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ABSTRACT

Accurate measurements of protein:DNA and RNA expression levels are critical to building
meaningful models of gene regulatory networks. We develop here two new techniques
doing such measurements using ultra-high-throughput DNA sequencing combined with
extensive computational analyses, which we call respectively ChIP-seq and RNA-seq. To
show the power and versatility of these techniques, we apply them to the study of two
model problems that are representative of the research agenda of regulatory biology. We
use ChIP-seq to study the conservation and evolution of the binding repertoire of the
transcription factor NRSF/REST in boreoeutherian mammals, whereas we use ChIP-seq of
RNA Polymerase II phosphoisoforms and RNA-seq to study a developmental time course
of myogenesis in the C2C12 mouse cell line. Together, ChIP-seq and RNA-seq show the
promise of ultra-high-throughout sequencing in mapping and studying gene regulatory
networks which will likely supplant the previous generation of microarray-based
technologies as the new generations of sequencers mature and become more generally

available.
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NOMENCLATURE

Cohort. A set of sites or genes that are analyzed as a group

ChIP. Chromatin Immunoprecipitation. A common technique for enrichment of DNA
fragments bound by a protein using antibodies

ChIP-seq. ChIP experiment assayed with ultra-high throughput-sequencing

Cistematic. Software library written in Python for analyzing genes and motifs on a
genome-scale

CTD. C-Terminal Domain of RNA polymerase II that is highly conserved in Eukaryotes
and consisting of the repeated heptad YSPTSPS. It can be phosphorylated on every Serine

ERANGE. Enhanced Read Analysis of Gene Expression. A set of programs written on
Python to analyze both ChIP-seq and RNA-seq data (dual-use)

GO. Gene Ontology. A set of structured vocabulary terms describing the function of a gene
Motif. A representation of a set of sequences with a common pattern

Multiread. Read that maps equally well to more than one position onto the genome
NRSE. Neuron Restrictive Silencer Element. The binding site of NRSF

NRSF. Neuron Restrictive Silencer Factor

Polymerase stalling. Distinctive accumulation of RNA polymerase II at the promoter of
genes with little or no productive poly-A RNA output

PSFM. Position Specific Frequency Matrix. A matrix representation of a motif that is
closely related to Position Weight Matrices (PWM)

Read. Short 25-35 bp long sequence of DNA
RNA-seq. Ultra-high-throughput sequencing of RNA

Ultra-high-throughput sequencing. Sequencing of millions of short reads of DNA in
parallel

Uniquely mappable read. Read that maps best to only a single position on the genome
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Chapter 1

INTRODUCTION

The regulation of gene expression is the central, foundational problem of regulatory
biology. While post-transcriptional and post-translational processes play a critical role in
modulating the expression level of any RNA and of its derived protein, their absence or
presence in a cell is ultimately dictated by transcription factor proteins that interact with
DNA to recruit or repel the eukaryotic transcriptional machinery. The last 40 years have
revealed a stunningly elegant and combinatorial use of multiple transcription factors that
respond to the current regulatory state as well as extra-cellular signaling cues to control
transcription of any gene with the necessary precision in time and space according to both
its lineage and its environment (Davidson, 2006). While much of our current model of
transcriptional regulation is built on a multitude of studies of particular aspects of this
process at a few genes at a time, the availability of sequenced genomes and of ultra-high-
throughput methods affords us also an approach to the problem from a genome-wide, top-
down perspective of: what constitutes the repertoire of all genes regulated by a single
transcription factor, as well as how cells turn on gene expression in a coordinated fashion
upon differentiation. But any successful top-down approach is dependent on both
measurements that are more accurate than those used to date and new computational

methods to analyze and integrate the data.



2

This thesis uses a new generation of ultra-high-throughput DNA sequencing technologies
to analyze with unmatched accuracy both the binding repertoire of a multi-faceted,
vertebrate transcription factor — the Neuron Restrictive Silencer Factor (NRSF) — and the
transcriptome of the C2C12 mouse myogenic cell line through differentiation. These
analyses shed light respectively on the evolution of the binding repertoire of a transcription
factor over 100 million years of evolution, as well as some of the key general
transcriptional changes that accompany the differentiation of muscle myoblasts into

myotubes.

NRSF as a tractable model of the evolution of gene regulatory networks

The Neuron Restrictive Silencer Factor, also known as the RE-1 Silencing Transcription
factor (NRSF/REST), was discovered simultaneously by the Anderson and Mandel labs
(Schoenherr, 1995; Chong, 1995) and has accumulated an impressive and rapidly
expanding literature that makes it one of the most studied vertebrate-specific transcriptional
repressors. The ever-expanding roles of NRSF beyond neurogenesis as a tumor suppressor
(Westbrook, 2008; Westbrook, 2005), guardian of genome stability (Guardavaccaro, 2008),
and necessary factor in maintaining the pluripotency of embryonic stem cells (Singh, 2008)

have significantly increased its profile across different subfields of biology.

Several features of NRSF make it particularly interesting for us to study in the context of
the evolution of gene regulatory networks. NRSF has a large binding site (NRSE), which
makes it practical for us to identify its target binding site in all sequenced genomes. While
the co-repressors of NRSF are present in invertebrates, there is no convincing evidence to

date that NRSF is present in invertebrates (Dallman, 2004), and the canonical NRSE is
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missing from their genomes (Mortazavi, 2006). However, all available vertebrate genomes
have a copy of both NRSF and an enrichment of NRSEs in genes associated with a
neurosecretory phenotype. There appears to be no functional paralogs of NRSF in any of
the genomes and the DNA binding site has remained extremely conserved in all
vertebrates. NRSF is thus a tractable example of a vertebrate-specific evolution in gene
regulation which affords us the opportunity to quantify the change in its target repertoire

using both computational and in vivo experiments.

The discovery of the Neuron Restrictive Silencer Element (NRSE) and of its cognate
binding factor NRSF

Early independent studies of the transcriptional regulation of neuronal genes such as
Superior Cervical Ganglion 10 (SCG10, now known as Stathmin2) and the sodium channel
Navl.2 (now Scn2a) revealed the presence of a repressive element proximal to their
promoters which restricted the expression of these genes outside of neurons. Unlike most
cis-regulatory elements that are 6-10 bp long, the repressive element, which was called the
Neuron Restrictive Silencer Element (NRSE, also RE-1 for Repressive Element 1) was
determined to be nearly 21-23 bp long (Mori, 1992; Kraner, 1992). This element was used
to identify NRSF as a zinc finger transcription factor that bound the canonical NRSE/RE-1,
that repressed constructs with the NRSE, and whose expression pattern was predominantly
non-neuronal. The full-length NRSF is thought to bind its cognate site without the
combinatorial assist of other transcription factors. While this makes it unusual in the
context of the current transcriptional literature, NRSF and its fellow canonical zinc finger

CTCF (Lobanenkov, 1990; Filipova, 2008) may be representative of the large family of
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zinc finger repressors that have been expanding rapidly in the mammalian and primate

lineages (Huntley, 2006).

An early survey of available genomic sequences revealed that the NRSE was embedded in
a host of frankly neuronal genes such as BDNF, but was also found in the proximity of
other genes such as skeletal muscle actin and the hormone somatostatin (Schoenherr,
1996). Nevertheless, NRSF was proposed as master regulator of neuronal fate through a
control of neuronal gene batteries (Schoenherr, 1996). However, the early embryonic lethal
knockout failed to reveal any ectopic neurogenesis or even mis-expression of the several
known targets at the time (Chen, 1998), while the neurogenic ability of several bHLH
factors with similar functional homologs in Drosophila, such as NeuroD, were
demonstrated conclusively (Lee, 1995). As the primacy of the activators in neurogenesis

took hold, NRSF was demoted to being an eccentric repressor of some neuronal genes.

The interaction of NRSF with its co-repressors

The next decade of NRSF research focused on the biochemistry of NRSF and of its
repression, which is accomplished by the recruitment of 3 different complexes. The N-
terminus recruits the ubiquitous eukaryotic repressor mSin3a (Huang, 1999). The C-
terminus recruits another repressor named CoREST, which has attracted much attention
because it also shares a similar expression pattern that is non-neuronal (Andres, 1999).
CoREST works in conjunction with HDAC2 and, while recruited by NRSF, it is thought to
stay behind after the NRSF protein is degraded (see below) and to continue repression of its
targets until a further de-repression event that is CoREST specific (Ballas, 2005). Small

CTD Phosphatases (SCP) are a third family of NRSF co-repressors that have recently been
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identified that also play a role in the repression of NRSF targets (Yeo, 2005). SCP family

members work by dephosphorylating the 5" serine of the heptad repeats of C-terminal
domain of RNA polymerase II, which would either prevent initiation or promote the early
termination of transcription. All 3 modes of repression (mSin3A, CoREST, and SCP
mediated) are known to repress different genes (Ballas, 2005; Lunyak, 2001; Yeo, 2005). It
is not known what determines the recruitment and/or the selectivity of the different co-

repressors to their appropriate targets.

NRSF splice isoforms affect its DNA binding domain and likely function

A parallel series of efforts determined that NRSF can be found in a variety of splice
isoforms that includes three different 5° UTRs, the N-terminal (sin3A-interacting) domain,
and different fractions of the DNA-binding domain and C-terminal (CoREST interacting)
domains. In particular, some neurons and cancers express a splice isoform, called REST4,
that include zinc fingers 1 through 5 (Shimojo, 2001). Mutagenesis studies of the different
fingers of NRSF showed that fingers 5, and 6 through 8, are most important for binding to
the full NRSE, and that REST4 binds much more weakly to the right half of the canonical
NRSE (Shimojo, 2001; Lee, 2000). NRSF was shown early on to be first degraded at the
protein level before being transcriptionally shutdown. Recent work shows that NRSF is
degraded by the ubiquitin conjugating enzyme BTRCP, which recognizes a degron present
in the C-terminal domain of NRSF and which is absent in REST4 (Westbrook, 2008).
While the role of REST4 as an activator has been debated over the years, given conflicting
results (Magin, 2002), a recent report shows that whereas full-length NRSF is a repressor

of glutamine synthetase, REST4 interacts with the glucocorticoid receptor (GR) to activate
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the transcription of the same gene (Abramovitz, 2008). It is unknown to what extent
REST4 would activate the remainder of the target repertoire of NRSF and whether REST4
or full-length NRSF can act as activators in conjunction with other transcription factors

besides GR.

The NRSF gene target repertoire

The availability of whole genome sequences rejuvenated the search for NRSF targets
through computational means. Genomic scans with the NRSE consensus (Schoenherr,
1996; Bruce, 2004) or more sensitive position-specific-frequency-matrix-like methods
(Mortazavi 2006; Zhang, 2006) revealed that NRSE was associated with a large, specific
subset of genes highly enriched for neuronal expression, including several neuronal
transcription factors and RNA splicing factors. Another insight from computational studies
that was quickly confirmed in vivo related NRSF-mediated repression to the expression of
neuron-specific microRNAs, such as miR-124 and mir-9 (Conaco, 2006; Johnson, 2008).
Thus NRSF-derepression is necessary for the coordinate expression of neuronal-specific
genes, microRNAs, and splicing factors, which together change dramatically the regulatory
state of cells commited to neurogenesis (Lim, 2005). Whereas NRSF knockouts or
dominant negatives (without the N- and C-terminal domains) cannot transform non-
neuronal cells into neurons, an NRSF-VP16 activator does transform C2C12 myoblasts
into neuron-like cells (Watanabe, 2004). Hence NRSF de-repression is a necessary step in
neurogenesis, although it is not sufficient without the concomitant action of neurogenic

activators such as those of the NeuroD1 activator.
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The availability of a large list of true positive and of several good chromatin
immunoprecipitation (ChIP) “grade” antibodies made NRSF an ideal candidate for a
genome-wide survey of its in vivo binding across the genome. Whereas we surveyed the
NRSF binding repertoire using a novel, high-resolution technique called ChIPSeq (also
ChIP-seq) as described in Chapter 3, the Mandel lab and their collaborators independently
surveyed the same repertoire using a related method called SACO (Otto, 2007). Both
surveys revealed that NRSF had a wider set of targets than expected based on the
computational surveys alone, due to the fact that NRSF had an expanded family of split
sites, where the two halves of the canonical NRSE are separated by a spacer that is
preferentially between 5—8 bp and the repressive ability of these sites was soon verified
(Otto, 2007; Patel, 2007). In addition to additional members of known gene family targets,
these genome-wide surveys revealed novel NRSEs, such as the one in the exon NeuroD1,
which provides a clear link between NRSF-mediated repression and the neurogenic
phenotype of NRSF-VP16. The new targets also pointed to a potential role for NRSF in the

specification of pancreatic islet cells.

NRSF as a regulator of the neurosecretory phenotype

While NRSF is found associated with a variety of neuronal gene ontology terms, much
attention has been given to the particular enrichment in genes that are important in
neurosecretion (Bruce, 2006). In particular, NRSF expression in rat PC12 cells blocks
secretion (Pance, 2006; D’alessandro, 2008) and beta-cell specific expression of NRSF (see
below) reduces insulin secretion (Martin, 2008). Combined with the lack of expression of
full-length NRSF in some cancers with neurosecretory phenotypes such as small-cell lung

cancer (Coulson, 2000), this suggests that NRSF may play a critical role in allowing the co-
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option of the neuroendocrine phenotype in novel, non-neuronal settings. Several studies
have demonstrated a role for NRSF in the cardiac program as well as a potential role in the
specification of pancreatic islet cells (Kuwahara, 2003; Atouf, 1997; Kemp, 2003), neither
of which are part of the ectodermal lineage. However, several NRSF targets such as
somatostatin are expressed in endocrine cells besides the nervous system and islet cells
such as gastric and intestinal endocrine cells. We would thus expect that NRSF de-
repression to turn out as a prerequisite for the development of any endocrine cells, such as
somtatin-producing cells, or indeed any cell found to express neurosecretory gene markers
such as SNAP-25. NRSF would thus permit non-ectodermal lineages to acquire this
neurosecretory gene battery, given the appropriate expression of activators that would only
turn on parts of the neurogenesis program. Since NRSF must be absent in order to have a
neuroendocrine phenotype, and therefore cannot play its other role as a tumor surpressor,
these cells will likely turn out to be more susceptible to uncontrolled proliferation that
ultimately could turn into neuroendocrine tumors. Thus future studies will likely return to
the topic of re-expressing NRSF and maintaining the expression of full-length NRSF to

control proliferation (Fuller, 2005).

Theme of Thesis

This thesis develops the techniques and principles to analyze gene regulatory networks in
mammalian genomes. In Chapter 2, I show how to search for transcription factor binding
sites with and without restrictions of conservation, and how to analyze the resulting set of
genes using gene ontology analysis and microarray gene expression data. I also show that
the canonical NRSEs are absent in invertebrates and that NRSF is predicted to regulate

both neuronal microRNAs, as well as alternative splicing factors. Evonne Chen Leeper and
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Sarah T. Garcia of the Rick Myers lab at Stanford did the ChIP validation of a subset of our

predicted sites. Chapter 2 was published in Genome Research in 2006 (Mortazavi, 2006).
Our collaboration with the Myers lab continued in Chapter 3 with the development of ultra-
high-throughput sequencing of ChIP (ChIP-seq) as a replacement for previous microarray
methods (ChIP-chip) and in its application in identifying the binding repertoire of NRSF in
the human jurkat cell line. While Dave Johnson of the Myers lab and his team of
technicians developed and performed all of the original ChIP-seq protocols in human, I
performed mouse and dog ChIP-seq experiments and did all of the data analysis in Chapter
3 (which is an expanded version of our human-centric 2007 publication in Science
(Johnson, 2007) that includes massive updates to account for the comparative analysis).
Chapter 4 switches gear to the application of ultra-high-throughput sequencing to the
analysis of the transcriptome of multiple tissues and of the C2C12 myogenic model, by
sequencing of the polyA-selected RNA (RNA-seq) and ChIP-seq of the RNA polymerase
IT phosphoisoforms to correlate Pol II occupancy to the observed mRNA. Brian Williams
did all of the wet-bench development of RNA-seq, Lorian Schaeffer built and sequenced
the bulk of the libraries, and Ken McCue developed the RNA-seq read uniformity metrics.
I developed the entire RNA-seq analysis pipeline, designed and did the actual polymerase
ChIP-seqgs, and did the integrated RNA-seq and polymerase analysis. Chapter 4 will be
published as two separate publications, one focusing on RNA-seq in a methods-oriented
paper (Mortazavi, 2008), and another focused on the C2C12 differentiation story and the
polymerase stalling changes. Chapter 5 concludes with a brief discussion of the future of

studies of gene-regulation using the methods described herein.
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Chapter 2

COMPARATIVE GENOMICS MODELING OF THE NRSF/REST REPRESSOR
NETWORK: FROM SINGLE CONSERVED SITES TO GENOME-WIDE

REPERTOIRE

Abstract

We constructed and applied an open source informatic framework called Cistematic in an
effort to predict the target gene repertoire for transcription factors with large binding sites.
Cistematic uses two different evolutionary conservation-filtering algorithms in conjunction
with several analysis modules. Beginning with a single conserved and biologically tested
site for the neuronal repressor NRSF/REST, Cistematic generated a refined PSFM (position
specific frequency matrix) based on conserved site occurrences in mouse, human, and dog
genomes. Predictions from this model were validated by chromatin immunoprecipitation
(ChIP) followed by quantitative PCR. The combination of transfection assays and ChIP
enrichment data provided an objective basis for setting a threshold for membership and
rank-ordering a final gene cohort model consisting of 842 high-confidence sites in the
human genome associated with 733 genes. Statistically significant enrichment of NRSE-
associated genes was found for neuron-specific Gene Ontology (GO) terms and neuronal
mRNA expression profiles. A more extensive evolutionary survey showed that NRSE sites
matching the PSFM model exist in roughly similar numbers in all fully sequenced

vertebrate genomes but are notably absent from invertebrate and protochordate genomes, as
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is NRSF itself. Some NRSF/REST sites reside in repeats, which suggests a mechanism for

both ancient and modern dispersal of NRSEs through vertebrate genomes. Multiple
predicted sites are located near neuronal microRNA and splicing factor genes, and these
tested positive for NRSF/REST occupancy in vivo. The resulting network model integrates
post-transcriptional and translational controllers, including candidate feedback loops on

NRSF and its co-repressor, COREST.

The Cistematic source code and associated databases are available at
http://cistematic.caltech.edu. All data in this paper, as well as the scripts used to generate

them, can be found at http://cistematic.caltech.edu/~alim/cispaper.

Introduction

Specific repressors, such as canonical zinc finger transcription factors, stand out in
vertebrate genomes because of their large number, significant expansion in mammals, and
the diversity of cellular and organismic functions they affect (Hamilton, 2003). The Krab
family of zinc finger sequence specific DNA-binding repressors, for example, numbers
over 400 in rodent and human genomes (Dehal, 2001; Shannon, 2003). For the vast
majority of these, nothing is known about their target gene repertoire or binding motif. A
few, studied in more detail, play important roles in diverse cellular and organismic
functions ranging from regulation of rodent male specific genes by the Rsl (regulator of sex
limitation) Krab repressors (Krebs, 2005), to lipid metabolism and possible predisposition
to hypoalphalipoproteinemia by znf202 (Wagner, 2000). Much more is known about
NRSF/REST, a zinc finger repressor famous for negative regulation of neuronal genes in
non-neuronal cell types, and in neuronal stem cells and progenitors prior to differentiation

(Schoenherr, 1995; Chong, 1995; Chen, 1998). The main isoform of NRSF represses
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transcription by recruiting cofactors such as CoREST (Andres, 1999), CTD phosphatases

(Yeo, 2005), mSin3A, and histone deacetylases (Huang, 1999). Another isoform, REST4,
is thought to act in a dominant negative fashion (Hersh, 2003). In addition to neuronal
development, NRSF/REST may have other roles in cardiac development (Kuwahara,
2003), pancreatic islet development (Atouf, 1997; Abderrahmani, 2001), and perhaps B- or
T-cell lineages (Scholl, 1996). Little is known about which genes affecting these non-
neuronal lineages are direct NRSF/REST targets, or how many overlap with the neuronal

set.

A first step toward understanding how a regulator fits into the design logic and function of
a gene network is to define its genome-wide target gene set. In multicellular animals and
plants, this is not easily done by direct experimental measurements, because the matrix of
all possible target DNA sites, across many tissues and developmental states, is so vast. An
alternate starting point is to use comparative genomics, constrained by some smaller sets of
functional data, to generate a computational genome-wide model that can then be tested

directly and interrogated to develop new focused hypotheses.

Two considerations make the NRSF/REST repressor a superior candidate for this analysis.
First, factors with tandem arrays of zinc fingers can recognize relatively long and specific
target motifs, and this makes computational approaches for finding target genes more
feasible. Specifically, NRSF has a 21 bp binding site (NRSE or RE-1), and much is
known about where and how NRSEs function. They can direct repression from positions
within 5’-UTRs, in introns and at intron/exon junctions, as well as upstream of the

transcription start and downstream of the coding stop (Schoenherr, 1996; Thiel et al.,
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1998). One study also reported that repression can extend to neighboring genes at one
locus, although it is not clear whether this is general or not (Lunyak, 2002). NRSF
transcriptional repression also appears to be tuned in vivo for strength and timing at
different target genes during the progression from pluripotent stem cell to differentiated
neuron or glial cell (Kuwabara, 2004; Ballas, 2005). It is not known whether these
distinctions, so far studied for only a few genes, reflect differences in the sequence,

number, or organization of NRSE sites.

The second virtue of NRSF/REST for genome-wide target prediction is that a collection of
NRSF sites has been quantitatively assayed for activity in vivo (Schoenherr, 1996; Bruce,
2004). These assays, which include sequences that resemble the consensus binding site but
lack function, are invaluable for calibrating and interpreting any model of NRSF binding

derived by other criteria, including evolutionary conservation of NRSE occurrences.

In addition to direct transcriptional regulation, post-transcriptional and translational
mechanisms mediated by microRNAs are implicated in neurogenesis. Cells undergoing
terminal differentiation express tissue-specific microRNAs that are currently thought to
modulate translation and/or degradation of large networks of target mRNAs (reviewed in
Kosik, 2005). miR-124a, for example, is neuron-specific and can target hundreds of genes
when expressed in HeLa cells (Lim, 2005). A broad survey of microRNA expression in
brain and neuronal cell culture (Sempere, 2004) suggests there are at least a dozen different
microRNAs that are predominantly expressed in the brain. While prediction of likely target
sites in 3’ UTRs of known mRNAs has been very active (John, 2004; Krek, 2005; Lewis,

2005), little is known about how microRNAs are themselves transcriptionally regulated,



14

except that microRNAs located within introns of protein coding genes tend to be expressed
along with their “host” gene (reviewed in Ying, 2004). This emerging picture raises the
question of how transcriptional regulators are connected to and coordinated with the post-

transcriptional ones.

In the first part of this work, we use NRSF/REST as an amenable test case to build a
comprehensive genome-wide model for the corresponding gene cohort. To do this, we
develop a set of generally applicable algorithms and open source software tools
(Cistematic) to make and refine site predictions and enumerate the target gene cohort. We
show it is possible to begin with a single biologically defined, evolutionarily conserved
NRSF/REST site, then use conservation among mouse, human and dog genomes to
develop a refined model for NRSF sites. The resulting model is compared and contrasted
with prior ones (Schoenherr, 1996; Bruce et al., 2004), and we show that the major known
functions of NRSF can be deduced computationally by using RNA expression and GO
analysis modules in Cistematic. We test our model by experimentally measuring in vivo
binding at 113 loci by chromatin immunoprecipitation followed by Q-PCR. In the second
part of the study, we use the PSFM model to investigate evolution of the NRSF network
over much greater evolutionary distances, and to develop and test specific hypotheses about
links between NRSF/REST and post-transcriptional regulatory pathways. High confidence
candidate sites near neuronal microRNAs and splicing factors are identified, and in vivo

interaction of NRSF at these loci is experimentally verified.
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Experimental outline

The availability of multiple whole-genome DNA sequences raises the possibility of
building strong predictive models for the entire binding site repertoire of a sequence-
specific DNA binding factor by leveraging preferential conservation of functionally
important sites. We used a two-part strategy that begins by deriving and refining a PSFM
model for the binding site. The starting point is one or more functionally tested and
conserved instances to seed a multi-genome search for additional conserved instances. The
cisMatcher algorithm used to do this is designed to focus on site instances that are
embedded in somewhat larger conserved domains. The reasoning is that functional sites
are often located within larger conserved cis-regulatory modules. At later times in the
process, one can exercise an option to recover other instances of the site that do not require
conservation beyond the boundaries of the site model. The second process develops a
model for the genome-wide cohort of genes associated with sites defined by the fact that
they match the PSFM at or above a specified score. At this stage, various conservation and
gene geography criteria are selected and applied. They can require, for example, that
PSFM match sites occur near orthologs in multiple genomes and that candidate cohort
genes be located within a specified distance of a PSFM match site. Thus the refined PSFM
from the first part of the process is used to interrogate the genome(s) to find which genes
are located near site instances. The PSFM match score, coupled with archival and new
experimental data, is then used to help establish an appropriate threshold for inclusion in

target gene cohort.
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Deriving and refining a conservation-based PSFM site model.

The Cistematic pipeline is outlined in Figure 2.1 and summarized here, with details in
Methods. In one experiment, the derivation pipeline was initiated with orthologs from a
single gene, SCG10 (STMN2) in human, mouse, and dog genomes (Mori, 1992;
Schoenherr, 1995). This seed PSFM was used to run a genome-wide search that used the
cisMatcher algorithm. It collected additional similar instances that occur in domains of
conservation (here set for 8§7.5% PSFM match and 85% similarity in a 25-65bp window)

shared by at least two of the three participating genomes (Fig 2.2 and below). These

Figure 2.1. Experimental approach — A.

A p—— ) sca10 Matches from genome-wide matches to the
} g‘thCA CACCA A A C initial NRSE PSFM (SCGIO) were analyzed
JAVELVEVYRS LR TiYe, with cisMatcher and used to create a refined

- - . NRSE PSFM (NRSE2). B. A refinement
occumences n multple Coneenvation-based starting with a PSFM of 33 known sites
(Table S2) produces a result very similar to

. NRSE2 NRSE2. C. NRSEI (consensus:
IONCMGL kel cge  NTYAGMRCCNNRGMSAGNNNN; Bruce,

cishatcher analysis of PTRTeeEeETessevebesiin. 2004) and NRSE2  were searched for,
e 5 N genome-wide, with either its consensus or
Buld efned PSFIY 2 NRSEpsim33 with its position-specific frequency matrix
conserved ocourrences .. (PSFM). Their respective gene cohorts were
LICACACCASACACCC then analyzed for Gene Ontology (GO)

" enrichment and expression analysis (I). The

. — NRSE2 PSFM was further processed and

occurtences in muliple analyzed for GO enrichment and expression

genomes

analysis of two subsets: (II) human genes

with matches that co-occur in mouse and/or

v dog, and (IIT) human genes that are nearest to

Wﬂﬁﬁ?gﬂ;ﬂ the “most conserved” matches, as identified
by cisMatcher.

occurrences

GO Enrichment RNA expression
analysis analysis

Filter matches in
repeats and ORFs

cisAssociator analysis
of occurrences in
orthologous genes

conserved occurrences (81) of the motif were then used to derive a refined SCG10 PSFM,

which we call NRSE2. In a second experiment, by contrast, we began with a collection of
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33 different known NRSEs, used them to develop the seed PSFM (nrsePWM33). In a third

experiment, we ran the PSFM pipeline on several other individual NRSE instances.

nman  Figure 2.2. cisMatcher algorithm. After
"dog mapping motif instances across multiple
genomes, each of these sequences are
human  compared to one another in order to match
"wo  conserved motifs across genomes regardless
of their proximity to gene annotations.
Example genome inputs and outputs are
%o given on the right-hand side for a human

versus mouse and dog comparison.

Map motif in multiple genomes,
filtering for repeats (and optionally, CDS)
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The resulting site models were remarkably similar to each other (Fig 2.3). We conclude
that cisMatcher, operating over this set of genomes, derives a set of convergent PSFM
models for NRSE sites. This means that our refinement process, which draws into the
model many additional conserved instances, is robust to the identity of the specific

initiating NRSE.
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Figure 2.3 Different seed motifs converge following motif refinement. A. 10 initial
seed motifs from known or predicted sites are compared using the motif similarity score (see
methods) to our starting motif (SCG10), as well as a PSFM of 33 known instances
(NRSEpsfm33) and the refined version (NRSEpsfm33+R). The correlation median is 0.80. B.
Motif refinement of SCG10 (called NRSE2) and of the 10 initial motifs (denoted with a +R) are
markedly more similar, with a motif correlation median of 0.91, and several inter-motif
correlations rising above 0.95.

Estimating a membership threshold

How similar to the site model does a sequence need to be to function in vivo? We used
multiple kinds of experimental data to iterate toward an informed and increasingly
objective membership threshold. Setting a threshold is, at this stage, a useful and necessary
simplification, but there is no biochemical or biological reason to expect a crisp boundary
between sites that do and do not bind the factor. Fig 2.4A displays archival data for known
NRSE sites, plus a few previously tested negative sites that resemble the NRSE, plotted as
a function of PSFM match score. These data suggested starting with an estimated 84%
match score threshold. We also asked if the PSFM match score correlated with the
bioactivity of individual instances in a reporter transfection assay, drawing on data from
Schoenherr (1996). Remarkably, there was a significant correlation of PSFM match score

with repression strength (R* = 0.82, Fig 2.4B). The repression activity data are in general
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agreement with panel 2.4A, and support a threshold value in the low 80s. The relationship

of PSFM match score with repression efficiency in the transfection assay may also indicate

that both reflect binding affinity.
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Fig. 2.4. Selection of a threshold for NRSE2 and correlation of score with
repression activity. A. 33 known instances (filled triangles) and 4 false positives (filled
ovals) listed in Table S1 were scored with the NRSE2 PSFM using a consensus score, as
described in the text and methods. A threshold of 84% of the best possible score (match #5)
was selected conservatively to exclude the known false positives. The PSFMs exclude about
6% of known instances at this relatively high threshold. B. The NRSE2 PSFM score of 10
known instances and 3 false positives were plotted against their relative repression in a
transient transfection of a reporter from Schoenherr et al. (1996), where 100% and above
reporter activity represents no repression. The regression shows a marked correlation between
PSFM match score and repression (R2= 0.82).

Assembling and testing target gene cohort models.

The three mammalian genomes were then searched for every match to NRSE2 above a
predetermined threshold, and genes within a 10 kb radius were grouped into cis-regulatory
cohorts of genes. This cohort of human NRSE2-associated genes was filtered for
evolutionary conservation by requiring that matches also exist within 10 kb of an ortholog

in mouse and/or dog genomes using Cistematic’s cisAssociator algorithm. Because some
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known NRSF sites can apparently act in isolation without surrounding conserved elements,
cisAssociator deliberately does not require alignment or additional conservation outside the
site. Note that when a match is within 10 kb of more than one gene, cisAssociator includes
all genes into the cohort. This choice is based on the report that single NRSE instances can
apparently silence multiple nearby genes (Lunyak, 2002). However, it also means that,
even if the definition of the NRSE2 PSFM is optimal, some genes included in the cohort
model will be false positives. We also wanted to collect additional sites that might function
from distances greater than 10 kb, but without greatly increasing false-positives. The
cohort was therefore expanded by using the Cistematic cisMatcher algorithm to identify

genes with conserved NRSE2 matches that are distal.

We then used the cohort model to revisit the threshold issue, evaluating it experimatally by
sampling 113 candidate NRSE sites that spanned a range of high scoring and low scoring
PSFM scores. Chromatin immunoprecipitation (ChIP) was performed and and assayed by
quantitative PCR (QPCR) (Fig 2.5). These in vivo protein:DNA interaction data generally
validate the PSFM model (see below) and the Probit model in Fig 2.5B suggests that a
threshold around 84 is reasonable, but also indicates that there is no sharp PSFM boundary.
This means that users of this and related models will select membership thresholds, or
ranges for thresholds, to best serve different specific uses of the model for which pressure

on sensitivity versus selectivity are different.

How do previously identified NRSE cohorts, based on conventional consensus sites,
compare with the new PSFM? We compared the NRSE2 PSFM matches with instances

found using the original (NRSEQ) consensus of Schoenherr et al. (1996) and the recent
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(NRSE1) consensus used in the genome survey of Bruce et al. (2004). Cistematic

recovered the respective gene cohorts corresponding to NRSEO and NRSEI instances.
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Figure 2.5. Quantitative Analysis of
Chromatin Immunoprecipitation of
NRSF. A. 113 potential NRSE2
matches, 42 of whom fell below our
threshold of 84% (green vertical line),
were assayed using chromatin [P followed
by quantitative PCR. Fold enrichments
were calculated by dividing the absolute
number of genomic equivalents of each
NRSE by the mean of the recovered
amounts of 5 random non-genic, non-
conserved regions. Fold enrichments that
were above 3 standard deviations from the
mean of the 5 random non-genic amounts
(red line, 2.44x enrichment), were
considered to be occupied sites. An
exponential regression (black line in this
semilog plot), which would correspond to
the regression in Fig 2b, accounts for
about half of the data’s variation (R* =
0.56). 13 of the 83 occupied sites (16%)
fell below our 84% threshold. B.
Cumulative normal distribution function
of probit coefficient versus score with
95% confidence levels shown by dashes.
The estimated chance of a success match
goes up by nearly half between 80 and
84%.

Fig 2.6 shows that NRSE1 contains a significant fraction of matches that score poorly with
the PSFM model (< 80%), with many low-scoring NRSE1 matches occurring in complex
repeats. Matches within repeats were excluded from subsequent analyses for both NRSE1
and NRSE2, although we note that individual instances embedded within repeats might be

functional.
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We then asked how cisMatcher positive sites are distributed relative to gene anatomy.
Many known instances of the NRSE that have been studied in detail are either intragenic or
are located near the promoter, but it is not known how great a role ascertainment bias based
on proximity has played in selecting them for study. We mapped the genome-wide
cisMatcher set, which is not biased by the method of selection for its position relative to
adjacent genes. There is an obvious enrichment of NRSF motifs within 5 kb of gene
model start sites (40%), although a full quarter of the conserved matches are more than 10
kb from either the 5° or 3’ boundary of the nearest gene model, and 3’UTRs have

substantial numbers.
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mmm repeat

N
o
o
T T T T T T T T

%O 6l0 710 éO 90 100
% of maximal score

Figure 2.6. NRSE matches in repeats. Genome-wide human matches for the NRSEI
(Bruce) consensus (top), the NRSEO (Schoenherr) consensus, and the NRSE2 PSFM (threshold
of 84%) are scored using the NRSE2 PSFM. Whereas all three NRSE motifs show matches
within repeats (black), the NRSE1 motif disproportionally matches within repeats at scores
between 70 and 76%.
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Figure 2.7. Spatial distribution of cisMatcher-identified NRSESs. cisMatcher matches
were binned based on their distance from the start of the gene model (either transcription or
translation, depending on the model), which show that while there is a clear enrichment of NRSE
around the start of the model, more than half of the matches are further than 5 kb away.

Chromatin Immunoprecipitation (ChIP) analysis of predicted NRSEs

We tested the NRSE2 cohort experimentally at 113 sites (Fig 2.5), 42 of which fell below
our 84% threshold, by using chromatin IP coupled-with Q-PCR in Jurkat cells (see
Methods). Of 71 candidate sites ranking above the 84% threshold, 70 were ChIP positive.
In contrast, at slightly lower PSFM match scores, 29 of 42 sites were negative for NRSF
ChIP. Thus, predicted sites could be quite effectively partitioned by PSFM score into those
that will certainly be ChIP positive and those that are likely to be negative (p-value =
8.6*107'°, Fisher’s exact test). The associated Probit analysis allows one to select other

thresholds and to consider the confidence limits at any selected threshold.



24

The 84% wvalue is a conservative membership threshold designed to minimize false-
positives as much as possible, at the cost of accepting some false negative predictions
(13/83, or 16%). Cistematic provides the option of sliding the threshold to provide cohort
models that correspond to differing stringencies for false positive or false negative

members.

Gene Ontology (GO) analysis of the NRSE2 cis-regulatory cohort.

We next asked if functions of the NRSF-regulated cohort could be inferred based on
enrichment of Gene Ontology (GO) terms. Statistically significant enrichment, subject to
Bonferroni correction for multiple hypothesis testing, was observed for each cohort model
but not for a large set of randomly scrambled version of the PSFM (Methods). The NRSE2
PSFM identified a larger cohort (660 human genes within 10 kb of an NRSE2) than the
original NRSEO consensus (362 human genes) or the seed SCG10-based PSFM (192
human genes), with significant enrichments in functional GO categories such as “synaptic
transmission”, ‘“neurogenesis”, and “transporter activity”. These functions nicely
recapitulate much of the NRSF literature. In contrast, several GO categories significantly
enriched in the larger NRSEI cohort (1270 genes), such as “synaptogenesis” or “calcium-
dependent cell-cell adhesion”, are conspicuously absent from the other NRSE cohorts. On
detailed inspection, the latter results are mainly due to NRSE1 matches within the
paralogous protocadherin 3 cluster. This calls attention to a specific interpretation issue in
GO enrichment analysis, which is the power of very similar paralogs in gene families to
drive an entire term to significance. Similar paralogy issues do not appear to dominate

most significant other terms for any of the NRSE models.
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Cistematic’s orthology matching function was next used to develop a conserved cohort.
NRSE2 instances in human, mouse, and dog were collected and subjected to both
cisMatcher and cisAssociator conservation criteria. 505 human genes met at least one of
these criteria. GO analysis of the resulting conserved cohort (Fig 2.8) shows further
enrichment of several GO terms such as “transporter activity”, “synapse”, and “synaptic

vesicle” when compared to the larger NRSE2 cohort, but these effects were not substantial.
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Figure 2.8. Gene ontology enrichment comparison of different NRSE cis-regulatory
cohorts. Cohorts of human genes within 10 kb of a candidate NRSEQ (Schoenherr, 1996), NRSEI
(Bruce, 2004), SCG10 (the original seed motif), NRSE2, All NRSE2 matches, and conserved
NRSE2 matches were filtered of repeat matches and were analyzed for GO term over-
representation. Significantly enriched GO terms in at least one of the cohorts (out of 4576 possible
GO terms) are shown. Numbers in cells represent the genes with the term in the cohort while
numbers in parentheses represent the cohort size. Cells shown in color pass the threshold of
significance, as determined by a Bonferroni correction. GO terms are sorted in decreasing order by
p-values of the leftmost column. Note that GO enrichments are in term of decrease in p-values,
which are directly correlated to the size of the cohorts, the number of genes in the shared
association cohort with a particular GO term may go down or stay the same, while its significance
increases. The NRSE1 motif behaves differently from the other definitions, as seen in the
enrichment of synaptogenesis, which is the result of weak matches within the paralogous
protocadherin § family.
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To test the robustness of the GO analysis, the columns of the NRSE2 PSFM were

scrambled repeatedly and the entire analysis pipeline was repeated 100 times (data not
shown). Only two scrambled motifs recovered any significantly enriched GO term, and
they found just one each. No scrambled motif recovered significant GO terms when either
of our conservation criteria was applied. These results argue that enrichment of specific

GO terms for NRSE2 is statistically sound.

Comparative Expression Analysis of NRSE2

We asked if the NRSE2 cohort is enriched in genes with a specific RNA expression
pattern. One prediction from prior studies of NRSF is that genes expressed predominantly
in neurons will be enriched among true biological targets of NRSF (Ballas, 2005; Chen,
1998). The GNF gene atlas (http://symatlas.gnf.org, Su, 2004) of mRNA expression across
79 human tissues was used to investigate the expression profile of our gene cohorts.
CompClust (Hart, 2005) was used to cluster the NRSE2 cohort with k-means, k-medians,
and DiagEM for k=5, 10, and 15. While all three algorithms returned similar pan-neuronal
clusters, k-medians with a Pearson correlation metric and k=5 performed best qualitatively
and was used for all subsequent analyses. The NRSE1 cohort was also clustered for
comparison and produced similar clusters (Fig 2.9). The NRSE2 clustering is shown in Fig
2.10A. In every clustering, one or more clusters had a distinctly brain-specific expression
pattern, whose medoid weights are shown in Figure 2.10B. The percentage of each cohort
falling within these brain-specific clusters ranged from 21% for NRSEI to 40% for
NRSE2. These reactions are significantly higher than the percentage of genes in GNF that
have a Pearson correlation coefficient > 0.4 with our pan-neuronal medoid vector (1,482

out of 16,054 genes with current NCBI Gene IDs, or about 9%), which gives a p-value of
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8.0 * 107! (X2 =316.58, % test for equality of distributions) for the neuronal enrichment of

the NRSE2 cohort. Nevertheless, the majority of neuronal genes are not associated with a
recognizable NRSE. As would be predicted if many NRSE2 genes are regulated by NRSF
in a neuronal context, there is a large (> 4-fold) enrichment for brain expression to 40% of

all NRSE2-associated genes (Fig 2.10C, 2.9).

Fig 2.10D gives match score distributions for the subset of genes that display a
predominantly brain-specific RNA expression pattern. Genes within the brain-specific
expression clusters share a similar scoring distribution pattern to the entire population of
matches for both NRSEO and NRSE2, whereas NRSEI pan-neuronal matches show a
bimodal distribution with a local minimum at 77%, which is below our predicted cut-off for
repression activity (Fig 2.4B). Based on the PSFM score and its relation to functional

assays, these NRSE1 instances are unlikely to be biologically active on their own.

Confusion matrices (Hart, 2005) were used as a generalized Venn diagram to compare the
overlap of the genes and expression pattern of the different cohorts. Fig 2.9 shows the
confusion matrix for NRSE1 versus NRSE2; while both motifs agree on about 323 genes,
both cohorts have large sets of non-overlapping genes (also known as outersects or relative
complements; see Methods). The outersect of NRSE1 is comprised of 615 additional genes
not present in the NRSE2 cohort, whereas the corresponding NRSE2 outersect includes
172 genes. Neuronal genes comprise 34% of the NRSE2 outersect, but only 14% of the

NRSE1 outersect (p-value = 5*10”, %* = 34.07, % test for equality of distributions)
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Figure 2.9. Confusion matrix comparison of tissue expression pattern of NRSE1
and NRSE2 matching genes. Human genes with an NRSE1 (top row) or NRSE2 (right-most
column) with an expression pattern in the GNF survey of 79 human tissues, were clustered using
the k-medians algorithm as described in the methods, with the cluster number in the upper-right-
hand corner, and the cluster size in the upper left hand. Genes that were unique to each dataset
are shown in the bottom row / rightmost column, whereas genes that are in common between the
two datasets are shown at the intersections of their respective clusters. In both datasets, clusters
with a blue border represent those genes with a high expression pattern in neuronal tissues and
low expression pattern elsewhere. These highly brain-enriched expressed genes make up a
greater percentage of the NRSE2 cohort (40%) and of its outersect (34 %) than of the NRSE1
cohort (21 %) or of its outersect (14%), the latter containing low-scoring matches by our PSFM.
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Figure 2.10. Tissue expression pattern of NRSE associated-genes shows brain-specific
expression enrichment. A. Human genes with an NRSE2 with an expression pattern in the GNF
survey of 79 human tissues, were clustered using the k-medians algorithm as described in the
methods. The second and fifth clusters, which encompass 40% of the NRSE2-associated genes
shows a clear, brain-specific expression pattern. B. Weights of the k-medoid for cluster 2, with
brain tissues highlighted in black. Note that cardiac myocytes and pancreatic islet cells also have
positive weights. C. NRSE2 shows a 3.5 fold enrichment of “brain specific” genes (as defined by
the medoid in B) compared to the GNF datasets and show greater enrichment than NRSEI. D.
NRSEO (top), NRSE1, and NRSE2 matches associated with genes than have a greater than 0.4
correlation with the medoid vector in B. NRSE1 shows a double-humped distribution of matches,
with matches weaker than 77% accounting for half of its matches; these low scoring matches are
likely false-positives.



30
suggesting that consensus-based approaches like NRSE1 likely miss neuronal, NRSE-

associated genes (Figure 2.11) as also suggested by Zhang et al (2006).

A. All Genes

NRSE1 NRSE2

B. Neuronal Genes

NRSE1 (o NRSE2

Figure 2.11. Venn diagram of NRSE1 and NRSE2 matching genes. A. Human genes
with an NRSE1 or NRSE2 with an expression pattern in the GNF survey of 79 human tissues. B.
Highly brain-enriched expressed genes make up a greater percentage of the NRSE2 cohort (40%)
and of its outersect (34 %) than of the NRSE1 cohort (21 %) or of its outersect (14%), the latter
containing low-scoring matches by the NRSE2 PSFM.

NRSEs are only found in vertebrate genomes

NRSE2 matches were sought in genomes representing four invertebrate phyla (arthropod,
nematode, echinoderm, and urochordate), together with seven additional vertebrate species.
The remarkable result is that there are essentially no matches in invertebrate genomes,
while all vertebrate genomes have the same order of magnitude of matches, regardless of

genome size, with the pufferfish genome being especially informative (Fig 2.12).
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Figure 2.12. NRSE distribution in vertebrate and invertebrate genomes. A. The
number of NRSE2 matches in mammalian genomes is relatively constant and include a
significant number of matches within repeats when compared to other vertebrates,
compared to the virtual absence of NRSE2 matches in invertebrates. B. The higher density
of all NRSE matches / Mb of genomic sequences in pufferfish and zebrafish when
compared to chicken suggest that fish and mammalian NRSE matches may have been
expanding independently.

Tetraodon has a highly compressed genome that retains functional sequences such as ORFs
at 3—5-fold elevated density. A similar enrichment is seen for NRSE2 occurrences, which
suggests that many of them are functional. The notable paucity of NRSE2 sites from the
sea urchin, Drosophila, and Ciona (a urochordate) genomes argues that this repression
network is absent up into protochordata, and it calls into question a previous tentative

assignment of NRSF orthology to CoREST-interacting zinc fingers in C. elegans
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(Lakowski, 2003). We also found that there is only one NRSE2 instance in the entire C.

elegans genome, and it is not conserved in related worm genomes (C. briggsae and C.

remanei).

NRSE2 PSFM matches in the Tetraodon genome were related to matches in the human
genome using cisAssociator to identify genes that remain associated with a high scoring
NRSE in both fish and mammals. There were only 33 matches that pass our criteria for
best reciprocal match of the corresponding gene models. Occurrences of NRSE1 and
NRSE2 in human repeats were analyzed using the UCSC repeatMasker annotations
(http://genome.ucsc.edu, Kent, 2002; Karolchik, 2005) to address whether NRSE instances
were found preferentially within the same repeat families. While most NRSE2 matches
(285 instances that meet or exceed the 84% match score threshold of Figure 2.4) reside
mainly in the old vertebrate LINE2 family (226 matches, 79%), the overwhelming majority
of NRSEI1 consensus matches are in the ERV1 SINE family (1,858 of 2,339 matches,
79%), which score between 70 and 74%. This dichotomy is particularly striking because
there are no NRSE2 matches in the ERV1 family. With two or three strategic chance
mutations, many of these repeats could achieve a low functional match score upon which

selection could operate to favor further optimization.

NRSE2 PSFM matches associated with microRINAs

We proceeded to identify microRNAs in the human genome located within a 25 kb radius
of a non-repeatmasked NRSEs. The search radius was increased from the cisAssociator 10
kb used for the NRSE2 cohort to respond to the observation that some microRNAs are

embedded in, and expressed as part of, primary transcripts from protein coding genes
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(Ying, 2004). The sites were mapped against the UCSC entries of the microRNA registry

(Griftiths-Jones, 2004; Weber, 2005). Twenty-one microRNAs were identified (out of 326
in the annotations) that represent sixteen distinct families. All but one of these microRNAs
had been previously characterized in the context of mammalian neuronal differentiation
(Sempere, 2004). MiR-375 was shown separately to be pancreatic B-cell line specific (Poy,
2004). It has been shown to target at least one gene (myotrophin) in the murine pancreatic
cell line MING in coordination with miR-124a (Krek, 2005). Six NRSE-associated miR
families also assayed in Sempere belong to 14 families (out of 100 surveyed) categorized in
Sempere et al (2004) as “brain specific” or “brain enriched”. This pattern of coherent tissue
specificity in expression is significant by the criterion of p-value of 0.02 (Fisher’s exact
test). Seven of these microRNAs are located in introns of genes in the NRSE2 cohort, i.e.,
miR-153 in PTPRN, miR-139 in PDE2A; miR-9-1 in CROC4; miR-7-3 in C190rf30); and
miR-24-1, miR-27b, as well as miR-23b in C9orf3. In the case of miR-153, miR-139, and
miR-9-1, the RNA expression pattern of the “host” gene falls in the brain-specific cluster
(Fig 2.10A). We assayed NRSEs from 11 of these by ChIP, and 10 scored positive for
NRSF/REST occupancy. Our results for miR-124a and miR-9 agree with those reported in

by Conoco et al. (20006).

By inspecting lists of predicted target RNAs for NRSE-associated MicroRNAs (Lewis,
2005) we found that CoOREST (GenBank D31888) is a candidate target for three of our
sixteen microRNA families (miR-29b, miR-124a, miR-153), and that NRSF itself

(GenBank U22680) is a prospective target of miR-153, which has recently been shown to
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be brain-specific in the zebrafish embryo (Kloosterman, 2006). These postulated

interactions create a potential feedforward loop that might have the effect of more quickly

Name NRSE2 | Distance | Human Mouse P19 NT2 ChIP  Fold
PSFM (bp) Brain Brain +RA +RA Enrichment
(%)

miR-153-1 97 14,208 | Low Low Low 87.9

miR-135b 93 10,826 | Low Low Medium | Low 79.6

miR-124a-2 (*) 92 934 | Medium Medium Low Low

miR-9-1 (%) 91 5,681 | High Medium High Low 7.97

miR-29a (clust 1) 91 11,106 | Medium Medium Low 48.03

miR-29b-1(clust 1) 91 11,818 | Medium Medium Low 48.03

miR-212 (clust 2) 88 111 Low

miR-132 (clust 2) 88 252 | Medium High

miR-133a-2 88 23,034 | Low Low Low 10.32

miR-124a-3 (¥) 87 487 | Medium Medium Low Low 1.00

miR-375 87 9,768 | - - - - 8.56

miR-7-3 86 1,097 | Medium Medium Low Low

miR-139 86 2,255 | Medium Medium 29.37

miR-9-3 (*) 86 3,050 | High Medium High Low 11.12

miR-124a-1 (*) 86 21,763 | Medium Medium Low 10.09

miR-124a-3 (¥) 86 2,394 | Medium Medium Low Low

mirR-24 (clust 3) 85 1,743

miR-27b (clust 3) 85 2,319 | Medium Low Low Low

miR-23b (clust 3) 85 2,556 | High Low Medium | Medium

miR-203 85 15,684 | Low Low

Table 2.1. mictoRNAs with associated NRSE2 matches in the human genome have a
neuronal expression pattern. MicroRNAs with an NRSE2 match with PSFM score greater
than 84% within 25 kb are shown along with their expression pattern from Sempere et al.
(2004) in human and mouse brain as well as in mouse P19 and human NT2 cell lines
undergoing retinoic-acid induced neuronal differentiation and where several miRs (bold) were
categorized as “brain specific” or “brain enriched”. Multiple microRINAs that are near the
same NRSE are labeled with the same “clust” ID. Entries with asterisks mark members of
the same microRNA family that only have one entry in Sempere et al. (2004), and are hence
shown with the same expression pattern. miR-375 was found separately to be expressed
specifically in pancreatic  cells by Poy et al. (2005). Chromatin Immunoprecipitation fold
enrichments for those microRNA-associated NRSE2 matches that were part of our 113 sites
tested that are hiocher than 2.44 are considered positives.
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or definitively down-regulating NRSF mRNA, as NRSF activity begins to fall (Figure

2.14). This is given additional impetus by the observations that miR-153 is the microRNA

with the best-scoring NRSE site (Table 2.1), and that its NRSE is embedded in PTPRN, a

gene expressed strongly and widely in the nervous system.

Discussion

Our effort to model the conserved NRSF binding site and its target gene cohort differs
substantially in design, tools, and outcome from prior attempts (Lunyak et al., 2002, Bruce
et al., 2004). We show that a successful PSFM site model can be derived from a single
starting conserved NRSE by using iterations of motif refinement that incorporate additional
site instances based on their conservation in multiple mammalian genomes. Prior designs
started from collections of multiple genes and produced conventional consensus sites. The
NRSF PSFM model, unlike standard consensus motif, captures more information about site
structure and affords a way to rank score matches, according to how well they match the
model site. We then tested the model experimentally across a range of PSFM match
scores, including below-threshold borderline values, by ChIP/QPCR experiments. This
allowed us to assess the predictive qualities of the model relative to PSFM score. These
results encourage us to think that other relatively large and well-specified motifs could be
usefully modeled in the same manner. However it is important to recognize that shorter or
less well-specified motifs — those with lower information content — will be difficult or
even impossible to treat in this manner without additional algorithms to help discriminate

functional occurrences from chance occurrences.
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The PSFM site model captures more information about site preferences at each position
than does a basic consensus. We showed that the PSFM score correlated well with
repression activity in transient transfection assays, arguing that it is a good first-order
predictor of function. Our ChIP independently showed that a high PSFM match score is
predictive of in vivo NRSF occupancy at a given locus. In most prior attempts to develop
genome-wide target site models, including NRSF/REST studies, thresholds for
membership were set arbitrarily. Based on NRSF/REST results, we think that integration of
functional data in this manner is a natural way to bound computational models, establish
confidence limits, and then further refine them. However, the apparent intensity of the
ChIP interaction differed greatly from one positive locus to another, and we do not yet
know what modulates levels of ChIP signal. Obvious biological possibilities include
chromatin structure, the presence or absence of various collaborating factors, and

contributions from weaker NRSE sites near strong ones.

Cistematic permitted us to efficiently generate and compare families of related models by
varying parameters for conservation, position of sites relative gene anatomy, PSFM match
stringency, and initiating seed sites. The ability to do this in an automated manner is useful
for finding out if a model is vulnerable to changes in input parameters. In one pertinent
example, we ran the pipeline beginning with different individual starting site instances, as
well as a starting site pool, and found the results are robust to these variations in the initial

seed site.

The NRSE2 matches were analyzed for statistically significant functional covariates, from

GO and from RNA expression data, using Cistematic modules designed for these purposes.
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The software architecture (Fig 2.2, 2.13) and Open Source license are meant to encourage
users to add other analytical modules at will. A key conclusion from these experiments is
that the principle function of NRSF could have been inferred solely from analysis of the
final NRSE2 cohort model. The enrichment relationships for neuronally expressed RNAs
and neuronal GO functions within the NRSE2 cohort model were statistically far above
background, despite incompleteness of GO annotations and imperfections in large-scale
expression databases. RNA analysis of the NRSE cohort model benefited from strong
sampling of brain tissues in the GNF data, and application of this approach to other motifs
will be effective as global RNA datasets and GO annotations become more extensive. Had
we not already known that NRSF acts as a repressor, this also could have been inferred de
novo from the NRSE2 cohort, together with expression data for NRSF/REST itself. In
mouse and human, the RNA profile for NRSF/REST is in frank opposition to the
expression of its direct target repertoire. These inferences show that PSFMs based on
evolutionary conservation, and the target gene cohort models derived from them, can
successfully predict organismic and molecular functions. The model generates hypotheses
at the level of the entire network and also at the level of individual genes (Fig 2.14 and

below).

We think the approach taken here will be applicable to many transcriptional regulators in

vertebrates that meet several criteria. In practical terms, the cardinal requirement is a long
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Figure 2.13. Cistematic architecture
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and specific binding motif. The length of the NRSE2 PSFM was critical for evading the

most dire consequences of Wasserman and Sandelin’s “futility theorem”, namely that the
vast majority of binding site instances predicted based on motif knowledge will have no
functional significance (Wasserman, 2004). Large families of factors whose members are
likely to be eligible for Cistematic PSFM models include multifinger zinc finger class
regulators that have been expanding rapidly in mammals (Shannon, 2003). The second
criterion is evolutionary conservation. If a site/factor pair is very new, it will not be
possible to leverage conservation, although the addition of increasing numbers of genomes
will provide more branch length and resolution within clades such as the mammals
(Boftelli, 2004). Finally, whether the data are obtained before the initial PSFM model

building or after, quantitative functional analysis of a sample of true positive and true
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negative sites makes a powerful contribution that can be used to bound model membership

and, in the best cases, to predict which instances are likely to be most activein vivo.

The NRSE/REST network is a chordate invention.

All currently available data argue that the neuronal NRSF repression network is a chordate
invention. Extending the analysis of NRSE2 matches to an additional eleven available
genomes (Fig 2.13) revealed that while NRSE2 is not only absent in Drosophila as
previously noted (Bruce 2004, Dahlman, 2005; Yeo, 2005), but also is essentially absent
from all invertebrate genomes. In sharp contrast, all vertebrate genomes we surveyed have
between 302-1047 non-repeat matches, with an average of 750. Within mammals the
average number is modestly higher (842). Furthermore, preliminary surveys of amphioxus
(a cephalochordate) and lamprey (a basal vertebrate) whole genome shotgun traces found
that NRSE2 matches are present in both at high densities, while the motif is entirely absent
from the urochordate, Ciona intestinalis. This, along with the absence of any gene models
that are convincingly similar to NRSF in Ciona or invertebrate genomes, suggests that
NRSF emerged after the time of the last common ancestor shared by vertebrate and
urochordates. Paralleling this, NRSF/REST itself is present and highly conserved in all
vertebrate genomes but absent from Ciona and multiple invertebrate genomes. We did not
detect NRSF in searches of sea urchin or C. elegans, and others have reported it absent
from Drosophila, even though its principal co-repressors are present there (Dallman, 2004;
Yeo, 2005). We did not detect NRSF in amphioxus trace coverage either, which could be a
simple technical issue, but also raises the possibility that the target motif might have

emerged ahead of the factor itself.
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These data, combined with the existence of high-scoring sites within old LINE2 elements
in the human genome, suggest that NRSEs may have first been distributed across vertebrate
genomes via repeats at roughly the same time the NRSF DNA binding factor first
appeared. In such a scenario, NRSEs that land near or in genes and also confer some
advantage when repressed by NRSF, are starting points to expand an NRSF network. The
much larger reservoir of weak, probably inert, NRSE1 (Bruce consensus) sites present in
other repeat families might provide new NRSF/target gene pairs, given one or two key

mutations.

A subset of neuronal genes belong to the NRSE cohort

RNA expression and GO term analyses showed that, under the NRSE2 model, NRSF does
not directly act on a majority of genes with broad brain expression or with distinctly
neuronal GO classifications. There are roughly 1,400 genes preferentially and broadly
expressed in adult brain, but only 11% of these have a high confidence NRSE2 motif.
Some of the non-NRSE brain genes are probably glial, while another subset might be
explained by weaker NRSEs, functioning individually or multiply. NeuroD1/Beta2, for
example, is an attractive candidate target based on its expression pattern and function in
neurogenesis and pancreatic islet cell genesis (Lee 1995, Huang 2000). It has one NRSE
~ 4.5 kb upstream that scores above our threshold in mouse and dog, but slips below
threshold in human. However, closer inspection shows that NeuroDI, like the related
factors, NeuroG1 and NeuroG2, has additional low scoring NRSE matches embedded in its
open reading frame. Learning the rules governing use of weaker sites awaits a fully
comprehensive experimental mapping of NRSF/REST in vivo interactions, but many

neuronal genes probably depend on other factors for their neuronal expression. A corollary
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is that substantial numbers of additional pan-brain genes present in relaxed-stringency
models, including the NRSE1 cohort, are likely neuronal due to other regulatory factors,

rather than by the action of a functional NRSE.

The converse is also true. Significant (~ 4-fold) enrichment of the NRSE2 cohort for a
brain expression profile leaves 60% unaccounted for. Some reasons for this include
incomplete gene annotations, genes restricted to specific kinds of neurons, mRNAs present
at levels below microarray threshold, and inclusion of some extra NRSE2 neighborhood
genes into the model by the cisAssociator algorithm. For example, several of the NRSE2
associated transcription factors are well known for important functions in specific neuronal
populations (Neurogenin-3, POU4F1, POU4F3, LHX3, and LHXSY), but none are in the
pan-brain cluster, nor is their expression utterly specific to brain. It is also unclear how
many genes in this model cohort might be targets of NRSF regulation relevant to its

cardiac, pancreatic, or other functions.

NRSF/REST interactions at neuronal transcription factor, microRINA and RNA  splicing factor loci

The NRSE2 model target gene cohort included other transcription factors, microRNAs and
splicing regulatory factors, all of which could extend the regulatory effects of NRSF/REST.
Multiple NRSE instances are associated with transcription factors. In addition to an
expected complement of channels and synaptic proteins, highly conserved NRSE instances
shared between human and fish are associated with transcription factors of interest. LHXS5
and LHX3 are LIM homeobox factors important for specification and function of distinct
neuronal populations. LHXS also controls regulation of neuronal precursor exit from the

cell cycle in the hippocampus (Zhao, 1999). Among NRSE2 instances conserved among
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mammals, there are at least 25 other transcription factors, including NeuroD2 (McCormick,
1996), a known mediator of neuronal differentiation; its conserved NRSE is located ~ 13
kb downstream in mammalian genomes and was validated by the ChIP experiments.
Another pro-neural transcription factor with an NRSE is Neurogenin-3, which marks both a
subset of neuronal precursors and the early precursors of pancreatic islet cells (Sommer,
1996; Gradwohl, 2000). In addition, several genes encoding RNA-binding proteins
involved in RNA splicing and editing have NRSEs. Among these, NOVA2 is especially
interesting because it regulates brain specific RNA splicing for a substantial group of
synaptic proteins (Ule, 2005). Both of NOVA2’s NRSEs (one in the third intron, the other
one downstream in a LINE2 repeat) were occupied by NRSF/REST according to the ChIP

data.

NRSE2 matches are also associated with multiple neuronal microRNAs, several of which
(miR-9-1, miR-9-3, miR-29a/miR-29b, miR-124a-1, miR-133, miR-135b, miR-139, miR-
153, miR-375), were validated by ChIP. This suggests the circuit model in Fig 2.14: In
stem cells and progenitors of Fig 2.14A, NRSF acts by repressing hundreds of protein
coding genes and a handful of microRNA genes. Upon developmental progression to the
differentiated state (Fig 2.14B), NRSF is downregulated, first at the protein level and then
transcriptionally (Ballas, 2005). Thus, its targets are freed — perhaps sequentially
according to NRSE strength and number — for induction by various transcription

activators. In this model, feedforward connections of microRNAs onto CoREST and
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Fig. 2.14. NRSF gene regulatory network model. A. NRSF in conjuction with CoOREST
and other co-repressors prevents the transcription of several hundred targets, including neuronal
splicing factors, transcription factors, and microRNAs, as well as many terminal differentiation
genes in a stem cell. B. Upon receiving neurogenic signals to terminally differentiate, the NRSF
protein is degraded, which leads to derepression of its targets, which are now available to
activators. In particular the NRSE-associated miR-153, which is embedded in the pan-neuronal
gene PTPRN that has a NRSE in one of its introns, is predicted to down-regulate both NRSF and
CoREST mRNAs (which is also the predicted target of the NRSE-associated miR-29b and miR-
124a), thus maintaining the derepression.
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NRSF may modulate or accelerate the change from precursor cell to neuron. MicroRNAs
and splicing factors can go on to down-regulate other target genes not wanted in
differentiating neurons. This extended reach of NRSF from direct negative regulation to
indirect positive regulation may also explain why only a fraction of neuronal genes are
direct NRSF targets. Embryonic lethality of NRSF null mice at day E10.5, before the onset
of neurogenesis (Chen, 1998), might therefore result from mis-expression of neuronal

microRNAs or splicing factors.

METHODS

Cistematic

Cistematic is a Python package for automated motif identification in eukaryotic genomes.
Cistematic has a 3-tiered architecture of objects written in the Python scripting language,
which encapsulate the concepts of motifs, genome sequences and annotations, as well as
motif-finding programs (Fig 2.13). The sequences and annotations that Cistematic uses for
vertebrate genomes are derived from the UCSC Genome database. The primary objectives
of Cistematic are to identify, refine, and/or map candidate motifs by determining their
genome-wide distribution, their association with potentially co-expressed or co-regulated

genes, and their GO enrichment.

A typical Cistematic script consists of Python commands that perform a set of operations
on certain Cistematic objects. A set of Experiment objects provides ready-made logic to do
much of the work for the user. Most of these Experiment objects are designed to handle
various aspects of phylogenetic footprinting across multiple metazoan and fungal genomes.

Cistematic stores all of its information and results in SQL-queryable databases, using the
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Sqlite 3.0 database library and the pysqlite 2.0 Python library. Cistematic can also generate

tab-delimited files that can be imported into Excel for browsing. Cistematic currently runs
on Mac OS X, Linux, and Solaris with Python 2.4 and sqlite installed and is available at
http://cistematic.caltech.edu, along with the scripts used to generate the data in this paper,

which are available at http://cistematic.caltech.edu/~alim/cispaper .

Motif Similarity Score

We define the motif similarity score of two PSFMs A and B as:
MSS(A, B) = Max(Z PearsonCorr(A;,B;),2 PearsonCorr(A;,revB;))/length(A)

where the index 1 represents the corresponding columns in the PSFMs, revB is the reverse
complement PSFM of B and PearsonCorr is the Pearson Correlation. The MSS of two

motifs ranges between 0 and 1.0.

Genome-wide Cis-Regulatory Cobort 1dentification
We used the Cistematic Locate experiment object class to map every instance of our motifs
in human, mouse, and dog with either the consensus or the PSFM. The consensus score for

a candidate window m of length L was calculated as:

2 fi(m))

where f; is the frequency of the nucleotide at position my in the i column of the PSFM.

The best possible score for each PSFM was calculated and all matches that scored higher

than the best score times a predetermined threshold (see Results and Fig 2.4) were accepted
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as matches. We have found that this particular scoring function performs as well as the
traditional log-likelihood scoring (data not shown), allows us to use PSFMs without
resorting to pseudo-counts or Dirchlet distributions to account for unseen valid nucleotides,
and that the threshold can be intuitively related to the number of mismatches of the site to

the consensus of the PSFM (about 5% per major mismatch in the case of NRSE2).

One or more genes were identified for every match as members of the cis-regulatory cohort
using the criteria that the match instance is (a) within the gene model or (b) within a 10 kb
radius of either the 3’ or 5’ gene model boundaries. The relative location of the motif to
each neighboring gene was noted as upstream, 5’-UTR, coding sequence, intron, 3’-UTR,
or downstream. Results from each genome were saved to a separate file to serve as inputs

for the ensuing steps of the analysis.

We used the following annotations from NCBI or UCSC along with the corresponding
genomic sequences from UCSC: human (NCBI Build 35), mouse (NCBI Build 35), dog

(NCBI Build 2), and Tetraodon (geneid, UCSC tetNigl).

Orthology Matching

Genes from each 