
9

Chapter 2

Background Information

The goal-based control systems that are used in this work are modeled after the goal networks

designed for the Mission Data System (MDS) control architecture. A useful way to represent these

reconfigurable control programs is as hybrid systems because model checking is then possible. An

introduction to State Analysis, the design methodology upon which MDS is based, and a notational

introduction to linear hybrid systems are given in this chapter, along with a brief introduction of

stochastic hybrid systems, which are useful for understanding the uncertainty analysis of linear

hybrid systems.

2.1 State Analysis and Mission Data System

State Analysis is a systems engineering methodology that focuses on a state-based approach to the

design of a system [26]. Models of state effects in the system that is under control are used for the

estimation of state variables, control of the system, planning, and goal scheduling. State variables

are representations of states or properties of the system that are controlled or that affect a controlled

state [76]. Examples of state variables could include the position of a robot, the temperature of the

environment, the health of a sensor, or the position of a switch. During the design process, the state

variables are linked in a state effects diagram. The relationships between state variables, commands,

and measurements denoted in this diagram are associated with corresponding state effects models.

Goals and goal elaborations are created based on the models. Goals are specific statements of

intent used to control a system by constraining a state variable in time. Goals are elaborated from

a parent goal based on the intent and type of goal, the state models, and several intuitive rules, as

described in Ingham et al. [26]. A core concept of State Analysis is that the language used to design

the control system should be nearly the same as the language used to implement the control system.



10

Figure 2.1: A depiction of the state and model-based architecture of the Mission Data System, from Dvorak
[78]

Therefore, the software architecture, MDS, is closely related to State Analysis [77]. A depiction of

the MDS control architecture is shown in Figure 2.1.

Goal networks in MDS replace command sequences in traditional control architectures as the

input to the system. A goal network consists of a set of goals, a set of time points, and temporal

constraints. A goal may cause other constraints to be elaborated on the same state variable and/or

on other causally related state variables. The goals in the goal network and their elaborations are

scheduled by the scheduler software component so that there are no conflicts in time, goal order

or intent. Each scheduled goal is then achieved by the estimator or controller of the state variable

that is constrained. Controlled goals cause some control action to be taken, either because of its

constraint or because of a constraint in an elaborated child goal. Passive goals constrain the state

of a state variable to be some specific value or set of values without an associated control action.

Passive goals are used to choose between the tactics of a controlled goal; for example, the health

values of redundant heaters are constrained such that the tactics of a temperature maintenance goal

are achieved using the minimum power rate.

There are several types of controlled goal constraints [26]. Macro goals are goals that do not

constrain any state variable, but elaborate controlled goals with constraints. A maintenance goal,

mentioned above, uses control action to maintain the constrained value of a state variable. A main-

tenance goal on temperature, i.e., keep the temperature of an instrument between 15− 20◦C, could

elaborate control constraints on heater switches to achieve the temperature constraint. Reset con-



11

Figure 2.2: Goal tree example; circles are time points which bound the root goal. Rectangles are goal
constraints (controlled goals have solid borders and passive goals have dashed borders; these types of goals
are numbered independently in the upper left corner of the goal), and elaboration is signified by the tree
structure. The parent goal’s tactics are numbered in the shaded tabs.

straints command changes in discrete state variables (such as switches and states that have control

modes). A rate constraint puts an upper or lower bound on the rate of some state variable. Finally,

a controlled goal could have a transition constraint. This constraint drives a state variable from its

current state to an end point; an example is a constraint to pan a camera to a given angle from some

arbitrary starting value. The goal is achieved, or completed, when the state variable reaches the

constrained value. For this reason, goals with this type of constraint are called completion goals.

Elaboration allows MDS more flexibility than control architectures based on command se-

quences. One example is fault tolerance. Re-elaboration of failed goals is an option if there are

physical redundancies in the system, many ways to accomplish the same task, or degraded modes of

operation that are acceptable for a task. The elaboration for a goal can include several pre-defined

tactics. These tactics, or collections of concurrently elaborated and executed goals, are simply dif-

ferent ways to accomplish the intent of the goal, and passive goals constrain the conditions in which

a tactic may be executed. A simple example of a speed limit goal and its elaborations (called a goal

tree) is shown in Figure 2.2. The passive goals constrain the SystemHealth state variable (SH);

the two tactics have controlled goals constraining different maximum speeds that could be allowed

based on the SystemHealth’s value. Elaboration allows for many types and combinations of

faults to be accommodated automatically by the control system [27].

The goal networks used for this work are closely related to the ones implemented by MDS.

The biggest difference is how the goal networks are executed. In MDS, a goal network is initially

scheduled and at that time, all parent goals elaborate only one tactic. The tactics chosen are based

on specified elaboration order and/or the projections of the values of the constrained state variables.

Projections of state variables are functions that predict the future value of a state variable based

on its current (or initial) state, its state model and the goals constraining that state variable. Then,



12

as the goal network execution reaches an elaborated tactic, execution of that tactic begins with a

check of the satisfaction of the constraint of the tactic based on the current values of the constrained

state variables. If it is not achievable, or if the execution of that tactic is initially achievable but

becomes unachievable during the execution, then the tactic will fail and re-elaboration will be trig-

gered. During the re-elaboration, the entire goal network is rescheduled and re-elaborated with new

projections while the failed tactic continues to execute. Once the rescheduling is complete, which

could be several time steps later depending on the size of the goal network, the execution of the new

tactic in the rescheduled goal network begins if it is still achievable.

Because these time delays in switching the execution tactics upon goal failure are problematic

when one wishes to verify the behavior of a goal network, the execution of the goal networks in this

work is assumed to be different. First, the goal network is scheduled initially, but elaboration does

not occur in the same way. Instead of choosing one tactic per parent goal, essentially all possible

goal network executions are elaborated. Then, tactics are chosen instantaneously based on the state

variable values as the goal network execution reaches the parent goal. Upon goal failure, a new

tactic of only the failed parent goal occurs, and the execution switches to the new tactic in the next

time step. Because the goal network does not reschedule upon goal failure, some flexibility is lost,

but in the structure that is imposed, a very useful property is gained. The time points are guaranteed

to fire in the order that they are originally scheduled, which means the goal network is well-ordered.

This property will be important to the verification process.

In a fault-tolerant control program with conditional branching, one execution branch or tactic

is chosen over another based on the states of the system because it is the safest and best control

tactic available. Therefore, continuing to execute a failed or incorrect tactic while the goal network

re-elaborates is contrary to the intent of safety. For this reason, re-elaboration is assumed to happen

in the same time step as goal failure. This is not an impossible assumption to execute; localized

re-elaboration or total initial elaboration at scheduling could be implemented as a design choice.

Other new design choices are implemented for these goal networks. First, only controlled goals

can elaborate other goals. If more than one tactic exists in a parent goal’s elaborations, at least

one goal in each tactic must be a passive goal. For convenience, controlled goals should not fail

independently; instead, an accompanying passive goal would cause the tactic to fail. For example,

assume there was a controlled goal constraining a heater switch to turn off, but that the heater was

failed on. Instead of the controlled goal failing, an accompanying passive goal constraining the

HeaterSwitchHealth state variable to be GOOD would fail, since its estimated state should be



13

Figure 2.3: Goal network for simple example

Figure 2.4: State effects diagram for simple example. Arrows indicate that the originating body has a
modeled effect on the accepting body.

FAILON.

An example of a simple goal network that follows these design choices is shown in Figure 2.3.

The goal network for this example has three time points, four root, or parent, goals, and it constrains

four state variables, whose state effects diagram is shown in Figure 2.4. Two state variables are con-

trolled, Position and DataTransmission; the former is a continuous state variable while the

latter is discrete. The other two state variables are passive and have non-deterministic discrete mod-

els that are shown in Figure 2.5. Two of the root goals in the goal network do not have elaborations;

however the goal trees for the SpeedLimit goal and the TransmitData goal are shown in Figure 2.6.

The tactics shown in the goal trees contain passive goals on two state variables, SystemHealth

and SatelliteConnection, that drive the choice of the tactics. The rest of the goals are con-

trolled goals on the two controllable state variables and they cover several constraint types, which

are shown in Table 2.1.

The overall task that this goal network is attempting to achieve is to drive a robot to a point while

maintaining some safe velocity and transmitting data to a satellite. The execution of this goal net-

work occurs as follows. The first time point fires, which starts the execution of the SpeedLimit, Get-

ToPoint, and TransmitData goals. In addition, the SpeedLimit and TransmitData goals each elabo-

rate one tactic based on the estimated states of the SystemHealth and SatelliteConnection



14

Figure 2.5: Non-deterministic models for the example passive state variables

Figure 2.6: Goal trees for SpeedLimit and TransmitData goals

Table 2.1: Controlled Goal Constraint Types

Goal Index Goal Name State Variable Constraint Type
1 SpeedLimit None Macro
2 High Position Rate
3 Low Position Rate
4 TransmitData DataTransmission Reset
5 High Rate DataTransmission Rate
6 Low Rate DataTransmission Rate
7 GetToPoint Position Transition
8 MaintPosition Position Maintenance



15

state variables. If the states of these two state variables change at any time during the execution, the

tactic constraining that state fails and the other tactic is elaborated. For example, if the state of both

passive state variables is GOOD initially, the first tactics of both goal trees are elaborated. However,

if the SystemHealth state variable becomes POOR in the next time step, the first tactic of the

SpeedLimit goal will simultaneously fail and the second tactic will elaborate in its place. The firing

of the second time point will occur when the transition goal, GetToPoint, completes. At that time,

the TransmitData and MaintPosition goals will be active along with one tactic of the TransmitData

goal. The third time point fires, ending the goal network execution, after the constrained amount of

execution time (t2 = 5) has passed.

2.2 Linear Hybrid Automata

Hybrid systems exhibit discrete modes of execution that have different continuous behavior or con-

trol. Switching between discrete modes can be random, timed, or guarded by some state-based

condition. Hybrid systems are very prevalent and have a range of uses; therefore, there are several

different ways to model them [79]. Two of the most common ways depend on the more interest-

ing control interface for the system; hybrid automata are focused on the discrete mode switching

whereas other hybrid systems, sometimes called ODE models, are focused on the continuous dy-

namics in the discrete modes. In this work, a linear hybrid automata model is used, as the continuous

dynamics are restricted to be piecewise constant first derivatives.

A linear hybrid automaton H consists of the following components [39]:

1. A finite, ordered list of controlled state variables and clock timers, X = {x1, x2, ..., xn}.

2. A finite, ordered list of passive state variables, D = {d1, ..., dm}. The set of discrete states

(or discrete sets of states) of the state variable di ∈ D is Λi = {λ1, ..., λni}.

3. A control graph, (V,E), where V is the set of control modes or locations of the system, and

E is the set of control edges or transitions between the different modes of the system.

4. The set of invariants for each location, inv(v), which are the conditions on the state variables,

X ∪ D, that must be true in that location.

5. The set of flow conditions, ψi : X → X , for location vi ∈ V , which are the equations that

dictate how state propagates in each location.



16

Figure 2.7: Hybrid automaton and state model example; boxes are locations or state values and arrows are
edges labeled with transition conditions and resets where appropriate.

6. The set of transition conditions associated with each edge, Σ.

7. The set of transition actions or reset equations associated with each edge, A.

8. The initial conditions of the state variables, init.

This hybrid automaton specification can be illustrated using a simple example. Suppose there is

an autonomous unmanned air vehicle (UAV) whose task is to fly to a point and then maintain that

position for some amount of time. The speed at which the UAV can fly is determined by its system

health (the combined health value of all its sensors). This system is described by an automaton,

H and the model of the SystemHealth state variable, shown in Figure 2.7. The sets of state

variables associated with this automaton are X = {x, t}, where x is the position and t is a timer,

andD = {SH}, where SH is the SystemHealth state variable. The locations and transition arrows

(minus the conditions) compose sets V and E. The initial conditions are (x, t, SH) = (0, 0, GOOD).

The transition conditions from v1 and v2 to v3 are x ≥ xd,l (these same transition edges have reset

conditions on the timer, t = 0); the related invariants of v1 and v2 are x < xd, where 0 < xd,l < xd;

xd, xd,l ∈ R. This means that as soon as x reaches xd,l, which may be the distance at which

the UAV is in range of xd, the transitions can occur, but the transition will definitely occur when

x = xd. Likewise, the other invariant and transition conditions dictate when the discrete transitions

will occur. Finally, the differential equations with piecewise constant rates that control the flow of

the variables are listed in each location.

There are several symbolic model checkers available that are capable of verifying linear hybrid



17

automata. These components describe a linear hybrid system that can be successfully verified us-

ing HyTech or PHAVer. The reachability analysis used in the safety verification of these hybrid

automata finds the set of all states that are connected to a given initial state by a valid run. This can

cause a huge explosion of the state space, however, so symbolic model checkers partition the state

space into sets that are similar in the given reachability analysis. For example, given some interest-

ing condition, PHAVer will return the set of the state space in which it is reachable; these interesting

conditions given to the software are generally “unsafe” conditions for the particular system.

2.3 Stochastic Hybrid Systems

Stochastic hybrid models are hybrid systems with some uncertainty in the continuous dynamics,

the discrete mode switching, or both. These systems can be classified as one of three types of

models [80]. Piecewise Deterministic Markov Processes (PDMP) have random discrete transitions;

the hybrid state is reset based on some probability distribution upon transitions, however between

transitions, the continuous state evolution is based on ordinary differential equations. In Switching

Diffusion Processes (SDP), uncertainty is included in both the continuous and discrete state evolu-

tion. A Markov chain directs the discrete switching while stochastic differential equations describe

the continuous state. Finally, Stochastic Hybrid Systems (SHS) have stochastic differential equa-

tions describing the continuous state evolution while the discrete mode switching is deterministic.

A discrete-time SDP will be used in this work because discrete-time execution is assumed [81].

Definition 2.3.1. A discrete-time switching diffusion process, H, consists of the following compo-

nents:

1. A finite, ordered list of controlled state variables and timers, X = {x1, x2, ..., xn}.

2. A finite, ordered list of passive state variables, D = {d1, ..., dm}. The set of discrete states

(or discrete sets of states) of the state variable di ∈ D is Λi = {λ1, ..., λni}.

3. The set of discrete locations, V = {v1, v2, ..., vm}, where m ∈ N.

4. The stochastic flow of a location, φ : X × V → Rd(V), where d(v) is the dimension of the

continuous state space in location v.

5. The initial conditions of the system, init, based on some probability model.



18

6. The set of edges between locations, E .

7. The transition probability associated with a given edge, µ : V × (X ∪ D) × E → [0, 1], that

depends on the location and the continuous and discrete state.

8. The set of transition actions or reset equations associated with each edge, A.

This definition is close to the definition of the linear hybrid automata with stochasticity added

to the flow equations, and transition probabilities replacing transition conditions and invariants.


