Chapter 1

Introduction

1.1 Motivation

Autonomous robotic systems have many applications, such as planetary exploration missions like
the Titan Aerobot proposal (Figure 1.1) [1], or high-risk reconnaissance or security duties, which
may be applications of the DARPA Urban Challenge vehicles (Figure 1.2) [2]. As the missions
that the robots take on become more complex, so do the robots’ control systems. For the high-
risk observation and exploration missions, the autonomous system must be prepared to encounter a
dynamic environment that must be observed using some set of sensors. The dynamic environments
and sensor suites increase the complexity of autonomous systems and increase the number of ways
that robots can fail. Poor characterizations of the capabilities of the robot and incomplete models
of the environment have caused the downfall of many autonomous systems. An example is NASA’s
DART (Demonstration of Autonomous Rendezvous Technology) spacecraft, which crashed into its
rendezvous target. The collision avoidance software on the spacecraft failed to function because
of the discrepancy between the spacecraft’s actual and estimated positions [3]. Another example
is Caltech’s entry into the 2005 DARPA Grand Challenge competition. A failed LADAR unit and
a degraded GPS measurement compromised the autonomous vehicle’s knowledge of its position
and caused it to swerve off the road into some cement barriers [4]. In both cases, the health of
the sensors that were contributing data to the position estimation was not considered by the control
system, causing a system failure.

The main contributor to the complexity of a control system is often its fault protection. Many
times, the necessary fault detection, isolation and recovery software for autonomous robotic systems
is cumbersome and added on as failure cases are encountered in simulation. There is a need for a

systematic way to incorporate fault tolerance in autonomous robotic control systems in all stages of



Figure 1.2: Alice, Caltech’s entry in the DARPA Urban Challenge

system design. One way to increase the fault tolerance of a system is to reduce its autonomy. For
example, in traditional robotic space missions that use command sequence-based control systems,
the most common complex fault response that is used for all but the most critical times in the mission
is called safing [5]. Safing is a sequence of commands that a system executes to put the robot into a
‘safe’ configuration. Mission Control is then responsible for deciding what the fault response should
be. However, there are times when human intervention is expensive or even impossible, such as the
time-critical entry, descent and landing sequence of Mars exploration robots; then, an autonomous
fault tolerant control system is necessary.

One way to design a fault tolerant autonomous system is to create a flexible control system that
can reconfigure itself in the presence of faults. However, reconfigurability adds complexity that
could reduce the system’s effective fault tolerance. The fault tolerant control system must be tested
to ensure that the system performs in a safe manner whenever a fault occurs, and it must be tested
to ensure that there is a control tactic to account for all possible faults and failures. Typical vali-
dation testing using case studies and simulations is not thorough enough to guarantee fault tolerant
behavior. A more rigorous type of testing is needed.

The safety verification of a complex control system can prove that the system will perform in

a safe and expected way upon any combination of failures [6]. The ability to reach certain unsafe



3

states can be tested; if these states are not reachable, the control system is considered to be verified
with respect to the unsafe states. Some examples of unsafe states that could be analyzed include
irrecoverable low power states or collisions with sensed objects. There are many methods available
to verify a control system; symbolic model checkers can partition and search the state space of
many types of simple deterministic systems, while other methods can determine an upper bound on
the probability of failure of systems that include uncertainty. In this dissertation, three methods of
verifying complex, goal-based, fault tolerant control systems both with and without uncertainty will

be presented along with the verification of two significant examples.

1.2 Fault Tolerant Control

Fault tolerance describes a system’s ability to continue functioning, possibly in a degraded manner,
upon some fault or failure in the system. Fault tolerance should be considered in a system’s design
phase. The first important step in having a fault tolerant control system is being able to detect
faults and failures in the system. Fault detection and isolation techniques come in many forms, but
all involve the estimation of system or environment states that are important to the health of the
control system. The most popular estimators in robotics are the many variants of Kalman filters
and extended Kalman filters; however, their performance can depend heavily on the quality of the
models provided. One way to avoid this dependence on uncertain model parameters is to introduce
a method for automatically learning noise parameters [7]; another tactic is to use multiple parallel
Kalman filters to capture the modeled behavior in each fault mode [8], assuming that the fault modes
are finite and known. When this is not the case, it may be possible to use a model-based diagnosis
technique with the ability to handle unknown modes, such as a partial filter formulation that is
based on extended Kalman filters [9]. Other methods reduce or eliminate the dependence of the
fault estimation on the models of the systems by using particle filters [10] or by using a behavior-
based approach in which temporal fuzzy logic accounts for noise and uncertainty in the autonomous
system [11].

Once the fault has been identified, the control system needs to utilize that knowledge. The no-
tion that fault tolerance should be integrated into a control system from the initial design is a popular
one [12]. Several fault tolerant control architectures for autonomous systems have been developed
in which the control effort is layered to deal with faults on different levels, including low levels of

hardware control and high levels of supervisory control, such as those in Ferrell [13], Visinsky et al.



4
[14], and Lueth and Laengle [15]. The fault tolerant control architecture ALLIANCE is a behavior-

based control system for multi-robot cooperative tasks [16]. In ALLIANCE, the distributed control
system re-allocates tasks between robots in response to failures. Although many fault tolerant con-
trol systems achieve reconfigurability, few actually change the control tactic given to the system.
The system described in Diao and Passino [17] uses adaptive neural/fuzzy control to reconfigure
the control system in the presence of detected faults, and another described in Zhang and Jiang [18]
reconfigures both the control system design and the inputs to the control system, though neither
adjusts the intent of the commands in response to failures.

The control decisions of fault tolerant systems must depend on the current state information.
Model-based control ensures that these systems have all the state information needed to make good
control decisions and the models are used to inform the system of which control tactic to use.
Reactive, model-based programming languages have been developed [19] and applied to NASA’s
Deep Space One probe [20] and Mars exploration rovers [21], including the time-critical entry,
descent and landing sequence [22]. As the control system becomes more state- and model-based,
traditional command sequences become too rigid. Several control architectures have been designed
to accommodate behavior-based [23] or layered robotic control systems [24].

A control software architecture developed at the Jet Propulsion Laboratory uses state models and
reconfigurable goal-based control programs for the control of autonomous systems [25]. Mission
Data System (MDS) is based on a systems engineering concept called State Analysis [26]. Using
MDS, systems are controlled by networks of goals, which directly express intent as constraints on
physical states over time. By encoding the intent of the robot’s actions, MDS has naturally allowed
more fault response options to be autonomously explored by the control system [27]. Unlike the
traditional command sequences used to control robotic space missions, goal networks allow for
branching in the execution plan at the cost of added complexity. The complex branching nature of
goal networks make control system verification necessary. The control programs in this dissertation

are modeled after the MDS architecture, which will be more fully described in Chapter 2.

1.3 Control System Verification

Verification is a technique to prove the correctness of a control system with respect to a specific
property using formal methods. Two of the most popular verification techniques are theorem prov-

ing and model checking [6]. Theorem proving involves using the formal description of the system,



5

which defines sets of axioms and inference rules, to prove specific properties about the system.
Several techniques and specification languages have been developed in order to facilitate the cre-
ation of proofs of safety properties. For example, inductive techniques can be used to prove safety
properties of distributed systems when the subsystems have the same properties [28]. A guarded-
command language called Computation and Control Language (CCL) uses the same set of tools to
model, specify, analyze, and prove properties about the control system [29]. The design and veri-
fication of a distributed railway control system was accomplished by following the RAISE method
[30], which translates mathematical specifications into implementable control processes. The orig-
inal abstract algebraic specifications are then used to prove properties about the control system.
Theorem proving has been partially automated; much input by a human designer is often necessary.
Prototype Verification System (PVS), a general purpose automatic theorem prover, is one of the
most popular [31].

The formal method used in this work is model checking. In model checking, the system is rep-
resented as a finite state machine or a set of hybrid automata and some specification, often expressed
in temporal logic, is checked by efficiently searching the state space of the system. Model check-
ing is nearly completely automatic, fast, and able to handle somewhat complex systems. Model
checkers come in many varieties. The symbolic model checkers designed for systems with no con-
tinuous state space, such as Bebop, which verifies Boolean programs [32], Symbolic Model Verifier
(SMV) and its variant NuSMV, which verify finite state machines against requirements written in
Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) [33], and an algorithm for check-
ing Mu-Calculus formulas using CTL requirements [34] all use Binary Decision Diagrams (BDDs)
to symbolically represent the state space. These algorithms are capable of verifying systems with
hundreds of discrete state variables. Another w-automata based model checker, Spin, has been
demonstrated on several complex distributed systems, including spacecraft control system require-
ments [35]. Other symbolic model checkers, such as Bounded Model Checker (BMC) [36], have
moved away from BDDs and instead use propositional satisfiability (SAT) methods [37].

There is also a class of symbolic model checkers that can verify systems that have discrete and
simple continuous states. Hybrid systems consist of discrete sets of continuous dynamics, called
modes or locations, which are connected by transitions that can be guarded. When the continuous
dynamics of these systems are sufficiently simple, it is possible to verify that the execution of
the hybrid control system will not fall into an unsafe regime [38]. There are several symbolic

model checking software packages available that can be used for the analysis of different variants of



6
hybrid systems and timed automata, including HyTech [39], UPPAAL [40], and VERITI [41]. Two

symbolic model checkers are particularly applicable to the types of hybrid systems encountered
in this work, HyTech and PHAVer [42]. PHAVer is a more capable extension of HyTech that is
able to exactly verify linear hybrid systems with piecewise constant bounds on continuous state
derivatives and is able to handle arbitrarily large numbers due to the use of the Parma Polyhedra
Library. Unlike “pure” model checkers such as Spin [43] that exhaustively and directly search the
entire state space, symbolic model checkers are able to abstract the state space, but they still suffer
from state space explosion issues to a varying degree. Many state space reduction techniques and
problem abstractions have been explored to try to minimize this problem [44], and while some of
the reduction techniques are automated [45], most of the abstractions are not.

When analyzing a specific system, it is useful to be able to leverage a larger class of systems for
verification tools and methods. The control programs may need to be transformed to an acceptable
form by some suitable means. In general, it is important that the new converted representation of
the control system is bisimilar to the original control system [46], that is, there exists a mapping that
has the properties of soundness and completeness between the control system and its representation.
Some examples of the creation of bisimulations are found in Tabuada and Pappas [47] and Girard
and Pappas [48]. When the conversion of a control system is a bisimulation, it is guaranteed that if
the converted representation can be verified, the original system is also verified. Several conversion
algorithms exist for systems that do not conform to a model checking software’s requirements. One
such tool exists for the conversion of AgentSpeak, a reactive goal-based control language, into two
languages: Promela, which is associated with the Spin model checker [43], and Java, for which Java
Pathfinder 2 (JPF2) is a general purpose model checker [49]. A rule-based procedure to convert
specifications into a Petri net model in order to verify the model is described in Suzuki et al. [50].
An automatic method to convert Model-based Programming Language (MPL) code into models
that can be verified by the Livingstone fault diagnosis system exists [51]. A related procedure that
converts between natural language and temporal logic specifications for use in the verification of
systems in SMV has been explored [52].

To successfully verify an autonomous control system, it is necessary to plan for verification
during the design phase. One approach is to use design for verification procedures to ensure that
the resulting control systems have a structure that is conducive to verification. Many different styles
of specification can be used to constrain the resulting system to be verifiable, including model and

constraint-based specifications [53]. A model-based approach that is based on the Synchronization



7

Units Model uses Constraint Handling Rules to express the semantics of synchronization constraints
in the specific middleware framework to be verified [54]. In another example, the concurrency
controller design pattern was applied to an air traffic control autonomous separation software to
allow for its verification by two different methods [55]. Another design for verification procedure
was applied to Object Oriented Analysis to allow for a smooth interface to model-based verification
techniques [56]. A more general approach involves following a set of rules that will result in a
system design that is able to be decomposed for the verification effort [57, 58].

A more restrictive and rigorous approach that extends the design for verification concept is to
create correct-by-design control programs. This has been done from Buchi automata on infinite
words [59] or from specifications and requirements stated in a restricted subset of LTL [60]. The
correct-by-design approach creates control programs that have guarantees of correctness; this re-
moves the verification step. However, the structure that must be imposed on the control systems
generally is very restrictive. The design for verification approach allows for less structure and more
capable control systems, however, many of the current design for verification procedures are sets of
complicated rules that the designer must follow and the procedures are only applicable to a specific

design tool or method.

1.4 Stochastic Verification

The verification methods introduced in the last section do not account for noise and uncertainty in
the systems being analyzed. Uncertainty makes the verification problem more difficult, though there
are ways to verify uncertain or probabilistic systems. Reasoning about uncertain systems has driven
the creation of probability-extended logics, like RTCTL, a realtime extension of CTL [61]. Other
methods, such as using a stochastic concurrent constraint language to describe concurrent proba-
bilistic systems [62] or using model checking ideas with fixed trajectories for analyzing stochas-
tic “black box™ systems [63], have been researched, but the most prevalent verification method is
probabilistic model checking. In probabilistic model checking, an automatic algorithm determines
if some specified property holds in a probabilistic system model [64]. These system models are
generally derivatives of Markov models, such as continuous-time Markov chains [65], but timed
probabilistic automata and stochastic hybrid models are also possible [66].

Stochastic hybrid models include uncertainty in the transitions of the hybrid automata as proba-

bilistic transition conditions and include uncertainty in the continuous state evolution using stochas-



8

tic differential equations. Many methods to verify stochastic hybrid systems exist. For example,
Prajna et al. [67] use barrier certificates to bound the upper limit of the probability of failure of the
stochastic hybrid system and Kwiatkowska et al. [68] discuss a probabilistic symbolic model check-
ing software called PRISM. A computational method that characterizes reachability and safety as
a viscosity solution of a system of coupled Hamilton-Jacobi-Bellman equations analyzes stochas-
tic hybrid systems by computing a solution based on discrete approximations [69]. Probabilistic
reachability analysis techniques have been developed for controlled discrete-time stochastic hybrid
systems [70, 71] and for large-scale stochastic hybrid systems using rare event estimation theory
[72] and subset simulation [73]. When the stochastic hybrid systems become too large to reason
about using the model checking and reachability analysis techniques, Markov Chain Monte Carlo

techniques can be used to approximate a likelihood of system failure [74, 75].

1.5 Outline

The verification and analysis of goal-based control programs that are modeled after the goal net-
works used by the MDS control architecture are the topics of this dissertation. Chapter 2 gives
some background information on MDS, hybrid systems, and stochastic hybrid systems. A bisim-
ulation conversion procedure between goal networks and linear hybrid automata is presented in
Chapter 3. The goal network conversion software based on the bisimulation is also introduced; this
conversion allows the goal network to be verified by the PHAVer symbolic model checker, which
is described briefly in this chapter. Chapter 4 describes a verification method for certain goal net-
works or hybrid systems that are designed in a rigorous way so that the transitions are completely
state-based. A simple software design tool called the SBT Checker allows for the distributed and
iterative design of goal networks that have the necessary properties to be verified by the InVeriant
verification software. The InVeriant software is a model checker that exploits the structure of the
rigorously designed goal network or hybrid system with state-based transitions to prove the reacha-
bility of unsafe conditions. Chapter 5 discusses a technique to compute the failure probability due
to sensor-based state estimation uncertainty in hybrid systems that have been previously verified
in the perfect knowledge case. Two significant example problems are verified in Chapter 6 using
the methods introduced in the previous three chapters. Finally, Chapter 7 concludes the work and

discusses directions for future research.



