
19

Chapter 3

Automatic Conversion Method for the
Safety Verification of Goal-Based
Control Systems

3.1 Introduction

The ability of goal network control programs to reconfigure as a fault response gives the control

method flexibility to handle dynamic and unknown situations. However, the added complexity

makes nonlinear goal network control systems difficult to check for safety with the methods used

to check their linear counterparts, sequences of control commands. This constraint prohibits the

use of goal networks in real applications; in systems with inherent risk, the added risk of unverified

complex control systems is often not justified. Therefore, a simple and automatic way to verify goal

networks is an important tool and a step towards using more fault tolerant control architectures on

autonomous robots.

The main contribution of this chapter is a goal network conversion algorithm that converts goal

networks into hybrid automata in a sound and complete manner; the resulting hybrid system can

then be parsed into a form that is compatible with existing model checking software. In Section 3.2,

more detailed information about the types of goal networks that can be converted and verified is

given. In Section 3.3, a heuristic goal network conversion procedure is outlined. It is compared

with the formal conversion procedure, which is described in Section 3.4; while a larger set of goal

networks can be accommodated using the heuristic procedure, it is not automatic and does not come

with the assurances of soundness and completeness that the formal procedure has. A description of

the conversion software that is based on the formal conversion procedure is given in Section 3.5.

The verification process following goal network conversion and the reverse conversion procedure

20

are discussed in Section 3.6. Section 3.7 concludes the chapter and summarizes the contributions.

3.2 Properties of Convertible Goal Networks

3.2.1 Structure of the Goal Network

Some restrictions exist on the types of goal networks that can be verified using the procedure de-

scribed in this chapter. These restrictions mostly pertain to the structure of the goal network in time;

in general, the goal networks excluded can be redesigned to fit within the restrictions.

The first restriction on convertible goal networks is that its time points must be well-ordered.

This means that a scheduled goal network executes the goals in the order given. The time between

time points can be constrained or unconstrained, but the order in which the time points are encoun-

tered in the goal network’s execution must be set. This restriction leads to the useful group property

of the goal networks, which will be defined formally in Section 3.4. In general, a group is the set of

all goals that are active between two consecutive time points. Dividing the goal network in this way

allows for a characterization of the discrete transitions between goals and tactics that is important

for the conversion procedure.

Two other restrictions on the convertible goal networks are needed to protect the group structure.

First, if a parent goal elaborates time points, all its tactics must contain the same time points. This

follows from the well-ordered requirement; if a time point fires in one execution of a goal network,

it must fire in all possible executions. Elaborated time points must also be respected upon re-

elaboration of the parent goal; if an elaborated time point has already fired, it cannot fire again after

re-elaboration.

The second requirement constraining completion goals over more than two time points. This is

only possible if it can be shown that the internal time points will always fire before the completion

goal is achieved. An example of an appropriate case is a robot position completion goal that elab-

orates an orientation, or turning, completion goal. If the position completion goal is slow enough

and the turn rate fast enough, a time point at the end of the orientation goal but before the position

goal’s ending time point is possible.

These simple restrictions allow the goal network control program to be converted for verifica-

tion. Some properties of a goal network make it easier to convert and verify, although they are

not necessary for convertible goal networks to have. The first property pertains to the failure of

tactics and controlled goals. The failure of tactics is assumed to be due only to the failure of the

21

passive goals in the tactic; the possibility of failure of a controlled goal causes a passive goal to fail

instead. This is achieved by using health state variables; when the health of an actuator is poor, this

is like saying that the controlled goal commanding that actuator has failed or will fail. The second

property involves the transitions between tactics in a group. If the transitions are state-based (which

will be formally defined later), that means that all possible states of the passively-constrained state

variables in a goal network satisfy the passive constraints in some set of tactics. Goal networks with

state-based transitions have nice properties that will be described in Section 3.4.

3.2.2 State Variables

The state variables constrained in a goal network can be categorized by their state models. The first

type is controllable state variables. These state variables are directly associated with a command

class in the state effects model, which means that control action is applied directly to these state

variables. An example of a controllable state variable is a HeaterSwitch state variable that is

commanded on and off to control the temperature of a device. In this model, the Temperature

state variable is not controllable because the command is applied to the heater switch; however,

in a model that instead controls the heating rate directly without using the HeaterSwitch state

variable, the Temperature state variable would become a controllable state variable.

Unlike controllable state variables, uncontrollable state variables are not associated with any

command class and also have no model dependencies on any controllable state variable. These state

variables can only be passively constrained in the goal network. This designation is also dependent

on the state effects model. For example, a LADARHealth state variable for a mobile robotic

system may be dependent on the relative sun angle, which depends both on time and the position

and orientation of the LADAR. This makes the LADARHealth state variable dependent on the

Position state variable, which is controllable; so, the LADARHealth state variable would not

be uncontrollable in this model. However, if the designer decides to model the relative sun angle as

an independent stochastic state variable, the modeled association with the Position state variable

disappears and the LADARHealth state variable becomes an uncontrollable state variable.

Dependent state variables are the last category of state variables. Dependent state variables have

model dependencies on at least one controllable state variable, but do not have an associated com-

mand class. The Temperature state variable when there is a HeaterSwitch state variable is a

dependent state variable, as is the LADARHealth state variable when the RelativeSunAngle

state variable depends on the robot’s position. Dependent state variables can be constrained by con-

22

trolled and passive goals. A goal on the Temperature state variable that elaborates constraints

on the related HeaterSwitch state variable is an example of a controlled goal on a dependent

state variable. A goal on the LADARHealth state variable that constrains the health to be good,

but does not elaborate any control action on the Position state variable in order to achieve that

constraint is an example of a passive goal on a dependent state variable. Resource state variables

are a special set of dependent state variables. Resource state variables, such as power, memory, or

charge cycles, are state variables that can be consumed (and in some cases, restored). Projection,

which will be discussed in Section 3.3, is a useful way to handle resource state variables.

3.3 Heuristic Conversion and Verification Procedure

The goal network conversion and verification procedure can be broken up into three main parts.

The conversion of the goal network to a linear hybrid automaton is the first part; the so-called goals

automaton is created. The flow equations in the locations or modes of this automaton direct the

propagation the controlled state variables; however, the transitions are often based on the uncon-

trollable and passive dependent state variables whose states must be updated in separate automata,

which are created from the state models in the second part of the procedure. Finally, the system is

verified against a given unsafe set using a symbolic model checker.

The heuristic version of this procedure is given in Section 3.3.2. The conversion of the goal

network is formalized in the bisimulation introduced in Section 3.4 and much is automated in the

software described in Section 3.5. The description of the heuristic procedure proceeds the formal

procedure description to give a textual overview to the overall conversion process; the first several

steps of the heuristic goals automaton procedure couple as the set-up needed to run the automatic

conversion software, whose execution is described loosely by the remaining steps of the procedure.

There are some additional capabilities that exist in the heuristic procedure, which are discussed in

Section 3.3.4; some capabilities of MDS, such as projection, are not currently implemented in either

procedure because of some severely limiting results. However, projection and how it would fit with

this verification procedure are discussed in Section 3.3.3. First, some useful definitions are given.

3.3.1 Goal Network Definitions

Let G be the set of all goals in a goal network, where G = G∪U . The setG = {gi1,j11 , gi2,j22 , ..., giN ,jNN }

consists of all controlled goals in the goal network, where in is the parent goal index and jn is the

23

tactic number into which the goal is elaborated, for n = 1, ..., N . The set of passive goals is

U = {ui1,j11 , ui2,j22 , ..., uiM ,jMM }, where im is the index of the goal’s parent goal (which is always a

controlled goal) and jm is the goal’s tactic number for m = 1, ...M . Controlled and passive goals

are numbered independently because this notation is useful for the implementation of the conversion

and verification procedure; however, gin,jnn ∈ G will represent both controlled and passive goals. Let

T = {T1, T2, ..., TK+1} be the set of time points in the goal network, where T1 < T2 < ... < TK+1

for increasing time. Each goal, gin,jnn ∈ G, has several functions associated with it.

1. start(gin,jnn) returns the goal’s starting time point.

2. end(gin,jnn) returns the goal’s ending time point.

3. svc(gin,jnn) returns the state variable constrained by the goal.

4. c(gim,jmm , gin,jnn) returns true if the two goals have constraints that are consistent (see Defini-

tion 3.4.1) and false otherwise.

5. cons(gin,jnn) returns the constraint (or invariant) on the state variable; cons(gin,jnn) ∈ Q× R,

where

Q = {=, 6=, <,>,≤,≥,→}

and→ indicates a transition constraint.

6. entry(gin,jnn) ∈ Q×R returns the condition on the goal’s constrained state variable that must

be true when entering the goal.

7. exit(gin,jnn) ∈ Q × R returns the condition on the goal’s constrained state variable that must

be true before exiting the goal.

The entry logic of a passive goal is just the goal constraint and the exit logic is always true. Since

passive goals constrain the conditions in which a tactic may be executed, if those conditions become

false, the tactic fails. The following two functions give elaboration logic and failure destination of

each tactic, which is a group of goals with the same parent index numbers (in) and tactic numbers

(jn).

1. startsin(in, jn) returns the condition in which the tactic is elaborated initially. This is gener-

ally just a list of passive goal constraints in that tactic, though other conditions (such as tactic

elaboration order) can be included.

24

2. failto(in, jn) returns the index of the goal to which execution goes upon failure. If the goal

fails to a general safing state that may be present in the control system design, the output of

this function is “Safe.”

The following goal classifications are important in describing the conversion of a goal network

to a hybrid automaton.

Definition 3.3.1. A goal is root goal if it has no parent goal. It is signified by in = 0 and jn = 0.

Root goals are the ancestors of all other goals in a goal network.

Definition 3.3.2. Two goals gim,jmm and gin,jnn are siblings if im = in ∧ jm = jn. Sibling goals are

goals that are elaborated from a parent goal into the same tactic; sibling goals are always compatible

and always executed at the same time if active during the same time points.

Definition 3.3.3. A completion goal is a controlled goal with a transition constraint type; the tran-

sition constraint type requires a state variable to reach a certain value, p ∈ R. The constraint is

written (→, p) and the non-trivial exit condition for the goal is (=, p).

3.3.2 Procedure Description

3.3.2.1 Goals Automaton

The first hybrid automaton that is created from the goal network is based on the goals; the controlled

state variables are controlled by this automaton. The hybrid automata created from the uncontrol-

lable and dependent state variables will be discussed in Section 3.3.2.2. The process to create the

goals hybrid automaton is as follows. This process will be formalized in Section 3.4 and a simple

example of the conversion procedure will be given there as well.

1. State Variable Labels: Label each state variable in the goal network as controllable, uncon-

trollable, or dependent.

2. Merge Logic: For each state variable constrained by a controlled goal, xi ∈ X , where

X = {svc(gin,jnn)|gin,jnn ∈ G}, create a merge logic table from the types of constraints

imposed on the state variable in the goal network. Examples of constraint types on a mobile

robot’s Position state variable could be transition (move to a point), rate (speed limits), or

a combination of these. An example of the merge logic table for this state variable is given

in Table 3.1. For each pair of constraints, the conditions that allow the row constraint (r) to

25

Table 3.1: Example of a merge logic table for a mobile robot’s Position state variable

Transition Velocity Combo
Condition r[1] == c[1] True r[1] == c[1]

Transition Constraint {r[1]} {r[1], c[1]} {r[1], c[2]}
Type Transition Combo Combo

Condition True True
Rate Constraint {min(r[1], c[1])} {c[1],min(r[1], c[2])}

Type Rate Combo
Condition r[1] == c[1]

Combo Constraint {r[1],min(r[2], c[2])}
Type Combo

Table 3.2: Example of a constraint properties table for a mobile robot’s Position state variable

Entry Exit Dyn. Eq. Reset
Transition True x >= 0.99 ∗ r[1] ẋ = r[1]− x None

Velocity ẋ ≤ r[1] True ẋ ≤ r[1] None
Combo ẋ ≤ r[2] x >= 0.99 ∗ r[1] ẋ = min(r[2], (r[1]− x)) None

merge with the column constraint (c) are given in the top field. The middle field assigns the

constraint vector for the new constraint from the row and column constraints (if the conditions

are met) and the bottom field gives the new constraint type.

3. Constraint Properties: For each state variable xi ∈ X , create a constraint properties table.

The control characteristics of each possible constraint type on the state variable are listed

here. The characteristics include entry and exit logic for the goal (the conditions that must be

true before the goal is entered or exited), the dynamical update equation associated with the

constraint, and any control resets associated with the constraint. An example constraint prop-

erties table for the robot’s Position state variable is given in Table 3.2, where r represents

the constraint vector for each constraint type.

4. Elaboration Logic: For any controlled goal gin,jnn ∈ G that is a parent of another controlled

goal, create an elaboration logic table if and only if the transitions between its tactics are

not state-based. The elaboration logic table includes the invariant of each tactic, which are

the conditions that must always be true when executing the tactic; the StartsIn logic, which

are the conditions that must be true for the tactic to be initially elaborated; the failure logic,

26

Table 3.3: Outline of an elaboration logic table

gin,jnn Invariant StartsIn Fail Conditions Destination
1
2
:

which are conditions that cause the re-elaboration of the goal; and the corresponding failure

location, whether it is another tactic or Safing. An outline of the elaboration logic table is

Table 3.3. In state-based goal elaborations, the invariants of the tactics are the passive goals

in each tactic, and the starts in logic, the failure conditions, and destinations are all based on

these invariants.

5. Groups: Number each time point that is associated with a controlled goal sequentially as

{T1, T2, ..., TK+1}, where K + 1 is the number of time points. Group goals between consec-

utive time points into sets Gk, where k = 1, 2, ...,K. In the hybrid automaton, consecutive

groups will have connectors, depicted as small empty circles, between them.

6. Location Creation: For each group, Gk, k = 1, ...,K, find all sets of goals in the group that

can be executed concurrently. These executable sets of goals must follow several rules that

govern the execution of goal networks:

(a) Goals can only execute between their constrained time points.

(b) If a goal is executing, so must be its

i. parent,

ii. siblings, and

iii. at least one of its children,

if these goals exist.

(c) If a root goal has elaborated goals in a group, at least one of those goals must be ex-

ecuting at all times. All root goals in a group execute at all times during the group’s

execution.

(d) Goals in different tactics from the same parent goal cannot execute at the same time.

Each of these sets of concurrently executable goals becomes a location.

27

7. Merge Constraints: For each location in each group, merge controlled goals constraining the

same state variable. The merge logic tables give the conditions for the merge as well as the

resulting constraint on the state variable. If there are more than two constraints on a state

variable, merge goals pairwise until only one constraint on the state variable remains. If the

merge is not possible for any pair of state constraints, the location is removed due to constraint

inconsistency.

8. State Variable Updating: For each location in each group, use the constraints on each state

variable to find the dynamic equations that describe the control and evolution of the control-

lable state variables in the location. If there is a time constraint on the group, add an equation

for the propagation of a counter state variable.

9. Extra Locations: Add Success and Safing locations to the hybrid automaton.

10. Initial Entry Transitions: For each location in each group, create an entry transition from

the preceding group connector (or initially for G1). The condition on this transition will be

a combination of the StartsIn logic for each tactic represented in the location. The StartsIn

logic can be found in the parent goal’s elaboration logic table, or for parent goals that have

state-based transitions, the StartsIn logic is that tactic’s passive goal constraints. The logic

from each tactic should be combined using a logical conjunction; eliminate any transitions

whose condition logically reduces to “False.”

11. Failure Transitions: For each location in each group, create failure transitions to other loca-

tions in the group or to Safing, if appropriate. The conditions on these transitions and their

destinations depend on the failure logic of each tactic represented in the location. For goal

networks with state-based transitions, the failure conditions are all possible ways the passive

constraints (or invariant) of the location can be violated. The destinations of the transitions

with these conditions are found by comparing the failure condition with the invariants of

other locations. The invariant that is satisfied by the failure condition and is otherwise the

most closely related to the original location’s invariant is the destination. For other tactics,

the failure conditions and destinations can be found in their parent goals’ elaboration logic

tables. Failure conditions of transitions with the same destination can be combined using a

logical disjunction.

12. Entry Logic and Resets: Append the appropriate entry logic corresponding to each constraint

28

in each location to every initial entry transition to that location. If a location has constraints

with corresponding reset equations, add resets to all incoming transitions of that location. If a

group has a time constraint on its bounding time points, add a nullifying reset on the counter

state variable to all initial transitions into the group.

13. Nominal Exit Transitions: For each location in each group, create exit transitions to the fol-

lowing group connector (or to the Success location for GK). For a location in group Gk, the

condition of this transition is either the time constraint on the bounding time points or the

exit conditions of all completion constraints in the location that have Tk+1 as their ending

time points. If there are no applicable completion goals in a location, the exit condition in the

absence of a time constraint is “True.”

14. Location Removal: Remove any location that is not entered by any transitions and remove

all transitions that originate at that location. Remove any other location that the goal network

execution cannot reach.

15. Initial Conditions: Assign an initial location for the automaton and initial conditions for each

of the controlled state variables.

3.3.2.2 Uncontrollable and Dependent State Variables

The process in the previous section results in a hybrid automaton for the goal network that updates

the controllable state variables; the process for creating hybrid automata to update the uncontrollable

and dependent state variables is described in this section. Since the transitions between discrete

or continuous states for these state variables are not directly controllable, they generally happen

randomly, at a given rate, or when discrete events occur. This information will be used to create the

hybrid automata for these state variables and for setting up the verification problem.

The process outlined below generally describes the creation of the other hybrid automata.

1. Discretize states or rates of change of each uncontrollable or dependent state variable. Make

these discrete states into locations for that state variable’s automaton.

2. Using the model of the state variable, assign the appropriate dynamical equations, resets,

and/or transitions to each location.

3. Assign an initial condition and location for each state variable.

29

3.3.2.3 Hybrid System Verification

Once all of the hybrid automata are created, the system is ready for verification. The process now

becomes dependent on which software will be used to verify the system. The system will be verified

against sets of incorrect or unsafe states as determined by the designer. The automata created above

need to be translated from their general form into the syntax of a model checker, the unsafe set must

be added, and then the system can be verified. If any changes to the hybrid automata are necessary

in order to verify the system versus the unsafe set, those changes must be translated back into the

original goal network. This process will be described more in depth in Section 3.6.

3.3.3 Projection

Many autonomous robotic control problems involve planning activities around a goal of maintaining

a certain amount of some resource state variable, such as power or memory. The act of replanning

or rescheduling based on estimates of the remaining amount of a resource state variable is part

of projection in MDS. By assuming that the goal network is already scheduled in the verification

problem, projection in its truest form is precluded from being verified in this way. However, there

is a conservative way to verify that a goal network as scheduled will respect the resource goal

constraints, especially if the choice of tactics of certain goals is based on the projected need of the

given resource.

In order to include projection-induced failure and re-elaboration, extra information is necessary

in the hybrid automaton. For each location, the estimated amount of resource needed in that location

and the minimum and maximum forward amount of resource needed (FAN) must be calculated.

The minimum and maximum FAN are the sum of the respective minimum and maximum amount of

resource needed over all locations in each subsequent group. These numbers are used for the entry

logic conditions that compare the actual amount of resource needed to the actual amount available.

In general, if there is more resource available than is needed, the location can be entered.

The procedures for converting projection to a verifiable form are complex and have several

limitations, conservatism being just one. The idea of projection in a pre-scheduled goal network

severely limits its usefulness. Allowing it to be a part of the verifiable hybrid automaton puts more

structure on the type of goal networks that are convertible. Therefore, it has been purposefully left

out of the procedure to convert the goal networks because it was determined that the implementation

makes the procedure more rigid for very little benefit.

30

3.3.4 Comparison with Formal Method

The heuristic conversion method described briefly in Section 3.3.2 is more flexible than the bisim-

ulation method that will be described in Section 3.4, but at a price. The extra capabilities afforded

the conversion currently disallow soundness and completeness properties and in some cases, they

also prohibit the ability to automate the procedure. Without the automation of the conversion, large

goal networks cannot be efficiently verified. A human converting the goal network is bound to make

errors and omissions, which can adversely affect the verification efforts. Also, though there may be

a way to prove the soundness and completeness of the techniques to convert a broader set of goal

networks, these are not currently in place, which causes the verification to lose its value.

Currently, the automatic conversion procedure cannot handle completion goals split by a time

point, though this may be easy to insert in the proof of the bisimulation. The other main difference is

the restriction of the software method to systems with state-based failure transitions. This restriction

is due to the proof of the bisimulation; systems with failure transitions based on order or other design

choices can be converted by choosing a slightly different conversion algorithm. However, systems

with state-based transitions have nice properties which will be discussed later and they are often

the most robustly designed systems. Imposing arbitrary order or structure on tactics often causes

unexpected trouble in the goal network’s execution.

3.4 Conversion and Verification Procedure

3.4.1 Formal Description of Goal Network Executions

A valid execution of the goal network consists of a sequence of alternating flow and transition

conditions,

φηf (tf)...φη2(t2)ρη2η1φη1(t1)X0, (3.1)

where X0 is the set of initial conditions of the controlled state variables, φηn(tn) is the set of flow

conditions associated with the executable set of goals θηn (defined below) and propagated forward

in time tn steps, and ρηn+1ηn is the transition between the executable sets of goals θηn and θηn+1 .

Due to the structure imposed on the time points, goals can be placed into K groups, Gk, k =

1, ...,K where

Gk = {gin,jnn ∈ G|start(gin,jnn) ≤ Tk ∧ end(gin,jnn) ≥ Tk+1}. (3.2)

31

Figure 3.1: Goal network with two groups

Time points also have a constraint function, cons(Tk, Tk+l), that returns the time constraint between

the two time points if it exists, and returns true if they are unconstrained. The amount of execution

time that passes between two time points, Tk and Tk+1, is tk. A simple example of a goal network

with three time points, T = {T1, T2, T3} and two groups, G1 and G2, is shown in Figure 3.1. The

first group, G1, contains a completion goal; therefore the two bounding time points have no time

constraint, cons(T1, T2) = True. Time point T2 fires once the completion goal has been achieved.

The second group, G2, contains an maintenance goal and the two bounding time points have a time

constraint, cons(T2, T3) = [t2 == 5]. Time point T3 fires when the specific amount of execution

time has passed. One additional note is that the TransmitData goal is a part of both groups, G1 and

G2.

The following goal relationships are important to the description of goal network executions.

Definition 3.4.1. Two goals gim,jmm and gin,jnn are consistent if they constrain different state vari-

ables, svc(gim,jmm) 6= svc(gin,jnn), or if svc(gim,jmm) = svc(gin,jnn) and the goals’ constraints are

able to be executed concurrently or merged according to the state variable’s merge logic table, e.g.,

Table 3.1.

Definition 3.4.2. Two goals gim,jmm and gin,jnn are compatible if

comp(gim,jmm , gin,jnn) :=

[im == in ∧ jm == jn] ∨ [im 6= in ∧ comp(giim ,jimim
, g
iin ,jin
in

)] ∨ im == 0 ∨ in == 0 (3.3)

is true. In other words, the goals are compatible if they are in the same tactic, or if they have different

parent goals and the parent goals are compatible. Root goals are compatible with all other goals by

definition. Incompatible goals can never be executed at the same time in a goal network.

Certain subsets of the goals in each set Gk can be executed at the same time; these subsets are

called executable sets, θη. The set of all executable sets that are built from the goals in Gk is Θk.

32

Definition 3.4.3. An executable set of goals θη ∈ Θk is any set of goals that satisfies the following

properties:

1. All goals in the executable set are active between the appropriate time points; for all gin,jnn ∈

θη, gin,jnn ∈ Gk.

2. All root goals in the group are in each executable set; for all g0,0
n ∈ Gk, g0,0

n ∈ θη.

3. If a parent goal in the executable set has child goals in the group, at least one of those child

goals will also be in the executable set; for all gin,jnn ∈ θη, if there exists gim,jmm ∈ Gk,m 6= n,

such that im = n, then there exists gil,jll ∈ θη such that il = n.

4. The parent goals of all goals in an executable set are also in the set; for all gin,jnn ∈ θη, if there

exists gim,jmm ∈ Gk,m 6= n, such that in = m, then gim,jmm ∈ θη.

5. The siblings of all goals in the executable set are also in the set; for all gin,jnn ∈ θη, if there

exists gim,jmm ∈ Gk,m 6= n, such that im = in ∧ jm = jn, then gim,jmm ∈ θη.

6. Let Sn be the set of goals descended from some root goal, g0,0
n /∈ Gk. Then, if any of the root

goal’s descendants is in the group, Sn ∩ Gk 6= ∅, at least one of those descendants is in each

executable set; there exists gil,jll ∈ Sn ∩ Gk such that gil,jll ∈ θη.

7. For all gin,jnn , gim,jmm ∈ θη, gin,jnn and gim,jmm are compatible.

8. For all gin,jnn , gim,jmm ∈ θη, gin,jnn and gim,jmm are consistent.

There are two different types of transitions between the goals in the goal network, transitions

based on goal completion, ρcηµ,k ∈ Scomp, and transitions based on goal failure, ρfηµ,k ∈ S
fail, where

Scomp and Sfail are the sets of all completion and failure transitions, respectively. The transition

ρcηµ,k is from θη ∈ Θk to θµ ∈ Θk+1, and

ρcηµ,k :=
∧
θη

exit(gin,jnn) ∧
∧
θµ

entry(gim,jmm) ∧
∧
θµ

startsin(gim,jmm) ∧ cons(Tk, Tk+1). (3.4)

The transition ρfηµ,k is from θη ∈ Θk to θµ ∈ Θk. Let F be the set of failing passive goals in

executable set θη and let J = {∀uin,jnn ∈ F |failto(in, jn)}. Let νη ⊂ θη be the set of all passive

33

Figure 3.2: Path for the simple rover example

goals in θη. Then, if Safe ∈ J ,

ρfηSafe,k :=
∧
F

¬cons(uin,jnn) ∧
∧
νη\F

cons(uim,jmm). (3.5)

Otherwise, if Safe /∈ J ,

ρfηµ,k :=
∧
F

¬cons(uin,jnn) ∧
∧
νη\F

cons(uim,jmm) ∧
∧
νµ

cons(uil,jll). (3.6)

Only transitions whose conditions evaluate to true are taken. Valid transitions are all those whose

conditions are not invariantly false.

A simple example to illustrate these concepts involves a robot with position sensors travers-

ing a path, shown in Figure 3.2, to get to a point of interest via one of two paths, whose selec-

tion depends on the availability of the upper path. The state variables in this problem are as fol-

lows: RobotPosition (x), RobotOrientation (θ), UpperPathAvailability (UP),

and SystemHealth (SH), which depends only on the sensor health states. Figure 3.3 shows

the goal network for this example and Figures 3.4 and 3.5 depict the goal trees that direct the

path and speed of the rover. Table 3.4 has the function outputs for some goals; goals that are

similar to one listed are not shown. The rover can traverse the first segment of the path as long

as the SystemHealth is FAIR or GOOD. The rover then decides to go to C2 via the upper or

lower paths. If the estimated value of the UpperPathAvailability becomes BLOCK at any

time, the robot reverses course and uses the lower path (which is assumed to always be clear). If

the SystemHealth at any time is POOR, the robot safes by stopping; this option is available in

all groups. Since the goal network has state-based transitions over the SystemHealth and the

UpperPathAvailability state variables, the startsin() logic for all tactics is related to the

accompanying passive goals.

34

Figure 3.3: Goal network for the simple rover example

Figure 3.4: Route goal trees for the simple rover example

Figure 3.5: Speed limit goal tree for the simple rover example

Table 3.4: Select Goal Function Outputs for Simple Rover Example

Goal Name svc cons entry exit
g0,0

1 GetToC1 x (→, C1) True (=, C1)
g2,1

3 Clockwise θ (=, f(x)) True True
g0,0

6 MaintC2 ẋ (=, 0) (=, 0) True
g7,1

8 High ẋ (≤, vHigh) (≤, vHigh) True
u2,1

1 UP == CLEAR UP (=, CLEAR) (=, CLEAR) True
u2,1

2 SH 6= POOR SH (6=, POOR) (6=, POOR) True

35

3.4.2 Procedure Description

Hybrid system analysis tools can be used to verify the safe behavior of a hybrid system; therefore, a

procedure to convert goal networks into hybrid systems is an important tool for goal network verifi-

cation. These goal networks can have several state variables and several layers of goal elaborations,

however time points must be well-ordered, which means the time points fire in the order that they

are listed in the elaboration. This restriction only states that the goal network has already been

scheduled and that goals cannot switch order; it gives no restriction on the amount of time between

time points. For the software, one more restriction is currently necessary; goals with non-trivial exit

conditions cannot be split by a time point due to the way that the exit condition is handled.

Like the heuristic procedure, the first automaton created in the automatic conversion is called

the goals automaton. This automaton has execution paths of the form

ψηf (tf)τηfηf−1
...ψη2(t2)τη2η1ψη1(t1)X0 (3.7)

where X0 is the set of initial conditions on the controlled state variables, ψηn(tn) is the flow asso-

ciated with location vηn for tn time steps, and τηnηn−1 is the transition from location vηn to vηn−1 .

First, some definitions are listed.

Definition 3.4.4. A branch goal is a controlled goal gin,jnn ∈ Gk such that for all gim,jmm ∈ Gk, im 6=

n; in other words, it is a goal that has no child goals in the same group as itself. A branch goal can

also be a passive goal with no controlled goal siblings, uin,jnn ∈ Uk such that for all gim,jmm ∈ Gk,

in 6= im ∨ jn 6= jm. In a goal tree, these goals find themselves at the ends of the branches of goal

elaborations.

Definition 3.4.5. Two locations, vη and vµ, are compatible if for all gin,jnn ∈ vη and for all gim,jmm ∈

vµ, gin,jnn and gim,jmm are compatible.

There are four sets of procedures used to create the goals automaton. First, the locations of the

goals automaton are created. For each group of goals Gk, k = 1, ...,K, a group of locations Vk is

created using these procedures.

Location Creation Procedures:

1. Let Vk = {vη1 , vη2 , ..., vηB}whereB is the number of branch goals in Gk, vηn = {gibn ,jbnbn
|gibn ,jbnbn

is a branch goal}.

36

2. For all gin,jnn , gim,jmm ∈ Gk such that gin,jnn ∈ vη, gim,jmm ∈ vµ, and vη, vµ ∈ Vk, if the goals

are compatible, im = in ∧ jm = jn ∧n 6= m, then combine the locations into a new location,

vν = vη ∪ vµ, and remove vη and vµ from Vk.

3. For all vη ∈ Vk and for all gim,jmm ∈ vη:

(a) Add to each vη the parent goals of each gim,jmm ∈ vη; if there exists gia,jaa ∈ Gk such

that a = im then gia,jaa ∈ vη.

(b) Add to each vη the sibling goals of each gim,jmm ∈ vη; if there exists gia,jaa ∈ Gk such

that ia = im ∧ ja = jm ∧ a 6= m then gia,jaa ∈ vη.

(c) Add to each vη the root goals in Gk; if there exists g0,0
a ∈ Gk then g0,0

a ∈ vη. This step

is not needed, since all root goals will be added to the location with the previous two

steps.

4. Combine compatible locations using the following procedure:

(a) Let V i
k , i = 1, be the set of original locations.

(b) For all vη, vµ ∈ V i
k , η 6= µ, if vη and vµ are compatible, let vν = vη ∪ vµ, vν ∈ V i+1

k .

(c) For all vη ∈ V i
k , if for all vµ ∈ V i+1

k , vη * vµ, add vη to V i+1
k . For all vη, vµ ∈

V i+1
k , η 6= µ, if vη = vµ, remove vη, keeping vµ.

(d) Increment i. Repeat Steps (b)–(d) until for all vη, vµ ∈ V i
k ,m 6= n, vη and vµ are

incompatible.

(e) Set Vk = V i
k .

5. For all vη ∈ Vk and for all gim,jmm , gil,jll ∈ vη, if the goals are inconsistent, ¬c(gim,jmm , gil,jll),

remove vη.

The first two steps of the procedure basically set up the initial locations to contain each of the

branch goals and combines locations in which the branch goals are siblings. The next step adds to

the locations all the ancestor goals and siblings goals up the goal tree from the branch goal. The

parent goals may be represented in many locations, but each branch goal is represented in only

one location and the combination of the goals in each location after this step is the set of all goals

in the group. These first three steps guarantee that each goal in a group is represented in at least

one location. From the definition of executable sets, Definition 3.4.3, properties 1, 2, 4, and 5 are

37

satisfied by these three steps; all goals are in the same group (1), and all root goals (2), parent goals

(4), and sibling goals (5) of each goal in the location are also in each location.

The fourth step is the location combining procedure. The compatible locations are combined

in such a way so that all possible combinations of compatible locations are created and so that the

final outcome is a set of incompatible locations. It can be shown that this combination procedure

produces all possible executable sets for each group. This step satisfies the properties 3, 6, and 7

of executable sets; Lemma 3.4.7 shows that each parent in a location has at least one child goal in

the location as a result of this procedure (3). Descendants of root goals that are not in the group

are present in each location because they are compatible with the root goals (and descendants) that

are in the group (6), and all goals in the location are compatible (7). Finally, the last step removes

locations that have inconsistent goals. This satisfies property 8 of executable sets.

Transitions for the goals automaton are created using three different procedures, one for each

type of transition condition. The first two are based on the completion transitions in the goal net-

work. First, the procedure for creating entry transitions from the preceding group connector (or

initially for the first group, V1) to each location is as follows, for all Vk, k = 1, ...,K.

Entry Transition Creation Procedures:

1. For all vη ∈ Vk, transition edges, esη,k, are created from the preceding group connector (or

initially for k = 1) to the location.

2. Transition conditions for each edge are created,

τ sη,k :=
∧
vη

entry(gim,jmm) ∧
∧
vη

startsin(im, jm), (3.8)

where τ sη,k ∈ Σs
k.

3. For all gim,jmm ∈ vη, if svc(gim,jmm) returns a discrete controllable state variable, cons(gim,jmm)

is added to esη,k as a reset action.

4. If there is a time constraint on the group, a reset setting the timer variable to zero is added to

esη,k.

5. If τ sη,k is invariantly false, the corresponding transition edge, esη,k, is deleted.

The procedure for creating exit transitions from the locations to the following group connector

(or to the Success location for k = K) is as follows, for all Vk, k = 1, ...,K.

38

Exit Transition Creation Procedures:

1. For all vη ∈ Vk, the transition edges, eeη,k, are created from the location to the following group

connector (or to the Success location if k = K).

2. Transition conditions for each edge are created,

τ eη,k :=
∧
vη

exit(gim,jmm), (3.9)

where τ eη,k ∈ Σe
k.

3. Time constraints are added, if necessary, to the exit condition,

τ eη,k := τ eη,k ∧ cons(Tk, Tk+1). (3.10)

4. If τ eη,k is invariantly false, the corresponding transition edge, eeη,k, is deleted.

Finally, the procedure for creating failure transitions between locations within groups is as fol-

lows, for all Vk, k = 1, ...,K.

Failure Transition Creation Procedures:

1. For all vη ∈ Vk, let Ωη = {F1, F2, ...} where Fm are sets that contain all possible combina-

tions of αn ∈ Aη, where Aη = {α1, α2, ..., αN}. Each αn = cons(uil,jll), for all uil,jll ∈ vη,

and each αn ∈ Aη is unique (for all αn, αm ∈ Aη, αn 6= αm).

2. For each Fm ∈ Ωη, let the set of all failure destinations be fm = {failto(il, jl)|cons(uil,jll) =

αn,∀uil,jll ∈ vη, ∀αn ∈ Fm}.

3. For all vη ∈ Vk and for all Fm ∈ Ωη, if Safe ∈ fm, create a transition edge, efηSafe,k from vη

to the Safing location. The transition condition associated with the edge is

τ fηSafe,k :=
∧
Fm

¬αn ∧
∧
Aη\Fm

αn, (3.11)

where τ fηSafe,k ∈ Σf
k .

39

4. For all vη ∈ Vk and for all Fm ∈ Ωn, if Safe /∈ fm,

τ fηµ,k :=
∧
Fm

¬αn ∧
∧
Aη\Fm

αn ∧
∧
Aµ

αn, (3.12)

for some vµ ∈ Vk, µ 6= η, τ fηµ,k ∈ Σf
k . If τ fηµ,k is not invariantly false, create a transition edge

from vη to vµ, efηµ,k, whose transition condition is τ fηµ,k.

5. Remove any transition edge whose condition, τ fηSafe,k or τ fηµ,k is invariantly false.

The first two steps create all possible sets of failure conditions for a given location and the set of

failure destinations for each. The third and fourth steps create the transition edges and conditions,

which depend on the failure destination. If the transition does not go to the Safing location, then the

destination depends on which location’s passive goal constraints agree with the failure conditions.

Finally, the last step removes any invariantly false transition. This concludes the procedure to create

the goals automaton.

Next, separate hybrid automata are created for each passively constrained state variable in the

following way. These automata drive state transitions for the state variables that are not propagated

by the flow equations in the goals automaton’s locations.

1. The locations of the automaton for each passive state variable are created from the discrete

states or discrete sets of states that are constrained in the goal network if the state variable is

discrete and/or it has a non-deterministic state transition model. Otherwise, the locations are

based on the different rates of change that the variable can have in its state model.

2. The transitions between the locations are based on the model of the state variable; the transi-

tions may be modeled as non-deterministic if they are uncontrollable or dependent on some-

thing that is not modeled, such as time of day. The transition conditions are derived from the

state model; therefore they may depend on state variables on which there are model depen-

dencies.

Once the hybrid system is created, the verification work begins.

1. Specify the unsafe set. This is what the hybrid system is verified against; when the system

is said to be “verified,” that means that the unsafe set cannot be reached during any valid

execution of the hybrid system.

40

2. Run the hybrid system with the unsafe set through model checking software; currently, PHAVer

is the default symbolic model checking software used.

3. Make and record any modifications needed to verify the hybrid automaton. Translate these

modifications into changes to the goal network.

Further explanation of the model checking and verification of the goal network will be given in

the following sections.

3.4.3 Soundness and Completeness

It is possible to prove that part of the conversion procedure presented in Section 3.4.2 is a bisimula-

tion. The goals automaton encompasses the complete set of possible executions of the goal network

in its locations and transitions. By construction, the locations of the hybrid automaton correspond

exactly to the executable sets of the goal network, and the transitions of the goals automaton are

exactly those of the goal network. The following two lemmas show that the locations of the goals

automaton correspond one to one with all of the executable sets of the goal network. The first lemma

states that each executable set of goals in a group is incompatible with all others.

Lemma 3.4.6. For all Θk, k = 1, ...,K and for all θη, θµ ∈ Θk, η 6= µ, θη is incompatible with θµ.

Proof. Assume two executable sets, θη, θµ ∈ Θk, η 6= µ, are compatible. Let θ′ = (θη ∪ θµ) \ (θη ∩

θµ) be the set of goals in each executable set that does not belong to the other; since θη 6= θµ, then

θ′ 6= ∅. For all root goals g0,0
n ∈ Gk, g0,0

n /∈ θ′ since all root goals are a part of each executable set.

Then, if there exists a child goal of the root goal gim,jmm ∈ Gk such that im = n then from condition

3 in the executable set specification in Definition 3.4.3, there exists a child of the root goal in each

executable set, gil,jll ∈ θη, n = il and gia,jaa ∈ θµ, n = ia. If l 6= a, then the goals are in the same

tactic, jl = ja, because otherwise the goals would be incompatible by definition, contradicting

the assumption that θη and θµ are compatible. However, if jl = ja then from condition 5 in the

executable set specification, each goal would also belong to the other executable set, gil,jll ∈ θµ

and gia,jaa ∈ θη because they are sibling goals, so gil,jll , gia,jaa /∈ θ′. This logic can be applied to

the children of gil,jll and gia,jaa , down to the branch goals; therefore, all descendants of the root

goals in compatible locations are in both locations. So, there must exist some gin,jnn ∈ θ′ that is

descended from a root goal g0,0
l /∈ Gk; let gin,jnn ∈ θη. From condition 6 in the executable set

specification in Definition 3.4.3, an active descendant from g0,0
l must be in set θµ; let gim,jmm ∈ θµ

41

also be descended from g0,0
l , im = l ∧ m 6= n. Since im = in and because the locations are

compatible, then by definition jm = jn. So, from condition 5, the goals are siblings and gin,jnn ∈ θµ

and gin,jnn /∈ θ′. Therefore, θ′ = ∅, so θη = θµ and the initial assumption is false.

Lemma 3.4.7. Let there exist vη ∈ Vk such that there exists a goal gin,jnn ∈ vη that has a descendant

in the group, gim,jmm ∈ Gk, im = n, but no descendants in the location, for all gil,jll ∈ vη, il 6= n.

Then, there exists vµ ∈ Vk, µ 6= η such that vη is compatible with vµ.

Proof. Let V 1
k be the set of original locations and let vη ∈ V 1

k . Let gin,jnn ∈ vη but let none of its

children be in the same location, gim,jmm ∈ vη, im 6= n; however, the goal does have at least one

descendant in the group, there exists gil,jll ∈ Gk such that il = n. Then, there exists some location

vµ ∈ V 1
k such that gil,jll ∈ vµ because either gil,jll is a branch goal, a parent goal and thus an ancestor

of a branch goal, or a sibling of one of these by definition. By the conversion procedure, all branch

goals, their ancestors, and all sibling goals are present in at least one initial location. By step 3 of

the location creation procedure, location vη must contain all ancestors and siblings of gin,jnn . Since

gin,jnn is not a branch goal (because of the existence of the child goal gil,jll), gin,jnn must be a sibling

of either a branch goal or an ancestor of the branch goal present in this location due to the first two

steps of the location creation procedure. Likewise, since location vµ contains gil,jll , it must also

contain gin,jnn and all its siblings and ancestors by step 3 of the location creation procedure. If gil,jll

is not a branch goal, it is either an ancestor or sibling of the branch goal in the location. It can be

shown that these locations, vη and vµ, are compatible. First, both locations contain gin,jnn and all its

siblings and ancestors; these goals are compatible with each other since locations are designed to be

self-compatible. Location vµ has goal gil,jll whose parent is gin,jnn . By design, there are no goals in

vη with the same parent. Since all remaining goals in vµ are descended from gin,jnn by construction,

none of the remaining goals in vµ are in vη and none of the remaining goals in vµ have the same

parent goals as any in vη, so they are compatible with all the goals in vη by definition. So, the two

locations are compatible and can combine.

By induction, let vη ∈ V i
k , g

in,jn
n ∈ vη such that gin,jnn has no child goals in vη, for all gim,jmm ∈

vη, im 6= n, and there exists a goal in the group that is descended from gin,jnn , gil,jll ∈ Gk such that

il = n. Because of the location combination procedure in step 4 of the location creation procedure

and the transitive property of compatibility, there exists a location vµ such that comp(vµ, vη) and

gil,jll ∈ vµ, as are its siblings and descendants. The locations vη and vµ are compatible because of

the same argument as before. The goal gin,jnn is in both locations and the goals in vµ that are not

42

in vη are the descendants of gin,jnn , which are compatible with all the goals in vη since there are no

other descendants of gin,jnn in vη by definition. Any other goals in vµ are compatible with all the

goals in vµ and likewise with all the goals in vη because of the transitive property.

Lemma 3.4.6 says that each executable set of goals is incompatible with every other executable

set. This just means that each executable set of goals in a group contains at least one different

tactic from a common parent goal than every other executable set in the group. The proof is by

contradiction; one can show using the properties of executable sets that if two executable sets are

compatible, they are the same set. Lemma 3.4.7 states that if a location in the goals automaton

contains a parent goal but none of the parent goal’s children, that location will be compatible with

some other location in the group. Because of the construction procedure that combines the locations

in a group until all are incompatible, this lemma shows that the locations satisfy property 3 in the

executable set specifications in Definition 3.4.3. The proof is by induction; one can show that this

lemma is true in the initial set of locations V 1
k and then that is also true in all following sets.

The following proposition uses the lemmas to show that all executable sets are represented by

locations. It is easy to see from this proposition that the flow conditions φη = ψη for corresponding

executable sets and locations.

Proposition 3.4.8. For all Θk, k = 1, ...,K and for all θη ∈ Θk, there exists vη ∈ Vk such that

θη ≡ vη.

Proof. By steps 1–3 of the location creation procedure and because the locations created from these

steps are only combined and not deleted, conditions 1, 2, 4, and 5 of the executable set specification

in Definition 3.4.3 are true by construction. In step 4 of the location creation procedure, since

locations are combined until they are incompatible, which is justified by Lemma 3.4.6, condition

3 of the executable set specification is true by Lemma 3.4.7. Since only compatible locations are

combined, condition 7 is satisfied. By construction, all non-root goals with no parent in the group,

gim,jmm ∈ vη such that im 6= 0 ∧ giim ,jimim
/∈ Gk, gim,jmm will appear in at least one initial location

(vη ∈ V 1
k) which is compatible with all initial locations containing g0,0

l ∈ Gk and incompatible only

with initial locations that have other goals from the same parent. Therefore, a representative goal

from the set of descendants will be present in every location in the group, so, condition 6 of the

executable set specifications is satisfied. Finally, step 5 assures that all goals in the locations are

consistent, which satisfies condition 8 of the executable set specifications in Definition 3.4.3. Since

the procedure is designed to make all compatible combinations and the locations created satisfy the

43

executable set specifications, all executable sets of goal are represented by exactly one location,

since duplicate locations are removed (step 4c).

The proof of Proposition 3.4.8 uses the procedure steps for the location creation and the two

previous lemmas to show that all of the executable set properties are satisfied by the locations

that result from the location creation procedure. Likewise, the two following lemmas relate the

transitions of the goal network to the transitions of the hybrid automaton and the proofs are also by

construction using the transition creation procedures.

Lemma 3.4.9. For all ρcηµ ∈ Scomp, there exists an equivalent transition τ cηµ,k ∈ Σc
k = Σe

k ×Σs
k+1.

Proof. By Proposition 3.4.8, each executable set θη ∈ Θk is represented by a location vη ∈ Vk;

also let θµ ∈ Θk+1 be represented by vµ ∈ Vk+1. Transitions between each θη ∈ Θk and each

θµ ∈ Θk+1 are given by ρcηµ,k, defined in Eq. 3.4. In the goal network, if there exists gim,jmm ∈ θµ

that constrains a discrete controllable state variable, the constraint cons(gim,jmm) is executed upon

entering θµ, so is considered to happen at the entry transition.

A transition τ cηµ,k ∈ Σc
k = Σe

k × Σs
k+1 is defined to be the composition of two transitions,

τ eη,k ◦ τ sµ,k+1. Using steps 2–3 of the exit and entry transition creation procedures, it is obvious that

τ cηµ,k = ρcηµ,k and the above statement is true.

Lemma 3.4.10. For all ρfηµ,k ∈ S
fail and for all ρfηSafe,k ∈ S

fail in the goal network, there exists an

equivalent transition τ fηµ,k ∈ Σf
k and τ fηSafe,k ∈ Σf

k , respectively, in the resulting hybrid automaton.

Proof. By Proposition 3.4.8, for all θη ∈ Θk, there exists vη ∈ Vk which corresponds exactly.

For some set J = {uin,jnn , ...} of failing passive goal conditions, ρfηµ,k (ρfηSafe,k) is defined by

Eq. 3.6 (3.5) if ρfηµ,k (ρfηSafe,k) is not invariantly false. The transition between the corresponding

locations, vη, vµ ∈ Vk, is given by Eq. 3.12, which is equivalent to ρfηµ,k given the construction of the

constraints αn ∈ Fm in the first step of the failure transition creation procedure. For the transition

to Safing, the transition is given by Eq. 3.11. By Proposition 3.4.8, Aη = νη and by construction

of Ωη, each J ≡ Fm for some Fm ∈ Ωη. Therefore, ρfηµ,k = τ fηµ,k and ρfηSafe,k = τ fηSafe,k between

corresponding locations.

Finally, Lemma 3.4.11 proves that the transitions are the same between the goal network and

the goals automaton and Theorem 3.4.12 proves that the conversion procedure is a bisimulation.

Lemma 3.4.11. All transitions of the goal network are represented in the goals automaton.

44

Proof. Since only two types of transitions are allowed in the goal network, this statement is true

due to Lemmas 3.4.9 and 3.4.10.

Theorem 3.4.12. The conversion procedure is a bisimulation between the goal network and the

goals automaton.

Proof. By Proposition 3.4.8 and Lemma 3.4.11, all executions of the goal network are represented

by paths in the hybrid automaton constructed from the goal network by using the conversion pro-

cedure. Because of this, all executions of the goal network are represented by an execution path

through the hybrid automaton. There are no executions in the hybrid automaton that do not rep-

resent an execution of the goal network because the definition of executable sets, Definition 3.4.3,

states that every set of goals that has the given properties is an executable set, and each location

created has those properties (Proposition 3.4.8). Likewise, each transition in the hybrid automaton

was constructed from a corresponding transition in the goal network, so the hybrid system is an

exact representation of all the possible executions of the goal network.

Therefore, the conversion procedure is sound in that if the hybrid automaton is verified for some

unsafe set, the goal network is also verified. This is easy to see since every execution path in the

goal network is represented in the hybrid automaton; so, if there exists a path in the goal network

in which the given unsafe set is reachable, that path will also be present in the hybrid automaton.

The conversion procedure is also complete, in that if the goal network is verifiable, the hybrid

automaton will also be verifiable. There are no extra execution paths in the hybrid automaton that

are not present in the goal network; in fact, there is a way to rebuild the original goal network and

goal logic from the hybrid automaton, which is outlined in Section 3.6.2.

3.4.4 Simple Rover Example

The conversion and verification procedure can be illustrated using the simple rover example intro-

duced in Section 3.4.1. The same state variables are used in this example, and both Position

and Orientation are controllable state variables and the UpperPathAvailability and

SystemHealth state variables are uncontrollable. The startsin() logic of the speed limit tactics

are based on the accompanying passive goals. The goal network has state-based transitions and all

failure transitions are based on the passive goals in each tactic. All controlled goal combinations in

the goal network are consistent.

45

Figure 3.6: Automata for rover example

The goal network has four time points and therefore three groups, which are shown in Fig-

ure 3.6. The first group, V1, has four sets of branch goal locations ({g0,0
1 }, {g

7,1
8 , u7,1

6 }, {g
7,2
9 , u7,2

7 },

and {g7,3
10 , u

7,3
8 }) from steps 1 and 2 of the location creation algorithm that combine to form three in-

compatible locations in step 4 of the location creation algorithm, created from the combination of the

GetToC1 root goal, g0,0
1 , and the three tactics of the Speed Limit root goal, g0,0

7 ({g0,0
1 , g0,0

7 , g7,1
8 , u7,1

6 },

{g0,0
1 , g0,0

7 , g7,2
9 , u7,2

7 }, and {g0,0
1 , g0,0

7 , g7,3
10 , u

7,3
8 }). The second group, V2, starts with six sets of sib-

ling branch goals that combine into a total of nine locations before consistency is checked, which

covers all possible execution paths of the goal network between those time points. However, four

locations were removed because of sets of inconsistent passive goals in step 5 of the location cre-

ation algorithm ({u2,1
2 , u7,3

8 }, {u
2,2
4 , u7,3

8 }, {u
2,3
5 , u7,1

6 }, and {u2,3
5 , u7,2

7 }). The third group, V3, has

only one goal, and therefore only one location.

The transitions into the locations either initially (V1) or from the group connector are condi-

tioned by startsin() elaboration logic, which is just the accompanying passive goal constraints in

each tactic and entry() transition logic contributions from all goals in the group (not shown for clar-

ity). The failure transitions between the locations in the groups are state-based; they are based on

the failing and non-failing conditions of the invariant of the originating location and the invariant of

the accepting location. The transition logic out of the locations to the following group connector or

to the Success location (V3) are the exit() logic conditions for each of the completion goals present

in the location (g0,0
1 and g0,0

2). The final version of the goals automaton can be found in Figure 3.6.

The UpperPathAvailability and the SystemHealth state variables are the two un-

46

Figure 3.7: Flow chart of the conversion software execution

controllable state variables, which can be modeled as having two and three discrete state values,

respectively. These state values become locations with non-deterministic transitions between them.

The SystemHealth and UpperPathAvailability automata are shown in Figure 3.6. Fi-

nally, the unsafe set is determined; this is any condition that the designer decides the rover should

never reach. The automata and thus the goal network can now be verified using model checking

software.

3.5 Conversion Software Design

An automatic goal network conversion software that is based on the bisimulation described in the

previous section takes a description of the goal network as an input and outputs a file. The output file

can be input into an existing model checker for verification. The software is written in Mathematica

because of the list structure it employs and its extensive library of pattern-matching functions. The

software has many parts: the input parser takes an XML file with goal information, state variable

models and unsafe set specifications; the automaton creation algorithm transforms the goal network

information into a hybrid automaton and outputs a general form of that automaton; and the output

parsers create input files to existing model checking software from the converted hybrid automaton,

state variable models, and the unsafe set. The general outline for the structure of the conversion

software is shown in Figure 3.7. In addition to the input and output parsers, there are four main

parts to the actual conversion algorithm: location creation, constraint merging, transition creation,

and unsafe set transformation. All parts of the software will be described in this section.

47

3.5.1 Input Parser

The conversion software’s input parser takes an XML file with a specified structure and translates it

into several lists that the Mathematica code can use. The input data includes several things. First,

all controlled state variables are given along with all possible control modes (ways a goal could

constrain the state variable). Included with the control mode information is constraint merging

logic. The merge logic information for each state variable constrained by the controlled goals is

directly related to the information given in the example merge logic table given in Table 3.1 for the

robot’s Position state variable. The conditions that may cause constraints to be inconsistent are

given, as are the values and type of the new constraint if the original constraints can be merged.

The other information included with the controlled state variables is the conditions that must be true

for the goal network execution to enter or exit a given constraint type, the dynamical equation for

each control mode, any reset associated with each constraint type, and the state variable’s initial

condition.

Next, each passive state variable is listed with its state model. These models are either non-

deterministic or dependent (modeled) on other state variables. An example of a stochastic state

variable could be the health of a sensor that is modeled to fail at some stochastic rate. Likewise, a

sensor health state variable could have state transitions that depend on other state variables included

in the model, such as a LADARHealth state variable that depends on the relative sun position

and the amount of dust. Dependent state variables are always modeled on other state variables

and often, if the state variable is continuous and constrained in both controlled and passive goals,

the state variable’s model will be rate-driven. This means that the discrete modes of these state

variables’ models have the different rates of change of the continuous state variable. Examples

of this are Temperature or Power state variables whose rates of change depend on heaters or

actuators being on or off.

The goals in the goal network are listed with all necessary tactic information. The time points

bounding each goal, the state variable constrained, the type of constraint, and constraint value are

included with each non-macro goal. For each parent goal, a list of the child goals separated into

tactics is given. Controlled and passive goals are listed for each tactic and in the overall goal list;

they are differentiated by several things, including the state variable constrained and the type of

constraint. In some cases, the failure transitions into the Safing location are explicitly listed for each

tactic, though this is not necessary.

48

Finally, any time constraints between time points and unsafe conditions are listed. For the unsafe

set, the state variables constrained, the type of constraint on the state variable, and the constrained

value are given for each unsafe condition. DTD files for the PHAVer and Spin XML input files can

be found in Appendix A. The Spin version has some differences, most notably the absence of the

unsafe set specification structure.

3.5.2 Automaton Creation Algorithm

The automaton creation part of the conversion software is made up of four main algorithms. Two

of the four main parts of the conversion software follow the conversion procedure outlined in Sec-

tion 3.4, the location creation and the transition creation algorithms. The constraint merging algo-

rithm is important for the representation of the hybrid system in the model checking software, but

is not invertible and so is not part of the bisimulation. The unsafe set transformation uses the con-

verted hybrid automaton and the original unsafe set specification to put the unsafe set into a form

that PHAVer can understand and is not run when a different model checker is used.

The location creation algorithm follows the procedure outlined in Section 3.4 to place the goals

into groups and then to enumerate the locations in each group. Unlike the bisimulation conversion

procedure, inconsistent locations are created in this algorithm and then are handled in the con-

straint merging algorithm. The locations are also assigned names based on the branch goals that are

present; the names are used in the model checking software.

The constraint merging algorithm deals with both passive and controlled goal constraints. Pas-

sive goal constraints on the same state variable are inconsistent if the state value constrained is

different. Controlled goal constraints are more difficult, as certain conditions may need to be met

before the constraints are considered to be consistent. If the constraints (passive or controlled) are

inconsistent, the location is removed. However, consistent controlled constraints are merged within

each location until only one resulting constraint per state variable remains. This algorithm also as-

signs dynamical update equations and reset equations (if necessary) to each location once the final

merged constraints have been found.

The transition creation algorithm follows the procedures outlined in Section 3.4 for creating all

three types of transitions. The number of failure transitions between each location often becomes

prohibitively large when all possible combinations of failure conditions are considered. So, there is

an option to only find the single point failure transitions when circumstances allow. The assumption

is then that either zero time can be spent in a location (multiple transitions can be taken in a single

49

time step to deal with multiple simultaneous failures) or that multiple failures do not cause an unsafe

condition. Only the latter assumption can be made when verifying with PHAVer. A small location

removal algorithm is also included in the transition creation code. The location removal algorithm

checks if any location lacks entry conditions and if so, removes the location and all other failure

transitions originating from that location. The algorithm also checks for other locations that would

warrant removal, however it can be shown that none of these conditions will ever occur due to the

way transitions and locations are created.

Finally, when PHAVer is used as the verification software, the unsafe set transformation al-

gorithm takes the set of unsafe conditions and transforms them into a form that PHAVer can use.

PHAVer cannot check rate conditions, though these may be common unsafe set specifications; an

example is checking the speed of a rover when its sensor health state variables are degraded. How-

ever, this algorithm can search through the goals automaton and find all locations in which the rate

conditions are satisfied. These locations are then listed with the other state variable constraints in the

unsafe set specification. The goals automaton and the transformed unsafe set specification (PHAVer

only) are then sent to the appropriate output file creation algorithm.

3.5.3 Output File Creation

The goals automaton and all of the passive state variables’ automata are output in a very generic

form so that they may be used with an output file creation algorithm that translates the lists into

code for any model checker that uses automata theory to verify systems. Currently, two output file

creation algorithms are available, one for PHAVer and one that outputs Promela code for the Spin

model checker. The final output of these algorithms is a file that can be run through the respective

model checker.

The PHAVer output file creator has some special code to create the synchronization labels

that are appropriate given the unsafe set. The synchronization labels, or synclabs, are used to

create a relationship between transitions in different automata. For example, a transition of a

SensorHealth state variable from GOOD to POOR may cause a failure in the location that is execut-

ing in the goals automaton. For verification purposes, it may be important that the goals automaton

executes the appropriate failure transition immediately, rather than in the next time step. Otherwise,

the unsafe set may be satisfied momentarily, even though the appropriate logic is in place to ensure

that safety is maintained. The file creator uses the specified unsafe set to find transitions between the

goals automaton and the passive state variable automata that must be synchronized and assigns an

50

appropriate synclab to both transitions. Since the PHAVer output file creator deals with the unsafe

set, the file created can be immediately input into PHAVer for verification with no modifications.

3.6 Goal Network Verification

3.6.1 Working with Model Checkers

Once a goal network has been converted and an appropriate model checker input file has been

created, the verification work begins. The conversion algorithm is capable of handling goal networks

that produce hundreds of locations and thousands of transitions; an example with over 500 locations

and thousands of transitions takes less than five hours to convert. However, the model checking

software often cannot verify systems this large because of the state space explosion. Therefore,

some abstractions and reduction techniques are needed.

In many cases, the group structure of the convertible goal networks can be leveraged to reduce

the size of the verification problem. As long as the unsafe set does not have dependencies on the

completion goal(s) in a group, the groups can be verified individually. The initial condition is a

concern when verifying groups other than G1 individually, however, there is often an acceptable

solution.

The state space explosion problem benefits from the reduction in the numbers of locations and

automata. Oftentimes, the models of the passively constrained state variables can be adjusted in

order to reduce the total number of states. Creating derived state variables from state variables

that are related by some model is one way to reduce the state space. A derived state variable is

a non-physical state variable whose state propagation completely depends on two or more passive

state variables. The SystemHealth state variable is an example of a derived state variable. It is

modeled from the states of several sensor health state variables. To reduce the state space, instead

of modeling each sensor health state variable and including each of their automata, they can be

replaced by the SystemHealth state variable. Removing unused states and combining states

that are always constrained together are other ways to reduce the state space. Finally, discretizing

continuous state variables can help reduce the complexity of the verification problem.

51

3.6.2 Reverse Conversion Procedure

Once the verification has been completed on the hybrid system, if any changes had to be made to

the system to accomplish the verification, these changes must be translated back to the original goal

network. Since the conversion procedure for certain goal networks is a bisimulation, there must be

a procedure to revert a converted hybrid system back to a bisimilar goal network. Such a reverse

conversion procedure has been designed, though it is very restricted in the types of hybrid automata

that it can handle. There are several restrictions on the original goal network and conversions

required for the reverse conversion procedure. One is that constraint merging is not part of the

bisimulation and so the locations in the hybrid automaton must have each separate controlled goal

constraint listed; also, each controlled constraint must be unique (or at least uniquely labeled) and

each root goal in a group must directly elaborate a unique set of passive constraints. Another of these

requirements is that the hybrid automaton must have state-based transitions and each elaborated

tactic must have at least one controlled goal because of assumptions made in the reverse conversion

procedure. The basic procedure for finding the goal network associated with a hybrid system is

described here. This algorithm has been automated and can be used for the special class of goal

networks that satisfy the assumptions.

Let there be locations vη ∈ Vk for each group Vk, i = 1, ...,K. Each location has two sets of

constraints, (by abuse of notation) cons(vη) is the set of active constraints and inv(vη) is the set of

unique passive constraints in the location. Let the set of passive constraints in Vk be

Pk =
⋃

vη∈Vk

inv(vη). (3.13)

Let the set of active constraints in Vk be

Ck =
⋃

vη∈Vk

cons(vη). (3.14)

The procedure is as follows:

1. Create location sets for each passive and active constraint in pj ∈ Pk and ci ∈ Ck, respec-

52

tively.

loc(pj) = {vη|vη ∈ Vk, pj ∈ inv(vη)} (3.15)

loc(ci) = {vη|vη ∈ Vk, ci ∈ cons(vη)} (3.16)

2. Find the non-macro root goals: Rk = {ci|loc(ci) = Vk}. Remove these constraints from the

constraint list: Ck = Ck \ Rk. Make the constraints in Rk into goals, for all ci ∈ Rk, let

ci = cons(g0,0
ri), g0,0

ri ∈ Gk.

3. Find the directly elaborated child goals of the root goal(s) by comparing locations sets be-

tween the passive and active constraints. The root goals’ child goals are all constraints such

that for any pj ∈ Pk, loc(pj) = loc(ci). Controlled constraints that are associated with in-

consistent passive goal constraints are incompatible. If more than one controlled constraint

matches the same passive constraint, those controlled constraints belong to sibling goals.

Place all constraints that satisfy this condition in a list by parent goal and tactic, which can

be deduced from the compatibility of the goals and the consistency of the passive goal con-

straints. Assign each constraint a goal index and place the goals in a set of potential parent

goals, P .

4. For each goal gn ∈ P , find its child goals, if any.

(a) Find groups of all possible constraints, Cnk,i, such that the disjoint location sets of the

constraints cover the location set of the goal,

loc(cons(gn)) =
⋃

cj∈Cnk,i

loc(cj),

but for any cj , cl ∈ Cnk,i, loc(cj) ∩ loc(cl) = ∅.

(b) Let Cnk = {Cnk,1, ..., Cnk,I}. Find all the sets in Cnk that have the smallest number of

constraints,

C̄nk = {Cnk,i| min
Cnk,i∈C

n
k

|Cnk,i|}. (3.17)

(c) Let the set of child goals be

Cnk =
⋂

Cnk,i∈C̄
n
k

Cnk,i. (3.18)

53

Create a goal (and tactic) with a new index for all cj ∈ Cnk , cj = cons(gn,jmj), and

Gk = Gk ∪ {gn,jmj }. By construction, each goal in this set will be incompatible. Remove

these constraints from the unplaced constraint list, Ck = Ck \Cnk . Place all new goals in

the potential parent set while removing the current parent goal, P = (P\{gn})∪{gn,jmj }.

(d) The remaining “uncertain” constraints are grouped together in a similar way,

Znk = (
⋃

Cnk,i∈C̄
n
k

Cnk,i) \ Cnk . (3.19)

Group the constraints in the uncertain set Znk into sets of constraints that have the same

location set. Then, for each subset Znk,i ∈ Znk , add Znk,i to the set of potential parents,

P = P ∪ {Znk,i}.

Repeat this step until P = ∅.

5. Identify as many of the constraints in the uncertain set as possible. Constraints that occur

in only one uncertain set, Znk,i, are sibling goals that belong to a new tactic of the goal,

gn, associated with the uncertain set. The placement of other uncertain constraints may be

determined by comparing the state variables constrained between it and the potential parents.

6. Create macro root goals for incompatible goal sets with no parents. Assign the parent and

tactic information to the goals that are lacking it.

7. Determine the starting and ending time points of each goal in Gk by comparing goals and

constraints across consecutive groups.

Remark 1. If there is only one set Cnk,i ∈ C̄nk , the constraints in that set represent the children goals

elaborated into different tactics of the potential parent goal. If there is more than one set, there

is some uncertainty as to which goals are the children of the potential parent goal. One condition

in which this uncertainty arises is when a potential parent goal elaborates a tactic with controlled

sibling goals.

The output of this procedure is a goal network that may have some constraints that are unas-

signed. For goal networks with simple constraints, no uncertain goals should remain. The many

limitations on this reverse conversion procedure indicate that there may be a better solution to this

problem; however, as described later, the necessity for a procedure like this may not exist.

54

Figure 3.8: Simple hybrid system for reverse conversion example. Transitions are omitted for clarity.

A simple hybrid system example is shown in Figure 3.8. The six locations have the follow-

ing numbered controlled constraints in their flow equations and resets and passive constraints in

their invariants. There are two sets of incompatible passive constraints, {p1, p2} and {p3, p4, p5}.

Table 3.5 gives the location sets for each constraint along with its status or associated passive con-

straint. Constraint c1 is present in every location, and so is a root goal. Constraints c8 and c9 have

the same location sets as each other and as passive constraint p5, which indicates that they are sib-

ling goals which are directly descended from a root goal. Every constraint except c4 and c5 are

either root goals or are directly descended from a root goal, and so these two constraints make up

the set C1 \P . It is easy to see that these constraints descend from controlled constraint c2. Finally,

since only one root goal was found for two goal trees, the second root goal must be a macro goal;

the root goal set is R1 = {g0,0
1 , g0,0

10 }. The converted goal trees are shown in Figure 3.9.

3.7 Conclusion

The goal network conversion software presented is capable of quickly and accurately converting

goal networks into a bisimilar linear hybrid automata that can be verified using existing symbolic

model checking software such as PHAVer. The proofs of soundness and completeness of the con-

55

Table 3.5: Constraint Properties in Reverse Conversion Example

Constraint Location Set Goal Associated Passive Constraint
c1 V1 g0,0

1 None
c2 {v1, v2, v3} gr1,12 p1

c3 {v4, v5, v6} gr1,23 p2

c4 {v1, v2} g2,1
4 p3 ∨ p4

c5 {v3} g2,2
5 p5

c6 {v1, v4} gr2,16 p3

c7 {v2, v5} gr2,27 p4

c8 {v3, v6} gr2,38 p5

c9 {v3, v6} gr2,39 p5

p1 {v1, v2, v3}
p2 {v4, v5, v6}
p3 {v1, v4}
p4 {v2, v5}
p5 {v3, v6}

Figure 3.9: Converted goal trees for reverse conversion example

56

version procedure are important to validate using symbolic model checkers to verify the resulting

hybrid system and applying the verification result back to the goal network. Since so much work has

been done on the verification of hybrid systems, this is a useful first step towards the efficient veri-

fication of goal network control programs. However, the size and complexity of the goal networks

that can be verified is subject to the constraints imposed by the symbolic model checker used; the

verification method introduced in the next chapter handles much larger systems by imposing some

common-sense structure on the goal network design.

