a subset of another by the definition of executable

branches. The goals, gin,jnn and gim,jmm , cannot be siblings and one cannot be the ancestor of the

other by definition. However, they do have the same ancestor because they are in the same root



63

goal set. So, these goals must be incompatible by definition. Therefore, each executable set θj must

include one and only one branch from each root goal and therefore there is a set υ ≡ θj for each

executable set θj ∈ Θk. Therefore, Θk ≡ Υ′k.

Theorem 4.3.3. If for all controlled goals in branches from different root goals, gin,jnn ∈ Lrn,k,

gim,jmm ∈ Lrm,k, rm 6= rn, the goals are consistent, c(gin,jnn , gim,jmm ), and for all g0,0
r ∈ Rk, the

set of executable branches, Lr,k, has state-based transitions over Dr,k, then Θk has state-based

transitions over Dk.

Proof. By definition, Υk = Lr1,k × ... × LrN ,k for all g0,0
ri ∈ Rk, i = 1, ..., N . By Proposition

4.3.2, the consistent subset, Υ′k ⊆ Υk is equivalent to Θk, so to prove this theorem, it is sufficient

to show that Υ′k has state-based transitions over Dk. Let Ik = Υk \ Υ′k be the set of executable

branch combinations with inconsistent goals. Since all active goals are consistent by assumption,

each υ ∈ Ik has inconsistent passive goals only.

Let each Lr,k have state-based transitions over the corresponding passive state variable setDr,k,

but assume that Υ′k does not have state-based transitions overDk. That means that there exists some

state γ ∈ Γk, where Γk = Λ1×Λ2× ...×ΛD, and D is the number of passive state variables inDk,

such that there are no υ ∈ Υ′k such that γ |= pcons(υ). However, by the definition of state-based

transitions, for each Lr,k, there exists some Lr,γ ∈ Lr,k such that γ |= pcons(Lr,γ) because Lr,k
has state-based transitions over Dr,k ⊆ Dk. By definition, there exists some υ ∈ Υk such that

υ =
⋃

g0,0r ∈Rk

Lr,γ .

To satisfy the assumption that Υ′k does not have state-based transitions, υ ∈ Ik, which means

that it has inconsistent passive goals. Without loss of generality, let the inconsistent goals be

uin,jnn , uim,jmm ∈ υ. By the definition of consistency, svc(uin,jnn ) = svc(uim,jmm ) = di for some

di ∈ Dk and for any λij ∈ Λi such that λij |= cons(uin,jnn ), λij 2 cons(uim,jmm ). Likewise, by the

definition of γ, if any γ |= cons(uin,jnn ), then γ 2 cons(uim,jmm ). Since uim,jmm ∈ υ, there must

exist a Lr,γ ⊂ υ such that uim,jmm ∈ Lr,γ . Then, γ 2 pcons(Lr,γ), which means that Lr,k is not

state-based and the original assumption is negated.

The SBT Checker leverages this modularity of goal networks to check that each root goal’s

tactics have state-based transitions. The algorithm involves comparing the passive constraints in



64

Figure 4.3: Goal network for the state-based transitions verification example

Table 4.1: State Variable Data

State Variable Abbreviation Type
Position X Controlled

Camera Mode CM Controlled
Stabilizer Switch SS Controlled
Camera Health CH Passive

Position Uncertainty PU Passive
Vibrations VB Passive

each executable branch, Li ∈ Lr,k for g0,0
r ∈ Rk, to each passive state in the state space Γr,k

for the passive state variables in Dr,k. Then, each passive state γ ∈ Γr,k is checked against the

passive constraints in each executable branch and if there exists some γ ∈ Γr,k such that there is

no Li ∈ Lr,k where γ |= pcons(Li), those passive states are listed for the designer. The output

of the SBT Checker software for the goal tree in Figure 4.1 would be (SH == GOOD ∧ PU ==

HIGH) ∨ (SH == POOR ∧ PU == LOW). The output for the goal tree in Figure 4.2 would be

False. The controlled goal consistency constraint is checked upon the goal network’s conversion

to a hybrid automaton in the verification software.

Because the number of executable sets, or locations, grows exponentially with the number of

parent root goals, the modular approach saves computation time. It is also more conducive to an

iterative and distributed design process since it gives nearly immediate feedback on the design of a

root goal’s goal tree.

A simple goal network example is shown in Figure 4.3. The robot’s task is to drive to a point

maintaining a safe velocity while taking pictures; Table 4.1 lists the state variables constrained in

the goal network. The goal tree for the SpeedLimit goal is shown in Figure 4.2, and the goal tree

for the TakePictures goal is shown in Figure 4.4. Both goal trees were verified to have state-based

transitions by the SBT Checker which means that the entire goal network has state-based transitions.

The goal network will be verified versus an unsafe set in the next section.



65

Figure 4.4: Goal tree of the TakePictures goal

4.4 InVeriant Verification Procedure

The idea behind the InVeriant software involves the special relationship between the invariant and

the transition conditions for a hybrid system with state-based transitions. In a system with state-

based transitions, if the state variables that are constrained in a group’s locations have discrete states

that are all reachable from each other, then each location in the group is reachable from any other

location in the group. This is proved in Theorem 4.4.1 later. In this case, locations that satisfy the

unsafe set are reachable if they exist. The InVeriant software creates the locations and invariants

from the goal network and composes it with the unsafe set constraints to find unsafe locations.

While the assumption that the discrete states of the passively constrained state variables are

reachable is usually a good one, there are times when it is not. In general, these passive state

variables are health states or uncontrollable states of the environment that affect the way the system

accomplishes a task. If there was a health or environment state value that was not reachable, it would

not be modeled. However, continuous dependent state variables such as power or temperature may

be constrained without knowing if a discrete set of states is reachable. These state variables, called

continuous, rate-driven dependent state variables, have models whose discrete states do not match

or correspond with the discrete sets of states that are passively constrained in the goal network.

The discrete states in the model represent different rates of change of the state variable, which

often depend on the controllable state variables, whereas the discrete sets of states constrained

passively in the goal network depend on the continuous state space of the state variable. When

unsafe locations constrain these state variables, their reachability must be confirmed by finding an

appropriate path from the initial state to the unsafe state, a process that is aided by the state-based

transition requirement.



66

The theorems that prove the methods used in the InVeriant software are presented next, followed

by a formal treatment of the verification algorithm. The first theorem proves the reachability of

locations introduced previously and the second theorem shows that within a set of locations that have

the same discrete conditions on continuous, rate-driven dependent state variables, these locations are

reachable.

Theorem 4.4.1. Given a hybrid system with a set of locations Vk = {v1, ..., vn} whose transitions

are based on the discrete states of a set of passively-constrained state variables Dk = {d1, ..., dm},

if all the discrete states associated with each passive state variable are reachable from each other,

then all locations vl ∈ Vk are reachable from any other location, vj ∈ Vk.

Proof. Let V be a hybrid system with state-based transitions and let all discrete states Λi =

{λi1, ..., λini} of each passive state variable di ∈ D be reachable from each other state, but as-

sume location vl ∈ Vk is not reachable from vj ∈ Vk. In order for vl and vj to be viable locations,

they must have non-trivial invariants. That means that there must exist some γj , γl ∈ Γk such that

γj |= inv(vj) and γl |= inv(vl). Since the states of the passive state variables are all reachable,

there is guaranteed to be a path from γj to γl. Let one possible path between the two system states

be pj,l = {γi1 , ..., γin}, where pj,l is the set of all intermediate states between γj and γl. Because

V has state-based transitions, each γi ∈ pj,l has some vi ∈ Vk such that γi |= inv(vi). Since γj

transitions to γi1 directly, there exists a transition condition τj,i1 = inv(vi1). By induction through

the path between states γj and γl, there is indeed a path between locations vj and vl, so the initial

assumption is false.

Theorem 4.4.2. All locations vj ∈ V whose passive invariants have the same constraint, γc ∈ Γck,

γc |= inv(vj), on the set of continuous dependent state variables, Dck, are reachable from one

another when all discrete passive state variables, Ddk have reachable sets of states.

Proof. Let Dc ⊂ D be the set of all continuous, rate-driven dependent state variables and let

Γc =
∏
di∈Dc

Λi

be the state space of the passive constraints on those continuous, rate-driven dependent state vari-

ables. Likewise, let Dd ⊂ D be the set of discrete passive state variables, Dd = D \ Dc, and



67

let

Γd =
∏
di∈Dd

Λi

be the corresponding discrete passive state space. Let V γc ⊂ V be the set of locations satisfied

by some state γc ∈ Γc, V γc = {vi|γc |= inv(vi)}, where V has state-based transitions. Let

vi, vj ∈ V γc and let vj be unreachable from vi. By the definition of state-based transitions, for all

γ ∈ Γ there exists some v ∈ V such that γ |= inv(v). It follows that for all γ ∈ Γdk × {γc}, there

exists some v ∈ V γc such that γ |= inv(v). Since all states γ ∈ Γd × {γc} are reachable from one

another by design, it follows from Theorem 4.4.1 that vj ∈ V γc is reachable from vi ∈ V γc , which

contradicts the original assumption.

The unsafe set is a collection of disjoint sets of constraints, Z = {ζ1, ..., ζn}, where each

disjoint set of constraints, ζi = {zi1, ..., zini}, has separate constraints on individual state variables,

and each separate constraint z ∈ (Xd ∪ Ẋc ∪ D ∪ Ḋc) × Q × (R ∪ Λ) constrains a discrete

controllable state variable (Xd), the rate of a continuous controllable state variable (Ẋc), a passive

state variable, or the rate of a continuous, rate-driven dependent state variable. The sets ζ of unsafe

constraints are analogous to locations of the converted hybrid system, though the different sets in

Z are not necessarily incompatible with one another; they are simply separate unsafe conditions

against which the designer wishes to verify the system.

The verification algorithm goes through the following steps to verify a goal network versus the

unsafe set, Z. A representation of this algorithm is shown in Figure 4.5.

1. Find all locations v ∈ V from the goal network using the bisimulation procedure.

(a) Find all potential executable sets of a goal network without checking for goal consis-

tency. Find each location’s passive invariant by listing all the passive constraints in that

location; remove locations with inconsistent passive constraints.

(b) Merge controlled constraints in each location and record any inconsistent controlled

constraints. If there are any, stop and report which constraints are inconsistent. If not,

continue.

2. For each di ∈ D, the set of discrete states constrained passively in the goal network is Λi.

LetMi be the model of di, where µij ∈ Mi is a discrete location in the model. For di ∈ Dd,

Λi ≡ Mi. However, for di ∈ Dc, the discrete sets are not always equivalent. Set V ′ =



68

Figure 4.5: Representation of the InVeriant verification algorithm

V ; for each di ∈ Dc such that Λi 6= Mi, V ′ = V ′ ◦ Mi = {vl ◦ µj |∀vl ∈ V,∀µj ∈

Mi, vl, µj are consistent }. A composed location v′ = v ◦ µ is defined as having a combined

invariant, inv(v′) = inv(v) ∧ inv(µ) and combined flow conditions, ψv′ = ψv ∧ ψµ.

3. For each ζ ∈ Z:

(a) Find the composition of the hybrid system and the unsafe set, Yζ = V ′ ◦ ζ = {vj ◦

ζ|∀vj ∈ V, vj and ζ are consistent }. Label all locations y ∈ Yζ as unsafe and output

them.

(b) Let the set of unsafe goals, Yg,ζ = {gin,jnn ∈ y|∀y ∈ Yζ}, be the set of goals common to

all unsafe locations. Output these goals.

(c) Let the overloaded function cons() return the constrained value of a state variable when

the function is given that state variable and a location (or set of constraints) as inputs.

If there exists a di ∈ Dc such that cons(di, y) exists, then a path must be found from

init(di) to cons(di, y). There exists some λij , λ
i
l ∈ Λi such that init(di) ∈ λij and

cons(di, y) ∩ λil 6= ∅, where Λi = {λi1, ..., λij , ..., λil, ..., λini} is a forward or backward

ordered set. Let Λζi = {λij , ..., λil} be the set containing the two discrete sets of passively

constrained values that satisfy the initial and unsafe constraints and all discrete sets of

states in between. Then for each λin ∈ Λζi , a location v ∈ V ′ must be found such that

(λin |= inv(v)) ∧ (sign(cons(ḋi, v)) = sign(cons(di, y) − init(di))) is true. If such a

path can be found, the unsafe set is reachable.

This procedure is guaranteed by construction to find all locations in which unsafe conditions

can occur. It can be applied to the example introduced in Section 4.3 as follows. Assume that the



69

Figure 4.6: Converted locations, invariants, flow equations, and resets for the simple verification example

StabilizerSwitch state variable must always be in the ON position when the robot’s velocity is

high for safety reasons. Therefore, the unsafe set Z has one constraint, ζ = {(Ẋ, >, vlow), (SS,==

, ON)}. The first part of the InVeriant algorithm converted the goal network into a set of locations,

invariants, flow equations, and resets, which are shown in Figure 4.6. Since none of the dependent

state variables are continuous and rate-driven, the automaton did not need to be composed with

any of the passive state model automata. So, the automaton in Figure 4.6 was composed with the

unsafe condition ζ, and InVeriant found one location in which the unsafe set was reachable, v1. The

flow equations and reset equations of this location are consistent with the constraints in the unsafe

condition. Since all of the passive states are reachable from each other passive state, this unsafe

location is reachable. The combination of the first tactics in each goal tree are the culprits; these

tactics must be redesigned so that they are inconsistent to be able to verify the goal network versus

the given unsafe condition.



70

4.5 Verification of State and Completion-Based Linear Hybrid Sys-

tems

The software tools and verification method presented in the last two sections can also be applied to a

broader class of linear hybrid automata. Essentially, the time point restrictions on the goal networks

imposed for the conversion procedure induced a group structure on the linear hybrid automaton that

resulted; this group structure, however, is not necessary for the verification method when starting

from linear hybrid control systems. Lifting this requirement allows continuous controlled state vari-

ables to be reasoned about by InVeriant in the same way that continuous, rate-driven dependent state

variables are. However, the state-based transition requirement must still hold for the overall (com-

posed) hybrid system. Like in the case of the goal networks, it can be shown that the composition of

hybrid automata that have state-based transitions also have state-based transitions if the dynamical

flow constraints in the composed locations are consistent.

Definition 4.5.1. The dynamical flow constraints in locations of two hybrid automata are consistent

if either they can be executed concurrently or there exists some rule that allows the constraints to be

successfully merged into a composed dynamical flow constraint.

It is easy to see that this definition of consistency and the corresponding restriction are analogous

to the goal network case of needing consistent controlled constraints. Often in the goal network case,

the root goals would either be completion goals or would be macro goals combined with completion

goals in the goal network. Since there is no good analog to the relationship that goal networks and

goal trees have in the hybrid system case, a type of linear hybrid automaton called completion

automata must be defined.

Definition 4.5.2. A completion automaton is a linear hybrid automaton in which the transition

conditions and location invariants depend entirely on state variables that appear in the dynamical

flow constraints or reset equations of the locations of that automaton.

Then, so-called state-based automata would have no transitions that depend on these types of

state variables and instead would be automata that had state-based transitions as defined in the

goal network case. Finally, the non-stochastic models of passive state variables would be called

passive model automata. The composition of these types of automata is a hybrid system with certain

properties as described by Theorem 4.5.3.



71

Theorem 4.5.3. A hybrid automaton that is a composition of any number of completion and state-

based automata has state-based transitions if all composed dynamical flow constraints are consis-

tent.

Proof. Let there be N state-based automata, Hp
n, where n = 1, ..., N . For each, the set of passive

state variables constrained in the invariants of the locations is Dn ⊆ D. The composition of two

automata H ′ = Hi ◦Hj is defined as the joining of locations, V ′ = Vi ◦ Vj , where each composed

location v′ = vi ◦ vj , vi ∈ Vi and vj ∈ Vj , has an invariant inv(v′) = inv(vi) ∧ inv(vj) and flow

ψ(v′) = ψ(vi)∧ψ(vj). Assume thatH ′ = Hp
1 ◦ ...◦H

p
N , whereHp

n, n = 1, ..., N , have state-based

transitions over Dn, however, assume that H ′ does not have state-based transitions over

D =
N⋃
n=1

Dn.

That means that there exists some passive state γ ∈ Γ, where Γ is the passive state space, such that

for all v ∈ V ′, γ 2 inv(v). However, since all Hp
n have state-based transitions over Dn ⊆ D, there

exists some vγn ∈ Vn for all n = 1, ..., N such that γ |= inv(vγn) by the definition of state-based

transitions. The composition of all these locations, vγ = vγ1 ◦ ... ◦ v
γ
N , has an invariant

inv(vγ) =
N∧
n=1

inv(vγn).

Since γ |= inv(vγn) for all n = 1, ..., N , by the linearity of the operator, γ |= inv(vγ). By the

assumption, γ 2 inv(v) for all v ∈ V ′, so vγ must have an inconsistent invariant and so not be

a location. However, if inv(vγ) = False and γ |= inv(vγ), then γ = False and γ /∈ Γ, which

contradicts the original assumption. So, any number of state-based automata can be composed into

an automaton that has state-based transitions.

By definition, completion automata, Hc
m, m = 1, ...,M , have invariants that depend only on

controlled state variables, X . Since X ∩ D = ∅ and the transitions in the completion automata

are also based on the locations’ invariants, the invariants and transitions of these automata do not

affect the passive state space. Let Hc = Hc
1 ◦ ... ◦ Hc

M be the composition of all completion

automata. The composition, v? = vc ◦ v′, of any completion location vc ∈ V c with any state-

based location, v′ ∈ V ′, would have an invariant, inv(v?) = inv(vc) ∧ inv(v′) that will never be

inconsistent by definition since the invariants constrain different sets of state variables. Likewise,

the dynamical flow constraints, ψ(v?) = ψ(vc) ∧ ψ(v′), are consistent due to the assumption in



72

the theorem statement. So, no composed locations are inconsistent which means that since for all

γ ∈ Γ, there exists some v′ ∈ V ′ such that γ |= inv(v′), the same will be true for all v? ∈ V ?.

Therefore, the composition of any number of completion and state-based automata will have state-

based transitions, which proves the theorem.

Because of this modularity, the SBT Checker can be used to check the state-based transitions of

state-based automata. Likewise, the InVeriant verification software will check the consistent dynam-

ical flow constraints upon composing the automata in preparation for model checking. Because the

real requirement for InVeriant is a hybrid system whose invariant contains all the necessary infor-

mation for the transitions of the system, if the composed completion automata have locations with

unique invariants, this restriction is satisfied by that and the state-based transitions requirement.

Continuous controlled state variables can then treated just like continuous, rate-driven dependent

state variables (except no state variable model would need to be composed with the hybrid control

system) in that a path must be found from the initial condition to the unsafe condition of those state

variables to prove their reachability. Note that Theorems 4.4.1 and 4.4.2 still hold for the hybrid

systems generated this way.

This result is important because it broadens the class of systems that can be verified using this

method and it grants extra capabilities to the verification method by the addition of reasoning about

continuous controllable state variables. This method is clearly more efficient than other symbolic

model checkers such as PHAVer and HyTech that also deal with continuous states for systems that

are designed with this additional structure. As discussed in the next section, at least some of the

additional structure imposed is good design practice, so the SBT Checker and InVeriant verification

toolbox may have many practical uses for the design and verification of real hybrid control systems.

4.6 Discussion

The verification procedure for systems that have state-based transitions has many positive attributes.

First, the state-based transitions requirement can be checked modularly using a software tool, which

allows for iterative and distributed design of control systems. The SBT Checker is a simple and

intuitive tool that helps designers to design goal networks and hybrid automata that satisfy the state-

based transitions requirement. This requirement forces certain structure in the goal network or

hybrid automaton that aids in its verification; however, having state-based transitions is also a good

design practice. When a system has state-based transitions, this means that every possible measured



73

passive state is accounted for and that there is a mode or tactic that can accommodate that state.

The InVeriant software is able to verify hybrid systems with state-based transitions quickly and

efficiently. The structure imposed by the state-based transitions requirement allows the InVeriant

software to ignore the individual transitions between hybrid system locations since all the necessary

information about the transitions is contained in each location’s invariant. The number of transi-

tions between locations grows as the number of locations grow and as the number of passive state

variables grow. Because the transitions are ignored, the complexity of the verification problem no

longer depends on the number of state variables. In the verification method that involves the con-

version from goal network to hybrid system followed by the use of a symbolic model checker, the

number of passive state variables and particularly, the number of discrete states of each of those

state variables contributed a large amount to the state space explosion of the system. Decoupling

the passive state variables from the verification problem complexity will allow much larger systems

to be verified using the InVeriant software.

The special structure of the systems that have state-based transitions allow for the reachability

of the system to depend only on the states that the transitions constrain. Therefore, in many cases,

a path to the unsafe locations does not need to be explicitly found. In the cases where a path is

necessary, the structure of the system simplifies the process of finding a path since it can be shown

that groups of locations are reachable from each other. Then, the path only needs to connect those

groups. Rate constraints for continuous state variable can also be included in the unsafe set in

InVeriant, which is not possible in many symbolic model checkers.

Because the InVeriant software was built to verify goal networks as well as hybrid systems,

the information that it outputs is more conducive to the redesign of those goal networks. InVeriant

will output not only the set of unsafe locations but also the goals and tactics that are common to

all. PHAVer and HyTech output only the states of the state variables that allow the system to reach

the unsafe set; even the unsafe locations are excluded from their output. Another benefit is not

needing to translate the hybrid system into new notation or another language. Because the verifica-

tion algorithm is so simple, there are only a few ways to reduce the complexity of the verification

problem; either the number of locations in the hybrid system or the size of the unsafe set could

be reduced. However, the modularity of the SBT Checker and the simplicity of the InVeriant ver-

ification algorithm suggest that this verification method could handle decently large goal network

control programs or hybrid systems.



74

4.7 Conclusion

This verification method is designed for use with goal network control systems or hybrid systems

that have state-based transitions. The state-based transitions requirement is a common sense restric-

tion that leads to some very nice properties in the goal network verification. The modularity of the

state-based transitions requirement makes the novel SBT Checker a useful design tool even for goal

networks or hybrid systems that will not be verified. The InVeriant software leverages the reachabil-

ity properties of the automaton imposed by the state-based transitions restriction and the properties

of the state variables constrained to find the reachable unsafe set of the system quickly and effi-

ciently. A significant example in Chapter 6 shows the speed of this verification method in relation

to the conversion and PHAVer method described in Chapter 3. The simplicity and efficiency of this

verification method suggest that it could be applicable to very large and complex systems, which is

an important development in the use of reconfigurable goal-based control programs in autonomous

robotic systems.


