
Safety Verification and Failure Analysis of Goal-Based Hybrid Control
Systems

Thesis by

Julia M. B. Braman

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended May 27, 2009)



ii

c© 2009

Julia M. B. Braman

All Rights Reserved



iii

Acknowledgements

I would like to thank my advisor, Professor Richard Murray, for his support and encouragement.

Richard is a great teacher and is extremely hard-working, accommodating, and enthusiastic about

what he does, and all those qualities help make him a wonderful advisor.

I would like to thank Professors Jim Beck, Joel Burdick, and Mani Chandy for serving on my

thesis committee. Having taken courses from all, I truly respect the enthusiasm each shows for his

field.

There are several people that I must thank from the Jet Propulsion Laboratory. First, Mitch

Ingham, Dave Wagner, and Kenny Meyer have been great resources, Mitch for all the technical

discussions and brainstorming sessions, Dave for the tremendous amount of help in setting up and

becoming proficient with MDS, and Kenny for keeping me connected with the MDS group at JPL.

Bob Rasmussen and Dan Dvorak deserve special mention for their invaluable instruction on the

intricacies of State Analysis and MDS. Many others on the MDS team have given feedback on the

many presentations I have given, and I am grateful for their time and insight. Finally, some other JPL

folks were kind enough to discuss ideas with me, most notably Alberto Elfes for the Titan aerobot

discussions, and Gerard Holzmann and Rajeev Joshi for the Spin model checker discussions.

Last but not least, I would like to thank my family. My parents, Mark and Mary Ann Badger,

fought for me when I could not fight for myself. My husband Kevin has been amazing during this

journey and I am eternally grateful for his love and support. Thanks also goes to Cooper for sleeping

through the night from a very young age.



iv

Abstract

The success of complex autonomous robotic systems depends on the quality and correctness of their

fault tolerant control systems. A goal-based approach to fault tolerant control, which is modeled af-

ter a software architecture developed at the Jet Propulsion Laboratory, uses networks of goals to

control autonomous systems. The complex conditional branching of the control program makes

safety verification necessary. Three novel verification methods are presented. In the first, goal

networks are converted to linear hybrid automata via a bisimulation. The converted automata can

then be verified against an unsafe set of conditions using an existing symbolic model checker such

as PHAVer. Due to the complexity issues that result from this method, a design for verification

software tool, the SBT Checker, was developed to create goal networks that have state-based tran-

sitions. Goal networks that have state-based transitions can be converted to hybrid automata whose

locations’ invariants contain all information necessary to determine the transitions between the lo-

cations. An original verification software called InVeriant can then be used to find unsafe locations

of linear hybrid systems based on the locations’ invariants and rate conditions, which are compared

to the unsafe set of conditions. The reachability of the unsafe locations depends only on the reach-

ability of the states of the state variables constrained in the locations’ invariants from those state

variables’ initial conditions. In cases where this reachability condition is not trivially true, the soft-

ware efficiently searches for a path to the unsafe locations using properties of the system. The third

verification method is the calculation of the failure probability of the verified hybrid control system

due to state estimation uncertainty, which is extremely important in autonomous systems that rely

heavily on the state estimates made from sensor measurements. Finally, two significant example

goal network control programs, one for a complex rover and another for a proposed aerobot mission

to Titan, a moon of Saturn, are verified using the three techniques presented.



v

Contents

Acknowledgements iii

Abstract iv

Nomenclature ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fault Tolerant Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Control System Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Stochastic Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Information 9

2.1 State Analysis and Mission Data System . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Linear Hybrid Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stochastic Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Automatic Conversion Method for the Safety Verification of Goal-Based Control Sys-

tems 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Properties of Convertible Goal Networks . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Structure of the Goal Network . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Heuristic Conversion and Verification Procedure . . . . . . . . . . . . . . . . . . . 22

3.3.1 Goal Network Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



vi

3.3.2.1 Goals Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2.2 Uncontrollable and Dependent State Variables . . . . . . . . . . 28

3.3.2.3 Hybrid System Verification . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Comparison with Formal Method . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conversion and Verification Procedure . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Formal Description of Goal Network Executions . . . . . . . . . . . . . . 30

3.4.2 Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Simple Rover Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conversion Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Input Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Automaton Creation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Output File Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Goal Network Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Working with Model Checkers . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.2 Reverse Conversion Procedure . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Efficient Verification for Systems with State-Based Transitions 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 State-Based Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 SBT Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 InVeriant Verification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Verification of State and Completion-Based Linear Hybrid Systems . . . . . . . . 70

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Probabilistic Safety Analysis of Sensor-Driven Hybrid Automata 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Automata Specification and Models . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Unsafe System States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



vii

5.2.3 Failure Path Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Probability Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Uniform Completion Case . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Non-Uniform Completion Case . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 System Failure Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Variations on the Failure Probability Problem . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Completion Time Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Missing State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Problem Complexity and Reduction Techniques . . . . . . . . . . . . . . . . . . . 95

5.5.1 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.2 Complete System State Reduction Techniques . . . . . . . . . . . . . . . . 96

5.6 Approximate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Stochastic Hybrid Model Verification . . . . . . . . . . . . . . . . . . . . 97

5.6.2 Markov Chain Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . 99

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Significant Goal Network Verification Examples 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Complex Rover Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Goal Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Conversion and Verification . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Titan Aerobot Example Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Goal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.4 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusions and Future Directions 121

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



viii

A DTD Files 126

A.1 PHAVer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Glossary 131

Bibliography 133



ix

Nomenclature

β Contribution set

χ Uncertain state variable

Γ Passive state space

D Set of passive state variables

G Set of goals in a goal network

Lr,k Set of executable branches of goals in Sr,k

Sr,k Set of descendants of root goal g0,0
r in group Gk

U Set of uncertain state variables

ν Nominal path

Ωk Set of unsafe complete system states in group Vk

φ Flow of an executable set of goals

Π Set of failure paths

ψi Flow equations for location vi

ρ Transition between executable sets of goals

Σ Set of transition conditions in a hybrid system

τ Transition condition in a hybrid system

Θk Set of executable sets of goals in group Gk

Υ′k Set of all consistent executable branch combinations



x

Ξk Set of nominal complete system states in group Vk

ζ Unsafe condition; set of unsafe constraints

A Set of resets in a hybrid system

ak Initial failure probability of group Vk

Bk Set of all contribution values in group Vk

ck Completion time for group Vk

E Set of edges in a hybrid system

Fk Set of Safing complete system states in group Vk

gin,jnn Goal

Qk Nominal transition probability matrix for group Vk

Rk Set of root goals in group Gk

S Set of complete system states

T Time point

t Execution time

V Set of locations in a hybrid system

Wk Vector of initial nominal probabilities for group Vk

Ws Failure probability

Wu,k Failure transition probability vector for group Vk

X Set of controlled state variables

Z Unsafe set

k Group number

n Goal index



xi

in Parent goal index

jn Tactic number



1

Chapter 1

Introduction

1.1 Motivation

Autonomous robotic systems have many applications, such as planetary exploration missions like

the Titan Aerobot proposal (Figure 1.1) [1], or high-risk reconnaissance or security duties, which

may be applications of the DARPA Urban Challenge vehicles (Figure 1.2) [2]. As the missions

that the robots take on become more complex, so do the robots’ control systems. For the high-

risk observation and exploration missions, the autonomous system must be prepared to encounter a

dynamic environment that must be observed using some set of sensors. The dynamic environments

and sensor suites increase the complexity of autonomous systems and increase the number of ways

that robots can fail. Poor characterizations of the capabilities of the robot and incomplete models

of the environment have caused the downfall of many autonomous systems. An example is NASA’s

DART (Demonstration of Autonomous Rendezvous Technology) spacecraft, which crashed into its

rendezvous target. The collision avoidance software on the spacecraft failed to function because

of the discrepancy between the spacecraft’s actual and estimated positions [3]. Another example

is Caltech’s entry into the 2005 DARPA Grand Challenge competition. A failed LADAR unit and

a degraded GPS measurement compromised the autonomous vehicle’s knowledge of its position

and caused it to swerve off the road into some cement barriers [4]. In both cases, the health of

the sensors that were contributing data to the position estimation was not considered by the control

system, causing a system failure.

The main contributor to the complexity of a control system is often its fault protection. Many

times, the necessary fault detection, isolation and recovery software for autonomous robotic systems

is cumbersome and added on as failure cases are encountered in simulation. There is a need for a

systematic way to incorporate fault tolerance in autonomous robotic control systems in all stages of



2

Figure 1.1: The Titan Aerobot model

Figure 1.2: Alice, Caltech’s entry in the DARPA Urban Challenge

system design. One way to increase the fault tolerance of a system is to reduce its autonomy. For

example, in traditional robotic space missions that use command sequence-based control systems,

the most common complex fault response that is used for all but the most critical times in the mission

is called safing [5]. Safing is a sequence of commands that a system executes to put the robot into a

‘safe’ configuration. Mission Control is then responsible for deciding what the fault response should

be. However, there are times when human intervention is expensive or even impossible, such as the

time-critical entry, descent and landing sequence of Mars exploration robots; then, an autonomous

fault tolerant control system is necessary.

One way to design a fault tolerant autonomous system is to create a flexible control system that

can reconfigure itself in the presence of faults. However, reconfigurability adds complexity that

could reduce the system’s effective fault tolerance. The fault tolerant control system must be tested

to ensure that the system performs in a safe manner whenever a fault occurs, and it must be tested

to ensure that there is a control tactic to account for all possible faults and failures. Typical vali-

dation testing using case studies and simulations is not thorough enough to guarantee fault tolerant

behavior. A more rigorous type of testing is needed.

The safety verification of a complex control system can prove that the system will perform in

a safe and expected way upon any combination of failures [6]. The ability to reach certain unsafe



3

states can be tested; if these states are not reachable, the control system is considered to be verified

with respect to the unsafe states. Some examples of unsafe states that could be analyzed include

irrecoverable low power states or collisions with sensed objects. There are many methods available

to verify a control system; symbolic model checkers can partition and search the state space of

many types of simple deterministic systems, while other methods can determine an upper bound on

the probability of failure of systems that include uncertainty. In this dissertation, three methods of

verifying complex, goal-based, fault tolerant control systems both with and without uncertainty will

be presented along with the verification of two significant examples.

1.2 Fault Tolerant Control

Fault tolerance describes a system’s ability to continue functioning, possibly in a degraded manner,

upon some fault or failure in the system. Fault tolerance should be considered in a system’s design

phase. The first important step in having a fault tolerant control system is being able to detect

faults and failures in the system. Fault detection and isolation techniques come in many forms, but

all involve the estimation of system or environment states that are important to the health of the

control system. The most popular estimators in robotics are the many variants of Kalman filters

and extended Kalman filters; however, their performance can depend heavily on the quality of the

models provided. One way to avoid this dependence on uncertain model parameters is to introduce

a method for automatically learning noise parameters [7]; another tactic is to use multiple parallel

Kalman filters to capture the modeled behavior in each fault mode [8], assuming that the fault modes

are finite and known. When this is not the case, it may be possible to use a model-based diagnosis

technique with the ability to handle unknown modes, such as a partial filter formulation that is

based on extended Kalman filters [9]. Other methods reduce or eliminate the dependence of the

fault estimation on the models of the systems by using particle filters [10] or by using a behavior-

based approach in which temporal fuzzy logic accounts for noise and uncertainty in the autonomous

system [11].

Once the fault has been identified, the control system needs to utilize that knowledge. The no-

tion that fault tolerance should be integrated into a control system from the initial design is a popular

one [12]. Several fault tolerant control architectures for autonomous systems have been developed

in which the control effort is layered to deal with faults on different levels, including low levels of

hardware control and high levels of supervisory control, such as those in Ferrell [13], Visinsky et al.



4

[14], and Lueth and Laengle [15]. The fault tolerant control architecture ALLIANCE is a behavior-

based control system for multi-robot cooperative tasks [16]. In ALLIANCE, the distributed control

system re-allocates tasks between robots in response to failures. Although many fault tolerant con-

trol systems achieve reconfigurability, few actually change the control tactic given to the system.

The system described in Diao and Passino [17] uses adaptive neural/fuzzy control to reconfigure

the control system in the presence of detected faults, and another described in Zhang and Jiang [18]

reconfigures both the control system design and the inputs to the control system, though neither

adjusts the intent of the commands in response to failures.

The control decisions of fault tolerant systems must depend on the current state information.

Model-based control ensures that these systems have all the state information needed to make good

control decisions and the models are used to inform the system of which control tactic to use.

Reactive, model-based programming languages have been developed [19] and applied to NASA’s

Deep Space One probe [20] and Mars exploration rovers [21], including the time-critical entry,

descent and landing sequence [22]. As the control system becomes more state- and model-based,

traditional command sequences become too rigid. Several control architectures have been designed

to accommodate behavior-based [23] or layered robotic control systems [24].

A control software architecture developed at the Jet Propulsion Laboratory uses state models and

reconfigurable goal-based control programs for the control of autonomous systems [25]. Mission

Data System (MDS) is based on a systems engineering concept called State Analysis [26]. Using

MDS, systems are controlled by networks of goals, which directly express intent as constraints on

physical states over time. By encoding the intent of the robot’s actions, MDS has naturally allowed

more fault response options to be autonomously explored by the control system [27]. Unlike the

traditional command sequences used to control robotic space missions, goal networks allow for

branching in the execution plan at the cost of added complexity. The complex branching nature of

goal networks make control system verification necessary. The control programs in this dissertation

are modeled after the MDS architecture, which will be more fully described in Chapter 2.

1.3 Control System Verification

Verification is a technique to prove the correctness of a control system with respect to a specific

property using formal methods. Two of the most popular verification techniques are theorem prov-

ing and model checking [6]. Theorem proving involves using the formal description of the system,



5

which defines sets of axioms and inference rules, to prove specific properties about the system.

Several techniques and specification languages have been developed in order to facilitate the cre-

ation of proofs of safety properties. For example, inductive techniques can be used to prove safety

properties of distributed systems when the subsystems have the same properties [28]. A guarded-

command language called Computation and Control Language (CCL) uses the same set of tools to

model, specify, analyze, and prove properties about the control system [29]. The design and veri-

fication of a distributed railway control system was accomplished by following the RAISE method

[30], which translates mathematical specifications into implementable control processes. The orig-

inal abstract algebraic specifications are then used to prove properties about the control system.

Theorem proving has been partially automated; much input by a human designer is often necessary.

Prototype Verification System (PVS), a general purpose automatic theorem prover, is one of the

most popular [31].

The formal method used in this work is model checking. In model checking, the system is rep-

resented as a finite state machine or a set of hybrid automata and some specification, often expressed

in temporal logic, is checked by efficiently searching the state space of the system. Model check-

ing is nearly completely automatic, fast, and able to handle somewhat complex systems. Model

checkers come in many varieties. The symbolic model checkers designed for systems with no con-

tinuous state space, such as Bebop, which verifies Boolean programs [32], Symbolic Model Verifier

(SMV) and its variant NuSMV, which verify finite state machines against requirements written in

Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) [33], and an algorithm for check-

ing Mu-Calculus formulas using CTL requirements [34] all use Binary Decision Diagrams (BDDs)

to symbolically represent the state space. These algorithms are capable of verifying systems with

hundreds of discrete state variables. Another ω-automata based model checker, Spin, has been

demonstrated on several complex distributed systems, including spacecraft control system require-

ments [35]. Other symbolic model checkers, such as Bounded Model Checker (BMC) [36], have

moved away from BDDs and instead use propositional satisfiability (SAT) methods [37].

There is also a class of symbolic model checkers that can verify systems that have discrete and

simple continuous states. Hybrid systems consist of discrete sets of continuous dynamics, called

modes or locations, which are connected by transitions that can be guarded. When the continuous

dynamics of these systems are sufficiently simple, it is possible to verify that the execution of

the hybrid control system will not fall into an unsafe regime [38]. There are several symbolic

model checking software packages available that can be used for the analysis of different variants of



6

hybrid systems and timed automata, including HyTech [39], UPPAAL [40], and VERITI [41]. Two

symbolic model checkers are particularly applicable to the types of hybrid systems encountered

in this work, HyTech and PHAVer [42]. PHAVer is a more capable extension of HyTech that is

able to exactly verify linear hybrid systems with piecewise constant bounds on continuous state

derivatives and is able to handle arbitrarily large numbers due to the use of the Parma Polyhedra

Library. Unlike “pure” model checkers such as Spin [43] that exhaustively and directly search the

entire state space, symbolic model checkers are able to abstract the state space, but they still suffer

from state space explosion issues to a varying degree. Many state space reduction techniques and

problem abstractions have been explored to try to minimize this problem [44], and while some of

the reduction techniques are automated [45], most of the abstractions are not.

When analyzing a specific system, it is useful to be able to leverage a larger class of systems for

verification tools and methods. The control programs may need to be transformed to an acceptable

form by some suitable means. In general, it is important that the new converted representation of

the control system is bisimilar to the original control system [46], that is, there exists a mapping that

has the properties of soundness and completeness between the control system and its representation.

Some examples of the creation of bisimulations are found in Tabuada and Pappas [47] and Girard

and Pappas [48]. When the conversion of a control system is a bisimulation, it is guaranteed that if

the converted representation can be verified, the original system is also verified. Several conversion

algorithms exist for systems that do not conform to a model checking software’s requirements. One

such tool exists for the conversion of AgentSpeak, a reactive goal-based control language, into two

languages: Promela, which is associated with the Spin model checker [43], and Java, for which Java

Pathfinder 2 (JPF2) is a general purpose model checker [49]. A rule-based procedure to convert

specifications into a Petri net model in order to verify the model is described in Suzuki et al. [50].

An automatic method to convert Model-based Programming Language (MPL) code into models

that can be verified by the Livingstone fault diagnosis system exists [51]. A related procedure that

converts between natural language and temporal logic specifications for use in the verification of

systems in SMV has been explored [52].

To successfully verify an autonomous control system, it is necessary to plan for verification

during the design phase. One approach is to use design for verification procedures to ensure that

the resulting control systems have a structure that is conducive to verification. Many different styles

of specification can be used to constrain the resulting system to be verifiable, including model and

constraint-based specifications [53]. A model-based approach that is based on the Synchronization



7

Units Model uses Constraint Handling Rules to express the semantics of synchronization constraints

in the specific middleware framework to be verified [54]. In another example, the concurrency

controller design pattern was applied to an air traffic control autonomous separation software to

allow for its verification by two different methods [55]. Another design for verification procedure

was applied to Object Oriented Analysis to allow for a smooth interface to model-based verification

techniques [56]. A more general approach involves following a set of rules that will result in a

system design that is able to be decomposed for the verification effort [57, 58].

A more restrictive and rigorous approach that extends the design for verification concept is to

create correct-by-design control programs. This has been done from Buchi automata on infinite

words [59] or from specifications and requirements stated in a restricted subset of LTL [60]. The

correct-by-design approach creates control programs that have guarantees of correctness; this re-

moves the verification step. However, the structure that must be imposed on the control systems

generally is very restrictive. The design for verification approach allows for less structure and more

capable control systems, however, many of the current design for verification procedures are sets of

complicated rules that the designer must follow and the procedures are only applicable to a specific

design tool or method.

1.4 Stochastic Verification

The verification methods introduced in the last section do not account for noise and uncertainty in

the systems being analyzed. Uncertainty makes the verification problem more difficult, though there

are ways to verify uncertain or probabilistic systems. Reasoning about uncertain systems has driven

the creation of probability-extended logics, like RTCTL, a realtime extension of CTL [61]. Other

methods, such as using a stochastic concurrent constraint language to describe concurrent proba-

bilistic systems [62] or using model checking ideas with fixed trajectories for analyzing stochas-

tic “black box” systems [63], have been researched, but the most prevalent verification method is

probabilistic model checking. In probabilistic model checking, an automatic algorithm determines

if some specified property holds in a probabilistic system model [64]. These system models are

generally derivatives of Markov models, such as continuous-time Markov chains [65], but timed

probabilistic automata and stochastic hybrid models are also possible [66].

Stochastic hybrid models include uncertainty in the transitions of the hybrid automata as proba-

bilistic transition conditions and include uncertainty in the continuous state evolution using stochas-



8

tic differential equations. Many methods to verify stochastic hybrid systems exist. For example,

Prajna et al. [67] use barrier certificates to bound the upper limit of the probability of failure of the

stochastic hybrid system and Kwiatkowska et al. [68] discuss a probabilistic symbolic model check-

ing software called PRISM. A computational method that characterizes reachability and safety as

a viscosity solution of a system of coupled Hamilton-Jacobi-Bellman equations analyzes stochas-

tic hybrid systems by computing a solution based on discrete approximations [69]. Probabilistic

reachability analysis techniques have been developed for controlled discrete-time stochastic hybrid

systems [70, 71] and for large-scale stochastic hybrid systems using rare event estimation theory

[72] and subset simulation [73]. When the stochastic hybrid systems become too large to reason

about using the model checking and reachability analysis techniques, Markov Chain Monte Carlo

techniques can be used to approximate a likelihood of system failure [74, 75].

1.5 Outline

The verification and analysis of goal-based control programs that are modeled after the goal net-

works used by the MDS control architecture are the topics of this dissertation. Chapter 2 gives

some background information on MDS, hybrid systems, and stochastic hybrid systems. A bisim-

ulation conversion procedure between goal networks and linear hybrid automata is presented in

Chapter 3. The goal network conversion software based on the bisimulation is also introduced; this

conversion allows the goal network to be verified by the PHAVer symbolic model checker, which

is described briefly in this chapter. Chapter 4 describes a verification method for certain goal net-

works or hybrid systems that are designed in a rigorous way so that the transitions are completely

state-based. A simple software design tool called the SBT Checker allows for the distributed and

iterative design of goal networks that have the necessary properties to be verified by the InVeriant

verification software. The InVeriant software is a model checker that exploits the structure of the

rigorously designed goal network or hybrid system with state-based transitions to prove the reacha-

bility of unsafe conditions. Chapter 5 discusses a technique to compute the failure probability due

to sensor-based state estimation uncertainty in hybrid systems that have been previously verified

in the perfect knowledge case. Two significant example problems are verified in Chapter 6 using

the methods introduced in the previous three chapters. Finally, Chapter 7 concludes the work and

discusses directions for future research.



9

Chapter 2

Background Information

The goal-based control systems that are used in this work are modeled after the goal networks

designed for the Mission Data System (MDS) control architecture. A useful way to represent these

reconfigurable control programs is as hybrid systems because model checking is then possible. An

introduction to State Analysis, the design methodology upon which MDS is based, and a notational

introduction to linear hybrid systems are given in this chapter, along with a brief introduction of

stochastic hybrid systems, which are useful for understanding the uncertainty analysis of linear

hybrid systems.

2.1 State Analysis and Mission Data System

State Analysis is a systems engineering methodology that focuses on a state-based approach to the

design of a system [26]. Models of state effects in the system that is under control are used for the

estimation of state variables, control of the system, planning, and goal scheduling. State variables

are representations of states or properties of the system that are controlled or that affect a controlled

state [76]. Examples of state variables could include the position of a robot, the temperature of the

environment, the health of a sensor, or the position of a switch. During the design process, the state

variables are linked in a state effects diagram. The relationships between state variables, commands,

and measurements denoted in this diagram are associated with corresponding state effects models.

Goals and goal elaborations are created based on the models. Goals are specific statements of

intent used to control a system by constraining a state variable in time. Goals are elaborated from

a parent goal based on the intent and type of goal, the state models, and several intuitive rules, as

described in Ingham et al. [26]. A core concept of State Analysis is that the language used to design

the control system should be nearly the same as the language used to implement the control system.



10

Figure 2.1: A depiction of the state and model-based architecture of the Mission Data System, from Dvorak
[78]

Therefore, the software architecture, MDS, is closely related to State Analysis [77]. A depiction of

the MDS control architecture is shown in Figure 2.1.

Goal networks in MDS replace command sequences in traditional control architectures as the

input to the system. A goal network consists of a set of goals, a set of time points, and temporal

constraints. A goal may cause other constraints to be elaborated on the same state variable and/or

on other causally related state variables. The goals in the goal network and their elaborations are

scheduled by the scheduler software component so that there are no conflicts in time, goal order

or intent. Each scheduled goal is then achieved by the estimator or controller of the state variable

that is constrained. Controlled goals cause some control action to be taken, either because of its

constraint or because of a constraint in an elaborated child goal. Passive goals constrain the state

of a state variable to be some specific value or set of values without an associated control action.

Passive goals are used to choose between the tactics of a controlled goal; for example, the health

values of redundant heaters are constrained such that the tactics of a temperature maintenance goal

are achieved using the minimum power rate.

There are several types of controlled goal constraints [26]. Macro goals are goals that do not

constrain any state variable, but elaborate controlled goals with constraints. A maintenance goal,

mentioned above, uses control action to maintain the constrained value of a state variable. A main-

tenance goal on temperature, i.e., keep the temperature of an instrument between 15− 20◦C, could

elaborate control constraints on heater switches to achieve the temperature constraint. Reset con-



11

Figure 2.2: Goal tree example; circles are time points which bound the root goal. Rectangles are goal
constraints (controlled goals have solid borders and passive goals have dashed borders; these types of goals
are numbered independently in the upper left corner of the goal), and elaboration is signified by the tree
structure. The parent goal’s tactics are numbered in the shaded tabs.

straints command changes in discrete state variables (such as switches and states that have control

modes). A rate constraint puts an upper or lower bound on the rate of some state variable. Finally,

a controlled goal could have a transition constraint. This constraint drives a state variable from its

current state to an end point; an example is a constraint to pan a camera to a given angle from some

arbitrary starting value. The goal is achieved, or completed, when the state variable reaches the

constrained value. For this reason, goals with this type of constraint are called completion goals.

Elaboration allows MDS more flexibility than control architectures based on command se-

quences. One example is fault tolerance. Re-elaboration of failed goals is an option if there are

physical redundancies in the system, many ways to accomplish the same task, or degraded modes of

operation that are acceptable for a task. The elaboration for a goal can include several pre-defined

tactics. These tactics, or collections of concurrently elaborated and executed goals, are simply dif-

ferent ways to accomplish the intent of the goal, and passive goals constrain the conditions in which

a tactic may be executed. A simple example of a speed limit goal and its elaborations (called a goal

tree) is shown in Figure 2.2. The passive goals constrain the SystemHealth state variable (SH);

the two tactics have controlled goals constraining different maximum speeds that could be allowed

based on the SystemHealth’s value. Elaboration allows for many types and combinations of

faults to be accommodated automatically by the control system [27].

The goal networks used for this work are closely related to the ones implemented by MDS.

The biggest difference is how the goal networks are executed. In MDS, a goal network is initially

scheduled and at that time, all parent goals elaborate only one tactic. The tactics chosen are based

on specified elaboration order and/or the projections of the values of the constrained state variables.

Projections of state variables are functions that predict the future value of a state variable based

on its current (or initial) state, its state model and the goals constraining that state variable. Then,



12

as the goal network execution reaches an elaborated tactic, execution of that tactic begins with a

check of the satisfaction of the constraint of the tactic based on the current values of the constrained

state variables. If it is not achievable, or if the execution of that tactic is initially achievable but

becomes unachievable during the execution, then the tactic will fail and re-elaboration will be trig-

gered. During the re-elaboration, the entire goal network is rescheduled and re-elaborated with new

projections while the failed tactic continues to execute. Once the rescheduling is complete, which

could be several time steps later depending on the size of the goal network, the execution of the new

tactic in the rescheduled goal network begins if it is still achievable.

Because these time delays in switching the execution tactics upon goal failure are problematic

when one wishes to verify the behavior of a goal network, the execution of the goal networks in this

work is assumed to be different. First, the goal network is scheduled initially, but elaboration does

not occur in the same way. Instead of choosing one tactic per parent goal, essentially all possible

goal network executions are elaborated. Then, tactics are chosen instantaneously based on the state

variable values as the goal network execution reaches the parent goal. Upon goal failure, a new

tactic of only the failed parent goal occurs, and the execution switches to the new tactic in the next

time step. Because the goal network does not reschedule upon goal failure, some flexibility is lost,

but in the structure that is imposed, a very useful property is gained. The time points are guaranteed

to fire in the order that they are originally scheduled, which means the goal network is well-ordered.

This property will be important to the verification process.

In a fault-tolerant control program with conditional branching, one execution branch or tactic

is chosen over another based on the states of the system because it is the safest and best control

tactic available. Therefore, continuing to execute a failed or incorrect tactic while the goal network

re-elaborates is contrary to the intent of safety. For this reason, re-elaboration is assumed to happen

in the same time step as goal failure. This is not an impossible assumption to execute; localized

re-elaboration or total initial elaboration at scheduling could be implemented as a design choice.

Other new design choices are implemented for these goal networks. First, only controlled goals

can elaborate other goals. If more than one tactic exists in a parent goal’s elaborations, at least

one goal in each tactic must be a passive goal. For convenience, controlled goals should not fail

independently; instead, an accompanying passive goal would cause the tactic to fail. For example,

assume there was a controlled goal constraining a heater switch to turn off, but that the heater was

failed on. Instead of the controlled goal failing, an accompanying passive goal constraining the

HeaterSwitchHealth state variable to be GOOD would fail, since its estimated state should be



13

Figure 2.3: Goal network for simple example

Figure 2.4: State effects diagram for simple example. Arrows indicate that the originating body has a
modeled effect on the accepting body.

FAILON.

An example of a simple goal network that follows these design choices is shown in Figure 2.3.

The goal network for this example has three time points, four root, or parent, goals, and it constrains

four state variables, whose state effects diagram is shown in Figure 2.4. Two state variables are con-

trolled, Position and DataTransmission; the former is a continuous state variable while the

latter is discrete. The other two state variables are passive and have non-deterministic discrete mod-

els that are shown in Figure 2.5. Two of the root goals in the goal network do not have elaborations;

however the goal trees for the SpeedLimit goal and the TransmitData goal are shown in Figure 2.6.

The tactics shown in the goal trees contain passive goals on two state variables, SystemHealth

and SatelliteConnection, that drive the choice of the tactics. The rest of the goals are con-

trolled goals on the two controllable state variables and they cover several constraint types, which

are shown in Table 2.1.

The overall task that this goal network is attempting to achieve is to drive a robot to a point while

maintaining some safe velocity and transmitting data to a satellite. The execution of this goal net-

work occurs as follows. The first time point fires, which starts the execution of the SpeedLimit, Get-

ToPoint, and TransmitData goals. In addition, the SpeedLimit and TransmitData goals each elabo-

rate one tactic based on the estimated states of the SystemHealth and SatelliteConnection



14

Figure 2.5: Non-deterministic models for the example passive state variables

Figure 2.6: Goal trees for SpeedLimit and TransmitData goals

Table 2.1: Controlled Goal Constraint Types

Goal Index Goal Name State Variable Constraint Type
1 SpeedLimit None Macro
2 High Position Rate
3 Low Position Rate
4 TransmitData DataTransmission Reset
5 High Rate DataTransmission Rate
6 Low Rate DataTransmission Rate
7 GetToPoint Position Transition
8 MaintPosition Position Maintenance



15

state variables. If the states of these two state variables change at any time during the execution, the

tactic constraining that state fails and the other tactic is elaborated. For example, if the state of both

passive state variables is GOOD initially, the first tactics of both goal trees are elaborated. However,

if the SystemHealth state variable becomes POOR in the next time step, the first tactic of the

SpeedLimit goal will simultaneously fail and the second tactic will elaborate in its place. The firing

of the second time point will occur when the transition goal, GetToPoint, completes. At that time,

the TransmitData and MaintPosition goals will be active along with one tactic of the TransmitData

goal. The third time point fires, ending the goal network execution, after the constrained amount of

execution time (t2 = 5) has passed.

2.2 Linear Hybrid Automata

Hybrid systems exhibit discrete modes of execution that have different continuous behavior or con-

trol. Switching between discrete modes can be random, timed, or guarded by some state-based

condition. Hybrid systems are very prevalent and have a range of uses; therefore, there are several

different ways to model them [79]. Two of the most common ways depend on the more interest-

ing control interface for the system; hybrid automata are focused on the discrete mode switching

whereas other hybrid systems, sometimes called ODE models, are focused on the continuous dy-

namics in the discrete modes. In this work, a linear hybrid automata model is used, as the continuous

dynamics are restricted to be piecewise constant first derivatives.

A linear hybrid automaton H consists of the following components [39]:

1. A finite, ordered list of controlled state variables and clock timers, X = {x1, x2, ..., xn}.

2. A finite, ordered list of passive state variables, D = {d1, ..., dm}. The set of discrete states

(or discrete sets of states) of the state variable di ∈ D is Λi = {λ1, ..., λni}.

3. A control graph, (V,E), where V is the set of control modes or locations of the system, and

E is the set of control edges or transitions between the different modes of the system.

4. The set of invariants for each location, inv(v), which are the conditions on the state variables,

X ∪ D, that must be true in that location.

5. The set of flow conditions, ψi : X → X , for location vi ∈ V , which are the equations that

dictate how state propagates in each location.



16

Figure 2.7: Hybrid automaton and state model example; boxes are locations or state values and arrows are
edges labeled with transition conditions and resets where appropriate.

6. The set of transition conditions associated with each edge, Σ.

7. The set of transition actions or reset equations associated with each edge, A.

8. The initial conditions of the state variables, init.

This hybrid automaton specification can be illustrated using a simple example. Suppose there is

an autonomous unmanned air vehicle (UAV) whose task is to fly to a point and then maintain that

position for some amount of time. The speed at which the UAV can fly is determined by its system

health (the combined health value of all its sensors). This system is described by an automaton,

H and the model of the SystemHealth state variable, shown in Figure 2.7. The sets of state

variables associated with this automaton are X = {x, t}, where x is the position and t is a timer,

andD = {SH}, where SH is the SystemHealth state variable. The locations and transition arrows

(minus the conditions) compose sets V and E. The initial conditions are (x, t, SH) = (0, 0, GOOD).

The transition conditions from v1 and v2 to v3 are x ≥ xd,l (these same transition edges have reset

conditions on the timer, t = 0); the related invariants of v1 and v2 are x < xd, where 0 < xd,l < xd;

xd, xd,l ∈ R. This means that as soon as x reaches xd,l, which may be the distance at which

the UAV is in range of xd, the transitions can occur, but the transition will definitely occur when

x = xd. Likewise, the other invariant and transition conditions dictate when the discrete transitions

will occur. Finally, the differential equations with piecewise constant rates that control the flow of

the variables are listed in each location.

There are several symbolic model checkers available that are capable of verifying linear hybrid



17

automata. These components describe a linear hybrid system that can be successfully verified us-

ing HyTech or PHAVer. The reachability analysis used in the safety verification of these hybrid

automata finds the set of all states that are connected to a given initial state by a valid run. This can

cause a huge explosion of the state space, however, so symbolic model checkers partition the state

space into sets that are similar in the given reachability analysis. For example, given some interest-

ing condition, PHAVer will return the set of the state space in which it is reachable; these interesting

conditions given to the software are generally “unsafe” conditions for the particular system.

2.3 Stochastic Hybrid Systems

Stochastic hybrid models are hybrid systems with some uncertainty in the continuous dynamics,

the discrete mode switching, or both. These systems can be classified as one of three types of

models [80]. Piecewise Deterministic Markov Processes (PDMP) have random discrete transitions;

the hybrid state is reset based on some probability distribution upon transitions, however between

transitions, the continuous state evolution is based on ordinary differential equations. In Switching

Diffusion Processes (SDP), uncertainty is included in both the continuous and discrete state evolu-

tion. A Markov chain directs the discrete switching while stochastic differential equations describe

the continuous state. Finally, Stochastic Hybrid Systems (SHS) have stochastic differential equa-

tions describing the continuous state evolution while the discrete mode switching is deterministic.

A discrete-time SDP will be used in this work because discrete-time execution is assumed [81].

Definition 2.3.1. A discrete-time switching diffusion process, H, consists of the following compo-

nents:

1. A finite, ordered list of controlled state variables and timers, X = {x1, x2, ..., xn}.

2. A finite, ordered list of passive state variables, D = {d1, ..., dm}. The set of discrete states

(or discrete sets of states) of the state variable di ∈ D is Λi = {λ1, ..., λni}.

3. The set of discrete locations, V = {v1, v2, ..., vm}, where m ∈ N.

4. The stochastic flow of a location, φ : X × V → Rd(V), where d(v) is the dimension of the

continuous state space in location v.

5. The initial conditions of the system, init, based on some probability model.



18

6. The set of edges between locations, E .

7. The transition probability associated with a given edge, µ : V × (X ∪ D) × E → [0, 1], that

depends on the location and the continuous and discrete state.

8. The set of transition actions or reset equations associated with each edge, A.

This definition is close to the definition of the linear hybrid automata with stochasticity added

to the flow equations, and transition probabilities replacing transition conditions and invariants.



19

Chapter 3

Automatic Conversion Method for the
Safety Verification of Goal-Based
Control Systems

3.1 Introduction

The ability of goal network control programs to reconfigure as a fault response gives the control

method flexibility to handle dynamic and unknown situations. However, the added complexity

makes nonlinear goal network control systems difficult to check for safety with the methods used

to check their linear counterparts, sequences of control commands. This constraint prohibits the

use of goal networks in real applications; in systems with inherent risk, the added risk of unverified

complex control systems is often not justified. Therefore, a simple and automatic way to verify goal

networks is an important tool and a step towards using more fault tolerant control architectures on

autonomous robots.

The main contribution of this chapter is a goal network conversion algorithm that converts goal

networks into hybrid automata in a sound and complete manner; the resulting hybrid system can

then be parsed into a form that is compatible with existing model checking software. In Section 3.2,

more detailed information about the types of goal networks that can be converted and verified is

given. In Section 3.3, a heuristic goal network conversion procedure is outlined. It is compared

with the formal conversion procedure, which is described in Section 3.4; while a larger set of goal

networks can be accommodated using the heuristic procedure, it is not automatic and does not come

with the assurances of soundness and completeness that the formal procedure has. A description of

the conversion software that is based on the formal conversion procedure is given in Section 3.5.

The verification process following goal network conversion and the reverse conversion procedure



20

are discussed in Section 3.6. Section 3.7 concludes the chapter and summarizes the contributions.

3.2 Properties of Convertible Goal Networks

3.2.1 Structure of the Goal Network

Some restrictions exist on the types of goal networks that can be verified using the procedure de-

scribed in this chapter. These restrictions mostly pertain to the structure of the goal network in time;

in general, the goal networks excluded can be redesigned to fit within the restrictions.

The first restriction on convertible goal networks is that its time points must be well-ordered.

This means that a scheduled goal network executes the goals in the order given. The time between

time points can be constrained or unconstrained, but the order in which the time points are encoun-

tered in the goal network’s execution must be set. This restriction leads to the useful group property

of the goal networks, which will be defined formally in Section 3.4. In general, a group is the set of

all goals that are active between two consecutive time points. Dividing the goal network in this way

allows for a characterization of the discrete transitions between goals and tactics that is important

for the conversion procedure.

Two other restrictions on the convertible goal networks are needed to protect the group structure.

First, if a parent goal elaborates time points, all its tactics must contain the same time points. This

follows from the well-ordered requirement; if a time point fires in one execution of a goal network,

it must fire in all possible executions. Elaborated time points must also be respected upon re-

elaboration of the parent goal; if an elaborated time point has already fired, it cannot fire again after

re-elaboration.

The second requirement constraining completion goals over more than two time points. This is

only possible if it can be shown that the internal time points will always fire before the completion

goal is achieved. An example of an appropriate case is a robot position completion goal that elab-

orates an orientation, or turning, completion goal. If the position completion goal is slow enough

and the turn rate fast enough, a time point at the end of the orientation goal but before the position

goal’s ending time point is possible.

These simple restrictions allow the goal network control program to be converted for verifica-

tion. Some properties of a goal network make it easier to convert and verify, although they are

not necessary for convertible goal networks to have. The first property pertains to the failure of

tactics and controlled goals. The failure of tactics is assumed to be due only to the failure of the



21

passive goals in the tactic; the possibility of failure of a controlled goal causes a passive goal to fail

instead. This is achieved by using health state variables; when the health of an actuator is poor, this

is like saying that the controlled goal commanding that actuator has failed or will fail. The second

property involves the transitions between tactics in a group. If the transitions are state-based (which

will be formally defined later), that means that all possible states of the passively-constrained state

variables in a goal network satisfy the passive constraints in some set of tactics. Goal networks with

state-based transitions have nice properties that will be described in Section 3.4.

3.2.2 State Variables

The state variables constrained in a goal network can be categorized by their state models. The first

type is controllable state variables. These state variables are directly associated with a command

class in the state effects model, which means that control action is applied directly to these state

variables. An example of a controllable state variable is a HeaterSwitch state variable that is

commanded on and off to control the temperature of a device. In this model, the Temperature

state variable is not controllable because the command is applied to the heater switch; however,

in a model that instead controls the heating rate directly without using the HeaterSwitch state

variable, the Temperature state variable would become a controllable state variable.

Unlike controllable state variables, uncontrollable state variables are not associated with any

command class and also have no model dependencies on any controllable state variable. These state

variables can only be passively constrained in the goal network. This designation is also dependent

on the state effects model. For example, a LADARHealth state variable for a mobile robotic

system may be dependent on the relative sun angle, which depends both on time and the position

and orientation of the LADAR. This makes the LADARHealth state variable dependent on the

Position state variable, which is controllable; so, the LADARHealth state variable would not

be uncontrollable in this model. However, if the designer decides to model the relative sun angle as

an independent stochastic state variable, the modeled association with the Position state variable

disappears and the LADARHealth state variable becomes an uncontrollable state variable.

Dependent state variables are the last category of state variables. Dependent state variables have

model dependencies on at least one controllable state variable, but do not have an associated com-

mand class. The Temperature state variable when there is a HeaterSwitch state variable is a

dependent state variable, as is the LADARHealth state variable when the RelativeSunAngle

state variable depends on the robot’s position. Dependent state variables can be constrained by con-



22

trolled and passive goals. A goal on the Temperature state variable that elaborates constraints

on the related HeaterSwitch state variable is an example of a controlled goal on a dependent

state variable. A goal on the LADARHealth state variable that constrains the health to be good,

but does not elaborate any control action on the Position state variable in order to achieve that

constraint is an example of a passive goal on a dependent state variable. Resource state variables

are a special set of dependent state variables. Resource state variables, such as power, memory, or

charge cycles, are state variables that can be consumed (and in some cases, restored). Projection,

which will be discussed in Section 3.3, is a useful way to handle resource state variables.

3.3 Heuristic Conversion and Verification Procedure

The goal network conversion and verification procedure can be broken up into three main parts.

The conversion of the goal network to a linear hybrid automaton is the first part; the so-called goals

automaton is created. The flow equations in the locations or modes of this automaton direct the

propagation the controlled state variables; however, the transitions are often based on the uncon-

trollable and passive dependent state variables whose states must be updated in separate automata,

which are created from the state models in the second part of the procedure. Finally, the system is

verified against a given unsafe set using a symbolic model checker.

The heuristic version of this procedure is given in Section 3.3.2. The conversion of the goal

network is formalized in the bisimulation introduced in Section 3.4 and much is automated in the

software described in Section 3.5. The description of the heuristic procedure proceeds the formal

procedure description to give a textual overview to the overall conversion process; the first several

steps of the heuristic goals automaton procedure couple as the set-up needed to run the automatic

conversion software, whose execution is described loosely by the remaining steps of the procedure.

There are some additional capabilities that exist in the heuristic procedure, which are discussed in

Section 3.3.4; some capabilities of MDS, such as projection, are not currently implemented in either

procedure because of some severely limiting results. However, projection and how it would fit with

this verification procedure are discussed in Section 3.3.3. First, some useful definitions are given.

3.3.1 Goal Network Definitions

Let G be the set of all goals in a goal network, where G = G∪U . The setG = {gi1,j11 , gi2,j22 , ..., giN ,jNN }

consists of all controlled goals in the goal network, where in is the parent goal index and jn is the



23

tactic number into which the goal is elaborated, for n = 1, ..., N . The set of passive goals is

U = {ui1,j11 , ui2,j22 , ..., uiM ,jMM }, where im is the index of the goal’s parent goal (which is always a

controlled goal) and jm is the goal’s tactic number for m = 1, ...M . Controlled and passive goals

are numbered independently because this notation is useful for the implementation of the conversion

and verification procedure; however, gin,jnn ∈ G will represent both controlled and passive goals. Let

T = {T1, T2, ..., TK+1} be the set of time points in the goal network, where T1 < T2 < ... < TK+1

for increasing time. Each goal, gin,jnn ∈ G, has several functions associated with it.

1. start(gin,jnn ) returns the goal’s starting time point.

2. end(gin,jnn ) returns the goal’s ending time point.

3. svc(gin,jnn ) returns the state variable constrained by the goal.

4. c(gim,jmm , gin,jnn ) returns true if the two goals have constraints that are consistent (see Defini-

tion 3.4.1) and false otherwise.

5. cons(gin,jnn ) returns the constraint (or invariant) on the state variable; cons(gin,jnn ) ∈ Q× R,

where

Q = {=, 6=, <,>,≤,≥,→}

and→ indicates a transition constraint.

6. entry(gin,jnn ) ∈ Q×R returns the condition on the goal’s constrained state variable that must

be true when entering the goal.

7. exit(gin,jnn ) ∈ Q × R returns the condition on the goal’s constrained state variable that must

be true before exiting the goal.

The entry logic of a passive goal is just the goal constraint and the exit logic is always true. Since

passive goals constrain the conditions in which a tactic may be executed, if those conditions become

false, the tactic fails. The following two functions give elaboration logic and failure destination of

each tactic, which is a group of goals with the same parent index numbers (in) and tactic numbers

(jn).

1. startsin(in, jn) returns the condition in which the tactic is elaborated initially. This is gener-

ally just a list of passive goal constraints in that tactic, though other conditions (such as tactic

elaboration order) can be included.



24

2. failto(in, jn) returns the index of the goal to which execution goes upon failure. If the goal

fails to a general safing state that may be present in the control system design, the output of

this function is “Safe.”

The following goal classifications are important in describing the conversion of a goal network

to a hybrid automaton.

Definition 3.3.1. A goal is root goal if it has no parent goal. It is signified by in = 0 and jn = 0.

Root goals are the ancestors of all other goals in a goal network.

Definition 3.3.2. Two goals gim,jmm and gin,jnn are siblings if im = in ∧ jm = jn. Sibling goals are

goals that are elaborated from a parent goal into the same tactic; sibling goals are always compatible

and always executed at the same time if active during the same time points.

Definition 3.3.3. A completion goal is a controlled goal with a transition constraint type; the tran-

sition constraint type requires a state variable to reach a certain value, p ∈ R. The constraint is

written (→, p) and the non-trivial exit condition for the goal is (=, p).

3.3.2 Procedure Description

3.3.2.1 Goals Automaton

The first hybrid automaton that is created from the goal network is based on the goals; the controlled

state variables are controlled by this automaton. The hybrid automata created from the uncontrol-

lable and dependent state variables will be discussed in Section 3.3.2.2. The process to create the

goals hybrid automaton is as follows. This process will be formalized in Section 3.4 and a simple

example of the conversion procedure will be given there as well.

1. State Variable Labels: Label each state variable in the goal network as controllable, uncon-

trollable, or dependent.

2. Merge Logic: For each state variable constrained by a controlled goal, xi ∈ X , where

X = {svc(gin,jnn )|gin,jnn ∈ G}, create a merge logic table from the types of constraints

imposed on the state variable in the goal network. Examples of constraint types on a mobile

robot’s Position state variable could be transition (move to a point), rate (speed limits), or

a combination of these. An example of the merge logic table for this state variable is given

in Table 3.1. For each pair of constraints, the conditions that allow the row constraint (r) to



25

Table 3.1: Example of a merge logic table for a mobile robot’s Position state variable

Transition Velocity Combo
Condition r[1] == c[1] True r[1] == c[1]

Transition Constraint {r[1]} {r[1], c[1]} {r[1], c[2]}
Type Transition Combo Combo

Condition True True
Rate Constraint {min(r[1], c[1])} {c[1],min(r[1], c[2])}

Type Rate Combo
Condition r[1] == c[1]

Combo Constraint {r[1],min(r[2], c[2])}
Type Combo

Table 3.2: Example of a constraint properties table for a mobile robot’s Position state variable

Entry Exit Dyn. Eq. Reset
Transition True x >= 0.99 ∗ r[1] ẋ = r[1]− x None

Velocity ẋ ≤ r[1] True ẋ ≤ r[1] None
Combo ẋ ≤ r[2] x >= 0.99 ∗ r[1] ẋ = min(r[2], (r[1]− x)) None

merge with the column constraint (c) are given in the top field. The middle field assigns the

constraint vector for the new constraint from the row and column constraints (if the conditions

are met) and the bottom field gives the new constraint type.

3. Constraint Properties: For each state variable xi ∈ X , create a constraint properties table.

The control characteristics of each possible constraint type on the state variable are listed

here. The characteristics include entry and exit logic for the goal (the conditions that must be

true before the goal is entered or exited), the dynamical update equation associated with the

constraint, and any control resets associated with the constraint. An example constraint prop-

erties table for the robot’s Position state variable is given in Table 3.2, where r represents

the constraint vector for each constraint type.

4. Elaboration Logic: For any controlled goal gin,jnn ∈ G that is a parent of another controlled

goal, create an elaboration logic table if and only if the transitions between its tactics are

not state-based. The elaboration logic table includes the invariant of each tactic, which are

the conditions that must always be true when executing the tactic; the StartsIn logic, which

are the conditions that must be true for the tactic to be initially elaborated; the failure logic,



26

Table 3.3: Outline of an elaboration logic table

gin,jnn Invariant StartsIn Fail Conditions Destination
1
2
:

which are conditions that cause the re-elaboration of the goal; and the corresponding failure

location, whether it is another tactic or Safing. An outline of the elaboration logic table is

Table 3.3. In state-based goal elaborations, the invariants of the tactics are the passive goals

in each tactic, and the starts in logic, the failure conditions, and destinations are all based on

these invariants.

5. Groups: Number each time point that is associated with a controlled goal sequentially as

{T1, T2, ..., TK+1}, where K + 1 is the number of time points. Group goals between consec-

utive time points into sets Gk, where k = 1, 2, ...,K. In the hybrid automaton, consecutive

groups will have connectors, depicted as small empty circles, between them.

6. Location Creation: For each group, Gk, k = 1, ...,K, find all sets of goals in the group that

can be executed concurrently. These executable sets of goals must follow several rules that

govern the execution of goal networks:

(a) Goals can only execute between their constrained time points.

(b) If a goal is executing, so must be its

i. parent,

ii. siblings, and

iii. at least one of its children,

if these goals exist.

(c) If a root goal has elaborated goals in a group, at least one of those goals must be ex-

ecuting at all times. All root goals in a group execute at all times during the group’s

execution.

(d) Goals in different tactics from the same parent goal cannot execute at the same time.

Each of these sets of concurrently executable goals becomes a location.



27

7. Merge Constraints: For each location in each group, merge controlled goals constraining the

same state variable. The merge logic tables give the conditions for the merge as well as the

resulting constraint on the state variable. If there are more than two constraints on a state

variable, merge goals pairwise until only one constraint on the state variable remains. If the

merge is not possible for any pair of state constraints, the location is removed due to constraint

inconsistency.

8. State Variable Updating: For each location in each group, use the constraints on each state

variable to find the dynamic equations that describe the control and evolution of the control-

lable state variables in the location. If there is a time constraint on the group, add an equation

for the propagation of a counter state variable.

9. Extra Locations: Add Success and Safing locations to the hybrid automaton.

10. Initial Entry Transitions: For each location in each group, create an entry transition from

the preceding group connector (or initially for G1). The condition on this transition will be

a combination of the StartsIn logic for each tactic represented in the location. The StartsIn

logic can be found in the parent goal’s elaboration logic table, or for parent goals that have

state-based transitions, the StartsIn logic is that tactic’s passive goal constraints. The logic

from each tactic should be combined using a logical conjunction; eliminate any transitions

whose condition logically reduces to “False.”

11. Failure Transitions: For each location in each group, create failure transitions to other loca-

tions in the group or to Safing, if appropriate. The conditions on these transitions and their

destinations depend on the failure logic of each tactic represented in the location. For goal

networks with state-based transitions, the failure conditions are all possible ways the passive

constraints (or invariant) of the location can be violated. The destinations of the transitions

with these conditions are found by comparing the failure condition with the invariants of

other locations. The invariant that is satisfied by the failure condition and is otherwise the

most closely related to the original location’s invariant is the destination. For other tactics,

the failure conditions and destinations can be found in their parent goals’ elaboration logic

tables. Failure conditions of transitions with the same destination can be combined using a

logical disjunction.

12. Entry Logic and Resets: Append the appropriate entry logic corresponding to each constraint



28

in each location to every initial entry transition to that location. If a location has constraints

with corresponding reset equations, add resets to all incoming transitions of that location. If a

group has a time constraint on its bounding time points, add a nullifying reset on the counter

state variable to all initial transitions into the group.

13. Nominal Exit Transitions: For each location in each group, create exit transitions to the fol-

lowing group connector (or to the Success location for GK). For a location in group Gk, the

condition of this transition is either the time constraint on the bounding time points or the

exit conditions of all completion constraints in the location that have Tk+1 as their ending

time points. If there are no applicable completion goals in a location, the exit condition in the

absence of a time constraint is “True.”

14. Location Removal: Remove any location that is not entered by any transitions and remove

all transitions that originate at that location. Remove any other location that the goal network

execution cannot reach.

15. Initial Conditions: Assign an initial location for the automaton and initial conditions for each

of the controlled state variables.

3.3.2.2 Uncontrollable and Dependent State Variables

The process in the previous section results in a hybrid automaton for the goal network that updates

the controllable state variables; the process for creating hybrid automata to update the uncontrollable

and dependent state variables is described in this section. Since the transitions between discrete

or continuous states for these state variables are not directly controllable, they generally happen

randomly, at a given rate, or when discrete events occur. This information will be used to create the

hybrid automata for these state variables and for setting up the verification problem.

The process outlined below generally describes the creation of the other hybrid automata.

1. Discretize states or rates of change of each uncontrollable or dependent state variable. Make

these discrete states into locations for that state variable’s automaton.

2. Using the model of the state variable, assign the appropriate dynamical equations, resets,

and/or transitions to each location.

3. Assign an initial condition and location for each state variable.



29

3.3.2.3 Hybrid System Verification

Once all of the hybrid automata are created, the system is ready for verification. The process now

becomes dependent on which software will be used to verify the system. The system will be verified

against sets of incorrect or unsafe states as determined by the designer. The automata created above

need to be translated from their general form into the syntax of a model checker, the unsafe set must

be added, and then the system can be verified. If any changes to the hybrid automata are necessary

in order to verify the system versus the unsafe set, those changes must be translated back into the

original goal network. This process will be described more in depth in Section 3.6.

3.3.3 Projection

Many autonomous robotic control problems involve planning activities around a goal of maintaining

a certain amount of some resource state variable, such as power or memory. The act of replanning

or rescheduling based on estimates of the remaining amount of a resource state variable is part

of projection in MDS. By assuming that the goal network is already scheduled in the verification

problem, projection in its truest form is precluded from being verified in this way. However, there

is a conservative way to verify that a goal network as scheduled will respect the resource goal

constraints, especially if the choice of tactics of certain goals is based on the projected need of the

given resource.

In order to include projection-induced failure and re-elaboration, extra information is necessary

in the hybrid automaton. For each location, the estimated amount of resource needed in that location

and the minimum and maximum forward amount of resource needed (FAN) must be calculated.

The minimum and maximum FAN are the sum of the respective minimum and maximum amount of

resource needed over all locations in each subsequent group. These numbers are used for the entry

logic conditions that compare the actual amount of resource needed to the actual amount available.

In general, if there is more resource available than is needed, the location can be entered.

The procedures for converting projection to a verifiable form are complex and have several

limitations, conservatism being just one. The idea of projection in a pre-scheduled goal network

severely limits its usefulness. Allowing it to be a part of the verifiable hybrid automaton puts more

structure on the type of goal networks that are convertible. Therefore, it has been purposefully left

out of the procedure to convert the goal networks because it was determined that the implementation

makes the procedure more rigid for very little benefit.



30

3.3.4 Comparison with Formal Method

The heuristic conversion method described briefly in Section 3.3.2 is more flexible than the bisim-

ulation method that will be described in Section 3.4, but at a price. The extra capabilities afforded

the conversion currently disallow soundness and completeness properties and in some cases, they

also prohibit the ability to automate the procedure. Without the automation of the conversion, large

goal networks cannot be efficiently verified. A human converting the goal network is bound to make

errors and omissions, which can adversely affect the verification efforts. Also, though there may be

a way to prove the soundness and completeness of the techniques to convert a broader set of goal

networks, these are not currently in place, which causes the verification to lose its value.

Currently, the automatic conversion procedure cannot handle completion goals split by a time

point, though this may be easy to insert in the proof of the bisimulation. The other main difference is

the restriction of the software method to systems with state-based failure transitions. This restriction

is due to the proof of the bisimulation; systems with failure transitions based on order or other design

choices can be converted by choosing a slightly different conversion algorithm. However, systems

with state-based transitions have nice properties which will be discussed later and they are often

the most robustly designed systems. Imposing arbitrary order or structure on tactics often causes

unexpected trouble in the goal network’s execution.

3.4 Conversion and Verification Procedure

3.4.1 Formal Description of Goal Network Executions

A valid execution of the goal network consists of a sequence of alternating flow and transition

conditions,

φηf (tf )...φη2(t2)ρη2η1φη1(t1)X0, (3.1)

where X0 is the set of initial conditions of the controlled state variables, φηn(tn) is the set of flow

conditions associated with the executable set of goals θηn (defined below) and propagated forward

in time tn steps, and ρηn+1ηn is the transition between the executable sets of goals θηn and θηn+1 .

Due to the structure imposed on the time points, goals can be placed into K groups, Gk, k =

1, ...,K where

Gk = {gin,jnn ∈ G|start(gin,jnn ) ≤ Tk ∧ end(gin,jnn ) ≥ Tk+1}. (3.2)



31

Figure 3.1: Goal network with two groups

Time points also have a constraint function, cons(Tk, Tk+l), that returns the time constraint between

the two time points if it exists, and returns true if they are unconstrained. The amount of execution

time that passes between two time points, Tk and Tk+1, is tk. A simple example of a goal network

with three time points, T = {T1, T2, T3} and two groups, G1 and G2, is shown in Figure 3.1. The

first group, G1, contains a completion goal; therefore the two bounding time points have no time

constraint, cons(T1, T2) = True. Time point T2 fires once the completion goal has been achieved.

The second group, G2, contains an maintenance goal and the two bounding time points have a time

constraint, cons(T2, T3) = [t2 == 5]. Time point T3 fires when the specific amount of execution

time has passed. One additional note is that the TransmitData goal is a part of both groups, G1 and

G2.

The following goal relationships are important to the description of goal network executions.

Definition 3.4.1. Two goals gim,jmm and gin,jnn are consistent if they constrain different state vari-

ables, svc(gim,jmm ) 6= svc(gin,jnn ), or if svc(gim,jmm ) = svc(gin,jnn ) and the goals’ constraints are

able to be executed concurrently or merged according to the state variable’s merge logic table, e.g.,

Table 3.1.

Definition 3.4.2. Two goals gim,jmm and gin,jnn are compatible if

comp(gim,jmm , gin,jnn ) :=

[im == in ∧ jm == jn] ∨ [im 6= in ∧ comp(giim ,jimim
, g
iin ,jin
in

)] ∨ im == 0 ∨ in == 0 (3.3)

is true. In other words, the goals are compatible if they are in the same tactic, or if they have different

parent goals and the parent goals are compatible. Root goals are compatible with all other goals by

definition. Incompatible goals can never be executed at the same time in a goal network.

Certain subsets of the goals in each set Gk can be executed at the same time; these subsets are

called executable sets, θη. The set of all executable sets that are built from the goals in Gk is Θk.



32

Definition 3.4.3. An executable set of goals θη ∈ Θk is any set of goals that satisfies the following

properties:

1. All goals in the executable set are active between the appropriate time points; for all gin,jnn ∈

θη, gin,jnn ∈ Gk.

2. All root goals in the group are in each executable set; for all g0,0
n ∈ Gk, g0,0

n ∈ θη.

3. If a parent goal in the executable set has child goals in the group, at least one of those child

goals will also be in the executable set; for all gin,jnn ∈ θη, if there exists gim,jmm ∈ Gk,m 6= n,

such that im = n, then there exists gil,jll ∈ θη such that il = n.

4. The parent goals of all goals in an executable set are also in the set; for all gin,jnn ∈ θη, if there

exists gim,jmm ∈ Gk,m 6= n, such that in = m, then gim,jmm ∈ θη.

5. The siblings of all goals in the executable set are also in the set; for all gin,jnn ∈ θη, if there

exists gim,jmm ∈ Gk,m 6= n, such that im = in ∧ jm = jn, then gim,jmm ∈ θη.

6. Let Sn be the set of goals descended from some root goal, g0,0
n /∈ Gk. Then, if any of the root

goal’s descendants is in the group, Sn ∩ Gk 6= ∅, at least one of those descendants is in each

executable set; there exists gil,jll ∈ Sn ∩ Gk such that gil,jll ∈ θη.

7. For all gin,jnn , gim,jmm ∈ θη, gin,jnn and gim,jmm are compatible.

8. For all gin,jnn , gim,jmm ∈ θη, gin,jnn and gim,jmm are consistent.

There are two different types of transitions between the goals in the goal network, transitions

based on goal completion, ρcηµ,k ∈ Scomp, and transitions based on goal failure, ρfηµ,k ∈ S
fail, where

Scomp and Sfail are the sets of all completion and failure transitions, respectively. The transition

ρcηµ,k is from θη ∈ Θk to θµ ∈ Θk+1, and

ρcηµ,k :=
∧
θη

exit(gin,jnn ) ∧
∧
θµ

entry(gim,jmm ) ∧
∧
θµ

startsin(gim,jmm ) ∧ cons(Tk, Tk+1). (3.4)

The transition ρfηµ,k is from θη ∈ Θk to θµ ∈ Θk. Let F be the set of failing passive goals in

executable set θη and let J = {∀uin,jnn ∈ F |failto(in, jn)}. Let νη ⊂ θη be the set of all passive



33

Figure 3.2: Path for the simple rover example

goals in θη. Then, if Safe ∈ J ,

ρfηSafe,k :=
∧
F

¬cons(uin,jnn ) ∧
∧
νη\F

cons(uim,jmm ). (3.5)

Otherwise, if Safe /∈ J ,

ρfηµ,k :=
∧
F

¬cons(uin,jnn ) ∧
∧
νη\F

cons(uim,jmm ) ∧
∧
νµ

cons(uil,jll ). (3.6)

Only transitions whose conditions evaluate to true are taken. Valid transitions are all those whose

conditions are not invariantly false.

A simple example to illustrate these concepts involves a robot with position sensors travers-

ing a path, shown in Figure 3.2, to get to a point of interest via one of two paths, whose selec-

tion depends on the availability of the upper path. The state variables in this problem are as fol-

lows: RobotPosition (x), RobotOrientation (θ), UpperPathAvailability (UP),

and SystemHealth (SH), which depends only on the sensor health states. Figure 3.3 shows

the goal network for this example and Figures 3.4 and 3.5 depict the goal trees that direct the

path and speed of the rover. Table 3.4 has the function outputs for some goals; goals that are

similar to one listed are not shown. The rover can traverse the first segment of the path as long

as the SystemHealth is FAIR or GOOD. The rover then decides to go to C2 via the upper or

lower paths. If the estimated value of the UpperPathAvailability becomes BLOCK at any

time, the robot reverses course and uses the lower path (which is assumed to always be clear). If

the SystemHealth at any time is POOR, the robot safes by stopping; this option is available in

all groups. Since the goal network has state-based transitions over the SystemHealth and the

UpperPathAvailability state variables, the startsin() logic for all tactics is related to the

accompanying passive goals.



34

Figure 3.3: Goal network for the simple rover example

Figure 3.4: Route goal trees for the simple rover example

Figure 3.5: Speed limit goal tree for the simple rover example

Table 3.4: Select Goal Function Outputs for Simple Rover Example

Goal Name svc cons entry exit
g0,0

1 GetToC1 x (→, C1) True (=, C1)
g2,1

3 Clockwise θ (=, f(x)) True True
g0,0

6 MaintC2 ẋ (=, 0) (=, 0) True
g7,1

8 High ẋ (≤, vHigh) (≤, vHigh) True
u2,1

1 UP == CLEAR UP (=, CLEAR) (=, CLEAR) True
u2,1

2 SH 6= POOR SH (6=, POOR) (6=, POOR) True



35

3.4.2 Procedure Description

Hybrid system analysis tools can be used to verify the safe behavior of a hybrid system; therefore, a

procedure to convert goal networks into hybrid systems is an important tool for goal network verifi-

cation. These goal networks can have several state variables and several layers of goal elaborations,

however time points must be well-ordered, which means the time points fire in the order that they

are listed in the elaboration. This restriction only states that the goal network has already been

scheduled and that goals cannot switch order; it gives no restriction on the amount of time between

time points. For the software, one more restriction is currently necessary; goals with non-trivial exit

conditions cannot be split by a time point due to the way that the exit condition is handled.

Like the heuristic procedure, the first automaton created in the automatic conversion is called

the goals automaton. This automaton has execution paths of the form

ψηf (tf )τηfηf−1
...ψη2(t2)τη2η1ψη1(t1)X0 (3.7)

where X0 is the set of initial conditions on the controlled state variables, ψηn(tn) is the flow asso-

ciated with location vηn for tn time steps, and τηnηn−1 is the transition from location vηn to vηn−1 .

First, some definitions are listed.

Definition 3.4.4. A branch goal is a controlled goal gin,jnn ∈ Gk such that for all gim,jmm ∈ Gk, im 6=

n; in other words, it is a goal that has no child goals in the same group as itself. A branch goal can

also be a passive goal with no controlled goal siblings, uin,jnn ∈ Uk such that for all gim,jmm ∈ Gk,

in 6= im ∨ jn 6= jm. In a goal tree, these goals find themselves at the ends of the branches of goal

elaborations.

Definition 3.4.5. Two locations, vη and vµ, are compatible if for all gin,jnn ∈ vη and for all gim,jmm ∈

vµ, gin,jnn and gim,jmm are compatible.

There are four sets of procedures used to create the goals automaton. First, the locations of the

goals automaton are created. For each group of goals Gk, k = 1, ...,K, a group of locations Vk is

created using these procedures.

Location Creation Procedures:

1. Let Vk = {vη1 , vη2 , ..., vηB}whereB is the number of branch goals in Gk, vηn = {gibn ,jbnbn
|gibn ,jbnbn

is a branch goal}.



36

2. For all gin,jnn , gim,jmm ∈ Gk such that gin,jnn ∈ vη, gim,jmm ∈ vµ, and vη, vµ ∈ Vk, if the goals

are compatible, im = in ∧ jm = jn ∧n 6= m, then combine the locations into a new location,

vν = vη ∪ vµ, and remove vη and vµ from Vk.

3. For all vη ∈ Vk and for all gim,jmm ∈ vη:

(a) Add to each vη the parent goals of each gim,jmm ∈ vη; if there exists gia,jaa ∈ Gk such

that a = im then gia,jaa ∈ vη.

(b) Add to each vη the sibling goals of each gim,jmm ∈ vη; if there exists gia,jaa ∈ Gk such

that ia = im ∧ ja = jm ∧ a 6= m then gia,jaa ∈ vη.

(c) Add to each vη the root goals in Gk; if there exists g0,0
a ∈ Gk then g0,0

a ∈ vη. This step

is not needed, since all root goals will be added to the location with the previous two

steps.

4. Combine compatible locations using the following procedure:

(a) Let V i
k , i = 1, be the set of original locations.

(b) For all vη, vµ ∈ V i
k , η 6= µ, if vη and vµ are compatible, let vν = vη ∪ vµ, vν ∈ V i+1

k .

(c) For all vη ∈ V i
k , if for all vµ ∈ V i+1

k , vη * vµ, add vη to V i+1
k . For all vη, vµ ∈

V i+1
k , η 6= µ, if vη = vµ, remove vη, keeping vµ.

(d) Increment i. Repeat Steps (b)–(d) until for all vη, vµ ∈ V i
k ,m 6= n, vη and vµ are

incompatible.

(e) Set Vk = V i
k .

5. For all vη ∈ Vk and for all gim,jmm , gil,jll ∈ vη, if the goals are inconsistent, ¬c(gim,jmm , gil,jll ),

remove vη.

The first two steps of the procedure basically set up the initial locations to contain each of the

branch goals and combines locations in which the branch goals are siblings. The next step adds to

the locations all the ancestor goals and siblings goals up the goal tree from the branch goal. The

parent goals may be represented in many locations, but each branch goal is represented in only

one location and the combination of the goals in each location after this step is the set of all goals

in the group. These first three steps guarantee that each goal in a group is represented in at least

one location. From the definition of executable sets, Definition 3.4.3, properties 1, 2, 4, and 5 are



37

satisfied by these three steps; all goals are in the same group (1), and all root goals (2), parent goals

(4), and sibling goals (5) of each goal in the location are also in each location.

The fourth step is the location combining procedure. The compatible locations are combined

in such a way so that all possible combinations of compatible locations are created and so that the

final outcome is a set of incompatible locations. It can be shown that this combination procedure

produces all possible executable sets for each group. This step satisfies the properties 3, 6, and 7

of executable sets; Lemma 3.4.7 shows that each parent in a location has at least one child goal in

the location as a result of this procedure (3). Descendants of root goals that are not in the group

are present in each location because they are compatible with the root goals (and descendants) that

are in the group (6), and all goals in the location are compatible (7). Finally, the last step removes

locations that have inconsistent goals. This satisfies property 8 of executable sets.

Transitions for the goals automaton are created using three different procedures, one for each

type of transition condition. The first two are based on the completion transitions in the goal net-

work. First, the procedure for creating entry transitions from the preceding group connector (or

initially for the first group, V1) to each location is as follows, for all Vk, k = 1, ...,K.

Entry Transition Creation Procedures:

1. For all vη ∈ Vk, transition edges, esη,k, are created from the preceding group connector (or

initially for k = 1) to the location.

2. Transition conditions for each edge are created,

τ sη,k :=
∧
vη

entry(gim,jmm ) ∧
∧
vη

startsin(im, jm), (3.8)

where τ sη,k ∈ Σs
k.

3. For all gim,jmm ∈ vη, if svc(gim,jmm ) returns a discrete controllable state variable, cons(gim,jmm )

is added to esη,k as a reset action.

4. If there is a time constraint on the group, a reset setting the timer variable to zero is added to

esη,k.

5. If τ sη,k is invariantly false, the corresponding transition edge, esη,k, is deleted.

The procedure for creating exit transitions from the locations to the following group connector

(or to the Success location for k = K) is as follows, for all Vk, k = 1, ...,K.



38

Exit Transition Creation Procedures:

1. For all vη ∈ Vk, the transition edges, eeη,k, are created from the location to the following group

connector (or to the Success location if k = K).

2. Transition conditions for each edge are created,

τ eη,k :=
∧
vη

exit(gim,jmm ), (3.9)

where τ eη,k ∈ Σe
k.

3. Time constraints are added, if necessary, to the exit condition,

τ eη,k := τ eη,k ∧ cons(Tk, Tk+1). (3.10)

4. If τ eη,k is invariantly false, the corresponding transition edge, eeη,k, is deleted.

Finally, the procedure for creating failure transitions between locations within groups is as fol-

lows, for all Vk, k = 1, ...,K.

Failure Transition Creation Procedures:

1. For all vη ∈ Vk, let Ωη = {F1, F2, ...} where Fm are sets that contain all possible combina-

tions of αn ∈ Aη, where Aη = {α1, α2, ..., αN}. Each αn = cons(uil,jll ), for all uil,jll ∈ vη,

and each αn ∈ Aη is unique (for all αn, αm ∈ Aη, αn 6= αm).

2. For each Fm ∈ Ωη, let the set of all failure destinations be fm = {failto(il, jl)|cons(uil,jll ) =

αn,∀uil,jll ∈ vη, ∀αn ∈ Fm}.

3. For all vη ∈ Vk and for all Fm ∈ Ωη, if Safe ∈ fm, create a transition edge, efηSafe,k from vη

to the Safing location. The transition condition associated with the edge is

τ fηSafe,k :=
∧
Fm

¬αn ∧
∧
Aη\Fm

αn, (3.11)

where τ fηSafe,k ∈ Σf
k .



39

4. For all vη ∈ Vk and for all Fm ∈ Ωn, if Safe /∈ fm,

τ fηµ,k :=
∧
Fm

¬αn ∧
∧
Aη\Fm

αn ∧
∧
Aµ

αn, (3.12)

for some vµ ∈ Vk, µ 6= η, τ fηµ,k ∈ Σf
k . If τ fηµ,k is not invariantly false, create a transition edge

from vη to vµ, efηµ,k, whose transition condition is τ fηµ,k.

5. Remove any transition edge whose condition, τ fηSafe,k or τ fηµ,k is invariantly false.

The first two steps create all possible sets of failure conditions for a given location and the set of

failure destinations for each. The third and fourth steps create the transition edges and conditions,

which depend on the failure destination. If the transition does not go to the Safing location, then the

destination depends on which location’s passive goal constraints agree with the failure conditions.

Finally, the last step removes any invariantly false transition. This concludes the procedure to create

the goals automaton.

Next, separate hybrid automata are created for each passively constrained state variable in the

following way. These automata drive state transitions for the state variables that are not propagated

by the flow equations in the goals automaton’s locations.

1. The locations of the automaton for each passive state variable are created from the discrete

states or discrete sets of states that are constrained in the goal network if the state variable is

discrete and/or it has a non-deterministic state transition model. Otherwise, the locations are

based on the different rates of change that the variable can have in its state model.

2. The transitions between the locations are based on the model of the state variable; the transi-

tions may be modeled as non-deterministic if they are uncontrollable or dependent on some-

thing that is not modeled, such as time of day. The transition conditions are derived from the

state model; therefore they may depend on state variables on which there are model depen-

dencies.

Once the hybrid system is created, the verification work begins.

1. Specify the unsafe set. This is what the hybrid system is verified against; when the system

is said to be “verified,” that means that the unsafe set cannot be reached during any valid

execution of the hybrid system.



40

2. Run the hybrid system with the unsafe set through model checking software; currently, PHAVer

is the default symbolic model checking software used.

3. Make and record any modifications needed to verify the hybrid automaton. Translate these

modifications into changes to the goal network.

Further explanation of the model checking and verification of the goal network will be given in

the following sections.

3.4.3 Soundness and Completeness

It is possible to prove that part of the conversion procedure presented in Section 3.4.2 is a bisimula-

tion. The goals automaton encompasses the complete set of possible executions of the goal network

in its locations and transitions. By construction, the locations of the hybrid automaton correspond

exactly to the executable sets of the goal network, and the transitions of the goals automaton are

exactly those of the goal network. The following two lemmas show that the locations of the goals

automaton correspond one to one with all of the executable sets of the goal network. The first lemma

states that each executable set of goals in a group is incompatible with all others.

Lemma 3.4.6. For all Θk, k = 1, ...,K and for all θη, θµ ∈ Θk, η 6= µ, θη is incompatible with θµ.

Proof. Assume two executable sets, θη, θµ ∈ Θk, η 6= µ, are compatible. Let θ′ = (θη ∪ θµ) \ (θη ∩

θµ) be the set of goals in each executable set that does not belong to the other; since θη 6= θµ, then

θ′ 6= ∅. For all root goals g0,0
n ∈ Gk, g0,0

n /∈ θ′ since all root goals are a part of each executable set.

Then, if there exists a child goal of the root goal gim,jmm ∈ Gk such that im = n then from condition

3 in the executable set specification in Definition 3.4.3, there exists a child of the root goal in each

executable set, gil,jll ∈ θη, n = il and gia,jaa ∈ θµ, n = ia. If l 6= a, then the goals are in the same

tactic, jl = ja, because otherwise the goals would be incompatible by definition, contradicting

the assumption that θη and θµ are compatible. However, if jl = ja then from condition 5 in the

executable set specification, each goal would also belong to the other executable set, gil,jll ∈ θµ

and gia,jaa ∈ θη because they are sibling goals, so gil,jll , gia,jaa /∈ θ′. This logic can be applied to

the children of gil,jll and gia,jaa , down to the branch goals; therefore, all descendants of the root

goals in compatible locations are in both locations. So, there must exist some gin,jnn ∈ θ′ that is

descended from a root goal g0,0
l /∈ Gk; let gin,jnn ∈ θη. From condition 6 in the executable set

specification in Definition 3.4.3, an active descendant from g0,0
l must be in set θµ; let gim,jmm ∈ θµ



41

also be descended from g0,0
l , im = l ∧ m 6= n. Since im = in and because the locations are

compatible, then by definition jm = jn. So, from condition 5, the goals are siblings and gin,jnn ∈ θµ

and gin,jnn /∈ θ′. Therefore, θ′ = ∅, so θη = θµ and the initial assumption is false.

Lemma 3.4.7. Let there exist vη ∈ Vk such that there exists a goal gin,jnn ∈ vη that has a descendant

in the group, gim,jmm ∈ Gk, im = n, but no descendants in the location, for all gil,jll ∈ vη, il 6= n.

Then, there exists vµ ∈ Vk, µ 6= η such that vη is compatible with vµ.

Proof. Let V 1
k be the set of original locations and let vη ∈ V 1

k . Let gin,jnn ∈ vη but let none of its

children be in the same location, gim,jmm ∈ vη, im 6= n; however, the goal does have at least one

descendant in the group, there exists gil,jll ∈ Gk such that il = n. Then, there exists some location

vµ ∈ V 1
k such that gil,jll ∈ vµ because either gil,jll is a branch goal, a parent goal and thus an ancestor

of a branch goal, or a sibling of one of these by definition. By the conversion procedure, all branch

goals, their ancestors, and all sibling goals are present in at least one initial location. By step 3 of

the location creation procedure, location vη must contain all ancestors and siblings of gin,jnn . Since

gin,jnn is not a branch goal (because of the existence of the child goal gil,jll ), gin,jnn must be a sibling

of either a branch goal or an ancestor of the branch goal present in this location due to the first two

steps of the location creation procedure. Likewise, since location vµ contains gil,jll , it must also

contain gin,jnn and all its siblings and ancestors by step 3 of the location creation procedure. If gil,jll

is not a branch goal, it is either an ancestor or sibling of the branch goal in the location. It can be

shown that these locations, vη and vµ, are compatible. First, both locations contain gin,jnn and all its

siblings and ancestors; these goals are compatible with each other since locations are designed to be

self-compatible. Location vµ has goal gil,jll whose parent is gin,jnn . By design, there are no goals in

vη with the same parent. Since all remaining goals in vµ are descended from gin,jnn by construction,

none of the remaining goals in vµ are in vη and none of the remaining goals in vµ have the same

parent goals as any in vη, so they are compatible with all the goals in vη by definition. So, the two

locations are compatible and can combine.

By induction, let vη ∈ V i
k , g

in,jn
n ∈ vη such that gin,jnn has no child goals in vη, for all gim,jmm ∈

vη, im 6= n, and there exists a goal in the group that is descended from gin,jnn , gil,jll ∈ Gk such that

il = n. Because of the location combination procedure in step 4 of the location creation procedure

and the transitive property of compatibility, there exists a location vµ such that comp(vµ, vη) and

gil,jll ∈ vµ, as are its siblings and descendants. The locations vη and vµ are compatible because of

the same argument as before. The goal gin,jnn is in both locations and the goals in vµ that are not



42

in vη are the descendants of gin,jnn , which are compatible with all the goals in vη since there are no

other descendants of gin,jnn in vη by definition. Any other goals in vµ are compatible with all the

goals in vµ and likewise with all the goals in vη because of the transitive property.

Lemma 3.4.6 says that each executable set of goals is incompatible with every other executable

set. This just means that each executable set of goals in a group contains at least one different

tactic from a common parent goal than every other executable set in the group. The proof is by

contradiction; one can show using the properties of executable sets that if two executable sets are

compatible, they are the same set. Lemma 3.4.7 states that if a location in the goals automaton

contains a parent goal but none of the parent goal’s children, that location will be compatible with

some other location in the group. Because of the construction procedure that combines the locations

in a group until all are incompatible, this lemma shows that the locations satisfy property 3 in the

executable set specifications in Definition 3.4.3. The proof is by induction; one can show that this

lemma is true in the initial set of locations V 1
k and then that is also true in all following sets.

The following proposition uses the lemmas to show that all executable sets are represented by

locations. It is easy to see from this proposition that the flow conditions φη = ψη for corresponding

executable sets and locations.

Proposition 3.4.8. For all Θk, k = 1, ...,K and for all θη ∈ Θk, there exists vη ∈ Vk such that

θη ≡ vη.

Proof. By steps 1–3 of the location creation procedure and because the locations created from these

steps are only combined and not deleted, conditions 1, 2, 4, and 5 of the executable set specification

in Definition 3.4.3 are true by construction. In step 4 of the location creation procedure, since

locations are combined until they are incompatible, which is justified by Lemma 3.4.6, condition

3 of the executable set specification is true by Lemma 3.4.7. Since only compatible locations are

combined, condition 7 is satisfied. By construction, all non-root goals with no parent in the group,

gim,jmm ∈ vη such that im 6= 0 ∧ giim ,jimim
/∈ Gk, gim,jmm will appear in at least one initial location

(vη ∈ V 1
k ) which is compatible with all initial locations containing g0,0

l ∈ Gk and incompatible only

with initial locations that have other goals from the same parent. Therefore, a representative goal

from the set of descendants will be present in every location in the group, so, condition 6 of the

executable set specifications is satisfied. Finally, step 5 assures that all goals in the locations are

consistent, which satisfies condition 8 of the executable set specifications in Definition 3.4.3. Since

the procedure is designed to make all compatible combinations and the locations created satisfy the



43

executable set specifications, all executable sets of goal are represented by exactly one location,

since duplicate locations are removed (step 4c).

The proof of Proposition 3.4.8 uses the procedure steps for the location creation and the two

previous lemmas to show that all of the executable set properties are satisfied by the locations

that result from the location creation procedure. Likewise, the two following lemmas relate the

transitions of the goal network to the transitions of the hybrid automaton and the proofs are also by

construction using the transition creation procedures.

Lemma 3.4.9. For all ρcηµ ∈ Scomp, there exists an equivalent transition τ cηµ,k ∈ Σc
k = Σe

k ×Σs
k+1.

Proof. By Proposition 3.4.8, each executable set θη ∈ Θk is represented by a location vη ∈ Vk;

also let θµ ∈ Θk+1 be represented by vµ ∈ Vk+1. Transitions between each θη ∈ Θk and each

θµ ∈ Θk+1 are given by ρcηµ,k, defined in Eq. 3.4. In the goal network, if there exists gim,jmm ∈ θµ

that constrains a discrete controllable state variable, the constraint cons(gim,jmm ) is executed upon

entering θµ, so is considered to happen at the entry transition.

A transition τ cηµ,k ∈ Σc
k = Σe

k × Σs
k+1 is defined to be the composition of two transitions,

τ eη,k ◦ τ sµ,k+1. Using steps 2–3 of the exit and entry transition creation procedures, it is obvious that

τ cηµ,k = ρcηµ,k and the above statement is true.

Lemma 3.4.10. For all ρfηµ,k ∈ S
fail and for all ρfηSafe,k ∈ S

fail in the goal network, there exists an

equivalent transition τ fηµ,k ∈ Σf
k and τ fηSafe,k ∈ Σf

k , respectively, in the resulting hybrid automaton.

Proof. By Proposition 3.4.8, for all θη ∈ Θk, there exists vη ∈ Vk which corresponds exactly.

For some set J = {uin,jnn , ...} of failing passive goal conditions, ρfηµ,k (ρfηSafe,k) is defined by

Eq. 3.6 (3.5) if ρfηµ,k (ρfηSafe,k) is not invariantly false. The transition between the corresponding

locations, vη, vµ ∈ Vk, is given by Eq. 3.12, which is equivalent to ρfηµ,k given the construction of the

constraints αn ∈ Fm in the first step of the failure transition creation procedure. For the transition

to Safing, the transition is given by Eq. 3.11. By Proposition 3.4.8, Aη = νη and by construction

of Ωη, each J ≡ Fm for some Fm ∈ Ωη. Therefore, ρfηµ,k = τ fηµ,k and ρfηSafe,k = τ fηSafe,k between

corresponding locations.

Finally, Lemma 3.4.11 proves that the transitions are the same between the goal network and

the goals automaton and Theorem 3.4.12 proves that the conversion procedure is a bisimulation.

Lemma 3.4.11. All transitions of the goal network are represented in the goals automaton.



44

Proof. Since only two types of transitions are allowed in the goal network, this statement is true

due to Lemmas 3.4.9 and 3.4.10.

Theorem 3.4.12. The conversion procedure is a bisimulation between the goal network and the

goals automaton.

Proof. By Proposition 3.4.8 and Lemma 3.4.11, all executions of the goal network are represented

by paths in the hybrid automaton constructed from the goal network by using the conversion pro-

cedure. Because of this, all executions of the goal network are represented by an execution path

through the hybrid automaton. There are no executions in the hybrid automaton that do not rep-

resent an execution of the goal network because the definition of executable sets, Definition 3.4.3,

states that every set of goals that has the given properties is an executable set, and each location

created has those properties (Proposition 3.4.8). Likewise, each transition in the hybrid automaton

was constructed from a corresponding transition in the goal network, so the hybrid system is an

exact representation of all the possible executions of the goal network.

Therefore, the conversion procedure is sound in that if the hybrid automaton is verified for some

unsafe set, the goal network is also verified. This is easy to see since every execution path in the

goal network is represented in the hybrid automaton; so, if there exists a path in the goal network

in which the given unsafe set is reachable, that path will also be present in the hybrid automaton.

The conversion procedure is also complete, in that if the goal network is verifiable, the hybrid

automaton will also be verifiable. There are no extra execution paths in the hybrid automaton that

are not present in the goal network; in fact, there is a way to rebuild the original goal network and

goal logic from the hybrid automaton, which is outlined in Section 3.6.2.

3.4.4 Simple Rover Example

The conversion and verification procedure can be illustrated using the simple rover example intro-

duced in Section 3.4.1. The same state variables are used in this example, and both Position

and Orientation are controllable state variables and the UpperPathAvailability and

SystemHealth state variables are uncontrollable. The startsin() logic of the speed limit tactics

are based on the accompanying passive goals. The goal network has state-based transitions and all

failure transitions are based on the passive goals in each tactic. All controlled goal combinations in

the goal network are consistent.



45

Figure 3.6: Automata for rover example

The goal network has four time points and therefore three groups, which are shown in Fig-

ure 3.6. The first group, V1, has four sets of branch goal locations ({g0,0
1 }, {g

7,1
8 , u7,1

6 }, {g
7,2
9 , u7,2

7 },

and {g7,3
10 , u

7,3
8 }) from steps 1 and 2 of the location creation algorithm that combine to form three in-

compatible locations in step 4 of the location creation algorithm, created from the combination of the

GetToC1 root goal, g0,0
1 , and the three tactics of the Speed Limit root goal, g0,0

7 ({g0,0
1 , g0,0

7 , g7,1
8 , u7,1

6 },

{g0,0
1 , g0,0

7 , g7,2
9 , u7,2

7 }, and {g0,0
1 , g0,0

7 , g7,3
10 , u

7,3
8 }). The second group, V2, starts with six sets of sib-

ling branch goals that combine into a total of nine locations before consistency is checked, which

covers all possible execution paths of the goal network between those time points. However, four

locations were removed because of sets of inconsistent passive goals in step 5 of the location cre-

ation algorithm ({u2,1
2 , u7,3

8 }, {u
2,2
4 , u7,3

8 }, {u
2,3
5 , u7,1

6 }, and {u2,3
5 , u7,2

7 }). The third group, V3, has

only one goal, and therefore only one location.

The transitions into the locations either initially (V1) or from the group connector are condi-

tioned by startsin() elaboration logic, which is just the accompanying passive goal constraints in

each tactic and entry() transition logic contributions from all goals in the group (not shown for clar-

ity). The failure transitions between the locations in the groups are state-based; they are based on

the failing and non-failing conditions of the invariant of the originating location and the invariant of

the accepting location. The transition logic out of the locations to the following group connector or

to the Success location (V3) are the exit() logic conditions for each of the completion goals present

in the location (g0,0
1 and g0,0

2 ). The final version of the goals automaton can be found in Figure 3.6.

The UpperPathAvailability and the SystemHealth state variables are the two un-



46

Figure 3.7: Flow chart of the conversion software execution

controllable state variables, which can be modeled as having two and three discrete state values,

respectively. These state values become locations with non-deterministic transitions between them.

The SystemHealth and UpperPathAvailability automata are shown in Figure 3.6. Fi-

nally, the unsafe set is determined; this is any condition that the designer decides the rover should

never reach. The automata and thus the goal network can now be verified using model checking

software.

3.5 Conversion Software Design

An automatic goal network conversion software that is based on the bisimulation described in the

previous section takes a description of the goal network as an input and outputs a file. The output file

can be input into an existing model checker for verification. The software is written in Mathematica

because of the list structure it employs and its extensive library of pattern-matching functions. The

software has many parts: the input parser takes an XML file with goal information, state variable

models and unsafe set specifications; the automaton creation algorithm transforms the goal network

information into a hybrid automaton and outputs a general form of that automaton; and the output

parsers create input files to existing model checking software from the converted hybrid automaton,

state variable models, and the unsafe set. The general outline for the structure of the conversion

software is shown in Figure 3.7. In addition to the input and output parsers, there are four main

parts to the actual conversion algorithm: location creation, constraint merging, transition creation,

and unsafe set transformation. All parts of the software will be described in this section.



47

3.5.1 Input Parser

The conversion software’s input parser takes an XML file with a specified structure and translates it

into several lists that the Mathematica code can use. The input data includes several things. First,

all controlled state variables are given along with all possible control modes (ways a goal could

constrain the state variable). Included with the control mode information is constraint merging

logic. The merge logic information for each state variable constrained by the controlled goals is

directly related to the information given in the example merge logic table given in Table 3.1 for the

robot’s Position state variable. The conditions that may cause constraints to be inconsistent are

given, as are the values and type of the new constraint if the original constraints can be merged.

The other information included with the controlled state variables is the conditions that must be true

for the goal network execution to enter or exit a given constraint type, the dynamical equation for

each control mode, any reset associated with each constraint type, and the state variable’s initial

condition.

Next, each passive state variable is listed with its state model. These models are either non-

deterministic or dependent (modeled) on other state variables. An example of a stochastic state

variable could be the health of a sensor that is modeled to fail at some stochastic rate. Likewise, a

sensor health state variable could have state transitions that depend on other state variables included

in the model, such as a LADARHealth state variable that depends on the relative sun position

and the amount of dust. Dependent state variables are always modeled on other state variables

and often, if the state variable is continuous and constrained in both controlled and passive goals,

the state variable’s model will be rate-driven. This means that the discrete modes of these state

variables’ models have the different rates of change of the continuous state variable. Examples

of this are Temperature or Power state variables whose rates of change depend on heaters or

actuators being on or off.

The goals in the goal network are listed with all necessary tactic information. The time points

bounding each goal, the state variable constrained, the type of constraint, and constraint value are

included with each non-macro goal. For each parent goal, a list of the child goals separated into

tactics is given. Controlled and passive goals are listed for each tactic and in the overall goal list;

they are differentiated by several things, including the state variable constrained and the type of

constraint. In some cases, the failure transitions into the Safing location are explicitly listed for each

tactic, though this is not necessary.



48

Finally, any time constraints between time points and unsafe conditions are listed. For the unsafe

set, the state variables constrained, the type of constraint on the state variable, and the constrained

value are given for each unsafe condition. DTD files for the PHAVer and Spin XML input files can

be found in Appendix A. The Spin version has some differences, most notably the absence of the

unsafe set specification structure.

3.5.2 Automaton Creation Algorithm

The automaton creation part of the conversion software is made up of four main algorithms. Two

of the four main parts of the conversion software follow the conversion procedure outlined in Sec-

tion 3.4, the location creation and the transition creation algorithms. The constraint merging algo-

rithm is important for the representation of the hybrid system in the model checking software, but

is not invertible and so is not part of the bisimulation. The unsafe set transformation uses the con-

verted hybrid automaton and the original unsafe set specification to put the unsafe set into a form

that PHAVer can understand and is not run when a different model checker is used.

The location creation algorithm follows the procedure outlined in Section 3.4 to place the goals

into groups and then to enumerate the locations in each group. Unlike the bisimulation conversion

procedure, inconsistent locations are created in this algorithm and then are handled in the con-

straint merging algorithm. The locations are also assigned names based on the branch goals that are

present; the names are used in the model checking software.

The constraint merging algorithm deals with both passive and controlled goal constraints. Pas-

sive goal constraints on the same state variable are inconsistent if the state value constrained is

different. Controlled goal constraints are more difficult, as certain conditions may need to be met

before the constraints are considered to be consistent. If the constraints (passive or controlled) are

inconsistent, the location is removed. However, consistent controlled constraints are merged within

each location until only one resulting constraint per state variable remains. This algorithm also as-

signs dynamical update equations and reset equations (if necessary) to each location once the final

merged constraints have been found.

The transition creation algorithm follows the procedures outlined in Section 3.4 for creating all

three types of transitions. The number of failure transitions between each location often becomes

prohibitively large when all possible combinations of failure conditions are considered. So, there is

an option to only find the single point failure transitions when circumstances allow. The assumption

is then that either zero time can be spent in a location (multiple transitions can be taken in a single



49

time step to deal with multiple simultaneous failures) or that multiple failures do not cause an unsafe

condition. Only the latter assumption can be made when verifying with PHAVer. A small location

removal algorithm is also included in the transition creation code. The location removal algorithm

checks if any location lacks entry conditions and if so, removes the location and all other failure

transitions originating from that location. The algorithm also checks for other locations that would

warrant removal, however it can be shown that none of these conditions will ever occur due to the

way transitions and locations are created.

Finally, when PHAVer is used as the verification software, the unsafe set transformation al-

gorithm takes the set of unsafe conditions and transforms them into a form that PHAVer can use.

PHAVer cannot check rate conditions, though these may be common unsafe set specifications; an

example is checking the speed of a rover when its sensor health state variables are degraded. How-

ever, this algorithm can search through the goals automaton and find all locations in which the rate

conditions are satisfied. These locations are then listed with the other state variable constraints in the

unsafe set specification. The goals automaton and the transformed unsafe set specification (PHAVer

only) are then sent to the appropriate output file creation algorithm.

3.5.3 Output File Creation

The goals automaton and all of the passive state variables’ automata are output in a very generic

form so that they may be used with an output file creation algorithm that translates the lists into

code for any model checker that uses automata theory to verify systems. Currently, two output file

creation algorithms are available, one for PHAVer and one that outputs Promela code for the Spin

model checker. The final output of these algorithms is a file that can be run through the respective

model checker.

The PHAVer output file creator has some special code to create the synchronization labels

that are appropriate given the unsafe set. The synchronization labels, or synclabs, are used to

create a relationship between transitions in different automata. For example, a transition of a

SensorHealth state variable from GOOD to POOR may cause a failure in the location that is execut-

ing in the goals automaton. For verification purposes, it may be important that the goals automaton

executes the appropriate failure transition immediately, rather than in the next time step. Otherwise,

the unsafe set may be satisfied momentarily, even though the appropriate logic is in place to ensure

that safety is maintained. The file creator uses the specified unsafe set to find transitions between the

goals automaton and the passive state variable automata that must be synchronized and assigns an



50

appropriate synclab to both transitions. Since the PHAVer output file creator deals with the unsafe

set, the file created can be immediately input into PHAVer for verification with no modifications.

3.6 Goal Network Verification

3.6.1 Working with Model Checkers

Once a goal network has been converted and an appropriate model checker input file has been

created, the verification work begins. The conversion algorithm is capable of handling goal networks

that produce hundreds of locations and thousands of transitions; an example with over 500 locations

and thousands of transitions takes less than five hours to convert. However, the model checking

software often cannot verify systems this large because of the state space explosion. Therefore,

some abstractions and reduction techniques are needed.

In many cases, the group structure of the convertible goal networks can be leveraged to reduce

the size of the verification problem. As long as the unsafe set does not have dependencies on the

completion goal(s) in a group, the groups can be verified individually. The initial condition is a

concern when verifying groups other than G1 individually, however, there is often an acceptable

solution.

The state space explosion problem benefits from the reduction in the numbers of locations and

automata. Oftentimes, the models of the passively constrained state variables can be adjusted in

order to reduce the total number of states. Creating derived state variables from state variables

that are related by some model is one way to reduce the state space. A derived state variable is

a non-physical state variable whose state propagation completely depends on two or more passive

state variables. The SystemHealth state variable is an example of a derived state variable. It is

modeled from the states of several sensor health state variables. To reduce the state space, instead

of modeling each sensor health state variable and including each of their automata, they can be

replaced by the SystemHealth state variable. Removing unused states and combining states

that are always constrained together are other ways to reduce the state space. Finally, discretizing

continuous state variables can help reduce the complexity of the verification problem.



51

3.6.2 Reverse Conversion Procedure

Once the verification has been completed on the hybrid system, if any changes had to be made to

the system to accomplish the verification, these changes must be translated back to the original goal

network. Since the conversion procedure for certain goal networks is a bisimulation, there must be

a procedure to revert a converted hybrid system back to a bisimilar goal network. Such a reverse

conversion procedure has been designed, though it is very restricted in the types of hybrid automata

that it can handle. There are several restrictions on the original goal network and conversions

required for the reverse conversion procedure. One is that constraint merging is not part of the

bisimulation and so the locations in the hybrid automaton must have each separate controlled goal

constraint listed; also, each controlled constraint must be unique (or at least uniquely labeled) and

each root goal in a group must directly elaborate a unique set of passive constraints. Another of these

requirements is that the hybrid automaton must have state-based transitions and each elaborated

tactic must have at least one controlled goal because of assumptions made in the reverse conversion

procedure. The basic procedure for finding the goal network associated with a hybrid system is

described here. This algorithm has been automated and can be used for the special class of goal

networks that satisfy the assumptions.

Let there be locations vη ∈ Vk for each group Vk, i = 1, ...,K. Each location has two sets of

constraints, (by abuse of notation) cons(vη) is the set of active constraints and inv(vη) is the set of

unique passive constraints in the location. Let the set of passive constraints in Vk be

Pk =
⋃

vη∈Vk

inv(vη). (3.13)

Let the set of active constraints in Vk be

Ck =
⋃

vη∈Vk

cons(vη). (3.14)

The procedure is as follows:

1. Create location sets for each passive and active constraint in pj ∈ Pk and ci ∈ Ck, respec-



52

tively.

loc(pj) = {vη|vη ∈ Vk, pj ∈ inv(vη)} (3.15)

loc(ci) = {vη|vη ∈ Vk, ci ∈ cons(vη)} (3.16)

2. Find the non-macro root goals: Rk = {ci|loc(ci) = Vk}. Remove these constraints from the

constraint list: Ck = Ck \ Rk. Make the constraints in Rk into goals, for all ci ∈ Rk, let

ci = cons(g0,0
ri ), g0,0

ri ∈ Gk.

3. Find the directly elaborated child goals of the root goal(s) by comparing locations sets be-

tween the passive and active constraints. The root goals’ child goals are all constraints such

that for any pj ∈ Pk, loc(pj) = loc(ci). Controlled constraints that are associated with in-

consistent passive goal constraints are incompatible. If more than one controlled constraint

matches the same passive constraint, those controlled constraints belong to sibling goals.

Place all constraints that satisfy this condition in a list by parent goal and tactic, which can

be deduced from the compatibility of the goals and the consistency of the passive goal con-

straints. Assign each constraint a goal index and place the goals in a set of potential parent

goals, P .

4. For each goal gn ∈ P , find its child goals, if any.

(a) Find groups of all possible constraints, Cnk,i, such that the disjoint location sets of the

constraints cover the location set of the goal,

loc(cons(gn)) =
⋃

cj∈Cnk,i

loc(cj),

but for any cj , cl ∈ Cnk,i, loc(cj) ∩ loc(cl) = ∅.

(b) Let Cnk = {Cnk,1, ..., Cnk,I}. Find all the sets in Cnk that have the smallest number of

constraints,

C̄nk = {Cnk,i| min
Cnk,i∈C

n
k

|Cnk,i|}. (3.17)

(c) Let the set of child goals be

Cnk =
⋂

Cnk,i∈C̄
n
k

Cnk,i. (3.18)



53

Create a goal (and tactic) with a new index for all cj ∈ Cnk , cj = cons(gn,jmj ), and

Gk = Gk ∪ {gn,jmj }. By construction, each goal in this set will be incompatible. Remove

these constraints from the unplaced constraint list, Ck = Ck \Cnk . Place all new goals in

the potential parent set while removing the current parent goal, P = (P\{gn})∪{gn,jmj }.

(d) The remaining “uncertain” constraints are grouped together in a similar way,

Znk = (
⋃

Cnk,i∈C̄
n
k

Cnk,i) \ Cnk . (3.19)

Group the constraints in the uncertain set Znk into sets of constraints that have the same

location set. Then, for each subset Znk,i ∈ Znk , add Znk,i to the set of potential parents,

P = P ∪ {Znk,i}.

Repeat this step until P = ∅.

5. Identify as many of the constraints in the uncertain set as possible. Constraints that occur

in only one uncertain set, Znk,i, are sibling goals that belong to a new tactic of the goal,

gn, associated with the uncertain set. The placement of other uncertain constraints may be

determined by comparing the state variables constrained between it and the potential parents.

6. Create macro root goals for incompatible goal sets with no parents. Assign the parent and

tactic information to the goals that are lacking it.

7. Determine the starting and ending time points of each goal in Gk by comparing goals and

constraints across consecutive groups.

Remark 1. If there is only one set Cnk,i ∈ C̄nk , the constraints in that set represent the children goals

elaborated into different tactics of the potential parent goal. If there is more than one set, there

is some uncertainty as to which goals are the children of the potential parent goal. One condition

in which this uncertainty arises is when a potential parent goal elaborates a tactic with controlled

sibling goals.

The output of this procedure is a goal network that may have some constraints that are unas-

signed. For goal networks with simple constraints, no uncertain goals should remain. The many

limitations on this reverse conversion procedure indicate that there may be a better solution to this

problem; however, as described later, the necessity for a procedure like this may not exist.



54

Figure 3.8: Simple hybrid system for reverse conversion example. Transitions are omitted for clarity.

A simple hybrid system example is shown in Figure 3.8. The six locations have the follow-

ing numbered controlled constraints in their flow equations and resets and passive constraints in

their invariants. There are two sets of incompatible passive constraints, {p1, p2} and {p3, p4, p5}.

Table 3.5 gives the location sets for each constraint along with its status or associated passive con-

straint. Constraint c1 is present in every location, and so is a root goal. Constraints c8 and c9 have

the same location sets as each other and as passive constraint p5, which indicates that they are sib-

ling goals which are directly descended from a root goal. Every constraint except c4 and c5 are

either root goals or are directly descended from a root goal, and so these two constraints make up

the set C1 \P . It is easy to see that these constraints descend from controlled constraint c2. Finally,

since only one root goal was found for two goal trees, the second root goal must be a macro goal;

the root goal set is R1 = {g0,0
1 , g0,0

10 }. The converted goal trees are shown in Figure 3.9.

3.7 Conclusion

The goal network conversion software presented is capable of quickly and accurately converting

goal networks into a bisimilar linear hybrid automata that can be verified using existing symbolic

model checking software such as PHAVer. The proofs of soundness and completeness of the con-



55

Table 3.5: Constraint Properties in Reverse Conversion Example

Constraint Location Set Goal Associated Passive Constraint
c1 V1 g0,0

1 None
c2 {v1, v2, v3} gr1,12 p1

c3 {v4, v5, v6} gr1,23 p2

c4 {v1, v2} g2,1
4 p3 ∨ p4

c5 {v3} g2,2
5 p5

c6 {v1, v4} gr2,16 p3

c7 {v2, v5} gr2,27 p4

c8 {v3, v6} gr2,38 p5

c9 {v3, v6} gr2,39 p5

p1 {v1, v2, v3}
p2 {v4, v5, v6}
p3 {v1, v4}
p4 {v2, v5}
p5 {v3, v6}

Figure 3.9: Converted goal trees for reverse conversion example



56

version procedure are important to validate using symbolic model checkers to verify the resulting

hybrid system and applying the verification result back to the goal network. Since so much work has

been done on the verification of hybrid systems, this is a useful first step towards the efficient veri-

fication of goal network control programs. However, the size and complexity of the goal networks

that can be verified is subject to the constraints imposed by the symbolic model checker used; the

verification method introduced in the next chapter handles much larger systems by imposing some

common-sense structure on the goal network design.



57

Chapter 4

Efficient Verification for Systems with
State-Based Transitions

4.1 Introduction

Goal network control programs can be converted to hybrid systems using the bisimulation procedure

introduced in Chapter 3 and then verified using existing model checking software. However, this ap-

proach is restricted by the symbolic model checker used in the verification; oftentimes, to use these

software programs to verify real systems, abstraction, model reduction, and overapproximation of

the system is necessary. The limiting factor in the use of these symbolic model checkers is often

the number of state variables in the system, which for real systems can be very large. The conver-

sion procedure also has difficulty handling many passive state variables because of the way failure

transitions are created. Some limiting assumptions can improve the performance of the conversion

software, but at a cost.

The main contribution of this chapter is the design for verification software tool and the resulting

verification algorithm. The design tool used to create goal networks with state-based transitions

(defined in Section 4.2), the SBT Checker, is introduced in Section 4.3. The verification software,

InVeriant, is described in Section 4.4. The application of the InVeriant model checker to a class of

linear hybrid systems is discussed in Section 4.5. The capabilities, strengths and weaknesses of this

verification approach are discussed in Section 4.6, followed by a summary of the contributions in

Section 4.7.



58

4.2 State-Based Transitions

A class of goal networks, ones with state-based transitions, have special properties in the bisimilar

automata.

Definition 4.2.1. Let Dk = {d1, d2, ..., dnk} be the set of state variables constrained by passive

goals in Uk. Then, let Γk be the passive state space, Γk = Λ1 × Λ2 × ... × Λnk . If for each

state γi ∈ Γk, there exists some executable set, θj ∈ Θk such that the passive state satisfies the

passive constraints, γi |= pcons(θj) for each group, k = 1, ...,K, and the elaboration conditions for

each parent goal are based only on the states of the system, then the goal network has state-based

transitions.

An example goal tree that does not have state-based transitions is shown in Figure 4.1. The

speed limit root goal has three tactics constraining two passive state variables, SystemHealth

and PositionUncertainty, whose models are included in Figure 4.1. The passive state space

is also shown; it is obvious that two states (SH == GOOD∧PU == HIGH and SH == POOR∧PU ==

LOW) do not satisfy the passive constraints in any tactic. Therefore, this goal tree does not have state-

based transitions. While this construction is valid, there is no way to predict what will happen to the

execution when these states occur; the current tactic would fail but since there is no tactic associated

with these states, any of the tactics may be chosen as the execution of the goal network breaks down.

However, with two changes, the goal tree in Figure 4.2 does have state-based transitions, which is

obvious from the passive state representation.

The assumption that the goal elaboration is based only on the states of the system follows the

design philosophy of State Analysis and MDS. This simply says that there is no predefined order

to the tactics of any goal; instead, the passive state constraints control goal elaboration. Since goal

networks are bisimilar with hybrid systems, the definition of state-based transitions also applies

to them. In a converted hybrid system with state-based transitions, each passive state γi ∈ Γk

satisfies the invariant, γi |= inv(vj), of some location vj ∈ Vk for all k = 1, ...,K. Because of

the elaboration condition on goal networks with state-based transitions and because of the structure

of goal networks, the invariants of the locations in a hybrid system with state-based transitions

completely describe all transitions into and out of the locations. It is this property that is useful

when trying to verify the hybrid system. Instead of finding all the transitions of the hybrid system,

which can be prohibitive, the invariants could be used in the verification instead. This property also

gives interesting results about the reachability of locations, which will be described in Section 4.4.



59

Figure 4.1: Goal tree that does not have state-based transitions with associated passive state models and
passive state space

Figure 4.2: Goal tree with state-based transitions and associated passive state space



60

Therefore, goal networks that are designed to have state-based transitions can be verified using a

very simple search algorithm that can handle complex systems.

While designing goal networks to have state-based transitions does impose some structure on

the goal network, one could argue that the requirement is a good design practice. In the case where

one or more passive states are not associated with an executable set of goals, it is unclear what would

happen with the execution in that state. When state-based transitions are present, the goal network is

maximally fault tolerant given the state model since every possible passive state is accounted for. In

the case that there are passive states that satisfy the passive constraint of more than one executable

set (or the invariant of more than one location), a non-deterministic execution scheme with weak

fairness may be used and verified using the same method presented here.

4.3 SBT Checker

The conversion to hybrid systems and verification using symbolic model checkers presented in

Chapter 3 is one approach to the verification of goal networks. However, the conversion procedure

creates an automaton that captures all possible executions of the goal network; this can cause an

explosion in the number of discrete modes (locations) relative to the numbers of goals and tactics

present in the goal networks. While symbolic model checkers such as PHAVer handle large numbers

of locations more easily than large numbers of state variables, there is still a limit. Abstractions and

simplifications of the hybrid system can be used to aid in its verification, but another approach is

to design the system for verification initially. To ensure that a goal network can be verified by the

procedure described in this chapter, the goal network must have state-based transitions. For complex

goal networks, this is not always easy to do by hand; therefore, the software program, SBT Checker,

has been created to aid in the design process.

One way to verify that a goal network has state-based transitions is to convert it to a hybrid

system and then compare each passive state to the locations’ invariants in each group. However,

for large systems with many locations and many states, this check can be time-consuming and

ineffective for the iterative design process. Based on the following theorem, however, it is possible to

check that the individual goal trees of each root goal in a goal network have state-based transitions,

and that implies that the goal network has state-based transitions.

Let Dk be the set of state variables constrained by the passive goals in group Uk. Let Rk =

{g0,0
r1 , g

0,0
r2 , ..., g

0,0
rN } be the set of root goals that are in or have children in group Gk. Let Sr,k be the



61

set of descendants of g0,0
r , including passive goals and the root goal itself.

Gk ⊆
⋃

g0,0r ∈Rk

Sr,k, (4.1)

because there may be extra root goals in Sr,k. Let Dr,k = {svc(uim,jmm )|uim,jmm ∈ Sr,k} be a

set of all state variables constrained passively in Sr,k. For some Dr,k = {dn1 , dn2 , ..., dnD}, let

Γr,k = Λn1 × Λn2 × ... × ΛnD be the passive state space of Sr,k. Let γri ∈ Γr,k be a passive state

of the state variables in Dr,k.

Let Lr,k be the set of executable branches of goals in Sr,k. An executable branch of goals

Lj ∈ Lr,k has the following properties:

1. All goals gin,jnn ∈ Lj are also in Sr,k ∩ Gk.

2. If gin,jnn ∈ Lj , its parent is also in Lj , g
iin ,jin
in

∈ Lj .

3. If gin,jnn ∈ Lj , all its siblings are also in Lj .

4. If gin,jnn ∈ Lj and gin,jnn has at least one child goal in Sr,k, then at least one child goal of

gin,jnn , gim,jmm ∈ Sr,k, im = n, is in Lj , g
im,jm
m ∈ Lj .

5. All goals in Lj are compatible.

6. All goals in Lj are consistent.

Lemma 4.3.1. For each pair of executable branches from different root goals, Li ∈ Lri,k, Lj ∈

Lrj ,k, ri 6= rj , Li is compatible with Lj .

Proof. The general idea is that since the executable branches are drawn from different root goals,

there are no shared parent goals across the executable branches. Assume that Li ∈ Lri,k is incom-

patible with Lj ∈ Lrj ,k, ri 6= rj . This means that there exists some gin,jnn ∈ Li and gim,jmm ∈ Lj

that have the same parent, in = im. Since all parent goals of each goal in an executable branch are

also in that set by definition, this means that Li and Lj have the same root goal, which negates the

original assumption that ri 6= rj .

Lemma 4.3.1 shows that executable branches from different root goals are compatible, and so

they can be combined. The proposition introduced next says that if executable branch combinations

are consistent, they are equivalent to executable sets of goals.



62

Proposition 4.3.2. Let Υk = Lr1,k×Lr2,k× ...×LrN ,k be the set of all combinations of executable

branches from each root goal’s set of goals. Let υ ∈ Υk; if all goals in υ are consistent, υ ≡ θj for

some θj ∈ Θk. Moreover, let Υ′k = {υ|υ is consistent}. Then, Υ′k ≡ Θk.

Proof. Because Θk contains all possible executable sets in Gk, if υ satisfies the definition of an

executable set, there exists some θj ∈ Θk such that υ ≡ θj . By the definition of the executable

branches L ∈ Lr,k, properties 1 and 3-5 of the executable set specification in Definition 3.4.3 are

satisfied. All goals in each L are also in Gk by definition, so all the goals in the composition,

gin,jnn ∈ υ are also in Gk (property 1). Likewise, all parent goals, sibling goals, and at least one

child goal are represented in each branch, so the composition of these branches originating from

different root goals will have the same properties (properties 3–5). Property 6 of executable sets is

satisfied by the composition of Υk; since all root goals with children in group Gk are represented

by a set Lr,k, at least one goal from each root goal with children in the group is represented in each

υ. Property 2 is satisfied in a similar manner; if the root goal g0,0
r ∈ Gk, then for each L ∈ Lr,k,

g0,0
r ∈ L because of the parent goal requirement in the definition of L. Property 7 is satisfied by

Lemma 4.3.1 and Property 8 is satisfied by the assumption above. Therefore, υ ≡ θj for some

θj ∈ Θk.

The above result can be applied to every υ ∈ Υ′k since each υ in that set is consistent. So, to

prove that Υ′k ≡ Θk, assume that there exists some θj ∈ Θk such that there is not a corresponding

υ ∈ Υ′k. By definition, each goal in θj is either a root goal in Gk or descended from a root goal

that has child goals in Gk. Also by definition, each of those goals are present in a branch in the

corresponding root goal’s branch set, Lr,k. Since there exists a set υ ∈ Υ′k that corresponds with

every consistent combination of branches from each root goal g0,0
r ∈ Rk, the executable set must

either be missing a branch from at least one root goal’s set or have more than one branch from at

least one root goal’s set. However, missing a branch from a root goal’s set would violate either

property 2 or 6 from Definition 3.4.3 of executable sets since either a root goal or descendants from

a root goal would be missing from θj ; so, θj must have two or more branches from at least one

root goal’s set. Let both Ln ∈ Lr,k and Lm ∈ Lr,k be subsets of θj ; this implies that Ln and Lm

are compatible. There must be some goals gin,jnn ∈ Ln and gim,jmm ∈ Lm such that gin,jnn /∈ Lm

and gim,jmm /∈ Ln because one branch cannot be a subset of another by the definition of executable

branches. The goals, gin,jnn and gim,jmm , cannot be siblings and one cannot be the ancestor of the

other by definition. However, they do have the same ancestor because they are in the same root



63

goal set. So, these goals must be incompatible by definition. Therefore, each executable set θj must

include one and only one branch from each root goal and therefore there is a set υ ≡ θj for each

executable set θj ∈ Θk. Therefore, Θk ≡ Υ′k.

Theorem 4.3.3. If for all controlled goals in branches from different root goals, gin,jnn ∈ Lrn,k,

gim,jmm ∈ Lrm,k, rm 6= rn, the goals are consistent, c(gin,jnn , gim,jmm ), and for all g0,0
r ∈ Rk, the

set of executable branches, Lr,k, has state-based transitions over Dr,k, then Θk has state-based

transitions over Dk.

Proof. By definition, Υk = Lr1,k × ... × LrN ,k for all g0,0
ri ∈ Rk, i = 1, ..., N . By Proposition

4.3.2, the consistent subset, Υ′k ⊆ Υk is equivalent to Θk, so to prove this theorem, it is sufficient

to show that Υ′k has state-based transitions over Dk. Let Ik = Υk \ Υ′k be the set of executable

branch combinations with inconsistent goals. Since all active goals are consistent by assumption,

each υ ∈ Ik has inconsistent passive goals only.

Let each Lr,k have state-based transitions over the corresponding passive state variable setDr,k,

but assume that Υ′k does not have state-based transitions overDk. That means that there exists some

state γ ∈ Γk, where Γk = Λ1×Λ2× ...×ΛD, and D is the number of passive state variables inDk,

such that there are no υ ∈ Υ′k such that γ |= pcons(υ). However, by the definition of state-based

transitions, for each Lr,k, there exists some Lr,γ ∈ Lr,k such that γ |= pcons(Lr,γ) because Lr,k
has state-based transitions over Dr,k ⊆ Dk. By definition, there exists some υ ∈ Υk such that

υ =
⋃

g0,0r ∈Rk

Lr,γ .

To satisfy the assumption that Υ′k does not have state-based transitions, υ ∈ Ik, which means

that it has inconsistent passive goals. Without loss of generality, let the inconsistent goals be

uin,jnn , uim,jmm ∈ υ. By the definition of consistency, svc(uin,jnn ) = svc(uim,jmm ) = di for some

di ∈ Dk and for any λij ∈ Λi such that λij |= cons(uin,jnn ), λij 2 cons(uim,jmm ). Likewise, by the

definition of γ, if any γ |= cons(uin,jnn ), then γ 2 cons(uim,jmm ). Since uim,jmm ∈ υ, there must

exist a Lr,γ ⊂ υ such that uim,jmm ∈ Lr,γ . Then, γ 2 pcons(Lr,γ), which means that Lr,k is not

state-based and the original assumption is negated.

The SBT Checker leverages this modularity of goal networks to check that each root goal’s

tactics have state-based transitions. The algorithm involves comparing the passive constraints in



64

Figure 4.3: Goal network for the state-based transitions verification example

Table 4.1: State Variable Data

State Variable Abbreviation Type
Position X Controlled

Camera Mode CM Controlled
Stabilizer Switch SS Controlled
Camera Health CH Passive

Position Uncertainty PU Passive
Vibrations VB Passive

each executable branch, Li ∈ Lr,k for g0,0
r ∈ Rk, to each passive state in the state space Γr,k

for the passive state variables in Dr,k. Then, each passive state γ ∈ Γr,k is checked against the

passive constraints in each executable branch and if there exists some γ ∈ Γr,k such that there is

no Li ∈ Lr,k where γ |= pcons(Li), those passive states are listed for the designer. The output

of the SBT Checker software for the goal tree in Figure 4.1 would be (SH == GOOD ∧ PU ==

HIGH) ∨ (SH == POOR ∧ PU == LOW). The output for the goal tree in Figure 4.2 would be

False. The controlled goal consistency constraint is checked upon the goal network’s conversion

to a hybrid automaton in the verification software.

Because the number of executable sets, or locations, grows exponentially with the number of

parent root goals, the modular approach saves computation time. It is also more conducive to an

iterative and distributed design process since it gives nearly immediate feedback on the design of a

root goal’s goal tree.

A simple goal network example is shown in Figure 4.3. The robot’s task is to drive to a point

maintaining a safe velocity while taking pictures; Table 4.1 lists the state variables constrained in

the goal network. The goal tree for the SpeedLimit goal is shown in Figure 4.2, and the goal tree

for the TakePictures goal is shown in Figure 4.4. Both goal trees were verified to have state-based

transitions by the SBT Checker which means that the entire goal network has state-based transitions.

The goal network will be verified versus an unsafe set in the next section.



65

Figure 4.4: Goal tree of the TakePictures goal

4.4 InVeriant Verification Procedure

The idea behind the InVeriant software involves the special relationship between the invariant and

the transition conditions for a hybrid system with state-based transitions. In a system with state-

based transitions, if the state variables that are constrained in a group’s locations have discrete states

that are all reachable from each other, then each location in the group is reachable from any other

location in the group. This is proved in Theorem 4.4.1 later. In this case, locations that satisfy the

unsafe set are reachable if they exist. The InVeriant software creates the locations and invariants

from the goal network and composes it with the unsafe set constraints to find unsafe locations.

While the assumption that the discrete states of the passively constrained state variables are

reachable is usually a good one, there are times when it is not. In general, these passive state

variables are health states or uncontrollable states of the environment that affect the way the system

accomplishes a task. If there was a health or environment state value that was not reachable, it would

not be modeled. However, continuous dependent state variables such as power or temperature may

be constrained without knowing if a discrete set of states is reachable. These state variables, called

continuous, rate-driven dependent state variables, have models whose discrete states do not match

or correspond with the discrete sets of states that are passively constrained in the goal network.

The discrete states in the model represent different rates of change of the state variable, which

often depend on the controllable state variables, whereas the discrete sets of states constrained

passively in the goal network depend on the continuous state space of the state variable. When

unsafe locations constrain these state variables, their reachability must be confirmed by finding an

appropriate path from the initial state to the unsafe state, a process that is aided by the state-based

transition requirement.



66

The theorems that prove the methods used in the InVeriant software are presented next, followed

by a formal treatment of the verification algorithm. The first theorem proves the reachability of

locations introduced previously and the second theorem shows that within a set of locations that have

the same discrete conditions on continuous, rate-driven dependent state variables, these locations are

reachable.

Theorem 4.4.1. Given a hybrid system with a set of locations Vk = {v1, ..., vn} whose transitions

are based on the discrete states of a set of passively-constrained state variables Dk = {d1, ..., dm},

if all the discrete states associated with each passive state variable are reachable from each other,

then all locations vl ∈ Vk are reachable from any other location, vj ∈ Vk.

Proof. Let V be a hybrid system with state-based transitions and let all discrete states Λi =

{λi1, ..., λini} of each passive state variable di ∈ D be reachable from each other state, but as-

sume location vl ∈ Vk is not reachable from vj ∈ Vk. In order for vl and vj to be viable locations,

they must have non-trivial invariants. That means that there must exist some γj , γl ∈ Γk such that

γj |= inv(vj) and γl |= inv(vl). Since the states of the passive state variables are all reachable,

there is guaranteed to be a path from γj to γl. Let one possible path between the two system states

be pj,l = {γi1 , ..., γin}, where pj,l is the set of all intermediate states between γj and γl. Because

V has state-based transitions, each γi ∈ pj,l has some vi ∈ Vk such that γi |= inv(vi). Since γj

transitions to γi1 directly, there exists a transition condition τj,i1 = inv(vi1). By induction through

the path between states γj and γl, there is indeed a path between locations vj and vl, so the initial

assumption is false.

Theorem 4.4.2. All locations vj ∈ V whose passive invariants have the same constraint, γc ∈ Γck,

γc |= inv(vj), on the set of continuous dependent state variables, Dck, are reachable from one

another when all discrete passive state variables, Ddk have reachable sets of states.

Proof. Let Dc ⊂ D be the set of all continuous, rate-driven dependent state variables and let

Γc =
∏
di∈Dc

Λi

be the state space of the passive constraints on those continuous, rate-driven dependent state vari-

ables. Likewise, let Dd ⊂ D be the set of discrete passive state variables, Dd = D \ Dc, and



67

let

Γd =
∏
di∈Dd

Λi

be the corresponding discrete passive state space. Let V γc ⊂ V be the set of locations satisfied

by some state γc ∈ Γc, V γc = {vi|γc |= inv(vi)}, where V has state-based transitions. Let

vi, vj ∈ V γc and let vj be unreachable from vi. By the definition of state-based transitions, for all

γ ∈ Γ there exists some v ∈ V such that γ |= inv(v). It follows that for all γ ∈ Γdk × {γc}, there

exists some v ∈ V γc such that γ |= inv(v). Since all states γ ∈ Γd × {γc} are reachable from one

another by design, it follows from Theorem 4.4.1 that vj ∈ V γc is reachable from vi ∈ V γc , which

contradicts the original assumption.

The unsafe set is a collection of disjoint sets of constraints, Z = {ζ1, ..., ζn}, where each

disjoint set of constraints, ζi = {zi1, ..., zini}, has separate constraints on individual state variables,

and each separate constraint z ∈ (Xd ∪ Ẋc ∪ D ∪ Ḋc) × Q × (R ∪ Λ) constrains a discrete

controllable state variable (Xd), the rate of a continuous controllable state variable (Ẋc), a passive

state variable, or the rate of a continuous, rate-driven dependent state variable. The sets ζ of unsafe

constraints are analogous to locations of the converted hybrid system, though the different sets in

Z are not necessarily incompatible with one another; they are simply separate unsafe conditions

against which the designer wishes to verify the system.

The verification algorithm goes through the following steps to verify a goal network versus the

unsafe set, Z. A representation of this algorithm is shown in Figure 4.5.

1. Find all locations v ∈ V from the goal network using the bisimulation procedure.

(a) Find all potential executable sets of a goal network without checking for goal consis-

tency. Find each location’s passive invariant by listing all the passive constraints in that

location; remove locations with inconsistent passive constraints.

(b) Merge controlled constraints in each location and record any inconsistent controlled

constraints. If there are any, stop and report which constraints are inconsistent. If not,

continue.

2. For each di ∈ D, the set of discrete states constrained passively in the goal network is Λi.

LetMi be the model of di, where µij ∈ Mi is a discrete location in the model. For di ∈ Dd,

Λi ≡ Mi. However, for di ∈ Dc, the discrete sets are not always equivalent. Set V ′ =



68

Figure 4.5: Representation of the InVeriant verification algorithm

V ; for each di ∈ Dc such that Λi 6= Mi, V ′ = V ′ ◦ Mi = {vl ◦ µj |∀vl ∈ V,∀µj ∈

Mi, vl, µj are consistent }. A composed location v′ = v ◦ µ is defined as having a combined

invariant, inv(v′) = inv(v) ∧ inv(µ) and combined flow conditions, ψv′ = ψv ∧ ψµ.

3. For each ζ ∈ Z:

(a) Find the composition of the hybrid system and the unsafe set, Yζ = V ′ ◦ ζ = {vj ◦

ζ|∀vj ∈ V, vj and ζ are consistent }. Label all locations y ∈ Yζ as unsafe and output

them.

(b) Let the set of unsafe goals, Yg,ζ = {gin,jnn ∈ y|∀y ∈ Yζ}, be the set of goals common to

all unsafe locations. Output these goals.

(c) Let the overloaded function cons() return the constrained value of a state variable when

the function is given that state variable and a location (or set of constraints) as inputs.

If there exists a di ∈ Dc such that cons(di, y) exists, then a path must be found from

init(di) to cons(di, y). There exists some λij , λ
i
l ∈ Λi such that init(di) ∈ λij and

cons(di, y) ∩ λil 6= ∅, where Λi = {λi1, ..., λij , ..., λil, ..., λini} is a forward or backward

ordered set. Let Λζi = {λij , ..., λil} be the set containing the two discrete sets of passively

constrained values that satisfy the initial and unsafe constraints and all discrete sets of

states in between. Then for each λin ∈ Λζi , a location v ∈ V ′ must be found such that

(λin |= inv(v)) ∧ (sign(cons(ḋi, v)) = sign(cons(di, y) − init(di))) is true. If such a

path can be found, the unsafe set is reachable.

This procedure is guaranteed by construction to find all locations in which unsafe conditions

can occur. It can be applied to the example introduced in Section 4.3 as follows. Assume that the



69

Figure 4.6: Converted locations, invariants, flow equations, and resets for the simple verification example

StabilizerSwitch state variable must always be in the ON position when the robot’s velocity is

high for safety reasons. Therefore, the unsafe set Z has one constraint, ζ = {(Ẋ, >, vlow), (SS,==

, ON)}. The first part of the InVeriant algorithm converted the goal network into a set of locations,

invariants, flow equations, and resets, which are shown in Figure 4.6. Since none of the dependent

state variables are continuous and rate-driven, the automaton did not need to be composed with

any of the passive state model automata. So, the automaton in Figure 4.6 was composed with the

unsafe condition ζ, and InVeriant found one location in which the unsafe set was reachable, v1. The

flow equations and reset equations of this location are consistent with the constraints in the unsafe

condition. Since all of the passive states are reachable from each other passive state, this unsafe

location is reachable. The combination of the first tactics in each goal tree are the culprits; these

tactics must be redesigned so that they are inconsistent to be able to verify the goal network versus

the given unsafe condition.



70

4.5 Verification of State and Completion-Based Linear Hybrid Sys-

tems

The software tools and verification method presented in the last two sections can also be applied to a

broader class of linear hybrid automata. Essentially, the time point restrictions on the goal networks

imposed for the conversion procedure induced a group structure on the linear hybrid automaton that

resulted; this group structure, however, is not necessary for the verification method when starting

from linear hybrid control systems. Lifting this requirement allows continuous controlled state vari-

ables to be reasoned about by InVeriant in the same way that continuous, rate-driven dependent state

variables are. However, the state-based transition requirement must still hold for the overall (com-

posed) hybrid system. Like in the case of the goal networks, it can be shown that the composition of

hybrid automata that have state-based transitions also have state-based transitions if the dynamical

flow constraints in the composed locations are consistent.

Definition 4.5.1. The dynamical flow constraints in locations of two hybrid automata are consistent

if either they can be executed concurrently or there exists some rule that allows the constraints to be

successfully merged into a composed dynamical flow constraint.

It is easy to see that this definition of consistency and the corresponding restriction are analogous

to the goal network case of needing consistent controlled constraints. Often in the goal network case,

the root goals would either be completion goals or would be macro goals combined with completion

goals in the goal network. Since there is no good analog to the relationship that goal networks and

goal trees have in the hybrid system case, a type of linear hybrid automaton called completion

automata must be defined.

Definition 4.5.2. A completion automaton is a linear hybrid automaton in which the transition

conditions and location invariants depend entirely on state variables that appear in the dynamical

flow constraints or reset equations of the locations of that automaton.

Then, so-called state-based automata would have no transitions that depend on these types of

state variables and instead would be automata that had state-based transitions as defined in the

goal network case. Finally, the non-stochastic models of passive state variables would be called

passive model automata. The composition of these types of automata is a hybrid system with certain

properties as described by Theorem 4.5.3.



71

Theorem 4.5.3. A hybrid automaton that is a composition of any number of completion and state-

based automata has state-based transitions if all composed dynamical flow constraints are consis-

tent.

Proof. Let there be N state-based automata, Hp
n, where n = 1, ..., N . For each, the set of passive

state variables constrained in the invariants of the locations is Dn ⊆ D. The composition of two

automata H ′ = Hi ◦Hj is defined as the joining of locations, V ′ = Vi ◦ Vj , where each composed

location v′ = vi ◦ vj , vi ∈ Vi and vj ∈ Vj , has an invariant inv(v′) = inv(vi) ∧ inv(vj) and flow

ψ(v′) = ψ(vi)∧ψ(vj). Assume thatH ′ = Hp
1 ◦ ...◦H

p
N , whereHp

n, n = 1, ..., N , have state-based

transitions over Dn, however, assume that H ′ does not have state-based transitions over

D =
N⋃
n=1

Dn.

That means that there exists some passive state γ ∈ Γ, where Γ is the passive state space, such that

for all v ∈ V ′, γ 2 inv(v). However, since all Hp
n have state-based transitions over Dn ⊆ D, there

exists some vγn ∈ Vn for all n = 1, ..., N such that γ |= inv(vγn) by the definition of state-based

transitions. The composition of all these locations, vγ = vγ1 ◦ ... ◦ v
γ
N , has an invariant

inv(vγ) =
N∧
n=1

inv(vγn).

Since γ |= inv(vγn) for all n = 1, ..., N , by the linearity of the operator, γ |= inv(vγ). By the

assumption, γ 2 inv(v) for all v ∈ V ′, so vγ must have an inconsistent invariant and so not be

a location. However, if inv(vγ) = False and γ |= inv(vγ), then γ = False and γ /∈ Γ, which

contradicts the original assumption. So, any number of state-based automata can be composed into

an automaton that has state-based transitions.

By definition, completion automata, Hc
m, m = 1, ...,M , have invariants that depend only on

controlled state variables, X . Since X ∩ D = ∅ and the transitions in the completion automata

are also based on the locations’ invariants, the invariants and transitions of these automata do not

affect the passive state space. Let Hc = Hc
1 ◦ ... ◦ Hc

M be the composition of all completion

automata. The composition, v? = vc ◦ v′, of any completion location vc ∈ V c with any state-

based location, v′ ∈ V ′, would have an invariant, inv(v?) = inv(vc) ∧ inv(v′) that will never be

inconsistent by definition since the invariants constrain different sets of state variables. Likewise,

the dynamical flow constraints, ψ(v?) = ψ(vc) ∧ ψ(v′), are consistent due to the assumption in



72

the theorem statement. So, no composed locations are inconsistent which means that since for all

γ ∈ Γ, there exists some v′ ∈ V ′ such that γ |= inv(v′), the same will be true for all v? ∈ V ?.

Therefore, the composition of any number of completion and state-based automata will have state-

based transitions, which proves the theorem.

Because of this modularity, the SBT Checker can be used to check the state-based transitions of

state-based automata. Likewise, the InVeriant verification software will check the consistent dynam-

ical flow constraints upon composing the automata in preparation for model checking. Because the

real requirement for InVeriant is a hybrid system whose invariant contains all the necessary infor-

mation for the transitions of the system, if the composed completion automata have locations with

unique invariants, this restriction is satisfied by that and the state-based transitions requirement.

Continuous controlled state variables can then treated just like continuous, rate-driven dependent

state variables (except no state variable model would need to be composed with the hybrid control

system) in that a path must be found from the initial condition to the unsafe condition of those state

variables to prove their reachability. Note that Theorems 4.4.1 and 4.4.2 still hold for the hybrid

systems generated this way.

This result is important because it broadens the class of systems that can be verified using this

method and it grants extra capabilities to the verification method by the addition of reasoning about

continuous controllable state variables. This method is clearly more efficient than other symbolic

model checkers such as PHAVer and HyTech that also deal with continuous states for systems that

are designed with this additional structure. As discussed in the next section, at least some of the

additional structure imposed is good design practice, so the SBT Checker and InVeriant verification

toolbox may have many practical uses for the design and verification of real hybrid control systems.

4.6 Discussion

The verification procedure for systems that have state-based transitions has many positive attributes.

First, the state-based transitions requirement can be checked modularly using a software tool, which

allows for iterative and distributed design of control systems. The SBT Checker is a simple and

intuitive tool that helps designers to design goal networks and hybrid automata that satisfy the state-

based transitions requirement. This requirement forces certain structure in the goal network or

hybrid automaton that aids in its verification; however, having state-based transitions is also a good

design practice. When a system has state-based transitions, this means that every possible measured



73

passive state is accounted for and that there is a mode or tactic that can accommodate that state.

The InVeriant software is able to verify hybrid systems with state-based transitions quickly and

efficiently. The structure imposed by the state-based transitions requirement allows the InVeriant

software to ignore the individual transitions between hybrid system locations since all the necessary

information about the transitions is contained in each location’s invariant. The number of transi-

tions between locations grows as the number of locations grow and as the number of passive state

variables grow. Because the transitions are ignored, the complexity of the verification problem no

longer depends on the number of state variables. In the verification method that involves the con-

version from goal network to hybrid system followed by the use of a symbolic model checker, the

number of passive state variables and particularly, the number of discrete states of each of those

state variables contributed a large amount to the state space explosion of the system. Decoupling

the passive state variables from the verification problem complexity will allow much larger systems

to be verified using the InVeriant software.

The special structure of the systems that have state-based transitions allow for the reachability

of the system to depend only on the states that the transitions constrain. Therefore, in many cases,

a path to the unsafe locations does not need to be explicitly found. In the cases where a path is

necessary, the structure of the system simplifies the process of finding a path since it can be shown

that groups of locations are reachable from each other. Then, the path only needs to connect those

groups. Rate constraints for continuous state variable can also be included in the unsafe set in

InVeriant, which is not possible in many symbolic model checkers.

Because the InVeriant software was built to verify goal networks as well as hybrid systems,

the information that it outputs is more conducive to the redesign of those goal networks. InVeriant

will output not only the set of unsafe locations but also the goals and tactics that are common to

all. PHAVer and HyTech output only the states of the state variables that allow the system to reach

the unsafe set; even the unsafe locations are excluded from their output. Another benefit is not

needing to translate the hybrid system into new notation or another language. Because the verifica-

tion algorithm is so simple, there are only a few ways to reduce the complexity of the verification

problem; either the number of locations in the hybrid system or the size of the unsafe set could

be reduced. However, the modularity of the SBT Checker and the simplicity of the InVeriant ver-

ification algorithm suggest that this verification method could handle decently large goal network

control programs or hybrid systems.



74

4.7 Conclusion

This verification method is designed for use with goal network control systems or hybrid systems

that have state-based transitions. The state-based transitions requirement is a common sense restric-

tion that leads to some very nice properties in the goal network verification. The modularity of the

state-based transitions requirement makes the novel SBT Checker a useful design tool even for goal

networks or hybrid systems that will not be verified. The InVeriant software leverages the reachabil-

ity properties of the automaton imposed by the state-based transitions restriction and the properties

of the state variables constrained to find the reachable unsafe set of the system quickly and effi-

ciently. A significant example in Chapter 6 shows the speed of this verification method in relation

to the conversion and PHAVer method described in Chapter 3. The simplicity and efficiency of this

verification method suggest that it could be applicable to very large and complex systems, which is

an important development in the use of reconfigurable goal-based control programs in autonomous

robotic systems.



75

Chapter 5

Probabilistic Safety Analysis of
Sensor-Driven Hybrid Automata

5.1 Introduction

The verification of control programs for autonomous robotic systems would be incomplete if the

effect of state estimation uncertainty was not discussed. Autonomous systems see themselves and

their environment through their sensors and estimators; all the state variables that drive the branch-

ing of the control program are, in fact, estimations of the true states. Because the control system is

designed and verified for the actual states, an analysis of what may happen when the estimators are

wrong is an important verification tool.

This chapter deals with the analysis of linear hybrid systems that have invariants and transi-

tion conditions that depend on the states of several uncontrollable and passively constrained state

variables. Each uncontrollable state variable, which describes the environment or the health of the

system (or anything that the system does not actively control), can reach some countable number

of discrete states (or discrete sets of states) and the transitions between these states can be modeled

as a stationary Markov process. These state variables’ states are estimated by the system and these

estimates of state are used by the linear hybrid automaton (LHA) to drive the discrete switching

between locations. For a given LHA, there may be some combination of states and locations that

are unsafe. In the perfect knowledge case (the estimator is always correct) when the LHA has been

verified by a model checker, these unsafe conditions will never be met. However, when the accuracy

of the estimator is not perfect, there exists some probability of reaching the unsafe condition. This

chapter describes a method to calculate this failure probability for different types of LHA control

systems.



76

It must be stated that the addition of uncertainty due to the estimation of the state variables driv-

ing the discrete transitions in the hybrid system adds some stochasticity to the problem. However,

the problem is not effectively described as a stochastic hybrid system; as described later, it is better

to think of the problem as an LHA with deterministic transitions and uncertainty. Stochastic hybrid

systems include uncertainty in the transitions of the hybrid automaton as probabilistic transition

conditions. Many methods to verify stochastic hybrid systems exist, some of which are referenced

in Chapter 1. The method described here somewhat abstracts the transitions of the LHA, reducing

the complexity of the problem dramatically.

The methods described in this chapter allow the analysis of the safety of a control program

against the given unsafe set when the estimation of important state variables is not perfect. If these

states were known exactly, a traditional hybrid system verification would be a sufficient test of

the safety of this system. However, a full analysis of this system must include the calculation of

the failure probability due to the estimation uncertainty. Section 5.2 sets up the failure probability

calculation problem while Section 5.3 describes the steps of the calculation. Variations on this

calculation procedure are discussed in Section 5.4. Because this method is very sensitive to problem

complexity, reduction techniques are described in Section 5.5, followed by a discussion on methods

to find an approximation of the failure probability in Section 5.6. Section 5.7 summarizes the

contributions of this chapter.

5.2 Problem Definition

5.2.1 Automata Specification and Models

The architecture of the LHA control system involves a string of high-level completion tasks, such as

driving a robot to a series of waypoints, that are executed in parallel with several minor tasks, such

as maintaining the temperature of an instrument, limiting the robot’s overall speed, or monitoring

a sensor’s health value. Thus, the locations in the hybrid automaton, vi, can be sorted into disjoint

groups, V1, V2, ..., VK , based on which of the K high-level completion tasks that the location is

trying to achieve. Then, each of the locations in a group Vk describes one method or tactic to

complete the kth high-level task and all subtasks, and these tactics are chosen based on the states of

the environment or uncontrollable states of the autonomous system that may affect the completion

of the task. For example, the high-level task may be to drive the robot to a waypoint. One of

the concurrent low-level tasks may be to maintain the temperature of the wheel motors above a



77

certain level through the use of two redundant strings of heaters. So, there are at least two tactics to

accomplish the set of tasks; the first uses the primary set of heaters and the second uses the back-up

heaters. The transition between these two locations is driven by the health of the primary string of

heaters.

The flow of the linear hybrid automaton is

ψif (tf )τif if−1
...ψi2(t2)τi2i1ψi1(t1)X0 (5.1)

where X0 is the set of initial conditions on the controlled state variables, ψin(tn) is the flow associ-

ated with location vin for tn time steps, and τinin−1 is the transition from location vin to vin−1 . The

flow of a location is based on the high-level and minor tasks that the location is trying to achieve.

These dynamical equations are the continuous control actions that a particular tactic use in the com-

pletion of the appropriate task. Discrete control actions in the form of resets are grouped with the

entry transition for a given location.

There are two types of transitions between the locations of an LHA with this group structure.

First, transitions from a location, vi ∈ Vk, to a location in the following group, vj ∈ Vk+1, are

called completion transitions, τ cji,k. The transition conditions in this case are based both on the

state of the uncontrollable state variables of the system and on the completion of the high-level

task that defines the group, Vk. The second type of transitions are transitions between locations

in the same group, vi, vj ∈ Vk, and these are called failure transitions, τ fji,k. These transition

conditions are between different tactics achieving the same high-level task and are based solely on

the states of the uncontrollable state variables. Sometimes, the state of the system becomes such

that there is no way to safely continue achieving a task; in that case, the automaton can transition

from a location vi to a special location called Safing and these failure transitions are labeled τ fSi,k.

All failure transition conditions must be entirely state-based; they cannot be based on the order of

tactics attempted except in special circumstances described later. This restriction is not a serious

one; in general, completely deterministic state-based transitions are a characteristic of more robust

control programs. First, the definition of the complete system state of the uncertain state variables

is given. Each of the uncontrollable state variables that is involved in failure transitions in the kth

group of locations is called an uncertain state variable, χ ∈ Uk, where Uk is the set of all uncertain

state variables in Vk.

Definition 5.2.1. A complete system state, sj , is both the estimated and actual state values of each



78

uncertain state variable χi ∈ Uk at a point in time in a possible execution of the LHA control system.

The set of all possible complete system states is S. Each complete system state has two functions

associated with it.

1. est(sj , χi) ∈ Λi returns the estimated value of χi in sj .

2. act(sj , χi) ∈ Λi returns the actual value of χi in sj .

Definition 5.2.2. For a hybrid automaton with completely deterministic state-based transitions,

all states in a location’s initial set, sξi ∈ init(vj), must satisfy the location’s invariant, est(sξi ) |=

inv(vj). No transition τjl,k originating from the location can be satisfied by any states satisfying the

location’s invariant,

est(sξi ) |= inv(vj)⇒ est(sξi ) 2 τjl,k,

for all vl ∈ V , vl 6= vj . Also, for any location vj ∈ Vk, there is only one transition τjl,k such that

est(sξi ) |= τjl,k for all sξi ∈ Ξk.

It is assumed that certain statistical information is known about the system. For each of the

uncertain state variables, there must be a way to model the propagation of the state variable as a

stationary Markov process; since these state variables are not controlled, oftentimes this approx-

imation is a good one. Each state variable χi ∈ Uk has a set Λi = {λi1, λi2, ..., λini} of discrete

state values (or discrete sets of state values) that can achieved by χi. The actual value of the state

variable χi can be accessed by using its associated val(χi) ∈ Λi function. The probability of these

state transitions, ρi are given by the following equation:

ρi(l, j) = P (val(χi)[κ] = λij |val(χi)[κ− 1] = λil), (5.2)

for all χi ∈ Uk and for all λij , λ
i
l ∈ Λi. The stationary probabilities give the probability that the state

variable has a certain value in the steady state model, and these probabilities, αi, are

αi(j) = P (val(χi) = λij), (5.3)

for all χi ∈ Uk and for all λij ∈ Λi.

For each uncertain state variable, χi ∈ Uk, there exists an estimator for that state variable

that has some non-zero amount of uncertainty. This uncertainty can be stated as a probability of



79

correctness of the estimated value. Furthermore, this probability can be broken up for each state

value λij ∈ Λi into the probability that if the value of the actual state, val(χi) is λil , then the value

of the estimated state, val(χ̂i) is λij , for all λij , λ
i
l ∈ Λi. This probability, ρei , is

ρei (l, j) = P (val(χ̂i)[κ] = λij |val(χi)[κ] = λil). (5.4)

The problems of measuring the uncertainty of an estimator and finding the probability of which state

is estimated given an actual state are very real in practice. Methods such as simulation and testing

can estimate these values; since the final failure probability should be used as a relative value, these

probability values do not have to be exact. Much can be learned about the system by using these

values as parameters that can be varied in the failure probability calculation.

5.2.2 Unsafe System States

When a LHA executes, that execution follows some path through the different locations based on, in

this case, only the states of the system and time. For the automata described above, within a group

the location that is executing is chosen based on the estimated system state alone; time only affects

transitions out of groups. The execution path within a group, then, consists of a list of the estimated

system state values and their associated locations at each time point; the length of the path is related

to the completion time of the group, which will be defined in Section 5.2.3.

The conditions (states and locations) that should never occur in conjunction are called the unsafe

set.

Definition 5.2.3. The unsafe set is a set of conditions Z = {ζ1, ζ2, ..., ζn} that should never be

reached in an execution of the LHA. Each condition ζj contains a set of constraints on the uncon-

trollable state variables’ values and a set of locations loc(ζj) ⊂ V in which the set of constraints

should not hold. This information can be accessed using the following functions:

1. plc(ζj , χi) ⊆ Λi returns a set of discrete values that the state variable, χi, is constrained to

be, val(χi) ∈ plc(ζj , χi), to satisfy the unsafe condition. If χi does not affect this unsafe

condition, plc(ζj , χi) = Λi.

2. loc(ζj , vi) returns true if vi ∈ loc(ζj) and false otherwise.

In a verified system, the unsafe set is unreachable when the estimated system state is accurate;

failure can occur, however, when state estimation uncertainty is added. While the execution path for



80

a group of locations depends only on the estimated system state at each time point, determining if

an execution path reaches the unsafe set requires both the estimated and actual system states. The

estimated system state still determines which location will be executing at a given time, and the

combination of the executing location and the actual system state dictate entrance into the unsafe

set. The lemma that follows states exactly this.

Definition 5.2.4. Each location vn ∈ Vk has a function associated with it that returns the state

values that each uncertain state variable, χi ∈ Uk, must take in order for that location to be executed,

ucons(vn, χi) ⊆ Λi. This is the location’s passive invariant in the state-based transitions case. If a

state variable χi is unconstrained in a location vn, ucons(vn, χi) = Λi.

Lemma 5.2.5. Let Ωk ⊂ S be the set of complete system states that drive the automaton execution

from group Vk into the unsafe set Z. For a complete system state sω ∈ S , sω ∈ Ωk if and only if

there exists ζj ∈ Z and vn ∈ Vk such that

 ∧
χi∈Uk

act(sω, χi) ∈ plc(ζj , χi)

 ∧
 ∧
χi∈Uk

est(sω, χi) ∈ ucons(vn, χi)

 ∧ loc(ζj , vn) (5.5)

is true.

Proof. Let sω ∈ Ωk but assume there is no vn that satisfies (5.5). By the definition of the unsafe

set, there must exist some ζj ∈ Z such that

∧
χi∈Uk

act(sω, χi) ∈ plc(ζj , χi)

is true, since entrance into the unsafe set is always driven by the actual system state. Since the

unsafe set specifies the total system state, including the location in the automaton, there must exist

some vn such that loc(ζj , vn) is true. To enter location vn and thus the unsafe set from complete

system state sω, ∧
est(sω, χi) ∈ ucons(vn, χi)

must be true since the transitions in the automaton are state driven by definition and because the

estimated state drives the transitions in the hybrid automaton execution. Therefore, vn does satisfy

(5.5). The other direction of the proof is obvious by the definition of the unsafe set.

Complete system states that cause the automaton to transition from a location vi ∈ Vk to Safing



81

Figure 5.1: A representation of the classifications of complete system states. The nominal set of states is Ξk,
which is Sk \ (Ωk ∪ Fk), where Fk is the set of Safing states and Ωk is the set of unsafe states.

are elements of the safing set for group Vk, sf ∈ Fk. Complete system states that allow the execution

of the group to occur normally are elements of the nominal set, sξ ∈ Ξk. For each group of locations

Vk,

S = Ξk ∪ Fk ∪ Ωk, (5.6)

where S is the set of all complete system states, and the sets Ξk, Fk, and Ωk are disjoint. Figure 5.1

illustrates this.

5.2.3 Failure Path Specification

The completion time of a group Vk depends on the completion task that defines the group. The type

of completion time (uniform or non-uniform) depends on the presence of rate limiting tasks that

affect the completion task in the group.

Definition 5.2.6. A nominal execution path of a group Vk is a path sξ1s
ξ
2...s

ξ
r ∈ Nk in which only

nominal complete system states are visited before the group is exited and execution continues in

group Vk+1. The set of all nominal execution paths in group Vk is Nk.

Definition 5.2.7. Given the set of nominal execution paths Nk for group Vk, the completion time,

ck, is the minimum length of nominal execution path,

ck = min
ν∈Nk

length(ν). (5.7)

The completion time of a group is the time it takes to achieve the group’s completion task at the

fastest constrained rate.



82

Figure 5.2: Hybrid control system for speed limit example

Definition 5.2.8. In a uniform completion group, Vk,

ck = min
ν∈Nk

length(ν) = max
ν∈Nk

length(ν). (5.8)

The uniform completion case holds in groups that have only one rate of completion of the task;

in this case, all tactics contribute the same amount towards the completion of the task. Another way

to define the uniform completion case is that the contribution values of each location in the group

are the same.

Definition 5.2.9. The contribution value of a location vi ∈ Vk, cval(vi) ∈ R, is the normalized

contribution towards the achievement of the completion task in Vk that location vi gives each time

step. In uniform completion groups, for each vi ∈ Vk, cval(vi) = 1.

Definition 5.2.10. A non-uniform completion group is one in which

min
ν∈Nk

length(ν) 6= max
ν∈Nk

length(ν). (5.9)

In the non-uniform completion, for each location vi ∈ Vk, cval(vi) ≤ 1. In this case, the group

would have more than one rate that constrains the achievement of the completion task. An example

of non-uniform completion would be a rover that is assigned to reach a certain waypoint, but whose

maximum velocity is related to the laser sensor’s health value. One time step in a location would

drive the rover a distance that is different than the distance achieved in a different location that

constrains the rover to a different maximum velocity. Figure 5.2 shows the simple hybrid system

for this example; assuming that v1 = 2v2, the contribution value of the first location would be 1 and

the contribution of the second location would be 1
2 .

The definition of failure path is now given.

Definition 5.2.11. A failure path in group Vk is a sequence of nominal complete system states, sξi ,



83

i = 0, ..., n, followed by an unsafe system state, sω. The number of nominal complete system states

is n = 0, ..., r−1, where r = ck in the uniform completion case and depends on the completion time

and the contribution values of the locations visited along the path for the non-uniform completion

case.

From Definition 5.2.2 of completely deterministic state-based transitions, it is clear that there

can be a function cloc(sξ, k) ∈ Vk that returns the location associated with the nominal complete

system state sξ in group Vk.

Lemma 5.2.12. For every failure path π = sξ1s
ξ
2...s

ξ
r−1s

ω ∈ Πk, where Πk is the set of all failure

paths in group Vk,
r−1∑
i=1

cval(cloc(sξi , k)) < ck. (5.10)

Proof. The proof of this lemma is simple; if the sum of the contribution values of the nominal states

visited in a failure path equals or exceeds ck, the execution continues into the next group by the

definition of completion time. In order for the path to lead to the unsafe set within a group, the sum

of the contribution values of the nominal states must ensure that the path is fully contained within

the group; entrance into the unsafe set is always the last state transition in a failure path.

Each failure path has some probability of occurring during an execution of that group of the

hybrid automaton. This is called the failure path probability, and the sum of these over all possible

failure paths is the failure probability of a group. Details of these calculations will be described in

the next section.

5.3 Probability Calculations

The failure probability is calculated from the sum of all the failure path probabilities in a group; the

paths in a group depend on the completion time, and the procedure for finding all the failure paths in

a group depends on whether it is a uniform or non-uniform completion group. The failure paths for

the uniform completion case are easy to find; the procedure for the non-uniform completion case is

more involved. Both will be described in this section.

First, a combined Markov process-like transition probability matrix and a set of initial proba-

bilities are calculated for each complete system state. The stationary probabilities of the individual

Markov chains are used to calculate initial condition probabilities of each complete system state in



84

a group. By having this information, the separate group failure probabilities may be combined into

a failure probability for the entire hybrid automaton, as will be shown later.

For a given complete system state, the initial probability, P (s), is given by the following:

P (s) =
∏
χi∈Uk

P (val(χi) = act(s, χi))P (val(χ̂i) = est(s, χi)|val(χi) = act(s, χi)). (5.11)

The transition probability of going from one complete system state to another, P (sl|sj), is given by

the following:

P (sl|sj) =
∏
χi∈Uk

P (val(χi)[κ] = act(sl, χi)|val(χi)[κ− 1] = act(sj , χi))×

P (val(χ̂i)[κ] = est(sl, χi)|val(χi)[κ] = act(sl, χi)). (5.12)

5.3.1 Uniform Completion Case

For the uniform completion case, collections of stationary and transition probabilities between nom-

inal and unsafe system states can be created. First, the probability of executing a failure path of

length one in group Vk (i.e., starting in the unsafe set) is

ak =
∑
sωj ∈Ωk

P (sωj ). (5.13)

Likewise, let Wk be a vector of probabilities whose elements are the initial probabilities of each

nominal system state, sξj ∈ Ξk. Thus, the jth element of vector Wk is

Wk(j) = P (sξj). (5.14)

Next, transition probability constructs are defined. The matrix of transition probabilities be-

tween all nominal complete system states is Qk, where the probability of a transition between sξi to

sξj is

Qk(i, j) = P (sξj |s
ξ
i ). (5.15)

Since all unsafe complete system states are accepting states, only the transitions into these states

from the nominal complete system states are considered. The vector Wu,k contains the probabilities



85

of transitions from each nominal complete system state to every unsafe complete system state,

Wu,k(j) =
∑
sωi ∈Ωk

P (sωi |s
ξ
j). (5.16)

Proposition 5.3.1. The failure probability for the uniform completion case in group Vk can be

calculated using the following formula, for ck ∈ [2,∞),

Ws(k) = ak +Wk · (
ck−2∑
i=0

Qik)Wu,k. (5.17)

When ck →∞, the equation becomes

Ws(k) = ak +Wk · (I −Qk)−1Wu,k. (5.18)

Proof. The failure probability is the sum of all the failure path probabilities; for the uniform com-

pletion case and the definitions of ak, Wk, Qk, and Wu,k given above, Eq. (5.17) sums the path

probabilities of all failure paths of length one to length ck. If a path has length ck + 1, ck of the

path elements must be nominal states; because for the uniform completion case, cval(sξ) = 1 for

all sξ ∈ Ξk and by Lemma 5.2.12, a path of length ck + 1 is not possible in group Vk. Therefore,

Eq. (5.17) is the sum of all possible failure paths in Vk. Using

∞∑
i=0

Qi = (I −Q)−1, (5.19)

one can derive (5.18) from (5.17).

In the infinite time case, the failure probability approaches 1 − Wf (k), where Wf (k) is the

probability of entering the Safing location from group Vk.

5.3.2 Non-Uniform Completion Case

In the uniform completion case, the number of failure paths considered was greatly reduced by

the creation of the probabilistic transition matrix and vectors. Since all locations contributed the

same amount to the completion of the group, the path length did not depend on which individual

locations were visited. This is not the case in the non-uniform completion case, where the execution



86

path length does depend on which locations are executed and in what order. Like the uniform

completion case, there is a way to reduce the number of failure paths that must be considered by

grouping together locations by contribution values.

Let Bk = {b|b = cval(vi),∀vi ∈ Vk} be the set of contribution values in a group, where all

b ∈ Bk are unique (for all bi, bj ∈ Bk, bi 6= bj) and ordered (Bk = {b1, b2, ..., bn} such that

b1 > b2 > ... > bn). Since cval(vi) is the rate of location vi ∈ Vk normalized by the maximum rate

in group Vk, b1 = 1. Now, let there be n sets βi, where

βi = {sξj |cloc(sξj , k) = vi ∧ cval(vi) = bi,∀sξj ∈ Ξk} (5.20)

where each βi is the set of locations that have a contribution value bi. Then, failure paths can be

created using βi instead of using the individual nominal system states, sξ, where for failure path

βi1βi2 ...βir−1s
ω
r ,

r−1∑
j=1

bij < ck. (5.21)

All possible failure paths can be found using a simple algorithm that is based on a breadth-

first search. A branch of the search tree is complete when adding any set βi, i = 1, ..., n, to the

path, π, would cause the sum of the contribution values of the path elements to equal or exceed the

completion time, ∑
βi∈π

bi ≥ ck − bn. (5.22)

Also, the paths as they stand at each level of the search are added to the set Π of all potential failure

paths. The algorithm is outlined below:

1. Initialize the search tree with the initial failure path placeholder, β∅. The initial failure path is

the failure path with no nominal transitions. The placeholder, β∅, has no contribution value

and is ignored in any path containing other β sets. Add this path to set Π1. Set the level

counter l = 1.

2. For each branch, πli, on level l, compute the sum of the contribution values,

cval(πli) =
∑
βj∈πli

bj . (5.23)



87

Figure 5.3: The search tree of potential failure paths for the speed limit example

(a) For each bj ∈ Bk, if cval(πli) + bj < ck, append βj to the path, πli + βj ∈ Πl+1.

(b) If bn = 0, for each path πli whose last set is βn, βn may not be added to that path.

3. Increment l.

4. Repeat steps 2 and 3 until Πl = ∅.

5. Create the set of all potential failure paths,

Π =
l−1⋃
i=1

Πi. (5.24)

This algorithm can be demonstrated with the simple speed limit example shown in Figure 5.2.

Let ck = 2 and B = {1, 1
2}, where the location with the higher speed limit has a velocity constraint

twice the other location’s. The breadth-first search tree can be found in Figure 5.3 with the search

levels denoted. The final set of potential failure paths is Π = {β∅, β1, β2, β1β2, β2β1, β2β2, β2β2β2}.

Each path in Π would need to be followed by a transition into the unsafe set for it to become a failure

path; the element β∅ would simply be replaced by an initial condition in the unsafe set.

In the case that bn = 0, the failure path algorithm has an exception. Because the execution can

remain in the zero rate locations for an infinite number of time steps, once βn is added to a path,

the next set added to the path, βj , must have a contribution value bj > 0. This step avoids the path

creation algorithm from becoming an infinite loop; the infinite number of failure paths is accounted

for in the path probability calculation step.

The calculation of failure path probabilities is similar to the method described for the uniform

completion case. The scalar value ak is again the probability of starting in the unsafe set. Instead



88

of one vector of initial probabilities for the nominal states, Wk, there are n vectors, one for each set

βi, i = 1, ..., n. Each vector W i
k has an initial probability for each nominal complete system state

sξj ∈ βi, calculated in (5.14). The Qk transition matrix is broken up into several smaller matrices

to account for all possible transitions between the β sets. For all βi, βj , i, j = 1, ..., n, in a group,

there exists a matrix Qi,jk that contains the transition probabilities from each nominal complete

system state sξl ∈ βi to each sξm ∈ βj . Finally, the vector of transition probabilities from nominal

complete system states to the unsafe set, Wu,k is also broken up into n vectors W i
u,k, i = 1, ..., n,

that are associated with the β sets.

The failure path probabilities are calculated using the initial and transition vectors and matrices

described above and then all path probabilities are summed to find the group’s failure probability.

For the speed limit example, there are seven failure paths whose individual path probabilities must

be calculated and summed to find the group’s failure probability, as follows:

Ws(1) = a1 +W 1
1 ·W 1

u,1 +W 2
1 ·W 2

u,1 +W 1
1 · (Q

1,2
1 W 2

u,1)+

W 2
1 · (Q

2,1
1 W 1

u,1) +W 2
1 · (Q

2,2
1 W 2

u,1) +W 2
1 · (Q

2,2
1 Q2,2

1 W 2
u,1). (5.25)

In the case that bn = 0, each time a transition into βn is encountered in a failure path, it is

replaced by an infinite series of paths with increasing numbers of transitions into that set. Whereas

a single transition into set βj , bj > 0 from set βi is generally indicated in the failure path probability

calculation by Qi,jk , a transition from βi to βn, bn = 0 would be represented by

Qi,nk

( ∞∑
x=0

(
Qn,nk

)x)
. (5.26)

By (5.19), this becomes Qi,nk
(
I −Qn,nk

)−1. Likewise, if βn is the first set of locations visited, its

probability value is represented by Wn
k ·
(
I −Qn,nk

)−1.

5.3.3 System Failure Probability

The overall hybrid automata failure probability can be calculated by summing the probabilities of

all the failure paths through the automata. To do this, the probability of each group reaching the

Safing location, Wf (k), must be calculated. The procedure for doing this is the same as for finding

the failure probability, however, sfi ∈ Fk are used as the accepting states instead of sωi ∈ Ωk. The



89

probability of traversing group Vk nominally is then

Wn(k) = 1−Ws(k)−Wf (k). (5.27)

Proposition 5.3.2. The failure probability of the system of K > 1 groups is given by

Ws = Ws(1) +
K∑
i=2

(
i−1∏
j=1

Wn(j))Ws(i). (5.28)

Proof. The failure probability of the hybrid system is the sum of the failure path probabilities

through the system. Since the failure paths can only consist of zero to K − 1 nominal group

transitions followed by a failure, Eq. (5.28) gives all failure paths through the hybrid system. Any

entrance into Safing removes the execution from the hybrid system and precludes failure in the

future, and so is excluded from the failure probability calculation.

5.4 Variations on the Failure Probability Problem

5.4.1 Subgroups

Some groups may have two or more disjoint sets of locations; once execution enters one of the sets

of locations in group Vk, the execution can only exit that set of locations to go to Safing or the next

group, Vk+1. These disjoint sets of locations are called subgroups. Each subgroup, Vk,h ⊂ Vk,

has a set Ik,h ⊂ Ξk of complete system states that cause the execution of the automaton to enter

the subgroup Vk,h upon entering the group Vk. The initial transition into a subgroup allows only a

subset of all nominal complete system states, however once in a subgroup, every complete system

state continues the execution in that subgroup. Therefore, the Wk probability vector must be broken

up into separate, disjointWk,h vectors for each subgroup. Once the execution enters a subgroup, the

unsafe set of complete system states may be different between the subgroups and from the initial

set of unsafe complete system states; therefore, each subgroup has its own Fk,h, Ξk,h, and Ωk,h for

the non-initial transitions within the subgroup. This triggers separate transition probability matrices

and nominal to unsafe transition vectors for each subgroup as well.

An example of this subgroup structure can be found in the following example. Suppose that

there is a rover that must follow a path to a point, but the path branches and the choice of the

final point is based on the rover’s system health. Figure 5.4 shows the task and Figure 5.5 gives



90

Figure 5.4: Depiction of the path for the simple rover task

Figure 5.5: Hybrid control system for the simple rover task

the hybrid control system. Once the robot reaches point C1 and makes the choice to go to P1

or P2, this choice cannot be reversed. The set of all complete system states for this task is S =

{GG, GF, GP, FG, FF, FP, PG, PF, PP} (actual then estimated system health state), and the unsafe set is

as follows:

1. ẋ > 0 and SystemHealth is POOR, and

2. ẋ > v2 and SystemHealth is FAIR.

The initial unsafe set is Ω2 = {FG, PG, PF}. The initial set that allows transitions into the top location

(going to P1) is I2,1 = {GG}; the initial set for the other location (going to P2) is I2,2 = {GF, FF}.

The remaining complete system states are initially Safing, F2 = {GP, FP, PP}.

Once the execution transitions into the first subgroup, all complete system states can be reached,

and the unsafe, safing, and nominal sets for this subgroup are as follows: Ω2,1 = {FG, PG}, F2,1 =

{GF, GP, FF, FP, PF, PP}, and Ξ2,1 = {GG}. For the second subgroup, these sets are Ω2,2 = {PG, PF},

F2,2 = {GP, FP, PP}, and Ξ2,2 = {GG, GF, FG, FF}.

Though a group may be have non-uniform completion, each subgroup within that group may be

uniform or non-uniform. In the example above, group V2 as a whole is a non-uniform completion

group, but each subgroup, V2,1 and V2,2, is a uniform completion group. Once the initial transition



91

into a subgroup is taken, the subgroup can be treated like any other group when calculating the

failure probability within the subgroup. These subgroup failure probabilities, Ws(k, h), are calcu-

lated in the same way as the group failure probability for a connected group except that there is no

initial failure probability (ak) in the failure path probability sum. Then, the overall group failure

probability for a group that has H subgroups is the sum of the initial failure probability and all the

subgroup failure probabilities,

Ws(k) = ak +
H∑
h=1

Ws(k, h). (5.29)

The safing probability, Wf (k), for a group Vk with subgroups is calculated in the same way; the

nominal probability is Wn(k) = 1− (Ws(k) +Wf (k)). These group probabilities can then be used

to calculate the system failure probability as described in Eq. (5.28).

5.4.2 Completion Time Uncertainty

It may not be possible to exactly know the completion time for a group. If there is a probability

distribution over a finite number of possible completion times, the failure probability for that group

can be calculated by finding the failure probability for each possible completion time. The total

failure probability for the group is the sum of the failure probabilities for each possible completion

time multiplied by the completion time probability. This procedure works for both the uniform and

non-uniform completion cases.

Let H be a hybrid automaton with stochastic differential equations,

dxc = l(v, xc)dt+ σ(v, xc)dw (5.30)

that dictate the controllable state evolution for the completion task in each location. The drift,

l : V × Xc → R is the linear flow condition for the continuous completion state variable and

σ : V × Xc → R1×p is a dispersion vector for the Rp-valued Wiener process w(t). It is assumed

that for any vi, vj ∈ Vk, σ(vi, xc) = σ(vj , xc). For each group, Vk, let Lk = {l(v, xc)|∀v ∈ Vk},

the set of all completion rates in a group. Let lk = minli∈Lk li; the completion time,

ck =
|inv(v, xc)|

lk
, (5.31)



92

is the invariant distance that the completion state variable must travel in order for the execution to

move onto the next group. By definition, for all vi, vj ∈ Vk, inv(vi, xc) = inv(vj , xc). However,

with the addition of the Wiener process, w(t), the actual completion rate of the location, l̃(v, xc),

now is a normally-distributed random variable with mean l(v, xc). Since the invariant is strictly de-

terministic in this formulation, the completion time for the group, c̃k, is also a normally-distributed

random variable with mean ck.

It is possible to approximate the failure probability of a group with this completion time un-

certainty to varying degrees of accuracy. For uniform completion groups, the failure probability

can be computed for a range of completion times centered about ck, Cnk = {ci|ci ∈ Z+ ∧ ci ∈

[ck−nσ, ck +nσ]}. Each potential completion time ci ∈ Cnk has an associated adjusted probability

of occurring,

p(ci) =
∫ ci

ci−1
ρ(y)dy − ρ(ci − 1) (5.32)

where ρ is the probability density function of c̃k. Each potential completion time also has an asso-

ciated group failure probability, W̃s(k, ci), which is calculated according to equation (5.17).

With this information, one can calculate the estimated group failure probability,

Ŵn
s (k) =

∑
ci∈Cnk

p(ci)W̃s(k, ci). (5.33)

This is only a lower bound on the true group failure probability; as n → ∞, Ŵn
s (k) → Ws(k).

However, the lower end of the completion time distribution can be overestimated by taking

p(cimin) =
∫ ci

−∞
ρ(y)dy (5.34)

where

cimin = min
ci∈Cnk

ci.

The failure probability W̃s(k, ci) increases as ci increases, so a similar overapproximation is not

possible with cimax.

For the non-uniform completion case, the same process as described for the uniform completion

case can be used, however, this assumes that the uncertainty in the different contribution values does

not affect the failure paths. For contribution values that are well separated, for example, 1
2 and 1

3 , this

assumption is good for sufficiently small σ. However, as the differences between the contribution



93

Figure 5.6: Hybrid automaton for the missing state transition example

values get smaller or the uncertainty gets larger, this assumption may no longer apply. In that case,

the estimated failure probability will still be a lower bound on the actual failure probability, but

increasing nwill not make the estimated failure probability converge to the actual failure probability.

5.4.3 Missing State Transitions

The failure probability procedure works for LHA that have discrete transitions based solely on the

state of the system. It can be adapted for certain small problems that may have transitions that are

also based on the order in which the locations are visited; an example of this is shown in Figure 5.6.

This is a similar velocity-controlled rover driving task to the one shown in Figure 5.2, however, once

the execution enters into the HalfSpeed location, it must continue there until the task is completed.

This extra restriction causes there to be no transition from the HalfSpeed location to the FullSpeed

location upon the LaserHealth becoming GOOD; thus, this is called a missing state transition

case.

The complication that arises in missing state transition cases is that assigning each complete

system state to just one location becomes impossible. In the example introduced in Figure 5.6, the

set of complete system states can be represented by S = {GG, GF, FG, FF}. While the complete

system states with an estimated state of FAIR can only occur in the HalfSpeed location, due to

the missing transition, the complete system states with estimated values that are GOOD are possi-

ble in both locations (though they are only possible in the FullSpeed location initially). In order

to accommodate this, copies of the ambiguous complete system states must be added to S. If

cloc(sξ, k) = {vj |
∧

est(sξ, χi) ∈ ucons(vj , χi)} has n > 1 members, then each sξ ∈ S must be

replaced by n copies identified by location, s̃ξ = {(sξ)vj |vj ∈ cloc(sξ, k)}. Then, the adjusted state

space becomes S̃ = S ∪ s̃ξ for all adjusted sξ.

In addition to augmenting S, the initial and transition probability vectors and matrices must also



94

be modified. Let sξi have an augmented set s̃ξi and let vj ∈ cloc(sξi , k) be the location such that

est(sξi ) ∈ init(vj). Then, the initial probability for each (sξi )
vl ∈ s̃ξi is

P ((sξi )
vl) =

 P (sξi ) l = j

0 l 6= j.
(5.35)

Likewise, the conditional probabilities must be adjusted. Let ejl ∈ E exist if and only if there exists

a valid transition from location vj to vl.

Lemma 5.4.1. For all vj , vl ∈ cloc(sξi , k), vj 6= vl, P ((sξi )
vl |(sξi )vj ) = 0.

Proof. Assume that est(sξi ) |= τjl,k and vj 6= vl. Since both vj , vl ∈ cloc(sξi , k), sξi |= inv(vj) ∧

sξi |= inv(vl). Since the transition scheme is still deterministic and except for the missing transitions,

it is state-based, so if the transition does exist, by definition sξi 2 inv(vj). So, the only location

reachable from vj with a state sξi is vl = vj , which negates the starting assumption.

Lemma 5.4.2. For each sξm ∈ S̃, there exists a unique (sξi )
vj ∈ s̃ξi such that there exists an

edge enj ∈ E with an associated transition condition τnj,k such that est(sξm) |= τnj,k, where

vn ∈ cloc(sξm, k).

Proof. If the unadjusted state sξm |= inv(vj), then vn = vj and there are no appropriate transition

conditions τnj,k such that est(sξm) |= τnj,k by the definition of state-based transitions. If sξm 2

inv(vj), then there exists some transition edge enj and condition τnj,k that is satisfied by est((sξi )
vj )

and by the definition of state-based transitions, this transition is unique.

In summary, each complete system state sξi can transition to only one copy of sξj with set

s̃ξj because of the overlapping of invariant sets of the locations. In the example, the set S̃ =

{GG1, GG2, GF, FG1, FG2, FF}. If the original transition matrix for the set S = {GG, GF, FG, FF} for

the similar example shown in Figure 5.2 looked like this,

T =


0.5 0.05 0.05 0.4

0.4 0.3 0.05 0.25

0.25 0.05 0.3 0.4

0.4 0.05 0.05 0.5

 , (5.36)



95

then the adjusted matrix for set S̃ for the current example looks like this,

T̃ =



0.5 0 0.05 0.05 0 0.4

0 0.5 0.05 0 0.05 0.4

0 0.4 0.3 0 0.05 0.25

0.25 0 0.05 0.3 0 0.4

0 0.25 0.05 0 0.3 0.4

0 0.4 0.05 0 0.05 0.5


. (5.37)

From this point, the failure probability calculation follows the same procedure for both the

uniform and non-uniform completion cases as described previously.

5.5 Problem Complexity and Reduction Techniques

5.5.1 Problem Complexity

The failure probability found using the method described here is exact in the sense that it is not an

approximation of or an upper bound on the actual failure probability given the initial information.

Although the initial information, like the estimator uncertainty measure and the stationary Markov

processes that describe state propagation, are generally approximations, a powerful use for this

method is to understand how the failure probability is affected by changes in this initial information.

Unfortunately, the complexity of the failure probability calculation method is exponential in

the number of uncertain state variables. Let y(χi) be the number of discrete states in Λi for each

uncertain state variable χi ∈ Uk. Then, the number of complete system states is

∏
χi∈Uk

y(χi)2. (5.38)

To simplify the problem, let each of the n uncertain state variables, χi ∈ Uk, i = 1, ..., n, have y

discrete states in Λi. Then, the number of complete system states is y2n. The number of complete

system states affects the size of the transition matrices and vectors. The classification of each

system state, the calculation of its stationary probability, and the creation of the transition probability

matrices and vectors have been automated, however, which allows larger problems to be explored.

Another contributing factor to problem complexity in the non-uniform completion case is the

number of distinct contribution values in a group. In general, the number and size of the contribution



96

values and the completion time affect the number of failure path groups that are possible. The

number of failure path groups increases as the number of contribution values and the completion

time increase, and decreases as the actual contribution values increase. However, the failure path

creation algorithm is very efficient and can handle finding the path groups with little problem. The

difficulty then becomes the number of math operations needed to find the failure probability, which

is based on the number of complete system states and the number of failure path groups.

5.5.2 Complete System State Reduction Techniques

Because the complexity of the failure probability calculation depends on the number of uncertain

state variables and states, techniques to reduce that number are important. One such reduction

method is the introduction of derived state variables. A derived state variable is a non-physical state

variable whose state propagation completely depends on two or more uncertain state variables. Let

χ̄ ⊂ Uk be a set of two or more uncertain state variables. Let Λ̄ be the set of all combinations of

discrete states of these state variables,

Λ̄ =
∏
χi∈χ̄

Λi.

In some cases, the control of the hybrid automaton may be based on collections of states, λ̄i ⊂ Λ̄.

If this is the case, a new derived state variable, δ, may be created with discrete sets of states, Λ̄δ =

{λ̄1, λ̄2, ..., λ̄m}, where

m <
∏
χi∈χ̄

ni,

the number of individual states in Λ̄. Therefore the contribution to the problem complexity of the

derived state variable would be

m2 <
∏
χi∈χ̄

n2
i . (5.39)

An example of this is the SystemHealth state variable that is modeled on three sensor health

state variables (IMU, GPS, and LADAR), each having two discrete states (GOOD and POOR). The

model of the SystemHealth state variable, with three states, and its corresponding hybrid control

system is shown in Figure 5.7. In this example, m = 3 and
∏
ni = 8, so the complexity reduction,

9 < 64 is significant.

Another way to reduce the complexity of the failure probability calculation is to leverage the

state models of composite uncertain state variables. Unlike derived state variables, these uncer-



97

Figure 5.7: Model for derived system health state variable and corresponding hybrid automaton control
system

tain state variables are physical and may be adequately described by a stationary Markov process.

However, a better model for the state propagation of these state variables may be based on other

uncertain state variables. For example, assume that the LADARHealth state variable (LH) for a

robotic system depends on the position of the sun relative to the sensor and the amount of dust on

the sensor. This state variable’s state propagation can be adequately modeled as a stationary Markov

process; however, if the relative position of the sun (SP) independently affects the hybrid control

system, some reduction in the number of complete system states may be possible. For example,

assume that LH = χ1 has the set of discrete states Λ1 = {GOOD1, FAIR1, POOR1} and SP = χ2

has the set Λ2 = {DIRECT2, INDIRECT2}. Assume also that the model of state propagation of LH

dictates that if val(χ2) = DIRECT2 then val(χ1) = POOR1. In this case, there can be no complete

system state, s, such that

(act(s, χ1) 6= POOR1 ∧ act(s, χ2) = DIRECT2) ∨ (est(s, χ1) 6= POOR1 ∧ est(s, χ2) = DIRECT2)

is true. This knowledge reduces the total number of complete system states.

5.6 Approximate Methods

5.6.1 Stochastic Hybrid Model Verification

Since methods for verifying certain classes of stochastic hybrid systems exist, it is worth some ef-

fort to attempt to construct a suitable stochastic hybrid model for the type of problem solved in

this chapter. The hybrid systems treated here assume discrete time execution, so the same assump-



98

tion will apply to the stochastic hybrid model. The definition for discrete-time switching diffusion

processes used in this section is given in Definition 2.3.1.

The hybrid control systems without estimator uncertainty can easily be converted into a type of

stochastic hybrid model with probabilistic transitions and deterministic flow equations. The loca-

tions, edges, resets, continuous state space and flow equations are one to one between the original

hybrid system and the stochastic system; Vn = Vo, En = Eo, Xn = Xo, and φ(Xn,Vn) =

ψ(Xo, Vo), where the subscripts stand for “new” and “old,” respectively. The transition conditions

of the original automaton were based on the discrete states of environment state variables whose

state propagation could be modeled by a stationary Markov process. In the conversion, these tran-

sition conditions become the transition probabilities between the environment states that satisfy the

originating location’s invariant and the states that satisfy the accepting location’s invariant. For ex-

ample, let there exist an edge eij between locations vi and vj and let Γi = {s ∈ S|s |= inv(vi)} and

Γj = {s ∈ S|s |= inv(vj)}. Since the transition condition associated with edge eij is

τij =
∧
s∈Γj

s

and since for the perfect knowledge case, act(s) = est(s), let the transition probability associated

with edge eij be

µij =
∑
sn∈Γi

∑
sm∈Γj

∏
χl∈Uk

P (val(χl)[κ] = act(sm, χl)|val(χl)[κ− 1] = act(sn, χl)). (5.40)

How to add the estimation uncertainty to the stochastic models of the environment variables is

not as obvious. Because the hybrid system was verified against the unsafe set in the perfect knowl-

edge case, it is important to distinguish between the actual and estimated states of the system since

failure can only occur when these are different. In the uncertain system, the actual and estimated

system states have different jobs; the estimated state drives the transitions between the locations of

the control system and the actual state in a location can cause the system to reach an unsafe state.

In order to differentiate between executing a location nominally and in an unsafe way, a new loca-

tion, vu, must be created in each group to account for the unsafe states. So, in the uncertain case,

Vk = Vk ∪ {vu}.

The transition probabilities between the locations that are not unsafe would also depend on

estimation uncertainty in addition to the state propagation probability models. An edge eiu would



99

be added to each location vi from which a direct transition into the unsafe set is possible; the

transition probability associated with that edge would be the sum of the transition probabilities from

each nominal execution state whose estimated state values satisfies the original location’s invariant,

sξ |= inv(vi), to each unsafe execution state, sω. Let Γξi = {sξ ∈ Ξk| est(sξ) |= inv(vi)}, then

µij =
∑
sξn∈Γξi

∑
sξm∈Γξj

P (sξm|sξn) (5.41)

and

µiu =
∑
sξn∈Γξi

Wu,k(n). (5.42)

The overall group failure probability would be the probability of reaching the unsafe location. An

upper bound of this probability could be found using a variety of existing stochastic hybrid system

verification methods.

The problem constructed in this way gives few advantages over the method described previously.

The transition probabilities between the locations would need to be calculated for the stochastic hy-

brid system in much the same way as described previously. Depending on the verification method

used, paths through the group may not need to be found explicitly, which may reduce the problem

complexity slightly, but the number of complete system states continues to drive the problem com-

plexity. Also, though the number of locations is basically hidden in the previously described failure

probability calculation, it is important and even increased slightly in the stochastic hybrid model

formulation. Many of the stochastic verification methods available are affected by the number of

reachable locations. Finally, most stochastic hybrid system verification methods can only find an

approximation of the failure probability, whereas the original method presented here is exact; how-

ever, because of the complexity issues with this failure probability calculation, Markov Chain Monte

Carlo simulation is a natural next step.

5.6.2 Markov Chain Monte Carlo Simulation

Monte Carlo simulation is a useful way of approximating the failure probability of systems that are

too large to reason about using the method described here. Stochastic hybrid systems like those

described in the previous section are set up for Monte Carlo simulation; however, getting a system

into that form may take more time and/or memory than one has available. The complexity of this

problem is exponential in the number of uncertain state variables.



100

Some systems can be approximated even more. There is an automatic way to enumerate each of

the complete system states for a problem and even to sort these states into the appropriate set (Ξk,

Ωk, or Fk) for each group Vk, k = 1, ...,K. However, calculating the individual transition proba-

bilities for each complete system state can be difficult for large systems. Instead, if the stationary

Markov chains modeling the uncertain state variables converge quickly, the equilibrium probabil-

ity of each complete system state can be automatically calculated and summed over the sets (Ξk,

Ωk, and Fk) up to a specified accuracy. For the nominal set, the probability could be broken down

further based on the different contribution values.

Let the state propagation models for each uncertain state variable, χi ∈ Uk, be stationary,

ergodic, finite-state Markov processes whose transition matrices, Pi, satisfy

Pi = lim
n→∞

Pni . (5.43)

Let the estimation uncertainty matrix, Eχ,i, for each uncertain state variable be symmetric; also, let

the probability of estimating the correct state be the same for each possible state. Finally, let the

augmented probability matrix for each state variable, Pχ,i, be the matrix that gives the transition

probability between complete states of the individual uncertain state variable. By abuse of notation,

let s ∈ Λi × Λi be a complete state of single uncertain state variable χi, and let act(s) ∈ Λi and

est(s) ∈ Λi. For any two states sj , sl ∈ Λi × Λi, the augmented transition probability is

Pχ,i(j, l) = P (val(χi)[κ] = act(sl)|val(χi)[κ− 1] = act(sj))×

P (val(χ̂i)[κ] = est(sl)|val(χi)[κ] = act(sl)). (5.44)

Proposition 5.6.1. The augmented transition probability matrix, Pχ,i, satisfies

Pχ,i = lim
n→∞

Pnχ,i (5.45)

if the original transition probability matrix Pi also satisfies the same equation.

Proof. Because Pi satisfies Eq. (5.43), ni × ni matrix is a column vector ni 1× ni vectors, π,

Pi =


π
...

π

 , (5.46)



101

where π is the stationary distribution of Pi,

π = πPi. (5.47)

Therefore, the jth column of Pi is a ni × 1 vector of value π(j). Since the estimation probability

is based on the actual value of the state variable at time κ instead of at time κ − 1, the augmented

matrix is created as follows. The jth column of Pχ,i corresponding to a state s such that act(s) = λj

and est(s) = λl is

Pχ,i(j) = ~π(j)P (val(χ̂i) = λl|val(χi) = λj) (5.48)

where ~π(j) is a column vector of ni π(j) values. Since the constant row vector is multiplied by a

constant, the resulting column vector of Pχ,i is also a constant vector. This is true for all columns

of Pχ,i; therefore,

Pχ,i =


πχ
...

πχ

 , (5.49)

where πχ is the stationary distribution of the augmented transition probability matrix and Pχ,i sat-

isfies Eq. (5.45).

Proposition 5.6.2. The composition of augmented matrices, P̃χ = Pχ,1 ◦Pχ,2 ◦ ... ◦Pχ,Nk , satisfies

P̃χ = lim
n→∞

P̃nχ . (5.50)

Proof. The proof is by construction and is similar to the proof of Proposition 5.6.1. Since the

column vectors of each of the augmented matrices are constant vectors, the column vectors of P̃χ

are also constant vectors. Therefore,

P̃χ =


π̃
...

π̃

 (5.51)

where π̃ is the stationary distribution of P̃χ and P̃χ satisfies Eq. (5.50).

These two well-known results show that manipulating the stationary Markov chain in the given

ways does not change its desired properties. By Proposition 5.6.2, the Markov chain that controls

the transitions between complete system states has reached its stationary or equilibrium distribution



102

initially if each uncertain state variable’s stationary Markov chain modeling its state propagation

also starts out at the stationary distribution. Thus, the mixing time (time to reach the stationary dis-

tribution within a given error) is zero and the stationary probabilities can safely be used in the failure

probability estimation. There is an automatic algorithm that can find each complete system state,

calculate its stationary probability, and place it into the appropriate set (Ξk, Ωk, and Fk). Then, the

stationary probability of each set can be calculated from the sum of the stationary probabilities of its

elements. Since there may be many complete system states with a negligible stationary probability,

the algorithm sorts the elements so that those with greater probability values are placed into the sets

first, and once the sum of the set probabilities reaches a pre-determined value, the algorithm aborts.

The pre-determined value must be chosen so that the remaining probability can be assigned to the

unsafe set without too much conservatism.

In a uniform completion case, the paths could easily be found and an approximation of the

failure probability calculated. For more complicated examples, including non-uniform completion

cases and cases with uncertain completion times, Markov Chain Monte Carlo simulation is a useful

way to find the failure probability approximation.

5.7 Conclusion

A formal method for calculating the probability of a verifiable sensor-driven hybrid system entering

into a specified unsafe set due to estimation uncertainty was presented. The calculation of the

failure probability of this system gives the designer some information about the control system. If

the failure probability of a given system is too high for the design requirements, several changes

could be made. First, the estimator for the state variable could be improved; for some cases, a

better sensor could be used to reduce the probability of failure; and finally, the control system

could be designed to depend less on a relatively unknown state variable. The verification of control

systems in the presence of different forms of uncertainty, including estimation uncertainty, is an

important problem, and this approach seems promising as a design tool for hybrid control systems

with state-based transitions. These techniques have been applied on two significant examples which

are described in the next chapter.



103

Chapter 6

Significant Goal Network Verification
Examples

6.1 Introduction

The three verification methods introduced so far are applied to two examples in this chapter. The first

example is a goal network for a complex rover system that is based on autonomous robotic systems

such as the DARPA Grand (or Urban) Challenge vehicles. This example has twelve state variables

and twenty-one controlled goals, so is not too large for the conversion procedure and PHAVer verifi-

cation method. It is difficult to apply the failure probability calculation method without some model

reduction techniques, however. This example is described in Section 6.2. The second example,

described in Section 6.3, is a goal network for an example mission to Titan, a moon of Saturn. The

autonomous aerobot probe must explore the lower atmosphere of Titan and map its surface while

staying safe and performing other tasks. This example is sizable; over 500 locations are found using

the conversion procedure. The number of passively constrained state variables after some model

reduction techniques is nine, but that proves to be too much for the conversion procedure because of

the number of failure transitions. The conversion procedure is able to convert the goal network after

applying a restricting assumption, but even then, PHAVer is not able to verify the system (though

resorting to overapproximation and other abstraction techniques may have helped). So, this example

is redesigned and verified using the novel verification method described in Chapter 4. The failure

probability calculation must be approximated for this example following the Markov Chain Monte

Carlo technique outlined in Chapter 5.



104

Figure 6.1: A depiction of the example task where the rover must traverse a path and reach the end point,
which is marked with a star

6.2 Complex Rover Example

This example is based on a possible set of commands for autonomous rovers such as Mars explo-

ration robots or DARPA Grand Challenge vehicles. The problem size is small but the system has

enough complexity to begin to test the capabilities of the conversion software and the verification

method.

6.2.1 Goal Network Design

This example involves an autonomous rover whose ultimate goal is to follow a given path to a

specified end point, shown in Figure 6.1. This rover has three main sensor systems: GPS, LADAR,

and an inertial measurement unit (IMU). The path choice and speed limit along the chosen path is

dependent on the combined health of these sensors. Each sensor degrades or fails in a specified

way. The GPS can experience periods of reduced accuracy (satellite dropouts) or failure (electrical

or structural signal interference), and these can both be modeled as recoverable stochastic events.

The health of the LADAR depends on the location of the sun in the sky. If the sun is shining

directly into the LADAR, its measurements cannot be used. Some degradation of the LADAR’s

capabilities occur at less direct sun angles, as well. Finally, the health of the IMU is dependent on

the temperature of the device. If the temperature of the IMU is too low, a heater can be used to heat

the sensor. If the IMU temperature gets too high, the unit must be powered off. The state effects

diagram listing all the state variables important to the system is shown in Figure 6.2. State variables,

measurements, and commands are shown and the arrows between these indicate modeled effects on

the accepting state variables or measurements.

The state variable types for each state variable can be found in Table 6.1. The goal network for

this task is shown in Figure 6.3 and the individual goal trees are shown in Figures 6.4–6.6. The first

goal tree describes the path the robot will take, the second constrains the speed limits that will apply

to the robot, and the third describes the IMU temperature management method.



105

Figure 6.2: State effects diagram for the complex rover example

Table 6.1: State Variable Data

State Variable Abbreviation Type
Position x Controllable
Heading θ Controllable

IMU Power ps Controllable
Heater Switch hs Controllable
IMU Health IH Dependent

Rel. Sun Orientation SO Dependent
LADAR Health LH Dependent
System Health SH Dependent

IMU Temperature IT Dependent
GPS Health GH Uncontrollable

Ambient Temp. AT Uncontrollable
Sun Angle SA Uncontrollable

Figure 6.3: Goal network for the complex rover example



106

Figure 6.4: Path goal tree

Figure 6.5: Speed limit goal tree

Figure 6.6: IMU Temperature goal tree



107

Figure 6.7: A finite state machine that describes the model of the SystemHealth derived state variable.
IHG = IMUHealth is GOOD, GHF = GPSHealth is FAIR, LHP = LADARHealth is POOR, etc.

Figure 6.8: The path automaton. One of three automata that are composed into the control system for the
rover. These four sets of locations represent groups 1–4.

6.2.2 Conversion and Verification

The goal network control program for this example consists of twenty-one controlled goals, includ-

ing eight root goals, and twelve state variables. The conversion software found thirty-eight locations

(including the Success location) in four groups in the goals automaton. Figures 6.8 and 6.9 show

the hybrid systems whose composition creates the goals automaton. In addition to this, there are

eight other automata that describe the state models of the dependent and uncontrollable state vari-

ables. One of these, the SystemHealth state variable model, is shown in Figure 6.7. In all, the

composition of the nine automata creates a discrete state space with over 200,000 states. The unsafe

set for this problem consists of the following conditions:

1. The rover is not stopped (ẋ 6= 0) when the IMU is off (ps == OFF) and the GPS is degraded

(GH 6= GOOD).

2. The rover moves forward (ẋ 6= 0) when the sun is pointing directly into the LADAR unit

(LH == POOR).

While the conversion software took less than five seconds to generate the PHAVer code for this

system, PHAVer was not able to handle the large state space without resorting to overapproximation.



108

Figure 6.9: The speed limit and IMU temperature automata; all locations in the two automata span groups
1–3

So, several reduction techniques were employed. The first reductions were in the uncontrollable

and dependent state variable automata. The SunAngle and RelativeSunOrientation state

variables, which were modeled with stochastic transitions, were removed and the LADARHealth

state variable’s model became stochastic. Since these two state variables were not used else-

where in the goal network, this simplification did not affect the quality of the model. Next, the

AmbientTemperature state variable was removed as was the IMUTemperature state vari-

able’s dependence on it, simplifying the model. In the last model reduction, the SystemHealth

state variable was removed in favor of using the three sensor health state variables in its place.

These reductions made the discrete state space a more manageable 3726 states. The final reduction

was to verify the goals automaton group by group, which is possible because the unsafe set did

not constrain the progress of the Position or Orientation state variables, though the initial

condition problem must be handled carefully.

The goals automaton could be verified after making some corrections. The verification software

found reachable states in the automata that entered the unsafe set, so the goals automaton had to

be corrected to ensure that the unsafe set was not entered. The transitions into the locations where

the IMUPower is off (ip == OFF) and the speed is not zero (ẋ 6= 0) must also have a condition

that the GPSHealth is GOOD or FAIR (GH 6= POOR)) to satisfy the unsafe set. These changes were

added, verified, and then translated back into the goal network by adding a new tactic in the speed

limit goal tree, which can be found in Figure 6.10. This makes the control program conservative

(more states than necessary are constrained to have zero rate) but verifiable with respect to the given

unsafe set.



109

Figure 6.10: Redesigned speed limit goal tree

6.2.3 Uncertainty Analysis

The goal network verified in the previous section can now be analyzed for safety in the presence of

state estimation uncertainty. The unsafe set specified in the previous section continues to be the set

of conditions that the uncertainty analysis will use. Since the first three groups, V1, V2, and V3, are

essentially the same set of locations repeated, only V1 will be analyzed. The velocity in V4 is con-

strained to be zero, so there is no way to enter the unsafe set based on the uncertain state variables;

the failure probability for this group is Ws(4) = 0. The system has four uncertain state variables

(IMUTemperature, GPSHealth, LADARHealth, and IMUHealth), each with three possi-

ble state values ({GOOD, FAIR, POOR} for the health state variables and {LOW, NOMINAL, HIGH} for

IMUTemperature). Since that translates into 38 = 6561 complete system states, simplification

is necessary. Instead, if the SystemHealth state variable with three states replaces the two of the

sensor health state variables and a two state IMUHealth is used ({POOR, NOTPOOR}), the number

of complete system states reduces to 22 ∗ 34 = 324.

Another observation is that the IMUHealth depends on the IMUTemperature. Since there

is a model that controls what the IMUHealth is estimated to be given the IMUTemperature, the

estimated IMUHealth is known given the IMUTemperature. However, the actual IMUHealth

may not always be known given the actual IMUTemperature due to modeling errors. In certain

cases, such as when the estimated IMUTemperature causes the IMUPower to be turned OFF,

that the actual IMUHealth state is known given the estimated IMUTemperature. This depen-

dence of an uncertain state variable on another causes the number of complete system states to be

further reduced. Dependencies between two state variables is handled by creating a new composi-

tion state variable that consists of all the possible actual and estimated states that the two variables

can take given the dependencies. For this problem, the new state variable is called TI and has 18

states, which are made up of estimated and actual values of IMUTemperature and IMUHealth.



110

With the nine possible states for the estimated and actual values of the SystemHealth state vari-

able, the new total number of complete system states is 18 ∗ 9 = 162.

The group V1 is a non-uniform completion group with three different contribution values, 1, 1
2 ,

and 0, that correspond to the Full Speed, Half Speed, and Stopped speed limit tactics, respectively.

The completion time for V1 is assumed to be c1 = 5. Based on the unsafe set specification and the

composed hybrid automaton control system, the nominal set, Ξ1, has 120 complete system states,

the Safing set, F1, is empty, and the unsafe set, Ω1 contains the remaining 42 complete system states.

The state transitions of the two remaining uncertain state variables are modeled as stationary Markov

processes; in this case the models were chosen to have what was considered to be realistic values,

but in practice, these models would be chosen based on simulations or tests of the hardware. For this

example, several different estimator uncertainty values were chosen and the failure probability was

calculated for each. Using these models, uncertainty values, and the sets of complete system states,

the appropriate vectors and matrices were calculated. The initial failure probability, a1, is the sum

of the initial probabilities of all 42 unsafe complete system states. There are three initial probability

vectors W i
1 corresponding to the three contribution values; the dimensions of W 1

1 is 1 × 6, W 2
1 is

1×12 andW 3
1 is 1×102. There are nineQ1 matrices between the β groups and threeWu,1 vectors,

with the same dimensions as the W1 vectors.

Since this case has a set of locations that has zero contribution value, there are an infinite number

of failure paths. However, by using the power series equation,

∞∑
x=0

Qx = (I −Q)−1, (6.1)

each failure path can be accounted for in the failure probability calculation. The failure probability

was calculated for several values of estimation uncertainty and the results are shown in Fig. 6.11.

6.3 Titan Aerobot Example Mission

Titan is the largest moon of Saturn and is remarkable for its dense atmosphere that has an estimated

composition of 95% nitrogen, 3% methane, and 2% argon. The surface pressure on Titan is about

1.5 bars, which is 1.5 times the surface pressure on Earth. The thick atmosphere and the methane

haze make surface observation difficult; however, near infrared observations and pictures from the

Huygens probe suggest that interesting terrain is present and is made of solid rock and frozen water



111

Figure 6.11: Group failure probability vs. SH estimation certainty

ice littered with liquid methane and ethane bodies. Cryovolcanism has been conjectured, as has a

methane and ethane cycle like the water cycle present on Earth [82].

A proposed mission to Titan consists of a satellite of Titan that would release an aerobot probe to

the lower atmosphere. This lighter-than-air vehicle would use wind currents to explore the moon by

taking advantage of Titan’s unique atmosphere. The probe would have the capability to fly to points

while simultaneously mapping Titan’s surface; it would also be able to stationkeep. In addition

to wind profiling, surface and atmospheric observations, and atmospheric composition testing, the

probe would also have the capability to collect samples from the surface without landing [1].

Because the Saturn system is far away from Earth, there is a significant light-time delay of

about 2.6 hours round-trip [82]. This means long communication latencies between the aerobot

and Earth. Having an autonomous vehicle that can execute a relatively long mission plan without

human interference is important. This autonomous control system must be able to function without

human intervention and be able to identify and handle many types of faults and failures in a safe

manner. The verification of the fault-tolerant control plans against sets of unsafe conditions will be

extremely important and useful for a Titan exploration mission.

6.3.1 Problem Statement

A simplified model of the Titan aerobot was used as an example for the conversion and verification

procedure. The aerobot used in this example has a mission to fly to a specific area while maintaining

at least 10% power, position awareness, and appropriate safe altitudes, and while being aware of

spontaneous science observation opportunities. The example aerobot has several sensors, including

two cameras, a laser range finder (LRF), a radar, a hygrometer, and a motion sensor. The cameras

and laser range finder allow the aerobot to localize and map the surface of Titan while maintaining



112

Figure 6.12: State effects diagram for the aerobot example

a safe altitude above Titan’s surface features. The radar, hygrometer, and motion sensor are used

to detect spontaneous science events such as cloud formation, precipitation, and cryovolcanism.

Figure 6.12 gives the state effects diagram for this example problem. The state effects diagram lists

all pertinent state variables, commands, and measurements that are used to control the system. The

arrows between the different bodies in the diagram indicate that the originating body has a modeled

effect on the accepting body.

Most of the models between state variables or between state variables and measurements or

commands are fairly obvious. The aerobot is able to localize using the existing map, which is gen-

erated by the orbiting satellite and to which details are added by the aerobot. The map uncertainty is

a measure of the scale of the surface feature information in an area; the uncertainty is high in areas

only covered by satellite images and is low in areas imaged by the aerobot. The position uncertainty,

then, is a measure of how well the aerobot can constrain its position relative to the existing map.

Sunlight intensity and ground visibility are affected by the aerobot’s absolute altitude, and these

state variables affect the quality of the measurements taken by the cameras. Relative altitude is the

height that the aerobot is above the ground and is the state that the LRF is measuring. The aerobot’s

position is controlled by the thrust and altitude commands and affected by the wind vector. Power

is also affected by the wind vector because more or less control effort may be needed to drive the

aerobot based on the direction and magnitude of the wind. The aerobot is assumed to have some

regenerative power capability based on solar energy, so sunlight intensity also affects the percentage

of power remaining on the probe. (However, with Titan located so far from the sun, solar energy



113

Figure 6.13: Goal network for Titan example

could at best be a back-up power system for an actual mission.) It is also assumed that altitude

affects sunlight intensity, with more intensity near the top of the atmosphere.

A derived state variable is a non-physical state variable that depends only on other state vari-

ables. The SpontaneousScience state variable with four states (NONE, MOTION, PRECIP, CF)

is a derived state variable that depends on seven state variables (Motion, Precipitation,

CloudForming, RelativeHumidity and the accompanying sensor health state variables).

The SpontaneousScience state variable prefers the rarer events; if motion is sensed, then that

is the value of the state variable regardless of the presence of precipitation or cloud formation. The

next preferred event is precipitation followed by cloud forming.

6.3.2 Goal Networks

The goal network for this example problem, shown in Figure 6.13, is based on the control of the

position and altitude of the aerobot as it flies to a specified point. The Position state variable

(X) is controlled via three modes: a “fly to” mode where the aerobot heads towards the constrained

area; a “stationkeeping” mode where the aerobot maintains its current position; and a “float” mode

where the aerobot drifts without controlling its position. There are also five control modes for the

Altitude state variable (Z) that refer to different absolute altitudes; from lowest to highest, these

altitudes are ground observation, detailed mapping, minimum en route, maximum terrain clearance,

and service ceiling. The abbreviations used for the passive state variables can be found in Table 6.2.

The first concurrently executed goal tree, shown in Figure 6.14, involves the task of flying to a

specified area. There are two tactics available for doing this that are chosen based on the relative

wind vector. When the wind vector is favorable or small, the aerobot attempts to maintain a mini-

mum velocity in the direction of the specified area. When the wind vector is large and unfavorable,



114

Figure 6.14: Goal tree for flying to a specified area

Figure 6.15: Goal tree for simultaneous localization and mapping

the aerobot instead attempts to stationkeep; in a more complex example, the aerobot would profile

the wind to find a new altitude at which to fly.

How well the aerobot can constrain its position on the existing map contributes to the position

uncertainty; when the uncertainty is high, the aerobot must ensure that it is at a safe altitude to avoid

controlled flight into terrain. The second goal tree, shown in Figure 6.15, gives tactics that help to

accomplish the task of simultaneous localization and mapping (SLAM). When position uncertainty

is high, the aerobot ascends so as to clear all possible obstacles and to match its position with the

less detailed satellite map. Execution continues as usual when the position and map uncertainty are

low. If the position uncertainty is low and the map uncertainty is high, the aerobot flies at a lower

altitude to achieve more detailed mapping.

The third task for the aerobot is power management, which is controlled in the goal tree shown

in Figure 6.16. Overall, the aerobot must maintain at least 10% power; if it does not, the aerobot

safes to floating until the power increases. While the power value is above 10%, there are several

tactics to ensure that the power level does not drop to the safing level. When the power drops

below 50%, the aerobot climbs to increase the sunlight intensity that it is receiving. If the power

dips below 30%, the aerobot discontinues its trek to the specified point and instead stationkeeps to

preserve power.

Spontaneous science observation is an important part of the Titan aerobot’s mission, so the goal



115

Figure 6.16: Goal tree for power management

Figure 6.17: Goal tree for observing spontaneous science

tree shown in Figure 6.17 deals with this task. When no motion, precipitation, or cloud formation

is detected, the aerobot continues on with its current task. However, if motion on the surface (such

as cryovolcanism) or precipitation is detected, the aerobot descends and stationkeeps to observe it.

Likewise, if cloud formation is detected, the aerobot ascends to observe it.

Several other factors also affect the altitude at which the aerobot flies, such as the health of

the position sensors (the cameras and the LRF), the ground visibility, and sunlight intensity. These

conditions make up the five tactics of the final goal tree controlling the altitude of the aerobot; this

is shown in Figure 6.18.

Each of the goal trees presented are executed concurrently in the aerobot’s goal network. It

is assumed that when the aerobot has positive control (i.e., the position and map uncertainties are

low, the wind vector is low, etc.), the low-level position controllers successfully avoid terrain at the

low altitudes. When two goals constraining altitude are merged (executed concurrently), the higher

altitude is taken; likewise, when two goals constraining position are merged, float constraints take

priority, and then stationkeeping constraints are preferred over fly to constraints.



116

Figure 6.18: Goal tree for controlling the altitude of the aerobot

6.3.3 Verification

The control system for the Titan aerobot mission designed in Section 6.3.2 was converted to a

hybrid automaton with 544 locations and thousands of transitions (using a restrictive simplifying

assumption that only a single passive state can change per time step) and an input file to the PHAVer

symbolic model checker was automatically generated. The unsafe set for the goal network, Z =

{ζ1, ζ2}, had two sets of constraints:

1. Power is less than 10%, ζ1 = {(Power, <, 10)}.

2. The altitude is lower than maximum terrain clearance while the ground visibility is low and

the position uncertainty is high, ζ2 = {(z, <, 4), (GV,==, LOW), (PU,==, HIGH)}.

PHAVer was not able to handle the automaton along with the nine passive state variable model

automata due to the large state space that results (over 2.5 million discrete states). The list of

passive state variables and the number of discrete states in the model of each are given in Table 6.2.

To handle the large verification effort, the method introduced in Chapter 4 was used. The first

step of that procedure is to ensure that the goal network has state-based transitions. Each root

goal and its goal tree were run through the SBT Checker and the software found that the altitude

controlling goal tree was missing a tactic with passive constraints as follows:

LH == GOOD ∧ SI == HIGH ∧ GV == LOW ∧ PU == HIGH ∧ CH 6= POOR.



117

Table 6.2: Passively Constrained State Variables

State Variable Abbreviation Number of States Estimator Accuracy
Camera Health CH 3 0.95

LRF Health LH 2 0.95
Sun Intensity SI 2 0.99

Ground Visibility GV 2 0.99
Wind Vector WV 2 0.99

Position Uncertainty PU 2 0.9
Map Uncertainty MU 2 0.9

Spontaneous Science SC 4 0.8
Power 6

Figure 6.19: Redesigned altitude control goal tree

The unsafe set, ζ2, dictates that the altitude must be constrained in this tactic to be either the max-

imum terrain clearance altitude or the service ceiling (z = 4 or z = 5, respectively). Since the

sun intensity is high, the maximum terrain clearance altitude is the appropriate constraint. The new

tactic in the redesigned altitude control goal tree is shown in Figure 6.19.

The goal network was then verified using the InVeriant software. More than 600 locations

were generated and no inconsistent controlled constraints were found. The verifier composed the

converted automaton with the Power state variable’s model automaton for the first unsafe set, ζ1.

The verifier found locations in which the unsafe power constraint was possible when 10 ≤ Power <

30 ∧ WV == HIGH ∧ SI == LOW. In order to most efficiently use the software, the unsafe power

constraint, ζ1, was converted into two equivalent constraints: 10 ≤ Power < 30 ∧ d
dt(Power) > 2.



118

Figure 6.20: Redesigned power management goal tree

The constraint on the power rate is equivalent to a medium or high power use state; if these power

rates are present in a location where the power falls into the given constraint, it is possible to achieve

a power state that is less than 10%. Because the Power state variable is a continuous, rate-driven

dependent state variable, a path from the initial condition (Power = 100) to the unsafe condition

(Power < 30) must be found to prove that the unsafe locations are reachable. The software was

able to find a path of three locations whose invariants included the appropriate power constraints

(Power ≥ 50, 30 ≤ Power < 50, and 10 ≤ Power < 30) and whose power rates were negative,

proving that the unsafe conditions were reachable. The software also output the goals that were

common to all the unsafe locations, which triggered the redesign of the power management goal

tree to include a tactic that commands the aerobot to float at the service ceiling when the Power is

less than 30% and the SunIntensity is LOW. This new power management goal tree is shown in

Figure 6.20. Verification of the redesigned goal network confirmed its correctness.

The SBT checker and InVeriant verification software package is superior to the conversion soft-

ware and PHAVer for this application. The conversion software was able to handle the large goal

network to linear hybrid automaton conversion with the transition restriction, taking just under five

hours on a 2.0 GHz Intel Core 2 Duo CPU with 4.0 GB of RAM. However, many verification at-

tempts using PHAVer proved to be unfruitful. While this does not show that PHAVer could not

complete the task, abstraction, model reduction, and overapproximation would be necessary. The

SBT Checker, however, took nearly no time to run once the appropriate data were entered and

the output of that software was useful to the design process, unlike the output of the conversion

procedure. Then, the InVeriant software was able to convert the goal network into locations and



119

invariants in about fifteen minutes, followed by about two minutes of verification work. Whereas

PHAVer outputs conditions on the state variables that allow at least one of the unsafe conditions to

be true, InVeriant gives that information along with the unsafe constraint satisfied and the goals and

tactics that are responsible for the failure.

6.3.4 Uncertainty Analysis

The uncertainty analysis was completed for the Titan aerobot mission. The large number of po-

tentially uncertain state variables caused an explosion in the number of complete system states.

Assuming that all state variables in Table 6.2 except Power are uncertain, the number of complete

system states was almost 600,000. Only the second unsafe set condition was analyzed for simplicity.

The failure probability of the second unsafe set condition was calculated using the automatic

complete system state sorting software. The fourth column of Table 6.2 gives the probability that the

state variables’ estimators are correct. Stationary Markov chains with no mixing time were assumed

for the state propagation models for each of the uncertain state variables. After about 65 hours of

computation on the computer described above, a stationary unsafe probability of pu = 0.00915 ±

0.005 was found. Since the problem can be estimated as a uniform completion problem, the failure

probability of the goal network with respect to the unsafe condition chosen can be calculated as a

function of the number of time steps the goal network executes:

Ws = pu ×
ck∑
x=0

pxn, (6.2)

where pn = 0.99085±0.005 is the stationary nominal probability. Given the estimator uncertainties,

these failure probabilities are fairly low, which suggests a well-designed system. The failure prob-

ability as a function of completion time is shown in Figure 6.21; the failure probability approaches

one as the completion time goes to infinity.

6.4 Conclusion

The example goal networks presented in this chapter were very useful in driving the design and

improvement of the verification methods introduced in the previous chapters. The rover example in

Section 6.2 validated the conversion software and pushed the capabilities of the failure probability

calculation procedure. The Titan aerobot example goal network was significantly larger and more



120

Figure 6.21: Failure probability of the Titan example as a function of completion time

complex and it drove the creation of the SBT Checker and InVeriant verification method due to

the inability of the conversion procedure and PHAVer to verify the goal network. Both examples

illustrate the techniques in this dissertation well.



121

Chapter 7

Conclusions and Future Directions

7.1 Summary of Contributions

As autonomous robotic systems are designed to take on more difficult tasks, the complex fault

tolerant control systems need to be verified for safety. Model checking is a popular verification

approach; several automatic symbolic model checkers are available. However, model checkers for

hybrid automata with a continuous state space suffer from the inability to handle the state space

explosion that ensues. One way to decrease the effect of the state space explosion is to impose some

structure on the robotic control system that allows it to be verified more efficiently.

A goal-based fault tolerant control architecture based on MDS was analyzed in this work.

Three methods of safety verification of the goal network control systems, two deterministic and one

stochastic, were introduced. The first method was an automatic goal network conversion procedure

that connected goal network executions to a hybrid automaton structure via a bisimulation when

simple ordering on the goal network’s time points was imposed. Then, existing symbolic model

checkers, particularly PHAVer, were used to complete the verification. Since the hybrid automa-

ton captured every possible executable set of goals in the goal network as a location, the number

of locations was roughly exponential with the number of root goals in a goal network. The con-

version procedure, written in Mathematica, was able to convert large goal networks given enough

time, however, PHAVer was not always able to verify the converted automaton without state space

reductions and abstractions. In general, the number of passive state variables that control failure

transitions in the goal network is the limiting factor in PHAVer verification as the state space ex-

plosion depends strongly on that. The efficiency of the conversion algorithm also depends strongly

on the number of passive state variables because the number of failure transitions from a location

grows exponentially with the number of passive state variables constrained in that location.



122

These complexity issues drove the creation of new design for verification and verification al-

gorithms. When the goal network has state-based transitions, which occurs when each possible

passive state satisfies the passive constraints in some set of goal tactics for each group of goals, the

invariants of the locations of the converted hybrid automaton contain all the information needed to

find every possible transition between the locations. Therefore, the transitions do not need to be

found explicitly and the reachability of the locations in a group depends only on the reachability of

the states of the passive state variables constrained. This allows the locations only of the converted

hybrid automaton to be searched for ones whose invariants and rate conditions satisfy the unsafe

conditions. If the passive states constrained in these unsafe locations are reachable from the initial

conditions on those state variables, then the unsafe locations are reachable. If one or more of the

passive state variables constrained are continuous, rate-driven dependent state variables, such as

power or temperature, a path through the discrete sets of states of those state variables from the ini-

tial condition to the unsafe condition must be found to prove reachability. However, this path search

is simplified by the reachability properties of the automaton due to the state-based transitions re-

quirement. Two software algorithms were introduced, the design for verification tool, SBT Checker,

and the verification software, InVeriant. Though these software algorithms were developed for the

verification of goal networks, they also can efficiently verify a class of hybrid systems.

The SBT Checker and InVeriant software combination proved to be a more efficient and ef-

fective verification method for goal networks. First, the provable modularity of the state-based

transitions property allows for distributed design of goal networks. Designers can use the SBT

Checker tool to create goal trees that have state-based transitions. The design can be iterative as the

software provides nearly instantaneous feedback about which state constraints are missing from the

goal tree. The goal network that is the combination of these goal trees is guaranteed to have state-

based transitions as long as the controlled constraints are consistent. The state-based transitions and

consistent controlled constraints requirements are very useful checks because, instead of being re-

strictive, they are good design practices that ensure that the tactics in the control system cover every

possible modeled passive state. The consistent controlled constraints requirement is checked in the

InVeriant algorithm when the locations are created during the goal network conversion. Since the

transitions are not created and since most passive state models are not incorporated into the automa-

ton being verified, the complexity issues that result from the number of passive state variables do

not affect this algorithm. This allows for larger systems to be verified quickly and effectively. The

output of the InVeriant software gives not only the unsafe locations but the set(s) of goals that are



123

common to them, which aids in the redesign of faulty control systems. For certain unsafe locations,

InVeriant will also find an appropriate path to prove reachability.

Fault tolerant systems designed with the concept of state-based transitions are very dependent

on the quality of the state estimators for the passive state variables. Methods to calculate the failure

probability of a system due to its estimation uncertainty are discussed. These methods are very

useful to the design of a system as the result is a measure of how much the tactics depend on faulty

estimators or hard to measure state variables, but they are severely limited by complexity issues.

However, there are many ways to abstract the problem and there is even an automatic computa-

tional algorithm. In many cases, this sort of analysis is ignored, even though it is so important for

autonomous systems whose reliance on estimated state values based on sensor measurements is an

absolute.

Finally, two significant example goal networks were presented. The complex rover and Titan

aerobot examples were verified versus unsafe sets using the conversion/PHAVer method and the

SBT Checker/InVeriant method, respectively. These examples tested and improved the conversion

procedure and the Titan aerobot example drove the design of the novel verification procedure due

to the inability of PHAVer to verify the problem using simple abstractions and model reduction

techniques.

This dissertation presents a significant study of the verification of goal-based control programs.

The conversion of goal networks to hybrid systems allows for model checking techniques to be

applied. A design for verification tool was developed and has great potential for the design and

verification of real-world goal-based control systems and linear hybrid automata. The ensuing ver-

ification method is efficient enough to handle large goal networks and hybrid systems. Finally, the

estimation uncertainty analysis is a novel concept that may lead to useful estimator or goal network

control system design techniques.

7.2 Future Directions

There are several directions in which this work can continue. First, the restrictions on time points

imposed nearly immediately on the goal network’s structure can cause interesting problems in cases

where going back or redoing a part of a tactic is required. There may be ways to loosen the time

point restrictions imposed while maintaining the important group structure of the goal networks. An

important benefit of MDS is its use of projections, which is not included in the goal networks used



124

for verification. It may be possible to place projection constraints with the rate conditions in each

location upon conversion and it may be possible to reason about those constraints in the search for

unsafe locations.

The concept of state-based transitions applies to goals networks as well as hybrid automata.

When the dynamics in a set of hybrid automata are sufficiently simple, it is possible to use the SBT

Checker and InVeriant verification method with the hybrid system directly. In fact, the class of

hybrid systems upon which this method could be applied is broader than the class that is bisimilar

to goal network control systems. This extra capability of the verification method seems very useful

and should be explored more fully.

The two deterministic verification methods include software that is written in Mathematica.

Though its kernel is fairly fast, it may be more efficient to convert the software into Java. While

the conversion procedure has been tested fairly extensively, the SBT Checker and InVeriant could

benefit greatly from more testing, especially on more complex problems. A test of the entire process

from design to verification of a control system for a real-world system would be extremely useful.

The failure probability due to state estimation uncertainty is a very important tool in the analysis

of a system, and it seems that one should be able to discover very specific feedback on how to

redesign a system based on this analysis. Some possible ways to redesign a system include installing

better sensors, designing more accurate estimators, or reducing the control dependence on particular

state variables. Currently, there is no process or set of guidelines available to aid the analyst in

making these design determinations, though this seems to be possible.

The verification emphasis of this work is on safety. Liveness properties, however, are also

very important to check. Spin is a model checker that can verify liveness properties of discrete

automata. A goal network with unimportant or no continuous state variables can be converted into

an automaton specified in Promela code. It can then be verified versus an unsafe Buchi automaton

using Spin. However, since Spin is not a symbolic model checker, the state space complexity issues

can be even more restrictive. More work could be done to discover a better abstraction of goal

networks so that Spin is more effective in their verification. Another benefit of Spin is its non-

deterministic execution model, which could make it a good fit for verifying multiple robot systems.

The overall goal of this work and others on verification of autonomous control systems is to find

an effective way to design these systems so that they work in all foreseeable situations (and some

that are not). It is the author’s belief that verification work must begin during the requirements stage

of the system design and continue throughout the creation of the autonomous system. Therefore, the



125

tools and concepts of model checking must be integrated into the system architecture and design;

at the same time, there must be enough flexibility to allow for complex behaviors to emerge in the

autonomous systems. While the goal structure imposed in this work does not have the necessary

flexibility, some important concepts, particularly the modularity of state-based control transitions,

have been discovered and will be influential in future work towards the design of robust, fault-

tolerant autonomous control systems.



126

Appendix A

DTD Files

The Document Type Definition (DTD) files for the XML input files for PHAVer and Spin are pre-

sented here. These DTD files list out the necessary and possible elements for the given type of XML

file. These files create a standard for the XML input files; they check that the necessary information

is entered in the proper way.

A.1 PHAVer

<?xml version="1.0"?>

<!ELEMENT inputs (smc,cdsv,usv,goals,tcs,unsafe)>

<!ELEMENT smc (#PCDATA)>

<!ELEMENT cdsv (sv+)>

<!ELEMENT sv (name, constraint+, initial_condition)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT constraint (type_name,merge+,trans,dyn_eqn,reset?)>

<!ELEMENT type_name (#PCDATA)>

<!ELEMENT merge (constraint_type,merge_condition,merge_type?,

merged_constraint*)>

<!ELEMENT constraint_type (#PCDATA)>

<!ELEMENT merge_condition (#PCDATA)>

<!ELEMENT merge_type (#PCDATA)>

<!ELEMENT merged_constraint (#PCDATA)>



127

<!ELEMENT trans (entrylogic,exitlogic)>

<!ELEMENT entrylogic (#PCDATA)>

<!ELEMENT exitlogic (#PCDATA)>

<!ELEMENT dyn_eqn (#PCDATA)>

<!ELEMENT reset (#PCDATA)>

<!ELEMENT initial_condition (#PCDATA)>

<!ELEMENT usv (svu+)>

<!ELEMENT svu (name,trans_type,parameter*,input_var*,transition*,

dynamics+,initial_condition)>

<!ELEMENT trans_type (#PCDATA)>

<!ELEMENT input_var (#PCDATA)>

<!ELEMENT parameter (#PCDATA)>

<!ELEMENT transition (start,end,condition)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT condition (#PCDATA)>

<!ELEMENT dynamics (value,eqn,reset?,condition)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT eqn (#PCDATA)>

<!ELEMENT goals (goal+,pgoal+)>

<!ELEMENT goal (name,tp_start,tp_end,constraint_sv?,constraint_type?,

constraint_value*,tactic*)>

<!ELEMENT pgoal (name,tp_start,tp_end,constraint_sv,constraint_type,

constraint_value)>

<!ELEMENT tp_start (#PCDATA)>

<!ELEMENT tp_end (#PCDATA)>

<!ELEMENT constraint_sv (#PCDATA)>

<!ELEMENT constraint_value (#PCDATA)>

<!ELEMENT tactic (goalname+,failure*)>



128

<!ELEMENT goalname (#PCDATA)>

<!ELEMENT failure (logic,destination)>

<!ELEMENT logic (#PCDATA)>

<!ELEMENT destination (#PCDATA)>

<!ELEMENT tcs (tconstraint*)>

<!ELEMENT tconstraint (start,end,min,max)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT unsafe (uset+)>

<!ELEMENT uset (ucons+)>

<!ELEMENT ucons (svc,type,constr)>

<!ELEMENT svc (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT constr (#PCDATA)>}

A.2 Spin

<?xml version="1.0"?>

<!ELEMENT inputs (smc,cdsv,usv,goals,tcs)>

<!ELEMENT smc (#PCDATA)>

<!ELEMENT cdsv (dt?,sv+)>

<!ELEMENT dt (#PCDATA)>

<!ELEMENT sv (name, constraint+, initial_condition)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT constraint (type_name,merge+,trans,dyn_eqn,reset?)>

<!ELEMENT type_name (#PCDATA)>

<!ELEMENT merge (constraint_type,merge_condition,merge_type?,

merged_constraint*)>



129

<!ELEMENT constraint_type (#PCDATA)>

<!ELEMENT merge_condition (#PCDATA)>

<!ELEMENT merge_type (#PCDATA)>

<!ELEMENT merged_constraint (#PCDATA)>

<!ELEMENT trans (entrylogic,exitlogic)>

<!ELEMENT entrylogic (#PCDATA)>

<!ELEMENT exitlogic (#PCDATA)>

<!ELEMENT dyn_eqn (#PCDATA)>

<!ELEMENT reset (#PCDATA)>

<!ELEMENT initial_condition (#PCDATA)>

<!ELEMENT usv (svu+)>

<!ELEMENT svu (name,trans_type,input_var*,transition*,dynamics+,

initial_condition)>

<!ELEMENT trans_type (#PCDATA)>

<!ELEMENT input_var (#PCDATA)>

<!ELEMENT transition (start,end,condition)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT condition (#PCDATA)>

<!ELEMENT dynamics (value,eqn?,reset?,condition?)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT eqn (#PCDATA)>

<!ELEMENT goals (goal+)>

<!ELEMENT goal (name,tp_start,tp_end,constraint_sv?,constraint_type?,

constraint_value*,tactic*)>

<!ELEMENT tp_start (#PCDATA)>

<!ELEMENT tp_end (#PCDATA)>

<!ELEMENT constraint_sv (#PCDATA)>

<!ELEMENT constraint_value (#PCDATA)>



130

<!ELEMENT tactic (goalname+,startsin,failure+)>

<!ELEMENT goalname (#PCDATA)>

<!ELEMENT startsin (#PCDATA)>

<!ELEMENT failure (logic,destination)>

<!ELEMENT logic (#PCDATA)>

<!ELEMENT destination (#PCDATA)>

<!ELEMENT tcs (tconstraint*)>

<!ELEMENT tconstraint (start,end,min,max)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT min (#PCDATA)>



131

Glossary

branch goal goal with no child goals in group. 35

compatible goals that are not elaborated into different tactics of the same parent goal. 31

complete system state state that includes the actual and estimated state of each uncertain state

variable. 77

completion goal controlled goal with a transition constraint. 11

completion time minimum length of a nominal execution path for a group. 81

consistent constraints that can be executed concurrently. 31

contribution value normalized contribution of a location towards a completion task. 82

controllable state variable state variable associated directly with a command class. 21

controlled goal constraint that causes a command to be issued to the system. 10

dependent state variable state variable not associated with a command class but dependent on

controllable or dependent state variables. 21

elaboration act of choosing a control tactic out of those available. 9

executable branch set of goals in a goal tree that can be executed concurrently. 61

executable set set of goals that can execute concurrently. 32

failure path execution path that includes a complete system state that is unsafe. 82

goal constraint on a state variable in time. 9



132

group set of goals that are active between consecutive time points or the corresponding set of

locations. 30

linear hybrid automaton systems with discrete modes of execution that have different continuous

behavior. 15

location discrete mode of execution. 15

nominal execution path set of nominal complete system states that represents the complete, safe

execution of a group. 81

non-uniform completion group whose execution time depends on the states visited. 82

passive goal constraint with no associated command. 10

root goal goal with no parent. 24

sibling goal goals elaborated into the same tactic. 24

state variable states of the system or environment. 9

state-based transitions goal network or hybrid system that has control tactics or modes for every

modeled passive state. 58

tactic control mode or method. 11

uncontrollable state variable state variable not associated with any command class and not de-

pendent on any controllable or dependent state variable. 21

uniform completion group whose execution time does not depend on the states visited. 82

unsafe set set of conditions that should never be reached by a goal network or hybrid system exe-

cution. 79



133

Bibliography

[1] A. Elfes, J. L. Hall, J. F. Montgomery, C. F. Bergh, and B. A. Dudik, “Towards a substantion-

ally autonomous aerobot for exploration of Titan,” in Proc. of the IEEE International Confer-

ence on Robotics and Automation, pp. 2535–2541, 2004.

[2] J. W. Burdick, N. E. Du Toit, A. Howard, C. Looman, J. Ma, R. M. Murray, and T. Wongpirom-

sarn, “Sensing, navigation and reasoning technologies for the DARPA Urban Challenge,” tech.

rep., DARPA Urban Challenge Final Report, 2007.

[3] S. Croomes, “Overview of the DART Mishap Investigation Results,” tech. rep., National Aero-

nautics and Space Administration, 2006.

[4] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines, D. Kogan, K. L. Kriechbaum,

J. C. Lamb, J. Leibs, L. Lindzey, A. D. Stewart, J. W. Burdick, and R. M. Murray, “Alice:

An information-rich autonomous vehicle for high-speed desert navigation,” Journal of Field

Robotics, vol. 23, pp. 777–810, 2006.

[5] P. S. Morgan, “Fault protection techniques in JPL spacecraft,” in Proc. of the First Inter-

national Forum on Integrated System Health Engineering and Management in Aerospace

(ISHEM), 2005.

[6] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future directions,” ACM

Computing Surveys, vol. 28, no. 4, pp. 626–643, 1996.

[7] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Discriminative training of

Kalman filters,” in Proc. of Robotics: Science and Systems, 2005.

[8] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme, “Fault detection and identifica-

tion in a mobile robot using multiple model estimation and neural network,” in Proc. of the

IEEE International Conference on Robotics and Automation, pp. 2302–2309, 2000.



134

[9] M. W. Hofbaur and B. C. Williams, “Hybrid diagnosis with unknown behavioral modes,” in

Proc. of the 13th International Workshop on Principles of Diagnosis, 2002.

[10] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Real-time fault diagnosis [robot fault

diagnosis],” IEEE Robotics and Automation Magazine, vol. 11, no. 2, pp. 56–66, 2004.

[11] K. Ben Lamine and F. Kabanza, “History checking of temporal fuzzy logic formulas for mon-

itoring behavior-based mobile robots,” in Proc. of the 12th IEEE International Conference on

Tools with Artificial Intelligence, 2000.

[12] M. Blanke, M. Staroswiecki, and N. E. Wu, “Concepts and methods in fault-tolerant control,”

in Proc. of the American Control Conference, 2001.

[13] C. Ferrell, “Failure recognition and fault tolerance of an autonomous robot,” Adaptive Be-

haviour, vol. 2, no. 4, pp. 375–398, 1994.

[14] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “A dynamic fault tolerance framework for

remote robots,” IEEE Transactions on Robotics and Automation, vol. 11, no. 4, pp. 477–490,

1995.

[15] T. C. Lueth and T. Laengle, “Fault-tolerance and error recovery in an autonomous robot with

distributed controlled components,” in Proc. of the IEEE International Conference on Robotics

and Automation, pp. 8–13, Springer-Verlag, 1994.

[16] L. E. Parker, “ALLIANCE: An architecture for fault tolerant multirobot cooperation,” IEEE

Transactions on Robotics and Automation, vol. 14, no. 2, pp. 220–240, 1998.

[17] Y. Diao and K. M. Passino, “Intelligent fault-tolerant control using adaptive and learning meth-

ods,” Control Engineering Practice, vol. 10, pp. 801–817, 2002.

[18] Y. Zhang and J. Jiang, “Fault tolerant control system design with explicit consideration of

performance degradation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,

pp. 838–848, July 2003.

[19] P. Kim, B. C. Williams, and M. Abramson, “Executing reactive model-based programs through

graph-based temporal planning,” in Proc. of the International Joint Conference on Artificial

Intelligence, 2001.



135

[20] B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. T. Sullivan, “Model-

based programming of fault-aware systems,” AI Magazine, vol. 24, no. 4, pp. 61–75, 2003.

[21] B. C. Williams, P. Kim, M. Hofbaur, J. How, J. Kennell, J. Loy, R. Ragno, J. Stedl, and A. Wal-

cott, “Model-based reactive programming of cooperative vehicles for Mars exploration,” in

Proc. of the International Symposium on Artificial Intelligence, Robotics and Automation in

Space, 2001.

[22] M. D. Ingham and B. C. Williams, “Timed model-based programming: Executable specifici-

ations for robust critical sequences,” in Proc. of the International Workshop on Self-Adaptive

Software, 2003.

[23] M. J. Mataric, “Integration of representation into goal-driven behavior-based robots,” IEEE

Transactions on Robotics and Automation, vol. 8, no. 3, pp. 304–312, 1992.

[24] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics

and Automation, vol. RA-2, no. 1, pp. 14–23, 1986.

[25] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Software architecture themes in JPLs

Mission Data System,” in Proc. of the IEEE Aerospace Conference, 2000.

[26] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada, “Engineering complex embedded

systems with State Analysis and the Mission Data System,” AIAA Journal of Aerospace Com-

puting, Information and Communication, vol. 2, pp. 507–536, December 2005.

[27] R. D. Rasmussen, “Goal-based fault tolerance for space systems using the Mission Data Sys-

tem,” in Proc. of the IEEE Aerospace Conference, vol. 5, pp. 2401–2410, March 2001.

[28] K. M. Chandy and J. Misra, “Distributed simulation: A case study in design and verification of

distributed programs,” IEEE Transactions on Software Engineering, vol. SE-5, no. 5, pp. 440–

452, 1979.

[29] E. Klavins, “A formal model of a multi-robot control and communication task,” in Proc. of the

42th IEEE Conference on Decision and Control, 2003.

[30] A. E. Haxthausen and J. Peleska, “Formal development and verification of a distributed railway

control system,” IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 687–701,

2000.



136

[31] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verification for fault-tolerant ar-

chitectures: Prolegomena to the design of PVS,” IEEE Transactions on Software Engineering,

vol. 21, no. 2, pp. 107–126, 1995.

[32] T. Ball and S. K. Rajamani, SPIN, vol. LNCS 1885, ch. Bebop: A Symbolic Model Checker

for Boolean Programs, pp. 113–130. Springer-Verlag, 2000.

[33] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella, CAV, vol. LNCS 2404, ch. NuSMV 2: An Open Source Tool for Symbolic

Model Checking, pp. 359–364. Springer-Verlag, 2002.

[34] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic model checking: 1020

states and beyond,” in Proc. of the Fifth Annual IEEE Symposium on Logic in Computer Sci-

ence, pp. 428–439, 1990.

[35] F. Schneider, S. Easterbrook, J. Callahan, and G. Holzmann, “Validating requirements for

fault tolerant systems using model checking,” in Proc. of the Third International Conference

on Requirements Engineering, pp. 4–13, 1998.

[36] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, TACAS/ETAPS, vol. LNCS 1579, ch. Symbolic

Model Checking without BDDs, pp. 193–207. Springer-Verlag, 1999.

[37] K. L. McMillan, CAV, vol. LNCS 2404, ch. Applying SAT Methods in Unbounded Symbolic

Model Checking, pp. 250–264. Springer-Verlag, 2002.

[38] R. Alur, T. Henzinger, and P.-H. Ho, “Automatic symbolic verification of embedded systems,”

IEEE Transactions on Software Engineering, vol. 22, no. 3, pp. 181–201, 1996.

[39] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid systems,”

International Journal on Software Tools for Technology Transfer, 1997.

[40] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” International Journal on Soft-

ware Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152, 1997.

[41] D. Dill and H. Wong-Toi, CAV 95: Computer-aided Verification, ch. Verification of real-time

systems by successive over and under approximation, pp. 409–422. Springer, 1995.

[42] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,” in Proc. of the

International Conference on Hybrid Systems: Computation and Control, 2005.



137

[43] G. Holzmann, The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,

2004.

[44] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking software,”

SIGPLAN Not., vol. 40, no. 1, pp. 110–121, 2005.

[45] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “State-space reduction techniques in

agent verification,” in Proc. of the Third International Joint Conference on Autonomous Agents

and Multiagent Systems, pp. 896–903, 2004.

[46] E. Haghverdi, P. Tabuada, and G. J. Pappas, “Bisimulation relations for dynamical, control,

and hybrid systems,” Theoretical Computer Science, vol. 342, no. 2-3, pp. 229 – 261, 2005.

[47] P. Tabuada and G. J. Pappas, “Bisimilar control affine systems,” Systems and Control Letters,

vol. 52, no. 1, pp. 49 – 58, 2004.

[48] A. Girard and G. J. Pappas, “Approximate bisimulation relations for constrained linear sys-

tems,” Automatica, vol. 43, no. 8, pp. 1307 – 1317, 2007.

[49] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, Programming Multi-Agent Systems,

vol. LNAI 3067, ch. Verifiable Multi-agent Programs, pp. 72–89. 2004.

[50] T. Suzuki, S. M. Shatz, and T. Murata, “A protocol modeling and verification approach based

on a specification language and petri nets,” IEEE Transactions on Software Engineering,

vol. 16, no. 5, pp. 523–536, 1990.

[51] R. Simmons, C. Pecheur, and G. Srinivasan, “Towards automatic verification of autonomous

systems,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, vol. 2, pp. 1410–1415, 2000.

[52] A. Holt, “Formal verification with natural language specifications: guidelines, experiments

and lessons so far,” South African Computer Journal, no. 24, pp. 253–257, 1999.

[53] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma, “Specification styles in distributed

systems design and verification,” Theoretical Computer Science, vol. 89, pp. 179–206, 1991.

[54] R. S. Beata Sarna-Starosta and L. K. Dillon, “A model-based design-for-verification approach

to checking for deadlock in multi-threaded applications,” in Proc. of 18th International Con-

ference on Software Engineering and Knowledge Engineering, 2006.



138

[55] A. Betin-Can, T. Bultan, M. Lindvall, B. Lux, and S. Topp, “Application of design for ver-

ification with concurrency controllers to air traffic control software,” in Proc. of the 20th

IEEE/ACM International Conference on Automated Software Engineering, pp. 14–23, ACM,

2005.

[56] N. Sharygina, J. C. Browne, and R. P. Kurshan, “A formal object-oriented analysis for soft-

ware reliability: Design for verification,” in Proc. of the Fundamental Approaches to Software

Engineering Conference, pp. 318–332, 2001.

[57] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh, “Assume-guarantee verification of

source code with design-level assumptions,” in Proc. of the 26th International Conference on

Software Engineering, pp. 211–220, IEEE Computer Society, 2004.

[58] T. Bultan and A. Betin-Can, Verified Software: Theories, Tools, Experiments, vol. LNCS 4171,

ch. Scalable Software Model Checking Using Design for Verification, pp. 337–346. Springer-

Verlag, 2008.

[59] G. De Giacomo and M. Y. Vardi, ECP-99, vol. LNAI 1809, ch. Automata-Theoretic Approach

to Planning for Temporally Extended Goals, pp. 226–238. 2000.

[60] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Wheres Waldo? Sensor-based tempo-

ral logic motion planning,” in Proc. of the IEEE International Conference on Robotics and

Automation, pp. 3116–3121, 2007.

[61] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,” Formal Aspects

of Computing, vol. 6, no. 5, pp. 512–535, 1994.

[62] V. Gupta, R. Jagadeesan, and P. Panangaden, “Stochastic processes as concurrent constraint

programs,” in Proc. of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pp. 189–202, ACM, 1999.

[63] H. L. S. Younes, CAV, vol. LNCS 3576, ch. Probabilistic Verification for “Black-Box” Sys-

tems, pp. 253–265. Springer-Verlag, 2005.

[64] M. Kwiatkowska, “Model checking for probability and time: from theory to practice,” in Proc.

of the 18th Annual IEEE Symposium on Logic in Computer Science, pp. 351–360, June 2003.



139

[65] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking continuous-time markov

chains,” ACM Transactions on Computational Logic, vol. 1, no. 1, pp. 162–170, 2000.

[66] J. Sproston, “Decidable model checking of probabilistic hybrid automata,” in Proc. of the

6th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,

pp. 31–45, Springer-Verlag, 2000.

[67] S. Prajna, A. Jadbabaie, and G. J. Pappas, “Stochastic safety verification using barrier certifi-

cates,” in Proc. of the IEEE Conference on Decision and Control, 2004.

[68] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic model checking with

PRISM: a hybrid approach,” International Journal on Software Tools Technology Transfer,

vol. 6, pp. 128–142, 2004.

[69] X. Koutsoukos and D. Riley, “Computational methods for verification of stochastic hybrid

systems,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,

vol. 38, pp. 385–396, March 2008.

[70] S. Amin, A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Reachability analysis for controlled

discrete time stochastic systems,” in Proc. of the International Conference on Hybrid Systems:

Computation and Control, pp. 49–63, 2006.

[71] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for

controlled discrete time stochastic hybrid systems,” Automatica, vol. 44, no. 11, pp. 2724 –

2734, 2008.

[72] H. A. P. Blom, G. Bakker, and J. Krystul, “Probabilistic reachability analysis for large scale

stochastic hybrid systems,” in Proc. of the 46th IEEE Conference on Decision and Control,

pp. 3182–3189, 2007.

[73] S. K. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by subset

simulation,” Journal of Probabilistic Engineering Mechanics, vol. 16, 2001.

[74] S. P. Brooks, “Markov Chain Monte Carlo method and its applications,” The Statistician,

vol. 47, no. 1, pp. 69–100, 1998.

[75] C. J. Geyer, “Practical Markov Chain Monte Carlo,” Statistical Science, vol. 7, no. 4, pp. 473–

483, 1992.



140

[76] D. Dvorak, R. Rasmussen, and T. Starbird, “State knowledge representation in the Mission

Data System,” in Proc. of the IEEE Aerospace Conference, 2002.

[77] D. Dvorak, M. Indictor, M. Ingham, R. Rasmussen, and M. Stringfellow, “A unifying frame-

work for systems modeling, control systems design, and system operation,” in Proc. of the

IEEE Conference on Systems, Man, and Cybernetics, October 2005.

[78] D. Dvorak, “Challenging encapsulation in the design of high-risk control systems,” in Proc.

of the ACM Conference on Object Oriented Programming, Systems, Languages, and Applica-

tions, 2002.

[79] G. Labinaz, M. M. Bayoumi, and K. Rudie, “A survey of modeling and control of hybrid

systems,” Annual Reviews of Control, vol. 21, pp. 79–92, 1997.

[80] G. Pola, M. L. Bujorianu, J. Lygeros, and M. D. D. Benedetto, “Stochastic hybrid systems: An

overview,” in Proc. of the IFAC Conference on Analysis and Design of Hybrid Systems, 2003.

[81] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hybrid systems,” in Proc. of

the Hybrid Systems: Computation and Control (N. Lynch and B. Krogh, eds.), vol. Lecture

Notes in Computer Science 1809, pp. 160–173, Springer, 2000.

[82] A. Elfes, J. F. Montgomery, J. L. Hall, S. S. Joshi, J. Payne, and C. F. Bergh, “Autonomous

flight control for a Titan exploration aerobot,” in Proc of Robotics Science and Systems, 2005.


