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Chapter 7

Outlook and possible future
directions

Since time immemorial, mathematicians and artists alike fancied helices and spirals. Prominent in

ancient ornaments, spiral shape most famously showed up in Watson and Crick’ double helical model

of DNA. Helical shapes of fibers, bands, and bundles is generally one of the Nature’s greatest schemes

for self-assembly, growth, and structural integrity presented in: aromatics [77] (see also News and

Views on this subject in [78]), tendrils of plants [79], proteins, DNA [80], the heart, etc. How these

helical structures self-assemble is often a mystery: sometimes, like in proteins, it is possible to show

that the transformation is entropically driven [81], but oftentimes it is not known how these helices

form [82]. As Martin Kemp famously observed in his elegant treatise on “spirals of life,” the helical

living designs are generally well known for their static features, rather than their active function

[63]. Of course, airplane propeller or bacterium flagella represent rotating spiral designs, but in both

cases the spiral itself is still passive.

That is why we were much excited to learn that while all the fibers in the myocardium were

helically organized for structural integrity, the active muscle fibers in the heart appear to have a sort

of double helical organization as well, as it was recently observed by the modern sophisticated imaging

technique – version of MRI called DTMRI [23]. The apparently dominant helical organization of

fibers in the heart raises a more serious question: Is it possible that spiral organization of the active

myofibrils may also shed light on the complex dynamics of the heart?

We started thinking that these spiral structures might hold the key to understand the wonderfully

efficient function of the heart. Indeed, the muscle band consists of a group of parallel muscle fibers,

each of which cannot contract much over 15%, yet the volume exchange ratios, ejection fractions, in

the ventricles can exceed 60%. Is it possible to gain an insight into these paradox by invoking the

spiral geometry of the muscle band?

H.T. Crane once wrote on the general problems of biological growth. He pointed out, that while

the process in the whole can be too complex for us to produce an equation describing it, we can
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understand it if we know “the principles involved and something of the order of their importance”[62].

In studying the development of the heart I followed this road-map.

The most efficient way to approach these problem is by using computational modeling.

We constructed an efficient computational model in chapter 2 by assuming that the myofibrils

are arranged in the heart muscle is a single band that starts from the pulmonary aorta, hugs the

right ventricle, winds down to the apex, as the descending segment, and then spirals up to the

aortic valve as the ascending segment. We assumed that this band reacts to the local strain created

by excitation of the muscle cells as an elastic body, while the rest of the myocardium is a passive

material that does not create any strain and just bounds the volume. This allowed us to resort to

very advanced computational techniques used in other well developed engineering fields, and even

use a commercially available finite element package – ABAQUS [74]. Simplistically, this program

solves elastic equilibrium equations for each small cuboid, and then puts together the evolution of

the whole structure by continuity.

The advantage of computational modeling is that once the computational model is set up it allows

for easy testing of a wide variety of conditions. We can vary the fiber angles, width, thickness, and

ventricle dimensions. The band can shorten as a whole, or parts of it can contract independently of

each other. This allows us to create complicated contraction schemes inside the band.

The simplest dynamic scheme is to excite all the nodes at the same time and have the elements

contracting in sync, making a uniform contraction. More interestingly, we are able to mimic the

action of the Purkinje network by considering an excitation/relaxation wave traveling along our

band starting at the apex.

The first success of our model is its ability to effortlessly resolve the above mentioned paradox

and to reproduce the large ejection fraction, despite the small muscle strain. It came as a pleasant

surprise that our model easily matches not only the physiological maximum ejection fraction, but

also the left ventricular volume evolution with time as was shown in chapter 2.

In chapter 3 we use this approach of focusing on dominant structures in the heart to investigate

the causes of the forces that play an integral role in the self-assembly of the adult four chamber

heart from the embryonic tube heart. We showed that the helical form of the fibers surrounding

the heart tube in combination with a spatial excitation wave is able to produce the twisting forces

necessary for the initiation of self-assembly.

We then turned, in chapter 4, to a much more sensitive property of the heart, namely the timing

relationship between twist and ejection fraction, which is considered a potentially powerful diagnostic

tool of ventricular health. While comparing the model results to actual physiological data, we were

gratified to find that we can match the double looped response observed in nature, and that this is

possible only with an excitation that approximated the physiological scheme.

In chapter 5 we used our model to consider pathological behaviors of the heart. Indeed, because
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of the relatively simple nature of the double helical model we are able to test different types of

damage separately, and to discern the causes of pathological behavior. As we have shown, for

dilated cardiomyopathy the change in fiber angle is much more critical than the change in gross

geometry of the left ventricular chamber. Additionally, we were able to match experimental results

for the relationship between twist and ejection fraction seen in cases of dilated cardiomyopathy,

giving more credence to the computational model.

Finally, in chapter 6 we demonstrated that the double helical muscle band used as an engine

inside a collagen shell can produce physiologically high pressures. This filled-out model will be

the springboard into further research. Indeed, to model both the pressure generation and volume

ejection of the ventricles we need to match the highly nonlinear behavior of the heart tissue. It will

be necessary to model the endocardium membrane that is very resistent to stretching, as well as the

ability of the collagen matrix to shear with the movement of the muscle fibers, while increasing the

width of the walls.

What have we learned from this model? In general the greatest benefits of modeling is to gain

insight into the dominant structures and processes. In our case, the model was initially proposed

by Torrent-Guasp and supported by modern imaging techniques, such as DTMRI, but is still not

uniformly accepted by researchers in the field. Our modeling results indicate that helical arrangement

of the muscle in the heart does provide a natural and simple explanation of heart pumping. This

insight predicts that the heart cells grown around a scaffold in recent breakthrough research by a

Minnesota group will need an additional input to provide them with proper organization, in order

to transform their wonderfully achieved beating into efficient pumping. We hope our results will be

valuable in this endeavor.

The imagination of great artist allowed M.C. Escher to portray the human face as an elegantly

bent paper stripe (Rind 1955). When we look at the image we unmistakably see the human head

and face, and even quite expressive face. Is this model physiologically correct, does it involve all the

physiologically relevant details? No, it does not. But it does capture something important – in fact,

something most essential for the artist. We hope that, similarly, our model, however simplified, does

capture something most essential. Definitely, it can serve as a starting point for further research, as

it helps asking useful questions to be addressed by MRI and other studies.
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Appendix A

Additional Analytical Calculations

A.1 Inherent limit on pumping efficiency of structures with

non-helical fibers

Let us first consider a tubular and a parabolic pumping chamber with non-helical fibers. We impose

the same boundary and material conditions as were described in section 2.2. We expect the biggest

ejection fraction to be produced by the biggest possible fiber contraction of 15%.

A tube volume is given by V = πr2L, where r is the radius and L is length. For a parabolic

chamber the volume is given by V = (1/2)πr2
maxL, where L is the height of the parabola, and

rmax is the radius at height L. For both of these, if the fibers are arranged circumferentially the

circumference, and thus the radius will decrease by 15%, i.e., r = 0.85r0.

Using equation 2.8 the ejection fraction would be about 28%. However, in the tube model the

ejection fraction would actually be lower, because the two ends of the tube are fixed, so that the

fibers close to the ends cannot contract and will simply exhibit stress in response to excitation. This

is also the case for the basal region of the parabolic chamber.

If the fibers are arranged longitudinally then the in the tube model there will be no pumping at

all because the length is restricted from shortening by the boundary conditions. For the parabolic

chamber the length will be reduced by 15%, and thus the ejection fraction would also be 15%.
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Appendix B

Analytical estimate of energy
efficiency of twist vs. contraction
pumps

B.1 Introduction

There is heuristic evidence that twisting action is very important in pumping mechanisms [64]. Here

we present a range of analytical models called on to illustrate one of the reasons behind nature’s

propensity of taking advantage of the effect of twisting.

B.2 Pumping from a Cylindrical shell

We create analytical models for tube-pumping mechanisms. Such pumps are used extensively, for

example inside the body to increase the flow through the vasculature. We will use the notion of the

ejection fraction to evaluate the output of our simple pumps. The ejection fraction, EF , is given by

the change of volume normalized by the initial volume:

EF =
V0 − V

V0
= 1− V

V0
. (B.1)

Let us considering two different systems, one that has the tube contracting radially while the

other is twisted.

B.2.1 Radial shortening of the tube

Let us first consider squeezing the tube radially, as seen in figure B.1. In this case we have circular

wires, with radius rwire arranged around a cylinder of constant length L = L0, and initial radius of
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r0, and the initial fiber length of D0 = 2πr0. The volume of the cylinder is simply given by:

V = L · πr2. (B.2)

In this model the wires will shorten around the tube by a factor of ε, meaning that the fiber

length is D = (1 − ε)D0 = 2(1 − ε)πr0 = 2πr. And thus r = (1 − ε)r0. Since the length of the

cylinder is constant we use equation B.1 and get the ejection fraction to be:

EF = 1− r2

r2
0

= 1− (1− ε)2r2
0

r2
0

= 2ε− ε2. (B.3)

The difficulty with such a pump is that a device which uses shortening of wires to pump would

be energetically very expansive, which is easy to prove to oneself by simply bending a wire and then

trying to shorten it – it takes a great deal more effort to shorten something than it does to bend it.

However, there are at least two simple ways to create radial shortening in the tube while bending

the wires. In the first case, the wire slides into a spiral form, as seen in figure B.2(a). In this case

the model would become invalid once the radius of the tube becomes comparable to the radius of

the wire. A second simple device is akin to a snake eating its own tail, where we create a slit in

one half of the wire that the second half can slide into (figure B.2(b)). In this case the minimum

circumference can be only half of the wire length, εmax = 0.5, but that would mean an ejection

fraction of EF = 75%, which is sufficient for most applications. Thus both of these models are

considered.

The work used to achieve the volume change for both of these models is the bending energy of

the wires. Assuming that the fibers are initially stress free, and that linear elasticity applies, the

r0 r

L0 L0

Figure B.1: A schematic of radially squeezed tube, with a few wires drawn.
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(a) Spiral wire (b) Snake wire

Figure B.2: Two different ways to create radial shortening through bending of the wires.

energy to reduce the radius of the tube can be calculated by:

E =
1
2
kD

(
1
R
− 1

R0

)2

, (B.4)

k =
1
4
EY πr4

wire, (B.5)

where EY is the Young’s modulus of elasticity for the wires, R and R0 are the current and initial

radii of curvature, respectively. For radial wires the radius of curvature is simply the current radius

of the tube. For the purpose of these calculations we will assume that the average wire radius is the

same in both of the cases that we proposed above, which means that both cases require the same

amount of work to shorten the circumference of the tube.

E =
1
2
kD0

(
1
r
− 1

r0

)2

=
kD0

2r2
0

(r0

r
− 1

)2

. (B.6)

As mentioned before, in these calculations we assume that r � rwire and we will assume so for all

of these analytical models. Another scaling assumption that we need to make is that the distance

between fibers is much greater than the diameter of the fibers. For now let us assume that there are

n wires. By manipulating equation B.3, we can find that:

r0

r
=

1√
1− EF

⇒ (B.7)

⇒
[r0

r
− 1

]2

=
[
1−

√
1− EF√

1− EF

]2

=

(
1−

√
1− EF

)2

1− EF
. (B.8)

Applying this to equation B.6 we can find the total work performed as a function of the ejection
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fraction achieved:

E =
nkD0

2r2
0

(
1−

√
1− EF

)2

1− EF
. (B.9)

We can write this work in a dimensionless form:

Ẽ =
E

EY πr2
wirer0

=
nr2

wireD0

8r3
0

(
1−

√
1− EF

)2

1− EF
. (B.10)

A plot of the work required for the pumping as a function of the ejection fraction is shown in figure

B.3. Note that the plot does not extend beyond ninety percent ejection fraction, because the radius

of the tube becomes comparable to the radius of the wires at that point and the model breaks down,

and thus the work approaches infinity for an ejection fraction of one.

0.2 0.4 0.6 0.8
EF

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

E
�

Figure B.3: The plot of work required vs. the ejection fraction achieved for radial contraction in a
tube, n=5.

B.2.2 Twisting of the tube

Now Let us consider a cylinder made up of non-extendable longitudinal or helical wires. Again the

wire radius is rwire and its constant length is D = D0. The cylinder has a constant radius of r = r0

and an initial length of L0. For this model the top edge of the cylinder is held, while the bottom is

rotated by an angle α (figure B.4). In this case the assumption that the distance between the fibers

is much larger than the diameter of the fibers is very important. If this assumption is valid, the

work put into this transformation, is the bending energy. However, if this assumption is not true

and the fibers are close enough to interact with one another during the transformation the bending

energy will no longer be a dominating factor. For this analytical problem we will also assume that

there will be no buckling.
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r0 r0

r0r0

α

γ γT

L0
L

L0
L

α

Figure B.4: Twisting of helically arranged fibers. The top series shows the tube with several wires.
The bottom shows only one wire, and labels the relevant twist angles.

The length of the tube can be written in terms of the turn angle:

L =
√

D2 − α2r2. (B.11)

Let us assume that initially the fibers are at an angle γ to the vertical (figure B.4). If this angle is

γ = 0 then the length of the tube is the same as the fiber length, L0 = D. Substituting these into

the equation B.2 and B.1 we have:

EF = 1− L

L0
= 1−

√
D2 − α2r2

D
= 1−

√
1−

(αr

D

)2

. (B.12)

However, if initially the unstressed fibers are helical and γ 6= 0, the starting twist needs to be

taken into account. It is important to note that 0 ≤ γ ≤ π/2. For volume calculations this can be

interpreted as though we first rotated the bottom edge by an angle β, which is given by the known
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twist angle,γ:

β =
D sin γ

r
. (B.13)

Now we can use equations B.11,B.2 and B.1 to write the ejection fraction as a function of both the

initial turn angle and the additional turn angle:

EF = 1− L

L0
= 1−

√
D2 − (α + β)2 r2

D2 − β2r2
= 1−

√
D2 − (αr + D sin γ)2

D2
(
1− sin2 γ

) . (B.14)

After the transformation the total angle that the fiber makes to the vertical is going to be:

sin γt =
r (α + β)

D
=

αr

D
+ sin γ. (B.15)

The total γt also has to be between zero and π/2, which puts a constraints on α.

− D (sin γ)
r

≤ α ≤ D (1− sin γ)
r

. (B.16)

However, if α < 0, there would be no pumping. The upper limit on α would actually be constrained

by the radius of the wire. Indeed the distance between the wires has to be greater than the diameter

of the wire (figure B.5). This constrains the total twist angle to:

x > 2rwire ⇒ cos2 γt >
nrwire

πr
⇒ sin γt <

√
1−

(nrwire

πr

)2

(B.17)

γ
γ

x

2πr/n

Figure B.5: The cylinder laid out flat, showing the twist angle and the distance between the wires.

That means that the limit on maximal turn angle that we can induce is:

α <
D

r

[√
1−

(nrwire

πr

)2

− sin γ

]
, (B.18)
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which puts a constraint on the ejection fraction that can be reached with this device:

EF < 1− 1
cos γ

(nrwire

πr

)
. (B.19)

Figure B.6 shows the relationship between the initial twist angle, γ, and the maximum ejection

fraction that can be achieved.

0.2 0.4 0.6 0.8 1 1.2 1.4
Γ

0.2

0.4

0.6

0.8

1
Max EF

Figure B.6: The maximum ejection fraction possible with the twist method as a function of γ.
Constants: n = 5,D = 2πr,rwire = 0.1r.

To calculate the work used to make these transformations we can calculate the energy of bending

(formula B.4) for one wire undergoing this twisting. Substituting the relationship of equation B.13

into equation C.17 from the appendix C.3 we have the expression for the radii of curvature in terms

of the turn angles:

R0 =
D2

β2r
=

r

sin2 γ
, R =

D2

(α + β)2 r
=

D2(
α + D sin γ

r

)2

r
. (B.20)

Plugging these into equation B.4, for one wire the work to bend it will be:

E =
k2

2
r2

D3
α2 (α + 2β)2 =

k2

2
r2

D3
α2

(
α + 2

D sin γ

r

)2

. (B.21)

This can be used to write the relationship between work and ejection fraction. Assuming we have n

wires the work will be:

E =
k2n

2
D

r2

[
1−

(
βr

D

)2
]2 [

2EF − EF 2
]2

= (B.22)

=
k2n

2
D

r2
cos4 γ

[
2EF − EF 2

]2
. (B.23)
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If we write it in the same dimensionless form as for the previous case we have:

Ẽ =
E

EY πr2
wirer0

=
nD0

8r0

(rwire

r

)2
[
1−

(
βr

D

)2
]2 [

2EF − EF 2
]2

= (B.24)

= Ẽ =
nD0

8r0

(rwire

r

)2

cos4 γ
[
2EF − EF 2

]2
. (B.25)

It is important to note that unlike the radial shortening case the initial length of the wire is inde-

pendent of the initial radius of the tube for the twisting model. If the length of the fiber is the same

as the initial circumference of the cylinder, then the ejection fraction and work for the twist case

can be written as:

EF = 1−

√
1−

(
α
2π + sin γ

)2

cos γ
(B.26)

Ẽ =
nπ

4

(rwire

r

)2

cos4 γ
[
2EF − EF 2

]2
. (B.27)
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Figure B.7: The plot of work required vs. the ejection fraction achieved for twisting of the bottom of
the tube. There are multiple curves for several initial twist angles, γ values, n = 5,D = 2πr,rwire =
0.1r
.

This dimensionless work is plotted for several values of the initial twist angle in figure B.7, with

the same values for the constants as in the case of the radial shortening. Each curve stops at the

maximum ejection fraction that can be achieved with the starting twist angle. Note that the most

efficient way to get a specific ejection fraction is to pick the maximum initial angle at which it is

possible to get that ejection fraction. Indeed if we assume that the most efficient path to each specific

ejection fraction is taken we can rewrite the work relationship as:

Ẽ =
nD0

8r0

(rwire

r

)2 (nrwire

πr

)4
[
2EFmax − EF 2

max

]2
(1− EFmax)4

. (B.28)



103

Note that rwire/r0 � 1, so even if the length of the wire is increased this device will remain more

efficient than the one that has radial shortening.

B.2.3 Pumping against inner pressure

Working with linear elasticity it is relatively easy to consider the work required to overcome the

pressure inside the tube. Indeed for a tube that has inner pressure, Pin, and the pressure outside is

Pout, we can use the volume calculations for both models to show:

Epressure = (Pout − Pin)∆V = (Pout − Pin)(V − V0) =

= (Pout − Pin)V0
V − V0

V0
= −EF (Pout − Pin)V0 (B.29)

This energy is not dependent on the way we achieve the ejection fraction, and will be the same for

all the devices considered here, and can be added to the work calculated in the previous sections.

B.2.4 Comparing the two different methods of pumping

To see how the different methods of pumping compare we plot the dimensionless energies on the

same plot, cutting the ejection fraction at 75%, since higher ejection fractions are not of interest here

(figure B.8). At first glance it seems that for some ejection fractions the radial contraction device

is more efficient than the twisting device. However, if for each ejection fraction the γ is chosen

such that the work is most efficient to reach that ejection fraction, the results clearly show that the

twisting is a better choice (figure B.9). Another way to look at it is to show the work required for

the two different models when the maximal desired ejection fraction is known. Such a plot for three

different ejection fractions is shown in figure B.10.
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Figure B.8: The plot of work required vs. the ejection fraction achieved for both the twisting of the
bottom of the tube and radial shortening of wires. There are multiple curves for several initial twist
angles, γ values. All the constants are the same for both cases: n = 5,D = 2πr,rwire = 0.1r.
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Figure B.9: The plot of work required vs. the maximal ejection fraction achieved for both the radial
shortening of wires and the most efficient twisting of the bottom of the tube. All the constants are
the same for both cases: n = 5,D = 2πr,rwire = 0.1r.
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Figure B.10: The plot of work required vs. the ejection fraction achieved for both the twisting of
the bottom of the tube and radial shortening of wires. There are multiple curves for several different
maximal ejection fractions. All the constants are the same for both cases: n = 5,D = 2πr,rwire =
0.1r.

B.3 Pumping from a half ellipsoid shell

Now let us consider pumping from a half ellipsoid shell. A biological example of such a pump would

be the four chamber heart. We could potentially use the same method we did when describing

the cylindrical pumps. This would not be very hard for radially contracting wires, but for helical

wires it would require some very complicated mathematical expressions to describe the helix and

calculate the radius of curvature in ellipsoid coordinates. Additionally, if later at some point we

wanted to change the geometry of our chamber we would have to perform all the calculations again

from scratch. So instead we will formulate an approximation method that will work quite well for a

range of geometries.

Let us approximate the ellipsoid shell by a series of cylinders with each having a height dz. Each

cylinder will have a radius of r(z), which will determine the shape of our chamber. For example the
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elliptical shell we will consider here will have

r = C sinh ξ sin θ, (B.30)

z = C cosh ξ cos θ, (B.31)

where C and ξ are constants, and θ is the parametric variable for a heart model varying 3π
10 ≤ θ ≤ π.

We will now set up a formulation for calculating the ejection fraction of our convex shell pump.

The volume of the shell will be the sum of the volumes of the cylinders that it is made up of. For

the approximation to be accurate let us assume that dz → 0, then instead of a sum we can write

the volume in integral form. The initial volume would be given by:

V0 = π

∫ zmax

z0

[r(z)]2 dz (B.32)

where z0 and zmax are the initial and final height of the shell, respectively. How the volume changes

will depend on how each cylinder in the stack will deform.

B.3.1 Radial Contraction in a Shell

If we have radial wires about an axisymmetric shell of shape r(z) each contracting the same way as

described in section B.2.1. Thus the radius changes rf (z) = (1 − ε)r(z) (note that r(z) here is the

initial radius). Then the volume is given by:

V = π

∫ zmax

z0

[rf (z)]2 dz = π(1− ε)2
∫ zmax

z0

[
r(z)

]2
dz = (1− ε)2V0, (B.33)

which means that the ejection fraction is the same as in equation B.3.

EF = 1− (1− ε)2 = 2ε− ε2. (B.34)

The energy for each wire is given by:

Eone =
kD0(z)
2r(z)2

(
r(z)
rf (z)

− 1
)2

=
kπ

r(z)

(
ε

1− ε

)2

. (B.35)

Thus for multiple wires the energy would become:

E = kπ

(
ε

1− ε

)2 n∑
i=1

1
r(zi)

, (B.36)
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where, i is the number of the wire. Since there is no single initial radius we will normalize this

differently from the tube case:

Ẽ =
E

EY πr3
wire

=
rwireπ

4

(
ε

1− ε

)2 n∑
i=1

1
r(zi)

. (B.37)

B.3.2 Twisting of a Shell

When each disk is twisted it will respond in the same way as the cylinder described in section B.2.2.

That means that we assume that the radius does not change while the height becomes dz′. The new

height will be given by:

dz′ =
L

L0
dz. (B.38)

And the new volume will become:

V = π

∫ zmax

z0

[r(z)]2
(

dz′

dz

)
dz = π

∫ zmax

z0

[r(z)]2
(

L

L0

)
dz. (B.39)

The ratio of the initial and final length can be taken from section B.2.2. The energy can be calculated

in the same way, since we know that the total work that needs to be done is the sum of the work

used to turn each disk we will have dE rewritten from equation B.4:

dE =
k2

2
[r(z)]2

(
dα

dD

)2 [
dα

dD
+ 2

sin γ

r(z)

]2

dD. (B.40)

However, now we need to determine the boundary conditions on each of the disks so that we can

apply the equations we derived for the cylinder. We specify that the bottom of the shell is rotated

by α, while the top is held immobile. This means that a disk somewhere in the middle will have

one rotation at the top and a bigger rotation on the bottom. However, from a solid mechanics point

of view if we are rotating the whole disk as a whole, it will not experience any deformations. This

means that the only rotation that will impact the shape of the disk is the difference in the rotation of

the top and bottom. To use our previous formulas we can look at each disk relative to its top (now

immobile) with the bottom rotating by dα. There are multiple ways to specify dα as a function of

z, that we will describe a little later. The other quantity that is different for each disk is the length

of the wire in each disk. Obviously, this will depend on the initial fiber angle, but it will also be a

function of the shape of the shell under study:

dD =
dz

cosγ
, (B.41)

where dD is the length of fiber at each disk, as previously γ and dz is the initial fiber angle and

the height of each disk, respectively. For this study we will specify that γ will not depend on z.
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This means that if we are considering an ellipsoid shell, the angle γ is the angle that is made by the

projection of the tangent to the fiber on the z− θ plane and the z vector. Notice, that for each disk

both dα and dD will be small quantities, thus we will rearrange the equations for the ratio of the

lengths to combine these:

L

L0
=

1
cos γ

√
1−

[(
dα

dD

)
r(z) + sin γ

]2

. (B.42)

And the total energy can be written as:

E =
k2

2 cos γ

∫ zmax

z0

(
dα

dD

)2 [
dα

dD
r(z) + 2 sin γ

]2

dz. (B.43)

Now let us consider the different possibilities for specifying dα on the disks.

The simplest rule would be to enforce that the rotations varies linearly with z, i.e., dα = α
L0

dz.

This has the benefit of being simple, with the “small” ratio becoming:

dα

dD
=

α cos γ

L0
. (B.44)

And the length ratio becomes:

L

L0
=

1
cos γ

√
1−

[(
α cos γ

L0

)
r(z) + sin γ

]2

. (B.45)

Substituting this into equation B.39 to find the final volume of the shell we have:

V = π

∫ zmax

z0

[r(z)]2

cos γ

√
1−

[(
α cos γ

L0

)
r(z) + sin γ

]2

dz. (B.46)

The ejection fraction is simply given by equation B.1. The energy can be calculated to be:

E =
k2 cos γ

2

(
α

L0

)2 ∫ zmax

z0

[
α cos γ

L0
r(z) + 2 sin γ

]2

dz. (B.47)

We need to normalize this expression differently from what was done in the cylinder case since the

radius varies with z. This will not matter since we will only be comparing the energies of the shell

being twisted and radially contracted. So we will have:

Ẽ =
E

EY πr3
wire

=
rwire cos γ

8

(
α

L0

)2 ∫ zmax

z0

[
α cos γ

L0
r(z) + 2 sin γ

]2

dz. (B.48)

While considerably more complicated these expressions have the same nature as in the case of a

cylinder and predictably the same result.
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B.4 Conclusion

The simple analytical problems presented here showcase of the importance of twist in pumping

devices. These are of course grossly simplified, ignoring effects like buckling. However the results

help us develop an instinctive understanding of the importance of twisting in biological pumps.
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Appendix C

Additional Methods

C.1 Geometrical parameters in formulating the Double he-

lical heart: healthy and diseased

In this model we assume that the double helical band to approximate the myocardium fiber architec-

ture. While detailed description of how these equations are formulated will be published elsewhere,

we give a brief overview here. As a first step we describe the changing orientation of the fibers by

specifying the long-axis coordinate, zcent, as a function of polar coordinate θ for the centerline of

the band:

zcent = C1 − C2
θA1

A2
exp

[
− θ

B2

]
(C.1)

where C1, C2, A1, A2, B2 are constants. The polar coordinate θ varies θmax ≥ θ ≥ 0, where θmax

corresponds to the start of the band at the pulmonary aorta, and θ = 0 corresponds to the end of

the ascending segment.

The r-coordinate of the centerline should now be constructed in such a way that the centerline

correctly skirts the ventricular chamber surfaces. So for a parabolic chamber the centerline rcent:

rcent =
√

1
A3

zcent + ZA ∗ C3 [Factor 1] [Factor 2] , (C.2)

Factor 1 = 1 + C4 cos
(

θ − θcrossing

2

)
,

Factor 2 = 1 + C5 exp
(
− (θ − θright)

2
)
,

where, A3, ZA,C3, C4 and C5 are constants. We introduce Factor 1 to avoid self-overlap of the

band at θcrossing = π
(
−1 + cot π

A1B2

)
and θcrossing + 2π. The factor bends the centerline away

from self-crossing. We also introduce Factor 2, which is only significant in the region of anterior

surface and describes the fact that this surface bends significantly outwards from the septum. We

choose the middle of anterior surface to correspond to θright = 3.8π. The position of the apex of
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the left ventricular chamber is taken to be at z = C3. The constants of equations C.1 and C.2 are

not independent when related to the geometry of the heart, for example a combined change in A1

and ZA controls the fiber orientation in the region of the apex. The shape of the chamber can be

controlled by changes in the constant A3. The centerline can also be written in a similar way for a

spherical chamber:

rcent =
√

1
A3

zcent + ZA ∗ C3 [Factor 1] [Factor 2] (C.3)

where R0 characterizes the spherical shape of the ventricle, while all the other constants are the

same as for equation C.2.

To make the mathematical description of the 3D shape of the band simpler, we approximate the

direction of the width to be along the z-axis. The parameterized three dimensional structure is then

described in cartesian coordinate, (x, y, z), by:

z = zcent + ξ r = rcent(z) + ζ (C.4)

x = r cos θ y = r sin θ

where −w/2 < ξ < w/2 and 0 < ζ < t, with w and t are the width and the thickness of the band,

respectively.

The parameters that remain constant for all models have values of C1 = 4.9, C2 = 7, A2 =

0.5, C3 = −0.77, C4 = 1/6 and C5 = 1. The following is the list of the models used in this paper

and the parameter values for each one (unless otherwise specified equation C.2 was used):

Normal: A1 = 1.3, ZA = 1.1, A3 = 1.

Weakly Oblique: A1 = 1.1, ZA = 1.4, A3 = 1.

Moderately Oblique: A1 = 1.0, ZA = 1.6, A3 = 1.

Strongly Oblique: A1 = 0.9, ZA = 1.7, A3 = 1.

Moderately Dilated: A1 = 1.3, ZA = 1.1, A3 = 1/4.

Strongly Dilated: In this case equation (C.3) was used with A1 = 1.3, ZA = 1.1, A3 = 1, R0 = 3.8.

Other Damage: A1 = 1.3, ZA = 1.1, A3 = 1.

C.2 Calculating Twist of the Left ventricle

In order to measure twist we attach a strip of soft material to the left ventricle. This strip of material

(twist indicator) is made of a material that is two orders of magnitude softer than the non-active
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parallel planes

d

parallel planes

d

Figure C.1: A sketch of the two dimensional projection of the “sandwich” with markers. Left: a
case with two markers on each plane. Right: a case with three markers on one plane and only one
marker on the other plane.

material (i.e., the Young’s modulus of the twist indicator material is one hundredth of the Young’s

modulus of the non-active material). As a result the twist indicator does not influence the movement

of the band. In its initial configuration the strip is on a vertical plane containing the long axis of

the left ventricle and at θ = 2.96π. During the deformation of the band the strip can deform in

plane or out of the plane. When the long axis of the left ventricle shortens during contraction the

indicator strip deforms in plane. In the shortening of the long-axis the top and bottom portions of

the left ventricle band come closer together, and to accommodate this deformation the strip buckles

outward. However, unless the top and bottom portions of the band rotate with respect to each

other, the buckling will occur in the same vertical plane. Conversely, in twisting of the left ventricle

the bottom and top portions of the band move with respect to each other in the horizontal plane.

As a result the strip deforms out-of-plane. The greater the twist of the left ventricle, the greater the

out-of-plane deformation. To measure the out-of-plane deformation we keep track of the position

of the nodes on the strip indicator. The way we calculate the out-of-plane distance is akin to the

least squares method in 3D, we imagine two parallel planes sandwiching these nodes and minimize

the distance between the planes. Because the two planes are always parallel (i.e., the normals are

the same) there are two possible arrangements: In the first configuration, one plane is defined by a

triplet of points, while the other is defined by a single point and the the normal of the first plane.

In the second possible configuration, each plane contains a pair of points (figure C.1). Once the

minimum distance, the minimal sandwich thickness, is calculated we can translate that measure

directly into twist or torsion. Twist of the left ventricle is normally defined as the slope of the fit

line to the relationship between the rotational angle of a marker and its long-axial position. Torsion
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of the left ventricle is defined as the average of the rotations of markers placed at different positions

of the long-axis. We could use the nodes of the twist indicator as markers and calculate the rotation

of each one and then average to calculate torsion or twist, but this would only introduce unnecessary

errors. Instead, we directly relate the out-of-plane deformation of the twist indicator to the values

of twist and torsion. Assuming that the twist changes linearly with the z-coordinate of the long

axis, with no twist at the basal plane and maximal twist at the apex, the maximum out-of-plane

movement will be at 1
3LA from the apex in the case of a parabolic and (1 − 1/

√
2)R0 in the case

of a spherical chamber, where LA and R0 is the long axis and the sphere radius, respectively. As a

result twist is calculated from out-of-plane deformation (d) of the twist indicator:

twistparabolic = −3
√

3
2

d

(LA)(rbase)
, (C.5)

twistsphere = − 2d

R2
0

, (C.6)

where, LA and rbase are the long axis length and radius at the base (top), respectively. Once

twist is known torsion can be calculated from the relationship between twist and torsion torsion =

(LA)twist/2:

torsionparabolic =
3
√

3
4

d

rbase
, (C.7)

torsionsphere =
d

R0
. (C.8)

C.3 Calculating radius of curvature

Let ~r(s) be the parametric equation for the curve of interest, where s is the natural parameter. The

tangent is given by:

t̂(s) = ~̇r(s). (C.9)

We know that the relationship between the tangent and the normal can be expressed as:

˙̂t(s) = æ · n̂(s), (C.10)

where æ is the curvature. The radius of curvature is then given by

R =
1
æ

=
1∥∥∥ ˙̂t (s)

∥∥∥ . (C.11)
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C.4 Radius of Curvature for a helix about a cylinder

For a helix about a cylinder of radius r where the curve makes γ angle with the vertical, z-coordinate.

The parametric equation in terms of natural parameter s is:

z = s · cos γ, θ =
s

r
sin γ, (C.12)

~r(s) = [x, y, z] =
[
r cos

(s

r
sin γ

)
, r sin

(s

r
sin γ

)
, s · cos γ

]
. (C.13)

The tangent is then given by:

t̂(s) =
[
− sin γ sin

(s

r
sin γ

)
, sin γ cos

(s

r
sin γ

)
, cos γ

]
. (C.14)

The derivative of the tangent is:

˙̂t (s) =
[
−1

r
sin2 γ cos

(s

r
sin γ

)
,−1

r
sin2 γ sin

(s

r
sin γ

)
, 0

]
. (C.15)

The curvature is then:

æ =
∥∥∥ ˙̂t (s)

∥∥∥ =
sin2 γ

r
. (C.16)

The radius of curvature is then:

R =
r

sin2 γ
. (C.17)
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Appendix D

Extra Figures

D.1 Additional figures for chapter 2

Factor 1

Factor 2

Figure D.1: The form of the band before Factor 1 and Factor 2 were included into equation 2.5.
On the left the point at which Factor 2 pulls the band out is indicated. On the right the cross over
point which Factor 1 separates is indicated.
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D.2 Additional figures for chapter 4

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 0.25 0.5 0.75 1

Normalized EF

tw
is

t

systole
diastole

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 0.2 0.4 0.6 0.8 1
Normalized EF

tw
is

t

systole

diastole

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 0.2 0.4 0.6 0.8 1

Normalized EF

tw
is

t

systole
diastole

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 0.2 0.4 0.6 0.8 1
Normalized EF

tw
is

t
systole
diastole

(A) At the Apex - Twelve O'clock
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(B) "Eleven O'clock"
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Figure D.2: Twist vs. normalized ejection fraction for spatial waves with varying origin of exci-
tation. (A) The “Purkinje” type wave used through out this dissertation; (B) the wave origin is
shifted slightly into the septum; (C) the wave origin is shifted toward the right heart; (D) the wave
origin is shifted further towards the right heart. It is interesting to not that the loops seem to
collapse forecasting that when the wave originates at the right heart the directions of contractions
are reversed.
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D.3 Alternate figures for chapter 5

(A) Normal (B) Weakly Oblique

(C) Moderately Oblique (D) Strongly Oblique

Fiber Angle
Axial

Circumferential

Figure D.3: Top view: The model double helical band is color coded for the fiber angle - blue and
red representing circumferential and axial fibers, respectively. The fiber angle was calculated in the
same way as in paper by Helm et.al. [23]. (A)“Normal” model with fiber orientation corresponding
to physiological. (B)“Weakly Oblique” model showing the fibers close to the apex to be a little more
oblique than in the “Normal” case. (C) “Moderately Oblique” model with fibers considerably more
oblique in the apical region than would be normal. (D) “Strongly Oblique” model showing the fibers
close to the apex region to be almost circumferential.
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(A) Normal (B) Moderately Dilated (C) Strongly Dilated

Figure D.4: Different view: The model double helical band (grey) with the fitted left ventricular
(LV) volume (red). The long axis dimension in each case is 7 cm. (A)“Normal“ model, the LV is
approximated with a paraboloid, with the basal radius of ≈ 3.5 cm; (B)“Moderately Dilated” model,
the LV is approximated with a paraboloid, with the basal radius of ≈ 6 cm; (C)“Strongly Dilated”
model, the LV is approximated with a section of a sphere, with the basal radius of ≈ 7 cm.

contracted

relaxed
Excitation t=0s t=0.1s t=0.2s

t=0.3s t=0.4s t=0.5s t=0.6s

t=0.7s t=0.8s t=0.9s t=1s

Figure D.5: Side view of the double helical band model color coded for excitation: red and blue cor-
respond to relaxed and excited, respectively. The material is fully contracted (up to 15% shortening)
when it is fully excited (blue). The excitation wave starts at the apex and propagates outwards.
The band is completely contracted (end-systole) at t = 0.38s. During diastole the relaxation wave
front also starts from the apex and travels outward.
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Excitation

-1

-0.5

+0

Figure D.6: The double helical band after “infarction” with the twist markers. The band is color
coded for excitation: relaxed and fully contracted in red and blue, respectively. The markers are
yellow circles connected with grey lines. Grey indicates the dead muscle. The left panel shows the
fully relaxed band, with all the markers in plane. The right panel shows the fully contracted band,
with the markers our of plane. It is also easy to visually see the volume reduction.
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Figure D.7: Twist vs. normalized ejection fraction for: (A) A schematic showing the physiologi-
cal twist for a normal heart [27]; (B) a compiled schematic for a damaged heart [27, 28];(C) the
undamaged model; (D) model of a heart with DCM; (E) Model of the heart after an infarction.
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