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Chapter 3

Physiology in phylogeny: Modeling
of mechanical driving forces in
cardiac development

3.1 Introduction

In pursuing the evolutionary history, or phylogeny, of the heart we look for common characteristics

between the embryonic and adult hearts. One pronounced similarity is in the helical organization of

the muscle fibers. The simple helical organization of the fibers has long been observed histologically

[20]. Moreover, there is some evidence that the muscle fibers, unlike the collection of fibers that

includes collagen, are in a double helical bundle. This has been observed in a controversial illustration

where the collagen is removed from the heart by boiling [21, 59]. While the idea that such a band

exists was formed on the basis of disputed histological evidence, in recent DTMRI studies done by

Helm et al. one can easily identify the band architecture (figure 3.1) [23]. This is significant, because

this method images the actin, which is present in muscle fibers, but not in the collagen matrix or

any other part of heart tissue.

By Ernst Haeckel’s premise that ontogeny follows phylogeny, researchers use embryonic fish

heart as a biological model for the human embryonic heart [5, 6]. By keeping track of the fluorescent

myocardial cells, it is possible to create a picture of their movement during a heart beat. The

resulting looped movement is not symmetric, forming an oval for each cell. The long axis of these

ovals has to be aligned with the direction of the fiber, since that is the major direction of the

contraction. The directionality of the oval paths of the myocardial cells is not constant throughout

the heart tube. The only way, that a muscle fiber could have such a non-constant direction as seen

in the images is if it was helically arranged [7, 8]. These fibers are not only helically shaped but

they seem to be bundled into a band. Thus, both the adult heart and the embryonic heart seem to

be comprised of helical muscle bands. How are these two observations related?
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Figure 3.1: Images of the muscle fibers in the heart contrasted with the band model. (A) DENSE
MRI image of the muscle fibers in the myocardium given to us by Helm. The muscle fibers are color
coded for the value of the pitch angle; blue - horizontal to red - vertical. The red structure in the
middle indicates the endocardial surface and represents the left ventricle volume. We overlay white
lines on the image to indicate where the band lies. The muscle fibers are more horizontal at the top
band section, while at the left section of the bottom band they are more vertical and are accordingly
colored yellow and red. (B) The double helix model, color coded in the same manner as the DTMRI
images. Blue for horizontal pitch angles to red for vertical pitch angles. The model band repeats the
same pattern as the muscle fibers in the DTMRI images - the top portion of the band is dominantly
horizontal, while the left section of the bottom portion of the band is going sharply up. The red
structure inside the band is the modeled left ventricular volume.

3.1.1 Some Hints from Embryonic Heart Development

In the embryo, the heart muscle fibers start as a simple spiral, but as the embryo develops, the fibers

transform into a more complex double helical structure. It would be interesting to track how this

development occurs, and how it is reflected in the fiber arrangement of the adult heart.

In general we can imagine a transformation, intriguing in its simplicity, which can be performed

on the helix of the embryonic heart converting it to the double helix shape of the adult heart.

This transformation is easy to perform on a ribbon (figure 3.2). Of course, there is a world of

difference between deforming ribbons and the actual heart muscle. So how does nature achieve this

transformation?

3.1.1.1 The development of the heart

The embryonic heart in the beginning stages of its development is a tube with two sulcus [4]. In

humans, it starts beating on the twenty second day after conception, and soon thereafter it starts

to loop. The driving mechanism for this change of shape has not been fully established. The heart

tube goes through a sequence of bending and twisting, first going into an “c” loop, then an “s”

loop that is “matured,” after which the main architecture of the four chamber heart is discernible

[11, 60]. By the eighth week some of the chamber walls are remodeled and the heart takes on the

form of the four chamber pump.

This looping has been experimentally modeled using an elastic tube [12]. It was observed, that

the tube upon increasing twist deforms in the same way as the heart tube seen in direct images



36

(A)

(D)

(E)

(B)

(C)

(F)

Figure 3.2: A possible set of steps in the development from a spiral tube to a double helix band. (A)
A spiral wound around a tube like in an embryonic model. (B) A spiral wound around a tube, that
has a varying diameter. (C) The diameter of the tube changes such that the bottom and top loops
of the spiral have a larger diameter than the middle loop. (D) The pitch angle of the bottom part
of the band is changed to be more vertical. (E) The end of the spiral band is brought up toward the
top end. (F) Both ends of the band are at the same level and can be connected to each other; This
shape is the same as the double helix proposed by Torrent-Guasp as a heart model.

from chick embryos. Most importantly, the shape of the tube evolves in the same manner as the

transformation of ribbon depicted in figure 3.2. However, the mechanical experiment of paper [12]

starts at the “c” loop stage and explores the mode of rotation of the looping heart, not the driving

forces necessary for such a deformation. Neither do these authors investigate the causes of the twist

necessary to induce this transformation. Nevertheless, this experiment strongly suggests that the

shape change is governed by elastic mechanical properties of the material rather than a specific

genetically encoded biological mechanism.

3.1.1.2 A basic observation

In support of the hypothesis of the dominant role of the mechanics in the heart’s transformation,

let us consider a simple tactile experiment. Take a rubber tube, such that your thumbs fit snugly

at the ends, insert your fingers into the tube and twist it – you can feel the stress on your fingers.

Now, without untwisting, deform the tube to relieve the stress. It is remarkable how similar the

resulting shape is to the “c” shape of the developing heart. This type of deformation is a well
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known phenomenon in solid mechanics, where the structure bends to relieve stress caused by twist.

Additionally, it is common in nature for stresses to play an important role in biological growth and

development, for example in the growth of tree branches [61]. From these arguments we hypothesize

that the stress from the twist causes the deformation in the embryonic heart. However, in our tactile

experiment, we first needed to rotate our fingers to produce any change. So, what happens in the

heart tube to induce the twist in the first place? In this light, it is curious that the heart begins

to loop almost immediately after it starts beating. This is intriguing, since the contraction of the

heart muscle is the only source of the force on the tube, not present before the looping was initiated.

Thus we will look for the causes of the twist in the tube’s response to the muscle fiber contractions.

H.R. Crane once wrote on the general problems of biological growth. He pointed out, that while

the process in the whole can be too complex for us to produce an equation describing it, we can

understand it if we know “the principles involved and something of the order of their importance”[62].

In following his insight, we postulate that for the property of heart function and development the

leading order of importance belongs to the bundled helical arrangement of muscle fibers. We follow

this road map and utilize modeling tools to approach this question.

3.1.2 Modeling

Biological pumping organs are complicated multi-scale systems, and great efforts are directed at

their computational modeling [41–43, 45, 51]. Despite the very significant resources applied and the

impressive results achieved, it is currently an insurmountable challenge to computationally represent

all the scales and aspects of these systems in their entirety. There exist neither a powerful enough

computer, nor a sufficient understanding of the chemistry and control of muscle fibers to model

complicated structure encompassing all the scales from the actin filaments up to the organ as a

whole. At the same time, there is a great demand especially from the medical community, for models

that trade the microscopic details for predictive power [55, 59]. In our opinion, and according to

the experience of the engineering field, models should be based on the insight into the biologically

dominant features of the system. In such a situation it would benefit us to be able to model the

action of muscle without its intricate details. While the popular cardiac models are based on the

fact that the fibers inside the heart are helical [20], the notion that they bundle into a single band

that is arranged into a double helix [21], has never been properly simulated. It is easy to fathom

that such helical structures could be used to optimize the functional properties of the organ, such

as for example pumping. We model these macrostructures as applied to a problem of pumping.

Meanwhile, knowing that a lot of times band like muscle fiber structures are results of self-assembly,

we watch for characteristics that would be responsible for pushing the development of the tubular

heart into the double helical arrangement. In that we take advantage of how nature uses these larger

scale geometries and intricate dynamics to create wonderfully efficient mechanisms.



38

Here we present two simple models of biological pumps, for an embryonic fish and adult human

hearts. We also consider different possibilities of contracting the muscles that operate these pumps.

3.2 Methods

3.2.1 Geometry of the ribbon models

3.2.1.1 Embryonic tube heart

An embryonic heart is shaped like a tube, which is one of the simplest chambers we can enclose

with a band of fibers. The fibers can be arranged circumferentially or longitudinally, or they could

form a spiral wound about the tube. Mathematically, such bands can be easily described by a set of

parametric equations, which we omit for the sake of brevity [58]. Using these equations we can vary

the different parameters of the spiral and tube: pitch (fiber) angle, number of turns, tube radius,

tube length, fiber length, cylinder volume, width and thickness of the spiral band. The spirals with

varying pitch angles are shown in figure 3.3. However, these parameters are not independent.

20o 40o 60o

Figure 3.3: Images of the spiral muscle band models for the embryonic heart. The numbers indicate
the pitch (fiber) angle: 20◦, 40◦ and 60◦ are shown. For all three spirals shown here the radius of
the tube is constant. The length of the band is also constant, and as a result the length of the tube
varies with the pitch angle. The width of the band is taken to be half of the value that would have
fully covering the surface of the tube, and as a result the width varies with the pitch angle.

3.2.1.2 Adult heart

A more complicated structure that also involves helical muscle fibers is the human adult heart.

There is histological evidence that the fibers are arranged in a spiral band, as shown by Torrent-

Guasp, who postulated that the heart muscle is a single band that starts from the pulmonary aorta,

hugs the right ventricle, winds down to the apex, as the descending segment, and then spirals

up to the aortic valve as the ascending segment. It is, of course, more complicated in terms of

mathematical presentation than a simple spiral, but the parametric equations can still be written

down using the same mathematical tools [58]. The resulting structure can be seen in figure 3.4A,
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Figure 3.4: Images of the double helical band model of the adult heart. The initial band shape and
fitted volume shown from different points of view. (A) The double helical band; (B) the same band
color-coded corresponding to physiological segments. (C) The same band in different orientation,
with labeled active and non-active material, as well as the apex of the heart. (D) The fitted volumes
for left ventricles (LV) and right ventricle (RV) are labeled on these pictures.

with the physiological sections referenced in 3.4B. Figure 3.4D shows how such a relatively simple

band structure could be filled out to form a full two ventricle heart.

3.2.2 Choosing the Geometrical Parameters

In both geometrical models, of tube-like embryonic heart and a double helical adult heart, there

is a range of parameters that can be varied. We base the choice of parameters on physiological

observations, the goals of the simulations, and computational needs.

3.2.2.1 Embryonic tube heart

Number of turns: In order for the spiral wound about a tube to be deformable into a double helix

it needs to make two complete rotations. Thus the spiral makes two full turns. In our model

we specify it to go around another quarter of a turn, so that the boundaries do not impact the

main body of the spiral.

Pitch angle: It is not possible to extract the fiber angle (fiber angle) from the images of the

embryonic heart. We therefore wanted the ability to vary the fiber angle. In the experiments

the angle is varied between 5◦ and 80◦.

Radius of the tube: In the embryonic heart model the radius of the tube is known, but it is
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unclear how far up the tube the spiral fibers extend. Thus, we chose to keep the radius of the

tube constant, namely 0.25 cm.

Length of the tube: Once both the number of turns of the spiral and the pitch angle are specified,

the length of the tube is mathematically determined.

Fiber length: Once the above parameters are chosen the fiber length is determined.

Band width: The choice of the above parameters also defines the width of the band necessary to

cover the whole surface of the tube. We chose for the width of the band to be limited to half

of what would cover the tube, to insure that the material did not impinge on itself during

twisting.

Band thickness: The thickness of the band is constant and small compared to the width (approx-

imately 1/5 of the width).

3.2.2.2 Adult heart

Number of turns: This parameter is dictated to be two turns by the model design.

Fiber angle: Unlike the pitch angle of the simple spiral, the fiber angle is not constant in the

double helical arrangement. We took the information from the histological studies done by

Torrent-Guasp. As a result, the math description, although more cumbersome than in the

case of the tube, is still known.

Long axis dimension: The long axis dimension is taken to be the same as in the normal adult

heart, about 7 cm.

Basal radius: Again the basal radius is taken to be the same as in the adult heart, about 3.5 cm.

Right heart size: The parameter controlling the size of the right heart, was estimated so that the

fitted right ventricle volume would correspond to the volume in a normal adult heart (about

130 mL).

Band width: To ease computation the band width is assumed to be a constant. The width is

chosen such that the bottom of the mitral left segment does not impinge on the top of the

descending segment (w ≈ 2.5 cm).

Band thickness: The thickness of the band is constant and small compared to the width

(t ≈ 0.5 cm).
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3.2.3 Material properties

The properties of the macrostructures of the organ’s muscle are inevitably dictated by the muscles

building blocks. The muscle fibers contract along the length of the fiber, thus the muscle band

which consists of a group of parallel muscle fibers will contract in the same direction. The fibers

cannot contract much over 15% [16], and thus the band will not exceed this maximum shortening

ratio at any point along its length. While it is shortening in the fiber direction the band will expand

in the other two to conserve volume. The band can shorten as a whole, or parts of it can contract

independently of each other. That means that the cells can act separately along the length of the

band, the fibers in the width of the band can also contract at different times from each other. For

simplicity, we assume a linear elastic response while the material is not excited. The material is

incompressible, so the maximal computationally possible Poisson ratio is chosen, ν = 0.48 (an ideal

incompressible material has ν = 0.5). The choice of the Young’s modulus will be discussed in section

3.2.5.

As regards to the structure of the adult heart it was necessary to hold it together with a non-

active material shown in figure 3.4C. The non-active material was chosen to be four times softer

then the active material, i.e., the Young’s modulus of the non-active material is one fourth of the

Young’s modulus of the active material.

3.2.4 Boundary conditions

Unlike inside a body, our models are not part of a whole organism. It is, therefore, necessary for

us to fix them in space. To do that we need to constrain at least three degrees of freedom, i.e., the

x-direction, y-direction, and z-direction.

3.2.4.1 Embryonic tube heart

We found that the most meaningful results are obtained by fixing both ends of the tube. This allows

us to consistently look at twisting and pumping in a range of different contraction schemes. If only

one end of the tube is fixed, the other flaps about, which makes it hard to determine if there is any

twist present.

3.2.4.2 Adult heart

In order to easily compare the dynamics of our model to the heart’s dynamics, we wanted to fix the

model in space in the same manner as the heart. In the body, the heart’s apex does not move up

or down, while the top of the heart does not rotate. The band structure is fixed in the horizontal

plane by the non-active material, in the same manner as the heart is constrained by the vessels.
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The lowest point of the double helix is assumed to be the apex, and is constrained in the vertical

direction (figure 3.4C).

3.2.5 Excitation schemes

The simplest dynamic scheme is to excite all the cells at the same time and have the whole band

contracting in sync. In this case the only periodicity is in time, so we call this a “uniform contrac-

tion.”

The other choice is to excite a spatio-temporal wave contraction in the bands. Of course, in

creating spatial waves, there are a lot of degrees of freedom. We can change the duration of the

contraction, the length of the wave, the origin point of contraction, etc. Here we consider two

examples of one dimensional spatial-wave excitation.

To ease the explanation let us label one end of the band α and the other β. A one dimensional

contraction wave would then be described as originating from end α of the band and traveling to

end β. This means that all the elements in width and thickness, the ones at the same centerline

natural coordinate, will contract and relax together.

For ease of comparison to the uniform contraction, where all the elements are contracted in sync,

we create a wave that has the contraction front traveling from end α of the band to end β. Once

the contraction front reaches the β end of the band, the relaxation front starts from the original α

end. This means that there is one instance of time where the whole band is contracted. We call this

the “long wave contraction.”

We also run simulations where the wave is shorter and the relaxation front starts before the

contraction front reaches the β end. We called such a wave a “medium wave contraction.”

For all the different types of contractions the maximal amplitude of enforced stress was adjusted

such that at the given Young’s modulus of the active material, the resulting strain does not exceed

physiological constraints discussed in section 3.2.3.

3.2.6 Computational methods

To enable spatio-temporal excitation it is necessary to allow different sections of the bands to con-

tract independently. This creates a complex coupling between local small deformations and huge

global shape responses, making it a challenging modeling problem. Another difficulty is that we are

considering three dimensional geometries. To combat these problems, we utilize the idea of finite

elements. It is possible, with small quadrilateral elements to build very complicated shapes. The

finite element method also breaks down a complicated problem of the dynamics of a complicated

system in response to deformation into a set of manageable equations. Since this set is very large,

it behooves us to use the computing power available to solve it. We therefore, model these bands
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using a finite element package, ABAQUS, designed to handle such problems. In the finite element

code we use ABAQUS built in tools to independently “excite” each node, and when the nodes of an

element are “excited,” the element contracts in the direction of the longitudinal fiber direction.

3.2.7 Data Analysis

Fortran and Matlab codes are used to extract and analyze the data from the simulations. For

the purpose of this analysis we extract the position of each node from the simulation. Using this

information we calculate the volume. In case of the embryonic one chamber tube model, the volume

is approximated as a cylinder. During the deformation the diameter of the cylinder may vary as a

function of the long axis. For the double helical, two pumping chamber model of the adult heart, the

left ventricle volume is approximated as non-axisymmetric paraboloid. The shape of this paraboloid

varies in the course of the beat.

In these simulations we do not model fluid. That means that it is unnecessary for us to model

valves. Unless an actual pump has valves, it is very ineffectual. Indeed in the absence of valves most

of the blood pumped during a contraction will flow back during relaxation. We thus assume that

the valves are present. This assumption implies that if the volume of the chamber is increased, there

will be blood sucked into the pump from the inlet. When the volume of the chamber is decreased,

the blood is forced out through the outlet. Therefore, we can simply keep track of the volume that

would fit inside the spiral to calculate the effectiveness of the pump.

To create a meter stick for our computational experiment we calculate the ejection fraction, for

each system as it deforms with time:

EF(t) =
Vmax −V(t)

Vmax
and EFmax =

Vmax −Vmin

Vmax
, (3.1)

where, V (t),Vmax and Vmin are the volume at time t, maximum volume and minimum volume of

the chamber, respectively. This is the same formula that is used to find the ejection fraction in

physiology for adult hearts, where Vmax = Vend diasotolic and Vmin = Vend systolic.

To judge the dynamics of the simulations we use the visualization techniques available in a

specialized software – ABAQUS CAE. For the tube model we overlay a wire-frame of the initial

configuration on the transformed configuration. This way it is possible to directly compare the

original and deformed spiral shape. For the double helix adult heart model, we create a piece of very

soft material that is fixed to the side of the simulated left ventricle. To make sure that this indicator

does not impact the dynamics, it’s made from a material that is two orders of magnitude softer than

the material of the band (i.e., the Young’s modulus of the elastic indicator is one hundredth of the

Young’s modulus of the active material). Since the elastic indicator is attached along the length of

the left ventricle, it will indicate the amount of twist. If the elastic indicator deforms symmetrically
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there is no twist. However, if it deforms sideways, there has to be a twist present.

3.3 Results

We originally hypothesized that the cause of twisting in the embryonic tube heart is the response of

the helical structure of the muscle fibers to muscle contractions. To test our hypothesis we created a

spiral band wound about a tube. As our first simulation we induced a uniform periodic contraction.

This means that at each heart beat the spiral was uniformly contracted and then released.

3.3.1 No twist in a uniformly contracted spiral band

The fiber angle did not have appreciable impact on the dynamics, throughout the range of meaningful

values of 5◦ to 80◦. Figure 3.5A shows a series of snapshots of the simulation for a representative

fiber angle of 50◦. Initially the muscle bands are relaxed (red), then they are gradually contracted,

until the elements reach the maximum allowable strain (blue), and then they are relaxed again. The

outline of the original configuration is overlayed on each spiral band. The radius of the band at

the maximum contraction (t = 0.4s − 0.6s) is smaller than the original radius. The snapshots of

the simulation show how the spiral smoothly contracts about the central axis and then gradually

releases. No perceptible twist is apparent in these images. Thus the forces present are incapable

of inducing a twist in the structure. We could have been disappointed by this result, if we did not

have an insight from modeling the adult heart.

3.3.2 Back to the future: Adult heart model

To answer this quandary we turn forward, in ontogeny time, to the adult heart. In the adult heart

the contraction of the muscle fibers yields an intricate dynamics, the heart twists at each beat [27–

29]. If we understand the origin of this twist, we can hope to understand the twist in the embryonic

heart. We can draw conclusions about the dynamics of the embryonic heart from our findings on

the adult heart, because in both cases any movements are caused by the contraction of the muscle

fibers.

In the adult heart the contraction is induced by the Purkinje network. This nerve network does

not excite the whole myocardium at once. It is, therefore, unlikely that the myocardium contracts

all at once. As a result, the adult heart is subject to spatial-wave contractions instead of a uniform

contraction.
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Figure 3.5: Snapshots of the ABAQUS simulations at different time steps for the embryonic heart
spiral model with a 50◦ pitch (fiber) angle. The left column indicates the time in seconds. Each
snapshot shows the current configuration of the spiral. The colors indicate the level of excitation
as shown in the panel at the bottom, blue-fully excited, red-relaxed. Each simulation starts at the
relaxed state (t = 0s), goes through the contraction scheme and relaxation scheme, and ends back
in the fully relaxed state (t = 1s). For comparison purposes, an outline of the initial shape of the
spiral is overlayed on each picture as a thick black line. (A) Uniform contraction. Here the spiral
smoothly contracts during t = 0s − 0.4s, and smoothly relaxes during t = 0.6s − 1s. The radius
is smallest when the band is fully contracted t = 0.4s − 0.6s. There is no change if pitch angle as
seen by comparing the current configuration with the outline of the initial shape. Thus, there is
not twist in this simulation. (B) Long wave contraction. The contraction wave front starts at the
right end (t = 0.2s, 0.4s) and travels through the band to the left end. The band is fully contracted
at approximately t = 0.5s. The relaxation front starts at the left end of the band (t = 0.6s, 0.8s)
and travels to the other end. The radius is reduced unsymmetrically along the length of the tube
(t = 0.4s − 0.6s). The pitch angle is changed drastically as seen from comparing the current band
to the outline of the initial configuration (t = 0.2s − 0.8s). This indicates that there is a twist
in the tube. (C) Medium Wave contraction. The contraction wave front starts at the right end
(t = 0.2s, 0.4s) and travels through the band to the left end. The band is never fully contracted.
The relaxation front starts at the left end of the band (t = 0.6s, 0.8s) and travels to the other end.
The radius is reduced unsymmetrically along the length of the tube (t = 0.4s − 0.6s). The pitch
angle is changed drastically as seen from comparing the current band to the outline of the initial
configuration (t = 0.2s− 0.8s). This indicates that there is a twist in the tube.
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3.3.2.1 Simulations of the Adult heart

The idea of spatial-wave contractions is rarely considered in cardiac modeling. This is mostly due to

the fact that the majority of cardiac models are so complex that it is a challenge to test such cases.

For our simplified model we were able to test such spatial-contraction patterns. Figure 3.6 shows

time snapshots of simulations with different excitation schemes. In each of the series of pictures the

level of excitation is color coded, with red as relaxed, and blue as fully excited. The excitation wave

front starts at one end of the band and travels to the other. It is followed by a relaxation front

moving in the same direction. We can vary the time between the contraction and relaxation fronts

as one of the variables of the system. Thus, one of the possible wave-like contractions will have the

whole band fully contracted at some point in time (figure 3.6B). However, it is also possible that

the spatial-contraction wave never contracts the band fully (figure 3.6C). One may worry that the

wave contraction would negatively impact the pumping ability.

3.3.2.2 How uniform vs. spatial-wave contractions affect pumping ability: Adult heart

model

To insure that pumping efficiency was not negatively affected we tested the double helix model of the

adult heart under both a uniform contraction and a spatial-wave contraction. The results of these

tests were judged by calculating the left ventricular ejection fraction. The use of this particular

criteria is justified by the fact that a large amount of physiological data is available for the left

ventricular ejection fraction. To calculate the ejection fraction, we approximated the left ventricle

as a paraboloid and calculated the volume at each time step. The ejection fraction is then simply

given by equation 3.1.

The results for our simplified model easily match the physiological data of maximal ejection

fraction. The values in table 3.3.2.2 show no drawback to having a spatial-wave contraction, as

compared to a uniform contraction.

Contraction Type
Physiological Uniform Medium wave Long wave

Maximal EF 50%-60% 54% 54% 53%

Table 3.1: The ejection fraction values for double helical pumps under different excitation patterns

3.3.2.3 Different dynamics caused by spatial-waves

What is more fascinating is that the different contraction schemes produce different dynamics of the

structure. Figure 3.6 shows the snapshots of the three simulations side by side. The twist is easily

visualized by keeping track of the elastic parabolic indicator we fixed at the side of the structure’s left
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Figure 3.6: Snapshots of the ABAQUS simulations at different time steps for the adult heart double
helix model. The left column indicates the time in seconds. Each snapshot shows the current
configuration of the double helix. The colors indicate the level of excitation as shown in the panel
at the bottom, blue-fully excited, red-relaxed. Each simulation starts at the relaxed state (t = 0s),
goes through the contraction scheme and relaxation scheme, and ends back in the fully relaxed state
(t = 1s). From this point of view, the volume reduction can be seen in how the top and bottom parts
of the band come together during the contraction. A soft elastic material piece, indicated in dark
gray, is fixed to the side of the left ventricle. (A) Uniform contraction. Here the double helix smoothly
contracts during t = 0s− 0.4s, and smoothly relaxes during t = 0.6s− 1s. There is no twist of the
left ventricle as indicated by ends of the gray material piece having a symmetric vertical position
on the helical band. (B) Long wave contraction. The contraction wave front starts at right heart
end (t = 0.2s, 0.4s) and travels through the band. The band is fully contracted at approximately
t = 0.5s. The relaxation front starts at the right ventricle end of the band (t = 0.6s, 0.8s) and travels
to the other end. The gray elastic material does not deform symmetrically (t = 0.4s − 0.6s). This
indicates that there is a twist of the left ventricle. (C) Medium Wave contraction. The contraction
wave front starts at right heart end (t = 0.2s, 0.4s) and travels through the band. The band is never
fully contracted. The relaxation front starts at the right ventricle end of the band (t = 0.6s, 0.8s) and
travels to the other end. The gray elastic material does not deform symmetrically (t = 0.4s− 0.6s).
This indicates that there is a twist of the left ventricle.
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ventricle. The piece of elastic material deforms in a the same radial plane for the uniform excitation

scheme (figure 3.6A, t = 0.2s− 0.8s). For the both the long and medium wave contraction, at some

time step the indicator deforms out of the radial plane (figure 3.6B and 3.6C t = 0.4s− 0.6s). This

means that the double helical structure twists in cases where the excitation is wave-like and does

not in the case of a uniform excitation. This gives us a hint that maybe a wave type excitation in a

tubular model could also be related to the twist.

3.3.3 Forward to the Past: Embryonic heart model

We tested a spatial-wave contraction scheme in the spiral wound about a tube. Figures 3.5B and

3.5C show the time snapshots in which the contraction, represented in blue, starts at one end of the

spiral and travels to the other end. The relaxation front, in red, follows the same pattern. As in

the adult heart, the time between the excitation and relaxation front can be varied. In the uniform

contraction scheme the whole spiral is contracted at once, which is not necessarily true for a spatial-

wave contraction. The whole structure will be contracted, only if the two fronts are separated from

each other by at least the length of the spiral.

3.3.3.1 How uniform vs. spatial-wave contractions affect pumping ability: Embryonic

heart model

To insure that the wave-form contraction does not affect pumping we track the volume of the tube

during the course of the beat.

Looking at the snapshots of the uniformly contracting tube simulation, one would suspect that

the volume should change just as smoothly as the contraction (figure 3.5A). Indeed that is the case

as seen in the figure 3.7.

As a matter of principle, it is possible for the spatial-wave contraction to affect pumping benefi-

cially. Indeed, the spatial-wave contraction can induces not only simple shrinking, but also suction.

In the plot of a representative fiber angle spiral undergoing a wave contraction the volume increases,

then sharply decreases (figure 3.7A). This means that initially more fluid is sucked in and then a

larger amount is ejected – larger than would otherwise be possible. The subsequent increase in

volume would not produce back flow because of the valves. In the snapshots in the figures 3.5B and

3.5C it is possible to see qualitatively the cause of this suction. In the spatial-wave contraction, the

part of the spiral that is contracting pulls on the piece that is still relaxed. In coming to mechanical

equilibrium, part of the helix opens up, to reduce the stress on the band. So is this suction effect

sufficiently beneficial to offset the fact that the whole band is not contracted at the same time?

For each contraction scheme we compared the maximal ejection fraction at different fiber angles.

We use equations 3.1 to calculate the ejection fraction of these pumping tubes. Table 3.3.3.1 shows
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Figure 3.7: (A): Plot of normalized volume of the tube chamber vs. time. In case of wave-type
contractions, the volume initially increases (t = 0.04s − 0.15s), because of suction. The volume
is normalized over the initial value, and as a result the maximum volume in the case of wave
contractions is at approximately t = 0.15s, as indicated by the arrow. (B): Plot of ejection fraction
vs. time. The ejection fraction of the long wave contraction is greater than that of the uniform
contraction, because of suction. The period of suction is circled with a dotted line.

the ejection fraction for spirals with different fiber angles undergoing different contraction schemes.

Even a spatial-wave contraction that does not contract the whole spiral is not a significant

detriment to the pumping efficiency of the tube. Indeed, at some fiber angles a spatial-contraction

scheme is beneficial to the effective pumping. This shows that the spatial-wave does not negatively

impact the pumping efficiency. So did it produce twist?

3.3.4 Evidence of twisting in a spiral undergoing a spatial-wave contrac-

tion

The snapshots in figure 3.5B and 3.5C qualitatively show that there is an asymmetry in how the

spiral deforms. Unlike the deformations in response to a uniform excitation, for both wave excita-

tion patterns the deformed shape is significantly offset from the original outline. Indeed the same

mechanism that causes suction produces this radical deformation. In a tube, this deformation would

correspond to a twist, to accommodate the change in pitch angle of parts of the spiral.

This begs the question: Maybe the characteristic of leading importance is the wave like contrac-
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Contraction Type
Pitch Angle Uniform Medium Wave Long Wave

5 24% 18% 18%
10 23% 19% 24%
20 9% 7% 10%
30 11% 7% 9%
40 13% 7% 11%
50 17% 13% 19%
60 21% 21% 29%
70 23% 30% 36%
80 20% 34% 38%

Table 3.2: The ejection fraction values for tubular pumps with different pitch (fiber) angles, under
different excitation patterns

tion, and not the helical shape as we originally claimed? If we had induced the propagating wave

contraction in a simple tube with either longitudinal fibers or circumferential fibers the forces would

have been in the axial or circumferential directions, respectively. As a result, the pumping efficiency

would be reduced, since there would be no suction effect. In the longitudinal fiber case the length

of the tube would decrease, without opening up any part of the tube. In the radial fiber case, the

radius of the tube would simply decrease unsymmetrically, but no twist would occur. Therefore, this

model shows that only the combination of the helical structure and the spatial-wave type contraction

scheme produces the twist necessary for further development. And this is the main result of this

study.

3.4 Conclusions

As Martin Kemp observed in his treatise on “spirals of life” [63], helical designs in living creatures

are generally appreciated for their static structure, rather than the active functional benefits they

bring. There are many examples in nature where there is a helical muscle structure, ranging from

worms to embryonic fish hearts [5, 10, 57]. We have shown here that the helical structure cannot be

the sole cause of the mechanical twist necessary for development. If the contraction of the spiral is

smooth and symmetrical it cannot lead to twist.

In the adult heart the twisting dynamics are well documented. But, it is also well known that

the adult heart is excited in a complicated pattern. By modeling spatio-temporal excitation waves

and simple temporal excitation in the adult heart model we show that the twist is only possible if

the excitation is in the form of spatial waves. Additionally, we have shown that no negative effects

on pumping efficiency are brought about by wave-like contractions.

By applying this knowledge to the embryonic heart we were able to demonstrate twisting of the

spiral structure. The spiral tube’s pumping ability is also not impacted by switching from a uniform
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excitation to a spatio-temporal excitation.

In light of these results we can form a better understanding of the development history of the

heart. In the embryonic tube heart the fibers are organized helically. As it starts to beat the

excitation pattern is not uniform, but is instead wave-like. The stress produced by the twisting of

the the tube under these conditions forces the tube to bend. Thus, begins the road of phylogeny

changing the simply spiraled muscle fibers into a double helix structure of the adult heart.
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