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Abstract 

In many engineering applications, it is a formidable task to construct mathematical models 

that are expected to produce accurate predictions of the behavior of a system of interest. 

During the construction of such predictive models, errors due to imperfect modeling and 

uncertainties due to incomplete information about the system and its environment (e.g., 

input or excitation) always exist and can be accounted for appropriately by using 

probability logic. To assess the system performance subjected to dynamic excitations, a 

stochastic system analysis considering all the uncertainties involved has to be performed. In 

engineering, evaluating the robust failure probability (or its complement, robust reliability) 

of the system is a very important part of such stochastic system analysis. The word ‘robust’ 

is used because all uncertainties, including those due to modeling of the system, are taken 

into account during the system analysis, while the word ‘failure’ is used to refer to 

unacceptable behavior or unsatisfactory performance of the system output(s). Whenever 

possible, the system (or subsystem) output (or maybe input as well) should be measured to 

update models for the system so that a more robust evaluation of the system performance 

can be obtained. In this thesis, the focus is on stochastic system analysis, model and 

reliability updating of complex systems, with special attention to complex dynamic systems 

which can have high-dimensional uncertainties, which are known to be a very challenging 

problem. Here, full Bayesian model updating approach is adopted to provide a robust and 

rigorous framework for these applications due to its ability to characterize modeling 

uncertainties associated with the underlying system and to its exclusive foundation on the 

probability axioms. 
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First, model updating of a complex system which can have high-dimensional uncertainties 

within a stochastic system model class is considered. To solve the challenging 

computational problems, stochastic simulation methods, which are reliable and robust to 

problem complexity, are proposed. The Hybrid Monte Carlo method is investigated and it 

is shown how this method can be used to solve Bayesian model updating problems of 

complex dynamic systems involving high-dimensional uncertainties. New formulae for 

Markov Chain convergence assessment are derived. Advanced hybrid Markov Chain 

Monte Carlo simulation algorithms are also presented in the end. 

Next,  the problem of how to select the most plausible model class from a set of competing 

candidate model classes for the system and how to obtain robust predictions from these 

model classes rigorously, based on data, is considered. To tackle this problem, Bayesian 

model class selection and averaging may be used, which is based on the posterior 

probability of different candidate classes for a system. However, these require calculation 

of the evidence of the model class based on the system data, which requires the 

computation of a multi-dimensional integral involving the product of the likelihood and 

prior defined by the model class. Methods for solving the computationally challenging 

problem of evidence calculation are reviewed and new methods using posterior samples are 

presented.  

Multiple stochastic model classes can be created even there is only one embedded 

deterministic model. These model classes can be viewed as a generalization of the 

stochastic models considered in Kalman filtering to include uncertainties in the parameters 

characterizing the stochastic models. State-of-the-art algorithms are used to solve the 

challenging computational problems resulting from these extended model classes. Bayesian 

model class selection is used to evaluate the posterior probability of an extended model 

classe and the original one to allow a data-based comparison. The problem of calculating 

robust system reliability is also addressed. The importance and effectiveness of the 

proposed method is illustrated with examples for robust reliability updating of structural 
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systems. Another significance of this work is to show the sensitivity of the results of 

stochastic analysis, especially the robust system reliability, to how the uncertainties are 

handled, which is often ignored in past studies. 

A model validation problem is then considered where a series of experiments are conducted 

that involve collecting data from successively more complex subsystems and these data are 

to be used to predict the response of a related more complex system. A novel methodology 

based on Bayesian updating of hierarchical stochastic system model classes using such 

experimental data is proposed for uncertainty quantification and propagation, model 

validation, and robust prediction of the response of the target system. Recently-developed 

stochastic simulation methods are used to solve the computational problems involved. 

Finally, a novel approach based on stochastic simulation methods is developed using 

current system data, to update the robust failure probability of a dynamic system which will 

be subjected to future uncertain dynamic excitations. Another problem of interest is to 

calculate the robust failure probability of a dynamic system during the time when the 

system is subjected to dynamic excitation, based on real-time measurements of some output 

from the system (with or without corresponding input data) and allowing for modeling 

uncertainties; this generalizes Kalman filtering to uncertain nonlinear dynamic systems. For 

this purpose, a novel approach is introduced based on stochastic simulation methods to 

update the reliability of a nonlinear dynamic system, potentially in real time if the 

calculations can be performed fast enough. 
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CHAPTER  1  

Introduction 

In many engineering applications, it is a formidable task to construct mathematical models 

that are expected to produce accurate predictions of the behavior of a system of interest. 

During the construction of such predictive models, errors due to imperfect modeling and 

uncertainties due to incomplete information about the system and its environment (e.g., 

input or excitation) always exist and can be accounted for appropriately by using 

probability logic. In probability logic, probability is viewed as a multi-valued logic for 

plausible reasoning that extends Boolean propositional logic to the case of incomplete 

information (Cox 1946, 1961; Jaynes 2003; Beck 2008; Beck and Cheung 2009). Often one 

has to decide which proposed candidate models are acceptable for prediction of the system 

behavior. Behind the above also lies a great engineering interest to assess during the design 

and operation of a system whether it is expected to satisfy specified engineering 

performance objectives. To assess the system performance subjected to dynamic 

excitations, a stochastic system analysis considering all the uncertainties involved should 

be performed. In engineering, evaluating the robust failure probability (or its complement, 

robust reliability) of the system is a very important part of such stochastic system analyses. 

The word ‘robust’ is used because all uncertainties are taken into account during the system 

analysis, including those due to modeling of the system while the word ‘failure’ is used to 

refer to unacceptable behavior or unsatisfactory performance of the system output(s). 

Whenever possible, the system (or subsystem) output(s) (or maybe input(s) that include 
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quantities related to the environment) should be measured to update models for the system 

so that a more robust evaluation of the system performance can be obtained.  

There are several characteristics of complex dynamic systems making the corresponding 

stochastic analysis, model and reliability updating computationally very challenging: (1). 

the system outputs or performance measures cannot be analytically expressed in terms of 

the uncertain modeling parameters (e.g., when dynamic systems are nonlinear); and (2). the 

number of uncertain modeling parameters can be quite large; for example, a large number 

of uncertain parameters are typical in modeling structures which have a large number of 

degrees of freedom subjected to dynamic excitations such as uncertain future earthquakes 

(requiring uncertain parameters of the order of hundreds or thousands to specify their 

discretized ground-motion time histories). 

Another problem of much recent interest is model validation for a system which has 

attracted the attention of many researchers (e.g. Babuška and Oden, 2004; Oberkampf et al. 

2004; Babuška et al. 2006; Chleboun 2008; Babuška et al. 2008; Grigoriu and Field 2008; 

Pradlwarter and Schuëller 2008; Rebba and Cafeo 2008) from many different fields of 

engineering and applied science because of the desire to provide a measure of confidence 

in the predictions of system models. In particular, in May 2006, the Sandia Model 

Validation Challenge Workshop brought together a group of researchers to present various 

approaches to model validation (Hills et al. 2008). The participants could choose to work 

on any of three problems; one in heat transfer (Dowding et al. 2008), one in structural 

dynamics (Red-Horse and Paez 2008) and one in structural statics (Babuška et al. 2008). 

The difficult issue of how to validate models is, however, still not settled; indeed, it is clear 

that a model that has given good predictions in tests so far might perform poorly under 

different circumstances, such as an excitation with different characteristics.  

In this work, a full Bayesian model updating approach is adopted to provide a robust and 

rigorous framework for the above problems due to its ability to characterize modeling 

uncertainties associated with the underlying system and to its exclusive foundation on the 
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probability axioms. A probability logic approach is used (Beck and Cheung 2009) that is 

consistent with the Bayesian point of view that probability represents a degree of belief in a 

proposition but it puts more emphasis on its connection with missing information and 

information-theoretic ideas stemming from Shannon (1948). 

1.1 Stochastic analysis, model and reliability updating of complex systems 

Model updating using measured system response, with or without measured excitation, has 

a wide range of applications in response prediction, reliability and risk assessment, and 

control of dynamic systems and structural health monitoring (e.g., Vanik et al. 2001; Beck 

et al. 2001; Papadimitriou et al. 2001; Beck and Au 2002; Katafygiotis et al. 2003; Lam et 

al. 2004; Yuen and Lam 2006; Ching et al. 2006). There always exist modeling errors and 

uncertainties associated with the process of constructing a mathematical model of a system 

and its future excitation, whether it is based on physics or on a black-box ‘nonparametric’ 

model. Being able to quantify the uncertainties accurately and appropriately is essential for 

a robust prediction of future response and reliability of structures (Beck and Katafygiotis 

1991, 1998; Papadimitriou et al. 2001; Beck and Au 2002; Cheung and Beck 2007a, 2008a, 

2008b). Here in this thesis, a fully probabilistic Bayesian model updating approach is 

adopted, which provides a robust and rigorous framework due to its ability to characterize 

modeling uncertainties associated with the system and to its exclusive foundation on the 

probability axioms. 

1.1.1 Stochastic system model classes 

In this thesis, for the applications of the Bayesian approach, the Cox-Jaynes interpretation 

of probability as an extension of binary Boolean logic to a multi-valued logic of plausible 

inference is adopted where the relative plausibility of each model within a class of models 

is quantified by its probability (Cox 1961; Jaynes 2003). A key concept in the proposed 

approach here is a stochastic system model class M which consists of a set of probabilistic 

predictive input-output models for a system together with a probability distribution, the 
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prior, over this set that quantifies the initial relative plausibility of each predictive model. 

For simpler presentation, we will usually abbreviate the term “stochastic system model 

class” to “model class”. Based on M, one can use data D to compute the updated relative 

plausibility of each predictive model in the set defined by M. This is quantified by the 

posterior PDF p(θ|D,M) for the uncertain model parameters θ D   which specify a 

particular model within M. By Bayes' theorem, this posterior PDF is given by: 

 1( | , ) ( | , ) ( | )D M D M Mθ θ θp c p p  (1.1) 

where c = p(D|M) = ∫p(D|θ,M)p(θ|M)dθ  is the normalizing constant which makes the 

probability volume under the posterior PDF equal to unity; p(D|θ,M) is the likelihood 

function which expresses the probability of getting data D based on the predictive PDF for 

the response given by model θ within M; and p(θ|M) is the prior PDF for M which one can 

freely choose to quantify the initial plausibility of each model defined by the value of the 

parameters θ. For example, through the use of prior information that is not readily built into 

the predictive PDF that produces the likelihood function, the prior can be chosen to provide 

regularization of ill-conditioned inverse problems (Bishop 2006). As emphasized by Jaynes 

(2003), probability models represent a quantification of the state of knowledge about real 

phenomena conditional on the available information and should not be imagined to be a 

property inherent in these phenomena, as often believed by those who ascribe to the 

common interpretation that probability is the relative frequency of “inherently random” 

events in the “long run”. 

Based on the topology of p(D|θ,M) in the parameter space, and, in particular, the set {θ : 

θ=arg max p(D|θ,M)} of MLEs (maximum likelihood estimates), a model class M can be 

classified into 3 different categories (Beck and Katafygiotis 1991, 1998; Katafygiotis and 

Beck 1998): globally identifiable (unique MLE), locally identifiable (discrete set of MLEs) 

and unidentifiable (a continuum of MLEs) based on the available data D. Full Bayesian 

updating can treat all these cases (Yuen et al. 2004). 
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1.1.2 Stochastic system model class comparison 

In many engineering applications, we are often faced with the problem of model class 

selection, that is, based on system data, choosing the most plausible model class from a set 

of competing candidate model classes to represent the behavior of the system of interest. A 

model class is a set of parameterized probability models for predicting the behavior of 

interest together with a prior probability model over this set indicating the relative 

plausibility of each predictive probability model. The main goal is to handle the tradeoff 

between the data-fit of a model and the simplicity of the model so as to avoid “overfitting” 

or “underfitting” the data. Bayesian methods of model selection and hypothesis testing 

have the advantage that they only use the axioms of probability. In contrast, analysis of 

multiple models or hypotheses is very difficult in a non-Bayesian framework without 

introducing ad-hoc measures (Berger and Pericchi 1996). The common selection criteria 

using p-values (significance tests) are difficult to interpret and can often be highly 

misleading (Jeffreys 1939, 1961; Lindley 1957, 1980; Berger and Delampady 1987). A 

common principle enunciated is that, if data is explained equally well by two models, then 

the simpler model should be preferred (often referred to as Ockham's razor) (Jeffreys 1961). 

Bayesian methods perform this automatically and systematically (Gull 1988; Mackay 1992; 

Beck and Yuen 2004) while non-Bayesian methods require introduction of ad-hoc 

measures to penalize model complexity to prevent overfitting. 

There are several simplified data-based model selection methods, the most common of 

which are the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC). AIC was proposed by Akaike (1974) based on providing an estimate to the 

Kullback-Leibler information (Kullback and Leibler 1951) with the goal of extending 

Fisher’s maximum likelihood theory. Hurvich and Tsai (1989) proposed AICc, a variant of 

AIC, which provides an empirical but ad-hoc correction to AIC for the case where the 

sample size is small or the dimension of the uncertain parameters are large relative to the 

samples size. AICc converges to AIC as the sample size gets sufficiently large.  
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BIC was derived by Schwarz (1978) using Bayesian updating and an asymptotic approach 

assuming a sufficiently large sample size and that the candidate models all have unique 

maximum likelihood estimates. Deviance information criterion (DIC) (Spiegelhalter et al. 

2002) is a generalization of AIC and BIC. DIC has an advantage that it can be readily 

calculated from the posterior samples generated by MCMC (Markov chain Monte Carlo) 

simulation. BIC and DIC are asymptotic approximations to full Bayesian updating at the 

model class level as the sample size becomes large and they may be misleading when two 

model classes give similar fits to the data. It was shown empirically by Kass and Raftery 

(1993) that BIC biases towards simpler models and AIC towards more complicated models 

as compared with a full Bayesian updating at the model class level, discussed next. The 

potential of BIC to produce misleading results was pointed out, for example, in Muto and 

Beck (2008). 

Model class comparison is a rigorous Bayesian updating procedure that judges the 

plausibility of different candidate model classes, based on their posterior probability (that is, 

their probability conditional on the data from the system). Its application to system 

identification of dynamic systems that are globally identifiable or unidentifiable was 

studied in Beck and Yuen (2004) and Muto and Beck (2008), respectively. In these 

publications, a model class is referred to as a Bayesian model class. 

Given a set of candidate model classes M={Mj: j=1,2,…NM}, we calculate the posterior 

probability ( , )jP MM |D  of each model class based on system data D by using Bayes’ 

Theorem: 

 
( ) ( | )

( , )
( | )

j j
j

p P M
P M

p M


D|M M
M |D

D
      (1.2) 

where P(Mj |M) is the prior probability of each Mj and can be taken to be 1/NM if one 

considers all NM model classes as being equally plausible a priori; p(D|Mj) expresses the 
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probability of getting the data D based on Mj and is called the evidence (or sometimes 

marginal likelihood) for Mj provided by the data D and it is given by the Theorem of Total 

Probability: 

 ( ) ( ) ( | )j j jp p p d  θ θ θD|M D| ,M M  (1.3) 

Although θ  corresponds to different sets of parameters and can be of different dimension 

for different Mj, for simpler presentation a subscript j on θ is not used since explicit 

conditioning on Mj indicates which parameter vector θ is involved. 

Notice that (1.3) can be interpreted as follows: the evidence gives the probability of the 

data  according to Mj (if (1.3) is multiplied by an elemental volume in the data space) and it 

is equal to a weighted average of the probability of the data according to each model 

specified by Mj, where the weights are given by the prior probability p(θ|Mj)dθ of the 

parameter values corresponding to each model. The evidence therefore corresponds to a 

type of integrated global sensitivity analysis where the prediction p(D|θ,Mj) of each model 

specified by θ  is considered but it is weighted by the relative plausibility of the 

corresponding model. 

The computation of the multi-dimensional evidence integral in (1.3) is highly nontrivial. 

The problem involving complex dynamic systems with high-dimensional uncertainties 

makes this computationally even more challenging. This will be discussed in more detail in 

a later chapter.  

It is worth noting that from (1.3), the log evidence can be expressed as the difference of 

two terms (Ching et al. 2005; Muto and Beck 2008):  

 
( | , )

ln[ ( | )] [ln( ( | , )] [ln ]
( | )

j
j j

j

p
p E p E

p
 

θ
θ

θ

D M
D M D M

M
 (1.4) 
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where the expectation is with respect to the posterior p(θ|D, Mj). The first term is the 

posterior mean of the log likelihood function, which gives a measure of the goodness of the 

fit of the model class Mj to the data, and the second term is the Kullback-Leibler divergence, 

or relative entropy (Cover and Thomas 2006), which is a measure of the information gain 

about Mj from the data D and is always non-negative.  

Comparing the posterior probability of each model class provides a quantitative Principle 

of Model Parsimony or Ockham’s razor (Gull 1989; Mackay 1992), which have long been 

advocated qualitatively, that is, simpler models that are reasonably consistent with the data 

should be preferred over more complex models that only lead to slightly improved data fit. 

The importance of (1.3) is that it shows rigorously, without introducing ad-hoc concepts, 

that the log evidence for Mj, which controls the posterior probability of this model class 

according to (1.2), explicitly builds in a trade-off between the data-fit of the model class 

and its “complexity” (how much information it takes from the data). 

The evidence, and so Bayesian model class selection, may be sensitive to the choice of 

priors p(θ|Mj) for the uncertain model parameters (Berger and Pericchi 1996). The effect of 

priors on Bayesian hypothesis comparison was first noted in Lindley’s paradox (Lindley 

1957). The use of excessively diffuse priors for the parameters should be avoided since it 

will enforce a strong preference towards simpler models. In fact, since the model class 

includes the prior, for a given likelihood, Bayesian model class selection will give low 

posterior probability to a model class with a very diffuse prior, which can be deduced from 

(1.2) and (1.4); more generally, it provides a mechanism to judge priors based on data, as is 

done, for example, by parameterizing the priors in automatic relevance determination 

(Mackay 1993; Bishop 2006; Oh et al. 2008). 
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1.1.3 Robust predictive analysis and failure probability updating using 

stochastic system model classes 

One of the most useful applications of Bayesian model updating is to make robust 

predictions about future events based on past observations. Let D denote data from 

available measurements on a system. Based on a candidate model class Mj, all the 

probabilistic information for the prediction of a vector of future responses X is contained in 

the posterior robust predictive PDF for Mj given by the Theorem of Total Probability 

(Papadimitriou et al. 2001): 

 ( | ) ( | , , ) ( | )j j jp p p d X X θ θ θD,M D M D,M  (1.5) 

The interpretation of (1.5) is similar to that given for (1.3) except now the prediction 

p(X|θ,D,Mj) of each model specified by θ  is weighted by its posterior probability  

p(θ|D, Mj)dθ because of the conditioning on the data D. If this conditioning on D in (1.5) is 

dropped so, for example, the prior p(θ|Mj) is used in place of the posterior p(θ|D, Mj), the 

result p(X|Mj) of the integration is the prior robust predictive PDF. 

Many system performance measures can be expressed as the expectation of some function 

g(X) with respect to the posterior robust predictive PDF in (1.5) as follows: 

 [ ( ) | ] ( ) ( | , )j jE p d g X g X X XD,M D M  (1.6) 

Some examples of important special cases are:  

1) g(X)=IF(X), which is equal to 1 if XF and 0 otherwise, where F is a region in the 

response space that corresponds to unsatisfactory system performance, then the integral in 

(1.6) is equal to the robust “failure” probability P(F|D, Mj);  
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2) g(X)=X, then the integral in (1.6) becomes the robust mean response;  

3) g(X)=(X-E[X|D, Mj])(X-E[X|D, Mj])T, then the integral in (1.6) is equal to the robust 

covariance matrix of X. 

The Bayesian approach to robust predictive analysis requires the evaluation of multi-

dimensional integrals, such as in (1.5), and this usually cannot be done analytically. For  

problems involving complex dynamic systems with high-dimensional uncertainties, this 

can be computationally challenging. This will be discussed in more detail in a later chapter. 

If a set of candidate model classes M={Mj: j=1,2,…NM} is being considered for a system, 

all the probabilistic information for the prediction of future responses X is contained in the 

hyper-robust predictive PDF for M given by the Theorem of Total Probability (Muto and 

Beck 2008): 

 
1

( | ) ( | , ) ( | , )
MN

j j
j

p M p P M


X XD, D M M D        (1.7) 

where the robust predictive PDF for each model class Mj is weighted by its posterior 

probability P(Mj|D, M) from (1.2). Equation (1.7) is also called posterior model averaging 

in the Bayesian statistics literature (Raftery et al. 1997, Hoeting et al. 1999).  

Let F denote the events or conditions leading to system failure (unsatisfactory system 

performance). The hyper-robust failure probability P(F|D,M) based on M is then given by 

(Cheung and Beck 2008g, 2009a, 2009b): 

 
1

( | ) ( | , ) ( | , )
MN

j j
j

P F M P F P M


D, D M M D  (1.8) 

The importance of the above is investigated in Chapters 4 and 5. 
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1.2 Outline of the Thesis 

In this thesis, the focus is on stochastic system analysis, model and reliability updating of 

complex systems, with special attention to complex dynamic systems which can have high-

dimensional uncertainties, which are very challenging. New methods are developed to 

solve these problems. Most of the methods developed in this thesis are intended to be very 

general without requiring special assumptions regarding the system. A new methodology is 

also developed to tackle the challenging model validation problem. Novel methods for 

updating robust failure probability are also developed. 

In Chapter 2, model updating problems for complex systems which have high-dimensional 

parameter uncertainties within a stochastic system model class are considered. To solve the 

challenging computational problems, stochastic simulation methods, which are reliable and 

robust to problem complexity, are proposed. Markov Chain Monte Carlo simulation 

methods are presented and reviewed. An advanced Markov Chain Monte Carlo simulation 

method namely Hybrid Monte Carlo simulation method is investigated. Practical issues for 

the feasibility of this method to solve Bayesian model updating problems of complex 

dynamic systems involving high-dimensional uncertainties are addressed. Improvements 

are proposed to make it more effective and efficient for solving such model updating 

problems. New formulae for Markov Chain convergence assessment are derived. The 

effectiveness of the proposed approach is illustrated with an example for Bayesian model 

updating of a structural dynamic model with many uncertain parameters. New stochastic 

simulation algorithms created by combining state-of-the-art stochastic simulation 

algorithms are also presented. 

In Chapter 3, the problem of comparison of model classes involving complex dynamic 

systems with high-dimensional uncertainties is considered. The problem of interest is how 

to select the most plausible model class from a set of competing candidate model classes 

for the system, based on data. To tackle this problem, Bayesian model class selection may 

be used, which is based on the posterior probability of different candidate classes for a 
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system. Another problem of interest is to tackle cases where more than one model class has 

significant posterior probability and each of these give different predictions. Bayesian 

model class averaging then provides a coherent mechanism to incorporate all the 

considered model classes in the probabilistic predictions for the system. However, both 

Bayesian model class selection and averaging require calculation of the evidence of the 

model class based on the system data, which requires the computation of a multi-

dimensional integral involving the product of the likelihood and prior defined by the model 

class. Methods for solving the computationally challenging problem of evidence 

calculation are reviewed and new methods using posterior samples are presented.  

In the past, most applications of Bayesian model updating of dynamic systems have 

focused on model classes which consider an uncertain prediction error as the difference 

between the real system output and the model output and model it probabilistically using 

Jaynes’ Principle of Maximum Information Entropy. In Chapter 4, an extension of such 

model classes is considered to allow more flexibility in treating modeling uncertainties 

when updating state space models and making robust predictions; this is done by 

introducing prediction errors in the state vector equation, in addition to those in system 

output vector equation. These model classes can be viewed as a generalization of the 

stochastic models considered in Kalman filtering to include uncertainties in the parameters 

characterizing the stochastic models. State-of-the-art algorithms are used to solve the 

challenging computational problems resulting from these extended model classes. Bayesian 

model class selection is used to evaluate the posterior probability of an extended model 

class and the original one to allow a data-based comparison. To make predictions robust to 

model uncertainties, Bayesian model averaging is used to combine the predictions of these 

model classes. The problem of calculating robust system reliability is also addressed. The 

importance and effectiveness of the proposed method is illustrated with examples for 

robust reliability updating of structural systems. 
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In Chapter 5, the problem of model validation of a system is considered. Here, we consider 

the problem where a series of experiments are conducted that involve collecting data from 

successively more complex subsystems and these data are to be used to predict the 

response of a related more complex system. A novel methodology based on Bayesian 

updating of hierarchical stochastic system model classes using such experimental data is 

proposed for uncertainty quantification and propagation, model validation, and robust 

prediction of the response of the target system. The proposed methodology is applied to the 

2006 Sandia static-frame validation challenge problem to illustrate our approach for model 

validation and robust prediction of the system response. Recently-developed stochastic 

simulation methods are used to solve the computational problems involved. 

In Chapter 6, a newly-developed approach based on stochastic simulation methods is 

presented, to update the robust reliability of a dynamic system. The efficiency of the 

proposed approach is illustrated by a numerical example involving a hysteretic model of a 

building. 

In Chapter 7, a novel approach is introduced based on stochastic simulation methods, 

which updates in real time the robust reliability of a nonlinear dynamic system. The 

performance of the proposed approach is illustrated by an example involving a nonlinear 

dynamic model using incomplete dynamic data obtained during  the 1994 Northridge 

earthquake from a hotel which is a seven-story reinforced-concrete moment-frame building. 
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CHAPTER  2  

Bayesian updating of stochastic system model classes 

with a large number of uncertain parameters 

In this chapter, model updating problems of a complex system which can have high-

dimensional parameter uncertainties within a stochastic system model class M is considered. 

Since the analysis is conditioned on a single model class, the subscript for M, which 

denotes different model classes, is dropped in the rest of this chapter. The Bayesian 

approach to robust predictive analysis requires the evaluation of multi-dimensional 

integrals, such as in (1.5), and this usually cannot be done analytically. Laplace’s method of 

asymptotic approximation (Beck and Katafygiotis 1991, 1998; Papadimitriou et al. 2001) 

has been used in the past, which utilizes a Gaussian approximation to the posterior PDF, as 

mentioned before for (1.3). However, application of this approximation faces difficulties 

when (i) the amount of data is small so its accuracy is questionable, or (iii) the chosen class 

of models is unidentifiable based on the available data. Also, such an approximation 

requires a non-convex optimization in a high-dimensional parameter space, which is 

computationally challenging, especially when the model class is not globally identifiable 

and so there may be multiple global maximizing points. It is shown in Cheung and Beck 

(2008b, g) that the robust failure probability can require information of the posterior PDF 

in the region of the uncertain parameter space that is not in the high probability region of 

the posterior PDF. Even if the Laplace analytical approximation gives a good 

approximation in the region of the uncertain parameter space that contains the high 

probability content of the posterior PDF, there is no guarantee that it gives sufficient 



 

 15

accuracy in approximating this probability distribution in other regions of the uncertain 

parameter space. It may therefore lead to a poor estimate of robust failure probability. 

Other analytical approximations to the posterior PDF such as the variational approximation 

(Beal 2003) suffer similar problems as Laplace’s method of asymptotic approximation. 

Thus, in recent years, focus has shifted from analytical approximations to using stochastic 

simulation methods in which samples consistent with the posterior PDF p(θ|D,M) are 

generated. In these methods, all the probabilistic information encapsulated in p(θ|D,M) is 

characterized by posterior samples ( )kθ , k=1,2,...,K:  

 ( )

1

1
( | ) ( )

K
k

k

p
K




 θ θ θD,M  (2.1) 

With these samples, the integral in (1.5) can be approximated by:  

 ( )

1

1
( | ) ( | , , )

K
k

k

p p
K 

 X X θD,M D M  (2.2) 

Samples of X can then be generated from each of the ( )( | , , )kp X θ D M  with equal 

probability. The probabilistic information encapsulated in ( | )p X D,M is characterized by 

these samples of X.  

There are several difficulties related to the sampling of p(θ|D,M): (i) the normalizing 

constant c in Bayes’ Theorem in (1.1), which is actually the evidence in (1.3), is usually 

unknown a priori and its evaluation requires a high-dimensional integration over the 

uncertain parameter space; and (ii) the high probability content of p(θ|D,M) occupies a 

much smaller volume than that of the prior PDF, so samples in the high probability region 

of p(θ|D,M) cannot be generated efficiently by sampling from the prior PDF using direct 

Monte Carlo simulation. To tackle the aforementioned difficulties, Markov Chain Monte 

Carlo (MCMC) simulation methods (e.g. Robert and Casella 1999, Beck and Au 2002, 
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Ching et al. 2006, Ching and Cheng 2007, Muto and Beck 2008) were proposed to solve 

the Bayesian model updating problem more efficiently. 

Probably the most well-known MCMC method is the Metropolis-Hastings (MH) algorithm 

(Metropolis et al. 1953, Hastings 1970) which creates samples from a Markov Chain whose 

stationary state is a specified target PDF. In principle, this algorithm can be used to 

generate samples from the posterior PDF but, in practice, its direct use is highly inefficient 

because the high probability content is often concentrated in a very small volume of the 

parameter space. Beck and Au (2000, 2002) proposed an approach which combines the 

idea from simulated annealing with the MH algorithm to simulate from a sequence of target 

PDFs, where each such PDF is the posterior PDF based on an increasing amount of data. 

The sequence starts with the spread-out prior PDF and ends with the much more 

concentrated posterior PDF. The samples from a target PDF in the sequence are used to 

construct a kernel sampling density which acts as a global proposal PDF for the MH 

procedure for the next target PDF in the sequence. The success of this approach relies on 

the ability of the proposal PDF to simulate samples efficiently for each intermediate PDF. 

However, in practice, this approach is only applicable in lower dimensions since in higher 

dimensions, a prohibitively large number of samples are required to construct a good global 

proposal PDF which can generate samples with reasonably high acceptance probability. In 

other words, if the sample size for the particular level is not large enough, most of the 

candidate samples generated by the proposal PDF will be rejected by the MH algorithm, 

leading to many repeated samples, slowing down greatly the exploration of the high 

probability region of the posterior PDF.  

Ching et al. (2006) adopted Gibbs sampling (Geman and Geman 1984) to solve high-

dimensional model updating problems that use linear structural models and modal data. 

Ching and Cheng (2007) proposed the Transitional Markov Chain Monte Carlo (TMCMC) 

algorithm and Muto and Beck (2008) applied it to the updating of hysteretic structural 

models. TMCMC adopts the idea as in Beck and Au (2002) of using a sequence of 
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intermediate PDFs such that the last PDF in the sequence is p(θ|D,M). The main difference 

is in the way samples are simulated: TMCMC uses re-weighting and re-sampling 

techniques on the samples from a target PDF πi(θ) in the sequence to generate initial 

samples for the next target PDF πi+1(θ) in the sequence. A Markov chain of samples is 

initiated from each of these initial samples using the MH algorithm with stationary 

distribution πi+1(θ): each sample is generated from a local random walk using a Gaussian 

proposal PDF centered at the current sample of the chain that has a covariance matrix 

estimated by importance sampling using samples from πi(θ). TMCMC has several 

advantages over the previous approaches: 1) it is more efficient; 2) it allows the estimation 

of the normalizing constant c of p(θ|D,M), which is important for Bayesian model class 

selection (Beck and Yuen 2004). However, TMCMC has potential problems in higher 

dimensions, which need further attention: 1) the initial samples from re-weighting and re-

sampling of samples in πi(θ), in general, do not exactly follow πi+1(θ), so the Markov 

chains must “burn-in” before samples follow πi+1(θ), requiring a large amount of samples to 

be generated for each intermediate level; 2) in higher dimensions, convergence to πi+1(θ) 

can be very slow when using the MH algorithm based on local random walks, as in 

TMCMC. This adverse effect becomes more pronounced as the dimension increases and it 

introduces more inaccuracy into the statistical estimates based on the samples. 

In this chapter, we show how the Hybrid Monte Carlo method, also known as Hamiltonian 

Markov Chain method, can be used to solve higher-dimensional Bayesian model updating 

problems. Additional proof of the validity of the Hybrid Monte Carlo method using the 

Fokker-Planck equation is also provided. Features and parameters which affect the 

effectiveness of the Hybrid Monte Carlo method for higher-dimensional updating problems 

are discussed. Practical issues for feasibility of the method are addressed, and 

improvements are proposed to make it more effective and efficient for solving higher-

dimensional model updating problems for complex dynamic systems. New formulae for 

Markov Chain convergence assessment are derived. The effectiveness of the proposed 

approach for Bayesian model updating of complex dynamic systems with many uncertain 
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parameters is illustrated with a simulate data example involving a 10-story building. Hybrid 

algorithms based on Markov Chain Monte Carlo simulation algorithms are presented at the 

end of the chapter. Part of the materials presented in this chapter are presented in Cheung 

and Beck (2007c;2008a). 

2.1 Basic Markov Chain Monte Carlo simulation algorithms 

2.1.1 Metropolis-Hastings algorithm and its features 

The complete Metropolis-Hastings Algorithm for simulating samples from a target 

distribution π(θ) (where π(θ) need not be normalized) can be summarized as follows: 

1. Initialize θ(0) by choosing it deterministically or randomly (see discussion in Section 
4.3); 

2. Repeat step 3 below for i = 1,…, N. 

3. In iteration i, let the most recent sample be θ(i-1), then do the following to simulate a 
new sample θ(i). 

i.) Randomly draw a candidate sample θc from some proposal distribution 
q(θc |θ

(i-1)); 

ii.) Accept θ(i) = θc with probability Pacc given as follows:  

 
( 1)

( 1) ( 1)

( ) ( | )
min{1, }

( ) ( | )

i
c c

acc i i
c

q
P

q






 
θ θ θ

θ θ θ
 (2.3) 

              If rejected, then θ(i)
 = θ(i-1), i.e. the (i-1)th sample is repeated. 

The proposal PDF q(θc |θ
(i)) should be of a form that allows an easy and direct drawing of 

θc given θ(i). The choice of θ(0) and q(θc |θ
(i)) affects the convergence rate of the algorithm. 

The average acceptance probability of the candidate sample cannot be too low, or 

otherwise a significant number of repeated samples will be obtained, which slows down the 

convergence significantly and so may lead to biased results.  Here the discussion is focused 

on the effect of the proposal PDF while the effect of θ(0)
 will be discussed in a later section.  
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The most common choice of q(θc|θ
(i)) is a symmetric proposal PDF in which 

q(θc|θ
(i)) = q(θ(i)|θc); for example, the local random walk Gaussian proposal PDF is popular, 

which is centered at the current sample θ(i) with some predetermined covariance matrix C. 

This proposal PDF allows a local exploration of the neighborhood of the current sample. Its 

main drawback is that in higher dimensions, it becomes infeasible to construct a proposal 

PDF which can explore the region of high probability content efficiently and effectively 

while at the same time maintaining a reasonable acceptance probability of the candidate 

sample. Another possible choice is the non-adaptive proposal PDF in which the simulation 

of the candidate sample is independent of the current sample, i.e., q(θc|θ
(i)) = q(θc). For this 

type of proposal PDF to work, it has to be very similar to the target PDF. However, in 

general, the construction of such PDFs is infeasible in higher dimensions, even when some 

samples of the target PDF are available.  

2.1.2 Gibbs Sampling algorithm and its features 

Consider θ as a composition of n vector components which do not need to be of the same 

dimension, i.e., θ = [θ1, θ2,…, θn], such that the conditional probability distribution π(θj|{θ-

j}) of θi given all the other components is known. The complete algorithm of Gibbs 

sampling for simulating samples of a target distribution π(θ) (where π(θ) need not be 

normalized) can be summarized as follows: 

1. Initialize θ(0)
 either deterministically or randomly; 

2. Repeat step 3 below for i = 1,…, N. 

3. In iteration i, let the most recent sample be θ(i-1) = [ ( 1)
1
iθ , ( 1)

2
iθ ,…, ( 1)i

n
θ ], then do 

the following to simulate a new sample θ(i)= [ ( )
1
iθ , ( )

2
iθ ,…, ( )i

nθ ]: for each j=1,2,…, 

n, randomly draw ( )i
jθ  from π( ( )i

jθ | ( )
1
iθ ,…, ( )

1
i
jθ , ( 1)

1
i
j

θ ,…, ( 1)i

n
θ }. 

The Gibbs sampling algorithm generates a component of θ from its conditional distribution 

given the current values of the other components. Gelman et al. (1995) show that the 

sequence of samples generated by the Gibbs sampling form a Markov Chain with the 

stationary distribution being the target distribution π(θ). Step 3 can be viewed as a special 
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case of the Metropolis-Hastings algorithm where the acceptance probability is 1 if 

π( ( )i
jθ | ( )

1
iθ ,…, ( )

1
i
jθ , ( 1)

1
i
j

θ ,…, ( 1)i

n
θ } is in a form which allows direct and easy drawing of 

( )i
jθ ; if this is not the case, one can use, for example, the Metropolis-Hastings algorithm: 

draw a candidate c
jθ  from some chosen proposal q( c

jθ | ( )
1
iθ ,…, ( )

1
i
jθ , ( 1)i

j
θ , ( 1)

1
i
j

θ ,…, ( 1)i

n
θ )  

which allows easy and direct random drawing, and accept ( )i
jθ

 = c
jθ  with probability Pacc 

where:  

 

( ) ( ) ( 1) ( 1)
1 1 1

( 1) ( ) ( ) ( 1) ( 1)
1 1 1

( ) ( ) ( 1) ( 1) ( 1)
1 1 1

( 1) ( ) ( ) ( 1
1 1 1

( | ,..., , ,..., )

( | ,..., , ,..., )
min{1,

( | ,..., , , ,..., )

( | ,..., , ,

c i i i i
j j j n

i i i i i
j j j n

acc c i i i i i
j j j j n

i i i c i
j j j

P
q

q




 
 

  
 
  

 
 

 



θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ ) ( 1)

}

,..., )i
n
θ

 (2.4) 

If rejected, then ( )i
jθ  = ( 1)i

j
θ . It should be noted that the convergence of the Gibbs sampling 

algorithm can be slowed down if there is a strong correlation between components. 

2.2 Hybrid Monte Carlo Method 

Hybrid Monte Carlo Method (HMCM) was first introduced by Duane et al. (1987) as a 

MCMC technique for sampling from complex distributions by combining Gibbs sampling, 

MH algorithm acceptance rule and deterministic dynamical methods. By avoiding the local 

random walk behavior exhibited by the MH algorithm through the use of dynamical 

methods, HMCM can be much more efficient. The advantage of HMCM is even more 

pronounced when sampling the highly-correlated parameters from posterior distributions 

that are often encountered in Bayesian structural model updating. However, the potential of 

HMCM has not yet been explored in Bayesian structural model updating. 

In HMCM, a fictitious dynamical system is considered in which auxiliary ‘momentum’ 

variables p D  are introduced and the uncertain parameters θ D in the target 

distribution π(θ) are treated as the variables for the displacement. The total energy 
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(Hamiltonian function) of the fictitious dynamical system is defined 

by: ( , ) = ( ) + ( )H V Wθ p θ p , where its potential energy V(θ) = −lnπ(θ) and its kinetic 

energy W(p) depends only on p and some chosen positive definite ‘mass’ matrix 

D DM  : 

 T 1( ) / 2W p p M p   (2.5) 

Since M can be chosen at our convenience, it is taken as a diagonal matrix with entries Mi, 

i.e., M = diag(Mi). A joint distribution f(θ, p) over the phase space (θ, p) is considered: 

 ( , )  exp( ( , ))f K H θ  p θ p  (2.6) 

where K is the normalizing constant. Clearly,  

 T 1( , ) ( ) exp( / 2)f K  θ  p θ  p M p  (2.7) 

Note that π(θ) can be unnormalized (the usual situation that arises when constructing a 

posterior PDF) since its normalizing constant can be absorbed into K. Samples of θ from 

π(θ) can be obtained if we can sample (θ, p) from the joint distribution f(θ, p) in (2.7). Note 

that (2.7) shows that p and θ are independent and the marginal distributions of θ and p are 

respectively π(θ) and N(0, M), a Gaussian distribution with zero mean and covariance 

matrix M. 

Using Hamilton’s equations, the evolution of (θ, p) through fictitious time t is given by: 

 ( )
d H

V
dt


   


p

θ
θ

   (2.8) 

 1d H

dt


 


θ
M p

p
        (2.9) 

There are 4 features worth noting regarding the above evolution:  
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1. The total energy H remains constant throughout the evolution; 

2. The dynamics are time reversible, i.e., if a trajectory initiates at (θ’, p’) at time 0 

and ends at (θ’’, p’’) at time t, then a trajectory starting at (θ’’, p’’) at time 0 will 

end at (θ’, p’) at time –t (or, equivalently, a trajectory starting at (θ’’, -p’’) at time 0 

will end at (θ’, -p’) at time t).  

3. The volume of a region of phase space remains constant (by Liouville’s theorem).  

4. The above evolution of (θ, p) leaves f(θ, p) in (2.7) as the stationary distribution 

(Duane et al. 1987); in particular, if θ(0) follows the distribution π(θ), then after 

time t, θ(t)  also follows π(θ). Duane et al. (1987) proved this by showing the 

detailed balance condition for the stationarity of a Markov Chain is satisfied. In 

Appendix 2A, we provide an alternative proof to show that f(θ, p) is actually the 

stationary distribution using the diffusionless Fokker-Planck equation. 

If we start with θ(0) and draw a sample p(0) from N(0, M), then solve the Hamiltonian 

dynamics (2.8) and (2.9) for some time t, the final values (θ(t), p(t)) will provide an 

independent sample θ(t) from π(θ). In practice, (2.8) and (2.9) have to be solved 

numerically using some time-stepping algorithm such as the commonly-used leapfrog 

algorithm (Duane et al. 1987). In this latter case, for time step δt, we have: 

 ( ) ( ) ( ( ))
2 2

t t
t t V t

 
   p p θ                     (2.10) 

 1( ) ( ) ( )
2

t
t t t t t

     θ θ M p     (2.11) 

 ( ) ( ) ( ( ))
2 2

t t
t t t V t t

       p p θ       (2.12) 

Equations (2.10)-(2.12) can be reduced to: 

 1( ) ( ) [ ( ) ( ( ))]
2

t
t t t t t V t

      θ θ M p θ  (2.13) 
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 ( ) ( ) [ ( ( )) ( ( ))]
2

t
t t t V t V t t

      p p θ θ  (2.14) 

The gradient of V with respect to θ needs to be calculated once only for each time instant 

since its value in the last step in the above algorithm at time t is the same as the first step at 

time t+δt.  

2.2.1 HMCM algorithm 

The complete algorithm of HMCM can be summarized as follows (for some chosen M, δt 

and L): 

1. Initialize θ0  (discussion of the choice of this is presented in a later section) and 
simulate p0 such that p0~N(0,M); 

2. Repeat step 3 below for i = 1,…, N. 

3. In iteration i, let the most recent sample be (θi-1, pi-1), then do the following to 
simulate a new sample (θi, pi):  

i) Randomly draw a new momentum vector p’ from N(0, M); 

ii) Initiate the leapfrog algorithm with (θ(0), p(0)) =(θi-1, p’) and run the 
algorithm for L time steps to obtain a new candidate sample (θ”, p”) =  
(θ(t+Lδt), p(t+Lδt)) 

iii) Accept (θi, pi)= (θ”, p”) with probability Pacc = min{1,exp(ΔH)} where 
ΔH =H(θ”, p”)H(θi-1, p’). If rejected, then (θi, pi)= (θi-1, p’), so V(θi)= 
V(θi-1) and 1( ) ( )i iV V   θ θ . 

2.2.2 Discussion of algorithm 

Step 2(i) allows simulation of samples in regions with different H, thereby allowing the 

Markov chain to move to any point in the phase space of (θ, p) via the deterministic step in 

2(ii). This is an important step since it allows a global exploration of the θ space in contrast 

to the local random walk behavior of the MH algorithm with a local proposal PDF.  We can 

represent most integration algorithms used to solve Hamilton’s equations by the following 

general iterative formulae: 
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 ( ( ), ( )) ( (( 1) ), (( 1) ))n t n t n t n t     θ p h θ p  (2.15) 

where h corresponds to the mapping produced by the time-stepping algorithm, e.g., leap 

frog. The candidate sample (θc, pc) is then the output of the following: 

 1/2( , ) ( (... ( (0), (0))) ( (... ( (0), ))c c

L L

 θ p h h h θ p h h h θ M z   (2.16) 

where z is a standard Gaussian vector with independent components N(0,1). Thus Steps 2(i) 

and (ii) together can be viewed as drawing a candidate sample from a global transition PDF 

which is non-Gaussian if the mapping h is nonlinear (the usual case). Applying mapping h 

multiple times leads to the exploration of the phase space further away from the current 

point, towards the higher probability region, avoiding the local random walk behavior of 

most MCMC methods. Therefore, HMCM can be viewed as a combination of Gibbs 

sampling (Step 2(i)) followed by a Metropolis algorithm step (Step 2(iii)) in an enlarged 

space with an implied complicated proposal PDF that enhances a more global exploration 

of the phase space than using a simple Gaussian PDF centered at the current sample, as 

adopted for the proposal PDF in the random walk Metropolis algorithm.  

Although the leapfrog algorithm is volume preserving (sympletic) and time reversible, H 

does not remain exactly constant due to the systematic error introduced by the 

discretization of (2.8) and (2.9) with the leapfrog algorithm. To keep f(θ, p) as the invariant 

PDF of the Markov chain, and thus keep π(θ) invariant, this systematic error needs to be 

corrected through the Metropolis acceptance/rejection step in Step 2(iii). The probability of 

acceptance, Pacc, in Step 2(iii) depends only on the difference in energy ΔH between H for 

the candidate sample (θ”, p”) and H for (θi-1, p’), which initiates the current leapfrog steps. 

The candidate sample (θ”, p”) with lower H is always accepted while that with higher H is 

accepted with a probability of min{1, exp(ΔH)}. 
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It is worth noting that when L=1, HMCM is similar to an algorithm in which the evolution 

of θ follows the following Itô stochastic differential equation: 

 1 1/21
( ) ( ( )) ( )

2
d t V t dt d t    θ M θ M W       (2.17) 

where ( ) Dt W   is a standard Wiener process.  The discretized version corresponding to 

(2.17) is:  

 1 1/2
c

1
( ) ( ( ))

2
t V t t t     θ θ M θ M z  (2.18) 

where θc is the candidate sample and z is a standard Gaussian vector with independent 

components that are N(0,1). Thus, it is interesting to see that when L=1, the candidate 

sample of HMCM is drawn from the Gaussian proposal PDF:  

  1
c c c/2

1 1
( | ( )) exp( ( ( ( ))) ( ( ( ))))

(2 | |) 2
T

D
q t t t 


   θ θ θ θ C θ θ

C
 (2.19) 

where the mean ( ( ))t θ  and the covariance matrix C are given by the following: 

  11
( ( )) ( ) ln ( ( ))

2
t t t t    θ θ M θ  (2.20) 

 1/2 1/2 1E[( ( ))( ( )) ]Tt t t t t     C M z M z M  (2.21) 

It can be seen from (2.20) that the above algorithm can reduce the tendency to do a local 

random walk by having a drift term that tends to force the Markov Chain samples towards 

the higher probability region of π(θ).  
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There are 3 parameters, namely M, δt and L, that need to be chosen before performing 

HMCM. If δt is chosen to be too large, the energy H at the end of the trajectory will deviate 

too much from the energy at the start of the trajectory which may lead to frequent rejections 

due to the Metropolis step in Step 2(iii). Thus, δt should be chosen small enough so that the 

average rejection rate due to the Metropolis step is not too large, but not too small that 

effective exploration of the high probability region is inhibited; a procedure for optimally 

choosing δt is presented later. For each dynamic evolution in the deterministic Step 2(ii), L 

can be randomly chosen from a discrete uniform distribution from 1 to some preselected 

Lmax to avoid getting into a resonance condition (Mackenzie, 1989) (although it occurs 

rarely in practice) in which the trajectories from Step 2(ii) go around the same closed 

trajectory for a number of cycles. Matrix M can be chosen to be a diagonal matrix 

diag(M1 ,…, MD) where Mi is 1 for each i if the components of θ are of comparable scale. 

This can be ensured by initially normalizing the uncertain parameters θ. 

2.3 Proposed improvements to Hybrid Monte Carlo Method 

2.3.1 Computation of gradient of V(θ) in implementation of HMCM 

In general, ( ) ln ( )V   θ θ cannot be found analytically, so numerical methods must be 

used to find its value. The most common method uses finite differences. The computation 

of the gradient vector ( )V θ using finite differences requires either D or 2D evaluations of 

V where D is the dimension of the uncertain parameters.  

Here, we propose to use “algorithmic differentiation” (Rall, 1981; Kagiwada et al., 1986), 

in which a program code for sensitivity analysis (gradient calculation) can be created 

alongside the original program for an output analysis to form a combined code for both 

output analysis and sensitivity analysis. The program code for the output analysis can 

always be viewed as a composite of basic arithmetic operations and some elementary 

intrinsic functions. The main idea of “algorithmic differentiation” is to apply the chain rule 
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for differentiation judiciously to the elementary functions, the building blocks forming the 

program for output analysis, and to calculate the output and its sensitivity with respect to 

the input parameters simultaneously in one code. Unlike the classical finite difference 

methods which have truncation errors, one can obtain the derivatives within the working 

accuracy of the computer using algorithmic differentiation.  

There are two ways in which the differentiation can be performed: forward differentiation 

or reverse differentiation. In forward differentiation, the differentiation is carried out 

following the flow of the program for the output analysis and performing the chain rule in 

the usual forward manner. To illustrate the idea behind the forward code differentiation, 

consider the following simple example for the program for computing the output function 

( )  y h= Îθ  :  

,  1, 2,...,j jw θ j D= =  

Repeat for j=D+1,…, p 

{ } { }1,2,..., 1
( ) j j k k j

w h w
Î -

=  

py w=  

where hj’s can be elementary arithmetic operations or standard scalar functions on modern 

computer or mathematical softwares. The computation of the corresponding derivatives is 

practically free once the function itself has been computed. The corresponding code for 

computing the sensitivity Sy of y with respect to θ is as follows: 

,  1, 2,...,j jw θ j D= =  

,  1, 2,...,j jw j D = =e  
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Repeat for j=D+1,…, p 

{ } { }1,2,..., 1
( ) 

j
j j k k B j

w h w
Î Í -

=  

{ }1,2,..., 1k j

j
j k

k

h
w w

w
Î -

¶
 = 

¶å  

py w=  

y pwS =  

where the forward derivative T
1 2[ / , / ,..., / ]j j j j Dw w θ w θ w θ = ¶ ¶ ¶ ¶ ¶ ¶ is the sensitivity 

of jw with respect to θ and ej is a D-dimensional unit vector with the j-th component being 

1 and all the other components being 0. Assuming the dimension of Bj is Nj and the 

calculation of each jw  requires at most KNj arithmetic operations for some fixed constant 

K, here we can find the amount of computations required to calculate Sy: KNj+DNj 

arithmetic operations are required to calculate each intermediate gradient vector jw . The 

total number of arithmetic operations for the calculation of Sy are  

1

( )
p

j j
j D

KN DN
 

  and that for the calculation of y are
1

p

j
j D

KN
 
 . Thus the computational 

effort required by forward differentiation increases linearly with D. However, as mentioned 

earlier, forward differentiation does not incur errors as classical finite difference methods 

do and is accurate to the computer accuracy.  

Wolfe (1982) asserted that if care was taken in handling quantities which are common to 

the function and the derivatives, the ratio of the cost of evaluating the gradient of a scalar 

function of n input variables and the scalar function itself is on average around 1.5, not n+1. 

Speelpenning’s thesis (1980) proved that this assertion is actually true. Griewank (1989) 
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later showed that Wolfe’s assertion is actually a theorem if the ratio, being on average 1.5, 

is replaced by an upper bound of 5. Rather than calculating the sensitivity of every 

intermediate variable with respect to the parameters θ as in forward differentiation, reverse 

differentiation is a form of algorithmic differentiation which starts with the output variables 

and computes the sensitivity of the output with respect to each of the intermediate variables. 

The biggest advantage of reverse differentiation is seen when the output variable is a scalar 

and the corresponding gradient with respect to high-dimensional input parameters is of 

interest. Under this circumstance, it has been shown (Griewank 1989) that the 

computational effort required by reverse differentiation to calculate the gradient accurately 

is only between 1 to 4 times of that required to calculate the output function, regardless of 

the dimension of the input parameters. This situation applies to our problem since the 

output variable of interest is the scalar function V.   

To illustrate the idea behind the reverse differentiation, consider the same example as for 

forward differentiation. The code for computing the sensitivity sy of y with respect to θ 

using reverse differentiation is as follows: 

,  1, 2,...,j jw j D   

0,  1, 2,...,jw j D   

Repeat for j=D+1,…, p 

 
 1,2,..., 1

( ) 
k B jj

j j kw h w
  

  

0jw   

py w  
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1y   

pw y   

Repeat for j=p, p-1,…, D+1 

, {1, 2,..., 1}j
k k j j

k

h
w w w k B j

w


    


    

,  1, 2,...,j jw j D     

where 
~ ~ ~

,  ,  j jy w   denotes the reverse derivatives / ,  / ,  /j jy y y w y        respectively. 

Thus sy = [
~

1 , 
~

2 , …, 
~

D ]. The total number of arithmetic operations for the calculation of 

sy are
1

( )
p

j j
j D

KN N
 

  and that for the calculation of y are
1

p

j
j D

KN
 
 . Thus the 

computational effort required by reverse differentiation is independent of D. It is noted that 

the approach presented above can be extended to compute higher-order derivatives. 

Structural analysis programs usually involve program statements which perform vector and 

matrix operations and solve implicit linear equations. Higher-dimensional implicit linear 

equations are involved and the number of elementary intermediate variables required to 

store information for differentiation is large. Thus, it is more efficient to perform 

differentiation at the vector or matrix levels.  

Recall that in our application, the output function is the scalar V(θ) and the input 

parameters are θ. For each of the most basic operations found in structural analysis 

programs, we have derived the corresponding operations necessary for reverse 
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differentiation at the vector or matrix levels (Appendix 2B). Those operations for the 

forward differentiation are very straightforward and obvious and no derivation will be 

given. Table 2.1 summarizes these operations. Ŷ denotes some matrix whose (i,j)-th entry 

is the forward partial derivative Y /ij k   of the (i,j)-th entry of a matrix Y with respect to 

some k  and Y  denote some matrix whose (i,j)-th entry is the reverse partial derivative 

/ YijV   of the output function V with respect to the (i,j)-th entry of Y. In the first column 

of Table 1, each equation carries out a certain operation inside the program. The left hand 

side of the equation in each of the row except the last row gives the intermediate output 

corresponding to the inputs on the right hand side which can in turn be the intermediate 

output resulting from the previous program statement. The last row shows an implicit 

equation for solving a certain intermediate output v given U and w. The second column 

shows the forward differentiation operations. The derivatives of the intermediate output 

with respect to some variable k  are computed given the values of the derivatives of the 

input with respect to the same variable, which are obtained from previous steps in the 

program. The third column shows the reverse differentiation operations. All the reverse 

partial derivatives are initialized to be zero at the beginning of the reverse differentiation. 

The reverse partial derivative of the output function V with respect to the intermediate input 

is incremented by the amount shown in the table given the values of the derivatives of the 

output function V with respect to the intermediate output that the input affects. For example, 

consider the two consecutive operations in the middle of a program: 


 


w u v

z u
  

where  , u and v are the input vectors and w and z are the intermediate output vectors. 

Given z  and w , we need to update u  and v . The corresponding reverse differentiation 

codes are as follows: 
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;

; ;

T     

   

u u z u z

u u w v v w

 
 

Based on the results developed above, a very efficient reverse differentiation code has been 

obtained for the case involving linear dynamical systems (Appendix 2B). 

The idea of algorithmic differentiation can be extended to treat the case with nonsmooth 

intrinsic elementary functions (for example, those functions involving absolute signs and 

those problems involving hysteretic models). The ideas presented above could be 

incorporated in commercial structural analysis softwares to create a program code for a 

more accurate and efficient sensitivity analysis accompanying response analysis. The 

coding needs only one time effort, which can be made automatic by writing a program with 

the rules for “algorithm differentiation” developed above using object oriented programs 

such as Fortran, C, C++ or Matlab such that the code for sensitivity analysis can be created 

automatically given the original program code for response analysis. The idea is to write a 

command code to read the code for response analysis and then do the “translation” and 

creation of the differentiation code. It should be noted that the above methods can be easily 

extended if the sensitivity of a vector function is of interest. 

Table 2.1 Some Basic operations of structural analysis program and the 

corresponding forward differentiation (FD) and reverse differentiation (RD) 

operations 

 

Basic operations  FD operations RD operations 
,  ; , m   v u u v   ˆ ˆ ˆα αv u u    u v  , T  u v   

m,  , ,    w u v u v w   ˆ ˆ ˆ w u v  ,   u w v w     
T m,  ,  ;w w  u v u v    T Tˆ ˆ ˆw  u v u v ,  w w   u v v u     

V U,  U, V  ;  p q      ˆ ˆˆV U+ Uα α  sum(sum(U.*V)), U+ = V     *** 
W U V,  U, V, W  p q     ˆ ˆ ˆW U V   U+ W, V+ W      
W UV,  U  , Vp q q r      ˆ ˆ ˆW UV+UV T TU+ WV , V+ U W      
* 1U ,  U  , p q q   w v v   ˆˆ ˆU +Uw v v    T TU+ , + U wv v w  
** 1U ,  U  , p p p   w v v   v̂  is the solution 

of: 
ˆˆ ˆU U v w v  

TU ,  y v w y  , TU+=-yv   
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* Explicit equation for solving w 

** Implicit equation for solving v 

***  sum(sum(U.*V)) is a Matlab command where U.*V calculates a new matrix W whose (i,j) entry is the 

product of the (i,j) entries of U and V and sum(sum(W)) calculates the sum of all the elements in the matrix 

2.3.2 Control of δt 

The acceptance probability of a candidate sample at the end of the (θ, p) trajectory for the 

Hamiltonian dynamics of Equations (2.8) and (2.9) is influenced by the discretization 

errors introduced by the integration algorithm. The distance d moved in the (θ, p) space 

after one evolution depends on δt. In HMCM, δt should be chosen small enough so that the 

average rejection rate due to the Metropolis step is not too large. On the other hand, larger 

δt facilitates a bigger movement from the existing samples and so a better exploration of 

the phase space. Therefore, we want to choose δt which is as large as possible while at the 

same time maintaining a reasonable acceptance rate of the Metropolis step. This can be 

achieved by maximizing the expected distance d(δt) moved by a sample with respect to δt: 

 acc( ) ( ) ( )d t t P t    (2.22) 

where the average acceptance probability in HMCM, accP , can be estimated by counting the 

proportion of distinct samples out of the amount of samples simulated. To do the above 

maximization, one can use a small number of samples and empirically explore different 

δt’s to achieve maximum d(δt) with δt chosen such that accP ≥ p0 (say p0 = 0.1). 

2.3.3 Increasing the acceptance probability of samples 

If the acceptance probability is increased for a fixed δt, then it will produce a reduction in 

the repetition of samples, thus improving the efficiency of exploration of the posterior PDF 

by the HMCM samples. In very high dimensions, one way to further increase the 

acceptance probability is to use more accurate higher-order symplectic integrators, such as 
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those in Forest and Ruth (1990), but at the expense of increased computational effort. 

Another variant is to utilize information in the trajectory samples when moving from (θi-1, 

pi-1) to (θi, pi) in Step 2 of HMCM (Neal 1994; Cheung and Beck 2007c) as follows.  

When generating a trajectory from Hamiltonian equations, the original HMCM only 

considers the state generated in the last step (the L-th time step) as a candidate for a new 

sample. Therefore, another way to improve the acceptance probability is to consider most 

of the states along the trajectory generated by a symplectic integrator as possible candidates. 

Here we construct a new acceptance procedure for HMCM, which is a modification of that 

proposed by Neal (1994). The main idea is to consider two equal-sized windows of states 

in which there are W states, one around the current state x(0) and the other close to the end 

of the trajectory. One of the states in these windows will be the new sample x . To maintain 

the invariance of π(θ),  the position of x(0)=(θ(0), p(0)) within the window has to be 

randomly selected. To achieve this, an offset parameter K which is simulated from some 

fixed distribution is required. The modified acceptance procedure for a particular trajectory 

in the k-th iteration of HMCM is as follows: 

1. Randomly draw a window size W   from some fixed distribution (e.g., uniform 

distribution) such that 1WL+1 or simply fix W. Simulate an offset K uniformly 

from {0, 1, 2,…, W1}. Denote x(i)=(θ(iδt), p(iδt)). Simulate the direction λ for 

the trajectory with λ = 1 and λ = 1 being equally likely or simply fix λ at 1. Define 

index sets V1 and V2: V1 ={λ(L  K  W+1),…, λ(L  K)}, V2={λ(  K), …, 

λ(  K+W  1)}. Compute a trajectory T of length L:{x(  λK)),…,x(0),…, 

x(λ(LK))} and save the total energy values Hi corresponding to x(i) for iV1V2. 

2. Let HT = min {Hi} for all iV1V2.  The new sample x  is equal to x(i) where i is 

drawn from the set V1  V2 according to the probability mass function p(i) as 

follows: 
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 1 2( ( ) ( )) exp( )
( ) ii i H H

p i
S

      
 T

T

V V
 (2.23) 

 where (.)  is an indicator function which gives the value of 1 if the condition inside 

the parenthesis is true and gives 0 otherwise and ST  is the normalizing constant 

given by: 

 
1 2

1 2( ( ) ( )) exp( )i
i

S i i H H
 

       T T
V V

V V  (2.24) 

It should be noted that the two windows will overlap if W>(L+2)/2 and 1 2( ) ( )i i    V V  

will be equal to 2. When W=1, the above procedure reduces to the original HMCM 

algorithm which considers only the last state along the trajectory. When W=L+1, the above 

procedure reduces to a procedure which considers all the states along T.  

2.3.4 Starting Markov Chain in high probability region of posterior PDF 

Starting the Markov chain with an initial point θ0 closer to the important region of the 

posterior PDF can lead to more efficient exploration of this region. The following has been 

found to be effective:  

The optimization of V(θ) (equivalently π(θ)) to select θ0 can be performed using an 

efficient SPSA (simultaneous perturbation stochastic approximation) optimization 

algorithm (Spall 1998a) with the use of common random numbers (Kleinman 1999). θ0 is 

taken as the approximate optimal solution θ* obtained by the optimization algorithm. This 

method relies on the approximation of ( )V θ  using a two-sided perturbation as follows: 

 
( ) ( )

2i i

V V h V h

θ h

θ Δ θ Δ¶ + - -
»

¶ D
 (2.25) 
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where Δ= [Δ1, Δ2,…, ΔD] is the perturbation vector, the distribution of which is user-

specified and h is a scalar which dictates the size of the perturbation of θ. A simple and 

valid choice for Δ (Spall 1998b, Sadegh and Spall 1998) is to use a symmetric Bernoulli 

distribution: ( 1) ( 1)i iP PD = = D =- =0.5, for =1,2,...,i D . 

In SPSA, all components of θ are perturbed randomly and simultaneously and only 2 

evaluations of the function V are required (instead of 2D evaluations required in the finite 

central difference method) to estimate the whole gradient vector V . The optimization 

algorithm for determining an optimal point θ* is done by running the following recursive 

equation, starting with some initial guess θ0: 

 1 ( )k k k k ka gθ θ θ+ = -  (2.26) 

where ( )k kg θ  is the estimate of the gradient of V evaluated at θk: 

 
( ) ( )

( )
2

k k k k k k
k k

k k

V b V b
g

b

θ Δ θ Δ
θ

+ - -
=

D
 (2.27) 

Δk= [Δk1, Δ k2,…, Δ kD] is the perturbation vector generated in the k-th iteration using the 

Bernoulli distribution as before; ak = a0/(A+k+1)α and bk =b0/(k+1)γ are gain sequences 

which are critical to the performance of SPSA based optimization. Normalization of θ is 

performed so that each component of θ is of comparable scale. Some guidelines for the 

selection of the non-negative coefficients a0, b0, A, α and γ are provided in Spall (1998b). 

Common random numbers can be used to further improve the convergence of the above 

SPSA optimization algorithm (Kleinman et al. 1999). Another improvement is to use a 

second-order stochastic algorithm analogous to the deterministic Newton-Raphson 

algorithm (Spall 1997). 
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It should be noted that the approach presented in this section cannot solve the case 

involving well-separated regions with high probability content of the posterior PDF. On the 

other hand, with enough samples in previous levels, TMCMC can potentially provide 

initial points in different regions of high probability content of the posterior PDF by 

making use of multiple chains. However, the inherent convergence and efficiency problems 

of the random walk MH algorithm in higher dimensions still exists. One can incorporate 

HMCM proposed in this paper into TMCMC by replacing the random walk Metropolis 

algorithm in simulating from the whole sequence of PDFs or just the last PDF in the 

sequence. In practice, the case involving well-separated regions with high probability 

content of the posterior PDF is relatively rare. 

2.3.5 Assessment of Markov Chain reaching stationarity 

Given a finite set of N samples θ(k), k = 1,2,…, N, from a Markov Chain distributed 

according to its stationary PDF π(θ), the estimate for the expectation of any function g(θ) 

of θ is as follows: 

 ( )

1

1
E[ ( )] ( ) ( ) ( )

N
k

k

d
N




  g θ g θ θ θ g θ  (2.28) 

For example, if g(θ) = θ, then E[g(θ)] will become the expected value of θ, i.e., E[θ]. If the 

Markov chain is ergodic, the right-hand side of (2.28) converges almost surely to the left 

hand side for samples simulated using MCMC procedures such as the one presented in this 

paper (Tierney 1994). In this section, we first present a new approach to assess whether the 

samples θ(k), k = 1,2,…, N, simulated using an MCMC algorithm, have converged to 

samples from its stationary PDF π(θ). Then, we examine how the accuracy of the estimator 

in (2.28) depends on the number of samples N. 

A common existing approach for convergence assessment is based on observing whether 

the sample estimate of a certain E[g(θ)] stabilizes for some chosen function g. However, 
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this can give misleading results since the stabilization can be a result of the chain of 

samples being trapped in some neighborhood of the parameter space (but the Markov 

Chain has not yet converged to the stationary distribution). Another major drawback of this 

approach is that it is hard to judge how far the underlying Markov Chain is away from 

reaching stationarity or convergence since one does not know a priori what value the 

estimate for E[g(θ)] should converge to. 

To solve the above issues, we establish a known quantity depending on π(θ) which can also 

be estimated from the samples, then we check how far the estimate is from the exact value 

of the chosen quantity. Consider the quantity: 

 E[ ( )] ( ) ( )i i iI g g d     θ θ  (2.29) 

where g(θi) is such that there exists some differentiable function G(θi) with G'(θi)=g(θi). 

Recall that -1( )= exp(- ( ))c V θ θ . Denote θ-i as a vector containing all elements of θ except 

θi; π(θi) as the marginal distribution of θi; and θi
u and θi

l
 as the upper limit and lower limit 

of the domain of integration with respect to θi, respectively. After performing integration 

by parts on Ii with respect to θi, an alternative expression for E[g(θi)] can be obtained. If we 

divide this alternative expression by Ii as follows, Qi should be equal to1: 

 

( )
( ) ( ) [ ( ) ( )]

1
( ) ( )

u
i i

l
i i

i i i
i

i

i

V
G d G d

Q
g d

 
 

   


 








 
 



θ
θ θ θ θ

θ θ
 (2.30) 

The second term in the nominator can be expressed  in terms of π(θi) as follows: 

   [ ( ) ( )] = [ ( ) ( ) ] [ ( ) ( )]
u u u

i i i i i i
l l l

i i i i i i
i i i i i iG d G d G     

     
        

   
 θ θ θ θ  (2.31) 
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Thus, (2.30) becomes: 

 

( )
( ) ( ) [ ( ) ( )]

1
( ) ( )

u
i i
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i i

i i i
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i
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θ
θ θ

θ θ
 (2.32) 

Denote ( )k
i  as the i-th component of the k-th sample ( )kθ  from π(θ). The sample estimate 

iQ  for Qi is given by: 
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It is convenient to choose g(θi)=1 and thus (2.33) becomes: 
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where the second term in the numerator of (2.33) is dropped because usually, for model 

updating problems, π(θi) decays exponentially as θi approaches the limit of domain of 

integration. Asymptotically, all iQ ’s should converge to 1 with increasing N. With the 

above construction, we can define a quantity which averages over all iQ ’s: 
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The exact value of Q  is 1. The estimate Q  for Q  by simulation is obtained by averaging 

all iQ ’s: 

 
1

/
D

i
i

Q Q D 
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=å  (2.36) 

In the example in this chapter, we assume that the Markov Chain is close enough to 

stationarity if the error of Q  is less than a certain acceptable threshold, i.e, | 1|Q- <ε.  

2.3.6 Statistical accuracy of sample estimator 

Now, let E[ ( )]g θ  denote the estimator of E[g(θ)] as in (2.28) for some function g. Let θ(k), 

k = 1,2,…, N, denote samples from the stationary PDF π(θ). The statistical accuracy of the 

sample estimator  ( )

1

1
E[ ( )] ( )

N
k

k

g g
N 

 θ θ  can be assessed by evaluating the corresponding 

coefficient of variation (c.o.v.)  g  which can be estimated using the following: 
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g

g
 

θ

θ
 (2.37) 

where the mean E[E[ ( )]]g θ  and variance Var(E[ ( )])g θ  of the sample estimate can be 

estimated using the following (the derivation of Var(E[ ( )])g θ  is shown in Appendix 2C): 
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 (2.41) 

Var(E[ ( )])g θ  is equal to the lower bound ρ(0)/N (corresponding to λ=0) when the samples 

are independent (such as when using standard Monte Carlo simulation) while 

Var(E[ ( )])g θ  is equal to the upper bound ρ(0) (corresponding to λ=N-1) when the samples 

are perfectly correlated. The closer the value of λ is to zero, the less correlated the samples 

are. In fact, N/(1+λ) can be viewed as the effective number of independent samples. 

Equations (2.38)–(2.41) can be used to estimate the c.o.v. for the estimator of E[g(θ)] from 

N MCMC samples. 

2.4 Illustrative example: Ten-story building 

Suppose that noisy accelerometer data (simulated here) are available from a 10-story 

building excited by an earthquake. Two sets of data are considered: Dataset 1 are the 

acceleration data that are contaminated by a typical amount of noise (10% rms noise-to-

signal ratio) used in published simulated data studies; Dataset 2 are the acceleration data 

that are contaminated by a large amount of noise (100% rms noise-to-signal ratio) to 

examine the robustness of the Bayesian procedure to extreme noise levels. System 

identification is to be performed using a 10-story linear lumped-mass shear-building model 

and so we estimate the mass mi, damping coefficient ci, and stiffness parameter ki for each 

story, i=1,…,10. A duration of 10s (with a sample interval of 0.01s) of the total acceleration 

at the base, the first floor and the roof are measured. The measurements corresponding to 

dataset 1 and dataset 2 are shown in Figures 2.1 and 2.2 respectively. Let No=2 denote the 

number of observed degrees of freedom (first floor and roof) and NT =1000 denote the 
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length of the discrete time history data. Let  ( )jny t  denote the corresponding measured 

output and ( ; )n jy t θ , which satisfies the following equation of motion, denote the output at 

time tj at the n-th observed degree of freedom predicted by the proposed structural model: 

 

1

( ) ( ) ( ) ( )

1
s gt t t a t

 
      
  

s s sM y C y K y M    (2.42) 

where the mass matrix Ms, is a diagonal matrix diag(m1 ,…, m10); damping matrix Cs and 

stiffness matrix Ks are given by the following (the empty entries of Cs and Ks are zero): 
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 (2.44) 

The prediction and measurement errors ( ) ( ) ( ; )n j j n jnt y t y t   θ for n=1,2,…,No and 

j=1,2,…, NT, are modeled as independent and identically distributed Gaussian variables 

with mean zero and some unknown variance σ2, based on the Principle of Maximum 

Entropy (Jaynes 2003). Altogether, we need to estimate 31 model parameters with σ 

included. 
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Figure 2.1: The acceleration dataset 1 in ten-story building 
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 Figure 2.2: The acceleration dataset 2 in ten-story building 
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The likelihood function p(D| θ) for this problem is: 

  2
/ 22 2

1 1

1 1
( | ) exp( [ ( ) ( ; )] )

(2 ) 2

o T

o T

N N

j n jnN N
n j

p y t y t
   

  θ θD  (2.45) 

Note that this updating problem is unidentifiable because the mass, stiffness and damping 

parameters can be uniformly scaled without changing the ( ; )n jy t θ . The prior PDF for θ is 

chosen to be independent distributions, that is, mi, ci, ki follow a Gaussian distribution with 

means equal to their nominal values m0=2104kg; c0=6104 Nm-1s, k0=2107Nm-1, and 

the corresponding coefficients of variation (c.o.v.) of 10%, 30%, 30% and σ follows a 

lognormal distribution with median σ0=1.0ms-2 and a logarithmic standard deviation of 

s0=0.3 (the c.o.v. is about 30%). These nominal values are not equal to the exact values, 

which are assumed to be unknown. For the mass parameters, relatively smaller values of 

c.o.v. are assumed since these parameters can usually be more accurately determined from 

the structural drawings than the other parameters. For each of the other parameters that are 

not so well known a priori, a larger c.o.v. is assumed. It should be noted the objective of the 

prior PDFs is to allow prior information to be incorporated when performing model 

updating. For those parameters where there is little prior information, prior PDFs that 

reflect higher uncertainty (i.e., in this case, larger c.o.v.) are used. Under such 

circumstances, the updated uncertainties for these parameters depend mostly on the data 

and are often insensitive to the prior PDFs. Here we define the dimensionless uncertain 

parameters θi, i=1,2…30, as the original parameters divided by their nominal values: 

θi=mi/m0 for i=1,…,10; θi=ci-10/c0 for i=11,…,20; θi=ki-20/k0 for i=21,…,30 and θ31=σ/σ0. 

HMCM is applied by first doing 3000 evaluations of π(θ) for dataset 1 and 4000 

evaluations of π(θ) for dataset 2 to find the initial point via the SPSA algorithm. The SPSA 

stopping criteria is such that each component of θ and lnπ(θ) of the current iteration and the 

previous iteration differ by less than a prescribed threshold of 1%. Then 3000 HMCM 

samples are generated which are sufficient to reduce the error of Q  time-stepping to less 
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than ε=0.1, where Q  is evaluated using (2.34) and (2.36). In the HMCM, L is chosen to be 

an integer selected from a uniform distribution over the interval [0,40] and δt=0.0005 for 

dataset 1 and δt=0.0075 for dataset 2 to give an average probability of accepting candidate 

samples of about 0.8-0.9. The upper limit of L is chosen such that the correlation between 

the neighboring samples for each component is small (in this case, the correlation 

coefficient of the neighboring samples is less than 0.2). 
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Figure 2.3: Gradient using two different methods: reverse algorithmic differentiation 

and central finite difference for mass parameters (top figure), damping parameters 

(middle figure) and stiffness parameters (bottom figure); the curves are 

indistinguishable 

The partial derivative of V(θ) in HMCM with respect to θ31 can be determined analytically: 
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The remaining 30 components of the gradient of V with respect to θ are calculated using 

the efficient reverse algorithmic differentiation code which was developed in this study. 

Figure 2.3 shows that the gradient computation using the reverse algorithmic differentiation 

(RD) overlaps with that obtained by central finite difference (CFD) with optimum 

perturbation size. It should be noted that the amount of computations required by CFD to 

calculate a gradient vector is 30 times that required by RD.  

Table 2.2 shows the sample mean (column 3), sample c.o.v. (column 4) and estimation 

error (column 5) of the structural parameters, along with the exact values (column 2) of the 

parameters used to generate dataset 1. Compared with the prior uncertainty in the 

parameters, the posterior (updated) uncertainty is reduced since the data provide 

information about these parameters. There is a smaller degree of reduction in the 

uncertainty in the mass parameters than that in the damping and stiffness parameters. This 

is because the prior PDF for the mass parameters is closer to the corresponding posterior 

PDF than that for the other parameters. As expected, there is a higher uncertainty in the 

damping parameters than in the mass and stiffness parameters. This is because the modal 

contributions to the response are more sensitive to the mass and stiffness than to the 

damping. It can be seen that the estimation error is reasonably small: 0.3%-10.0% for mass 

parameters; 0.4%-13.7% for damping parameters; 0.75%-7.0% for stiffness parameters. 

Column 6 shows the magnitude of the error in terms of the number of standard deviations. 

It can be seen that the magnitude of error is less than 2 standard deviations for almost all 

parameters. 

Table 2.3 shows the results using dataset 2, which is the large noise case. It can be seen that 

even in this case, the performance of Bayesian system identification is still good. In most 

cases, the errors in the stiffness parameters are significantly larger than dataset 1. The 
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results for the stiffness parameters are highly correlated with one another and are not jointly 

Gaussian. Figure 2.4 shows the samples plots for some pairs of θi corresponding to the 

stiffness. It can be seen clearly that the stiffness parameters are not jointly Gaussian. 

Figures 2.5 and 2.6 show plots where posterior samples for some ki/k0 and ln(ki/k0), 

respectively, are plotted on Gaussian probability paper. If the samples essentially lie on a 

straight line in these plots, the posterior marginal distribution of θi can be taken to be 

approximately Gaussian or lognormal, respectively. From the figures, it can be seen that the 

marginal distribution for some stiffness parameters (for example, k2, k8, k9, k10, etc.) are 

non-Gaussian and also not log-normal. The multivariate Gaussian approximation of the 

posterior PDF that is effectively assumed in Bayesian updating using Laplace’s asymptotic 

approximation (Beck and Katafygiotis, 1991 and 1998), is not so good here because the 

few observed locations (No=2), high noise-to-signal ratio (100%) and many parameters (31) 

make the problem unidentifiable (e.g. see Figure 2.4). Being able to capture the non-

Gaussian behavior of the posterior PDF is essential for robust prediction of the future 

response and reliability of structures (Cheung and Beck 2007a). 

To illustrate the predictive power and robustness of the Bayesian model updating approach 

using HMCM, we compare the exact time histories of the total acceleration (Figure 2.7), 

the displacement (Figure 2.8) and the interstory drift (Figure 2.9) of some unobserved 

floors with the corresponding mean response from the robust predictive PDF given by 

equation (1.5). The solid curve shows the exact values of the response; the dashed curve 

shows the mean robust response estimated by averaging over the mean responses from 

each of the posterior samples. The two dotted curves give the responses that are twice the 

standard deviation of the predicted robust response from the mean robust response. The 

curves for the exact and the mean total acceleration, displacement and drift responses are 

almost indistinguishable. Also, all figures show that the exact response lies almost always 

between the two dotted-dashed curves. It can be seen that Bayesian robust analyses are able 

to give robust prediction of the response even at the unobserved degrees of freedom, 

despite the fact that the model is unidentifiable based on very noisy data. The total 
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acceleration being a linear combination of displacements and velocities has its uncertainty 

contributed by both displacements and velocities while the interstory drift being the 

difference of the displacement of the two neighboring floors has its uncertainty contributed 

by the displacement of the two floors. Thus higher uncertainties can be found in predicting 

the total acceleration and interstory drift than predicting the floor displacement. 

Table 2.2 Statistical results for structural parameter estimates for 10% noise-to-

signal ratio [Dataset 1] 

Parameter Exact Value βi μi=Mean estimate 
of parameter 

σi /μi =c.o.v 
estimate of 
parameter 

Error= 
|βi -μi |/βi 

|μi-βi |/σi 

1   m1 1.92×104 2.00×104    3.2% 3.8%  1.16 
2   m2 1.97×104 2.06×104   5.2% 4.4%  0.82 
3   m3 1.95×104 1.95×104  7.2% 0.3%  0.04 
4   m4 2.06×104 2.00×104   5.9% 3.0%  0.52 
5   m5 2.05×104 2.02×104   5.4% 1.1%  0.21 
6   m6 1.98×104 2.01×104    6.3% 1.8%  0.29 
7   m7 1.94×104 1.91×104   6.8% 1.0%  0.14 
8   m8 2.06×104 2.00×104   9.1% 2.7%  0.30 
9   m9 1.90×104 2.08×104    7.3% 9.9%  1.23 

10  m10 2.01×104 2.18×104   5.4% 8.6%  1.47 
11  c1 7.70×104 8.62×104    5.9% 12.0%  1.81 
12  c2 7.78×104 8.20×104   7.9% 5.4%  0.66 
13  c3 7.86×104 7.70×104 12.0% 2.0%  0.17 
14  c4 7.28×104 7.46×104   8.8% 2.4%  0.27 
15  c5 7.19×104 8.18×104   5.6% 13.7%  2.15 
16  c6 7.37×104 7.07×104   8.4% 4.0%  0.50 
17  c7 7.10×104 7.77×104  10.4% 9.3%  0.82 
18  c8 7.11×104 6.20×104 10.1% 12.8%  1.46 
19  c9 6.90×104 6.93×104  13.8% 0.4%  0.03 
20  c10 7.57×104 6.63×104   7.2% 12.4%  1.97 
21  k1 2.16×107 2.24×107   3.4% 4.0%  1.14 
22  k2 1.74×107 1.76×107   4.6% 0.8%  0.16 
23  k3 2.04×107 2.07×107 7.4% 1.7%  0.22 
24  k4 1.99×107 2.09×107 4.7% 5.0%  1.00 
25  k5 1.74×107 1.86×107 5.5% 6.5%  1.11 
26  k6 1.68×107 1.74×107 6.8% 3.3%  0.48 
27  k7 1.87×107 1.89×107 7.3% 0.9%  0.12 
28  k8 1.77×107 1.89×107 9.8% 7.0%  0.66 
29  k9 1.84 ×107 1.86×107 8.7% 1.0%   0.11 
30  k10 1.72×107 1.64×107 5.3% 4.6%   0.92 
31  σ 0.040 0.041 1.6% 2.5%   1.49 
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Table 2.3 Statistical results for structural parameter estimates for 100% noise-to-

signal ratio [Dataset 2] 

Parameter Exact Value βi μi=Mean estimate 
of parameter 

σi /μi =c.o.v 
estimate of 
parameter 

Error= 
|βi -μi |/βi 

|μi-βi |/σi 

1   m1 1.92×104 1.95×104   7.3% 1.2% 0.17 
2   m2 1.97×104 2.02×104   9.3% 2.3% 0.24 
3   m3 1.95×104 1.95×104  9.0% 0.2% 0.02 
4   m4 2.06×104 2.07×104  9.5% 0.4% 0.04 
5   m5 2.05×104 1.95×104 9.4% 5.0% 0.53 
6   m6 1.98×104 2.04×104    9.5% 3.0% 0.31 
7   m7 1.94×104 2.00×104    9.6% 3.2% 0.32 
8   m8 2.06×104 1.98×104  10.3% 3.7% 0.37 
9   m9 1.90×104 1.91×104 10.1% 1.1% 0.08 

10  m10 2.01×104 2.05×104  10.1% 2.4% 0.23 
11  c1 7.70×104 7.45×104  20.0% 3.2% 0.17 
12  c2 7.78×104 6.86×104  22.3% 12.0% 0.61 
13  c3 7.86×104 6.82×104  23.7% 13.3% 0.65 
14  c4 7.28×104 5.92×104  27.9% 18.7% 0.83 
15  c5 7.19×104 5.96×104  30.3% 17.2% 0.68 
16  c6 7.37×104 6.13×104  27.4% 16.9% 0.74 
17  c7 7.10×104 7.14×104  25.6% 1.0% 0.02 
18  c8 7.11×104 6.67×104 26.2% 6.3% 0.25 
19  c9 6.90×104 6.06×104  28.5% 12.2% 0.49 
20  c10 7.57×104 6.79×104  24.6% 10.4% 0.47 
21  k1 2.16×107 2.05×107   9.1% 4.8% 0.56 
22  k2 1.74×107 1.50×107  10.3% 13.7% 1.54 
23  k3 2.04×107 1.97×107  14.9% 3.2% 0.22 
24  k4 1.99×107 2.29×107  14.5% 15.1% 0.90 
25  k5 1.74×107 2.24×107  17.4% 28.7% 1.28 
26  k6 1.68×107 1.99×107  20.0% 18.3% 0.77 
27  k7 1.87×107 1.93×107  21.0% 3.1% 0.14 
28  k8 1.77×107 1.99×107  19.5% 12.4% 0.57 
29  k9 1.84 ×107 1.82×107  20.3% 1.5% 0.07 
30  k10 1.72×107 1.74×107  31.8% 2.3% 0.02 
31  σ 0.400 0.395 1.6% 1.1% 0.73 
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Figure 2.4: Pairwise posterior sample plots for some stiffness parameters 
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Figure 2.5: Gaussian probability paper plots for some ki  
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Figure 2.6: Gaussian probability paper plots for some lnki 
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Figure 2.7: The exact (solid) and mean predicted (dashed) time histories 

of the total acceleration (m/s2) at some unobserved floors together with time histories 

of the total acceleration that are twice the standard deviation of the predicted robust 

response from the mean robust response (dotted) [Dataset 2] 
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Figure 2.8: The exact (solid) and mean (dashed) time histories 

of the displacement (m) at some unobserved floors together with time histories of the 

displacement that are twice the standard deviation of the predicted robust response 

from the mean robust response (dotted) [Dataset 2] 
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Figure 2.9: The exact (solid) and mean (dashed) time histories 

of the interstory drift (m) at some unobserved floors together with time histories of 

the interstory drift that are twice the standard deviation of the predicted robust 

response from the mean robust response (dotted) [Dataset 2] 
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The building considered in this example has nonclassical damping and thus possesses 

complex modes. Table 2.4 gives the sample mean (with sample c.o.v. inside the parenthesis) 

of the natural frequency (column 4) and damping ratio (column 5) for each complex mode 

along with the exact values of the natural frequency and damping ratio (columns 2 and 3). 

It can be seen that the Bayesian analysis is able to give robust estimates for these modal 

parameters of the underlying structure despite the large noise and lack of identifiability in 

the structural parameters. As expected, the estimates for the lower modes are better than 

those for the higher modes (as can be seen from the higher sample c.o.v. for the parameters 

corresponding to higher modes) because only the first few complex modes of the structure 

are excited significantly by the earthquake ground motion, so it is the information from 

these modes that are primarily utilized in the estimation of the shear-building model 

parameters. However, the higher-mode frequencies and damping parameters are still quite 

accurately estimated, presumably because the tridiagonal shear-building stiffness and 

damping matrices induce strong constraints on the modal parameters.  

Table 2.4 The exact natural frequency and damping ratio for each complex mode 

[Dataset 2] 

Complex 
Mode 

Natural frequency 
(Hz) 

Damping ratio 
 (%) 

Natural frequency 
(Hz) from 

Bayesian updating  

Damping ratio (%) 
from Bayesian 

updating 
1   0.735 0.92 0.734(0.2%) 0.85(8.0%) 
2    2.158 2.71 2.149(0.3%) 2.60(7.1%) 
3   3.562 4.45       3.600(0.7%) 4.03(9.5%) 
4    4.891 6.03       4.878(0.8%) 5.83(8.6%) 
5    6.047 7.65 6.022(1.8%) 7.33(8.8%) 
6    7.106 9.11 7.214(2.3%) 8.42(10.1%) 
7    8.049 10.13 7.990(2.4%) 9.17(11.5%) 
8    8.620 11.11 8.828(2.7%) 9.56(13.1%) 
9    9.306 11.58 9.661(3.2%) 9.60(13.5%) 
10   9.631 11.92 10.519(4.5%) 9.26(15.5%) 
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2.5 Multiple-Group MCMC 

Assume θ is divided into G groups, i.e. θ = [θ1, θ2,…, θG]. Given a current sample θ, a new 

sample *θ = [ *
1θ , *

2θ  ,…, *
Gθ ] from a target distribution ( ) θ  is generated by repeating the 

following starting with j=1 until j=G: 

1. Generate the j-th group *
jθ  of the new sample from transition PDF 

* *
1: 1 1:( |{ } , ,{ } )j j j j j GK  θ θ θ θ  with the corresponding stationary PDF 

* *
1: 1 1:( |{ } ,{ } )j j j G  θ θ θ  where *

1: 1{ } jθ = [ *
1θ , *

2θ  ,…, *
1jθ ], 1:{ } j Gθ =[θj+1,…, θG], 

*
1: 1{ } {}j θ if j-1<1 and 1:{ } j Gθ ={}if j+1>G; 

2. j=j+1. 

The above procedure is valid as soon as * *
1: 1 1:( |{ } , ,{ } )j j j j j GK  θ θ θ θ  satisfies the local 

stationarity condition: 

* * * * *
1: 1 1: 1: 1 1: 1: 1 1:( |{ } ,{ } ) ( |{ } , ,{ } ) ( |{ } ,{ } )j j j G j j j j j G j j j G jK d       θ θ θ θ θ θ θ θ θ θ θ  (2.47) 

The validity of the above procedures is proved by showing the satisfaction of the 

stationarity condition in Appendix 2D. 

Special case 1: 

* *
1: 1 1:

* * * *
1: 1 1: 1: 1 1:

( |{ } , ,{ } )

( |{ } , ,{ } ) [1 ({ } , ,{ } )] ( )

j j j j j G

j j j j j G j j j j G j j

K

T a 
 

      

θ θ θ θ

θ θ θ θ θ θ θ θ θ
 (2.48) 

where 

* * * * * *
1: 1 1: 1: 1 1: 1: 1 1:( |{ } , ,{ } ) ( |{ } , ,{ } ) ( |{ } , ,{ } )j j j j j G j j j j j G j j j j j GT r q     θ θ θ θ θ θ θ θ θ θ θ θ  (2.49) 
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* *
1: 1 1:

* * * *
1: 1 1: 1: 1 1:

* * *
1: 1 1: 1: 1 1:

* * * *
1: 1 1: 1: 1

( |{ } , ,{ } )

( |{ } ,{ } ) ( |{ } , { } )
min{1, }

( |{ } ,{ } ) ( |{ } , ,{ } )

({ } , ,{ } ) ( |{ } , { }
min{1,

j j j j j G

j j j G j j j j j G

j j j G j j j j j G

j j j G j j j j j

r

q

q

q






 

   

   

  





θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

，

， 1:

* * *
1: 1 1: 1: 1 1:

)
}

({ } , ,{ } ) ( |{ } , ,{ } )
G

j j j G j j j j j Gq


   θ θ θ θ θ θ θ

 

  (2.50) 

 * *
1: 1 1: 1: 1 1:({ } , ,{ } ) ( |{ } , ,{ } )j j j j G j j j j j G ja T d    θ θ θ θ θ θ θ θ  (2.51) 

The above transition PDF corresponds to a Metropolis Hasting (MH) algorithm with 

proposal PDF * *
1: 1 1:( |{ } , ,{ } )j j j j j Gq  θ θ θ θ  with stationary PDF * *

1: 1 1:( |{ } ,{ } )j j j G  θ θ θ . 

This transition PDF in (2.48) is shown to satisfy (2.47) in Appendix 2E. 

The algorithm for simulating the j-the group *
jθ  is: 

1. Draw a candidate c
jθ  from the proposal PDF *

1: 1 1:( |{ } , ,{ } )c
j j j j j Gq  θ θ θ θ  and accept 

*
jθ

 = c
jθ  with probability *

1: 1 1:( |{ } , ,{ } )c
j j j j j Gr  θ θ θ θ given in (2.50); 

2. If rejected, then *
jθ  = jθ . 

It should be noted that the original Gibbs sampling is a special case of the above where 

*
1: 1 1:( |{ } , ,{ } )c

j j j j j Gq  θ θ θ θ = *
1: 1 1:( |{ } ,{ } )c

j j j G  θ θ θ  and *
1: 1 1:( |{ } , ,{ } )c

j j j j Gr  θ θ θ θ =1. *
jθ = 

c
jθ  is always accepted for all j. The proposal PDF *

1: 1 1:( |{ } , ,{ } )c
j j j j j Gq  θ θ θ θ = ( | )c

j j jq θ θ  

and *
1: 1 1:( |{ } , ,{ } )c

j j j j j Gq  θ θ θ θ = ( )c
j jq θ  are some of the simple special cases. 

Simulation procedures such as Gibbs sampling, MH or HMCM applied to each group of 

uncertain parameters as above is valid since the corresponding transition PDFs for each 

group satisfy (2.47). If MH, Gibbs sampling and HMCM are used for each group, 

reversibility (detailed balanced condition) is satisfied for each group of uncertain 
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parameters. However, as shown in Appendix 2F, in general, reversibility is not satisfied for 

the whole uncertain parameter vector θ = [θ1, θ2,…, θG] even if reversibility is satisfied for 

each group (i.e., the Markov Chain samples from ( ) θ  generated using the above 

procedures is not reversible) and θ1, θ2,…, θG are statistically independent, i.e. the target 

PDF can be expressed as, 
1

( ) ( )
G

j j
j

 


θ θ  

2.6 Transitional multiple-group hybrid MCMC 

For a general case which may involve i) well-separated high probability regions; ii) high-

dimensional uncertain parameters or iii) may be unidentiable, a powerful stochastic 

simulation algorithm for generating samples from the posterior PDF π(θ) can be obtained 

by combining TMCMC and multi-group MCMC algorithms as follows. This hybrid 

algorithm is applied to problems in later chapters. Consider a sequence of intermediate 

PDFs πl(θ) for l=0,1,…, L, such that the first and last PDFs, π0(θ) and πL(θ) = π(θ), in the 

sequence are the prior p(θ|Mj) and posterior p(θ|D,Mj), respectively: 

 ( ) ( | , ) ( | )l
l p p θ θ θj jD M M  (2.52) 

where 0=τ0<τ1<…<τL=1. 

First, N0 samples are generated from the prior p(θ|Mj). Then do the following procedures 

for l=1,…,L. At the beginning of the l-th level, we have the samples ( )
1

m
lθ , m=1,2,…,Nl-1, 

from πl-1(θ). First, select τl such that the effective sample size 1/
1

2

1

lN

s
s

w



  = some threshold 

(e.g., 0.9 Nl-1) (Cheung and Beck 2008d), where 
1

1

/
lN

s s s
s

w w w




  and ws 

= 1 ( )
1( | , )l l s

lp  
θ jD M , s=1,2,…,Nl-1. If τl>1, then set L=l and τl=1, then recompute ws and 
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sw . Then the Nl samples ( )n
lθ  from πl(θ) are generated by doing the following for 

n=1,2,…,Nl: 

1. Draw a number s′ from a discrete distribution p(S=s)= sw , s=1,2,…,Nl-1; 

2. Using ( ')
1

s
lθ  as the current sample, generate a sample ( )n

lθ  for θ by multi-group 

MCMC algorithms. Set ( ') ( )
1

s n
l l θ θ . 

Appendix 2A 

The Hamiltonian equations (2.8) and (2.9) are equivalent to the following diffusionless Itô 

stochastic differential equation:  

 ( ) ( ( ), )d t t t dtx v x  (A2.1) 

where the state is formed by augmenting the displacement vector with the momentum 

vector: 

 
( )

( )
( )

t
t

t

 
  
 

θ
x

p
 (A2.2) 

and the drift term v (x(t),t) of the corresponding Fokker-Planck Equation (FPE) is given by: 

 ( ( ), )

H

t t
H

 
  

   

p
v x

θ

 (A2.3) 

Here we will show that the probability density function f(θ,p) as defined in (2.6) is the 

stationary distribution for the evolution in (A2.1). Consider 



 

 58

1

( ( ( ), )) ( ( ( ), )) ( ( ), )

( ( ( ), )) ( ( ), )  ( exp( ) )

( ( ( ( ), )) ( ( ), ) )

(

f t t f t t t t f

f t t f t t H f C H f f H

f t t t t H

H H H

f
HH H



    

         
   

         
              
                    

v x v x v x

v x v x

v x v x

θ p p θ

p pθ θ

  
  
 

 

2 2

1 1

)

[ ( )]

0

D D

i ii i i i i i i i

H H H H H H
f

p p p p    


 
 
 
  

     
   

       



 

 

Thus f(θ, p) is the stationary distribution for (A2.1) (equivalently for  (2.8) and (2.9)) since 

it satisfies the corresponding stationary diffusionless FPE (Liouville’s equation): 

 ( ( ( ), )) 0f t t v x  (A2.4) 

Appendix 2B 

For the operations shown in Table 2.1, the derivation of the corresponding reverse 

differentiation (RD) rules are given as follows. 

For m v u  , 

   i
i

i i i i

vV V V
u

u v u v
   

      
   

u v  (B2.1) 

   
1 1

m m
Ti

i i
i ii

vV V
v u

v


  

 
    
    u v  (B2.2) 

For m  w u v  , 
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    i
i i

i i i

wV V
u w

u w u

 
      
  

u w  (B2.3) 

Similarly, we also have    v w  

For Tw  u v , 

    
i i

i i

V V w
u wv w

u w u

  
      
  

u v  (B2.4) 

Similarly we have,  w v u  

For V U,  U, V  ;  p q     , 

  
, ,

V
V U sum(sum(U.*V))

V
ij

ij ij
i j i jij

V V
 

 
    
     (B2.5) 

  

    V
U V U V

U V U
ij

ij ij

ij ij ij

V V  
 

      
  

 (B2.6) 

For W U V,  U, V, W  p q    , 

 U+ W, V+ W      (B2.7) 

The above follows the same proof as the vector case. 

For W UV,  U  , Vp q q r     , 



 

 60

 





 

1

1 =1

T

W
U  ( U  affects W )

U W U

W
W V                            ( W = U V V )

U

U WV

r
ik

ij ij ik
kij ik ij

qr
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1

1 =1
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W
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p
kj

ij ij kj
kij kj ij

p q
kj

kj ki kj kl lj ki
k l ij

V V





 
  
  


  



  



 



  

 

For 1U ,  U  , p q q   w v v  , 

   T TU+ , + U wv v w  

This follows directly from the previous case when r=1. 

For an implicit equation for v: 1U ,  U  , p p p   w v v  , assume U is invertible and 

denote V as its inverse. 
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=1 =1
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R    ( U )

R

R

R =U

p

i ij j
j

p p
j

i j ji i
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Appendix 2C 

   2 ( ) 2

1

( ) ( )

1 1

( ) ( )
2

1 1

( ) ( )
2

1
Var(E[ ( )]) E[(E[ ( )] E[E[ ( )]]) ] E[( ( ) E[ ( )]) ]

1 1
E[( ( ) E[ ( )])( ( ) E[ ( )])]

1
E[ ( ( ) E[ ( )])( ( ) E[ ( )])]

1
E[( ( ) E[ ( )])( ( )
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where ( ) ( )[( ( ) E[ ( )])( ( ) E[ ( )])] ( )k kE g g g g     θ θ θ θ , for all k. 

Thus Var(E[ ( )])g θ  becomes: 


1

2 2
1 1 1

1

2
1

1

1

1 2
Var(E[ ( )]) (0) ( )

(0) 2
( ) ( )

(0) ( )
(1 2 (1 ) )

(0)

(0)
(1 )

N N N

k k

N

N

g
N N

N
N N

N N

N









  

   

   


 

 

  









 

  

  

 

 





θ

 

where 
1

1

( )
2 (1 )

(0)

N

N

  






  . 

Appendix 2D 

The transition PDF for *θ  given θ for the multiple group MCMC presented is: 

* * *
1: 1 1:

1

( | ) ( |{ } , ,{ } )
G

j j j j j G
j

K K  


θ θ θ θ θ θ . 

The PDF of *θ  with the above transition PDF is given by: 

* * * *
1: 1 1:

1

* *
1: 1 1: 2: 1 1

1

* *
1: 1 1: 1 2: 2: 1 2:

1

* *
1: 1

( ) ( | ) ( ) ( |{ } , ,{ } ) ( )

( |{ } , ,{ } ) ({ } | ) ( )

( |{ } , ,{ } ) ( |{ } ) ({ } )

[ ( |{ }

 

 

 

 


 


 




 







 





G

j j j j j G
j

G

j j j j j G G
j

G

j j j j j G G G G
j

j j j

p K d K d

K d

K d d

K

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ *
1: 1 1 1 2: 1 2: 2: 1 2:

2

* * *
1: 1 1: 2: 1 1 1 2: 1 2: 1 2:

2
*( |{ } )1 2:

, ,{ } )] ( | ,{ } ) ( |{ } ) ({ } )

[ ( |{ } , ,{ } )] ({ } ){ ( | ,{ } ) ( |{ } ) }



 

 




 








 

G

j j G G G G G
j

G

j j j j j G G G G G
j

G

K d d

K K d d

θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ
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* * *
1: 1 1: 2: 1 2: 2:

2

* * *
1: 1 1: 1 2: 2:

2

* * *
1: 1 1: 2 1

2

[ ( |{ } , ,{ } )] ({ } ) ( |{ } )

[ ( |{ } , ,{ } )] ( ,{ } ) ........................(D2.1)

[ ( |{ } , ,{ } )] ( | ,{ }

 





 


 


 














G

j j j j j G G G G
j

G

j j j j j G G G
j

G

j j j j j G
j

K d

K d

K

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ *
3: 1 3: 2:

* * * *
1: 1 1: 2 1 3: 1 3: 2 3:

2

* * * * * *
1: 1 1: 1 3: 2 2 1 2 3: 2 1 3: 2

3
* *
2 1( |

) ( ,{ } )

[ ( |{ } , ,{ } )] ( | ,{ } ) ( ,{ } )

[ ( |{ } , ,{ } )] ( ,{ } ){ ( | , ,{ } ) ( | ,{ } )





 

 

 


 












 

G G G

G

j j j j j G G G G
j

G

j j j j j G G G G
j

d

K d d

K K d

θ θ

θ θ θ

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ θ 3:

* * * * *
1: 1 1: 1 3: 2 1 3: 3:

3

* * * *
1: 1 1: 1 2 3: 3:

3

3:,{ } ) 

}

[ ( |{ } , ,{ } )] ( ,{ } ) ( | ,{ } )

= [ ( |{ } , ,{ } )] ( , ,{ } ) ...................(D2.2)
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1: 1 1 2 1

* * *
1: 1 1: -1

 the patterns in (D2.1) and (D2.2) and keep repeating

 each time reducing the dimension of integration by 1 group)

= ( |{ } , ) ( , ,...., , )

( |{ } , ) ( |{ } )
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Appendix 2E 

For simpler proof, it can be shown that the transition function Tj for the j-th group 

components satisfies the following by making use of (2.49)and (2.50): 

* * *
1: 1 1: 1: 1 1:

* * * *
1: 1 1: 1: 1 1:

( |{ } , ,{ } ) ( |{ } ,{ } )

( |{ } , ,{ } ) ( |{ } ,{ } )

j j j j j G j j j G

j j j j j G j j j G

T

T




   

   

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ
 (E2.1) 

Proof: 
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* * *
1: 1 1: 1: 1 1:

* * *
1: 1 1: 1: 1 1:

* * * *
1: 1 1: 1: 1 1:

( |{ } , ,{ } ) ( |{ } ,{ } )

min{ ( |{ } ,{ } ) ( |{ } , ,{ } ),

          ( |{ } ,{ } ) ( |{ } , { } )}

j j j j j G j j j G

j j j G j j j j j G

j j j G j j j j j G

T

q

q







   

   

   



θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ，
* * * *

1: 1 1: 1: 1 1:

* * * *
1: 1 1: 1: 1 1:

* * *
1: 1 1: 1: 1 1:

( |{ } , ,{ } ) ( |{ } ,{ } )

min{ ( |{ } ,{ } ) ( |{ } , { } ),

          ( |{ } ,{ } ) ( |{ } , ,{ } )}

j j j j j G j j j G

j j j G j j j j j G

j j j G j j j j j G

T

q

q







   

   

   



θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

，  

Similar to regular MH, the relation (E2.1) leads * *
1: 1 1:( |{ } , ,{ } )j j j j j GK  θ θ θ θ  to satisfy the 

reversibility condition which is sufficient to guarantee for it to satisfy the stationary 

condition (2.47). Alternatively, we can also check directly as follows: 

* * *
1: 1 1: 1: 1 1:

* * *
1: 1 1: 1: 1 1:

* * * *
1: 1 : 1: 1 1:

* *
1: 1 1:
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Appendix 2F 

Consider the case where G=2, and Gibbs sampling which is a special case of multi-group 

MH, 

* * *
* * * * 1 2 1 2 1 2

2 1 1 2 1 2 *
1 2

( , ) ( , ) ( , )
( | ) ( ) ( | ) ( | ) ( , )

( ) ( )
K

     
 

 
θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ
θ θ
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* * *
* * * * * 1 2 1 2 1 2

2 1 1 2 1 2 *
1 2

( , ) ( , ) ( , )
( | ) ( ) ( | ) ( | ) ( , )

( ) ( )
K

     
 

 
θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ
θ θ

 

Therefore in this case, for the Markov chain to be reversible, i.e., satisfying the detailed 

balance(reversibility condition), we need: 

* *
1 2 1 2

* *
1 2 1 2

( , ) ( , )

( ) ( ) ( ) ( )

 
   


θ θ θ θ

θ θ θ θ
 

In general, the above is not true. Thus, one can expect that in general, for any G>1, multi-

group MCMC does not satisfy reversibility condition even reversibility condition can be 

satisfied for each group of parameters.  

However, when 1 1 2 2( ) ( ) ( )  θ θ θ , the reversibility condition is satisfied. It can be 

shown that if ( ) θ can be written as
1

( ) ( )
G

j j
j

 


θ θ , then reversibility condition is 

satisfied and the Markov Chain is reversible. As an example, consider Gibbs sampling 

where each group is simulated from its own conditional.  

* * * * *

1 1 1 1

( | ) ( ) ( ) ( ) ( ) ( ) ( | ) ( )
G G G G

j j j j j j j j
j j j j

K K     
   

     θ θ θ θ θ θ θ θ θ θ  

Of course, in this case, Gibbs sampling is just the same as standard Monte Carlo 

simulation. 

Now consider the case with the target PDF of this type and transition PDF being 

independent from the other groups, the Markov Chain of samples simulated using multi-

group MH is in general not reversible, (not satisfying the reversibility condition). 

The transition PDF for this case is: 
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* * * * *
1: 1 1:

1 1

( | ) ( |{ } , ,{ } ) [ ( | ) (1 ( )) ( )]
G G

j j j j j G j j j j j j
j j

K K T a  
 

     θ θ θ θ θ θ θ θ θ θ θ  

where the transition function *( | )j j jT θ θ  and ( )ja θ  are: 

*( | )j j jT θ θ =
* *

* * *
*

( ) ( | )
( | ) ( | ) ( | ) min{1, }

( ) ( | )
j j j j

j j j j j j j j j
j j j j

q
q r q

q





θ θ θ

θ θ θ θ θ θ
θ θ θ

 

* *( ) ( | )j j j j ja T d θ θ θ θ  

It is obvious we have the following: 

 * * *( | ) ( ) ( | ) ( )j j j j j j j jT T θ θ θ θ θ θ  (F2.1) 

As a special case for multi-group MCMC, as shown before, this transition PDF satisfies 

stationarity condition: 

* *
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j j j
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j j j j
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K d K d

K d

 





















 





θ θ θ θ θ θ θ θ

θ θ θ θ

θ

θ

 

For transition PDF having parts involving different combination of delta functions, 

special care has to be taken to prove or disprove the reversibility condition. To deal with 

this issue, our trick here is to consider the following for any nonnegative *( , )h θ θ : 
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* * * * * * * *

* * * * * *

* * *

( , ) ( | ) ( ) ( , ) ( | ) ( ) , ( , ) 0

( , )[ ( | ) ( ) ( | ) ( )] 0, ( , ) 0

( | ) ( ) ( | ) ( )
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h K K d d h

K K
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θ θ θ θ θ θ

 (F2.2) 

First, let’s expand the transition PDF into the sum of terms (here there will be 2G) since 

the integration will depend on the number of delta functions involved in the term. It can 

be seen that the number of terms which involves the product of k delta functions and G-k 

transition functions is equal to G
kC =G!/[(G-k)!k!]. 

1 1 1

1 1 1 2 2 2

*

* *

1

* *

1 1

* *

* * *

( | )
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m m m m m m
k k k

m m m m m m m m m
G k G k G k
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j j j j j j
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j j j j j j
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n n n n n n
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i i i i i i i i i
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T a

T a

a a
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θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

1

1 1

n
kCG

k



 


 (F2.3) 

where 1 2{ , ..., }m m m
kn n n is the m-th combination of k numbers drawn from the set {1,2,…,G} 

and 1 2 ...m m m
kn n n   ; 1 2{ , ..., }m m m

G ki i i  = {1,2,…,G}\ 1 2{ , ..., }m m m
kn n n (i.e.,=the G-k numbers 

that are not in 1 2{ , ..., }m m m
kn n n  but in {1,2,…,G}) and 1 2 ...m m m

G ki i i    (actually this 

ordering is not necessary, just for clarity for presentation). 

So similarly,  
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1 1 1
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 (F2.4) 
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 (F2.5) 

* * * * * * * *

1 1

( , )[ (1 ( )) ( )] ( ) ( , ){ [1 ( )]} ( )
G G

j j j j
j j

h a d d h a d  
 

     θ θ θ θ θ θ θ θ θ θ θ θ θ  

* * * * *
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h a d d h a d  
 

     θ θ θ θ θ θ θ θ θ θ θ θ θ  

Thus combining the above two, we have, 
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Similarly,  
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Thus it can be seen that I1 in general is not equal to I2. Thus the transition PDF does not 

satisfy the reversibility condition. 
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CHAPTER  3   

Algorithms for stochastic system model class 

comparison and averaging 

The computation of the evidence in (1.3) required for model class comparison and 

averaging is highly nontrivial. Laplace’s method of asymptotic approximation (Beck and 

Katafygiotis 1991, 1998) has been proposed by researchers such as Mackay (1992) and 

Beck and Yuen (2004), which, in effect, utilizes a Gaussian sum approximation of the 

posterior PDF. However, the accuracy of such an approximation is questionable when (i) 

the amount of data is small, or (ii) the chosen class of models turns out to be unidentifiable 

based on the available data. It should be noted that variational methods (Beal 2003) can 

provide a lower bound to the log evidence that is required for Bayesian model class 

selection. For a comparison between two model classes, we need to consider the difference 

of the corresponding log evidences. Approximating the difference of the log evidences by 

the difference of the corresponding lower bounds can lead to misleading results in model 

comparison and based on such approximation, one may get an erroneous result for the 

posterior probability of each model class, ( , )jP MM |D . Fortunately, stochastic simulation 

methods to evaluate the evidence are practical and applicable to all cases; they are 

discussed in the next section. 
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3.1 Stochastic simulation methods for calculating model class evidence 

3.1.1 Method based on samples from the prior  

The most direct way to calculate the evidence p(D|Mj) is to apply the standard Monte Carlo 

method to (1.3) based on samples θ(k), k = 1,2,…, N, from the prior p(θ|Mj) as follows: 

 ( )

1

1
( ) ( )

N
k

j j
k

p p
N 

  θD|M D| ,M  (3.1) 

However, this is usually a highly inefficient method to estimate p(D|Mj). The region of 

high-probability content of p(θ|Mj) is often very different from the region where p(D|θ,Mj) 

has its largest values, implying that it is very rare for the samples from p(θ|Mj) to fall into 

this latter region. This usually leads to the Monte Carlo estimator having an extremely large 

variance and so it produces a poor estimate of the evidence unless a huge amount of 

samples are employed. For higher-dimensional problems encountered in practice, this 

method is often computationally prohibitive. 

3.1.2 Multi-level methods 

Ching and Chen (2007) evaluate the evidence by considering a sequence of intermediate 

PDFs πi(θ) for i=0,1,…, l, such that the first and last PDFs, π0(θ) and πl(θ), in the sequence 

are the prior p(θ|Mj) and posterior p(θ|D,Mj), respectively: 

 ( ) ( | , ) ( | )i
i j jp p θ θ θD M M  (3.2) 

where 0=α0<α1<…<αl=1. In their approach, the evidence p(D|Mj) is then estimated as 

follows: 
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1

1 ( )
1

11 1

1
( ) ( | , )

i

i i

Nl
m

j i j
mi i

p p
N

 





 

  θD|M D M  (3.3) 

where ( )
1

m
iθ , m=1,2,…,Ni-1, are the samples distributed according to πi-1(θ) which are 

generated by the TMCMC (Transition Markov Chain Monte Carlo) method. This approach 

is similar to Annealed Importance Sampling (AIS) (Neal 2001) and Linked Importance 

Sampling (LIS) (Neal 2005); the main differences lie on the way samples are propagated 

from one level to the next level and the use of bridge sampling (Meng and Wong 1996) in 

LIS. 

Cheung and Beck (2007b) introduce an alternative method by showing that the logarithm 

of the evidence can be expressed as the following one-dimensional integration of expected 

log-likelihood from α=0 to 1: 

 
1

0
ln ( ) [ln ( , ) | , , ]j j jp E p d   θD|M D| M D M  (3.4) 

where [ln ( , ) | , , ]j jE p θD| M D M  is the expectation with respect to the PDF:  

 ( | , , ) ( , ) ( | )j j jp p p θ θ θD M D| M M  (3.5) 

and the integrand in (3.4) can be estimated as follows: 

 ( )

1

1
[ln ( , ) | , , ] ln ( , )

N
m

j j j
m

E p p
N









 θ θD| M D M D| M  (3.6) 

where ( )m
θ , m=1,2,…,Nα, are samples distributed according to p(θ|D,α,Mj) that are 

generated by an MCMC algorithm such as TMCMC. A one-dimensional numerical 

integration scheme can be applied to calculate the integral in (3.4). 
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The major drawback of this method and the one proposed in Ching and Chen (2007) is the 

fact that both methods rely on the availability of samples distributed according to PDFs in a 

sequence depending on α in (3.2) and (3.5). For example, in Ching and Chen (2007), the 

samples for πi(θ) for each i are generated using sampling and re-sampling and MCMC 

simulation methods. If the number of samples for each level i are not large enough for 

convergence to the stationary PDF πi(θ) of the Markov Chain, the samples may not be 

distributed according to the underlying target distribution πi(θ). Thus, the resulting estimate 

of the evidence in (3.3) will be biased since the samples ( )
1

m
iθ  are not distributed according 

to πi-1(θ). While in very low dimensions the number of samples required for convergence to 

πi(θ) at all levels may be affordable, this will not be the case in higher dimensions.  

3.1.3 Methods based on samples from the posterior 

The key idea here is to calculate the evidence for model class Mj based on samples from the 

posterior p(θ|D,Mj) which have already been obtained from an MCMC Bayesian updating 

procedure. One possible approach is to estimate the evidence p(D|Mj) by importance 

sampling, which modifies (3.1) as follows: 

 
( ) ( )

( )
1

( ) ( )1
( )

( )

k kN
j j

j k
k

p p
p

N g

 
θ θ

θ

D| ,M |M
D|M  (3.7) 

where the θ(k), k=1,2,…,N, are samples drawn from an importance sampling density g(θ) 

that is constructed using the samples from the posterior p(θ|D,Mj); for example, by finding 

a kernel density estimate for p(θ|D,Mj) (e.g., Silverman 1986, Au and Beck 1999). 

However, unless p(θ|D,Mj) is approximately Gaussian, it is known that such an importance 

sampling density may lead to very poor results (i.e. large variance) in higher dimensions, 

especially when p(θ|D,Mj) has a heavier tail than the importance sampling density (Au and 

Beck 2003).  
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Gelfand and Dey (1994) proposed the following method by using Bayes’ Theorem and the 

fact that the integration of any probability density function h(θ) over the whole domain 

equals 1: 

( )

( ) ( )
1

( ) ( | )1 ( ) 1 ( )

( ) ( ) ( ) ( | ) ( ) ( )

kN
j

k k
kj j j j j j

h ph h
d d

p p p p N p p

    
θ θθ θ

θ θ
θ θ θ θ

D,M

D|M D|M D| ,M M D| ,M |M
 

where θ(k), k = 1,2,…, N, are N samples from p(θ|D,Mj). Thus, the estimate for the evidence 

is given as follows: 

 
( )

1
( ) ( )

1

( )
( ) ( )

( ) ( | )

kN

j k k
k j j

h
p N

p p




  θ

θ θ
D|M

D| ,M M
 (3.8) 

The above is a generalization of the special case proposed by Newton and Raftery (1994) 

where h(θ)= p(θ|Mj). The main advantages of this estimator are: (i) except for the 

calculation of h(θ) when h(θ)≠p(θ|Mj), no additional computational effort is required since 

the values of p(D|θ(k),Mj) have already been obtained during the simulation of θ(k), k = 

1,2,…, N, from p(θ|D,Mj); and (ii) the estimator is consistent, i.e, as N approaches infinity, 

the estimator converges to the exact value of the evidence p(D|Mj). However, a serious 

drawback of this estimator is that it can be quite unstable due to the occurrence of samples 

with small h(θ)/[p(D|θ,Mj) p(θ|Mj)] which may have a significant effect on the estimate if 

the sample size is not large enough and, in fact, may give infinite variance for the estimator 

in (3.8).  

3.2 Proposed method based on posterior samples 

Here we derive an alternative to the above methods for calculating the evidence from 

posterior samples. In Step 1, we derive an approximate analytical expression for the 

posterior and then in Step 2, we use this approximate posterior to approximate the evidence. 
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3.2.1 Step 1: Analytical approximation for the posterior PDF 

Consider any MCMC algorithm with transition PDF K(θ|θ*) that is constructed to generate 

posterior samples from its stationary PDF π(θ)=p(θ|D,Mj). The key idea is to observe that 

π(θ) satisfies the following stationarity condition: 

 * * *( ) ( | ) ( )K d  θ θ θ θ θ  (3.9) 

We use (3.9) to derive an approximate analytical expression for the posterior PDF π(θ) (we 

will soon illustrate this using special cases). 

Consider a general choice of K(θ|θ*) that includes many MCMC algorithms:  

 * * * *( | ) ( | ) (1 ( )) ( )K T a    θ θ θ θ θ θ θ  (3.10) 

where *( | )T θ θ is a smooth function that does not contain delta functions and *( )a θ  is the 

acceptance probability given by the following integral *( )a θ = *( | )T d θ θ θ ≤1 so that 

K(θ|θ*) is correctly normalized. Then we have, 
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Thus, the proposed analytical approximation for p(θ|D,Mj) in terms of posterior samples is: 

 
* * *

( ) ( )

1

( | ) ( ) 1
( | ) ( ) ( | )
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j k
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T d
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θ θ θ θ

θ θ θ θ
θ θ

D,M  (3.11) 
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where ( )kθ  are samples from p(θ|D,Mj). This equation is also valid in the case where a(θ)=1, 

 θ, so *( | )K θ θ = *( | )T θ θ . It is also worth noting that (3.11) can be used to give a kernel 

density estimate of the posterior PDF which can be used in the multi-level MCMC method 

of Beck and Au (2002). We consider three choices for *( | )K θ θ  here. 

3.2.1.1 K(θ|θ*) from Metropolis-Hastings algorithm 

Consider the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970; Robert 

and Casella 2004) with a proposal distribution q(θ|θ*), then: 

 * * *( | ) ( | ) ( | )T r qθ θ θ θ θ θ  (3.12) 

where *( | )r θ θ  is given by 

 
*

*
* * *

( ) ( | ) ( | )
( | ) min{1, }

( ) ( | ) ( | )
j j

j j

p p q
r

p p q


θ θ θ θ
θ θ

θ θ θ θ

D| ,M M

D| ,M M
 (3.13) 

Equation (3.11) can be used to give an analytical approximation to the posterior where the 

denominator in (3.11) is estimated as follows: 

 
2

* * * * * *( )

12

1
( ) ( | ) ( | ) ( | ) ( | )

N
k

k

a T d r q d r
N 

    θ θ θ θ θ θ θ θ θ θ θ  (3.14) 

where the *( )kθ  are N2 samples from q( *θ |θ) for fixed θ. Note that the posterior samples 

used in (3.11) need not be generated using the Metropolis-Hastings algorithm but it is often 

convenient to do so. 

Chib and Jeliazkov (2001) considered the special case where one can obtain posterior 

samples from the Metropolis-Hastings algorithm and obtained the same results as in (3.11)-
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(3.14) by making use of a specific property of the Metropolis-Hastings algorithm known as 

the reversibility of the transition PDF: 

 * * *( | ) ( ) ( | ) ( )K K θ θ θ θ θ θ  (3.15) 

Any Markov chain with transition PDF *( | )K θ θ  satisfying (3.15) also satisfies (3.9) but 

not conversely. The approach presented in this paper is a generalization to any MCMC 

algorithm since it only requires the stationarity condition (3.9) to hold. 

3.2.1.2 K(θ|θ*) from Gibbs sampling algorithm 

Suppose that θ and *θ  are divided into G groups of uncertain parameter vectors, i.e. θ = [θ1, 

θ2,…, θG] and *θ = [ *
1θ , *

2θ  ,…, *
Gθ ], then the Gibbs sampling algorithm (Geman and 

Geman 1984) has transition PDF: 

 * * * *
1: 1 1:

1

( | ) ( | ) ( |{ } ,{ } )
G

j j j G
j

K T   


 θ θ θ θ θ θ θ  (3.16) 

where *
1: 1{ } jθ =[ *

1θ , *
2θ ,…, *

1jθ ], 1:{ } j Gθ =[ 1jθ ,…, Gθ ] and for j=1, *
1: 1{ } jθ is dropped and 

for j=G, 1:{ } j Gθ  is dropped. Since * *
1: 1 1:( |{ } ,{ } )j j j G  θ θ θ  is the target conditional PDF of 

*
jθ  given all the other components:  

  

* * *
1 2 1* *

1: 1 1: * * *
1 2 1 1

( , ,..., , ,..., )
( |{ } ,{ } )

( , ,..., , , ,..., )
j j G

j j j G
j jj j G d







 
 




θ θ θ θ θ
θ θ θ

θ θ θ θ θ θ θ
 (3.17) 

In this case, a(θ) is always 1. Thus, the analytical approximation to the posterior PDF in 

terms of posterior samples ( )kθ  in (3.11) becomes: 
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 ( )

1

1
( | ) ( | )

N
k

j
k

p T
N 

 θ θ θD,M  (3.18) 

Note that this case is only appropriate when the conditional PDFs in (3.17) can be 

evaluated analytically. Also, the posterior samples used in (3.18) need not come from 

Gibbs sampling.  

Chib (1995) considered this special case where one can obtain posterior samples using 

Gibbs sampling. His approach requires additional simulation of samples with the amount of 

computational effort increasing linearly with the number of groups. The approach 

presented here for this case results in an estimator for the posterior which does not require 

additional simulation of samples once the posterior samples have been obtained.  

3.2.1.3 K(θ|θ*) from hybrid MCMC-Gibbs sampling algorithm 

A hybrid approach of simulating samples from p(θ|D,Mj) is proposed where θ is split into 

several groups of uncertain parameters where the conditional distribution of almost every 

group of uncertain parameters given the other groups of uncertain parameters is such that 

direct simulation is possible, facilitating the use of Gibbs sampling. MCMC methods such 

as Metropolis-Hastings algorithm or advanced MCMC methods such as those presented in 

Beck and Au (2002), Ching and Chen (2007), and Cheung and Beck (2007c, 2008a) and 

Chapter 2, can be used to simulate samples from the conditional distribution of the groups 

of uncertain parameters that cannot be done by the standard MCS (Monte Carlo simulation) 

procedure. This approach is especially effective for a case that often occurs in applications 

where the sum of the dimensions of the groups of parameters whose conditional 

distributions allow direct MCS simulation is large and the correlation induced by the data 

between different groups of parameters is small. 

This Gibbs sampling in groups naturally leads to the choice for the transition PDF K(θ|θ*) 

similar to the one in (3.16). Suppose that θ and θ* are divided into G groups, i.e. θ = [θ1, 
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θ2,…, θG], θ*= [ *
1θ , *

2θ ,…, *
Gθ ]. Imagine a sample θ = [θ1, θ2,…, θG] is generated given θ* 

such that the j-th group is generated by using a Markov chain with transition PDF 

*
1: 1 :( |{ } ,{ } )j j j j GK θ θ θ  with the corresponding stationary PDF *

1: 1 1:( |{ } ,{ } )j j j G  θ θ θ . 

This implies the following: 

 * *
1: 1 :

1

( | ) ( |{ } ,{ } )
G

j j j j G
j

K K 


θ θ θ θ θ  (3.19) 

where the Kj satisfy the stationarity condition 

  * * *
1: 1 1: 1: 1 1: 1: 1 1:( |{ } ,{ } ) ( |{ } , ,{ } ) ( |{ } ,{ } )j j jj j j G j j j j G j j GK d       θ θ θ θ θ θ θ θ θ θ θ  (3.20) 

It is shown in Appendix 3A that the transition PDF K(θ|θ*) defined by (3.19) and (3.20) 

satisfies the stationarity condition (3.9). 

Illustrative special case: G=2 

Suppose that there are G=2 groups and that the transition PDFs for each group are as 

follows: 

 * * *
1 1 1 2 1 2( | , ) ( | )K θ θ θ θ θ  (3.21) 

 * * * *
2 2 1 2 2 2 1 2 2 1 2 2 2( | , ) ( | , ) (1 ( , )) ( )K T a    θ θ θ θ θ θ θ θ θ θ  (3.22) 

where 

 * * *
2 2 1 2 2 1 2 2 1 2( | , ) ( | , ) ( | , )T r qθ θ θ θ θ θ θ θ θ  (3.23) 
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*

* 1 2 2 1 2
2 1 2 * *

1 2 2 1 2

( , ) ( | , )
( | , ) min{1, }

( , ) ( | , )

q
r

q





θ θ θ θ θ

θ θ θ
θ θ θ θ θ

 (3.24) 

  * *
2 22 1 2 2 1 2( , ) ( | , )a T d θ θ θ θ θ θ  (3.25) 

These choices of the transition PDFs for θ1 and for θ2 correspond to generating samples of  

(θ1, θ2) by first sampling θ1 from its corresponding conditional PDF as in Gibbs sampling 

and then sampling the second group θ2 by Metropolis-Hastings sampling with a proposal 

PDF *
2 1 2( | , )q θ θ θ and the stationary PDF being the corresponding full conditional PDF 

2 1( | ) θ θ . These choices are appropriate if 1 2( | ) θ θ  is of the form that allows direct 

sampling for θ1, given θ2, but 2 1( | ) θ θ  does not allow direct sampling of θ2, given θ1. In 

this special case with G=2, the expression for π(θ) which is necessary for the calculation of 

the evidence evaluated at θ can be derived as follows: 

 

  

     

 
2 2 2 21 2 2 1 2 1 2

1 11 1 2 2 1 2 2

( ) ( | ) ( )

( | )[ ( | , ) (1 ( , )) ( )] ( )  

 ( | )(1 ( , )) ( , )

K d

T a d

I a d

 

  

 



   

  






θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

  

where I1 =    
2 2 2 21 2 2 1( | ) ( | , ) ( )T d  θ θ θ θ θ θ θ and π(θ2) is the marginal PDF of θ2 from π(θ1, 

θ2). Thus, 

 

 
1 11 1 2 2 1 2 2

1 1 2 2 1 2 2

1 2 1 2 1 2 1 2 2

1 2 1 2

( ) ( | )(1 ( , )) ( , )

( | )(1 ( , )) ( )

(1 ( , )) ( )     ( ( ) ( , ) ( | ) ( ))

( ) ( ) ( , )

I a d

I a

I a

I a

  

 

    

 

  

  

    

  

θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ

 

Finally, 
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 1

2 1 2

( | ) ( ) =
( , ) j

I
p

a
θ θ

θ θ
D,M  (3.26) 

where the numerator and denominator can be estimated by: 

     1
( ) ( )

2 2 2 21 1 2 1 1 2 2 1 2
11

1
( | ) ( | , ) ( ) ( | ) ( | , )

N
i i

i

I T d T
N

  


   θ θ θ θ θ θ θ θ θ θ θ θ  (3.27) 

where ( )
2

iθ  are marginal samples of θ2 obtained from posterior samples ( ( )
1

iθ , ( )
2

iθ  ) 

corresponding to p(θ|D,M(j)) where θ = (θ1,θ2), and:  

 2 ( )
22 1 2 1 2

12

1
( , )  ( | , )

N
i

i

a r
N 

 θ θ θ θ θ  (3.28) 

where 
( )

2
i

θ  are samples from 
2 1 2( | , )q θ θ θ  for fixed θ = (θ1,θ2). 

More general case: A case with G>2 

Consider a generalization of the above case where the transition PDFs for each component 

are taken as follows. For the first J groups of parameters, θ1, θ2,…, θJ, use a Gibbs 

sampling transition PDF: 

 * *
1: 1 : 1: 1 1:( |{ } ,{ } ) ( |{ } ,{ } ), 1,...,j j j j G j j j GK j J   θ θ θ θ θ θ  (3.29) 

and for the remaining (G-J) groups, θJ+1, θJ+2,…, θG, use a Metropolis-Hastings transition 

PDFs, so for j= J+1 ,…,G >2, 

* * *
1: 1 : 1: 1 1:

* * *
1: 1 1:

( |{ } ,{ } ) ( |{ } , ,{ } )

                            +(1 ({ } , ,{ } )) ( )

j j j j G j j j j j G

j j j j G j j

K T

a 
  

 



 

θ θ θ θ θ θ θ

θ θ θ θ θ
 (3.30) 
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where 

* * * * * *
1: 1 : 1: 1 1: 1: 1 1:( |{ } , ,{ } ) ( |{ } , ,{ } ) ( |{ } , ,{ } )j j j j j G j j j j j G j j j j j GT r q    θ θ θ θ θ θ θ θ θ θ θ θ  (3.31) 

* * *
1: 1 1: 1: 1 1:* *

1: 1 1: * * * *
1: 1 1: 1: 1 1:

({ } , ,{ } ) ( |{ } , ,{ } )
( |{ } , ,{ } ) min{1, }

({ } , ,{ } ) ( |{ } , ,{ } )
j j j G j j j j j G

j j j j j G
j j j G j j j j j G

q
r

q




   
 

   


θ θ θ θ θ θ θ

θ θ θ θ
θ θ θ θ θ θ θ

(3.32) 

  * * * *
1: 1 1: 1: 1 1:({ } , ,{ } ) ( |{ } , ,{ } )j jj j j j G j j j j Ga T d    θ θ θ θ θ θ θ θ  (3.33) 

Here, the Metropolis-Hastings algorithm for group θj, j=J+1,…, G, has proposal PDF 

* *
1: 1 1:( |{ } , ,{ } )j j j j j Gq  θ θ θ θ  and the stationary PDF is the corresponding conditional PDF 

*
1: 1 1:( |{ } ,{ } )j j j G  θ θ θ .  

First we consider a very important general case where J=G-1 and π(θ) can be derived as 

follows using both global and local stationarity conditions in (3.9) and (3.20) respectively: 

  

     

  

1

1: 1 1: 1: 1 1: 1
1

1

1 1: 1 1: 1, 1: 1 1: 1, 1: 1
1

( ) ( | ) ( )

[ ( |{ } ,{ } )][ ( |{ } , ) (1 ({ } , )) ( )] ( )

 [ ( |{ } ,{ } )](1 ({ } , )) ({ } , ) { }

G

G G Gj j j G G G G G G
j

G

j j j G G G G G G G
j

K d

T a d

I a d

 

  

 



   




     




   

  







θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

 

where I1 is given in (3.34) and thus, 

  
1

1 1: 1 1: 1 1: 1, 1: 1 1: 1
1

1 2 3

( ) ( )(1 ({ } , )) [ ( |{ } ,{ } )] ({ } | ) { }

( )(1 )

G

G G G j j j G G G G G
j

G

I a d

I I I

   





     


  

  

θ θ θ θ θ θ θ θ θ θ θ

θ

 

where I1, I2 and I3 can be estimated by: 
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 1

1

1 1: 1 1: 1: 1
1

1 ( ) ( )

1: 1 1: 1: 1
1 11

= [ ( |{ } ,{ } )] ( |{ } , ) ( )

1
[ ( |{ } ,{ } )] ( |{ } , )

G

Gj j j G G G G
j

N G k k
Gj j j G G G G

k j

I T d

T
N

 





  




  
 





 

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

 (3.34) 

where 
( )k
θ  are samples from p( θ |D,M(j)) and 

( )k
jθ  is the j-th group of 

( )k
θ . 

 

 

   2

2 1: 1 1: 1

( )

1: 1 1: 1 1: 1
12

 ({ } , ) ( |{ } , )

1
( |{ } , ) ( |{ } , ) ( |{ } , )

G GG G G G G

N
m

G G G GG G G G G G G G G
m

I a T d

r q d r
N

 

  


 

 





θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ
(3.35) 

where 
( )m
Gθ  are samples from 

1: 1( |{ } , )GG G Gq θ θ θ . 

 

  

3

1

3 1: 1 1: 1, 1: 1 1: 1
1

1 ( )

1: 1 1: 1,
1 13

[ ( |{ } ,{ } )] ({ } | ) { }

1
[ ( |{ } ,{ } )]

G

j j j G G G G G
j

N G i

j j j G G
i j

I d

N

 





    




  
 







 

θ θ θ θ θ θ θ

θ θ θ θ

 (3.36) 

where 
( )

1: 1{ }
i

Gθ  are samples from 
1: 1({ } | )G G θ θ  which can be generated one group after 

another using Gibbs sampling as follows: With 
(0)
θ θ , generate the first group 

( )
1
i

θ  of 

 ( )

1: 1{ }
i

Gθ  from   ( 1)
1 2: 1( |{ } , )

i

G G


θ θ θ  and for m=2,…,G-2, the m-th group 
( )i
mθ  of 

( )

1: 1{ }
i

Gθ  

from   ( ) ( 1)

1: 1 1: 1( |{ } ,{ } , )
i i

m m m G G


  θ θ θ θ  and the (G-1)-th group 
( )

1
i

Gθ  of 
( )

1: 1{ }
i

Gθ  from 

  ( )
1 1: 2( |{ } , )

i
G G G  θ θ θ . As soon as we pick θ for one of the samples from p( θ |D,M(j)), 

 ( )

1: 1{ }
i

Gθ  generated using the above procedures will follow 
1: 1({ } | )G G θ θ . 

Finally, the expression for estimating π(θG) which is the marginal PDF of θG from π(θ) is 

(see in Appendix 3B for derivation): 
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 1

2

( )G

II

II
 θ  (3.37) 

where the numerator and denominator can be estimated by  

 
1

( ) ( )
1 1: 1 1: 1 1: 1

11

1
( |{ } , ) ( ) { } ( |{ } , )

M
k k

G G G G G G G G G G
k

II T d d T
M

  


   θ θ θ θ θ θ θ θ θ
      

 (3.38) 

       2 ( ) ( )

2 1: 1 1: 1: 1: 1
12

1
( |{ } , ) ({ } | ) { } ( |{ } , )

M
i i

G GG G G G G G G G G
i

II r q d r
M 



   θ θ θ θ θ θ θ θ θ  (3.39) 

where ( )kθ


 are samples from p(θ


|D,M(j)) and ( )k
jθ


 is the j-th group of ( )kθ


; 
( )

1: 1{ }
i

Gθ  are 

samples from 
1: 1({ } | )G G θ θ  which have already been generated when estimating I3 in 

(3.36) and 
( )i
Gθ  is generated from   ( )

1: 1( |{ } , )
i

GG G Gq θ θ θ . Thus one can see that 
( )

1: 1{ }
i

Gθ  

and 
( )i
Gθ  jointly follow the probability distribution given below: 

      
1: 1 1: 1 1: 1({ } , | ) ( |{ } , ) ({ } | )G GG G G G G G Gq q   θ θ θ θ θ θ θ θ  (3.40) 

It should be noted that for any number G of groups of parameter vectors, to calculate π(θ), 

only I1, I2, II1 and II2 need to be calculated. The above derivation is quite general without 

requiring reversibility or detailed balance conditions. 

A general case: 

Now we consider an even more general case with any J and G. We show in Appendix 3C 

that the joint transition PDF corresponding to those groups of parameters simulated from 

their conditional distributions (i.e., θ1, θ2,…, θJ) conditioned on the other groups (i.e., θJ+1, 
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θJ+2,…,θG) satisfies the following stationarity condition with the conditional stationary 

PDF : 

      
1: 1: 1: 1 : 1: 1: 1: 1:

1

({ } |{ } ) ( |{ } ,{ } ,{ } ) ({ } |{ } ) { }
J

J J G j j j j J J G J J G J
j

K d    


 θ θ θ θ θ θ θ θ θ  (3.41) 

The above is true for all values of 1:{ } Jθ  and  1:{ }J Gθ  and thus  1:{ }J Gθ  can be simply 

replaced by 1:{ }J Gθ . Using the above, 1: 1:({ } |{ } )J J G θ θ  can be estimated as follows: 

 

  

  

1

1: 1: 1: 1 : 1: 1: 1: 1:
1

1: 1 1: 1: 1: 1: 1:
1
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1: 1 1: 1:
1 11
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1
[ ( |{ } ,{ } ,{ } )]

J

J J G j j j j J J G J J G J
j

J
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K d
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θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ

 (3.42) 

where 
( )

1:{ }
i

Jθ , i=1,2,…,N1 are samples from 
1: 1:({ } |{ } )J J G θ θ  which can be generated 

one group after another using Gibbs sampling as follows: With 
(0)

1: 1:{ } { }J Jθ θ , generate 

the first group 
( )
1
i

θ  of 
( )

1:{ }
i

Jθ  from   ( 1)
1 2: 1:( |{ } ,{ } )

i

J J G


θ θ θ  and for m=2,…,J-1, the m-th 

group 
( )i
mθ  of 

( )

1:{ }
i

Jθ  from   ( ) ( 1)

1: 1 1: 1:( |{ } ,{ } ,{ } )
i i

m m m J J G


  θ θ θ θ  and the J-th group 
( )i
Jθ  of 

 ( )

1:{ }
i

Jθ  from   ( )

1: 1 1:( |{ } ,{ } )
i

J J J G  θ θ θ . As soon as we pick 
(0)

1: 1:{ } { }J Jθ θ , the first J 

groups of one of the samples from p( θ |D,M(j)), 
( )

1:{ }
i

Jθ  generated using the above 

procedures will follow 
1: 1:({ } |{ } )J J G θ θ . 

Since π(θ)= 1: 1: 1:({ } |{ } ) ({ } )J J G J G  θ θ θ , to estimate π(θ) for the calculation of the 

evidence evaluated at θ, it remains to calculate 1:({ } )J G θ  as follows. Using the local 
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stationarity conditions in (3.20) for groups θJ+1, θJ+2,…,θG, it is shown in Appendix 3D that 

the following is true for j=J+1,…,G: 

     

    
1: 1 1: 1: 1 1: 1: 1 1

1:
21: 1 1: 1: 1 1: 1: 1

( |{ } , ,{ } ) ({ } , |{ } ) { }
( |{ } )

( |{ } , ,{ } ) ({ } | ,{ } ) { }

j j jj j j j G j j G j

j j G

j jj j j j G j j j G j

T d d I

IT d d






    


    

 


θ θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ θ θ θ θ
 (3.43) 

where the numerator I1 and denominator I2 can be estimated by: 

  1 ( ) ( )

1 1: 1 1:
11

1
( |{ } , ,{ } )

N
i i

jj j j j G
i

I T
N  



  θ θ θ θ  (3.44) 
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1: 1 1:
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( |{ } , ,{ } )
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i i
jj j j j G
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I r q d d

r
N

    

 










θ θ θ θ θ θ θ θ θ

θ θ θ θ

     

   (3.45) 

where 1:{ } j Gθ  is empty when j≥G.  One can easily verify that 
( )

1: 1{ }
i

jθ


 and 
( )i
jθ


 jointly 

follow the probability distribution: 

 
1: 1 1: 1: 1 1: 1: 1 1:({ } , |{ } ) ( |{ } , ,{ } ) ({ } | ,{ } )j jj j G j j j j G j j j Gjq q      θ θ θ θ θ θ θ θ θ θ

    
 (3.46) 

Thus, 
( )

1: 1{ }
i

jθ


, i=1,2,…,N2, are samples from 
1: 1 1:({ } | ,{ } )j j j G  θ θ θ  which can be 

generated  one group after another using a sampling procedure as follows: With 
(0)
θ θ , 

generate the first group 
( )
1
i

θ


 of 
( )

1: 1{ }
i

jθ


 from 
( 1)

1 2: 1 :( |{ } ,{ } )
i i

j j G


θ θ θ
 

 and for m=2,…,J-1, 

the m-th group 
( )i
mθ


 of 
( )

1: 1{ }
i

jθ


 from 
( ) ( 1)

1: 1 1: 1:( |{ } ,{ } ,{ } )
i i

m m m j j G


  θ θ θ θ
  

 and the J-th 

group 
( )i
Jθ


 of 
( )

1: 1{ }
i

jθ


 from 
( ) ( 1)

1: 1 1: 1:( |{ } ,{ } ,{ } )
i i

J J J j j G


  θ θ θ θ
  

. For j>J+1, the following 

procedures are required: the groups, 
( )

1
i

J θ


, 
( )

2
i

J θ


,…,
( )

1
i
jθ


 of 
( )

1: 1{ }
i

jθ


are generated by the 
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Metropolis-Hastings algorithm with a proposal PDF 
( ) ( 1)

1: 1 : 1:( |{ } ,{ } ,{ } )
i i

m m m m j j Gq


 θ θ θ θ
 

 

for m=J+1,…, j-1, and a stationary PDF equal to the corresponding full conditional PDF 

( ) ( 1)

1: 1 1: 1:( |{ } ,{ } ,{ } )
i i

m m m j j G


  θ θ θ θ
  

.  

Finally, 
( )i
jθ


 is generated from 1: 1 1:( |{ } , ,{ } )jj j j j Gq  θ θ θ θ
 

. As soon as we 

pick
(0)

1: 1:{ } { }j jθ θ


, the first j groups of one of the samples from p( θ |D,M(j)), 
( )

1:{ }
i

jθ


 that 

is generated by using the above procedure will follow 
1: 1 1:({ } | ,{ } )j j j G  θ θ θ . The proof for 

the validity of these procedures is omitted out for brevity. 

The samples 
( )

1:{ }
i

jθ  in (3.44) for i=1,2,…,N1 are from  
1: 1 1:({ } , |{ } )jj j G  θ θ θ which, for 

j≤G-1, have already been generated when estimating the denominator of 1 2:( |{ } )j j G  θ θ  

and for j=G, samples 
( )

1:{ }
i

jθ  in (3.44), for i=1,2,…,N1 are from ( ) θ  and they have also 

already been generated. It should be noted that 2:{ } j Gθ  is empty when j≥G-1. In short, π(θ) 

can be estimated as follows: 

 1: 1: 1: 1: 1: 1:
1

( ) ({ } |{ } ) ({ } ) ({ } |{ } ) ( |{ } )
G

J J G J G J J G j j G
j J

       
 

  θ θ θ θ θ θ θ θ  (3.47) 

where the estimate for 1: 1:({ } |{ } )J J G θ θ  is given by (3.42) and those for 1:( |{ } )j j G θ θ  are 

given by (3.43)-(3.45) for j=J+1,…, G. For the special case when J=0, the above result will 

be similar to that presented in Chib and Jeliazkov (2001) with some reordering of the 

groups of parameters. 

3.2.2 Step 2: Approximation of log evidence 

By Bayes’ Theorem, the log evidence is given by:     
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 ln ( ) ln ( ) ln ( ) ln ( )j j j jp p p p  θ θ θD|M D| ,M |M |D,M  (3.48) 

The above is true for all θ. The last term can be calculated using the method presented in 

Step 1 and the first two terms can be computed directly from the given likelihood and prior 

for the model class. The biggest advantage of the proposed method for evaluating the 

evidence is that it is valid for any MCMC method that is constructed to generate posterior 

samples from the stationary PDF of the corresponding Markov chain. 

By (3.48), it can be seen that the accuracy of the estimate for the evidence depends only on 

the accuracy of the estimate for the posterior PDF p(θ|D,Mj) evaluated at θ since the first 

two terms are known exactly. The method for calculating the statistical accuracy of the 

proposed evidence estimator is presented in the next section. All of the estimates for 

p(θ|D,Mj) given previously are unbiased and consistent and the dependence of their 

accuracy on the number of samples depends on the choice of θ and which K(θ*|θ) is 

adopted. A more accurate estimate for the log evidence can be obtained by averaging the 

estimates from (3.48) using different θ: 

 ( ) ( ) ( )

1

1
ln ( ) [ln ( ) ln ( ) ln ( )]

Q
q q q

j j j j
q

p p p p
Q 

   θ θ θD|M D| ,M |M |D,M  (3.49) 

For instance, the ( )qθ ’s can be chosen to be those samples from p(θ|D,Mj) that give the Q 

largest values of p(θ|D,Mj), or, equivalently, of [ln p(D|θ(k),Mj)+ln p(θ|Mj)].  

If only one θ is used, it could be chosen to be, for example, the mean of the available 

samples from p(θ|D,Mj), or it could be chosen to be the sample from p(θ|D,Mj) which gives 

the maximum value of p(θ|D,Mj), or, equivalently, the one which gives the maximum value 

of [ln p(D|θ(k),Mj)+ln p(θ|Mj)]. Recall that for the analytical approximation of the evidence, 

it is valid to use the transition PDF of any MCMC method; it need not be the same as the 

MCMC method that one uses to generate the posterior samples from p(θ|D,Mj). 
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If of interest, after the evidence has been calculated the expected information gain from the 

data using Mj can be obtained from (1.4) as follows: 

 ( )

1

( | , ) 1
[ln ] ln( ( | , ) ln[ ( | )]

( | )

N
j k

j j
kj

p
E p p

p N 

 
θ

θ
θ

D M
D M D M

M
 (3.50) 

where the ( )kθ  are N posterior samples from p(θ|D,Mj). The information entropy (Cover 

and Thomas 2001) of the posterior PDF p(θ|D,Mj) can also be obtained as follows: 

 

( ) ( )

1

ln ( | , ) ( | , )

[ln ( | , ) ln ( | )] ( | , ) ln ( | )

1
[ln( ( | , ) ln( ( | )] ln[ ( | )]

j j

j j j j

N
k k

j j j
k

p p d

p p p d p

p p p
N 



   

   






θ θ θ

θ θ θ θ

θ θ

D M D M

D M M D M D M

D M M D M

 (3.51) 

where the ( )kθ  are N posterior samples from p(θ|D,Mj). 

3.2.3 Statistical accuracy of the proposed evidence estimators 

The statistical accuracy of the estimators e for the log evidence ln p(D|Mj) that are given in 

(3.48) can be assessed by estimating their coefficient of variation (c.o.v.)  e : 

  Var( )

E[ ]
e

e

e
   (3.52) 

where E[e] = ln p(D|Mj) because the estimator e for the log evidence obtained using the 

proposed method (e.g. (3.11) with (3.14)), along with (3.48), is unbiased; and Var(e) is 

equal to the variance Var( ln ( )jp θ |D,M ) of the natural log of the estimator 

( )jp θ |D,M for p(θ|D,Mj). All the proposed estimators for ln p(θ|D,Mj) presented in the 

previous subsection are of the form: 
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 1 2ln ( ) ln lnjp I I θ   |D,M  (3.53) 

where 1I  and 2I  are always positive and have the following forms: 

 
1

( )
1 1

11

1
( )

N
i

i

I g
N 

  θ  (3.54) 

 
2

( )
2 2

12

1 ˆ( )
N

i

i

I g
N 

  θ  (3.55) 

where ( )kθ  are samples or marginal samples from the posterior PDF and ( )ˆ kθ  are samples 

from some ‘artificial’ proposal PDF. For example, for K(θ|θ*) from hybrid MCMC-Gibbs 

sampling algorithm, 1I  and 2I  are given by (3.27) and (3.28) respectively, ( )
1( )ig θ  is equal 

to ( ) ( )
1 2 2 1 2( | ) ( | , )i iT θ θ θ θ θ  in (3.27) where ( )

2
iθ  are marginal samples of θ2 obtained 

from posterior samples ( ( )
1

iθ , ( )
2

iθ  ) corresponding to p(θ|D,M(j)) where θ = (θ1,θ2); and 

( )
2

ˆ( )ig θ  is equal to ( )
2 1 2

ˆ( | , )ir θ θ θ  in (3.28) where ( )
2

ˆ iθ  are samples from a chosen MCMC 

proposal PDF 2 1 2
ˆ( | , )q θ θ θ  for fixed θ = (θ1,θ2). Since ( )kθ  and ( )ˆ kθ  are independent of 

each other, Var( ln ( )jp θ |D,M ) is equal to the sum of the variances of ln 1I  and ln 2I : 

 1 2Var( ln ( )) Var(ln ) Var(ln )jp I I θ   |D,M  (3.56) 

If K(θ|θ*) from Gibbs sampling algorithm is used, 2I  is always equal to 1 and 2Var(ln )I  is 

always equal to 0.  

To estimate the c.o.v.  e  of the log evidence estimator e in (3.52) from one simulation run, 

E[e] is replaced by the log evidence estimate and Var(e) is replaced by the sum of the 
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estimates of the variances of ln 1I  and ln 2I  according to (3.56). To estimate these latter 

variances, first we estimate the means and variances of 1I  and 2I  as follows: 

 
1 2

( ) ( )
1 1 1 2 2 2

1 11 2

1 1ˆ ˆE[ ] E[ ( )] ( ), E[ ] E[ ( )] ( )
N N

i i

i i

I g g I g g
N N 

    θ θ θ θ   (3.57) 

 
2

( ) 22
2 2 22

12 2

ˆVar( ( )) 1 ˆ ˆVar( ) ( ( ) E[ ( )])
N

i

i

g
I g g

N N 

  θ
θ θ  (3.58) 

 1
1
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Var( ) (1 )I

N

    (3.59) 
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     (3.60) 
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θ θ θ θ

θ θ θ θ
 (3.61) 

From (3.54) and (3.55), it can be seen that, by the Central Limit Theorem, 1I  and 2I  

approach Gaussian PDFs as the sample sizes N1 and N2 become sufficiently large. Thus, 

using the above estimates of the means and variances of 1I  and 2I , one way to evaluate the 

means and variances of ln kI , k=1,2, is to simulate samples ( )i
kI  (using MCS) from the PDF 

which can be approximated by a Gaussian PDF with mean E[ ]kI  and variance Var[ ]kI  

and the estimates for the mean and variance of ln kI  are then equal to the sample mean and 

variance of ln ( )i
kI . An alternative way to estimate the means and variances of ln 1I  and 

ln 2I  is by Gaussian quadrature integration with 3-point Hermite-Gauss rule (since 1I  and 

2I  are approximately Gaussian): 



 

 92

 
1 2 1

E[ln ] ln(E[ ] 3 Var[ ]) ln(E[ ]) ln(E[ ] 3 Var[ ])
6 3 6k k k k k kI I I I I I           (3.62)

2 2

2 2

1
E[(ln ) ] (ln(E[ ] 3 Var[ ]))

6
2 1

(ln(E[ ])) (ln(E[ ] 3 Var[ ]))
3 6

k k k

k k k

I I I

I I I

  

 

  

  
 (3.63) 

 2 2Var( ln )=E[(ln ) ] (E[ln ])k k kI I I    (3.64) 

for k=1, 2 and E[ ] 3 Var[ ]k kI I  >0. Obviously, finding the variances of ln 1I  and ln 2I  

using (3.62)-(3.64) requires fewer computations than MCS. It is found that for the 

illustrative examples, this method gives similar results for the estimates of the variances of 

ln 1I  and ln 2I  as those obtained by MCS with a large number of samples. 

The statistical accuracy of the estimator f = exp(e) for the evidence p(D|Mj) can be assessed 

by evaluating the corresponding c.o.v.  f  which can be estimated using (3.52) with e 

replaced by f where the estimate for E[f] is equal to the estimate for the evidence p(D|Mj) 

obtained using the proposed method and (3.48), and Var(f) can be estimated using (3.62)-

(3.64) by replacing kI  by e, ln by exp and ln kI  by f.  

In order to avoid numerical overflow when calculating a certain quantity, one should first 

calculate the logarithm of such quantity and exponentiate at the end. For example, when 

calculating  f , a numerical overflow may occur due to a possible numerical overflow 

when calculating E[f] and Var(f). Thus, one should calculate ln  f , which is equal to 

(lnVar(f))/2-lnE[f] where lnE[f] is equal to ln p(D|Mj). 
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Figure 3.1: Roof acceleration y and base acceleration ab from a linear shear building 

with nonclassical damping 
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Figure 3.2: Magnitude of the FFT estimated from the measured roof acceleration 

data (solid curve) and mean of magnitude of the FFT from the roof acceleration 

estimated using posterior samples from the most probable model class M5 (dashed 

curve) 
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3.3 Illustrative examples 

3.3.1 Example 1: Modal identification for ten-story building 

In this example, the linear seismic response of a 10-story shear building with nonclassical 

damping is considered. The simulated dynamic data D consist of 10s (with a sample 

interval Δt of 0.01s) of the acceleration of the base ab, and at the roof contaminated by 

Gaussian white noise of 10% rms noise-to-signal ratio (Figure 3.1). Here we consider a set 

M={Mj: j=1,2,…,6} consisting of 6 candidate model classes where Mj includes the linear 

modal model with classical damping consisting of j modes and the corresponding uncertain 

parameters are the modal frequencies f1,…, fj, damping ratios ξ1,…, ξj, modal participation 

factors ρ1,…, ρj and the prediction-error variance σ2. Thus, for Mj, the uncertain parameter 

vector θ consists of 3j+1 parameters (e.g. M5
 has 16 parameters). The prior PDF for θ is 

chosen as the product of independent distributions with fj, ξj and σ each following a 

lognormal distribution with median equal to the nominal values (2j-1) Hz, 0.05, and 

0.1m/s2, respectively, and with the corresponding c.o.v. of (20+10j)%, (20+10j)% and 55%, 

respectively; ρj is uniformly distributed over the range of [-3 3]. Let NT =1000 be the 

number of sampling intervals of the measured time history data. Let ( ; )jq n θ  denote the 

roof absolute acceleration at the n-th sampled time instant predicted by the proposed linear 

modal model and let y(n) denote the corresponding measured output. The combined 

prediction and measurement errors ( ) ( ) ( ; )jn y n q n   θ , n=1,2,…, NT, are modeled as 

independently and identically distributed Gaussian variables with mean zero and some 

unknown prediction error variance σ2 (this is the maximum entropy PDF, that is, it has the 

largest amount of uncertainty among all PDFs of unbounded variables with the same means 

and variances). Thus, the likelihood function p(D|θ,Mj) is given by:  

 2
/ 22 2

1

1 1
( | , ) exp( [ ( ) ( ; )] )

(2 ) 2

T

T

N

j jN
n

p y n q n
  

  θ θD M  (3.65) 
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where ( ; )jq n θ  is given by the sum of the base acceleration ab(n) and modal accelerations 

at time tn= nΔt: 

 
1

( ; ) ( ) ( ; )
j

j b m
m

q n a n n


 θ θ  (3.66) 

where the m-th mode acceleration ( ; )m n θ  satisfies the SDOF (single degree of freedom) 

linear oscillator equation: 

 2( ) 2 ( ) ( ) ( )m m m m m m m bt t t a t            (3.67) 

Note that none of the candidate model classes correspond to the one used to generate the 

data. Our goal is to find the probability of each candidate model class given the dynamic 

data D. A new variant of HMCM (Cheung and Beck 2007c, 2008a) and Chapter 2 is 

applied to simulate 2500 samples from p(θ|D,Mj). The competing candidate models are 

taken to be equally plausible before getting any data from the system, i.e., P(Mj|M)=1/6. 

The evidence and the updated model class probability P(Mj|D,M) are calculated using the 

proposed method. For convenience, instead of using the transition PDF corresponding to 

HMCM, which is rather complex (Cheung and Beck 2008a and Chapter 2), the transition 

PDF corresponding to the Metropolis-Hastings algorithm is adopted to calculate the 

evidence where the ‘proposal’ PDF q( *θ |θ) is chosen to be a multivariate Gaussian with 

mean θ and a covariance matrix αC where α is some positive scaling factor and C is equal 

to the sample covariance matrix estimated using the samples from p(θ|D,Mj). Here, we have 

*( | )q θ θ = *( | )q θ θ . Using Equations (3.11)-(3.14), the value of the posterior PDF at θ can 

be estimated using samples θ(k), k=1,2,…, N, from the posterior p(θ|D,Mj) and samples 

*( )kθ , k=1,2,…, N2, from q( *θ |θ) for some chosen θ: 
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where  

 ( ) ( )
( ) ( )

( ) ( | )
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j jk k

k k
j j

p p
T q

p p


θ θ
θ θ θ θ

θ θ

D| ,M M

D| ,M M
 (3.69) 
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θ θ
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θ θ

D| ,M M

D| ,M M
 (3.70) 

It should be noted that all ( )( | )kT θ θ  can be calculated easily since the values of 

( ) ( )( ) ( | )k k
j jp pθ θD| ,M M  for all k have already been calculated during the simulation of 

samples from p(θ|D,Mj) and ( )( | )kq θ θ  can also be calculated very efficiently. Also, when 

evaluating ratios such as in (3.69) and (3.70), one should first calculate the logarithm of 

such ratios and exponentiate at the end in order to avoid numerical overflow. 

Denote the numerator of (3.68) by I(θ). Given a particular choice of θ, the variance of the 

evidence depends only on the variance of the estimate ˆ ( | , )jp θ D M  of p(θ|D,Mj) which 

further depends on the variance of I(θ) and the variance of the estimate ˆ( )a θ  for ( )a θ . The 

scaling factor α in the proposal PDF q can always be chosen to be small enough such that 

ˆ( )a θ  is closer to 1 and has very small variance; however, the trade-off is that I(θ) will have 

a larger variance when α is smaller. To decrease the variance of I(θ), one should choose 

larger α. Thus, one can expect that there exists an optimal choice for α that leads to the 

smallest variance of the estimate for p(θ|D,Mj). An iterative process is used to select α so 

that the c.o.v. of the estimator of the log evidence given in the previous subsection is 

approximately minimized. A natural starting choice is α=1. During the trial and error 

process to pick a good α, only a rough estimate for the c.o.v. is needed. Thus, Q=1 and only 
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small N2 (e.g, N2=20) is used and θ is chosen to be the sample from p(θ|D,Mj) which 

maximizes p(θ|D,Mj). It should be noted that with this choice of θ, from (3.69), 

( ) ( )( | ) ( | )k kT qθ θ θ θ  is always true. For this example, good choices for α are α=1 for 

j=1,2,3 and α=2 for j=4,5,6. 

The estimate for the log evidence lnp(D|Mj), the posterior mean of the log likelihood 

function [ln( ( | , )]jE p θD M  (a data-fit measure), the expected information gain EIG (a 

model class complexity measure given in (3.50)) and the posterior probability P(Mj|D,M) of 

the model classes obtained using the proposed methods with N=2500 in Equation (3.68) 

and N2=2000 in Equation (3.70) are shown in Table 3.1. Here, equation (3.49) is used with 

Q=1 and θ=θmax, the posterior sample that gives the maximum value of p(θ|D,Mj). The 

c.o.v. of the evidence estimate is given by the number in the parenthesis next to the log 

evidence estimate. It can be seen that the c.o.v. is quite small. It can also be seen that a 

model class consisting of a larger number of modes has a larger posterior mean of the log 

likelihood function which shows that it gives a better fit to the data on average, as expected. 

However, it also has a larger expected information gain and thus a model class consisting 

of a larger number of modes is not necessarily the more plausible one. Bayesian model 

class selection shows that model class M5 is the most probable model class based on the 

data, i.e., the model class consisting of 5 classical modes gives the best balance between the 

data fit and the information gain from the data based on the identity in (1.4).  

Table 3.2 shows the sample posterior means for the natural frequency, damping ratio and 

roof participation factor for each mode in M5. The numbers in bold give the values for the 

exact model. Note that there are no exact counterparts for the classically-damped model’s 

participation factors ρi in Table 3.2 since the actual system is non-classically damped. It can 

be seen that the modal frequencies and damping ratios in M5, on average, are very close to 

those corresponding to the exact model, except for the damping ratio of the highest mode 

which makes a small contribution to the roof response. Also, the sum of the posterior mean 
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participation factors in M5
 has mean 1.002 (very close to the theoretical value of unity for 

the sum over all 10 modes for the classically-damped linear dynamic model) with c.o.v. 

0.268%.  

Figure 3.2 shows the magnitude of the FFT of the roof acceleration data (solid curve) and 

the mean of magnitude of the FFT of the roof acceleration estimated using posterior 

samples from M5 (dashed curve). It can be seen that M5 with the first 5 modes up to about 6 

Hz gives a very good match of the magnitude of the FFT over a dynamic range of 40 db. 

Table 3.1 Results obtained for Example 1 using the proposed method with θmax and 

Q=1 in Equation (3.49) 

 M1 M2 M3 M4 M5 M6 
[ln( ( | , )]jE p θD M  35.22 507.19 809.52 1337.32 1674.46 1707.68 

EIG 39.67  41.61  59.70   74.86   98.47  147.58 

ln p(D|Mj) -4.45 
(6.8%) 

465.58 
(8.4%) 

749.82 
(13.1%) 

1262.46 
(18.3%) 

1575.99 
(18.7%) 

1560.10 
(17.5%) 

P(Mj|D,M) 0 0 0 0 0.9999997 3X10-7 

Table 3.2 Posterior means for the natural frequencies, modal damping ratios and roof 

participation factors for the most probable model class M5 in Example 1 (exact values 

in bold) 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
fi (Hz) 0.74 

0.74 
2.15 
2.16 

3.55 
3.56 

4.85 
4.89 

5.93 
6.05 

ξi 0.92% 
0.92% 

2.72% 
2.71% 

4.30% 
4.45% 

5.63% 
6.03% 

4.84% 
7.65% 

ρi 1.273 -0.415 0.226 -0.139 0.057 

 

3.3.2 Example 2: Nonlinear response of four-story building 

In this example, the nonlinear seismic response of a four-story building is considered. The 

simulated noisy accelerometer data D consist of 10s (with a sample interval Δt of 0.01s) of 

the total acceleration at the base and at all the floors (Figure 3.3). The simulated Gaussian 

white noise has a noise-to-signal ratio of 10% rms of the roof acceleration. The data D are 
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generated from a shear building model with Rayleigh damping and hysteretic bilinear 

interstory restoring forces. Here we consider a set M={Mj: j=1,2,3} consisting of 3 

candidate model classes which involve an inelastic shear building model as follows: 

Model class M1: A inelastic shear building model with viscous damping and bilinear 

hysteretic bilinear restoring force model (Figure 3.4). The lumped masses mi, i=1, 2, 3, 4, 

on each floor are assumed fixed at 2×104kg for all floors. The vector θ to be updated by the 

dynamic data D consists of D=17 parameters with the first component θ1 equal to the 

prediction error variance σ2 and for s=2,…,D, θs = log(φs-1/ls-1) where φs-1’s are comprised 

of the following 16 structural parameters: for i=1,2,3,4, the initial stiffness ki, post-yield 

stiffness reduction factor ri, yield displacement ui and the damping coefficient ci of the 

viscous damper of the i-th floor and the ls-1’s are the corresponding nominal values given 

later. 

Let 2( ; ,..., )i Dq n    denote the output at time tn= nΔt (Δt=0.01s) at the i-th observed degree 

of freedom predicted by the proposed structural model and ( )iy n denote the corresponding 

measured output. The combined prediction and measurement errors 

( ) ( ) ( ; )i i in y n q n   θ for n=1,…, NT =1000 and i=1,…,No = 4 are modeled as 

independently and identically distributed Gaussian variables with mean zero and some 

unknown prediction-error variance σ2. Thus the likelihood function p(D|θ,M1) is given by:  

 2
1 2/ 22 2

1 1

1 1
( | , ) exp( [ ( ) ( ; ,..., )] )

(2 ) 2
D M

 
 

  

  
o T

o T

N N

i i DN N
i n

p y n q nθ  (3.71) 



 

 100

0 2 4 6 8 10
-10

0
10

0 2 4 6 8 10
-5
0
5

0 2 4 6 8 10
-5

0
5

0 2 4 6 8 10
-5
0
5

0 2 4 6 8 10
-10

0
10

 

Figure 3.3: Floor accelerations and base acceleration from a nonlinear four-story 

building response (yi(t): total acceleration at the i-th floor; ab(t): total acceleration at 

the base) 

 

Figure 3.4: The hysteretic restoring force model  
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For M1, the prior PDF for θ is chosen as the product of independent distributions: the 

structural parameters φs-1 including ki, ri, ui, ci ; follow a lognormal distribution with median 

equal to the corresponding nominal values ls-1 and the corresponding log standard 

deviations equal to 0.6 and thus the θs, for s=2,…,D, follow a Gaussian distribution with 

zero mean and standard deviation of 0.6; θ1=σ
2 follows an inverse gamma distribution with 

mean μ equal to its nominal value and c.o.v. δ =1.0, i.e., p(σ2) (σ2)−α−1exp(−β/σ2) where 

α=δ−2+2, β=μ(α−1). The nominal values for the structural parameters k1, k2, k3, k4 are 2.2, 

2.0, 1.7, 1.45 (107Nm-1 ) respectively; the nominal values for ri are 0.1 for all i; the nominal 

values for ui are 8mm for i=1,2 and 7mm for i=3,4; the nominal values for c1, c2, c3, c4 are 

6.93, 6.45, 5.73, 5.13 (104Nm-1s) respectively. The nominal modal damping ratios are 2% 

and 5% for the first and second modes respectively. The nominal value for σ2 is the square 

of 10% of the maximum of the r.m.s of the total accelerations measured at each of the 4 

floors. ( ; )iq n θ  is the i-th component at time tn of q(tn) which satisfies the following 

equation of motion: 

 

1

( ) ( ) ( ( ), ( )) ( )

1
s gt t t t a t

 
      
  

s sM q C q F Q Q M    (3.72) 

where the mass matrix Ms, is a diagonal matrix diag(m1, m2, m3, m4); and the damping 

matrix Cs is given as follows: 

 

1 2 2

2 2 3 3

3 3 4 4

4 4

0 0

0

0

0 0

c c c

c c c c

c c c c

c c

  
    
   
  

sC  (3.73) 

The hysteretic restoring force ( ( ), ( ))t tF Q Q , which depends on the whole time history 

[Q(t), ( )tQ ] of responses from time=0 up to time τ, i.e., q(τ) and ( )q  for all τ[0,t], is 

modeled by the bilinear hysteretic model mentioned above. 
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Model class M2: Same as M1
 except that the damping matrix is replaced by a Rayleigh 

damping matrix Cs, i.e. Cs=ρMs+γKs where Ms and Ks are the mass and stiffness matrix of 

the shear building model in M1, respectively, and ρ, γ are some uncertain positive scalars 

(such that a higher mode has the same or larger modal damping ratio than a lower mode).  

 

1 2 2

2 2 3 3

3 3 4 4

4 4

0 0

0

0

0 0

k k k

k k k k

k k k k

k k

  
    
   
  

sK  (3.74) 

This model class contains the system used to generate the simulated noisy data D. For this 

case, the uncertain parameter vector θ to be updated by the dynamic data D consists of 

D=15 parameters. The prior PDF for θ is modeled with the same independent distributions 

as M1
 except the prior for the ci’s is replaced by one for ρ, γ which are independent 

lognormal distributions with medians equal to the corresponding nominal values and the 

corresponding log standard deviations equal to 0.6. The nominal values for ρ, γ are 0.7959 

and 2.50×10-3 so that the corresponding nominal modal damping ratios for the first 2 

modes are 5%. 

Model class M3
 : Same as M2

 except that the hysteretic force model is an elastic-perfectly 

plastic model, i.e., ri =0, i=1,2,3,4. The number of uncertain parameters to be updated by 

the dynamic data is 11. 

The three competing candidate models are taken as equally plausible a priori, i.e., 

P(Mj|M)= 1/3, j=1,2,3. At the end of simulation, the N posterior samples for the structural 

parameters φs-1
(k), s=2,…,D, k=1,2,…,N, can be obtained by φs-1

(k)=ls-1exp(θs
(k)) where 

θ(k)=[θ1
(k) θ2

(k)…θD
(k)]T, k=1,2,…,N, are samples from p(θ|D,Mj). All the structural 

parameters φs-1 are constrained to be positive. This is the reason for the transformation 

between θs’s and φs-1’s. If samples for φs-1’s are directly generated by MCMC methods such 

as the Metropolis-Hastings algorithm, or advanced MCMC methods such as those 
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presented in Beck and Au (2002), Ching and Chen (2007), Cheung and Beck (2008a) and 

Chapter 2, then they are not constrained to be positive. Therefore, performing the 

simulation in the [σ2 φ1…φD-1]
T space for the posterior samples can result in increased 

rejection of samples and thus increased computational effort. Performing the simulation in 

the transformed θ space, as done here, guarantees samples for the φs-1’s are always positive. 

The way the samples for σ2 are simulated also guarantees that they are always positive. 

Here, a hybrid approach making use of the TMCMC multi-level method (Ching and Chen 

2007) and Gibbs sampling is adopted to generate 7000 samples from p(θ|D,Mj). For 

TMCMC, 1000 samples are generated for each of the intermediate levels but 7000 samples 

are generated in the last level corresponding to the posterior (the first 2000 samples are 

discarded to allow for “burn-in” to the stationary state). During the l-th tempering level 

with tempering parameter τl and the target PDF proportional to ( | , ) ( | )l
j jp p θ θD M M , a 

new sample θ′ is generated as follows. First, a sample θ(k) is picked using re-sampling as in 

the TMCMC method among those samples that have been generated. Second, we perform 

Gibbs sampling by fixing the value of θ1
 at θ1

(k) , the first component of θ(k) (the prediction 

error variance), while the remaining D−1 components of θ′ are generated using the 

Metropolis-Hastings algorithm applied to the PDF of these components conditional on 

θ1=θ1
(k), as in the TMCMC method, and finally the first component θ1′ of θ′ is generated 

from its PDF conditional on the previously-generated D−1 components, which is an 

inverse gamma distribution, proportional to (θ1′)
−α′−1exp(−β′/θ1′) where α′=α+τl NoNT/2 and 

β′ is given by:  

β′ =
4 1000

2
2

1 1

[ ( ) ( ; ,..., )]
2

o TN N
l

i i D
i n

y n q n
  

 

 

    (3.75) 

The HMCM method in Cheung and Beck (2008a) and Chapter 2 is applied in the last level 

of the TMCMC method in place of the Metropolis Hastings algorithm for more effective 

sampling of the posterior PDF. It should be noted that to obtain a more accurate estimate 
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for the evidence using the proposed method, one just needs to simulate more samples from 

the posterior PDF in the last level of TMCMC while if the TMCMC method is used 

exclusively to calculate the evidence, one will need to perform an additional simulation run 

with increased samples at all levels of the TMCMC method. 

For convenience and illustration of the proposed method, in this example, instead of using 

the transition PDF corresponding to the one that we use to generate the posterior samples, 

the transition PDF of the type presented in (3.19)-(3.22) is used to approximate the 

evidence where θ is divided into 2 groups: θ1=θ1 and θ2=[θ2,…, θD]. Thus, the estimate for 

p(θ|D,Mj) with θ chosen to be the sample from p(θ|D,M(j)) that gives the maximum value of 

p(θ|D,Mj), i.e., the one which gives the maximum value of ( | , ) ( | )j jp pθ θD M M , is given 

by (3.21)-(3.28): 

 1

2 1 2

( | ) ( ) =
( , ) j

I
p

a
θ θ

θ θ
D,M  (3.76) 

where the numerator and denominator can be estimated by: 

     1
( ) ( )

2 2 2 21 1 2 1 1 2 2 1 2
11

1
( | ) ( | , ) ( ) ( | ) ( | , )

N
i i

i

I T d T
N

  


   θ θ θ θ θ θ θ θ θ θ θ θ  (3.77) 

 
2

**( )
2 1 2 2 1 2

12

1
( , )  ( | , )

N
i

i

a r
N 

 θ θ θ θ θ  (3.78) 

 ( ) ( ) ( )
2 2 1 2 2 1 2 2 1 2( | , ) ( | , ) ( | , )i i iT r qθ θ θ θ θ θ θ θ θ  (3.79) 

 
( )

1 2 1 2 2 1 2( )
2 1 2 ( ) ( ) ( )

1 2 1 2 2 1 2

( , ) ( , | ) ( | , )
( | , ) min{1, }

( , ) ( , | ) ( | , )

i
j ji

i i i
j j

p p q
r

p p q


θ θ θ θ θ θ θ
θ θ θ

θ θ θ θ θ θ θ

D| ,M M

D| ,M M
 (3.80) 
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**( ) **( ) **( )

1 2 1 2 2 1 2**( )
2 1 2 **( )

1 2 1 2 2 1 2

( , ) ( , | ) ( | , )
( | , ) min{1, }

( , ) ( , | ) ( | , )

i i i
j ji

i
j j

p p q
r

p p q


θ θ θ θ θ θ θ
θ θ θ

θ θ θ θ θ θ θ

D| ,M M

D| ,M M
 (3.81) 

where ( )
2

iθ  are marginal samples of θ2 obtained from posterior samples ( ( )
1

iθ , ( )
2

iθ  ) 

corresponding to p(θ|D,Mj) where θ = (θ1,θ2), and **( )
2

iθ  are samples from **
2 1 2( | , )q θ θ θ  for 

fixed θ = (θ1,θ2). Also, 1 2( | ) θ θ  is the value of the inverse gamma 

PDF (θ1)
−α″−1exp(−β″/θ1) evaluated at θ1 where α″=α+NoNT/2 and β″ is given by: 

β″ = 2
2

1 1

1
[ ( ) ( ; ,..., )]

2

o TN N

i i D
i n

y n q n  
 

     (3.82) 

and the artificial ‘proposal’ PDF q( **
2θ |θ1, θ2) is chosen to be a global/independent proposal 

PDF given by a weighted sum of PDFs as follows: 

q( **
2θ |θ1, θ2)= q( **

2θ )
1

11

1
N



 
N

sN
( **

2θ
( )
2; , )sθ  (3.83) 

where N( **
2θ

( )
2; , )sθ  is a multivariate Gaussian PDF with mean ( )

2
sθ  and covariance matrix 

 ; ( )
2
sθ , s =1,2,…,N1= 5000, are the marginal samples of *

2θ  obtained from posterior 

samples ( ( )
1

sθ , ( )
2
sθ ) corresponding to p( *θ |D,Mj)  where *θ = ( *

1θ , *
2θ ), and   is equal to 

some positive number κ times the sample covariance matrix of the samples ( )
2
sθ ,  

s =1,2,…,N1= 5000. For all of the three model classes, κ is 0.22 (this is a reasonable choice 

which can be obtained readily when we simulate the posterior samples using TMCMC). It 

should be noted that all required quantities for I1 in (3.77) can be calculated easily since the 

values of ( )( )s
jp θD| ,M and ( )( | )s

jp θ M  for all s have already been calculated during the 

simulation of samples from p(θ|D,Mj). To calculate the quantity in (3.28), samples **( )
2

sθ  are 
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generated from **
2 1 2( | , )q θ θ θ  as follows: for s=1,2,…,5000, generate **( )

2
sθ  from 

N( **
2θ

( )
2; , )sθ . 

The estimate for the log evidence lnp(D|Mj), the posterior mean of the log likelihood 

function [ln( ( | , )]jE p θD M (the data-fit measure), the expected information gain EIG (the 

complexity measure) and the posterior probability P(Mj|D,M) of the model classes obtained 

using the proposed method are shown in Table 3.3 (rows 1-3 and 5) based on equation 

(3.49) with Q=1 and θ=θmax, the sample from p(θ|D,Mj) which gives the maximum value of 

p(θ|D,Mj). The c.o.v. of the evidence estimate is given by the number in the parenthesis 

next to the log evidence estimate. It can be seen that the c.o.v. is very small. It is interesting 

to note that the expected information gain from the data by model class M2
 is less than that 

by the model class M1 with more parameters and more than that by the model class M3
 with 

fewer parameters, as might be expected. Model class M2 has the largest posterior mean of 

the log likelihood function which shows that it gives the best fit to the data. Bayesian 

model class selection shows that model class M2 also gives the best balance between the 

data fit and the information gain from the data and is thus the most probable model class, 

consistent with the fact that it is the model class containing the system from which the 

noisy dynamic data D is generated. The estimate for the log evidence lnp(D|Mj) obtained 

using the TMCMC method is given in row 4 of Table 3.3 for comparison. Based on the 

results from one simulation run, it can be seen that lnp(D|Mj) obtained by the TMCMC 

method is different from that obtained by the proposed method (the more accurate one) by 

53.7%, 0.7% and 55.5% respectively. 
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Table 3.3 Results obtained for Example 2 using the proposed method with θmax and 

Q=1 in Equation (3.49) 

 M1 M2 M3 
[ln( ( | , )]jE p θD M  249.2 682.1 368.1 

EIG 122.5 77.6 65.0 
ln p(D|Mj) 

(by the proposed method) 
126.7(4.7%) 604.5(8.6%) 303.1(8.8%) 

ln p(D|Mj) (by TMCMC) 194.8 608.7 195.6 
P(Mj|D,M) 0.0 1.0 0.0 

 

Appendix 3A 

Here we show that the transition PDF in (3.19) and (3.20) satisfies (3.9). If the Markov 

chain is in a state with PDF π(θ), the PDF for the state at the next step is given by: 
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* * * * *
1: 1 1: 1 3: 2 1 3: 3:
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Repeat steps from (A3.1) to (A3.2) to reduce the integration dimension by 1 group each 

time. 

* * * * * *
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Reversing the roles of θ and θ*, one sees that the transition PDF in (3.19) and (3.20) 

satisfies (3.9). 

Appendix 3B 
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Appendix 3C 

Here we prove that θ1, θ2,…, θJ conditioned on the other components (i.e., θJ+1, θJ+2,…,θG) 

satisfy the stationarity condition in (3.41). 
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Observe the patterns and keep repeating each time reducing the dimension of 

integration by 1 group: 
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CHAPTER  4   

Comparison of different model classes for Bayesian 

updating and robust predictions using stochastic state-

space system models 

Past applications of model updating of dynamic systems focus on model classes which 

consider an uncertain prediction error as the difference between the real system output and 

the model output and model it probabilistically using Jaynes’ Principle of Maximum 

Information Entropy. In this chapter, in addition to these model classes, we also consider an 

extension of such model classes to allow more flexibility in treating modeling uncertainties 

when updating state space models and making robust predictions; this is done by 

introducing prediction errors in the state vector equation in addition to those in the system 

output vector equation. The extended model classes allow for interactions between the 

model parameters and the prediction errors in both the state vector equation and the system 

output equation to give more robust predictions at unobserved DOFs. In this chapter, we 

investigate the difference of these model classes and their effect on the robust predictions. 

Tools developed in the previous chapters are used here to solve the computational problems. 

Here, only the methodology corresponding to linear dynamic systems with input 

measurements is presented. The material in this chapter is also presented in Cheung and 

Beck (2009b). The methodology corresponding to nonlinear dynamic systems is presented 

in Cheung and Beck (2009a). 
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4.1 The proposed method 

4.1.1 General formulation for model classes 

Consider a deterministic state-space model of a linear dynamic system: 

0

( ) ( ; ) ( ) ( ; ) ( )

( ) ( ; ) ( ) ( ; ) ( )

(0)

c ct t t t t

t t t t t

 

 



s s

s s

x A θ x B θ u

y C θ x D θ u

x x


 (4.1) 

For a given system model, Ac, Bc, C and D are specified functions of parameters θs and t. 

The corresponding discrete-time state-space model with a time interval Δt is: 
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 (4.2) 

where xn=x(nΔt) Ns , un=u(nΔt)) IN and yn=y(nΔt) ON denote the model state, the 

observed system input and the model output at time nΔt respectively. If Ac and Bc are time-

varying, by the coefficient matrices An(θs) and Bn(θs) can be obtained using numerical 

integration. If Ac and Bc are time-invariant, the coefficient matrices An(θs)= A(θs) and 

Bn(θs)= B(θs) are related to Ac(θs) and Bc(θs) by: 

1

( ) exp( ( ))

( ) ( )( ( )) ( )

c

c c

t


 

 
s s

s s s s

A θ A θ

B θ A θ I A θ B θ
 (4.3) 

Thus, An(θs) and Bn(θs) are nonlinear in the parameters θs even if Ac(t;θs) and Bc(t;θs) can 

be expressed as a linear function of θs. 

As in past applications of the stochastic system-based framework, a model class can be 

constructed from the deterministic state-space model by stochastic embedding. In this 
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process, the parameters θs for the coefficient matrices in the discrete-time state-space 

model are treated as uncertain and an uncertain prediction-error term vn is added on the 

right hand side of the output vector equation in (4.2) so that the model equations become: 

1 1 1 1( ) ( ) ,   

( ) ( ) ,   {0, }

n n n n n

n n n n n n

n

n


   



  

   
s s
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x A θ x B θ u

y C θ x D θ u v




 (4.4) 

where the vn at different times are modeled as independent Gaussian PDFs based on the 

Principle of Maximum Information Entropy (Jaynes 2003). 

These model classes can be extended by also adding an uncertain prediction-error term wn 

on the right hand side of the state vector equation as follows: 

1 1 1 1( ) ( ) ,   

( ) ( ) ,   {0, }
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 (4.5) 

Here the probability models for wn and vn are taken as independent Gaussian PDFs, again 

based on the Principle of Maximum Information Entropy: wn ~N(0, Qn(θw)) and vn ~N(0, 

Rn(θv)) where wn and vn at all times are independently distributed. Qn and Rn are specified 

functions of the uncertain parameters θw and θv, respectively. In the case of uncertain initial 

conditions, x0 can be treated as uncertain parameters. 

The specification of these probability models, along with the two fundamental system 

probabilistic models, p(xn|xn-1,un-1,θs,θw) and p(yn|xn,un,θs,θv) implied by (4.5), completely 

defines the stochastic model of the system dynamics. These, along with the specification of 

the prior distribution of the uncertain parameters, define a model class M. 

Let Un=[u0
T u1

T…un
T]T, Yn=[y0

T y1
T…yn

T]T, θ=[θs
T θw

T
 θv

T]T. In the case of uncertain initial 

conditions, x0 is included as part of θ. Given θ and the measured system input Un, the 

predictive PDF for the system output YN can be written as follows: 
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0 1
1

( | ) ( | ) ( | , )
N

N n n
n

p p p 


 Y θ y θ y Y θ  (4.6) 

Here, for convenience, the conditioning of the PDF on UN and the model class M is left 

implicit, although later when there is conditioning on different model classes, it will be 

made explicit. The conditional PDF p(yn|Yn-1,θ) in (4.6) is a Gaussian PDF with mean 

E(yn|Yn-1,θ)= yn|n-1 and covariance matrix Cov(yn|Yn-1,θ)=Sn|n-1 which are given later, while 

p(y0|θ) is a Gaussian PDF with mean E(y0|θ)= y0|-1 and covariance matrix Cov(y0|θ)= S0|-1 

where: 

0| 1 0 0 0 0( ) ( )s s  y C θ x D θ u  (4.7) 

0| 1 0 ( )v S R θ  (4.8) 

Thus, p(y0|θ) and p(yn|Yn-1,θ) are given by: 
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and p(YN |θ) in (4.6) is given by: 
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For a given θ, yn|n-1 and Sn|n-1 can be calculated by (4.14) and (4.15) and the following 

Kalman filter equations which come from Bayesian sequential state updating with x0|0=x0 

and P0|0=O: 

| 1 1 1| 1 1 1( ) ( )n n n s n n n s n      x A θ x B θ u  (4.12) 

| 1 1 1| 1 1( ) ( ) ( )T
n n n s n n n s n w     P A θ P A θ Q θ  (4.13) 

| 1 | 1( ) ( )n n n s n n n s n  y C θ x D θ u  (4.14) 

| 1 | 1( ) ( ) ( )T
n n n s n n n s n v  S C θ P C θ R θ  (4.15) 

1
| | 1 | 1 | 1 | 1( ) ( )T

n n n n n n n s n n n n n


     x x P C θ S y y  (4.16) 

1
| | 1 | 1 | 1 | 1( ) ( )T

n n n n n n n s n n n s n n


    P P P C θ S C θ P  (4.17) 

The posterior PDF of θ is then given by (1.1) where D = ˆ
NY , the measurements for the 

system output YN. The model classes resulting from (4.4) can be viewed as a special case 

of the extended ones resulting from (4.5) where Qn(θw)= O and thus:  

yn|n-1=Cn(θs)xn+Dn (θs)un, Sn|n-1= Rn(θv) where in (4.12), xn|n-1 = xn and xn-1|n-1 = xn-1 and no 

Kalman filtering needs to be performed. 

From (4.5), it can be shown that: 

1 12
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For the case with time-invariant coefficient matrices, we have: 

1
1

0
0 1

( )[ ( ) ( ) ( ) ] ( ) ( ) ( )
n n

n n i n j
n i n j n

i j


  

 

     s s s s s s sy C θ A θ x A θ B θ u D θ u C θ A θ w v  (4.19) 

Notice that both model classes resulting from (4.4)and (4.5) have the same mean predicted 

output, given θ. For the extended model class, the prediction errors for the system output 

are accounted for by both the prediction errors in the state vector equation and output 

vector equation (the last two terms in (4.18) for the case with time-varying coefficient 

matrices or (4.19) for the case with time-invariant coefficient matrices). The measurements 

of the system output also provide information about the prediction errors in the state vector 

equation, thereby allowing more flexibility in treating modeling uncertainties in the 

response predictions; this is especially useful for predictions at unobserved DOFs of 

quantities physically different from the measured quantities. 

Given θ, the covariance of the prediction error for the system output at time nΔt for the 

original model class derived from (4.4) is Rn(θv). For the extended model class derived 

from (4.5), the covariance of the prediction error for the system output at time nΔt (denoted 

by Σ(n)) is given by (Σ(0)= R0(θv)): 

1

1 1 1

( ) ( ){ [ ( )] ( )[ ( )] ( )} ( ) ( )
n j n jn

T T
n n i j w n i n w n n v
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For the case with time-invariant coefficient matrices,  

 
1

( ) ( )[ ( ) ( ) ( ) ] ( ) ( )
n

n j n j T T
w v

j

n  



 s s s sΣ C θ A θ Q θ A θ C θ R θ  (4.21) 

For computational efficiency, it is shown in Appendix 4A that Σ(n) can be obtained using 

the following iterative formula. For (4.20), we have: 
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For the case with time-invariant coefficient matrices, we have 
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 (4.23) 

For the extended model class, for a given θ, the stochastic system output at one time is 

stochastically dependent of those at the other times due to the introduction of the prediction 

errors wn’s in the state vector equation. Also, the parameters θs and θw and θv for the 

prediction errors wn’s and vn’s, are stochastically coupled given the data. 

It is noted that a regular Kalman filter considers the stochastic state-space model in (4.5) 

with fixed θs, θw and θv (and also x0 chosen to follow a Gaussian PDF or being fixed). One 

important result of the proposed framework is therefore a posterior robust Kalman filter 

which treats modeling uncertainties and so can give more robust predictions of future 

responses. The predicted future responses are obtained by the sum of the prediction of the 

Kalman filter of each model specified by θ weighted by its posterior probability 

p(θ|D,M)dθ, according to the Theorem of Total Probability. 

4.1.2 Model class comparison, averaging and robust system response and 

failure probability predictions 

Let M={Mj: j=1,2,…NM} denote the set of candidate model classes comprised of the 

extended ones and the original ones considered for a system. Bayesian model class 

selection is used to evaluate the posterior probability P(Mj|D,M) of an extended model class 

and the original one to allow a data-based comparison. The posterior probability of the 
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candidate model classes is evaluated from (1.2) for comparison of these model classes. For 

this purpose, the evidence p(D|Mj) needs to be calculated. The method proposed in Chapter 

3 is used to calculate this quantity. 

As can be seen later in the illustrative example, the failure probability for the system (the 

probability of unsatisfactory system performance) is very sensitive to the choice of model 

classes. Posterior hyper-robust predictions as in (1.7) are essential to alleviate such 

sensitivity. All the probabilistic information for the prediction of future responses X is 

contained in the hyper-robust predictive PDF based on M, which is given by the Total 

Probability Theorem: 

1

( | ) ( | , ) ( | , )
MN

j j
j

p M p P M


X XD, D M M D  (4.24) 

where the robust predictive PDF for each model class Mj is weighted by its posterior 

probability P(Mj|D,M).  

4.1.2.1 Calculation of hyper-robust system failure probability for the set of candidate 

model classes 

Let F denote the events or conditions leading to system failure (unsatisfactory system 

performance). Here, our interest is primarily the system failure subjected to uncertain future 

dynamic excitations/inputs U modeled by model classes Uj, j=1,2,…NM. The model 

parameters θU for Uj can be comprised of 1) model parameters θu (with uncertainty 

quantified by p(θu|Uj)) which is not part of θ and not updated by D, and 2) θp which are 

some components of θ for Mj (with uncertainty quantified by p(θp|D,Mj) which has already 

been obtained during a Bayesian update), i.e. θU =[θu
T

 θp
T]T. The uncertainty in θU is 

quantified by p(θU|D,Uj) as follows: 

 ( | , ) ( | ) ( | , )j u j p jUp U p U pθ θ θD D M  (4.25) 
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This model class can be viewed as a special case of hierarchical model classes covered later 

in Chapter 5. The uncertainty in U is thus quantified by p(U|D,Uj). For illustration, here we 

consider one very common case when θu is the same and is chosen to follow the same 

probability distribution for all Uj. Here we consider a set Me of NM stochastic system model 

classes for the prediction of system failure probability. The j-th model class Me,j in Me is 

given by Mj with the stochastic model for the excitation/input given by Uj. The hyper-

robust system failure probability P(F|D,Me) based on Me is then given by: 

 , ,
1

( | , ) ( | , ) ( | , )D D D



MN

e e j e j e
j

P F M P F M P M M  (4.26) 

It can be shown using theorems developed in Chapter 5 that P(Me,j|D,Me) is equal to 

P(Mj|D,M): 

 ,( | , ) ( | , )D M De j e jP M M P M  (4.27) 

For calculating the hyper-robust failure probability, besides calculating the evidence, we 

also need to simulate samples from the posterior PDF for the candidate model classes to 

calculate the posterior robust failure probability P(F|D,Me,j) based on each model class Me,j. 

By the Theorem of Total Probability, P(F|D,Me,j) is given by the following multi-

dimensional integral: 

 , ,( | , ) ( | , , ) ( | , )D D D M e j e j jP F M P F M p dθ θ θ  (4.28) 

Let V=[v1
T v2

T v3
T….]T

 and W=[w1
T w2

T w3
T….]T. Note that the dimension of uncertain 

parameters which can include θ, θu, U, V and/or W is often very high (say of the order of 

thousands or more) making the problem very challenging. 

By the Theorem of Total Probability, P(F|θ,D,Me,j) in (4.28) is given by the following 

multi-dimensional integral: 
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 , ,( | , , ) ( | , , , ) ( | )D D e j u e j u j uP F M P F M p U dθ θ θ θ θ  (4.29) 

If  Mj is an extended model class derived from  (4.5), P(F|θ,θu,D,Me,j) becomes: 

,( | , , , ) ( , , , , ) ( | , , ) ( | , , )

                                          ( | , )

D D M D M

,

 u e j F u w j v j

u p j

P F M I p p

p U d d d

θ θ θ θ W V U W θ V θ

U θ θ U W V
 (4.30) 

If  Mj is the model class derived from (4.4), P(F|θ,θu,D,Me,j) is given by: 

 
,( | , , , ) ( , , , ) ( | , , )

                                          ( | , , )

D D M u e j F u v j

u p j

P F M I p

p U d d

θ θ θ θ V U V θ

U θ θ U V
 (4.31) 

Recall that p(W|θw
(k),D,Mj)= p(W|θw

(k),Mj) is chosen to be independently and identically 

distributed Gaussian with a covariance matrix Q(θw) and mean equal to zero; p(V|θv
(k),D,Mj) 

= p(V|θv
(k),Mj) is chosen to be independently and identically distributed Gaussian with a 

covariance matrix and R(θv) and mean equal to zero; θp is contained inside θ and 

p(U|θu,θp,D,Mj,Uj)= p(U|θu,θp,Uj). 

One way to calculate P(F|D,Me,j) is by using (4.28) and (4.29). Using MCS, P(F|D,Me,j) can 

be estimated by: 

 ( ) ( )
, ,

1

1
( | , ) ( | , , , )D D
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k k
e j u e j

k

P F M P F M
N

θ θ  (4.32) 

where θ(k) and θu
(k)  are samples generated according to p(θ|D,Mj) and p(θu|Uj) respectively. 

For the original and the extended model classes, if the performance measures 

corresponding to F are the states and/or the quantities that are of the same type as the 

output measurements and p(U|θu,θp,Uj) is Gaussian (which is the case considered in the 

illustrative example), P(F|θ,θu,D,Me,j) in (4.30) or (4.31) can be calculated using efficient 

stochastic simulation algorithms such as Importance Sampling Using Elementary Events 
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(ISEE) (Au and Beck 2001a), Wedge Simulation Method (WSM) (Katafygiotis and 

Cheung 2004), Domain Decomposition Method (DDM) (Katafygiotis and Cheung 2006). 

For the cases involving stochastic nonlinear models, we consider the following integral 

(4.33) (or (4.34)) P(F|D,Me,j) derived from (4.28)-(4.30) (or (4.28)-(4.31)) for Mj being the 

extended model class (or the original model class) in the parameter space of  θ, θu, V, W 

and U (or θ, θu, V and U): 
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By MCS, P(F|D,Mj,Uj) in (4.33) (or (4.34)) can be estimated by (4.35) (or (4.36)): 
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  θ θ V UD M  (4.36) 

where θ(k), θu
(k), W(k), V(k) and U(k) are samples generated according to p(θ|D,Mj), p(θu|Uj), 

p(W|θw
(k),Mj), p(V|θv

(k),Mj) and p(U|θu
(k),θp

(k),Uj) respectively; θw
(k), θv

(k) and θp
(k) are 

contained inside θ(k).  

For very small P(F|D,Mj) (say smaller than 0.01), (4.35) or (4.36) is not computationally 

efficient. An algorithm based on Subset Simulation (Au and Beck 2001b) applied in the 

parameter space of  θ, θu, V, W and U has recently been developed for the evaluation of 
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P(F|D,Mj,Uj) and is presented in Cheung and Beck (2009a). In Chapter 6, a new alternative 

method of calculating the robust failure probability given dynamic data D  is also presented. 

4.2 Illustrative example 

 

Figure 4.1: IASC-ASCE Structural Health Monitoring Task Group benchmark 

structure 

In this example, the benchmark structure (Figure 4.1) from the IASC-ASCE Structural 

Health Monitoring Task Group (Johnson et al. 2004) is considered. It is a 4-story, 2 bay by 

2 bay steel frame structure built in the Earthquake Engineering Research Laboratory at the 

University of British Columbia in Canada. A set of simulated dynamic data is used. It 

consists of 10s (with a sample interval Δt of 0.004s) of the horizontal acceleration lay , 

lby (in the weak (y) direction), l=1,…,4, of each floor on east and west frames respectively 

contaminated by Gaussian white noise with noise level of 10% of the maximum over floors 

of the RMS acceleration responses, which corresponds to input dynamic excitations wl at 
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each floor in the y direction (Figure 4.2). These data are generated by a 120-DOF three-

dimensional finite element model (Johnson et al. 2004) for the benchmark structure with 

simulated wind excitations generated by Gaussian white noise processes passed through a 

6th order low-pass Butterworth filter with a 100Hz cutoff. The number of observed degrees 

of freedom is No=4 and N =2500 is the length of the discrete time history data. 

 

Figure 4.2: Schematic diagram showing the directions of system output 

measurements and input excitations 

Here we consider a set M={Mi: i=1,2} consisting of 2 candidate model classes with M1 

corresponding to the extended model class derived from (4.5) and M2 corresponding to the 

one derived from (4.4). To investigate the effect of introducing the prediction errors in the 

state vector equation as in the extended model classes, the same type of deterministic state-

space model is used for both model classes. 

Model class M1: The deterministic dynamic model consists of a 4-DOF linear lumped-mass 

shear building model for motion in the y direction with classical damping for the 4 modes. 

This simple model was selected to produce significant errors in the prediction of the system 
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response since the data are generated from a more complicated model. The system is 

assumed to start at rest: x0=0. The covariance matrix for the prediction errors wn for the 

state vector equation in (4.5) is modeled as a diagonal matrix: 

2
,1 4 4 4 4 2 2

,1 ,22
4 4 ,2 4 4

( ) , [  ]w T
w w w w

w


 


 

 

 
  
 

I O
Q θ θ

O I
 (4.37) 

and the covariance matrix for the prediction and measurement errors vn for the output 

vector equation is modeled as a diagonal matrix: 

2 2
4 4( ) ,  v v  R θ I θ  (4.38) 

There is a total of 15 uncertain parameters to be updated: lumped mass ml and stiffness kl of 

each story, damping ratio of each mode ξl, l=1,…,4 and the variances σw,1
2, σw,2

2 and σ2 for 

the prediction errors. Note that σw,1
2 is the variance of the prediction error of the 

displacement vector equation and σw,2
2 is the variance of the prediction error of the velocity 

vector equation. The coefficient matrices Ac, Bc, C and D in (4.1) are given as follows in 

terms of the uncertain mass Ms, damping Cs and stiffness matrices Ks: 

 1 1c
s s s s
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 1 2( )s s l l  M K I φ 0  (4.46) 

The likelihood function for θ can be obtained using the equations in (4.11)-(4.17). 

The prior PDF for θ is chosen to be the product of independent distributions, where ml, kl, ξl 

follow a lognormal distribution with medians equal to their nominal values and the 

corresponding coefficients of variation (c.o.v.) of 10%, 30%, 50% respectively; σw,1
2, σw,2

2 

and σ2 follow a uniform distribution on the interval [0 σw,1
2

max] , [0 σw,2
2

max]  and [0 σ2
max], 

respectively, where σ2
max is equal to the square of the maximum over floors of the RMS of 

acceleration data; σw,2
2

max is equal to the square of the maximum over floors of the RMS of 

the ‘velocity data’ obtained by numerically integrating the acceleration data using the 

trapezoidal rule; σw,1
2

max is equal to the square of the maximum over floors of the RMS of 

the ‘displacement data’  obtained by numerically integrating the acceleration data twice 

using the trapezoidal rule. It is well known that the ‘velocity data’ and ‘displacement data’ 

obtained by an integration of the acceleration data give a very poor estimate of the system 

velocity and displacement. Here these pseudo ‘velocity data’ and ‘displacement data’ are 

only used to choose the maxima for the prior PDF for σw,2
2 and σw,1

2. During the Bayesian 

update, if it is observed that the prediction error variance parameter has a large probability 
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clustering around the upper limit of the uniform prior, the upper limit can be made larger so 

that the high probability region of the posterior PDF of the parameter is within the range of 

the uniform prior. 

The nominal values for kl and ξl are 67.9MNm-1 (Johnson et al. 2004) and 1% respectively, 

for l=1,…,4 and those for m1, m2, m3 and m4 are 3246kg, 2652kg, 2652kg and 1809kg 

respectively. For the mass parameters, relatively smaller values of c.o.v. are chosen since 

these parameters can usually be more precisely determined from the structural drawings 

than the other model parameters. For the latter parameters, a larger c.o.v. is chosen. It 

should be noted that the objective of the prior PDFs is to allow prior information to be 

incorporated when performing model updating. For those parameters where there is little 

prior information, prior PDFs that reflect higher uncertainty (i.e., in this case, larger c.o.v.) 

are used. Under such circumstances, the updated uncertainties for these parameters depend 

mostly on the data and are often insensitive to the prior PDFs. Here we define the 12 

dimensionless uncertain parameters θs corresponding to the physical parameters (including 

the mass, stiffness and damping ratio parameters) as the original parameters divided by 

their nominal values. 

Model class M2: The differences between this model class and M1 are: 1) the prior PDF is 

the same as M1 except that M2 does not include the uncertain parameters σw,1
2, σw,2

2; and 2) 

Q(θw)= O. Thus, the likelihood function is simpler than M1 and does not require Kalman 

filtering. Let yn(θs) denote the output at time tn at the l-th observed degree of freedom 

predicted by the 4-DOF shear building model and ˆ ny denote the corresponding measured 

output. The prediction and measurement errors for the system output equation is given by: 

vn = ˆ ny -yn(θs)  for n=0,1,…,N=2500, whose componenents are modeled as independent 

and identically distributed Gaussian variables with mean zero and some unknown 

prediction-error variance σ2, based on the Principle of Maximum Information Entropy 

(Jaynes 2003). The likelihood function p(D|θ,M2) for this model class is: 



 

 129

2 ( 1) 2
02 2

1 1ˆ ˆ ˆ( | , ) exp( [ ( )] [ ( )])
2

(2 )

M







   
N

T
N n n s n n sN N

n
o

p Y θ y y θ y y θ  (4.47) 

A hybrid method based on TMCMC and Hybrid Monte Carlo Method presented in Chapter 

2 is used to generate samples from the posterior PDF p(θ|D,Mi). Table 4.1 shows the sample 

posterior means (outside the parenthesis) and c.o.v. (coefficient of variation) in % (inside 

the parenthesis) for the uncertain parameters θs of the underlying deterministic state-space 

model, the parameters θw for the covariance matrix of the state-vector equation prediction 

error, and the parameters θv for the covariance matrix of the output-equation prediction 

error. θl, θl+4 and θl+8 are the dimensionless parameters corresponding to ml, kl and ξl 

respectively for l=1,…,4. The first number in the second row and second column of Table 

4.1 gives the posterior mean of θ1. The number inside the parenthesis next to this number 

gives the posterior c.o.v. of θ1 as a %. The next row gives the result corresponding to θ2 and 

so on. The results for M2 are presented in a similar fashion. For both model classes, the 

posterior c.o.v. for the parameters related to the damping ratio is larger than those related to 

the mass and stiffness parameters, showing that there is a larger uncertainty in the damping 

parameters, as can be expected.  

Table 4.1  Posterior means and c.o.v. for the uncertain parameters 

 M1 M2 
θ1 
θ2 
θ3 
θ4 
θ5 
θ6 
θ7 
θ8 
θ9 
θ10 
θ11 
θ12 

0.97(0.5), 
0.98(0.5), 
0.99(0.5), 
1.07(0.5), 
0.76(0.7), 
0.94(0.6), 
0.90(0.7), 
0.92(0.5), 
1.11(14.8), 
1.42(6.9), 
1.89(4.9), 
1.23(7.2) 

1.12(0.9), 
1.13(1.0), 
1.04(0.9), 
1.21(1.0), 
0.81(0.9), 
1.10(1.0), 
1.03(0.9), 
0.95(0.9), 
0.88(2.7), 
0.86(1.6), 
0.86(1.4), 
1.40(2.1) 

θw 5.80x10-11(3.7), 
2.26x10-6(10.1) 

Not applicable 

θv 0.103(2.4) 3.26(1.4) 
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The exact measurement noise variance is 0.1972 ms-2. It can be seen that the posterior 

mean of the output-equation prediction-error variance θv for M2 is about 16 times the exact 

measurement noise variance, or 4 times if we look at the prediction-error standard deviation, 

in order to account for modeling errors. This prediction-error standard deviation is about 

40% of the maximum over floors of the RMS of acceleration data showing that the models 

in M2 have significant modeling error. It can be seen that the posterior mean of θv for M1 is 

about 52% of the exact measurement noise variance (about 72% if we look at the 

prediction-error standard deviation) and is significantly smaller than that for M2. The 

prediction-error term in the output-equation for M1 mostly accounts for the measurement 

noise while the prediction-error term in the state vector equation accounts for the modeling 

errors. The prediction-error term in the output vector equation for M2  has to account for 

both the measurement noise and the modeling uncertainties and thus its variance is larger 

than that for M1. For both model classes, modeling uncertainties are also accounted for by 

allowing uncertainty in the value of θs. Given θ, the covariance matrix Σ(n) of the 

prediction errors for the system output in the output equation for M2 is R(θv)=σ
2I4x4 for all 

time while that for M1 at each time can be obtained using (4.23) as follows: 

 

(1) ( )

( ) ( ) ( ) ( ) ( )
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Figure 4.3: The variance of the prediction error for system output in the output 

equation against time instant (n) given θ=posterior mean of θ 

Let el(n) denote the prediction error for the l-th system output in the output equation at time 

nΔt for M1; let sl(n) denote the variance of el(n) and let ρlm(n) denote the correlation 

coefficient between el(n) and em(n). From the covariance matrix Σ(n), we can obtain the 

variance (diagonal entries of the covariance) of the prediction errors for each system output 

in the output equation for each time as shown in Figure 4.3. From this figure, it can be seen 

that at each time, the variance of the prediction error for each system output in the output 

equation is not the same and they are all smaller than that for M2, shown as a dashed line in 

Figure 4.3. Figure 4.4 shows the 6 possible correlation coefficient ρlm(n) at each time nΔt, 

n=1,…,N=2500, given θ=posterior mean of θ for M1, i.e., ρ12(n), ρ13(n), ρ14(n), ρ23(n), ρ24(n) 

and ρ34(n). It can be seen that for M1, the prediction errors for the system output in the 

output-equation are correlated, particularly for e1(n) and e2(n),  e2(n) and e3(n), e3(n) and 

e4(n) and e1(n) and e4(n). The correlation is higher especially between the prediction errors 
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for the system output in neighboring floors (i.e., between the first floor and second floor, 

between the second floor and third floor, between the third floor and the roof), which 

agrees with intuition. After a transient period, as n increases, the variance sl(n), l =1,…,4 

and correlation coefficients ρ12(n), ρ13(n), ρ14(n), ρ23(n), ρ24(n) and ρ34(n) all converge. 

Unlike M2 whose prediction errors for the system output in the output equation are 

uncorrelated and have the same variance at all time, M1 allows more flexibility to 

accommodate the modeling errors by introducing correlation between the prediction errors 

for different system output in the output equation and allowing different system output 

prediction error variances through the structure of the stochastic system model in M1. 
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Figure 4.4: The correlation coefficient between prediction errors for different pair of 

system outputs in the output equation against time instant (n) given θ=posterior mean 

of θ for M1 

The posterior robust failure probability of the benchmark structure subjected to future 

uncertain horizontal ground acceleration is calculated for M1 and M2 for different threshold 

levels. Here we assume the structure is subjected to a nonstationary, nonwhite horizontal 
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ground acceleration UG=[u0 u1 u2 u3…. uG]T
 of duration of GΔt=10s with a sampling time 

interval of Δt=0.004s. The stochastic model U for the earthquake is given in Schueller and 

Pradlwalter (2007): 
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 (4.49) 

where  un= ( )fa n t , n=0,1,.., G=2500; ζg=0.8, ωg=15rad/s, ζf=0.995, ωf=0.3rad/s; W(t) is a 

white noise with spectral density Ig=0.02/(2π) m2s-2, i.e., the corresponding discrete white 

noise signal is W(nΔt)=Wn= 2 /g nI tZ   where Zn is a standard Gaussian variable; the 

initial conditions for each of the equations in (4.49) are taken as zero. The nonstationarity 

of the ground acceleration is modeled through a time-envelope function λ(t) given as 

follows: 
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 (4.50) 

For M1 and M2, the total number of uncertain parameters involved in calculating the robust 

failure probability is 8x2501+4x2501+15+2501=32528 and 32526, respectively. First, we 

consider the case where the structure ‘fails’ if the maximum interstory displacement of all 

the stories exceeds some threshold value during a future earthquake. Thus, F can be written 

as follows in terms of the displacement of all the stories (the first four states in x(t)): 

 

2500 4

1 1 1
0 1

1 1

{0,1,...,2500}
1{1,...,4}

{| ( ) ( ) | | ( ) | }

| ( ) ( ) | | ( ) |
max { , } 1

G

l n l n l n
n l

l n l n n

n
ll

F x t x t b x t b

x t x t x t

b b




 






    


 

 
 (4.51) 

where the threshold bl for all the stories is the same, i.e., bl=b. 
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Figure 4.5 shows the posterior robust failure probability of the structure for M1 (solid curve) 

and M2 (dashed curve) for different threshold levels. It can be seen that the posterior robust 

failure probability for M1 is quite different from that for M2. As the threshold level increases, 

the difference becomes even more pronounced.  
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Figure 4.5: Posterior robust failure probability against the threshold of maximum 

interstory displacements of all floors for M1 (solid curve) and M2 (dashed curve) 

Figure 4.6 shows the posterior (solid curve) robust failure probability of the structure for 

M1  and the nominal  (dashed curve) structural failure probability for different threshold 

levels.  
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Figure 4.6: Posterior (solid curve) robust (for M1) and nominal (dashed) failure 

probability against the threshold of maximum interstory displacements of all floors 

Figure 4.7 shows the prior robust failure probability of the structure for M1 for different 

threshold levels. It can be seen that the prior robust failure probality is a lot larger due to 

larger model uncertainties. Thus, for this model class, it is critical to collect data to reduce 

the model uncertainties. Figure 4.8 shows the prior robust failure probability of the 

structure for M2 (dashed curve), the posterior robust failure probability for M2 (solid curve), 

and the nominal structural failure probability (dot-dashed curve) for different threshold 

levels. For both model classes, it can be seen that the posterior robust failure probability is 

quite different from the nominal structural failure probability and the prior robust failure 

probability, showing the importance of using data to reduce model uncertainties and obtain 

more robust predictions. 
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Figure 4.7: Prior robust failure probability against the threshold of maximum 

interstory displacements of all floors for M1 
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Figure 4.8: Posterior (solid curve) and prior (dashed) robust (for M2) and nominal 

(dot-dashed) failure probability against the threshold of maximum interstory 

displacements of all floors 
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Next, we consider the case where the structure ‘fails’ if the maximum absolute acceleration 

of all the stories exceeds some threshold value. 
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      (4.52) 

where the threshold bl for all the stories is the same, i.e., bl=b; al(t) denotes the l-th story 

absolute acceleration at time t. Figure 4.9 shows the posterior robust failure probability (y-

axis) of the structure for M1 (solid curve) and M2 (dashed curve) for different threshold 

levels. It can be seen that once again the posterior robust failure probability for M1 is 

significantly different from that for M2. As the threshold level increases, the difference 

becomes even more pronounced. 
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Figure 4.9: Posterior robust failure probability against the threshold of maximum 

absolute accelerations of all floors for M1 (solid curve) and M2 (dashed curve) 
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The above results show that the posterior failure probability (especially for the tail of the 

posterior probability distribution of the response of interest) is sensitive to the choice of the 

model class and hence to the way that model uncertainties are treated. One concern here is 

how to combine the results (quite different in this problem) obtained for different candidate 

model classes. The solution to this is to calculate the posterior hyper-robust failure 

probability using Bayesian model averaging as in (4.26), which requires calculating the 

posterior probability of the candidate model classes. 

Table 4.2  Results for model class comparison 

 M1 M2 
E[ln(p(D|θ,Mi))] -1.5762x104 -2.0251x104 

EIG 76.12 63.52 
lnp(D|Mi) -1.5838x104 -2.0315x104 
P(Mi|D,M) 1.00 0.00 

 
 

First we perform model class comparision. The estimates, obtained using the method 

presented in Chapter 3, for the log evidence lnp(D|Mj), the posterior mean of the log 

likelihood function E[ln(p(D|θ,Mi))] (a data-fit measure), the expected information gain EIG 

(a model class complexity measure given in (1.4)) and the posterior probability P(Mi|D,M) 

of the model classes are shown in Table 4.2. Model class comparison shows that the 

proposed extended model class M1 is substantially more probable than M2 based on the data, 

implying that it gives the better balance between the data fit and the information gain from 

the data. The posterior probability for M1 based on the data is essentially 1. It can be seen 

that M1 has a much larger posterior mean of the log likelihood function than M2 which 

shows that M1 gives a much better fit to the data on average. Although M1 has a larger 

expected information gain, showing that it is more “complex” than M2, the difference 

between the EIG of M1 and M2 is relatively very small compared with the difference of the 

posterior mean of the log likelihood of the two model classes. Thus, the mean data-fit is 

dominant in making M1 have a larger evidence and thus be the more plausible model class. 
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From the results in Table 4.2 and Figures 4.5 and 4.9, it can be seen that 

P(F|D,M2)P(M2|D,M) is negligible and so the contribution of M2 can be dropped when 

calculating the posterior hyper-robust failure probability of the structure. Also, having a 

posterior probability P(M2|D,M) that is much smaller than for M1 implies M2 is relatively 

improbable conditioned on the data D and so M2 may be dropped when making robust 

prediction of any response of the structure. 
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CHAPTER  5  

New Bayesian updating methodology for model 

validation and robust predictions of a target system 

based on hierarchical subsystem tests 

In this chapter, the problem of model validation for a system is considered. Superficially, 

the problem of how to validate a model seems solvable but it is still not settled; indeed, it is 

clear that a model that has given good predictions in tests so far might perform poorly 

under different circumstances, such as an excitation with different characteristics. 

The material in this chapter is based on Cheung and Beck (2008b, g). Our philosophy when 

predicting the behavior of a system of interest is that one should develop candidate sets of 

probabilistic predictive input-output models to give robust predictions that explicitly 

address errors due to imperfect models and uncertainties due to incomplete information. 

For model validation, it is then desirable to check based on system test data whether any of 

the proposed candidate model sets are highly probable and whether they provide high 

quality predictions of the system behavior of interest. 

Sometimes the full system cannot be readily tested because it is too expensive or too large, 

or due to other limitations, but some of its subsystems may be tested. Here we introduce the 

concept of hierarchical stochastic system model classes and then propose a Bayesian 

methodology using them to treat modeling and input uncertainties in model validation, 
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uncertainty propagation and robust predictions of the response of the full system. The 

Sandia static-frame validation problem is used to illustrate the proposed methodology. The 

results of other researchers’ studies of this problem are presented in a special issue of the 

journal Computer Methods in Applied Mechanics and Engineering (Chleboun 2008; 

Babuška et al. 2008; Grigoriu and Field 2008; Pradlwarter and Schuëller 2008; Rebba and 

Cafeo 2008).  

5.1 Hierarchical stochastic system model classes and model validation  

In this section, a novel model validation methodology based on a new concept of 

hierarchical stochastic system model classes is proposed (building on the theoretical 

foundations presented in previous chapters) so that a rational decision can be made 

regarding which proposed model classes should be used for predicting the response of a 

target system. The proposed methodology is based on using full Bayesian updating to 

investigate multiple important aspects of the performance of the candidate model classes, 

including their quality of prediction, their posterior probabilities and their contribution to 

response predictions of the final system. We do not make a binary reject/accept step but 

instead provide the decision maker with information about these important aspects, which 

can be combined with other considerations when making a decision related to the target 

system; for example, should the current target system design be accepted or modified? 

Suppose during construction of the system, a series of I experiments are conducted where 

data Di, i=1,…, I, are collected from each of I similarly complex, or successively more 

complex, subsystems and these data are to be used to predict the response of the more 

complex target system. The i-th level subsystem is either a standalone subsystem 

(especially in lower levels) or one comprised of a combination of some (or all) tested 

subsystems from the previous levels, together, possibly, with new untested subsystems. 
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5.1.1 Analysis and full Bayesian updating of i-th subsystem 

The presentation in this subsection is very general and the reader may find it helpful to look 

at the example illustrating the hierarchical concepts in the last subsection of this section. 

We assume that a set Mi ={Mj
(i): j=1,2,…Ni} of model classes is proposed for the i-th 

subsystem which are either newly defined or built-up by extending the model classes for 

some (or all) tested subsystems in the previous levels. In the latter case, a model class for 

the i-th subsystem is built-up by extending at most one model class for each relevant lower-

level subsystem since candidate model classes for each such subsystem are supposed to be 

competing. Denote uncertain model parameters for the model class Mj
(i) by θ(i, j)=[φ(i, j), ξ(i, j)] 

where φ(i, j), if any, are the new uncertain model parameters and ξ(i, j) , if any, are the 

uncertain model parameters corresponding to a model class for some subsystems in the 

previous levels, that is, these parameters of Mj
(i) are also in model classes of subsystems of 

the ith subsystem. In the proposed hierarchical approach, the model class Mj
(i) is based on 

the “prior” (prior to the ith subsystem test but posterior to all previous tests):  

 ( , ) ( ) ( , ) ( ) ( , )
1 1 1 1( | ,..., , ) ( | ) ( | ,..., )i j i i j i i j

i j j ip p p θ φ ξD D M M D D  (5.1) 

where p(φ(i, j)|Mj
(i)) quantifies the prior uncertainties in the new parameters φ(i, j) in model 

class Mj
(i) and p(ξ(i, j)|D1,…, Di-1) is the most updated PDF of ξ(i, j) given data collected from 

all subsystems in the previous levels. For simplicity, the conditioning of p(ξ(i, j)|D1,…, Di-1) 

on the model classes previously considered which contain components of ξ(i, j) are left 

implicit. For i=1, p(θ(i, j)|D1,…, Di-1,Mj
(i)) = p(θ(1, j)|Mj

(1)).  

At the end of the experiments on the i-th subsystem where data Di are collected, the 

following procedure is used to check the prediction quality of each candidate model class 

being considered for the i-th subsystem. For each model class Mj
(i) in Mi and for each 

measured quantity in Di, the consistency of the predicted response is first investigated by 

calculating the difference of the measured quantity in Di and the mean of the corresponding 
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prior robust predicted response. The robust predicted response given by Mj
(i) is consistent if 

this difference is no more than a certain number of standard deviations (e.g., no more than 

2 to 3 standard deviations). An alternative way of investigating the consistency is to check 

whether each measured quantity in Di is within q percentile and (100-q) percentile of the 

robust predicted response (e.g., q can be 1). The mean and standard deviation of the prior 

robust predicted response can be calculated using (1.5) and (1.6) but with samples drawn 

from the prior in (5.1). 

Next, the accuracy of the prediction is investigated by calculating the probability that the 

prior robust predicted response using Mj
(i) (again based on p(θ(i, j)|D1,…, Di-1,Mj

(i)) in (5.1)) 

is within a certain b% (e.g. 10%) of the measured quantity using (1.5) and (1.6). This 

probability is related to the prediction error of each model class for the i-th level subsystem 

and reflects the predictability of these models before being updated using data Di. Note that 

a model class may give consistent predictions but not accurate ones because, for example, it 

has a relatively large standard deviation. 

Next, for each model class Mj
(i) in Mi, the uncertainties in the model parameters θ(i, j) are 

updated using all the available data, as quantified by p(θ(i, j)|D1,…, Di, Mj
(i)) through Bayes’ 

Theorem: 

 ( , ) ( ) 1 ( , ) ( ) ( , ) ( )
1 , 1 1( | ,..., , ) ( | , ) ( | ,..., , )i j i i j i i j i

i j i j i j i jp c p p
θ θ θD D M D M D D M  (5.2) 

where the data D1,…, Di-1 are modeled as irrelevant to the probability of getting Di when 

θ(i,,j) is given since this parameter vector defines the predictive probability model for the 

model class Mj
(i). Recall that ξ(i, j) are the uncertain model parameters corresponding to 

some model classes of subsystems already considered in the previous levels. A subtle point 

to be noted is that sometimes uncertainties for some other model parameters Φ(i, j)  

corresponding to the model classes containing components of ξ(i, j) will also be updated 

when updating uncertainties in ξ(i, j) using D1,…, Di-1. Since Φ(i, j) and ξ(i, j) are not 
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stochastically independent given D1,…, Di, the uncertainties in both θ(i, j) and Φ(i, j) need to 

be updated together from Bayes’ Theorem: 

( , ) ( , ) ( )
1

1 ( , ) ( ) ( , ) ( , ) ( , ) ( )
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θ
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D D M

D M D D M
 (5.3) 

where θ(i, j)=[φ(i, j), ξ(i, j)] and the data D1,…, Di-1 are modeled as irrelevant to the probability 

of getting Di given θ(i,,j), as before. Finally, p(θ(i, j)|D1,…, Di, Mj
(i)) can be obtained as the 

marginal PDF of p(θ(i, j), Φ(i, j)|D1,…, Di, Mj
(i)). 

The posterior probability P(Mj
(i)|D1,…, Di, Mi) of each model class in Mi can be calculated as 

follows to evaluate the relative plausibility of each model class. If a model class Mj
(i) is 

built-up by extending or using model classes which have been updated using data from 

subsystems in the previous levels k1, k2,…, km where k1< k2<…< km and 1≤m<i, 

P(Mj
(i)|D1,…, Di, Mi) is equal to P(Mj

(i)|
1
,...,k km

D D , Di, Mi). The most up-to-date evidence 

p(
1
,...,k km

D D , Di|Mj
(i)) for Mj

(i) that is provided by the data 
1
,...,k km

D D , Di, and which is 

required for calculating P(Mj
(i)|

1
,...,k km

D D , Di, Mi), is given by: 

 ( ) ( ) ( )

1 1 1
( ,..., , | ) ( ,..., | ) ( | ,..., , )i i i

k k i j k k j i k k jm m m
p p pD D D M D D M D D D M  (5.4) 

In this equation, p(Di| 1
,...,k km

D D ,Mj
(i)) is given by: 

 ( ) ( , ) ( ) ( , ) ( ) ( , )
1 11

( | ,..., , ) ( | , ) ( | ,..., , )i i j i i j i i j
i k k j i j i jm

p p p d  θ θ θD D D M D M D D M  (5.5) 

which can be determined using a stochastic simulation method, such as the Hybrid Gibbs 

TMCMC method presented in Appendix 5A. The other factor in (5.4), 

( )

1
( ,..., | )i

k k jm
p D D M , is given by a product of the evidences which have already been 
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determined at the end of previous experiments. This point will be more clear in the 

example illustrating the hierarchical concepts in the last subsection of this section or one 

can refer to Cheung and Beck (2008b) for more details. Based on (5.4), P(Mj
(i)|D1,…, Di, Mi) 

= P(Mj
(i)|

1
,...,k km

D D , Di, Mi) can be calculated using (1.2) with Mj replaced by Mj
(i), M 

replaced by Mi and D by 
1
,...,k km

D D , Di. 

In the special case that Mj
(i) is newly defined, i.e., not built-up by extending any model 

classes for subsystems in the previous levels, the posterior probability P(Mj
(i)|D1,…, Di, Mi) 

is given by P(Mj
(i)|Di, Mi), which can be calculated using (1.2) with Mj replaced by Mj

(i), M 

replaced by Mi and D by Di where the evidence p(Di|Mj
(i)) for Mj

(i) is given by: 

 ( ) ( , ) ( ) ( , ) ( ) ( , )( | ) ( | , ) ( | )i i j i i j i i j
i j i j jp p p d  θ θ θD M D M M  (5.6) 

which can be determined using a stochastic simulation method. 

Based on all the data, D1,…, Di, so far, the posterior robust prediction of the response 

vector X for the target system can be calculated using (1.5) and (1.7). If a model class Mj
(i) 

is very improbable compared to the others in Mi, so that its contribution to the hyper-robust 

response prediction of the target system is negligible in (1.7), it can be neglected when 

building the candidate model classes for higher level subsystems in order to save 

computations. Note that (1.7) allows calculation of the most robust predictions for the i-th 

subsystem based on all the available information and viable model classes.  

For each model class Mj
(i) in Mi and for each measured quantity in Di, the consistency of the 

predicted response is again investigated by examining the difference of the measured 

quantity in Di and the mean of the corresponding posterior robust predicted response (again 

judged in terms of the number of standard deviations of the posterior robust predicted 

response). The robust predicted response is based on the “posterior” p(θ(i, j)|D1,…, Di, Mj
(i)) 
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given by (5.2) or (5.3) and its mean and standard deviation are calculated using (1.5) and 

(1.6). One can also check whether each measured quantity in Di is within q percentile and 

(100-q) percentile of the posterior robust predicted response. Next, the accuracy of the 

prediction is investigated by calculating the probability that the robust predicted response 

(again based on p(θ(i, j)|D1,…, Di, Mj
(i))) is within a certain b% (e.g. 10%) of the measured 

quantity using (1.5) and (1.6). 

 

Figure 5.1: Schematic plot for an illustrative example of hierarchical model classes 

5.1.2 Example to illustrate hierarchical model classes 

The following example is presented to illustrate the above theory on how to propagate 

uncertainties in parameters and calculate the posterior probability for a hierarchical 

stochastic system model class. Figure 5.1 shows the hierarchical structure of some of the 

model classes for the illustrative example. The ellipses show the subsystems for different 
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levels; a black dot inside an ellipse shows a candidate model class corresponding to that 

subsystem; the lower end of an arrow points to a model class which is used to build another 

model class pointed to by the top end of the same arrow. Shown next to an arrow is the set 

of data used to update the lower level model classes, along with the posterior PDF for the 

previous model class and the evidence required for calculating the posterior probability of 

this model class. 

Recall that M1
(1)  in M1 is the first candidate model class with uncertain parameters θ(1, 1) for 

the first level subsystem from which data D1 is collected. The posterior PDF p(θ(1, 1)|D1, 

M1
(1)) for M1

(1) is given by (5.2) with the chosen prior PDF p(θ(1, 1)| M1
(1)). The evidence 

p(D1|M1
(1)), which is required for calculating the posterior probability P(M1

(1)|D1, M1) for 

M1
(1), is given by (5.6) with i=1 and j=1. 

Suppose that D2 is collected from a second level subsystem that is independent of the first 

level subsystem and M1
(2)  in M2 is a newly defined candidate model class with new 

uncertain parameters θ(2, 1). The posterior PDF p(θ(2, 1)|D1, D2, M1
(2))=p(θ(2, 1)|D2, M1

(2)) for 

M1
(2) is given by (5.2) with the chosen prior PDF p(θ(2, 1)| M1

(2)). The evidence p(D2|M1
(2)), 

which is required for calculating the posterior probability P(M1
(2)| D1,D2, M2) = P(M1

(2)|D2, 

M2) for M1
(2), is given by (5.6) with i=2 and j=1.  

Suppose that the third level subsystem contains the first level subsystem but not the second 

level subsystem. Assume that the first candidate model class M1
(3)  in M3, with uncertain 

parameters θ(3, 1) for the third level subsystem from which D3 is collected, is built-up by 

extending the model class M1
(1) (i.e., existing parameters ξ(3, 1) = θ(1, 1)) and  φφ((33,,  11))  aarree  tthhee  

nneeww  uunncceerrttaaiinn  mmooddeell  ppaarraammeetteerrss,,  ssoo  θ(3, 1) ==  [[θ(1, 1),, φφ  ((33,,  11))]]..  The posterior PDF p(θ(3, 1)|D1, D2, 

D3, M1
(3)) for M1

(3) is given by (5.2) with the prior PDF p(θ(3, 1)|D1, D2, M1
(3))=p(θ(1, 1)|D1, 

M1
(1)) p(φφ(3, 1)|M1

(3)) and so this posterior is independent of D2, as expected. The evidence 

p(D1,D3|M1
(3)), which is required for calculating the posterior probability P(M1

(3)|D1, D2, D3, 
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M3) = P(M1
(3)|D1, D3, M3) for M1

(3), is equal to p(D1|M1
(3)) p(D3|D1,M1

(3)) by (5.4) where 

p(D3|D1,M1
(3)) is given by (5.5) which becomes here: 

  (3) (3,1) (3) (3,1) (3) (3,1)
3 1 1 3 1 1 2 1( | , ) ( | , ) ( | , , )p p p d  θ θ θD D M D M D D M   ((55..77))  

aanndd  p(D1|M1
(3)) = p(D1|M1

(1)), since 1) M1
(3) is built-up by extending M1

(1); 2) prior to the 

collection of D3, D1 is used to update M1
(1). Recall that p(D1|M1

(1)) has already been 

determined.  

Suppose that the fourth level subsystem is a combination of the first and second level 

subsystems but not the third one. Assume that the first candidate model class M1
(4)  in M4, 

with uncertain parameters θ(4, 1) for the fourth level subsystem from which D4 is collected, 

is built-up by using the model classes M1
(3) and M1

(2) (i.e., ξ(4, 1) = [[θ(1, 1), θ(2, 1)]]) and  tthheerree  

aarree  nnoo  nneeww  uunncceerrttaaiinn  mmooddeell  ppaarraammeetteerrss..  TThhuuss  θ(4, 1) ==  ξ(4, 1)  ==  [[θ(1, 1), θ(2, 1)]]  aanndd  Φ(4, 1) =φφ((3, 1)  

ssiinnccee  wwhheenn  uuppddaattiinngg  M1
(3),,  φφ((3, 1) and θ(1, 1) are both updated and D1 and D3 are used to 

update both of them..  The posterior PDF  

p(θ(4, 1), Φ(4, 1)|D1, D2, D3, D4, M1
(4)) = p(θ(1, 1), θ(2, 1), φφ((3, 1)|D1, D2, D3, D4, M1

(4)) for M1
(4) is 

given by (5.3) with the prior PDF p(θ(4, 1), Φ(4, 1)|D1, D2, D3, M1
(4))= p(θ(1, 1),  φφ((3, 1)|D1, D3, 

M1
(3)) p(θ(2, 1)|D2,M1

(2)). The evidence p(D1, D2, D3, D4|M1
(4)), which is required for 

calculating the posterior probability P(M1
(4)|D1, D2, D3, D4, M4) for M1

(4), is equal to p(D1, 

D2, D3|M1
(4)) p(D4|D1, D2, D3, M1

(4)) by (5.4) where p(D4|D1, D2, D3, M1
(4)) is given by (5.5) 

which becomes here: 

  (4) (4,1) (4) (4,1) (4) (4,1)
4 1 2 3 1 4 1 1 2 3 1( | , , , ) ( | , ) ( | , , , )p p p d  θ θ θD D D D M D M D D D M   ((55..88))  

wwhheerree  p(θ(4, 1)|D1, D2, D3, M1
(4))= p(θ(1, 1)|D1, D3, M1

(3)) p(θ(2, 1)|D2,M1
(2)) and p(θ(1, 1)|D1, D3, 

M1
(3)) is the marginal PDF of the posterior PDF p(θ(3, 1)|D1, D2, D3, M1

(3)) for M1
(3) wwhhiillee  

p(D1, D2, D3|M1
(4))= p(D1, D3|M1

(3))p(D2|M1
(2)), since 1) M1

(4) is built-up by using M1
(3) and 
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M1
(2); 2) prior to the collection of D4, D1 and D3 are used to update M1

(3) and D2 is used to 

update M1
(2). Recall that p(D1, D3|M1

(3)) and p(D2|M1
(2)) have already been determined. 

Suppose that the fifth level subsystem contains third and fourth level subsystems. Assume 

that the first candidate model class M1
(5)  in M5, with uncertain parameters θ(5, 1) for the fifth 

level subsystem from which D5 is collected, is built-up by using the model class M1
(4) wwiitthh  

no new uncertain model parameters. Thus, θ(5, 1) ==  ξ(5, 1)  ==  [[θ(1, 1), θ(2, 1),, φφ(3, 1)]]  ssiinnccee  wwhheenn  

updating  M1
(4),,  θ(1, 1), θ(2, 1)  aanndd  φ(3, 1) are updated and D1, D2, D3 and D4 are used to update 

them..  The posterior PDF p(θ(5, 1) |D1, D2, D3, D4, D5, M1
(5)) = p(θ(1, 1), θ(2, 1), φφ((3, 1)|D1, D2, D3, 

D4, D5, M1
(5)) for M1

(5) is given by (5.2) with the prior PDF p(θ(5, 1)|D1, D2, D3, D4, M1
(5))= 

p(θ(1, 1), θ(2, 1), φ((3, 1)|D1, D2, D3, D4, M1
(4)). The evidence p(D1, D2, D3, D4, D5|M1

(5)), which is 

required for calculating the posterior model probability P(M1
(5)|D1, D2, D3, D4, D5, M5) for 

M1
(5), is equal to p(D1, D2, D3, D4|M1

(5)) p(D5|D1, D2, D3, D4, M1
(5)) by (5.4) where p(D5|D1, 

D2, D3, D4, M1
(5)) is given by (5.5) which becomes here: 

  (5) (5, 1) (5) (5, 1) (5) (5, 1)
5 1 2 3 4 1 5 1 1 2 3 4 1( | , , , , ) ( | , ) ( | , , , , )p p p d  θ θ θD D D D D M D M D D D D M ((55..99))  

where  p(θ(5, 1)|D1, D2, D3, D4, M1
(5))= p(θ(1, 1), θ(2, 1), φ((3, 1)|D1, D2, D3, D4, M1

(4)) wwhhiillee  p(D1, 

D2, D3, D4|M1
(5))= p(D1, D2, D3, D4|M1

(4)), since 1) M1
(5) is built-up by using M1

(4); 2) prior to 

the collection of D5, D1, D2, D3 and D4 are used to update M1
(4). Recall that p(D1, D2, D3, 

D4|M1
(4)) has already been determined.  

5. 2 Illustrative example based on a validation challenge problem 

For illustration, the static-frame validation challenge problem (Babuška et al. 2008) is 

considered. It is one of the problems presented at the Validation Challenge Workshop at 

Sandia National Laboratory on May 27-29, 2006. The purpose of this particular challenge 

problem is to predict the probability of the event F (regulatory assessment): |wp|≥3mm, 

where wp is the vertical displacement of the midpoint P of beam 4 of the frame structure 
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(our target system) shown in Figure 1 of Babuška et al (2008) and Figure 1 in Cheung and 

Beck (2008b). The structure is subjected to a uniform load q = 6kN/m on beam 4. 

Information regarding the geometry of the frame structure is shown in Table 1 of Babuška 

et al (2008) and in Tables 1 and 2 in Cheung and Beck (2008b). Also, in the definition of 

the challenge problem, the structure is given to be linear elastic with a one-dimensional 

tension model for each of the rods and a one-dimensional Bernoulli beam model for the 

bending of the beam. The coupling of bending and compression is given to be negligible 

for beam 4. It is given that all the bars are made of the same inhomogeneous material but 

come from independent sources and so can have variable material properties; in fact, the 

only uncertainty considered in this challenge problem is Young’s modulus E (or 

compliance S=1/E) along each of the bars. Given Young’s modulus variation along each of 

the bars, wp can be predicted using the equations in Babuška et al (2008) and in Appendix I 

in Cheung and Beck (2008b). 

The simulated experiments are set up to resemble a typical situation in which data are 

collected from a hierarchy of successively more complex subsystems that become “closer” 

to the final system and the amount of data reduces in the higher levels of the hierarchy. 

Data from three experiments which involve systems of increasing complexity are presented 

as part of the challenge problem: 

The first experiment is referred to as the calibration experiment. It involves Nc bars where 

each bar has a cross section area Ac =4.0cm2 and length Lc= 20 cm, is fixed rigidly at one 

end and is loaded by a tensile axial force Fc=1.2kN at the other end. The available data D1 

from this experiment are the elongation δLc
(i), i=1,2…, Nc, of the bars from the initial length 

and the Young’s modulus Ec
(i)(Lc/2) at the midpoint of the bars. 

The second experiment is referred to as the validation experiment. The set-up is similar to 

the first experiment. The only difference is that the bars have longer length Lv= 80cm and 

only the total elongation δLv
(i), i=1,2…, Nv, is measured. Let D2 denote the data in this case. 
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The third experiment is referred to as the accreditation experiment. It involves a frame 

structure (Figure 4 in Babuška et al (2008) and Figure 2 in Cheung and Beck (2008b)) 

subject to a point load Fa=6kN at the midpoint Q of bar 1. The available data D3 are the 

vertical displacement wa
(i), i=1,…, Na, of the point Q. Information regarding the geometry 

of the frame is shown in Table 3 in Babuška et al (2008) and Tables 3 and 4 in Cheung and 

Beck (2008b). Notice that the system here is not a subsystem of the target system.  

Data collected from the above three experiments are shown in Babuška et al (2008) and in 

Tables 5, 6 and 7 respectively in Cheung and Beck (2008b). Three cases of Nc, Nv and Na, 

as shown in Table 5.1, are considered. For instance, for case 1, Nc = 5, Nv = 2 and Na = 1 

correspond to the first five, the first two and the first of the measurements listed in Tables 5, 

6 and 7 respectively in Cheung and Beck (2008b). A superscript is added to Di to denote 

different data cases. For instance, D1
(1)

 denotes data collected from the calibration 

experiment with Nc = 5, D2
(1) denotes data collected from the validation experiment with Nv 

= 2 and D3
(1) denotes data collected from the accreditation experiment with Na = 1. Given 

Young’s modulus of each of the bars, the elongation of the bars in the first and second 

experiment and the vertical displacement in the third experiment can be predicted using the 

equations in Babuška et al (2008) and in Appendix I in Cheung and Beck (2008b). For 

convenience, the superscripts in θ(i,j) are omitted in this section. Also, only the results for 

data D1
(3), D2

(3) and D3
(3) are presented here; results for data cases 1 and 2 may be found in 

Cheung and Beck (2008b). 

Table 5.1 Number of samples for different cases 

Case Nc Nv Na 

1 5 2 1 

2 20 4 1 

3 30 10 2 

 



 

 152

5.2.1 Using data D1 from the calibration experiment 

For the quantification of the uncertainties in Young’s modulus E(x), 0≤x≤L, of a bar of 

length L using data D1 from the calibration experiment, a set M1 of four candidate model 

classes Mj
(1), j=1,2,3,4, is considered as follows: 

Model class M1
(1): The compliance S(x)=S=1/E is constant along a bar and the value for 

each bar is assumed to be a sample from a Gaussian distribution with mean μs and variance 

σs
2. The elongation δLc of a bar of length Lc is given by δLc= FcLcS/A+εc where εc is the 

prediction error, assumed to follow a Gaussian distribution with mean zero and variance σε
2. 

The term εc is needed since from D1, it can be seen that δLc is obviously not proportional to 

S. The prior PDF for θ =[μs σs
2 σε

2]T is chosen as three independent probability distributions: 

μs follows a truncated Gaussian distribution (constrained to be positive) which is 

proportional to a Gaussian distribution with mean equal to the sample mean of 

measurements of the mid-point compliance Sc(Lc/2) and c.o.v. (coefficient of variation) of 

1.0; σs
2
 follows an inverse gamma distribution with mean μ equal to the sample variance of 

measurements of Sc(Lc/2) and c.o.v. δ =1.0, i.e., p(σs
2) (σs

2)−α−1exp(−β/σs
2) where α=δ−2+2, 

β=μ(α−1); ls follows an inverse gamma distribution with mean equal to 10-11 m2 (slightly 

more than the mean-square of the elongation measurements) and c.o.v. equal to 1.0. The 

prior c.o.v. of all of the uncertain parameters is chosen to be 1.0 to reflect a large 

uncertainty in the values of these parameters. If the type of material of the bars had been 

known in advance, the prior mean for μs could have been chosen to be the nominal value of 

the compliance obtained from previous tests performed on such material and the prior mean 

for σs
2
 could have been chosen to be the prior mean for μs multiplied by a coefficient of 

variation chosen to reflect previously observed variability in the material compliance. 

Model class M2
(1): The compliance S(x) is assumed to follow a stationary Gaussian random 

field with mean μs and correlation function Cov(S(x1),S(x2)|σs
2, ls, r)= σs

2exp(-(|x1-x2|/ls)
r) 

where r is equal to 1. The prior PDF for θ =[μs σs
2
 ls]

T is chosen as three independent 
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distributions: the prior PDFs for the mean μs and the variance σs
2
 follow the same 

distributions as in M1
(1); the correlation length ls follows a uniform distribution on the 

interval [10-5L, L] where we choose L=0.5m to give a reasonable range. 

Model class M3
(1): Everything is the same as M2

(1)
 except r is equal to 2.  

Model class M4
(1): Everything is the same as M2

(1)
 and M3

(1)
 except that r is uncertain. The 

prior PDF for θ =[μs σs
2
 ls r]T is chosen as four independent distributions: μs, σs

2, ls follow 

the same distributions as in M2
(1)

 and M3
(1) and r follows a uniform distribution on [0.5, 3].  

Babuška et al. (2008) and Grigoriu and Field (2008) also study the static-frame challenge 

problem using Bayesian updating. The perfectly-correlated Gaussian model for the 

compliance in M1
(1) and the partially-correlated stationary Gaussian random field model for 

the compliance in M3
(1) are also considered in Babuška et al. (2008). The partially-

correlated Gaussian random field model for the compliance in M2
(1)

 is considered in 

Grigoriu and Field (2008). M2
(1)

 and M3
(1)

 are included here for comparison purposes only. 

In practice, when r is uncertain, only M4
(1)

 needs to be considered. For r=0, the correlation 

coefficient between the compliance at one position on the bar and that at another position is 

always equal to e-1. This model is thought to be unreasonably constrained and so it is not 

considered. This is why the lower bound of r is taken to be positive.  

Babuška et al. (2008) find point estimates of μs and σs
2
 in M1

(1)
 by matching the first two 

sample moments of the compliance data Sc
(i)(Lc/2), i=1,2…, Nc, and ls in M3

(1)
 by matching 

the sample variance of the elongation data δLc
(i), i=1,2…, Nc, and the sample covariance of 

δLc
(i) and Sc

(i)(Lc/2), i=1,2…, Nc. Grigoriu and Field (2008) approximate the uncertain 

parameters by point estimates by matching the sample moments similar to Babuška et al 

(2008) except that they do not consider the sample covariance of δLc
(i) and Sc

(i)(Lc/2), 

i=1,2…, Nc. In Grigoriu and Field (2008), the uncertainties in the model parameters μs, σs
2 

and ls are not considered and not directly propagated into the predictions so probabilistic 
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information in these parameters is not subsequently characterized. Babuška et al. (2008) 

quantify the uncertainties by using kernel density estimation to reconstruct the joint PDF of 

δLc and Sc(Lc/2) from the data for δLc
(i) and Sc

(i)(Lc/2) and then using the bootstrapping 

method to generate additional “data”.  

Appropriate quantification of uncertainties in the parameters (i.e. obtaining complete 

probabilistic information in terms of the posterior PDF for each model class) is desirable 

since it significantly affects the effectiveness and robustness of model class updating, 

comparison and validation, as well as the prediction of the responses and the failure 

probability of the target structure. Here we use the challenge problem to illustrate how the 

uncertainties can be quantified appropriately and effectively by exploiting the full power of 

Bayesian analysis using the proposed concept of hierarchical stochastic system model 

classes and recently-developed computational tools. Later, when we present the analysis 

results, it will be clear that given the calibration data, the uncertainty in μs is quite small but 

the uncertainties in other parameters and data-induced correlation between the parameters 

are not negligible; the complete probabilistic information is, however, encapsulated in the 

samples from the posterior. 

To quantify the uncertainties of θ using Bayesian analysis and D1
(3), the elongation data 

δLc
(i) and the compliance data Sc

(i)(Lc/2), i=1,2,…, Nc should be considered simultaneously 

since they are correlated to each other given θ and the proposed model classes.  

The posterior PDF for model class Mj
(1), for j=1,2,3,4, is given by Bayes’ Theorem: 

p(θ|D1
(3),Mj

(1)) = p(D1
(3)|θ,Mj

(1))p(θ|Mj
(1))/p(D1

(3)|Mj
(1)) where the prior PDF p(θ|Mj

(1)) is 

described above and the likelihood function p(D1(3)|θ,Mj(1)) is given by the following. 

The likelihood function for M1
(1) is: 
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C  (5.13) 

For M2
(1) and M3

(1), the likelihood function is the same as that for M4
(1)

 with r=1 and 2, 

respectively. The likelihood function for M4
(1) is given by: 

(3) (1)
1 4

( ) 1 ( )
2 1/ 2 2

1

( | , )

1 1
exp( [ ( )] ( , )[ ( )])

[2 | ( , ) | ] 2

c

c

N
i T i

s s sN
is s s

p

l r
l r

 
 





   

θ

y μ C y μ
C

D M

 (5.14) 

where y(i) and μ(θ1) are given by (5.11) and (5.12) and C(ls, r) is given by: 
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C  (5.15) 

where the entries 11C and 12C  of C are given by: 

2
2 21 2

11 1 220 0 0

Cov( ( ), ( ) | , , )
( , ) ( ) 2( ) ( ) exp( ( ) )

c c cL L L rc s s c
s c

c s c s

F S x S x l r F x
C l r dx dx L x dx

A A l




     
  (5.16) 

2

12 20 0

Cov( ( ), ( / 2) | , , ) | / 2 |
( , ) exp( ( ) )

c cL L rc c s s c c
s

c s c s

F S x S L l r F x L
C l r dx dx

A A l





     (5.17) 

For M2
(1), r is equal to 1 and thus the above integrals can be evaluated analytically to give: 

 2
11 12( ,1) 2( ) ( exp( ));  ( ,1) 2( ) (1 exp( ))

2
c c c c

s s c s s s s
c s c s

F L F L
C l l L l l C l l

A l A l
        (5.18) 

For M3
(1), r is equal to 2 and thus the above integrals can be expressed in terms of the error 

function to give: 

 

2 2 2
11

12

( , 2) ( ) [ erf ( ) (1 exp( ( ) ))]

( , 2) erf ( )
2

c c c
s c s s

c s s

c c
s s

c s

F L L
C l L l l

A l l

F L
C l l

A l





   


 (5.19) 

Since the computer always has a precision limit in representing numbers, when performing 

the analysis, we make sure ls is such that ( , )sl rC is positive definite, i.e., 11( , )sC l r and 

| ( , ) |sl rC = 2
11 12( , ) ( , )s sC l r C l r  are both positive. The interval of ls for its prior PDF in 

M2
(1), M3 

(1) and M4
(1) satisfies this constraint. 
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Table 5.2 shows the statistical results using the calibration data D1
(3) where Nc = 30. The 

(j+1)-th column gives the results obtained using a full Bayesian analysis for model class 

Mj
(1), j=1,2,3,4. We used the Hybrid Gibbs TMCMC algorithm presented in Appendix 5A 

for simulating samples from the posterior p(θ|D1
(3),Mj

(1)) and for calculating the evidence 

p(D1
(3)|Mj

(1)) which is required for the calculation of the probability P(Mj
(1)|D1

(3),M) of each 

model class conditioned on the data D1
(3). This algorithm is used for simulating samples 

from the posterior p(θ|D1
(3),Mj

(1)) because of its ability to handle the case where we do not 

know apriori whether there may be several separated neighborhoods of high probability 

regions of p(θ|D1
(3),Mj

(1)) between which the transition using a Markov chain of samples is 

not efficient. 

The second row of Table 5.2 gives the MAP (maximum a posteriori) estimate θMAP (that is, 

θ that globally maximizes the product p(D1
(3)|θ,Mj

(1))p(θ|Mj
(1)) and so p(θ|D1

(3),Mj
(1))). The 

third row gives the mean (the number before the semicolon), c.o.v. (the number after the 

semicolon) and the correlation coefficient matrix R from the posterior samples for θ where 

the (i,j) entry of R is the correlation coefficient between θi and θj. Only the upper diagonal 

entries of R are presented since it is symmetric. Compared with the prior uncertainty in the 

parameters, the posterior (updated) uncertainty is reduced since the data provide 

information about these parameters. For all data cases and four model classes, μs has a lot 

smaller uncertainty than the other parameters which have significant uncertainties. It can be 

seen that the posterior mean of σs
2 given data D1

(3)
 is quite different from the sample 

variance of the compliance measurements Sc
(i), i=1,…, Nc since the elongation data δLc

(i)  in 

D1
(3)

 give extra information about this parameter. Because the challenge problem assumes 

an exact theory for the deformation analysis, prediction errors for each model class are 

accounted for by the modeling parameters such as σs
2. In general, prediction errors can be 

explicitly accounted for by adding them to the output equation (Beck and Katafygiotis 

(1998)), as done in M1
(1). 
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Table 5.2 Statistical results using data D1
(3) from the calibration experiment 

 M1
(1) M2

(1) M3
(1) M4

(1) 

μs (Pa-1)             

σs
2(Pa-2) 

σε
2*(m2);ls(m) 

MAP  

r 

8.64×10-11 

3.24×10-23 

1.11×10-11* 

8.87×10-11 

4.87×10-23 

0.0284 

8.87×10-11 

4.76×10-23 

0.0307 

8.87×10-11 

4.72×10-23 

0.0305 

3 

μs (Pa-1)             

σs
2(Pa-2) 

ls(m) 

r 

Statistics  

parameters  

(stochastic  

Simulation) 

 

 

 R 

8.64×10-11;1.2% 

3.69×10-23;26.0% 

1.24×10-11;23.7% 

 

 

1 0.09 0.11

1 0.09

1

 
  
  

8.88×10-11;0.83% 

5.19×10-23;19.5% 

0.0319;27.5% 

 

 

1 0.05 0.20

1 0.10

1

 
  
  

8.87×10-11;0.69% 

5.37×10-23;20.4% 

0.0327;23.6% 

 

1 0.10 0.04

1 0.21

1

 
  
  

 

8.88×10-11;0.8% 

5.20×10-23;19.9% 

0.0328;27.8% 

1.79;40.5% 

1 0.01 0.15 0.07

1 0.05 0.14

1 0.01

1

 
   
 
 
 

Log evidence  1059.63 1071.34 1071.66 1071.87 

E[lnp(D1
(3)|θ,Mj

(1))] 1064.89 1079.75 1080.15 1079.82 

Expected 

information gain  

5.27 8.41 8.49 7.95 

P(Mj
(1)|D1

(3),M1) 2.01×10-6 0.245 0.338 0.416 

P(F|θMAP, D1
(3), Mj

(1)) 3.61×10-2 3.56×10-7 3.19×10-9 6.70×10-12 

P(F|D1
(3), Mj

(1)) 9.81×10-2(1.9%) 3.58×10-4(16.1%) 1.30×10-4(26.1%) 2.79×10-4(16.5%) 

P(F|D1
(3), M1) 2.48×10-4 

 

It can be seen from the correlation coefficient matrix that there is only weak correlation 

between pairs of parameters, although one must be careful since a small correlation 

coefficient between two uncertain parameters only implies weak linear dependence and 

does not necessarily imply weak dependence between them unless the parameters are 

jointly Gaussian. A simple example for this is W=Z2 and a standard normal variable Z 

which are uncorrelated but strongly dependent. To investigate dependence between 

different pairs of parameters, sample plots of some pairs of the components of θ from the 

posterior p(θ|D1
(3), Mj

(1)) are shown in Figure 5.2 (for j=2), Figure 5.3 (for j=3) and Figure 
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5.4 (j=4). Each axis corresponds to an uncertain parameter θi divided by its posterior mean 

μi given D1
(3)

 and a specific model class Mj
(1), which can be estimated as follows:  

 (3) (1) ( )
1

1

1
[ | , ]

K
k

i i j i
k

E
K

  


  D M  (5.20) 

where [ (1) ( ),..., K
i i  ] are K posterior samples for θi from p(θ|D1

(3), Mj
(1)). All the other 

parameters have significantly larger uncertainties than θ1. It can be seen that p(θ|D1
(3), M2

(1)) 

and p(θ|D1
(3), M3

(1)) are not close to a multivariate Gaussian PDF and p(θ|D1
(3), M4

(1)) 

departs substantially from a multivariate Gaussian. For M4
(1), the samples for r show 

truncation due to the choice of truncated uniform priors for r.  

Figure 5.5 gives the histogram of posterior samples for r from p(θ|D1
(3), M4

(1)). This figure 

suggests that p(r|D1
(3), M4

(1)) is multi-modal and every value of r is of non-negligible 

plausibility. The above results exhibit the strength of the stochastic simulation method in 

capturing the full characteristics of the complex posterior PDF p(θ|D1
(3), Mj

(1)) represented 

by the generated posterior samples. 

The stochastic simulation estimate for log evidence, posterior mean of the log likelihood 

function (a datafit measure), expected information gain and the probability P(Mj
(1)|D1

(3),M1) 

of the model classes are shown in the fourth through seventh rows, respectively, of Table 

5.2. Based on the calibration data, M1
(1) is very improbable compared with the other model 

classes M2
(1), M3

(1) and M4
(1) which have similar posterior probabilities. These latter model 

classes have essentially the same posterior mean of the log likelihood function which 

shows that they give a similar fit to the data on average and they also have similar expected 

information gains. 

Grigoriu and Field (2008) perform model selection by calculating the posterior model 

probabilities of the MLE (maximum likelihood estimate) models (rather than the posterior 
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probability for the whole model class) in which the modeling parameters are obtained by 

matching the moments calculated from the data. Such an approach considers the magnitude 

of the likelihood functions of the MLE models and no uncertainties in the parameters are 

considered when performing model selection. The fact that there exists many plausible 

models in a model class is not considered, in contrast to our full Bayesian treatment. In 

particular, when the evidence for the model class is not employed, there is no automatic 

downgrading of more “complex” models that extract more information from the data, so 

this can lead to what is commonly called “data overfitting” (Bishop 2006). Note that one 

cannot simply count the number of uncertain parameters in a model class to judge reliably 

its complexity; for example, one should use the evidence for the model class and not the 

simplified version known as BIC (Bayesian information criterion) for model selection 

(Beck and Yuen 2004, Muto and Beck 2008). 

For each of the four model classes Mj
(1), given θ, it can be shown that the response wp of 

interest for the target frame structure follows a Gaussian distribution with mean μp =Kpμs 

and variance σp
2= σs

2Vp,1 for M1
(1) and σs

2Vp,j(ls) for Mj
(1), j=2,3 and σs

2Vp,j(ls, r) for Mj
(1), j=4 

where the expressions for Kp and Vp,j are given in Cheung and Beck (2008b). It should be 

stressed that wp is not Gaussian (in this case, it follows a distribution which a weighted 

infinite sum of Gaussian PDFs) and it is Gaussian only when given θ. 

The eighth row in Table 5.2 gives the failure probability P(F|θMAP, D1
(3), Mj

(1)) of the target 

frame structure with θ= θMAP based on the calibration data D1
(3)

 and each model class, 

which can be expressed in terms of the CDF of a standard Gaussian random variable Φ(z): 

 (3) (1)
1

0.003 ( ) 0.003 ( )
( | , , ) ( ) 1 ( )

( ) ( )
p p

j
p p

P F
 

 
  

   MAP MAP
MAP

MAP MAP

θ θ
θ

θ θ
D M  (5.21) 
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The ninth row gives the predicted robust failure probability P(F|D1
(3), Mj

(1)) (the number 

outside the parenthesis) of the target frame structure with the uncertainty in θ taken into 

account for each model class, and it is calculated using: 

(3) (1) (3) (1) (3) (1)
1 1 1

( ) ( )

( ) ( )
1

( | , ) ( | , , ) ( | , )

0.003 ( ) 0.003 ( )1
1 [ ( ) ( )]

( ) ( )

j j j

k kK
p p

k k
k p p

P F P F p d

K

 
 



  
   





θ θ θ

θ θ

θ θ

D M D M D M

 (5.22) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1
(3), Mj

(1)). An alternative way to 

calculate P(F|D1
(3), Mj

(1)) is by simulating samples of wp based on posterior samples from 

p(θ|D1
(3), Mj

(1)) and check how many leads to failure. But in the problem considered here, 

this is always less efficient than (5.22) (Refer to Appendix 5B). It should be noted that a 

very efficient stochastic simulation method called Subset Simulation (Au and Beck 2001b) 

can also be used for calculating P(F|D1
(3), Mj

(1)) using posterior samples from p(θ|D1
(3), 

Mj
(1)). The number inside the parenthesis gives the estimate of the coefficient of variation 

(c.o.v.) of the above predicted robust failure probability estimate. It can be seen that 

P(F|D1
(3), Mj

(1)) is orders of magnitude different from P(F|θMAP, D1
(3), Mj

(1)) showing that 

the effects of the uncertainties in the parameters on the failure probabilities is substantial. In 

fact, ignoring the uncertainty in θ would be disastrous since P(F|θMAP, D1
(3), Mj

(1)) greatly 

underestimates the failure probability for all model classes and it varies greatly from one 

model class to another, in contrast with the robust case P(F|D1
(3), Mj

(1)). Figure 5.6 shows 

P(F| ( )kθ , D1
(3), Mj

(1)) corresponding to each posterior sample model ( )kθ , sorted in 

increasing order. Figure 5.7 shows the CDF of P(F|θ, D1
(3), Mj

(1)) estimated using posterior 

samples from p(θ|D1
(3), Mj

(1)). Figures 5.6 and 5.7 confirm that there is a large variability in 

P(F|θ, D1
(3), Mj

(1)) due to the uncertainties in θ. 
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Posterior model averaging can be carried out to obtain the predicted hyper-robust failure 

probability P(F|D1
(3), M1) given the set of candidate model classes M1 (last row of Table 

5.2): 

 
4

(3) (3) (1) (1) (3) 4
1 1 1 1 1

1

( | ) ( | , ) ( | , ) 2.48 10j j
j

P F M P F P M 



  D , D M M D  (5.23) 

Figure 5.8 shows the CDFs of the predicted vertical displacement wp at point P in the target 

frame structure corresponding to each sample ( )kθ , k=1,2,…,4000, from p(θ|D1
(3), M4

(1)). 

The robust posterior CDF of the response wp of interest for the target frame structure can be 

obtained using the Theorem of Total Probability, as in the previous section. Figure 5.9 

shows that the robust CDFs for the three model classes are very close to each other in the 

high probability region but differ somewhat in the tails so the predicted failure probability 

is quite different (though still within the same order of magnitude), as shown in Table 5.2. 

From the results in Table 5.2, it can be seen that P(F|D1
(3), M1

(1))P(M1
(1)|D1

(3), M1) is 

negligible compared to P(F|D1
(3), M1) and so the contribution of M1

(1) is negligible to the 

prediction of interest, the failure probability of the target frame structure. Also, having a 

posterior model class probability P(M1
(1)|D1

(3),M1) that is several orders of magnitude 

smaller than those for the other model classes implies M1
(1)

 is relatively improbable 

conditioned on the data D1
(3). Thus, M1

(1) is dropped in the subsequent analyses. 

Note that the posterior probability P(Mj
(1)|D1

(3),M1) for each model class conditioned on the 

data D1
(3)

 gives the plausibility of each Mj
(1) given the set of candidate model classes 

M1={Mj
(1), j=1,2,3,4} and P(F|D1

(3), Mj
(1))P(Mj

(1)|D1
(3), M1) gives the contribution of each 

model class to the desired response prediction. These probabilities do not give information 

regarding the predictability of each model class for the response of other systems, including 

the target system. It is shown in the following sections how the data from the validation and 
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accreditation experiments are used to evaluate the prediction consistency and accuracy of 

the calibrated model classes. 

 

Figure 5.2: Pairwise sample plots of posterior samples for p(θ| D1
(3), M2

(1)) normalized 

by posterior mean 

 

Figure 5.3: Pairwise sample plots of posterior samples for p(θ|D1
(3), M3

(1)) normalized 

by posterior mean 
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Figure 5.4: Pairwise sample plots of posterior samples for p(θ|D1
(3), M4

(1)) normalized 

by posterior mean 

 
Figure 5.5: Histogram for posterior samples for p(r|D1

(3), M4
(3)) 

r/μ4 
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Figure 5.6: The failure probability (sorted in increasing order) conditioned on each 

posterior sample θ(k) for model class Mj
(1), i.e. P(F|θ(k),D1

(3), Mj
(1)), for j=2,3,4 

 
Figure 5.7: CDF of failure probability P(F|θ, D1

(3), Mj
(1)), j=2,3,4, estimated using  

posterior samples for model class Mj
(1) 
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Figure 5.8: CDF of predicted vertical displacement wp at point P in the target frame 

structure conditioned on each sample from p(θ| D1
(3), M4

(1))   

 

Figure 5.9: Robust posterior CDF of predicted vertical displacement wp at point P in 

the target frame structure calculated using the posterior samples from p(θ|D1
(3), M j

(1)), 

j=2,3,4 

wp 

 

CDF 

 

wp 

CDF 
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5.2.2 Using data D2 from the validation experiment 

Candidate model classes for the subsystem in the validation experiment are Mj
(2), j=1,2,3. 

The only difference between the subsystem here and that in the previous experiment is the 

longer beam length. The uncertain parameters θ(2, j) for Mj
(2) are the same as θ(1, j+1) for 

Mj+1
(1). The “prior” PDF p(θ(2, j)|D1

(3), Mj
(2)) for Mj

(2) is given by the “posterior” PDF p(θ(1, 

j+1)|D1
(3), Mj+1

(1)) for Mj+1
(1). Data D2

(3)
 = {δLv

(i), i=1,2…, Nv=10} from the validation 

experiment are used to investigate the predictive performance, including the prediction 

consistency and accuracy of the model classes.  

To evaluate prediction accuracy, we compute the probability that the response δLv,p, which 

is the elongation of the bar in the validation experiment, predicted using the model classes 

updated by data from the previous experiment (i.e. data D1
(3)

 from the calibration 

experiment), is within a certain b% (b= 5 and 10) of the measured quantity δLv
(i) in the 

validation experiment. This probability is given by the following updated robust predictive 

PDF conditioned on D1
(3): 

( ) (3) (2) ( ) (2, ) (2) (2, ) (3) (2) (2, )
, 1 , 1

( ) (1, 1) (2) (1, 1) (3) (1) (1, 1)
, 1 1

( % | , ) ( % | , ) ( | , )

( % | , ) ( | , )

i i j j j
v p j v p j j

i j j j
v p j j

P e b P e b p d

P e b p d  


  

 




θ θ θ

θ θ θ

D M M D M

M D M
 (5.24) 

where  

 
( )

,( )
, ( )

i
v p vi

v p i
v

L L
e

L

 



  (5.25) 

For convenience, the superscripts in θ(i,j) will now be omitted. For the model class Mj
(2), 

j=1,2,3, given θ, it can be shown that the response δLv,p follows a Gaussian distribution 

with mean μv =Kvμs and variance σv, j
2= σs

2sv, j(ls,r) where Kv=FvLv/Av and sv,j are given by 

(5.16) with subscript ‘c’ replaced by ‘v’. For j=1, r is equal to 1, and sv, j(ls,r) is given by 
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(5.18) with subscript ‘c’ replaced by ‘v’ and for j=2, r is equal to 2, and sv, j(ls,r) is given by 

(5.19) with subscript ‘c’ replaced by ‘v’. Thus, the probability P(ev,p
(i) ≤b%|D1

(3), Mj
(2)) in 

(5.24) becomes:  

( ) (3) (2)
, 1

( ) ( )

(3) (1)
1 1

, ,

( ) ( ) ( ) ( )

( ) ( )
1 , ,

( % | , )

(1 ) ( ) (1 ) ( )
100 100[ ( ) ( )] ( | , )

( ) ( )

(1 ) ( ) (1 ) ( )1 100 100[ ( ) ( )]
( ) ( )

i
v p j

i i
v v v v

j
v j v j

i k i k
K v v v v

k k
k v j v j

P e b

b b
L L

p d

b b
L L

K

   

 

   

 







   
  

   
  





θ θ
θ θ

θ θ

θ θ

θ θ

D M

D M  (5.26) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ(1, j+1)|D1
(3), Mj+1

(1)). Similar to before, 

samples of δLv,p can be obtained as follows: For each ( )kθ , k=1,2,...,K, which are the 

posterior samples from p(θ|D1
(3), Mj+1

(1)), generate a sample δLv,p
(k) for δLv,p from a 

Gaussian distribution with mean μv(θ) and variance σv,j
 2(θ). These samples can also be 

used to find the above probability by approximating it as the proportion of samples that 

satisfies the condition ev,p
(i)≤b% out of the K samples. It can be shown, however, that the 

estimator in (5.26) is always of a smaller c.o.v. and thus more accurate than the latter 

approximation.  

The average prediction error probability, denoted P(ev,p≤b%|D1
(3), Mj

(2)), for a model class 

updated using data D1
(3)

 can be obtained by taking the arithmetic mean of P(ev,p
(i) ≤b%|D1

(3), 

Mj
(2)), i=1, 2…, Nv. Table 5.3 shows the results for P(ev,p

(i) ≤b%|D1
(3), Mj

(2)) (the numbers 

outside the parenthesis) and their average P(ev,p ≤b%|D1
(3), Mj

(2)) (the numbers inside the 

parenthesis) for j=1, 2, 3, and b=5 and 10. It can be seen from Table 5.3 that the model 

classes Mj
(2) (and so Mj+1

(1) updated using D1
(3)), for j=1, 2, 3, are sufficiently accurate. It is 

noted that the averages P(ev,p ≤5%|D1
(3), Mj

(2)) for each j=1, 2, 3, are larger than 0.5 

implying that it is more likely than not for the response prediction by the model classes to 

be accurate within 5% of the actual response. The averages P(ev,p ≤10%|D1
(3), Mj

(2))  are all 
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very close to 1, showing that it is very probable that the prediction errors for each model 

class are less than 10%. 

Table 5.3 Results of predicting δLv using data D1
(3)

 from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤5%|D1
(3),Mj

(2)) 0.325,0.732,  
0.325,0.844, 
0.579,0.325, 
0.732,0.943, 
0.149,0.844 
(0.579) 

0.368,0.774,  
0.368,0.882, 
0.624,0.368, 
0.774,0.956, 
0.160,0.882 
(0.615) 

0.327,0.730,  
0.327,0.846, 
0.579,0.327, 
0.730,0.944, 
0.137,0.846 
(0.579) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤10%|D1
(3),Mj

(2)) 0.940,0.994, 
0.940,0.997, 
0.984,0.940, 
0.994,0.999, 
0.815,0.997 
(0.960) 

0.956,0.997,  
0.956,0.998, 
0.988,0.956, 
0.997,0.999, 
0.854,0.998 
(0.970) 

0.943,0.993, 
0.943,0.999, 
0.984,0.943, 
0.993,0.999, 
0.817,0.999 
(0.961) 

( ) (3) (2)
, 1

(3) (2)
, 1

[ | , ]

[ | , ]

i
v v p j

v p j

L E L

Var L

 



 D M

D M
 

-2.40,-1.42 
-2.40,-1.02 
-1.81,-2.40 
-1.42,-0.43 
-2.99,-1.02 

-2.40,-1.38 
-2.40,-0.97 
-1.79,-2.40 
-1.38,-0.35 
-3.01,-0.97 

-2.41,-1.42 
-2.40,-1.03 
-1.82,-2.41 
-1.42,-0.44 
-3.00,-1.03 

 

To evaluate prediction consistency, we calculate the difference of the measured quantity 

δLv
(i) and the posterior mean (3) (2)

, 1[ | , ]v p jE L D M  of the robust predicted response 

(measured in terms of the number of posterior standard deviations 

(3) (2)
, 1[ | , ]v p jVar L D M ) as follows: 

 
( ) (3) (2)

, 1( )
, (3) (2)

, 1

[ | , ]

[ | , ]

i
v v p ji

v j

v p j

L E L
c

Var L

 






D M

D M
 (5.27) 

where 
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(3) (2) (3) (2) (3) (2)
, 1 , 1 1

(3) (1) (3) (1) ( )
1 1 1 1

1

[ | , ] [ | , , ] ( | , )

( ) ( | , ) ( , )

v p j v p j j

K
kv

v j v s s j s s
k

E L E L p d

K
p d K p d

K

 

     




  



 

θ θ θ

θ θ θ

D M D M D M

D M |D M
 (5.28) 

where ( )k
s  is the first component of θ(k), where θ(k), k=1,2,...,K, are posterior samples from  

p(θ|D1
(3), Mj+1

(1)). The variance in (5.27) is given by:   

 (3) (2) 2 (3) (2) 2 (3) (2)
, 1 , 1 , 1[ | , ] [ | , ] [ | , ]v p j v p j v p jVar L E L E L   D M D M D M  (5.29) 

where 

2 (3) (2) 2 (3) (2) (3) (2)
, 1 , 1 1

2 2 (3) (1) 2 ( ) 2 ( )
, 1 1 ,

1

[ | , ] [ | , , ] ( | , )

1
( ( ) ( )) ( | , ) [ ( ) ( )]

v p j v p j j

K
k k

v v j j v v j
k

E L E L p d

p d
K

 

   




   





θ θ θ

θ θ θ θ θ θ

D M D M D M

D M
 (5.30) 

where θ(k), k=1,2,...,K, are posterior samples from p(θ|D1
(3), Mj+1

(1)). The last rows of Table 

5.3 show the results for cv,j
(i), for j=1, 2, 3. It can be seen from these tables that the model 

classes Mj
(2) (and also Mj+1

(1)) updated just using data D1
(3), j=1, 2, 3, are sufficiently 

consistent since the results are all within about 3 standard deviations. 

   Using data D2
(3), which is modeled as stochastically independent of D1

(3)
 given θ, one can 

update uncertainties in θ for all surviving model classes using Bayes’ Theorem with  

p(θ|D1
(3), Mj

(2)) as the prior (recall that in this case, p(θ|D1
(3), Mj

(2)) = p(θ|D1
(3), Mj+1

(1))): 

 (3) (3) (2) 1 (3) (2) (3) (2)
1 2 2 2 1( | , , ) ( | , ) ( | , )j j jp c p pθ θ θD D M D M D M  (5.31) 

where the likelihood function is given by: 

 (3) (2) ( ) 2
2 / 22 2

1, ,

1 1
( | , ) exp( ( ( ))

(2 ( ) ) 2 ( )

v

v

N
i

j v vN
iv j v j

p L 
  

  θ θ
θ θ

D M  (5.32) 
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and the evidence p(D1
(3),D2

(3)|Mj
(2)) for model class Mj

(2) provided by the data D1
(3) and D2

(3) 

is given by: 

 (3) (3) (2) (3) (2) (3) (3) (2)
1 2 1 2 1( , | ) ( | ) ( | , )j j jp p pD D M D M D D M  (5.33) 

where p(D1
(3)|Mj

(2)) is equal to p(D1
(3)|Mj+1

(1)) which has already been determined from 

previous analyses, while p(D2
(3)|D1

(3),Mj
(2)) is given by: 

 (3) (3) (2) (3) (2) (3) (2)
2 1 2 1( | , ) ( | , ) ( | , )j j jp p p d  θ θ θD D M D M D M  (5.34) 

which is determined using the stochastic simulation method in Appendix 5A as before. The 

samples from the prior p(θ|D1
(l), Mj

(2)) (calibration test posterior p(θ|D1
(l), Mj+1

(1))), obtained 

from the previous analyses, are used.  

Table 5.4 shows the statistical results using data D2
(3)

 in addition to D1
(3). Compared to 

Table 5.2, it can be seen that the posterior c.o.v. of the parameters updated using additional 

data D2
(l)

 is reduced somewhat for σs
2, ls. The posterior means of the parameters σs

2 and ls 

using D1
(3)

 and D2
(3) are significantly higher than the means using only D1

(3). There are 

several possible reasons: 1) additional information is provided by the additional data D2
(3); 

and 2) uncertainties of the estimators due to a finite number of samples used in the 

stochastic simulation. Similar to before, it can be seen from the posterior correlation 

coefficient matrix that there is only weak correlation between most pairs of parameters. The 

posterior mean of r in M3
(2)

 is 1.79 but the uncertainty in r is significant (40% c.o.v.). The 

results show that given both D1
(3) and D2

(3), M1
(2), M2

(2) and M3
(2)

 are significantly probable. 

Thus, based on the calibration data and validation data, all the model classes M1
(2), M2

(2) 

and M3
(2) are considered in subsequent analyses. 
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It can also be seen that the predicted robust failure probability P(F|D1
(3),D2

(3),M2
(2)) of the 

target frame structure using model class M2
(2)

 is smaller than that using model classes M1
(2) 

and M3
(2). The predicted hyper-robust failure probability P(F|D1

(3),D2
(3),M2) is 1.25×10-5. 

Table 5.4 Statistical results using data D2
(3) from the validation experiment in addition 

to D1
(3) 

 M1
(2) M2

(2) M3
(2) 

μs (Pa-1)        

σs
2(Pa-2) 

ls(m) 

r 

Statistics of 

parameters  

 

 

 

  R 

8.70×10-11;0.62% 

6.00×10-23;17.2% 

0.0383;25.4% 

 

 

1 0.02 0.08

1 0.14

1

 
  
  

 

8.68×10-11;0.63% 

5.80×10-23;17.8% 

0.0384;19.0% 

 

 

1 0.04 0.10

1 0.10

1

 
  
  

 

8.68×10-11;0.6% 

5.70×10-23;20.1% 

0.0398;25.6% 

1.79;39.6% 

1 0.02 0.10 0.13

1 0.28 0.26

1 0.41

1

  
  
 
 
 

 

Log evidence  1174.56 1173.82 1173.83 

E[lnp(D1
(3),D2

(3)|θ,Mj
(2))] 1182.70 1182.83 1182.72 

Expected Information gain  8.14 9.01 8.90 

P(Mj
(2)|D1

(3),D2
(3),M2)  0.510 0.244 0.246 

P(F|D1
(3),D2

(3), Mj
(2)) 1.32×10-5(20.6%) 3.43×10-6(32.1%) 1.99×10-5(22.2%) 

P(F|D1
(3),D2

(3), M2) 1.25×10-5 

Table 5.5 Consistency assessment of model classes in predicting δLv using data D2
(3) 

from the validation experiment in addition to D1
(3) from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

( ) (3) (3) (2)
, 1 2

(3) (3) (2)
, 1 2

[ | , , ]

[ | , ]

i
v v p j

v p j

L E L

Var L

 



 D D M

D D ,M

-1.30,-0.43, 

-1.30,-0.08, 

-0.78,-1.30, 

-0.43,0.44, 

-1.83,-0.08 

-1.34,-0.42, 

-1.34,-0.05, 

-0.79,-1.34, 

-0.42,0.50, 

-1.90,-0.05 

-1.33,-0.43, 

-1.33,-0.07, 

-0.79,-1.33, 

-0.43,0.47, 

-1.87,-0.07 
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Table 5.5 shows the results for checking, using the following index, the consistency of the 

model classes Mj
(2), j =1, 2, 3, in predicting the response δLv using data D1

(3)
 and D2

(3):  

 
( ) (3) (3) (2)

, 1 2

(3) (3) (2)
, 1 2

[ | , , ]

[ | , , ]

i
v v p j

v p j

L E L

Var L

 



 D D M

D D M
 (5.35) 

where (3) (3) (2)
, 1 2[ | , , ]v p jE L D D M  and (3) (3) (2)

, 1 2[ | , , ]v p jVar L D D M  can be determined 

using (5.28), (5.29) and (5.30) except that the samples from the most recently updated 

posterior PDF p(θ|D1
(3),D2

(3),Mj
(2)) are used instead of p(θ|D1

(3),Mj
(2)). By comparing Table 

5.3 and Table 5.5, it can be seen that the consistency of the model classes improves over 

the case without data D2
(3), with the ratios in (5.35) all being less than 2 standard deviations. 

The accuracy of the model classes Mj
(2), j =1, 2, 3, in predicting δLv using data D1

(3)
 and 

D2
(3) can be assessed, similar to the case without data D2

(3), by evaluating i) 

P(ev,p
(i)≤b%|D1

(3), D2
(3), Mj

(2)), i=1, 2…, Nv, which can be determined using (5.26) except 

that the samples from the most recently updated posterior PDF p(θ|D1
(3),D2

(3),Mj
(2)) are used 

instead, and ii) the average prediction error probability P(ev,p≤b%|D1
(3), D2

(3), Mj
(2)) of a 

model class updated using data D1
(3)

 and D2
(3), which can be obtained by taking the 

arithmetic mean of P(ev,p
(i) ≤b%|D1

(3), D2
(3), Mj

(2)), i=1, 2…, Nv. The corresponding results 

are not shown here for brevity but they show high probability that the prediction errors for 

each model class will be less than 5%, with even higher probabilities for 10% (see Cheung 

and Beck (2008b) for details). 

5.2.3 Using data D3 from the accreditation experiment 

Candidate model classes for the subsystem in the accreditation experiment are Mj
(3), j=1,2,3. 

The uncertain parameters θ(3, j) for Mj
(3) are the same as θ(2, j) for Mj

(2). The “prior” PDF p(θ(3, 

j)|D1
(3), D2

(3), Mj
(3)) for Mj

(3) is given by the “posterior” PDF p(θ(2, j)|D1
(3), D2

(3), Mj
(2)) for 

Mj
(2). Similar analyses to the above are carried out as follows. Data D3

(3)
 = {wa

(i), i=1, 2} 
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from the accreditation experiment are used to investigate the predictive performance of the 

model classes. The probability that the response wa,p (the vertical displacement of point Q 

of the frame structure in the accreditation experiment) predicted using the model classes 

updated by data from the previous two experiments is within a certain b% of the measured 

quantity wa
(i) is given by the following updated robust predictive PDF conditioned on 

D1
(3)and D2

(3):  

 

( ) (3) (3) (3) ( ) (3) (3) (3) (3)
, 1 2 , 1 2

( ) (3) (3) (3) (2)
, 1 2

( % | , ) ( % | , ) ( | , , )

( % | , ) ( | , , )

i i
a p j a p j j

i
a p j j

P e b P e b p d

P e b p d

  

 




θ θ θ

θ θ θ

D D ,M M D D M

M D D M
(5.36) 

where  

 
( )

,( )
, ( )

i
a p ai

a p i
a

w w
e

w


  (5.37) 

For the model class Mj
(3), j=1, 2, 3, given θ, it can be shown that the response wa,p follows a 

Gaussian distribution with mean μa =Kaμs and variance σa, j
2= σs

2sa, j(ls,r) where Ka is given 

as follows: 

 
3

11 1 2 2 4 4

1 2 4

1
[ 2( )]

2 48
a

a

F LF L F L F L
K

A A A I
     (5.38) 

The expression for sa,j is given in Appendix III in Cheung and Beck (2008b). Thus, 
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( ) (3) (3) (3)
, 1 2

( ) ( )

( ) (3) (3) (2)
1 2

, ,

( ) ( ) ( ) ( )
( )

( )
,

( % | , , )

(1 ) ( ) (1 ) ( )
100 100sgn( ) [ ( ) ( )] ( | , , )

( ) ( )

(1 ) ( ) (1 ) ( )sgn( ) 100 100( ) (
( )

i
a p j

i i
a a a a

i
a j

a j a j

i k i k
i a a a a

a
k

a j

P e b

b b
w w

w p d

b b
w ww

K

 

 

 





   
  

   
  


θ θ

θ θ
θ θ

θ θ

θ

D D M

D D M

( )
1 ,

)
( )

K

k
k a j
 θ

 (5.39) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1
(3),D2

(3),Mj
(2)).  

Table 5.6 shows the results for P(ea,p
(i)≤b%|D1

(3),D2
(3),Mj

(3)) (the numbers outside the 

parenthesis) and the average prediction error probability P(ea,p≤b%|D1
(3),D2

(3),Mj
(3)) (the 

numbers inside the parenthesis), for j=1, 2, 3, and b=5 and 10 using D1
(3) and D2

(3). It can be 

seen that, the model classes Mj
(3) (and so Mj

(2)), j=1, 2, 3, updated using D1
(3)

 and D2
(3), are 

sufficiently accurate. It is noted that all P(ea,p≤5%|D 1
(3),D2

(3),Mj
(3)) are larger than 0.84 

implying that there is a high probability for the response prediction by the model classes to 

be within 5% of the actual response measurements. 

Table 5.6 Results of predicting wa using data D2
(3) from the validation experiment in 

addition to D1
(3) from the calibration experiment 

 M1
(3) M2

(3) M3
(3) 

P(|wa,p−wa
(i)|/|wa

(i)|≤5%|D1
(3),D2

(3),Mj
(3)) 0.896,0.788 

(0.842) 

0.907,0.782 

(0.844) 

0.902,0.795 

(0.848) 

P(|wa,p−wa
(i)|/|wa

(i)|≤10%|D1
(3),D2

(3),Mj
(3)) 0.997,0.992 

(0.994) 

0.999,0.995, 

(0.997) 

0.9995,0.994 

(0.997) 

( ) (3) (3) (3)
, 1 2

(3) (3) (3)
, 1 2

[ | , , ]

[ | , , ]

i
a a p j

a p j

w E w

Var w

 D D M

D D M
 

0.26,-0.89 0.24,-0.96 0.26,-0.94 
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The difference between the measured quantity wa
(i) and the posterior mean 

(3) (3) (3)
, 1 2[ | , , ]a p jE w D D M  of the robust predicted response (measured in terms of the 

number of posterior standard deviations (3) (3) (3)
, 1 2[ | , , ]a p jVar w D D M ) is given by: 

  
( ) (3) (3) (3)

, 1 2( )
, (3) (3) (3)

, 1 2

[ | , , ]

[ | , , ]

i
a a p ji

a j

a p j

w E w
c

Var w




D D M

D D M
 (5.40) 

where (3) (3) (3)
, 1 2[ | , , ]a p jE w D D M and (3) (3) (3)

, 1 2[ | , , ]a p jVar w D D M  can be calculated using 

(5.28), (5.29) and (5.30) with ( )i
vL  replaced by wa

(i), ,v pL  by wa,p, D1
(3) by D1

(3), D2
(3), 

Mj
(2) by Mj

(3), the subscript “v” replaced by “a” and where ( )k
s  is the first component of 

( )kθ , where ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1
(3),D2

(3),Mj
(2)). The last row 

of Table 5.6 shows the results for ca,j
(i), for j=1, 2, 3. It can be seen from this table that the 

model classes Mj
(3), j=1, 2,3, (and so Mj

(2)) updated using D1
(3)

 and D2
(3) are sufficiently 

consistent since the results are all within a standard deviation. 

   Using data D3
(3), which is modelled as stochastically independent of D1

(3)
 and D2

(3) given 

θ, one can update the uncertainties in θ for all the model classes using Bayes’ Theorem 

with the previous posterior PDF p(θ|D1
(3),D2

(3),Mj
(2)) as the prior p(θ|D1

(3),D2
(3),Mj

(3)): 

 (3) (3) (3) (3) 1 (3) (3) (3) (3) (3)
1 2 3 3 3 1 2( | , , , ) ( | , ) ( | , , )j j jp c p pθ θ θD D D M D M D D M  (5.41) 

where the likelihood function is given by (with Na=2): 

 (3) (3) ( ) 2
3 / 22 2

1, ,

1 1
( | , ) exp( ( ( ))

(2 ( ) ) 2 ( )

a

a

N
i

j a aN
ia j a j

p w 
  

  θ θ
θ θ

D M  (5.42) 

The evidence p(D1
(3),D2

(3),D3
(3)|Mj

(3)) for model class Mj
(3) that is provided by the data D1

(3), 

D2
(3) and D3

(3)
 is given by: 
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 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
1 2 3 1 2 3 1 2( , , | ) ( , | ) ( | , , )j j jp p pD D D M D D M D D D M  (5.43) 

where p(D1
(3),D2

(3)|Mj
(3)) has already been determined and p(D3

(3)|D1
(3),D2

(3),Mj
(3)) is given 

by: 

 (3) (3) (3) (3) (3) (3) (3) (3) (3)
3 1 2 3 1 2( | , , ) ( | , ) ( | , , )j j jp p p d  θ θ θD D D M D M D D M  (5.44) 

which is determined using the same stochastic simulation method as before. The samples 

from the prior p(θ|D1
(3),D2

(3),Mj
(3)) obtained from the previous analyses are used. 

Table 5.7 Statistical results using data D3
(3) from the accreditation experiment in 

addition to D1
(3) and D2

(3) 

 M1
(3) M2

(3) M3
(3) 

μs (Pa-1)     

σs
2(Pa-2) 

ls(m) 

r 

Statistics of 

parameters  

 

 

 

  R 

8.69×10-11;0.57% 

5.88×10-23;18.0% 

0.0374;25.5% 

 

 

1 0.04 0.06

1 0.17

1

 
  
  

 

8.69×10-11;0.59% 

5.75×10-23;17.5% 

0.0378;18.9% 

 

 

1 0.06 0.09

1 0.19

1

 
  
  

 

8.69×10-11;0.6% 

5.61×10-23;20.0% 

0.0392;26.5% 

1.81;40.4% 

1 0.06 0.16 0.18

1 0.30 0.21

1 0.36

1

  
  
 
 
 

 

Log evidence  1193.94 1193.21 1193.21 

P(Mj
(3)|D1

(3),D2
(3),D3

(3),M3)  0.510 0.245 0.245 

P(F|D1
(3),D2

(3),D3
(3), Mj

(3)) 8.98×10-6(11.8%) 1.29×10-6(16.6%) 2.68×10-5(20.0%) 

P(F|D1
(3),D2

(3),D3
(3), M3) 1.14×10-5 

 

The system involved in this accreditation experiment is a lot more complicated than the one 

in the validation experiment. In practice, one may want to introduce additional parameters 

to take into account the additional uncertainties involved. Nonetheless, for illustration, we 
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have kept the same number of uncertain parameters as before, which is consistent with the 

statement of the validation challenge problem, and used data D3
(3)

 to update the 

uncertainties in the parameters. Table 5.7 shows the statistical results using data D3
(3)

 in 

addition to the data D1
(3) and D2

(3) from the previous experiments. Compared to Tables 5.2 

and 5.4, some of the differences observed in the posterior mean, c.o.v. and correlation 

coefficient of parameters are due to: 1) additional information provided by the additional 

data D3
(3); and 2) uncertainties of the estimators due to a finite number of samples used in 

stochastic simulation. Similar to before, it can be seen from the posterior correlation 

coefficient matrix that there is only weak correlation between most pairs of parameters. The 

posterior means of r in M3
(3)

 is 1.81 but the uncertainty in r is still significant since D3
(3) 

provides only 2 additional data. The results show that given D1
(3), D2

(3)
 and D3

(3), M1
(3), M2

(3) 

and M3
(3)

 are significantly probable and the posterior probabilities are essentially unchanged 

from Table 5.4. Thus, all of the model classes M1
(3), M2

(3) and M3
(3) are utilized to make 

robust predictions. 

It can also be seen from Table 5.7 that the predicted robust failure probability 

P(F|D1
(3),D2

(3),D3
(3),M2

(3)) of the target frame structure using model class M2
(3)

 is again 

smaller than that using model classes M1
(3) and M3

(3)
. The predicted hyper-robust failure 

probability P(F|D1
(3),D2

(3),D3
(3),M3) is 1.14×10-5. By comparing Table 5.4 and Table 5.7, it 

can be seen that the predicted hyper-robust failure probability changes little compared to 

that based on only data D1
(3) and D2

(3). P(F|D1
(3),D2

(3),D3
(3),M2

(3))P(M2
(3)|D1

(3),D2
(3),D3

(3),M3) 

is small compared to P(F|D1
(3),D2

(3),D3
(3),M3) and thus the contribution of M2

(3) to the 

prediction quantity of interest is small.  

Table 5.8 shows the results for checking the consistency of the model classes Mj
(3), j =1, 2, 

3, in predicting the response wa using data D1
(3)

, D2
(3) and D3

(3):  
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( ) (3) (3) (3) (3)

, 1 2 3

(3) (3) (3) (3)
, 1 2 3

[ | , , ]

[ | , , ]

i
a a p j

a p j

w E w

Var w

 D D D ,M

D D D M
 (5.45) 

where (3) (3) (3) (3)
, 1 2 3[ | , , ]a p jE w D D D ,M  and (3) (3) (3) (3)

, 1 2 3[ | , , , ]a p jVar w D D D M  can be 

determined by using the equations for calculating (3) (3) (3)
, 1 2[ | , , ]a p jE w D D M and 

(3) (3) (3)
, 1 2[ | , , ]a p jVar w D D M  except that the samples from the most recently updated 

posterior PDF p(θ|D1
(3),D2

(3), D3
(3), Mj

(3)) are used instead. By comparing Table 5.6 and 

Table 5.8, it can be seen that the consistency of the model classes is similar to the case 

without data D3
(3) since D3

(3) provides only two additional data. 

Table 5.8 Consistency assessment of model classes in predicting wa using data D3
(3) 

from the accreditation experiment in addition to D1
(3) from the calibration experiment 

and D2
(3) from the validation experiment 

 M1
(3) M2

(3) M3
(3) 

( ) (3) (3) (3) (3)
, 1 2 3

(3) (3) (3) (3)
, 1 2 3

[ | , , ,

[ | , , , ]

i
a a p j

a p j

w E w

Var w

 D D D M

D D D M

 

0.30,-0.88 0.28,-0.94 0.28, -0.92 

 

The accuracy of the model classes Mj
(3), j =1, 2, 3, in predicting wa using data D1

(3), D2
(3) 

and D3
(3) can be assessed, similar to the case without data D3

(3), by evaluating i) 

P(ea,p
(i)≤b%|D1

(3), D2
(3), D3

(3), Mj
(3)), i=1, 2, which can be determined using (5.39) except 

that the samples from the most recently updated posterior PDF p(θ|D1
(3),D2

(3), D3
(3),Mj

(3)) 

are used instead, and ii) the average prediction error probability P(ea,p≤b%|D1
(3), D2

(3), D3
(3), 

Mj
(3)) of a model class updated using data D1

(3), D2
(3) and D3

(3), which can be obtained by 

taking the arithmetic mean of P(ea,p
(i)≤b%|D1

(3), D2
(3), D3

(3), Mj
(3)), i=1, 2. The 

corresponding results are not shown here for brevity but they show high prediction 
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accuracy (high probability for prediction errors less than 5%, with even higher probabilities 

for 10%) (see Cheung and Beck (2008b) for details). 

5.3 Concluding remarks 

A novel methodology based on Bayesian updating of hierarchical stochastic system model 

classes is proposed for uncertainty quantification, model updating, model selection, model 

validation and robust prediction of the response of a system for which some subsystems 

have been separately tested. It uses full Bayesian updating of the model classes, along with 

model class comparison and prediction consistency and accuracy assessment. In the 

proposed methodology, all the results are rigorously derived from the probability axioms 

and all the information in the available data are considered to make predictions. The 

concepts and computational tools of the proposed methodology are illustrated with a 

previously-studied validation challenge problem, although the methodology can handle a 

more general process of hierarchical subsystem testing. 

As shown by the illustrative example, within a model class, there are many plausible 

models and the predictions of response and failure probability of the final system can often 

vary greatly from one model to another, showing that the consequences of the uncertainties 

in the parameters are significant. Ignoring the uncertainty in the modeling parameters and 

solely relying on the MAP model (corresponding to the maximum of the posterior PDF) or 

the MLE model (corresponding to the maximum likelihood parameter value) for 

predictions can be dangerous and misleading since such predictions can greatly 

underestimate the failure probability and the uncertainty in the response. It is shown how 

more robust predictions by a model class can be obtained by taking into account the 

predictions from all the plausible models in the model class where the plausibilities are 

quantified by their respective posterior PDF values. 

Multiple model classes are investigated for the illustrative example. The response and 

failure probability prediction vary greatly from one model class to another. Hyper-robust 
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predictions of response and failure probability are also obtained by a weighted average of 

the robust predictions given by each model class where the weight is given by the posterior 

probability of the model class. The posterior probability of one of the candidate model 

classes is so small based on the calibration data that its contribution to the prediction is 

negligible, so it is discarded from further predictive analysis after the calibration tests. 

The computational problems resulting from full Bayesian updating of hierarchical model 

classes, as well as model class comparison, can be challenging, especially for problems 

with many uncertain parameters. A number of powerful computational tools based on 

stochastic simulation are used to solve efficiently the computational problems involved; in 

particular, for the illustrative example studied, the Hybrid Gibbs TMCMC algorithm 

worked well. 

If a model class performs well in predicting the response for the subsystems involved in all 

of the experiments, one can gain more confidence in its predictive performance for the final 

constructed system. However, it should be stressed that 1) whether the predictive 

performance of the model classes is acceptable or not depends on which criteria the 

decision maker thinks are critical, and 2) there is no guarantee that a model class which 

performs well enough to satisfy the selected criteria in predicting the response of the 

subsystems in these experiments will always predict the response of the final system well, 

especially in the case where some of the uncertainties in the final system which are critical 

to the prediction are not present in the subsystem tests (for example, there can be 

uncertainties in support or joint conditions in the final system, and uncertainties in input 

loadings, such as stronger amplitude inputs which may be experienced by the final system 

that cause it to behave very differently than the subsystems during their tests).  

Although it did not occur in the illustrative example, in the case where all candidate model 

classes give poor performance in predicting the response for subsystems involved in an 

experiment, one should check whether some of the uncertainties have not been adequately 
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modeled in the failing subsystem tests and, if so, modify the candidate model classes to 

properly take into account these uncertainties.  

To test the performance of the proposed methodology, future work should use data 

collected from real systems, preferably with a larger degree of complexity than the one 

considered in the illustrative example of this paper. 

Appendix 5A: Hybrid Gibbs TMCMC algorithm for posterior sampling 

Part of our methodology involves a sequential update of the posterior PDF given the data 

from the experiments collected from the subsystems. The following algorithm is proposed 

for this purpose. At the end of the experiment where data are collected from the i-th 

subsystem, we need to characterize p(θ|Di,Mj
(i)) given the data Di collected from the most 

current subsystem experiment and all the data Di-1 ={D1,…, Di-1} collected from the 

previous subsystem experiments, where Di = Di-1∪Di. The prior PDF corresponding to this 

posterior PDF is p(θ|Di-1,Mj
(i)) from which samples have been previously generated and the 

evidences p(Di-1|Mj
(i)) for each model class Mj

(i) which have been obtained. Note that in the 

analysis below, we use the conventions p(θ|D0,Mj
(i)) = p(θ|Mj

(i)) and p(D0|Mj
(i))=1. 

For a given θ, D1,…, Di are modeled as stochastically independent. We propose a hybrid 

approach making use of the TMCMC method (Ching and Chen 2007), Metropolis Hastings 

algorithm and Gibbs sampling to generate samples from the posterior PDF 

π(θ)=p(θ|Di,Mj
(i))= p(Di|θ,Mj

(i))p(θ|Di-1,Mj
(i))/p(Di|Di-1,Mj

(i)) and to calculate the evidence 

p(Di|Di-1,Mj
(i)). 

Consider a sequence of intermediate PDFs πl(θ) for l=0,1,…, L, such that the first and last 

PDFs, π0(θ) and πL(θ) = π(θ), in the sequence are the prior p(θ|Di-1,Mj
(i)) and posterior 

p(θ|Di,Mj
(i)), respectively: 
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 ( ) ( )
1( ) ( | , ) ( | , )l i i

l ip p D θ θ θi j jD M M  (A5.1) 

where 0=τ0<τ1<…<τL=1. Divide θ into B groups of components. Denote the b-th 

component group of θ  as bθ .  

First, N0 samples are generated from the prior p(θ|Di-1,Mj
(i)). Then do the following 

procedures for l=1,…,L. At the beginning of the l-th level, we have the samples ( )
1

m
lθ , 

m=1,2,…,Nl-1, from πl-1(θ). First, select τl such that the effective sample size 1/
1

2

1

lN

s
s

w



  = 

some threshold (e.g., 0.9 Nl-1) (Cheung and Beck 2008c; Chapter 2 in this thesis), where 

1

1

/
lN

s s s
s

w w w




  and ws = 1 ( )
1( | , )l l s

lp  
θi jD M , s=1,2,…,Nl-1. If τl>1, then set L=l and τl=1, 

then recompute ws and sw . Compute an estimate for the sample covariance matrix for πl(θ) 

as follows: 

 
1 1

( ) ( ) ( )
1 1 1

1 1

( )( ) ,  
l lN N

m m T m
m l l m l

m m

w w
 

  
 

     θ θ θ θ θ θ   (A5.2) 

Set El =
1

1
1

/
lN

s l
s

w N




 . Then the Nl samples ( )n

lθ  from πl(θ) are generated by doing the 

following for n=1,2,…,Nl: 

1. Draw a number s′ from a discrete distribution p(S=s)= sw , s=1,2,…,Nl-1. 

2. Fixing the last component group of θ at the values of ( ')
1,

s
l Bθ , draw the 

samples ( )
,1
n

lθ , …, ( )
, 1
n

l Bθ  for the first B-1 component groups of θ, one after another, 

using Gibbs sampling as described later. Set ( ') ( )
1, ,

s n
l b l b θ θ  for b=1,…,B-1. 
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3. Fixing the first B-1 component groups at the values of ( )
,1
n

lθ , …, ( )
, 1
n

l Bθ , generate a 

sample ( )
,
n

l Bθ  for the last component group of θ by the Metropolis-Hastings 

algorithm: Generate *θ  from a Gaussian PDF with mean ( ')
1,

s
l Bθ  and covariance 

matrix ηΣB where ΣB is the submatrix that corresponds to the last component group 

(i.e., the B-th component group) in the covariance matrix Σ. Compute the 

acceptance probability r′′=min{r′,1} where r′ is given by: 

( ) ( ) * ( )
,1 , 1

( ) ( ) ( ') ( )
,1 , 1 1,

1
( ) ( ) * ( ) ( ) ( ) * ( )
,1 , 1 ,1 , 1

1

( ) ( )
,1 , 1 1,

( | ,..., , )
'

( | ,..., , , )

[ ( | ,..., , , )] ( ,..., , )

[ ( | ,..., ,

i

i

n n i
l l B

n n s i
l l B l B

i
n n i n n i

t l l B l l B
t

n n
t l l B l B

p
r

p

p p

p






 



 


 






θ θ θ

θ θ θ

θ θ θ θ θ θ

θ θ θ

i j

i j

j j

D ,M

D M

D M |M

D
1

( ') ( ) ( ) ( ) ( ') ( )
,1 , 1 1,

1

, )] ( ,..., , | )
i

s i n n s i
l l B l B

t

p


 

 θ θ θj jM M

 (A5.3) 

If r′′>U(0,1) where U(0,1) is a uniformly distributed number between 0 and 1, ( )
,
n

l Bθ = *θ , 

( ') *
1,

s
l B θ θ . Otherwise, ( )

,
n

l Bθ = ( ')
1,

s
l Bθ . 

Thus, the n-th sample for θ with the target PDF πl(θ) is given by ( ) ( ) ( ) ( )
,1 ,2 ,[   .... ]n n n n

l l l l Bθ θ θ θ .  

In step 3, η (e.g., 0.22) is chosen such that the average acceptance probability is larger than 

some threshold (e.g., 0.7). Other MCMC algorithms such as Hybrid Monte Carlo methods 

(Cheung and Beck 2007, 2008a; Chapter 2 in this thesis) can also be used in place of the 

Metropolis-Hastings algorithm in step 3 for more effective sampling, as is done in Cheung 

and Beck (2008e, f; Chapter 3 in this thesis). The evidence p(Di|Di-1,Mj
(i)) for Mj

(i) given by 

data Di can be estimated as follows: 
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 ( )
1

1

( , )
L

i
i l

l

p D E


i jD | M  (A5.4) 

Gibbs sampling for the posterior PDF in the illustrative example with data D1 (i=1) 

Now we describe how Gibbs sampling can be performed for the posterior PDF in the 

illustrative example with data D1 (i=1). For M1
(1)

 (i=1, j=1), θ is divided into 2 component 

groups: θ1= μs, θ2=[σs
2 σε

2]. Gibbs sampling in step 2 of the above algorithm is performed 

on the first component group as follows: draw ( )
,1
n

lθ  from a truncated Gaussian PDF 

(constrained to be positive) which is proportional to a Gaussian distribution with mean μ 

and variance σ2 given below: 

( ) ( ) ( ) ( ) 0
11 12 22 2

1 1 1 1 0

2
11 12 22 2

0

( ( / 2) ) ( / 2)

1
( ( ) 2 )

c c c cN N N N
i k k kc c c c

c c c c c c
i k k kc c l

c c c c
c

c c l

F L F L
H L H S L L H S L

A A
F L F L

N H H H
A A
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 2

2
11 12 22 2

0

1
1

[ ( ( ) 2 ) ]c c c c
l c

c c l

F L F L
N H H H

A A




 


  

 (A5.6) 

where H11, H12 and H22 are the (1,1), (1,2) and (2,2) entries of the inverse of 2 2( , )s  C  in 

equation (5.13) with [σs
2 σε

2]= ( ')
1,2

s
lθ ; μ0 and σ0

2 are the mean and variance of the prior PDF 

p(μs|Mj
(1)) of μs respectively  

 For M4
(1)

 (i=1, j=4), θ is divided into 3 component groups: θ1= μs, θ2=σs
2, θ3=[ls

2 r].  

Gibbs sampling in step 2 of the proposed algorithm is performed on the first two 

component groups as follows: draw ( )
,1
n

lθ  from a truncated Gaussian PDF (constrained to be 
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positive) which is proportional to a Gaussian distribution with mean μ′ and variance σ′2 

given below: 

2
( ) ( ) ( ) ( ) 0

11 12 22 2
1 1 1 1 0

2
2

11 12 22 2
0

( ( / 2) ) ( / 2)

'

( ( ) 2 )

c c c cN N N N
k k k kc c c c s

c c c c c c
k k k kc c l

c c c c s
c

c c l

F L F L
H L H S L L H S L

A A

F L F L
N H H H

A A
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A A



 


  

 (A5.8) 

In the above equations, σs
2 = ( ')

1,2
s

lθ  and H11, H12 and H22 are the (1,1), (1,2) and (2,2) entries 

of the inverse of C(ls, r) in equation (5.15) with [ls r] = ( ')
1,3

s
lθ . Then draw ( )

,2
n

lθ  from an 

inverse gamma distribution with PDF proportional to (θ2′)
−α′−1exp(−β′/θ2′) where α′=α+τlNc 

and β′ is given by:  

 ( ) 1 ( )

1

' [ ( )] ( , )[ ( )]
2

cN
k T kl

s s s
k

l r
   



    y μ C y μ  (A5.9) 

where α and β are the parameters for the prior PDF p(σs
2|Mj

(1)) of σs
2 , the terms in the 

above are given by (5.11), (5.12) and (5.15) with μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M2

(1)
 (i=1, j=2) 

and M3
(1)

 (i=1, j=3), everything is the same as for M4
(1)

 (i=1, j=4) except that r is fixed at 1 

and 2 respectively. 

Gibbs sampling for the posterior PDF in the illustrative example with data D2 (i=2) 

Now we describe how Gibbs sampling can be performed for the posterior PDF in the 

illustrative example with data D2={D1, D2} (i=2), for M3
(2)

 (i=2, j=3), θ is divided into 3 
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component groups: θ1= μs, θ2=σs
2, θ3=[ls

2 r]. Gibbs sampling in step 2 of the proposed 

stochastic simulation algorithm is performed on the first two component groups as follows: 

draw ( )
,1
n

lθ  from a truncated Gaussian PDF (constrained to be positive) which is proportional 

to a Gaussian distribution with mean μ′′ and variance σ′′2 given below: 

 

( )

2 1
2 2 2

,

'
'' '' ( )

' ( , , )

vN
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l v v
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v j s s
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 (A5.13) 

In the above equations, σs
2 = ( ')

1,2
s

lθ , [ls r] = ( ')
1,3

s
lθ ; H11, H12 and H22 are the (1,1), (1,2) and (2,2) 

entries of the inverse of C(ls, r) in (5.15); Kv is given in section 5.2; 2 2 2
, ( , , )v j s s sl r   sv, 

j(ls,r) where sv, j(ls,r) is given in section 5.2. Then draw ( )
,2
n

lθ  from an inverse gamma 

distribution with PDF proportional to (θ2′′)
−α′′−1exp(−β′′/θ2′′) where α′′=α+Nc+τlNv/2 and 

β′′ is given by:  
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where α and β are the parameters for the PDF p(σs
2|Mj+1

(1)) of σs
2 , the terms in the above 

are given by (5.11), (5.12) and (5.15) with μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M1

(2)(i=2, j=1) and 

M2
(2) (i=2, j=2), everything is the same as for M3

(2)(i=2, j=3) except that r is fixed at 1 and 2 

respectively. 

Gibbs sampling for the posterior PDF in the illustrative example with data D3 (i=3) 

Now we describe how Gibbs sampling can be performed for the posterior PDF in the 

illustrative example with data D3={D1, D2, D3} (i=3), for M3
(3)

 (i=3, j=3), θ is divided into 3 

component groups: θ1= μs, θ2=σs
2, θ3=[ls

2 r]. Gibbs sampling in step 2 of the proposed 

stochastic simulation algorithm is performed on the first two component groups as follows: 

draw ( )
,1
n

lθ  from a truncated Gaussian PDF (constrained to be positive) which is proportional 

to a Gaussian distribution with mean μ′′′ and variance σ′′′2 given below: 
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In the above equations, σs
2 = ( ')

1,2
s

lθ , [ls r] = ( ')
1,3

s
lθ ; 2 2 2

, ( , , )a j s s sl r   sa, j(ls,r) where  

sa,j(ls,r) is given in Appendix III in Cheung and Beck (2008b). Then draw ( )
,2
n

lθ  from an 

inverse gamma distribution with PDF proportional to (θ2′′′)
−α′′′−1exp(−β′′′/θ2′′′) where 

α′′′=α+Nc+Nv/2+τlNa/2 and β′′′ is given by:  
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where μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M1

(3)
 (i=3, j=1) and M2

(3)
 (i=3, j=2), everything is the same 

as for M3
(3)

 (i=3, j=3) except that r is fixed at 1 and 2 respectively. 

Gibbs sampling in step 3 of the hybrid Gibbs TMCMC algorithm exploits the form of 

p(θ|Di, Mj
(i)) which allows direct sampling from the conditional PDF for some groups. In 

the case where the form of p(θ|Di, Mj
(i)) cannot be exploited to carry out Gibbs sampling, 

step 2 is skipped and θ has only one component group which includes all the parameters 

and so the algorithm reduces to the original TMCMC algorithm. 

Appendix 5B: Analytical integration of part of integrals 

Consider the following multi-dimensional integral: 

 [ ( )] ( ) ( )E g g f d ξ ξ ξ ξ  (B5.1) 

The above is the expectation of g(ξ) with respect to a PDF f(ξ). Recall that by MCS, the 

above integral can be estimated as follows using iid samples ξk , k=1,2,…,K from f(ξ) as 

follows: 

 ,
1

1
[ ( )] ( )

K

k MCS K
k

E g g g
K 

 ξ ξ   (B5.2) 

For [ ( )] 0fE g ξ , the c.o.v. ,MCS K of the MCS estimator using iid samples ξk , k=1,2,…,K 

from f(ξ) is given by: 
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 ,
MCS

MCS K
K

 
  (B5.3) 

where the unit c.o.v. MCS  is given by: 

 [ ( )] / [ ( )]MCS Var g E g  ξ ξ  (B5.4) 

Assume ξ can be splitted into two groups, say ξ= 1 2 
TT T  ξ ξ , such that g(ξ) can be 

integrated analytically with respect to f(ξ1|ξ2)= f(ξ)/f(ξ2).  E[g(ξ)] can be calculated as 

follows: 
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where ( )
2

kξ , k=1,…,K are independently identically distributed samples from f(ξ2). The 

above estimator has the mean equal to E[g(ξ)] and always has a smaller variance and thus 

c.o.v. than the MCS estimator ,MCS Kg  for a given sample size K. 

By Law of Total Variance, 

2 1 2 2 1 2
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The sampling efficiency is given by: 
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where KAI and KMCS are the minimum number of samples required to achieve the same 

c.o.v. in the estimator ,AI Kg  and the MCS estimator ,MCS Kg  respectively. The above result 

implies that one should always carry out analytical integration of the integrals as far as 

possible which agrees with intuition. The above proof provides a general proof the case 

which allows an analytical integration of part of the integrals during the calculation of the 

failure probability P(F) (where g(ξ) is an indicator function equal to 1 if ξ belongs to F and 

0 if otherwise) which always leads to an estimator with a smaller c.o.v. 

The following provides the proof of Law of Total Variance: 
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In our case, ( )
2

kξ , k=1,…,K are dependent samples. The above proof can be modified using 

the same idea as in Appendix 2C to handle this case. 
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CHAPTER  6  

New stochastic simulation method for updating robust 

reliability of dynamic systems 

6.1 Introduction 

Before presenting the proposed method, it is instuctive to go over and review the 

commonly used importance sampling for evaluating multi-dimensional integrals as follows: 

 [ ( )] ( ) ( )fE g g f d ξ ξ ξ ξ  (6.1) 

Importance sampling is a stochastic simulation technique that makes use of samples drawn 

from another PDF q(ξ), referred to as the importance sampling density (ISD) as follows:  

 ,
1

( )( ) ( ) 1
[ ( )] ( ) ( ) [ ( ) ] ( )

( ) ( ) ( )

K
k

f q k IS K
k k

ff f
E g g q d E g g g

q q K q

   
ξξ ξ

ξ ξ ξ ξ ξ ξ
ξ ξ ξ

  (6.2) 

where ξ(k), k=1,2,…,K are samples drawn from q(ξ). Here to ensure the above estimator has 

finite variance, we require supp q  supp f.  With finite variance, the Central Limit 

Theorem is applicable to the IS estimator, just like the MCS estimator ,MCS Kg . 
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Figure 6.1: Schematic plot of importance sampling density 

This method is often used: 

1. to simulate more samples in the region which give significant contributions to the 
integral rather than wasting too much effort sampling in the region which 
contributes little. This often leads to an estimator with a smaller variance. 

2. when drawing samples from f(ξ) is not trivial or easy. 

The variance of the IS estimator is given by:  

 ,

1 ( ) ( )
[ ] [ ]

( )IS K q

g f
Var g Var

K q


ξ ξ

ξ
 (6.3) 

where  

 
2 2

2
2

( ) ( ) ( ) ( ) ( ) ( )
[ ] [ ] [ ]

( ) ( ) ( )q q q

g f g f g f
Var E E

q q q
 

ξ ξ ξ ξ ξ ξ

ξ ξ ξ
 (6.4) 

If [ ( )] 0fE g ξ , the c.o.v. ,IS K of the IS estimator using identitically and independently 

distributed (iid) samples ξk, k=1,2,…,K from q(ξ) is given by: 

 ,
IS

IS K
K

 
  (6.5) 

where the unit c.o.v. IS  is given by: 

g(ξ)f(ξ) 
f(ξ) 

q(ξ) 
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( ) ( ) ( ) ( )

[ ] / [ ]
( ) ( )IS q q

g f g f
Var E

q q
 

ξ ξ ξ ξ
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 (6.6) 
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 (6.7) 

To exploit the advantage of the IS, an ISD q(ξ) should be chosen such that  

( ) ( )
[ ]

( )q

g f
Var

q

ξ ξ

ξ
 is as small as possible. Let’s manipulate Equation (6.4) further as follows:  
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 (6.8) 

It can be seen that the second term in the last expression in the above equation is 

independent of q(ξ). For a given K, the variance of the IS estimator is minimized if the ISD 

q(ξ) is chosen to be the optimal ISD q*(ξ) that minimizes the first integral in the last 

expression in (6.8). It can be shown that q*(ξ) is given by: 

 * | ( ) | ( )
( )

| ( ) | ( )

g f
q

g f d



ξ ξ
ξ

ξ ξ ξ
 (6.9) 

The above is proved in Appendix 6A. 
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In practice, it is often not straightforward to simulate from q*(ξ) (note that the normalizing 

constant | ( ) | ( )g f d ξ ξ ξ  in Equation (6.9) is often not known analytically and, in fact, is 

the original integral of interest in (6.1) if g(ξ)>0 on its support). However, one can expect a 

reduction in the variance of the IS estimator if q(ξ) is constructed to be close enough to 

q*(ξ) while still ensuring that samples of q(ξ) can be readily obtained. There are at least 

two methods of constructing such ISD q(ξ): 

1. Find all the local maxima of |g(ξ)|f(ξ) and construct ISD q(ξ) so that one can sample 
in the neighborhood of these maxima, by e.g., Laplace’s asymptotic approximation; 
see, for example, Au et al.(1999) and Papadimitriou et al. (2001). 

2. Generate some presamples from q*(ξ) and construct ISD q(ξ) using these samples, 
e.g., by constructing a kernel sampling density (a common choice is a PDF which is 
a weighted sum of Gaussian PDFs) to approximate q*(ξ); see, for example, Ang et 
al. (1992) and Au and Beck (1999). 

For problems with multiple maxima of |g(ξ)|f(ξ), being unable to simulate in the 

neighborhood of some of the maxima (especially those whose contribution to the integral 

are not negligible) can lead to a bias in the IS estimate for finite sample sizes. The c.o.v. 

estimated by IS samples from only one simulation (using Equations (6.6) and (6.7)) can 

then be misleading because, for instance, the estimated c.o.v. of the IS estimator can be 

small while the actual c.o.v. can be very large.  If the sample size is sufficiently large, a 

small number of points in the neighborhood of omitted maxima can lead to occasional 

sudden jumps in the estimate. 

It is in general inefficient to use IS if ξ has high dimensions except for the special case 

where a lot of information regarding the underlying problem can be exploited (Au and 

Beck 2001a). For high-dimensional ξ, it is computationally expensive or prohibitive to find 

all the ‘significant’ local maxima of |g(ξ)|f(ξ) as required in Method 1 above. Method 2 is 

shown to be in general inapplicable in high dimensions (Au and Beck 2003) which is the 

case of interest in this thesis. 
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To assess the system performance subjected to dynamic excitation, a stochastic system 

analysis considering all the uncertainties involved has to be performed. In engineering, 

evaluating the robust failure probability (or its complement, reliability) of the system is a 

very important part of such stochastic system analysis. 

During the design stage, the prior robust failure probability can be employed to evaluate the 

system performance. Such probability takes into account the prior knowledge of the 

stochastic system model based on engineering judgment and experience. Efficient 

stochastic simulation algorithms such as Subset Simulation (Au and Beck 2001b) can be 

used to calculate such failure probabilities when they are very small (in which case 

ordinary Monte Carlo simulation is very inefficient). The proof for stationarity of the 

Markov chain in the original presentation of Subset Simulation by Au and Beck (2001b) is 

not exactly correct. The corrected proof is presented in Appendix 6B. 

After, or while, the system is constructed, there is the opportunity to measure system input 

and output and then use these data to obtain a more accurate evaluation of the system 

performance by updating the robust failure probability for the system. During system 

operation, the behavior, and thus the robust failure probability of the system, can change 

from time to time due to deterioration or damage. For example, for structures, deterioration 

can be due to corrosion or fatigue, and damage can also result after the structure is 

subjected to severe loading from explosions, strong winds or earthquakes. The 

consequences of such changes in the system behavior can be assessed quantitatively by 

monitoring the dynamic response of the system and using it to update the robust failure 

probability of the system.  

Let θ be the vector consisting of the uncertain parameters for a model class M which are to 

be updated by data D from the system (for example, structural parameters and parameters 

related to prediction errors as in previous chapters). Let Un=[u1,u2,…,un] denote the input 

at different times, which in turn is specified by a stochastic input model class U with model 
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parameters θU. θU can comprise of model parameters 1) θu (with uncertainty quantified by 

p(θu|U)) which is not part of θ and not updated by D, and 2) θp which are some components 

of θ for M (with uncertainty quantified by p(θp|D,M) which is a marginal PDF of p(θ|D,M) 

corresponding to some components of θ), i.e. θU =[θu
T

 θp
T]T. The uncertainty in θU is 

quantified by p(θU|D,U) given as follows: 

 ( | , ) ( | ) ( | , )u pUp p pθ θ θD U U D M  (6.10) 

This model class can be viewed as a special case of hierarchical model classes presented in 

Chapter 5. The uncertainty in U is thus quantified by p(U|D,U). Here we are interested in 

the failure F which corresponds to the event(s) where the system performs unsatisfactorily 

when subjected to future excitations/inputs modeled by U. Let D denote the dynamic data 

from the system, which can include output response data and possibly input data. The 

updated (posterior) robust failure probability given D based on M and U is given by: 

 ( | , , ) ( | , , , , ) ( | , ) ( | , )n n nP F P F p p d d  θ U θ U U θM U M U M UD D D D  (6.11) 

Often the performance measures defining the failure are functions of θ, Un and some 

uncertain variables Z (for example, those related to prediction errors like W and V in 

(4.30)), then: 

 
( | , , )

( , , ) ( | , , ) ( | ) ( | , ) ( | , )F n n u p u n

P F

I p p p p d d d  θ U Z U θ θ θ Z θ θ Z U θ

M U

U U M M

D

D
 (6.12) 

The plausibility of each model within a class M of models for a system, based on data D, is 

quantified by the updated joint probability density function p(θ|D,M) (posterior PDF). By 

Bayes' Theorem, the posterior PDF of θ is given by p(θ|D,M)=c-1p(D|θ,M)p(θ|M) where c= 

p(D|M) is the normalizing constant (also called the evidence) which makes the probability 

volume under the posterior PDF equal to unity; p(D|θ,M) is the likelihood function based 

on the predictive PDF for the response given by model class M; p(θ|M) is the prior PDF for 
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the model class M  in which one can incorporate engineering judgment through experience 

or previous analysis to quantify the initial plausibility of each predictive model defined by 

the value of the parameters θ.  

For simplicity in presentation, the conditioning on M and U  will be left implicit in the rest 

of this chapter. 

Very few publications have appeared that tackle the problem of updating the robust failure 

probability of a system given dynamic data since it is computationally very challenging. In 

Papadimitriou et al. (2001), Laplace’s method of asymptotic approximation was adopted to 

calculate the updated robust reliability with an illustration based on linear dynamics. 

However, the accuracy of such an approximation is questionable when (i) the amount of 

data is not sufficiently large or (ii) the chosen class of models turns out to be unidentifiable 

based on the available data. Also, such an approximation requires a non-convex 

optimization in what is usually a high-dimensional parameter space, which is 

computationally challenging, especially when the model class is not globally identifiable. It 

is shown in Cheung and Beck (2008b,g) that the robust failure probability may require 

information of the posterior PDF in regions of the uncertain parameter space, that are not in 

the high probability region of the posterior PDF. The asymptotic approximation will 

usually not give a good approximation in the region of the uncertain parameter space that 

lies outside the high probability content of the posterior PDF, leading to a poor estimate of 

the robust failure probability. Beck and Au (2002) proposed to update the system reliability 

using a level-adaptive Metropolis algorithm (like simulated annealing) with global proposal 

PDFs. However, their approach can only be applied for the case where the dimension of the 

modeling parameters is quite small because of the kernel densities used as the global 

proposal PDFs. Ching and Beck (2007) proposed a method to update the reliability based 

on combining a Kalman filter and smoother and modifying the algorithm ISEE (Au and 

Beck 2001a). Such an approach is only applicable to linear systems with no uncertainties in 

model parameters. Ching and Hsieh (2006) proposed a method based on analytical 
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approximation of some of the required PDFs by maximum entropy PDFs. The method is 

applicable regardless of the dimension of θ but can only be applied to very low 

dimensional system output data D.  In practice, dynamic data is of very high dimension 

(say of the order of hundreds or thousands). In this chapter, a new method for calculating 

the updated robust failure probability of a dynamic system for a model class subjected to 

future stochastic excitation is proposed. Part of the materials in this chapter is presented in 

Cheung and Beck (2007b). If there are multiple model classes, as in Chapter 4 and 5, the 

proposed method in this chapter can be combined with Bayesian model averaging 

procedures to obtain hyper robust failure probabilities. 

6.2 The proposed method 

6.2.1 Theory and formulation 

By Bayes’ Theorem, the updated probability of failure conditional on data D (and 

implicitly, the model classes M and U), P(F|D) is given by: 

 
1

( | ) ( ) 1
( | )

( |~ )( | ) ( ) ( |~ )(1 ( )) 1 ( ( ) 1)
( | )

p F P F
P F

p Fp F p F p F P F P F
p F


 

   

D
D

DD D
D

 (6.13) 

where P(F) is the prior probability of failure and ~F denotes non-failure, so P(~F)= 

1- P(F). The new idea here is to compute p(D|F) and p(D|~F) by expressing each of them 

as a product of factors and calculating each of the factors one by one as follows: 

 
0 0

( | ) ,  ( |~ )
l l

i i
i i

p F p F 
 

  D D  (6.14) 

where 
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 1 1( | , ) ( |~ , )
,  

( | , ) ( |~ , )
i i

i i
i i

p F t p F t

p F t p F t
   

D D

D D
 (6.15) 

and where 0= t0<t1<…<tl+1=1 and p(D |F,t) is given by: 

 ( | , ) ( | , , ) ( | )p F t p F t p F d  θ θ θD D  (6.16) 

The likelihood ( | , )p tθD  for the model class defined by M and t is given by: 

 ( | , ) ( | ) ( | , , ) ( | , ~ , )tp t p p F t p F t  θ θ θ θD D D D  (6.17) 

If there is a time period between the time when the data is collected and the time of interest 

in the future, one can assume that given θ, the failure or non-failure in the future does not 

affect the PDFs of data collected in the present or in the past, so (6.17) is valid. Thus,  

p(D |F,t) is given by:  

 
( | ) ( )

( | , ) ( | , ) ( | ) ( | , )
( )

P F p
p F t p t p F d p t d

P F
  

θ θ
θ θ θ θ θD D D  (6.18) 

Similarly, p(D|~F,t) is given by (6.18) with F replaced by ~F. Obviously p(D|F,t0)=  

p(D |~F,t0)=1. Now define the PDF p(θ|F, D, t) as follows: 

 
( | , ) ( | )

( | , , ) ( | ) ( | )
( , )

tp t p F
p F t p p F

p F t
 

θ θ
θ θ θ

D
D D

D|
 (6.19) 

Similarly, p(θ|~F,D,t) is given by (6.19) with F replaced by ~F. With this, it can be shown 

that i  and i can be estimated by stochastic simulation using the following (shown in 

Appendix 6C): 

 1 ( )1

1

( | , ) 1
( | )

( | , )
i i

N
t t ki

i
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p F t
p D

p F t N
  



   θ
D

D
 (6.20) 
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( |~ , ) '
i i

N mt ti
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p F t
p D

p F t N
  



   θ
D

D
 (6.21) 

where θ(k), k=1, 2,…, N, are samples from p(θ|F,D, ti) and 
( )m
θ , m=1, 2,…, 'N , are drawn 

from p(θ|~F, D, ti).  

6.2.2 Algorithm of  proposed method 

Let Z denote the vector consisting of the uncertain parameters, which are not to be updated 

by the data (for example, those used to model the uncertain input excitation Un). The 

proposed method is summarized as follows: 

1.  Set t0=0. Using efficient procedures such as Subset Simulation given by Au and 
Beck (2001b) for the parameter space of θ, θu, Un and Z, calculate the prior robust 
failure probability P(F) given by (6.12) with the conditioning on D removed and 
obtain the samples from p(θ,θu,Un,Z|F)= p(θ,θu,Un,Z|F,D,t0) and p(θ,θu,Un,Z|~F)= 
p(θ,θu,Un,Z|~F,D,t0). Take the θ part of these samples to give samples from 
p(θ|F)=p(θ|F,D, t0) and p(θ|F)=p(θ|~F,D, t0). 

2.  Repeat the following for i=0,1,2,…,l:  

 (a) Let θ(k), k=1, 2,…, N, be samples from p(θ|F,D, ti) and 
( )m
θ , m=1, 2,…, 'N , be 

samples from p(θ|~F,D,ti). Select 1

it  such that the effective sample size 1/ 2

1

N

s
s

w

  is 

equal to some threshold (Cheung and Beck 2008c; Chapter 2 in this thesis) (e.g., 

0.9N) where 
1

/
N

k k k
k

w w w


  and wk = 1 ( )( | )i it t kp   θD . Select 1
ˆ
it such that the 

effective sample size 1/
'

2

1

N

m
m

w

  is equal some threshold (e.g., 0.9 'N ) where 

'

1

/
N

m m m
s

w w w


  and wm = 1
( )

( | )i i
mt tp   θD . Set tl+1=min{ 1


it , 1

ˆ
it }. If tl+1≥1, set tl+1=1;  

 (b) Obtain an estimate for i  and i  using (6.20)-(6.21) and go to step 3 if tl+1=1; 

(c) Using samples from p(θ,θu,Un,Z|F,D,ti) as starting points, simulate samples 
from p(θ,θu,Un,Z|F,D,ti+1). Similarly, using samples from p(θ,θu,Un,Z|~F,D,ti) as 
starting points, simulate samples from p(θ,θu,Un,Z|~F,D,ti+1). The detailed 
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procedures are described in the next section. Take the θ part of these samples to 
give samples from p(θ|F,D, ti+1) and p(θ|~F,D, ti+1) for use in (6.20) and  (6.21). 

3. Compute the estimate p(D|F) and p(D|~F) by substituting i ’s and i ’s found 

above into (6.14). Based on (6.13), the estimate for P(F|D) is then given by: 
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P F
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D  (6.22) 

It is interesting to note that the ratio R of the updated robust reliability and prior robust 

reliability is approximately equal to the following for sufficiently small P(F): 
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   D
 (6.23) 

6.2.3 Simulations of samples from p(θ,θu,Un,Z|F,D,ti+1) 

In the i-th step of the algorithm, we have the samples θ(k), θu
(k), Un

(k), Z(k), k=1, 2,…, N, 

from p(θ,θu,Un,Z|F,D,ti). We need to simulate samples from p(θ,θu,Un,Z|F,D,ti+1) to move 

on to the next level. Here we propose the following algorithm to simulate these samples: 

1. Define the probability pk as follows: 
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 (6.24) 

2. Repeat the following to simulate samples (
( )j
θ


,
( )j

uθ


,
 ( )j

nU ,
 ( )j
Z ) from 

p(θ,θu,Un,Z|F,D,ti+1) for j=1, 2, …N: 
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2.1. Draw a point ( 
( )j
θ , 

( )j

uθ , 
( )j

nU , 
( )j

Z )=(θ(k), θu
(k), Un

(k), Z(k)) with probability pk.  

Starting with 
( )j
θ , perform a 1-step MCMC procedure such as those presented 

in Chapter 2 (for example, multiple-group MCMC in TMCMC) to obtain the 

candidate ( )j
cθ  for 

( )j
θ


. Similarly, starting with 
( )j

uθ , 
( )j

nU , 
( )j

Z , perform 

multigroup MCMC procedure (using a procedure similar to modified 

Metropolis-Hastings algorithm in Subset Simulation) to obtain the candidate 

( )
,
j

u cθ , ( )
,
j

n cU , ( )j
cZ  for 

( )j
uθ


,
 ( )j

nU ,
 ( )j
Z , respectively.  

2.2. If ( ( )j
cθ , ( )j

cZ ) leads to failure, (
( )j
θ


,
 ( )j
Z )=( ( )j

cθ , ( )j
cZ ), (θ(k) ,Z(k))= ( ( )j

cθ , ( )j
cZ ). 

Otherwise, (
( )j
θ


,
 ( )j
Z )=(θ(k) ,Z(k)).  

Samples from p(θ,θu,Un,Z|~F,D,ti+1) can be generated using the same procedures as the 

above with F replaced by ~F. 

6.2 Illustrative example 

For illustration of the proposed method, consider a 4-story building modeled as an inelastic 

shear building with the hysteretic restoring force model shown in Figure 3.4 and Rayleigh 

damping. The simulated noisy accelerometer data D consist of 10s (with a sample interval 

Δt of 0.01s) of the total acceleration at the base and at all the floors. The simulated 

Gaussian white noise has a noise-to-signal ratio of 10% rms of the roof acceleration. The 

data D are generated from a shear building model with Rayleigh damping and hysteretic 

bilinear interstory restoring forces, a similar system as used earlier in Chapter 3. 

The lumped masses mi, i=1, 2, 3, 4, on each floor are assumed fixed at 2×104kg for all 

floors. The vector θ to be updated by the dynamic data D consists of D=15 parameters with 
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the first component θ1 equal to the prediction error variance σ2 and for s=2,…,D, θs = 

log(φs-1/ls-1) where φs-1’s are comprised of the following 16 structural parameters: for 

i=1,2,3,4, the initial stiffness ki, post-yield stiffness reduction factor ri, yield displacement ui 

and the damping coefficient ci of the viscous damper of the i-th floor and the ls-1’s are the 

corresponding nominal values given later. Let 2( ; ,..., )i Dq n    denote the output at time tn= 

nΔt (Δt=0.01s) at the i-th observed degree of freedom predicted by the proposed structural 

model and ( )iy n denote the corresponding measured output. The combined prediction and 

measurement errors ( ) ( ) ( ; )i i in y n q n   θ for n=1,…, NT =1000 and i=1,…,No = 4 are 

modeled as independently and identically distributed Gaussian variables with mean zero 

and some unknown prediction-error variance σ2. Thus the likelihood function p(D|θ,M) is 

given by:  

 2
2/ 22 2

1 1

1 1
( | , ) exp( [ ( ) ( ; ,..., )] )

(2 ) 2

o T

o T

N N

i i DN N
i n

p y n q n  
   

  θD M  (6.25) 

The prior PDF for θ is chosen as the product of independent distributions: the structural 

parameters φs-1 including ki, ri, ui, ρ and γ follow a lognormal distribution with median 

equal to the corresponding nominal values ls-1 and the corresponding log standard 

deviations equal to 0.6 and thus the θs, for s=2,…,D, follow a Gaussian distribution with 

zero mean and standard deviation of 0.6; θ1=σ
2 follows an inverse gamma distribution with 

mean μ equal to its nominal value and c.o.v. δ =1.0, i.e., p(σ2) (σ2)−α−1exp(−β/σ2) where 

α=δ−2+2, β=μ(α−1). The nominal values for the structural parameters k1, k2, k3, k4 are 2.2, 

2.0, 1.7, 1.45 (107Nm-1 ) respectively; the nominal values for ri are 0.1 for all i; the nominal 

values for ui are 8mm for i=1,2 and 7mm for i=3,4;. The nominal values for ρ, γ are 0.7959 

and 2.50×10-3 so that the corresponding nominal modal damping ratios for the first 2 

modes are 5%. The nominal value for σ2 is the square of 10% of the maximum of the r.m.s 

of the total accelerations measured at each of the 4 floors. ( ; )iq n θ  is the i-th component at 

time tn of q(tn) which satisfies the following equation of motion: 
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( ) ( ) ( ( ), ( )) ( )

1
s gt t t t a t

 
      
  

s sM q C q F Q Q M    (6.26) 

where the mass matrix Ms, is a diagonal matrix diag(m1, m2, m3, m4); damping matrix Cs is 

equal to ρMs+γKs where Ms and Ks are the mass and stiffness matrix of the shear building 

model in M, respectively, and ρ, γ are some uncertain positive scalars (such that a higher 

mode has the same or larger modal damping ratio than a lower mode). The hysteretic 

restoring force ( ( ), ( ))t tF Q Q , which depends on the whole time history [Q(t), ( )tQ ] of 

responses from time=0 up to time τ, i.e., q(τ) and ( )q  for all τ[0,t], is modeled by a 

hysteretic bilinear restoring force model as mentioned above. This model class contains the 

system used to generate the simulated noisy data D. For this case, the uncertain parameter 

vector θ to be updated by the dynamic data D consists of D=15 parameters.  

The goal here is to calculate the updated robust failure probability of the building for future 

ground shaking from earthquakes. The model class U for modeling the future horizontal 

acceleration a  of the base of the building is given in the illustrative example in Chapter 4. 

The updated robust failure probability will be compared with the nominal failure 

probability (failure probability using the nominal structural model) and prior robust failure 

probability. 

For the purpose of illustration, first consider failure F defined as the exceedance over some 

threshold of the interstory drift of any one of the stories at any time within the 10s of 

ground shaking: 

1000 4

1 1 1
0 1

1 1

{0,1,...,1000}
1{1,...,4}

{| ( ) ( ) | | ( ) | }

| ( ) ( ) | | ( ) |
max { , } 1

l n l n l n
n l

l n l n n

n
ll

F x t x t b x t b

x t x t x t

b b


 






    


 


 (6.27) 



 

 206

where the threshold bl for all the stories is the same, i.e., bl=b; ; xl(t) denotes the l-th story  

displacement relative to the ground at time t. Figure 6.1 shows the posterior robust failure 

probability  (solid curve) of the structure, prior  robust failure probability (dashed curve) 

and the nominal failure probability  (dot-dashed curve) for different threshold levels of 

maximum interstory drift. It can be seen that the posterior robust failure probability is quite 

different from the other failure probabilities due to different levels of model uncertainties, 

confirming the importance of using data to update the failure probability. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

-3

10
-2

10
-1

10
0

 

Figure  6.1: Posterior robust (solid curve), prior robust (dashed) and nominal (dot-

dashed) failure probabilities plotted against the threshold of maximum interstory 

drift of all floors 

Next, consider failure F defined as the exceedance over some threshold of the displacement 

of any one of the stories relative to the ground at any time within the 10s of ground shaking: 
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where the threshold bl for all the stories is the same, i.e., bl=b. Figure 6.2 shows the 

posterior robust failure probability (solid curve) of the structure, prior robust failure 

probability (dashed curve) and the nominal failure probability (dot-dashed curve) for 

different threshold levels of maximum displacement relative to the ground. Once again, it 

can be seen that the posterior robust failure probability is quite different from the nominal 

and the prior robust failure probability. 
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Figure 6.2: Posterior robust (solid curve), prior robust (dashed) and nominal (dot-

dashed) failure probabilities plotted against the threshold of maximum displacements 

of all floors relative to the ground 

Finally, consider failure F defined as the exceedance over some threshold of the absolute 

acceleration of any one of the stories at any time within the 10s of ground shaking: 
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1000 4
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     (6.29) 

where the threshold bl for all the stories is the same, i.e., bl=b; al(t) denotes the l-th story 

absolute acceleration at time t. Figure 6.3 shows the posterior robust failure probability 

(solid curve) of the structure, prior robust failure probability (dashed curve) and the 

nominal failure probability (dot-dashed curve) for different threshold levels of maximum 

absolute acceleration. Similar observation can be seen once again as in the above two cases 

of failure as shown in Figures 6.1 and 6.2. 
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Figure 6.3: Posterior robust (solid curve), prior robust (dashed) and nominal (dot-

dashed) failure probability against the threshold of maximum absolute acceleration of 

all floors 
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Appendix 6A 

2 2( ) ( )
Let ( )

( )

g f
L q

q


ξ ξ

ξ
. q*(ξ) is the solution of the following constrained optimization 

problem: 

 

*( ) arg min ( )

s.t.

( ) 1, ( ) 0

q
q L q d

q d q



 





ξ ξ

ξ ξ ξ

 

By Calculus of Variation, it can be shown that q*(ξ) is the solution of the Euler-Lagrange 

Equation: 
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 (A6.1) 
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If g(ξ)≥0, it can be seen that the variance of the IS estimator using the optimal ISD q*(ξ) 

will be zero.  

Appendix 6B 

The transition PDF of modified Metropolis-Hastings algorithm used in Subset Simulation 

is given by the following: 
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where we have the following: 

* * *( | ) ( ) ( | ) ( )j j j j j j j jT T θ θ θ θ θ θ   (B6.1) 

From Appendix 2F, it can be seen that in general the above transition PDF will not satisfy 

the reversibility condition. To prove the validity of modified Metropolis-Hastings 

algorithms in Subset Simulation directly, we need to prove the above transition PDF 

satisfies the stationarity condition: 

* * *( ) ( | ) ( | ) ( | )p K F d F  θ θ θ θ θ θ                              (B6.2) 

Our trick here is to expand * * *

1

[ ( | ) (1 ( )) ( )]
G

j j j j j j
j

T a 


   θ θ θ θ θ  into the sum of terms 

(here there will be 2G) since the integration will depend on the number of delta functions 

involved in the term. It can be seen that the number of terms which involves the product 

of k delta functions and G-k transition functions is equal to G
kC =G!/[(G-k)!k!]. 
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where 1 2 3, , ,I I I J  are as follows: 
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Now let’s evaluate 1 2 3 1 2 3, , , , ,I I I J J J  
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,k mI  is given by: 
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Combining (B6.5)-(B6.9), we have: 

1 2 3 1 2 3I I I J J J      

Thus by this and (B6.4), given ~ ( | )Fθ θ , we have: 
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Appendix 6C 

With (6.15)-(6.19), we can then derive (6.20) as follows: 
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where θ(k), k=1, 2,…, N follows p(θ|F,D,ti). Similar to the above, it can be shown that the 

following is true by repeating the above proof by replacing F by ~F: 
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( )m
θ , m=1, 2,…, 'N , follows p(θ|~F,D,ti). 
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CHAPTER  7  

Updating reliability of nonlinear dynamic systems 

using near real-time data 

Using real-time data to assess the uncertain system performance and to evaluate various 

failure probabilities when the system is subjected to severe dynamic excitations, such as 

explosions, strong winds or earthquakes, is a very challenging problem. There are two 

possible important problems to consider. The first problem is to use the data from the 

monitored system to update its reliability against future excitations, which has been 

considered in Chapter 6. The second one is to use the data to update the reliability for 

unobserved quantities during recent excitation. It is often of interest to the owners, design 

engineers, or insurance companies to know, immediately after a severe dynamic event, the 

performance of the structure during the event. In this chapter, our focus will be on this 

aforementioned second problem. Data from an instrumented structure are often incomplete 

and sparse and the corresponding input or excitation may or may not be measured. Ching 

and Beck (2007) proposed a method to update the reliability using real-time dynamic data 

for linear dynamic systems with no uncertainties in the model parameters. Here we tackle 

the problem of calculating the probability that any unobserved system response of interest 

exceeds its threshold during the time when the system is subjected to dynamic excitation, 

based on real-time measurements of some output and possibly input from the system. A 

novel stochastic simulation method is used that updates in near real-time the reliability of 
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this system. Part of the material presented in this chapter is presented in Cheung and Beck 

(2008d). 

7.1 Proposed stochastic simulation method 

Failure F is defined as the event that the system performs unsatisfactorily. One common 

type of failure of interest is the event that any unobserved response of interest of the system 

exceeds some specified threshold over any time duration of interest when the system is 

subjected to dynamic excitation. Such unobserved response of interest is a function of the 

unobserved state vector XN=[x0,x1,…,xN] at different discrete times where  sN
nx . Now 

suppose that during some event, measurements are made of the system output (response) 

YN= [y1,y2,…,yN] where  oN
ny  and its input (excitation) UN= [u1,u2,…,uN] where 

 iN
nu . The updated robust failure probability given these data and a class M of models 

for the system is given by: 

 ( | , ) ( | , ) ( | , )N N N N N N N N NP F Y U P F X Y U p X Y U dX ,M , ,M ,M  (7.1) 

For simplicity in presentation, the conditioning on M and UN will be left implicit.  

Evaluation of P(F|YN) is computationally very challenging. First, one needs to obtain the 

probabilistic information p(XN|YN) through Bayes' Theorem. However, for nonlinear 

systems, regardless of whether there are uncertainties in the model parameters or 

uncertainties in the excitation, an analytical form of p(XN|YN) is generally not available. 

Second, the integral in (7.1) involves an integration in a very high dimensional space which 

cannot be evaluated analytically or by straightforward numerical quadrature. To solve the 

first difficulty, a stochastic simulation method is proposed which generates samples from 

p(XN|YN) that provide a characterization of the probabilistic information in the PDF. An 

appropriate stochastic simulation method is then used to solve the second difficulty by 

using the samples from p(XN|YN).  
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7.1.1 Simulation of samples from p(XN|YN) for the calculation of P(F|YN) 

We consider the following general stochastic discrete-time state-space model M of a 

dynamical system: 

 

 PDF

1 1 1 1 1 1

 PDF

( , , ) ( | , )  [state transition]

( , , ) ( | , ) [observation output equation]



      

 

n

n

n n n n n n n n

v

n n n n n n n n

x f x u p x x u

y h x u v p y x u

 (7.2) 

where  sN
nx  denotes the model state,  iN

nu  denotes the system input,  oN
ny  

denotes the observed system output,   lN
n  denotes the uncertain disturbances, and 

  rN
n denotes the prediction errors, all being at discrete time n. The probability models 

for the γn’s and vn’s are prescribed; as usual, they are usually taken as Gaussian which is 

justified by the Principle of Maximum Information Entropy (Jaynes 2003). The two 

fundamental system probability models given in (7.2), along with the specification of the 

PDF p(x0) for the initial states, completely define the stochastic dynamics of the system. 

Any unknown model parameters can be augmented into the model state. Therefore, 

whether the system inputs or excitations un’s are uncertain or known, they will be left 

implicit in the notation.  

Let    
1 2[ , ,..., ]n nY y y y  be the measured system output up to the current time n. The first 

step of our proposed method requires performing the following Particle Filtering (PF) 

algorithm to generate samples from ˆ( | )n np x Y  (Doucet et al. 2000, Ching et al. 2006b) (an 

overview of Particle Filtering is given in Appendix 7A-7D): 

1. Draw K samples ( )
0

kx  from 0 0( ) ( )q x p x  and initialize the importance weights 

0, k =1/K for k=1,2,...,K. 

2. Repeat the following for time n = 1,2,…, N: 
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2.1. Draw K candidate samples 
( )k

nx  from a proposal PDF ( )
1( | , )

k
n n nq x x y  and 

update the importance weights as follows for k=1,2,...,K: 
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2.2. Compute the normalized weight , , ,
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      2.3. Calculate the effective number of samples:     

 2
,

1

1/


 
K

e n k
k

N w  (7.4) 

2.4. Set 
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1 1 
j j

n nx x  for j=1,2,…,K. If Ne≥Ko, a prescribed threshold, 

set  ( )( )  
kk

nnx x , ,n k = ,n kw  for k=1,2,...,K. Otherwise, do the resampling as follows 

for j=1,2,…,K:  

         ( )( )  with probability 
kj

nnx x ,n kw  (7.5) 
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1 1 

 kj
n nx x  (7.6) 

 and set ,n kw = , 1/n k K  for k=1,2,...,K. 

2.5. If resampling is implemented, repeat the following for M times, for each 

k=1,2,…,K: A candidate sample candx  is drawn from a proposal PDF 

( )
cand( | )k

MH nq x x . Compute the acceptance probability r : 

 



( ) ( )
1cand 1 cand

( )( ) ( ) ( )
11 cand

( | ) ( | ) ( | )

( | ) ( | ) ( | )





  


  




k k

nn n n cand MH nn
kk k k

nn n n n n MH nn

p x x x x p y x x q x x
r

p x x x x p y x x q x x
 (7.7) 
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If r>u where u~Uniform(0,1), ( )
candk

nx x . Otherwise, ( )k
nx  remains unchanged. 

2.6. 
( ) ( )

 k k
n nx x , k =1,2,…,K. 

Ne is the effective number of samples due to the non-uniformity of weights, ,n k  k=1,…,K; 

Ko in Step 2.4 is the threshold prescribed to decide whether resampling should be carried 

out; it is chosen to be a certain fraction of K, e.g. 0.5K is used in our example later. Ching 

et al. (2006bc) apply the PF algorithm to Bayesian state estimation of uncertain dynamical 

systems but use the size of the coefficient of variation of ,n k , k=1,…,K, to decide whether 

resampling should be performed, which is equivalent to our choice.  

The PF algorithm obtains probabilistic information for ˆ( | )n np x Y  but recall from (7.1) that 

to update the reliability, it is critical to obtain samples from ˆ( | )N Np X Y  where XN is the 

whole time history of responses instead of just at a particular time. The samples ( )k
nx  

obtained from the above procedure lie in the high-probability region of ˆ( | )n np x Y  which 

can be approximated as follows using ,n kw  and ( )k
nx : 

 ( )
,

1

ˆ( | ) ( )
K

k
n n n k n n

k

p x Y w x x


    (7.8) 

However, the [ ( )
0

kx ( )
1

kx … ( )k
Nx ] do not necessarily lie in the high-probability region of 

ˆ( | )N Np X Y . To generate samples in this region, the following steps can be added to the PF 

algorithm. At the beginning of Step 2.4, let 
( ) ( )

j j

p px x  for p=0,1,…,n-1 and j=1,2,…,K, 

then after (7.5), add: 

  ( )( )


 kj
p px x  for  p=0,1,…,n-1; 

( ) ( )
 j j

n nx x  (7.9) 
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After Step 2.4, add an additional step, set
( ) ( )

 k k
n nx x , k=1,2,.., K. Let 

 ( ) ( ) ( ) ( )
0 1[ ... ]
  k k k k

nnX x x x  for k=1,2,…, K. It can be shown that
( )k

NX , k=1,2,…,K, can be 

used to approximate ˆ( | )N Np X Y  as follows: 

  ( )

,
1

ˆ( | ) ( )
K k

NN N N k N
k

p X Y w X X


    (7.10) 

Theoretically, the samples from ˆ( | )N Np X Y  can be obtained using resampling from 
( )k

NX ’s 

with weights ,N kw ’s. However, it is expected that samples simulated relying on 
( )k

NX ’s will 

give a poor representation of ˆ( | )N Np X Y  because a lot of 
( ) k

px ’s at time step p<N 

(especially for p not close to N) are repeated due to the resampling step in the PF algorithm. 

This point is confirmed by the example considered later. Thus, we present a way to 

alleviate this problem. Note that ˆ( | )N Np X Y  can be expressed as: 

1 1

1 1
0 0

ˆ ˆ ˆ ˆ ˆ( | ) ( | ) ( | ,..., , ) ( | ) ( | , )
 

 
 

  
N N

N N N N n n N N N N n n n
n n

p X Y p x Y p x x x Y p x Y p x x Y  (7.11) 

Thus, samples *( )j
NX = [ *( ) *( ) *( )

0 1 ...j j j
Nx x x ], j=1, 2,…,J, from ˆ( | )N Np X Y  can be simulated by 

the following algorithm: 

3.1. After completing Step 2 of the PF algorithm, ( )j
Nx  should be in the high-probability 

region of ˆ( | )N Np x Y . If , 1N kw K  for all k, do the resampling step as in (7.5) and Step 2.5 

to obtain better samples ( )j
Nx , j=1,2,…,K, from ˆ( | )N Np x Y . Thus, *( )j

Nx = ( )j
Nx , j=1,…,K. 

3.2. For n=N-1,N-2, …, 0, given *( )
1
j

nx , simulate *( )j
nx  from 1

ˆ( | , )n n np x x Y  as follows. By 
noting 1

ˆ( | , )n n np x x Y  may be expressed in terms of ( | )nnp x Y using Bayes’ Theorem: 

 1
1 1

1

ˆ ˆ( | ) ( | , )ˆ ˆ( | , ) ( | ) ( | )
ˆ( | )


 


 n n n n n
n n n n n n n

n n

p x Y p x x Y
p x x Y p x Y p x x

p x Y
, (7.12) 
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simulate samples *( )j
nx  from 1

ˆ( | , )n n np x x Y , given *( )
1
j

nx , as follows: For each j, *( )j
nx = 

( )k
nx  with probability , *n kw  given by: 

 *( ) ( ) *( ) ( )
, , 1 , 1

1

* ( | ) / ( | ) 


 
K

j k j k
n k n k n n n k n n

k

w w p x x w p x x  (7.13) 

The ( )k
nx ’s from the PF algorithm lie in the high-probability region of ˆ( | )n np x Y  and not 

necessarily that of 1
ˆ( | , )n n np x x Y . Thus, the weight of each sample needs to be adjusted for 

correct resampling as in Step 3.1.  

7.1.2 Calculation of ˆ( | )NP F Y  

For simplicity, consider the case of (1) where ˆ( | )NP F Y = ( )NI X F  (=1 if NX F  and 0 

otherwise), is estimated using Monte Carlo simulation as follows: 

 *( )

1

1ˆ( | ) ( )
K

k
N N

k

P F Y I X F
K 

   (7.14) 

However, for the case where the updated failure probability ˆ( | )NP F Y  is small (e.g. <0.1), 

a large number of samples (and thus number of dynamic analyses) is required to obtain a 

reasonably accurate estimate of ˆ( | ).NP F Y  For increased computational efficiency, a novel 

stochastic simulation method incorporating Subset Simulation (Au and Beck 2001b) has 

recently been developed as given as follows. 

7.1.2.1 Subset Simulation with a novel hybrid Gibbs-MCMC conditional-on-failure 

algorithm 

P(F|D) can be calculated using the framework of Subset Simulation (SS) (Au and Beck 

2001b) as follows: 
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1

1 1
1

( | ) ( | ) ( | , )D D D





 
L

m m
m

P F P F P F F  (15) 

where 1 2 ...   LF F F F and 1( | )DP F can be estimated using Monte Carlo simulation 

as follows: 

 *( )
1 1

1

1
( | ) ( )D



 
K

k
N

k

P F I X F
K

 (16) 

where *( )
1( )k

NI X F  equals 1 if *( )
1k

NX F  and 0 otherwise. For m>0, 1( | , )Dm mP F F  can 

be estimated as follows: 

 *( )
1 , 1

1

1
( | , ) ( )D 



 
K

k
m m N m m

k

P F F I X F
K

 (17) 

where *( )
,
k

N mX  are the samples from ( | , )NN mp X F Y ; *( )
, 1( )k

N m mI X F  equals 1 if *( )
, 1k

N m mX F  

and 0 otherwise. 1 2 1, ..., LF F F  are selected such that 1( | , )Dm mP F F , m=1,..,L and 1( | )DP F  

are not smaller than some pre-specified threshold p0, e.g., 0.1. In level m, after 

estimating 1( | , )Dm mP F F , we have some failure samples (about p0K samples) from 

( | , )NN mp X F Y  and more samples (about (1- p0)K more) from ( | , )nN mp X F Y  are required 

to estimate 1( | , )Dm mP F F . Due to the structure of ( | )NNp X Y , it is very challenging in 

real practice to simulate samples from ( | , )NN mp X F Y  even we already have some samples 

from ( | , )NN mp X F Y  and the modified Metropolis Hastings algorithm proposed in Au and 

Beck (2001b) is not applicable here. The detailed explanation for this will be presented in a 

future publication. Here a novel Hybrid Gibbs-MCMC conditional-on-failure algorithm is 

proposed for simulating samples from ( | , )NN mp X F Y  based on some samples from 

( | , )NN mp X F Y  as follows: About p0K Markov chains of samples are generated in parallel 
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using each of the p0K available samples from ( | , )NN mp X F Y  as the starting point for each 

Markov chain. Along a chain, a new sample from ( | , )NN mp X F Y  is generated based on a 

previous sample on the chain. This is repeated until about (1-p0)/p0 more samples are 

generated on each chain. Given a sample *
NX =[ *

0x *
1x … *

Nx ] from ( | , )NN mp X F Y on a 

chain, a new sample **
NX  from ( | , )NN mp X F Y  can be simulated using the following 

procedures: 

1. Let cand 0,cand 1,cand ,cand[ ... ] NX x x x  be the candidate sample. Simulate 0,cand *x  from 
* *

0,cand 0( * | ,..., )Nq x x x . Compute the acceptance probability r : 

 
* * *

0,cand 1 1 0 0,cand 0 0,cand

* * * * *
0 1 1 0 0 0,cand 0

( *) ( | *) ( ,..., | *)

( ) ( | ) ( * | ,..., )

 


 
N

N

p x p x x x x q x x x
r

p x p x x x x q x x x
 (18) 

If r>u where u~Uniform(0,1), 0,cand 0,cand *x x . Otherwise, 0,candx = *
0x . 

2. For n= 1, 2, …, N, simulate ,cand *nx  from * *
,cand 0,cand -1,cand( * | ,..., , ,..., )n n n Nq x x x x x . 

Compute the acceptance probability r: 

 




*
1 1 ,cand ,cand ,cand 1 1,cand

* * * *
1 1 1 1,cand

* *
0,cand -1,cand ,cand

,cand 0,cand

( | *) ( | *) ( * | )

( | ) ( | ) ( | )

( ,..., , ,..., | *)

( * | ,...,

   

   

    


    



n n n n n n n n n nn

n n n n n n n n n nn

n n N n

n n

p x x x x p y x x p x x x x
r

p x x x x p y x x p x x x x

q x x x x x

q x x x * *
-1,cand , ,..., )n Nx x

 (19) 

If r>u where u~Uniform(0,1), ,cand ,cand *n nx x . Otherwise, ,cand nx *
nx . 

3. If cand  mX F , **
NX = candX ; otherwise, **

NX = *
NX . 

The details for the choice of * *
0,cand 0( * | ,..., )Nq x x x , * *

,cand 0,cand -1,cand( * | ,..., , ,..., )n n n Nq x x x x x  are 

not discussed here for brevity and are presented in a future publication. 
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7.2 Illustrative example with real seismic data from a seven-story hotel 

In this example, a seven-story hotel located in Van Nuys in the San Fernando Valley of Los 

Angeles County is considered. It is a reinforced-concrete moment-frame building. It was 

subjected to severe damage during the 1994 Northridge earthquake. We are interested in 

using accelerometer data collected during this earthquake to do post-earthquake assessment 

of the ''failure'' probability of the building during the event. The data is available online 

from the CSMIP program of the California Geological Survey (http://db.cosmos-eq.org). 
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Figure 7.1: South frame elevation (Ching et al. 2006c) 



 

 226

8'-9

1 2 3 4 5 6 7 8 9

D

C

B

A

C1
C2 C4C3 C5 C6 C8C7 C9

C1a

C10 C11 C12 C16
C10a

C13 C15C14 C17 C18

C19 C20 C21 C25C22 C24C23 C26

C27

C28 C29 C30 C34C31 C33C32 C35 C36

C26a
C17a

8 @ 18'-9" = 150'-0"

20'-1"

20'-1"

20'-10"

N

3'-5

14'-0

3'-5

8'-8
 

Figure 7.2: Hotel column plan (Ching et al. 2006c) 

The E-W acceleration data of the ground floor, the second floor, third floor, sixth floor and 

the roof of the hotel during the earthquake are used. The south frame elevation with column 

and beam numbering is shown in Figure 7.1 and the column plan is shown in Figure 7.2. 

The following seven-DOF deteriorating shear-building model developed by Ching et al. 

(2006c) is used as the stochastic identification model (which is highly nonlinear) in this 

example where x(t)=[x7(t) …x1(t)]
T denotes the displacement relative to the ground and the 

mass matrix is a diagonal matrix diag({m7, …, m1}).  

1 1 1

( )
( ) 0 0

( )
( ) [ ( ) ( )] ( ) 0 ( )

( )
( ) 0

0

g

x t
x t

x td
x t t t u t w t

x tdt
t

  

 
      

                               
  

M K M C M F

G



 


 (7.20) 

1 1

1 0 0 0 0 0 0

0 0 1 0 0 0 0 ( )
( ) [ ( ) ( )] ( ( )) ( )

0 0 0 0 0 1 0 ( )

0 0 0 0 0 0 1

x t
y t t t t v t

x t
 

 
           
 
 

M K M C H


 (7.21) 

4 3 2 1[ ]TF m m m m       (7.22) 
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 (7.23) 
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( ) ( ) 0 0

( ) ( ) ( ) 0
( )

0 ( )

0 0 ( ) ( ) ( )
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t

c t

c t c t c t

 
   
 
   

C


 
 (7.24)  

where  

 )()0()( t
ii

iektk   

)()( ttc ii    

1 1 1
0

1
0

( ) max{ ( ) }

( ) max ( ) ( ) 2,3,...7
k t

i i i i
k t

t x k h

t x k x k h i




 

 



  
  

H=diag(H1,H2,H3,H4) 

1 2 3 4( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]Tt t t t t t H t H t H t H t       

and hi is the story height of the i-th story. 

There are 23 components in the uncertain state vector; the first seven are the relative 

displacements of each floor; the 8th to 14th are relative velocities of each floor, the last nine 

are related to nonlinear stiffness and damping parameters, and the prediction error 

variances. For the choice of prior PDFs for the uncertain parameters, one can refer to Ching 

et al. (2006c). 
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For the purpose of illustration, consider failure F defined as the exceedance over some 

threshold of the interstory displacement of any one of the stories at any time within the 40s 

of ground shaking (time interval of 0.04s): 

 

1000 7

1 1 1
0 1

1 1

{0,1,...,1000}
1{1,...,7}

{| ( ) ( ) | | ( ) | }

| ( ) ( ) | | ( ) |
max { , } 1

l n l n l n
n l

l n l n n

n
ll

F x t x t b x t b

x t x t x t

b b


 






    


 


 (7.25) 

where the threshold bl for all the stories is the same, i.e., bl=b; and al(t) denotes the l-th 

story absolute acceleration at time t.  

Figure 7.3 shows for different thresholds b, the interstory exceedance probability 

conditional on the aforementioned data (solid curve) and that conditional on only the 

earthquake input record and thus the uncertainties in the states are not updated (dashed 

curve). These two curves give the complementary cumulative distribution function (CDF) 

of the peak interstory drift during the earthquake based on incomplete data, or equivalently, 

the solid curve is the updated robust failure probability. The solid curve drops off a lot 

more sharply than the dashed curve, showing that the incomplete floor acceleration data 

greatly reduce the uncertainty in the predicted peak interstory drift. From Figure 7.4, it can 

be seen that the predicted mean interstory displacement of the first story obtained using 

samples from ˆ( | )N Np X Y  (dashed curve) captures quite well the evolution of the inferred 

one obtained by filtering numerically double-integrated versions of the adjacent 

acceleration records (solid curve). Although not shown here, all the measured responses lie 

within the 5 percentile and 95-percentile of the predicted response at most times. Also our 

results show that the predicted interstory drift corresponding to the fourth story (where no 

measurements were made) is the largest. This is consistent with the observation that the 

most severe damage occurred at the fourth story during the Northridge earthquake. All of 

the results are obtained using 2000 samples from ˆ( | )N Np X Y .  
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Figure 7.3: Exceedance probability for maximum interstory drift  
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Figure 7.4: Predicted time history of interstory displacement of the first story (dashed) 

vs the measured interstory displacement (solid) 
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Appendix 7A 

Assume we are interested in estimating the expectation [ ( )]E h θ  of h(θ) where θ follows a 

certain target PDF π(θ),  i.e., θ ~π(θ): 

 [ ( )] ( ) ( )E h h d  θ θ θ θ  (A7.1) 

By MCS, ( )

1

1
[ ( )] ( )

K
k

k

E h h
K



 θ θ  where ( )kθ  are samples drawn from π(θ).  

Importance sampling is a variance reduction technique, which makes use of samples drawn 

from another PDF q(θ), referred to as the importance sampling density, which is often 

chosen to simulate more samples in the region which give significant contributions to the 

integral thus often leading to an estimator with a smaller variance: 

 
( )

( )
( )

1

( ) ( ) 1 ( )
[ ( )] ( ) ( ) [ ( ) ] ( )

( ) ( ) ( )

kK
k

q k
k

E h h q d E h h
q q K q
  



   
θ θ θ

θ θ θ θ θ θ
θ θ θ

 (A7.2) 

where ( )kθ  are samples drawn from q(θ). Here to ensure the above estimator has finite 

variance, we require supp q  supp π.  With this, by the Strong Law of Large Numbers, the 

estimator in (A7.2) converges to [ ( )]E h θ  as K .  

If  π(θ) = cf(θ) and q(θ) = dg(θ) where normalizing constants c and d need not be known a 

priori. An alternative estimator can be obtained by the following weighted average: 

 ( )

1

[ ( )] ( )
K

k
k

k

E h w h


θ θ  (A7.3) 

where the normalized weight wk corresponding to each sample is given by: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

( ) / ( ) ( ) / ( )

( ) / ( ) ( ) / ( )

k k k k

k K K
j j j j

j j

q f g
w

q f g




 

 

 
θ θ θ θ

θ θ θ θ
 (A7.4) 

where ( )kθ  are samples drawn from q(θ). By the Strong Law of Large Numbers, 

( ) ( )

1

1
( ) / ( )

K
j j

j

q
K



 θ θ converges to 1 and 

( )
( )

( )
1

1 ( )
( )

( )



 θ

θ
θ

kK
k

k
k

h
K q

 converges to [ ( )]E h θ  as 

K and thus the estimator in (A7.3) converges to [ ( )]E h θ  as K .  

Sampling Importance Resampling (SIR) 

Let π(θ) be the target PDF we want to draw samples from. SIR draws samples 
( )k
θ ,  

k=1, 2,…, K for π(θ) by first drawing samples from an importance sampling density q(θ) 

using the following procedure (Assume supp q  supp π): 

1. Draw K samples ( )kθ , k=1, 2,…, K, from q(θ). 
2. Evaluate the weight wk corresponding to each ( )kθ  using (A7.4).  

3. For j=1,2,…,K, 
( )j
θ = ( )kθ  with probability wk (i.e., the index k is randomly drawn 

from the set {1,2,3,…,K} with P(k=m) = wm) 

One simple way to do step 3 is as follows: 

1. Calculate the cumulative distribution function F(k) (CDF) for the discrete 

distribution for the index k as F(k) = 
1

k

j
j

w

  for k=1,2,…,K 

2. Draw a number u from Uniform(0,1). k = m such that m satisfies  
1

1 1

m m

j j
j j

w u w


 

    

(
1

1

m

j
j

w



 =0 for m=1). 

The expectation [ ( )]E h θ  can be estimated using the samples from the resampling step as 

follows: 
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  ( )

1

1
[ ( )] ( )

K k

k

E h h
K



 θ θ  (A7.5) 

The following proves that this estimator converges to [ ( )]E h θ  as K .  
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converges to [ ( )]E h θ  as K  according to p.1. With this and the Strong Law of Large 

Numbers, we can conclude that  ( )

1

1
( )


 θ

K k

k

h
K

 converges to [ ( )]E h θ  as K . 

Note: ( )kθ ’s with larger weights are duplicated many times while the one with very small 

weight are eliminated. After doing the resampling, the weight corresponding to each 
( )j
θ  

becomes uniform: 1/K. We will discuss this in more detail later. Asymptotically, these 

samples from resampling are distributed according to π(θ). 
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Appendix 7B: Particle Filter (PF) 

Consider the stochastic discrete-time state-space model M of a dynamical system as in (7.2). 

Denote nX =[ 0x  1x …. nx ], nY =[ 1y  1y …. ny ] and nU =[ 1u  2u …. nu ]. Our objective here 

is to evaluate sequentially the PDF ( | )nnp x Y  for the state at every time n as the measured 

system input  nU  and output  nY  are collected, i.e., to perform a sequential update of the 

conditional PDF using the new measured system input  nu  and output  ny  to update 


11( | ) nnp x Y . For convenience, the conditioning of the PDF on  nU  and the model class M  

is left out.  

From the Theorem of Total Probability, we can get a predictor equation: 

   
1 1 1 11 1 1 1 1 1( | ) ( | , ) ( | ) ( | ) ( | )n n n nn n n n n n n n np x Y p x x Y p x Y dx p x x p x Y dx            (B7.1) 

 By Bayes’ Theorem, we get the updater equation: 

    


  


1 1 1 1( | , ) ( | ) ( ) ( | ) ( | ) ( )
( | )

( ) ( )

n n n nn n n n nn n
nn

n n

p y x Y p Y x p x p y x p x Y p Y
p x Y

p Y p Y

       

 
 
 

 
 

1 1

1 1

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | )

 

 

 


n nn n n nn n

n nn n nn n

p y x p x Y p y x p x Y

p y Y p y x p x Y dx
 (B7.2) 

When nf  and nh  are linear in xn, un, γn-1 and xn, un, vn  respectively and x0, γn’s and vn’s are 

Gaussian, ( | )nnp x Y is Gaussian with a certain mean and covariance matrix that can be 

found analytically from the above equations. This leads to the mean and covariance matrix 

being updated sequentially using the Kalman Filter (KF), i.e. KF is Bayesian sequential 

updating of the state. In the case of a nonlinear model, the Extended Kalman Filter (EKF) 
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provides an approximate filter by linearizing the state space model. It can be applied to 

slightly nonlinear systems but its performance is very poor for highly nonlinear systems. 

The Particle Filter is a sequential stochastic simulation method that can deal with any 

nonlinear model, even if the uncertainties are not modeled as Gaussian. 

Notice that ( | )nnp x Y  is just the marginal PDF of ( | )nnp X Y , the joint PDF of the state 

history up to time n. It is useful to consider ( | )nnp X Y ; it will become clear why in the 

coming section. By Bayes’ Theorem, 

 

        One can estimate the expectation of any function ( )nh X  of nX  given the data  nY , 

using importance sampling: 
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 (B7.4) 

where ( )k
nX  are samples (particle trajectories) drawn from an importance sampling density 

( | )nnq X Y  which can readily be sampled. The essence of PF is the smart choice of this q. 

The expectation of any function ( )nh x  of the state nx  given the data  nY  can be estimated 

readily using importance sampling: 

  ( )
,

1

[ ( ) | ] ( )
K

k
nn n k n

k

E h x Y w h x


  (B7.5) 

To allow the sequential update in time, the following form of ( | )nnq X Y  is adopted: 

  
0 0 1

1

( | ) ( ) ( | , )
n

n mn m m m
m

q X Y q x q x X Y


   (B7.6) 

With this choice, the weight ,n k  can be evaluated sequentially: 
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  (B7.7) 

PF algorithm 1 

1. Draw K samples ( )
0

kx  from 0 0( ) ( )q x p x  where 0,k =1/K for k=1,2,...,K (gives 

initial position of K particles). 
2. Repeat the following for time n = 1,2,…, N (generates the K particle trajectories): 

2.1.  Draw K samples ( )k
nx  from ( )

1( | , )k
nn nq x X Y  and update the importance 

weight as follows for k=1,2,...,K: 
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            2.2. ,
,

,
1

n k
n k K

n j
j

w








 and [ ( ) | ]nnE h x Y  can be estimated by:   

  ( )
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1

[ ( ) | ] ( )
K

k
nn n k n

k

E h x Y w h x


  (B7.9) 

Note: All the K particles evolve through time independently. As n increases, the importance 

weights become far from uniform. This leads to downgrading of some particles because 

eventually only a few particles will have weights much larger than the others and only 

these few particles will contribute to (B7.9). It was shown in Kong et al. (1994) that the 

variance of the importance weights conditioned on  nY  increases with time.  

PF algorithm 2 (with resampling)   

1. Draw K samples ( )
0

kx  from 0 0( ) ( )q x p x  where 0,k =1/K for k=1,2,...,K. 

2. Repeat the following for time n = 1,2,…, N: 

            2.1. Draw K candidate samples 
( )k

nx  from ( )
1( | , )k

nn nq x X Y  and update the 

importance weight as follows for k=1,2,...,K: 
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a)  Calculate the coefficient of variation n (c.o.v.) of ,1 ,2 ,{ , ,..., }n n n K   : 
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  (B7.11) 

 

b)  Compute the normalized weight ,
,

,
1

n k
n k K

n j
j

w








. 

c)  If n  th , set  ( )( ) kk
nnx x , ,n k = ,n kw  for k=1,2,...,K. Otherwise, do the 

resampling (SIR) as follows for j=1,2,…,K:  
 

  ( )( )  with probability 
kj

nnx x ,n kw  (B7.12) 

                  and then set ,n kw = , 1/n k K  for k=1,2,...,K. (particle cloning and elimination). 

                   

d) [ ( ) | ]nnE h x Y  can be estimated by:   

  ( )
,

1

[ ( ) | ] ( )
K

k
nn n k n

k

E h x Y w h x


  (B7.13) 

Note: 

1. It is desirable to have the importance weights as uniform as possible so that all samples 

contribute to the estimation. After the resampling, the importance weights become uniform. 

As mentioned before, resampling duplicates particles (cloning) with larger weights and 

eliminates particles with smaller weights. This puts the computational effort into particles 

that will explore the high probability content region of ( | )nnp x Y . However, the samples 

become increasingly dependent and so the effective number of distinct particles to explore 

the state space decreases. Therefore, the resampling step should only be carried out if the 

importance weights are highly non-uniform (one way is to do the resampling step only 

when the c.o.v. exceeds some threshold as in step 2.4). 
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2. To reduce the dependency introduced by the resampling step, one way is to perform 

independent PF algorithms in parallel. Another way is to use instead the following 

algorithm. 

PF algorithm 3 (with resampling and MCMC)   

This is the same as PF algorithm 2 with an additional MCMC step(s) whenever the 

resampling is performed. Here I illustrate the idea with MH algorithm as an example: 

 

For each k=1,2,…,K, repeat the following for M times: 

After the resampling step in 2.4, a candidate sample candx  is drawn from a proposal PDF 

( )
cand( | )k

MH nq x x . Compute the acceptance probability r : 

 

 



( ) ( )
cand 1 cand

( ) ( ) ( ) ( )
1 cand

( | ) ( | ) ( | )

( | ) ( | ) ( | )

k k
n n n cand MH nn

k k k k
n n n n n MH nn

p x x x p y x x q x x
r

p x x x p y x x q x x




 


 
 (B7.14) 

 

 If r>u where u~Uniform(0,1), ( )
candj

nx x . Otherwise, ( )j
nx  remains unchanged. 

 

Note: 

This procedure allows the duplicate particles to move to new positions, thus improving the 

exploration of the state space at the expense of additional computational effort.  

Appendix 7C: Choice of ( )
1( | , )k

nn nq x X Y : 

1. ( )
1( | , )k

nn nq x X Y = ( )
1( | )k

n np x x  : For this case, the importance weight is updated as 

follows: 
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  ( )
, 1, ( | )k

n k n k nnp y x    (C7.1) 

where  ( )( | )k
nnp y x  is one of the fundamental PDFs of M.  The advantage of this choice is 

that sampling from ( )
1( | )k

n np x x   can be done readily since the PDF of γn is prescribed in 

such a way as to be readily sampled (eg. Gaussian). However, one drawback is that the 

exploration of the state space can be very ineffective since the new measured data  ny  is not 

used. 

 

2. ( )
1( | , )k

nn nq x X Y = ( )
1( | , )k

n n np x x y : For this case, the importance weight is updated as 

follows: 
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( | )

( | , )

k k k
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n k n k n k nnk k
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p y x

p x x y
  

  



   (C7.2) 

Doucet et al. (2000) shows that this choice of ( )
1( | , )k

nn nq x X Y  is optimal in the sense that 

it minimizes the variance of the importance weights ,n k  conditioned on ( )
1

k
nX   and  nY . 

This choice of ( )
1( | , )k

nn nq x X Y  has two drawbacks: 1) it requires the ability to draw 

samples from ( )
1( | , )k

n n np x x y , which is generally non-Gaussian, and 2)  ( )
1( | )k

nnp y x  in 

general is not known analytically because:  

  ( ) ( )
1 1( | ) ( | ) ( | )k k

n n n n nn np y x p y x p x x dx    (C7.3) 

 

One way to get around this is to use a Gaussian PDF obtained by local linearization of the 

state space model (as is done in the EKF algorithm). As an alternative, we can impose 

some special structure on 1 1 1( , , )n n n nf x u     and ( , , )n n n nh x u v in (7.2) and prescribe 

probability models for the γn’s and vn’s ; for example: 
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 1 1 1( , )   n n n n n n

n n n n n n n

x f x u B

y C x D u E v

   
  

 (C7.4) 

where γn~N(0,  ) and vn~ N(0,  ) are independent and 1 1 1( , )n n nf x u    can be nonlinear. 

Many common models in use belong to this class. For this class, it can be shown (shown in 

Appendix 7D) that to construct the optimal ( )
1( | , )k

nn nq x X Y , 1) there is no need to 

linearize 1 1 1( , )n n nf x u    even if the state space model is nonlinear; 2) ( )
1( | , )k

n n np x x y  is a 

multivariate Gaussian which allows direct simulation; and 3)  ( )
1( | )k

nnp y x   is known 

analytically: 
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 (C7.5) 

( )
1( | , )k

n n np x x y ~N( ,x n , ,x n ), that is a multivariate Gaussian with mean ,x n  and 

covariance matrix ,x n  where 

1 1 ( ) 1
, , 1 1 1

1 1 1
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Appendix 7D 

By substituting the state equation of (C7.4) into the observation equation, we obtain: 

 1 1 1( , )n n n n n n n n n n n ny C f x u C B D u E v        
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Thus ( )
1( | , )k

n n np x x y ~N( ,x n , ,x n ), that is a multivariate Gaussian with mean ,x n  and 

covariance matrix ,x n .  
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CHAPTER  8  

Conclusions 

This thesis addresses the problem of stochastic system analysis, model and reliability 

updating of complex systems with special attention to complex dynamic systems and high-

dimensional uncertainties. For stochastic system analysis, special attention is paid to 

evaluating robust failure probability. Full Bayesian model updating approach is adopted to 

provide a robust and rigorous framework to characterize modeling uncertainties associated 

with the underlying system and its environment. The following summarizes the conclusions 

for all the chapters in this thesis. 

8.1.1 Conclusions to Chapter 2 

The proposed algorithms presented in Chapter 2 provide powerful and effective 

computational tools for solving model updating problems in higher-dimensional parameter 

spaces, even unidentifiable ones, which are well known to present a challenging 

computational problem. Any type of model can be used: physics-based or blackbox, linear 

or nonlinear, without restriction on the type of data. Although the focus of application is on 

system identification and model updating of dynamic systems, there are other possible 

areas of potential application such as Bayesian regression and classification problems (e.g. 

Oh et al., 2008).  
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Advanced Monte Carlo algorithms are presented and their features are discussed and 

reviewed in detail. Improvements are proposed to make the algorithms more effective and 

efficient for solving higher-dimensional model updating problems for dynamic systems. 

New formulae for Markov Chain convergence assessment are also derived. The illustrative 

numerical example shows that based on acceleration data from the structure, the proposed 

fully probabilistic Bayesian model updating approach is able to characterize modeling 

uncertainties associated with the underlying structural system and can provide robust 

estimation even when the model class is unidentifiable based on the recorded response. 

8.1.2 Conclusions to Chapter 3 

Bayesian model class comparison based on the evidence for each model class provided by 

the data is very general and can deal with any type of model: physically-based or blackbox, 

parametric or nonparametric, linear or nonlinear, deterministic or probabilistic, without 

restriction on the type of data. A computational method is proposed for calculating the  

evidence for each candidate model class provided by the data, and so for calculating the 

posterior probability of each model class, by using its posterior samples generated using a 

Markov Chain Monte Carlo algorithm. In addition, this method allows for an efficient 

calculation of the information entropy and information (entropy) gain about each model 

classes given the data. This method can be applied in general to efficiently solve problems 

involving many uncertain parameters, especially where the previously-published Laplace 

asymptotic approximation (Beck and Yuen 2004) for the evidence does not perform well 

(e.g. unidentifiable model classes) or is computationally prohibitive because of the inherent 

optimization problem in high-dimensional spaces. Besides calculating the evidence 

required in Bayesian model class comparison, the proposed method can be used to 

calculate integrals with non-negative integrands in higher-dimensions by simulating 

samples from the PDF proportional to the integrand. Examples of potential application 

include system identification, regression, classification, and calculating reliability and 

expectations of functions of uncertain parameters. The presented examples show that 

among a set of candidate model classes, the most plausible model class based on the data is 
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identified and the plausibility of each model class is quantified based on its posterior 

probability. 

8.1.3 Conclusions to Chapter 4 

Past applications of the framework for model updating of dynamic systems focus on model 

classes which consider an uncertain prediction error as the difference between the real 

system output and the model output and model it probabilistically using Jaynes’ Principle 

of Maximum Information Entropy. In this paper, an extension of such model classes is 

considered to allow more flexibility in modeling uncertainties for updating of state space 

models and for making robust predictions by introducing prediction errors in the state 

vector equation in addition to those in system output vector equation. State-of-the-art 

algorithms are used to solve the computational problems resulting from these extended 

model classes. For the illustrative example which involves a benchmark structure from the 

IASC-ASCE Structural Health Monitoring Task Group, it is shown by Bayesian model 

class selection that the posterior probability of the extended model class is significantly 

larger than the original model class. The posterior robust failure probability of the 

benchmark structure subjected to a future earthquake for these model classes are calculated 

for different threshold levels. The results show that the posterior failure probability for 

these model classes can be quite different from each other even though they have the same 

type of underlying deterministic state-space model. Thus, the posterior robust failure 

probability is sensitive to the choice of model classes and hence to the way that model 

uncertainties are treated. This confirms the importance of implementation of model class 

comparison and averaging when predicting the system response, especially when 

calculating the robust failure probability. 

8.1.4 Conclusions to Chapter 5 

A novel methodology based on Bayesian updating of hierarchical stochastic system model 

classes is proposed for uncertainty quantification, model updating, model selection, model 
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validation and robust prediction of the response of a system for which some subsystems 

have been separately tested. It uses full Bayesian updating of the model classes, along with 

model class comparison and prediction consistency and accuracy assessment. In the 

proposed methodology, all the results are rigorously derived from the probability axioms 

and all the information in the available data are considered to make predictions. The 

concepts and computational tools of the proposed methodology are illustrated with a 

previously-studied validation challenge problem, although the methodology can handle a 

more general process of hierarchical subsystem testing. 

As shown by the illustrative example, within a model class, there are many plausible 

models and the predictions of response and failure probability of the final system can often 

vary greatly from one model to another, showing that the consequences of the uncertainties 

in the parameters are significant. Ignoring the uncertainty in the modeling parameters and 

solely relying on the MAP model (corresponding to the maximum of the posterior PDF) or 

the MLE model (corresponding to the maximum likelihood parameter value) for 

predictions can be dangerous and misleading since such predictions can greatly 

underestimate the failure probability and the uncertainty in the response. It is shown how 

more robust predictions by a model class can be obtained by taking into account the 

predictions from all the plausible models in the model class where the plausibilities are 

quantified by their respective posterior PDF values. 

Multiple model classes are investigated for the illustrative example. The response and 

failure probability prediction vary greatly from one model class to another. Hyper-robust 

predictions of response and failure probability are also obtained by a weighted average of 

the robust predictions given by each model class where the weight is given by the posterior 

probability of the model class. The posterior probability of one of the candidate model 

classes is so small based on the calibration data that its contribution to the prediction is 

negligible, so it is discarded from further predictive analysis after the calibration tests. 
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The computational problems resulting from full Bayesian updating of hierarchical model 

classes, as well as model class comparison, can be challenging, especially for problems 

with many uncertain parameters. A number of powerful computational tools based on 

stochastic simulation are used to solve efficiently the computational problems involved; in 

particular, for the illustrative example studied, the Hybrid Gibbs TMCMC algorithm 

worked well. 

If a model class performs well in predicting the response for the subsystems involved in all 

of the experiments, one can gain more confidence in its predictive performance for the final 

constructed system. However, it should be stressed that 1) whether the predictive 

performance of the model classes is acceptable or not depends on which criteria the 

decision maker thinks are critical, and 2) there is no guarantee that a model class which 

performs well enough to satisfy the selected criteria in predicting the response of the 

subsystems in these experiments will always predict the response of the final system well, 

especially in the case where some of the uncertainties in the final system which are critical 

to the prediction are not present in the subsystem tests (for example, there can be 

uncertainties in support or joint conditions in the final system, and uncertainties in input 

loadings, such as stronger amplitude inputs which may be experienced by the final system 

that cause it to behave very differently than the subsystems during their tests).  

Although it did not occur in the illustrative example, in the case where all candidate model 

classes give poor performance in predicting the response for subsystems involved in an 

experiment, one should check whether some of the uncertainties have not been adequately 

modeled in the failing subsystem tests and, if so, modify the candidate model classes to 

properly take into account these uncertainties.  

8.1.5 Conclusions to Chapter 6 

All types of uncertainties, including those from dynamic system modeling and/or the 

modeling of the uncertain excitation, are considered during the computation of the robust 



 

 247

reliability of a dynamic system subjected to future uncertain excitation. The prior robust 

reliability can be updated by using system data. This updating problem has been rarely 

tackled in the past due to the fact that it involves high-dimensional integrations of 

complicated integrands with respect to the uncertain parameters, leading to a 

computationally very challenging problem. A new approach is presented that is based on a 

stochastic simulation method and the availaibility of partial output data from the dynamic 

system. The proposed method is illustrated by a numerical example involving an inelastic 

hysteretic four-story building. 

8.1.6 Conclusions to Chapter 7 

A novel stochastic simulation method is proposed for updating in near real time the robust 

reliability of a dynamic system. The performance of the method is illustrated by an 

example which updates the failure probability using a nonlinear dynamic model of a seven-

story reinforced-concrete hotel based on incomplete floor acceleration data obtained during 

the 1994 Northridge earthquake. Using the observed response greatly reduces the 

uncertainty in the predicted peak interstory drift which characterizes the reliability of the 

system. In addition, the proposed method gives an updated probabilistic description of the 

entire time history of the complete response, conditional on the observed response. 

8.1.7 Conclusions for the whole thesis 

This thesis addresses the problem of stochastic system analysis, model and reliability 

updating of complex systems (with special attention to complex dynamic systems and high-

dimensional uncertainties) and applications to structural dynamics problems. For stochastic 

system analysis, special attention is paid to evaluating robust failure probability. This thesis 

contributes to both methodological and algorithmic developments for the problem. It is 

shown that the proposed methods which are based on probability logic and full Bayesian 

model updating provide a robust, rigorous and powerful framework to tackle the problem 

of stochastic system analysis, model and reliability updating of complex systems. The 
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proposed computational tools in this thesis is efficient, effective and very general 

(regardless of whether the system behaves linearly or nonlinearly, whether the system has a 

large number of uncertain modeling parameters or not). As confirmed by many illustrative 

examples, the proposed methods can tackle the case involving complex systems very well 

(e.g., dynamic systems with a large number of uncertain parameters). 

8.1.8 Future Works 

One of the plans is to investigate the application of the methodologies and computational 

methods presented in this thesis for more model and reliability updating problems with real 

data cases. Data were collected from real systems including 1) four-story ASCE-IASC 

benchmark structure; 2) six-story full-scale steel-frame structure tested pseudo-dynamically 

at BRI, Tsukuba, Japan in mid  1980s and 3) Milikan library during 1994 Northridge 

Earthquake. Applications to systems involving multi-physics interaction, for example, 

systems involving fluid-structure interaction such as offshore platforms will also be 

considered.   

Hamiltonian Markov Chain Method and the Multi-level multiple-group MCMC algorithm 

presented in Chapter 2 will be further improved so that they can be more efficient for the 

case with a huge number of uncertain parameters. 

Algorithms for calculating complicated likelihood functions resulting from different 

complexity in the stochastic model classes and for generating posterior samples from such 

model classes will be further improved. More studies will be carried out to study the effects 

and contributions of different stochastic model classes with embedded stochastic nonlinear 

dynamic models on the prediction of failure probability updated by the data. Similar to 

what was done in Chapter 4, multiple stochastic model class comparison and robust system 

reliability predictions will be implemented using modal data collected from four-story 

ASCE-IASC benchmark structure and the same set of seismic data (as in Chapter 7) 

collected from the seven-story hotel located in Van Nuys. 
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The new Bayesian model validation methodology presented in Chapter 5 will be applied to 

a problem involving a real, complicated system where data from the corresponding 

hierarchical subsystem tests can be obtained. More theorems and results will be presented 

in future publications about the new algorithms presented in Chapters 6 and 7 for updating 

robust future reliability and updating robust near real-time reliability of dynamic systems. 

Data from real structures will be used in these studies.  
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