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Abstract

This thesis comprises three parts. The principal topic is presented in Part I and
concerns the problem of the free-boundary evolution of two dimensional, slow, vis-
cous (Stokes) fluid driven by capillarity. A new theory of exact solutions is presented
using a novel global approach involving complex line integrals around the fluid bound-
aries. It is demonstrated how the consideration of appropriate sets of geometrical line
integral quantities leads to a concise theoretical reformulation of the problem. All
previously known results for simply-connected regions are retrieved and the analytical
form of the exact solutions formally justified. For appropriate initial conditions, an
infinite number of conserved quantities is identified. An important new general result
(herein called the theorem of invariants) is also demonstrated.

Further, using the new theoretical reformulation, an extension to the case of
doubly-connected fluid regions with surface tension is made. A large class of exact
solutions for doubly-connected fluid regions is found. The method combines the new
theoretical approach with elements of loxodromic function theory. To the best of the
author’s knowledge, this thesis provides the first known examples of exact solutions
for Stokes flow in a doubly-connected topology. The theorem of invariantsis extended
to the doubly-connected case.

Finally analytical arguments are presented to demonstrate the existence, in prin-
ciple, of a class of exact solutions for geometrically symmetrical four-bubble configu-
rations.

In Part II, the most general representation for local solutions to the two dimen-
sional elliptic and hyperbolic Liouville equations is formally derived.

In Part III, some analytical observations are presented on solutions to the lin-
earized equations for small disturbances to the axisymmetric Burgers vortex. The
relevance to the (as yet unsolved and little studied) problem of the linear stability of

Burgers vortex to axially-dependent perturbations is argued and discussed.
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PART I




Chapter 1
Stokes Flow of a Simply-Connected Viscous Blob

1.1 Introduction

This chapter' presents a novel formulation of the problem of the slow viscous quasi-
steady flow of a two-dimensional simply-connected fluid blob with surface tension on
the free boundary. Many exact solutions for special cases of this problem have already
appeared in the literature [1]-[11] and rely on a complexification of the problem first
exploited by Richardson [5]. The closely related problem of the Stokes flow around
a single bubble in a strain field has also recently received much attention [8] [10]
[11]. The approach adopted in this paper, while employing the same formulation in
terms of complex analytic functions, is essentially different in that the problem for
the boundary evolution of the blob is studied by considering a very general set of line
integral quantities defined around the boundary of the blob. This approach greatly
simplifies much of the unwieldy analysis that has characterized previous treatments,
and the interesting mathematical structure underlying the existence of the exact
solutions becomes more apparent.

The previous methods, while leading (essentially by inspection) to the exact so-
lutions, have been somewhat ad hoc, although Tanveer and Vasconcelos [8] recently
presented some mathematical justification for the existence of such solutions. These
previous methods essentially rely on hypothesizing a form (or ansatz) for the exact
solutions and then demonstrating by direct substitution into the equations that the
ansatz is such as to satisfy all the necessary boundary conditions while simultane-

ously respecting all the necessary analyticity properties of the solution inside the

1This chapter is based on material from an article entitled “A Theory of Exact Solutions for
Plane Viscous Blobs” by D.G. Crowdy and S. Tanveer to appear in Journal of Nonlinear Science.
It is reproduced here with the kind permission of Springer Verlag New York Inc., 175 Fifth Avenue,
New York, NY 10010.
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fluid region. The reader is referred to the papers cited above for more details. The
new approach expounded here is not only mathematically more appealing but also
reveals important properties of the equations of motion, in particular, the existence
of an infinite number of conserved quantities associated with a very general class of
exact solutions. The existence of such conserved quantities has not been generally
recognized using previous methods. The reformulation also leads to what is referred
to herein as a “theorem of invariants” which automatically provides a further finite
set of invariants (or ‘first integrals’) for a subset of the exact solutions. It is also
noted that the general theory presented here is readily extended to the case of the
Stokes flow around a single bubble with only minor changes in detail. This is also a
simply-connected fluid region.

Since many examples of the slow viscous flow of simply-connected fluid blobs
have already been explicitly calculated using alternative solution methods, we do
not calculate further examples in this chapter. We do, however, give details of a
special class of exact solutions with a particularly appealing mathematical structure
that comes to light as a result of the reformulation presented here. This example
is presented as a case study and represents a generalization of solutions found by

Richardson [1].

1.2 Mathematical Formulation

Consider the unsteady evolution of a general simply-connected plane blob of fluid of
viscosity p under the assumptions of no inertial effects, no gravitational effects or

effects from other body forces. The equations of motion of the fluid are

pViu = Vp (1.1)

Vaua=0 (1.2)
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where u(z, y) is the fluid velocity, p(z, y) is the pressure and p the fluid viscosity. We
choose to non-dimensionalize the problem using a as a typical length-scale (e.g. an
effective radius where ma? is the initial area of the blob). If o is the surface tension
parameter we non-dimensionalize velocities by %, the pressure by Z, length by a and

time by %. Introducing a streamfunction v (z,y) such that
u=Vsy (1.3)

it i1s well-known that two-dimensional Stokes flow can be reformulated in terms of

this streamfunction which satisfies a biharmonic equation in the fluid region i.e.
Vi =0 (1.4)

On the blob boundary we must ensure continuity of the shear stress and satisfy the
requirement that the jump in the normal stress across the interface equals the product
of the surface tension ¢ and the curvature x. These two conditions can be written,

in non-dimensionalized form, as

—pny + 2€jknk = —Kny (15)
where ej; are given by
1 8Uj 8uk
o= | L R 1.6
€k 2 (8$k (9%) ( )

Additionally, there is a kinematic boundary condition that the normal velocity V,, of

a point on the boundary equals the normal fluid velocity at that point, that is,

un=1y, (1.7)

It 1s also expected from physical considerations that, in the event that there are

flow singularities in the fluid, the strength and position of the singularities should be



externally specifiable.
To complexify the problem, all fields are written as functions of z; = z + 1y
and zZ; = 2 — 4y. According to the well-known Goursat representation for a general

biharmonic function we can then write

Y(z,7) = Im[z fi(z1) + g1(21)] (1.8)

where f1(2,) and g;(z;) are two functions which are analytic in the fluid region. Note
that since the blob boundary evolves with time, each of f; and g, also depend on
time t, though this dependence in suppressed in (1.8) for purposes of brevity. All
physically relevant quantities can now be written in terms of these two functions

f1(z1) and g¢;(z1). In particular,

g— iw = 4f{(21) (1.9)
up + v, = — fi{z1) + 21 f1(21) + 51(71) (1.10)
en +ies = z1 f) (21) + g7 (71) (1.11)

where f; denotes the conjugate function: f1(z1) = fi1(21) and uy,v; represent the
components of velocity in the z and y directions respectively. w is the vorticity of the
fluid.

The stress condition must be rewritten in a more convenient form. To do this we

define a complex normal as
N =ny +ing = —i(z, + 1ys) = —iz1, = —iexp(if) (1.12)

where s is the arclength around the blob traversed in the anticlockwise direction and

¢ is the angle between the tangent and the real positive axis. The stress condition
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can then be rewritten in complex form as
—pN =+ 2(611 + ’ielg)N = —rN (113)

Substituting for the various quantities in this equation, and using the fact that x = 6,

a straightforward calculation reveals that it can be written

85(5;’ )t 85(5;1’ A, = it (1.14)
where
S(z,21) = fi2) + 2 fi(21) + 51 (2) (1.15)
Equation (1.14) can be integrated immediately to give
file) + 2 fi(2) + G (2) =~ + B(1) (1.16)

where B(t) is a complex constant of integration.

There is a certain amount of arbitrariness in the functions fi(z), g;(z) which pro-
vide a given stress distribution on the blob boundary. In order to derive a simple form
of the final evolution equations, it is necessary to exploit this arbitrariness. Phys-
ically, the differing choices of fi(z) and g;(z) that leave the stresses invariant give
rise to different velocity fields. Thus it is necessary to make specific choices of the
available degrees of freedom in the problem to determine a unique velocity field. This
is done such as to provide the most convenient form for the evolution equations.

Consider the following (time-dependent) change of origin in physical space and

rotation of the physical plane expressed via
71 = z(t) + €W 2 (1.17)

where zq(t) is a complex function of time, and ¢(t) is a real function of time. Given
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this transformation of z;, the corresponding transformations of fi(z1),¢j(z) that

leave the stress distribution invariant can be written

filz1) = €2 [f(2) +iCz2] + () (1.18)

gi(z1) = e ?g'(2) — Zofi(z) =7+ B (1.19)

where C is a real function of time, while v(¢) is a complex function of time. The

boundary condition (1.16) then becomes

Zs

f2)+2f(2) +(2) = —i7 (1.20)
Under this same transformation the velocity field becomes

uy + vy = e [—f(z) +2f(2) +7'(z) — 21’02} —-2y+ B
(1.21)

= ¢ [u+ v — 2iC2) — 2y + B

where u+iv denotes the velocity field in the new variables. It is clear from (1.21) that
the arbitrariness expressed by the transformation above corresponds to a velocity field
that is determined only up to a rigid body motion i.e. an arbitrary translation and
rotation. The suitability of the transformations (1.17)-(1.19) and the choices of the
remaining degrees of freedom will become fully clear once the kinematic condition
(1.7) is recast in terms of a conformal mapping representation as in the following

section.

1.3 Conformal Mapping Representation

Consider the conformal map 21(¢, ) from the interior of the unit circle in the ¢ plane

into the simply-connected region occupied by the fluid so that ¢ = 0 is mapped



(¢, 1)

Figure 1.1: Conformal mapping domains

to a point zp(¢) inside the fluid blob. The existence of such a map is guaranteed
by Riemann’s Theorem. We choose z(0) to be any convenient point inside the blob
initially. The choice of #y(t) will be made to simplify the problem appropriately as will
be seen shortly. It is clear that for sufficiently small time ¢, zo(¢) will remain inside the
blob when Z(t) is finite. A priors, that is all that is needed to derive the dynamical
equations and the exact solutions — examination of the exact solutions themselves will
then determine the time of validity of a particular solution. The remaining rotational
degree of freedom of the Riemann mapping theorem will be used later by fixing a
rotational freedom in the ¢ plane in a convenient way.

The kinematic boundary condition on the bubble can be written as the following
boundary condition on the unit circle, { = e*:

(21, — (ug +9vy))

Im =0 (1.22)

v

If we now use the substitution (1.17), where z is now viewed as a function of ¢ and ¢
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(or v on the circular boundary), then it is clear that (1.22) is equivalent to

(ze +i(¢+2C)z — e (u + v+ 2y — B) + e (% + 2y — B))

Im =0
Zy
(1.23)
We now choose

o(t) = —20(1) (1.24)
0(t) = B(t) — 211 (1.25)

so that on using (1.21), equation (1.23) simplifies to
P S (ORI MR A GO Y (1.26)

2y

Note that since the function z(C,t) is simply a translation and rotation of 21(, 1)
then z(C,t) is also a conformal map. Since ¢ = 0 corresponds to 21 = 2o, it follows

from (1.17) that
2(0,t) =0 (1.27)
We further make the arbitrary but convenient specification that
v(t) = fi(zo(t)) (1.28)
then it is clear from (1.18) that
f(0)=0 (1.29)

Note also that the specific choice of real function C'(¢) is unimportant in the simplifi-

cation to (1.20) and (1.26), with auxiliary conditions (1.27) and (1.29), provided ¢(t)
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evolves according to ¢ = —2C. It is found that the above conditions are enough to
uniquely determine the velocity field, with the evolution equations given by (1.20)
and (1.26).

Previous authors ([1] [9]) have suggested various physical arguments that might
be used to uniquely specify the velocity field rather than the purely mathematical
condition (1.28). One suggestion is the requirement of conservation of global momen-
tum. Although we are considering the zero Reynolds number asymptotic limit of the
Navier-Stokes equation where, locally, inertial effects (momentum transfer) have been
neglected in comparison with the viscous stresses, it is argued [9] that this does not
obviate the need to respect global conservation of momentum. Assuming that global
momentum conservation is the appropriate physical principle to invoke, unless the
solutions are suitably symmetric, in general the mathematical condition leading to
(1.29) above does not provide conservation of global momentum. However, in the case
when there are no flow singularities in the blob this is of no consequence as there are
then no special points in the fluid and an appropriate rigid body motion can be added
a posteriori to the solution (so that global momentum is conserved) without affecting
any other aspect of the flow. Thus, in that case, there is really no need to appeal
to any physical principle to uniquely specify the velocity field, and the convenient
mathematical condition above serves perfectly well. The case where there does exist
a distribution of singularities in the flow is discussed in later sections.

Using (1.20) and the fact that on [(| =1

b= B (1.30)
%]

the kinematic boundary condition (1.26) becomes the following condition on [(] = 1:

Jat2r 0] _ 1
[ Coe(C,1) ]_2lz<| (1:31)

where we define

F(¢,t) = f(2(¢1),1) (1.32)



We also define
G(¢,t) = g'(2(¢, 1)) (1.33)

Formally, in the following analysis, we assume that F'(¢,t) is analytic in [(| < 1 but
we allow G((,t) to possibly have a pole of order r¢ at ¢ = 0 and poles of order r; at

¢ =¢; ! inside the unit circle, with
0 <rg < M—-M, 0 <r; <7, j=1LN (1.34)

where (;, j = 1..N, are the poles of order ~; of the conformal map z((,t) outside the

unit circle (see (1.39)) and we define
N
My = Z i (1.35)
j=1

M is taken to be an arbitrary integer such that M > M. Physically these singularities
correspond to general multipoles (e.g. a source/sink, dipole) at z, and at z-locations
corresponding to ¢ = Q_j‘l.

We now convert the boundary condition (1.31) into a differential equation for
2z valid everywhere in |¢| < 1. Because of the restriction (1.29) (which implies
F(0,t) = 0) and (1.27), it is easily seen that ( = 0 is a removable singularity of the
expression within the square parentheses on the left hand side of (1.31). The left
hand side of (1.31) is clearly the real part of an analytic function in |(| < 1. Using

the Poisson integral formula for |¢| < 1,

where
1 d¢' [+ ¢ 1 .
I = —— — .
4= 50 7|{<'1=1 ¢ [C’—C} 2202(¢,4)2*(¢1 1) i 0
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and D(t) is a real function of time. The remaining rotational degree of freedom of
the Riemann mapping theorem is used by insisting D(¢) = 0. That such a freedom
exists can be readily observed by replacing ¢ by (e?® in (1.36), with 0 = D(t). Thus,
without any loss of generality,

1 d¢’' [¢' +¢ 1
160 =5m %C’l e [C’— } 222(¢, )2 (¢, 1) 159)

Since z(¢,t) must be analytic in |[(| < 1 1it is possible to express it in the form

G
AN = -Gy (1.39)

where N, v, are arbitrary positive integers and the corresponding poles ¢; are all
outside the unit circle (i.e. |¢;| > 1), while h(¢,?) is analytic for || < 1.

In the next sections, it will be shown that if A({,0) is an arbitrary polynomial
of sufficiently high order, it remains so later in time, provided the poles (;(t) evolve
in an appropriate manner. It is in this sense that the problem under consideration
will be said to have ezact solutions - i.e. the evolution of the free boundary will
have been reduced to the evolution of a finite set of parameters. In this way, the
nonlinear, nonlocal, free boundary problem (for both simply-connected and, later,
for doubly-connected fluid regions) will be reduced to a consistent finite nonlinear
system.

The success of the method relies on the consideration of classes of purely geomet-
rical line integral quantities defined around the unit circle and which involve only the
conformal mapping function. It will be shown that, under the dynamics of Stokes
flow, these line integral quantities evolve according to a set of evolution equations
with a special mathematical structure. From this set of evolution equations many of

the intriguing mathematical properties of the flow can be understood.
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1.4 Conservation Laws and Exact Solutions

To demonstrate the existence of exact solutions and the conserved quantities asso-
ciated with them, the problem is now reformulated in terms of a set of general line

integral quantities given by

Tie(t) = § K(C2(C D (6, e (1.40)

where K ((,t) is a general function of ¢ and ¢ which will be taken to be analytic on
and within the unit circle and C denotes the boundary of the unit circle |{| = 1
traversed anticlockwise. Later, special choices of the function K((,¢) will be made
in order to establish various results. First we state and prove a theorem about how
Jk (t) evolves in time.

Theorem 1.4.1

For Jk(t) defined as in (1.40), where z((,t) is the conformal mapping function as

defined earlier,

Jie(t) = § K(C. 026G 0)2c(C, 046 + ) [Ku(C, 1) = CI(C DE(C, ) 2(C, )z (C, )i
(1.41)

Proof: Differentiating Jx (¢) with respect to time gives

d _
(1.42)

Using (1.36) (and its complex conjugate) to substitute for z, z; gives

Jielt) = K€ | -2F @03+ LTG0 0(C0

+ 2228 + (G Dacle | + KiZzedC (1 43)
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Rearranging terms and integrating one of the terms by parts, this becomes

Jx(t) = ch(g,t) [—QFZC —2zF, + %[I(C,t) + I(¢, 1))2¢zc | dC

Using the stress condition (1.20) which can be written

F(E )2 + ZFo(C, 1) + G(C, )2 = Ziczg/gzgﬂ (1.45)

and the fact that on C

_ 1
LG+ TG = (1.46)
¢ %

we then obtain the required result. O

In order to demonstrate the existence of exact solutions of the form (1.39), with

h(¢,t) a polynomial, we will make special choices of the function K (¢, 1).

Definition: Define a special subclass of the line integrals (1.40) (denoted Jg (t) for
each kg = 0,1,2,...) as

T8 = § Kol ka)2(C.t)zc(C, . (1.47)
where
N —_
Ko(C ts ko) = P TI(C— ()™ (1.48)
p=1

We now state a theorem that connects the properties of the function h((,t) to the

properties of Jg ().
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Theorem 1.4.2
Assume M is an integer such that M > M. Then,

Jo,(t) =0 for all kg > M — M, (1.49)

if and only if h((,t) is a polynomial of degree at most M.

Proof: The proof of this theorem is given in Appendix A. O

Using Theorem 1.4.1, the following theorem concerning J,SO is useful:
Theorem 1.4.3
Define {d;|j > 0} as the Taylor series coefficients of the following analytic function

in|¢| < 1:

—koI(C, )+ Y W

NOOCH(¢ ) - GG L) & 5
5. CI(¢ )( _CpCpl<<p ) _ ;de(j (1.50)
=1 7=

Also, assume that each (;(t) evolves according to
d. ~1 —1
AR OR((sROR) (151)
Then, for each integer ky > 0,
Jo = jéd_,- T+ 7{01 d¢ Ky 2 G 2 (1.52)
Further, if ky > 7g,

j=0
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Proof: On substituting Ko((, t; ko) for K in Theorem 1.4.1, it follows that

B =¢  d(Kyzz iL [_igl ey (i)
o gm0 = (C=g ) | atr P T
N
- Tp _ F—ly(r—1
4 P K2 Y ey [FHG 0+ GG ) (154
-+ =1 dg KOZC (ZG— ]{?012)

On taking the complex conjugate of (1.51) and using the property that the complex
conjugate of I(¢;*, ) is 1((; ", ) (which follows from (1.38)), the first integral in (1.54)
vanishes. Using the series representation (1.50) (which is uniformly convergent for
|| < 1) in (1.54) the result (1.52) immediately follows. It is readily seen that if

ko > 7o then Ky z; G must be analytic for [(| < 1. So, the result (1.53) follows. U

Remark 1.4.1

It is crucial to observe the “upper-triangular” nature of the evolution equations of
these line integral quantities — in particular, note that the time derivative of Jz? (t)
for some given integer p depends only on the values of J(t) for j > p. This is what
is meant by the description “upper-triangular”. It is this important property of the

evolution equations for the Jg, that underlies the existence of the exact solutions.

Remark 1.4.2

From the definition of 7({,t) in (1.38), it is clear that on |(| = 1, Re I is given by
the right hand side of (1.31), which is always positive. Since Re I is a harmonic
function for |¢| < 1, it follows from the maximum principle that Re /(¢,t) > 0in
that domain for as long as the integral (1.38) exists. From (1.51), this immediately
implies that Re [Q'j/(j} > 0 which shows that all pole singularities of the conformal
mapping function (1.39) move away from || = 1. Earlier, Tanveer & Vasconcelos [§]
presented a more general argument to show that any initial singularity of z((,?) in

|C| > 1 moves outward with time.
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Remark 1.4.3

If surface tension effects are ignored in the analysis, then it is clear that I(¢,%) =0
and, in that case, all the dj coefficients are zero. Therefore from (1.51)-(1.53), it
follows that the singularities ¢;(¢) and all but a finite number of the line integral
quantities are time invariant even when A((, t) is not restricted to a polynomial. Such
results for zero surface tension when z({,t) is a general analytic function have been
systematically derived by Cummings et al [7] in a manner similar to Theorem 1.4.1,
although these results follow directly from earlier work of Tanveer and Vasconcelos
[8] (X} in the notation of section 4 of [8]) who found such invariants in an ad hoc

manner for the closely related problem of a single bubble in an arbitrary strain field.

Theorem 1.4.4
(Dynamics) If J) (0) = 0 for kg > M — My, then Jp (t) =0 fort > 0.

Proof: The proof of this important theorem is given in Appendix B. 0J

Note that Theorem 1.4.4 represents the crucial result of this chapter and contains

the quintessential dynamics of the problem. The proof is non-trivial.

Remark 1.4.4
If J2 (0) =0 for k > M — My, as is true when h((,t) is a polynomial of degree M,
then the summation index j in (1.52) ranges only from 0 to M — My — ko — 1

Theorem 1.4.5
If h((,0) is a polynomial of degree at most M, then so is h((,1).

Proof: 1f h((,0) is a polynomial of degree at most M, it follows from Theorem 1.4.2
that J (0) = 0 for kg > M — Mp. From Theorem 1.4.4, it follows that Jp (¢) = 0 for
t > 0. The converse of Theorem 1.4.2 then implies A({,t) is a polynomial of degree

at most M. The proof is then complete. []
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1.5 Evolution Equations

From this point, we will only be concerned with initial conditions for which h((,0) is
a polynomial of order M, where M > M,. From Theorem 1.4.5 it follows that as
long as the solution exists, h((,t) will remain a polynomial of degree M and this will
be assumed henceforth.

It remains to determine the time evolution of the finite set of coeflicients of the

polynomial h((,t). To do this, we define a further subclass of line integrals in the

following way:

Definition: For each integer j between 1 and N, and integer k; = 0, 1,2, ..., we define
J
Jy, (1) as

= }{CKJ'(CJ; k;)2(Cot)2¢(C, t)dC (1.55)
where

(1.56)

52

Kj(Cotiky) = ¢ (= G
Z;‘

We now introduce a theorem about the evolution of J;ZJ_ (1):

Theorem 1.5.1
Assume that {di|n > 0} are defined as the Taylor series coefficients of the following

analytic function around ¢ = C_f

S I N e (S R ()
—(M — My) I k; d - 2P
( 0) (Cat)+ J C <j_1 +§fyp C Cp_
S (-G
n=0 (157)

Also, assume that each (;(t) evolves according to (1.51). Then, for each integer
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Hy= X d S + f, | Kol 1k) 2 Gz dC (1.58)
! n=0 ! (=1

Further, if k; > 1y,

Bo=3d Jh (1.59)
n=0

Proof: The proof of this theorem is given in Appendix C. [J

We now state a lemma about Ji (t) for k; > ;.

Lemma 1.5.1

lej (t) = (0 for l{j Z i

Proof: On substituting (1.39) into (1.55) and using { = 1/¢ on (| = 1, as well as the
definition of K in (1.56), it is easily observed that the integrand in (1.55) is analytic

in |¢| < 1 for k; > v; and therefore the lemma follows by Cauchy’s theorem. L]

Remark 1.5.1
Note that the result in the lemma is consistent with (1.59).

Remark 1.5.2

Because of lemma 1.5.1, the summation index n in (1.58) ranges from 0 to v; —k; — 1.

We now discuss some ramifications of all the theorems above. An immediate
observation is that we have identified an infinite set of integral invariants associated
with solutions for which h({,0) is a polynomial of degree M. Only a finite set of

integral quantities will be non-zero and time-evolving, namely

{JLlkj =014 —1}; j=1.N (1.60)



20

{Jolko=0,1..(M — My — 1)} (1.61)

These are determined by solving the differential equations (1.52) and (1.58). (Note
simplifications due to Remark 1.4.4 and Remark 1.5.2 above). Thus there are in gen-
eral Zf,vzl v + M — My = M non-zero time-evolving line integral quantities. Writing

the polynomial A((,t) as follows,

M

B(C, 1) = 3 ha(t)C" (1.62)

n=0

condition (1.27) then implies that ho(t) = 0, leaving only M as yet undetermined
functions hy(¢)..har(t). We now state a conjecture that is so far supported only by

numerical evidence:

Conjecture: For given (;(t), (o(t), ... (n(t) outside the unit ¢ circle, the evolution
of the set of M quantities in (1.60)-(1.61), as defined in (1.47) and (1.55), implicitly
determine the evolution of the M quantities hy(t) through A (¢).

Remark 1.5.3

Note that the conjecture amounts to no more than an assertion that the “change of
coordinates” that we have just employed (by defining the line integrals) can be locally
inverted. Consideration of the finite set of line integrals as opposed to the finite set
of parameters appearing in the conformal map might be viewed as a “change of
coordinates” in which the dynamics of the problem can be seen more clearly.
Remark 1.5.4

It is clear from the definition of J} (¢) and J,{j (t) in (1.47), (1.55) and the relations
(1.39), (1.62) that these are quadratically dependent on h4(t) through hjs(%); hence a
globally unique relation between the set of J’s and A’s is unlikely. However, a Newton
iterative procedure gives a unique solution locally when subjected to the constraint

that h;(0) are as specified.
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1.6 A Theorem of Invariants

For a certain subset of the solutions (1.39), it is possible to deduce immediately a
further finite set of invariants which greatly facilitates the calculation of such solu-
tions. We now state and prove a remarkable theorem involving solutions in which the
mapping function z((, ¢) has simple poles outside the unit circle. This theorem turns
out to be highly useful in providing immediate “first integrals” of the finite system of

first order ordinary differential equations to which the problem has been reduced.

Theorem 1.6.1

(Theorem of Invariants) If the initial conformal map for a viscous blob has the form

MG 0) (1.63)

A= oo

where h((,0) is a polynomial of degree M > My, then for any j for which ; = 1 and
rj =0 (so that G((,t) has no singularity at ¢ = (;') there exists an invariant of the

motion given by

Jg ()¢
- : _ 1.64
! %V;% (G =Gty 164

Proof The proof of this theorem is given in Appendix D. O

1.7 Case Study

Since the aim of this chapter is to present a reformulation of the theory of exact
solutions for the problem of Stokes flow of a simply-connected viscous blob and since
previous studies in the literature have already computed specific examples illustrating
the behaviour of viscous fluid blobs, we do not intend to compute further examples
here. We do, however, include details of a case study with a particularly appealing

mathematical structure that becomes clear as a result of the preceding analysis. We
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consider the special class of solutions having n simple poles (and no other poles)

outside the unit circle, i.e. {y; =1|j = 1..n} giving

MG, t) (1.65)

R T

where h((,0) is taken as a polynomial of degree n. [Note that we could equally well
find a solution with A((,t) any polynomial of degree at least n by taking a suitable
initial condition]. We assume the flow is driven purely by surface tension so that there
are no flow singularities in the blob and r; = 0 for all j = 1..n. The results of this
chapter allow the evolution equations for the parameters in this map to be written
down in a particularly concise way. From Theorem 1.4.3 we deduce that provided the

poles {(;|j = 1..n} evolve according to the equations,

d _y_ B R | .

then a solution of the form (1.65) can be found. It only remains to determine the
n coefficients of A((,t) i.e. {hi(t)|k = 1..n} (since we know ho(t) = 0). However,
Theorem 1.6.1 tells us that there are n invariants (or first integrals) of the motion

associated with this solution given by

B; = 0\ ),jzl..n (1.67)

The invariants {B;|j = 1..n} are determined by initial conditions. These n equations
then provide n nonlinear algebraic equations for the coefficients {hy(¢)|k = 1..n} once
the pole positions are known. Thus the 2n equations (1.66) and (1.67) provide a
complete and concise set of equations for the 2n parameters in (1.65).

Finally, we remark that the special case of this example where n = 2 includes
the problem of the coalescence of 2 viscous cylinders of unequal radius analyzed by
Richardson [1] using a direct approach of combining the kinematic boundary condi-

tion and the stress condition and adjusting the time evolution of the parameters in
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the map z({, t) to give the required analyticity properties of G((,t) in the unit circle.
Such a solution is obtained by making appropriate choices of initial conditions. Af-
ter extensive algebraic manipulation, Richardson [1] also deduces the existence of 2
invariant quantities which can be shown to be equivalent to (1.67) in the case n = 2.
He also deduces 2 evolution equations for the poles of the mapping, which can be
shown to be equivalent to the more concise equations (1.66). The above case study
represents a generalization of these results to general n. After this work was com-
pleted, the author became aware that Richardson [6] has also recently identified the
generalization of Richardson [1] presented in the case study above by studying partial

fraction maps of the form

=~ B¢

Z(IEDY (1.68)
Pl V3¢

However, the method Richardson used is very different to that presented here and

is, in essence, a simplified version of the original method used in Richardson [1].

Richardson [6] goes on to study numerically a class of solutions with initial conditions

corresponding to n touching circular cylinders.

1.8 Discussion

With no flow singularities present in the blob, the results of this chapter provide exact
solutions, describable in terms of a finite set of parameters, for the physical problem
of the time evolution of certain initial boundary shapes driven by surface tension.
Mathematically, the analysis also allows for a distribution of multipole singularities
to exist within the blob, and again exact solutions for the evolution can be found in
this case. It has been found that while it is possible to externally specify the nature
and strength of such singularities (i.e. specify the strength of the residue contributions
from the last integrals in (1.52) and (1.58)), it is not in general possible to externally
specify the singularity positions after the initial time (the singularities necessarily

evolve according to (1.51)). Thus, except in very special cases (for example, a single
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singularity at the origin or at infinity [4] [7] [8] [10] [11]) these mathematical solutions
are physically untenable in that they are solutions to a problem where the singularities
must move in very special ways determined implicitly by the solution itself. While
this is something of a drawback in the use of these solutions to solve particular initial
value problems with a given distribution of known singularities at specified points in
the flow, such solutions may be instructive qualitative models of this physical scenario.

In summary, a novel global approach to the theoretical problem of the slow quasi-
steady viscous flow of a two dimensional simply-connected blob of fluid with surface
tension has been presented. The new approach renders the mathematical structure
underlying the existence of exact solutions more transparent. The approach also
simplifies much of the unwieldy algebra which characterizes the actual calculation
of solutions using previously-known methods. A central result is that it is possible
to find an infinite set of conserved quantities associated with a very general class
of initial conformal maps describing the boundary evolution and a finite set of non-
trivially evolving line integral quantities which implicitly determine the evolution of

such maps.



25

Chapter 2

Exact Solutions for Annular Viscous Blobs

2.1 Introduction

This chapter! presents a theory of exact solutions for the quasi-steady evolution of
a plane annular viscous blob of fluid driven by surface tension. Although, as de-
scribed in chapter 1, many exact solutions have been identified for the Stokes flow of
a simply-connected fluid region both with and without surface tension (e.g [1]-[10]),
we present here the first successful attempt to extend the solution techniques to a
doubly-connected topology. All of the methods used by other authors up to now
rely on conformal mapping techniques and most ([1]-[7], [9]-[10]) consist of conjectur-
ing a form for the conformal map in terms of a finite set of time-evolving parameters
and showing that the time evolution of these parameters can be adjusted such that
the appropriate analyticity properties of the solution hold inside the fluid region. In
chapter 1, an alternative and less cumbersome approach was devised using a refor-
mulation of the problem in terms of a general set of line integrals. This theory, which
includes surface tension, was presented in the context of the evolution of a single
simply-connected fluid blob, but with minor modifications the same theory can be
shown to apply to the case of an infinite expanse of fluid with a single bubble or a
semi-infinite expanse of fluid with an infinite free surface. Extension to these cases is
routine and will not be expounded here.

In this chapter, the new theoretical approach developed in chapter 1 is extended in
a natural way to deal with the problem of an annular blob, which constitutes a doubly-

connected fluid region requiring non-trivial adjustments of the solution method.

IThis chapter is based on material from an article entitled “A Theory of Exact Solutions for
Annular Viscous Blobs” by D.G. Crowdy and S. Tanveer to appear in Journal of Nonlinear Science.
It is reproduced here with the kind permission of Springer Verlag New York Inc., 175 Fifth Avenue,
New York, NY 10010.
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Although we concentrate here purely on presenting the relevant mathematical the-
ory, the results of this chapter represent a significant step forward and are likely to
have great utility in problems of real physical interest. The original motivation for
the recent revival of interest in the Stokes flow of a two-dimensional fluid region was
sintering, a term loosely referring to the consolidation of an assemblage of particles in
which surface tension provides the principal mechanism for mass transport. Sintering
is a complex topic with a huge literature, and the study of sintering is difficult ow-
ing to geometrical complexities. It is therefore natural to isolate parts of the overall
problem for individual study, and one of the basic paradigms in the study of sin-
tering is the coalescence of two viscous cylinders (particles). Exact solutions for the
coalescence (under Stokes approximation) of two viscous cylinders (particles) driven
purely by surface tension have recently been identified by Richardson [1], with further
developments to the case of the coalescence of multiple touching cylinders made even
more recently [6]. Earlier, Hopper [2] studied the evolution of two touching cylinders
of equal size. These studies only cover the case of a simply-connected fluid domain,
and Richardson’s study [6] of the coalescence of multiple cylinders deals only with an
arbitrary number of cylinders in a linear concatenation (so that no cylinder touches
more than two other cylinders, the overall fluid region being simply-connected). The
relevance of such solutions (even as a model) in a study of the more useful scenario
of, say, a general collection (say, a pile) of cylinders/particles, where the fluid region
has a connectivity greater than one, is not clear.

This chapter presents a theory of exact solutions for the case of a doubly-connected
fluid region for a certain general class of initial conditions. A general class of conformal
maps representing initial annular blob configurations is shown, under the evolution
equations for Stokes flow, to be such that each member of the class retains its func-
tional form under evolution. In this sense, the nonlinear free boundary value problem
for this wide class of initial conditions, is reduced (exactly) to the study of a finite
first-order system of ordinary differential equations.

Such results then facilitate the (exact) study of the physical scenario where two

coalescing cylinders have, say, a small air bubble between them. This would seem



27
to be a natural paradigm for the study of the coalescence of a general assemblage
of cylinders/particles (rather than a linear concatenation) where, of course, there
would inevitably be small air bubbles between the cylinders if they were arbitrarily
piled together. As a simple example calculation to verify the validity of the theory
presented in this chapter, the simple paradigm of the coalescence of two (unequal)
touching cylinders is extended in a natural way to include the case of the evolution
of two (unequal) touching cylindrical blobs but now with a small air bubble between
them. More involved calculations using the general theory developed here will be

presented in future work.

2.2 Mathematical Formulation

Consider the slow viscous flow of an arbitrary annular blob of fluid. The equations

of motion in the fluid are given by

~Vp+Via=0 (2.1)

V-u=0 (2.2)

Length and time scales have been non-dimensionalized with respect to e and %
respectively, where a is an effective radius (with ma? a measure of the initial area
of the blob), o is the surface tension parameter and p is the viscosity. Velocities
have been rescaled by % and pressures by 2. The blob now has two boundaries, the

boundary conditions on each consisting of a stress condition which can be written as
—pn; -+ Zejknk = —KTy (23)

where n; and ny are the z and y components of the unit normal vector pointing

outwards from the bubble boundary and & is the curvature. ej; are the components
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of the non-dimensionalized stress tensor given by

ejk (24)

1{0u; Ouy
B {8_% ’ 8_%}
In addition, there is a kinematic boundary condition that the normal velocity of a
point on the blob boundary is the same as the normal component of the fluid velocity
at that point.

Again the method proceeds via a Goursat representation of the stream-function.
The difficulty now arises with the existence of two boundaries on which the stress
and kinematic boundary conditions are required to hold. Intuitively, the presence of
two disjoint free surfaces on which the nonlinear boundary conditions are required to
hold seems likely to destroy the mathematical structure that led to the identification
of exact solutions in the simply-connected case. In general, this seems to be the case.
However, we now show that it is possible to identify a special class of exact solutions
for which exactly the same mathematical structure exists.

Consider the two boundary conditions. Firstly, the stress conditions on each

boundary can be written in complex form as
—pN + 2(611 + ’i@lg)N = —gN (25)

In deriving (2.5), the fluid flow on either side of the annular region is neglected —
an asymptotically valid assumption when the viscosity ratio between fluids is small.
Further, the same constant pressure on either side of the annular blob is assumed.
There is some loss of generality in this assumption; for instance, it is not true for a
steady annular blob with no motion that lies between two concentric circles. However,
there is no additional loss of generality in assuming that the constant pressure on
either side is zero, as assumed in deriving (2.5).

Using similar manipulations to those in the previous chapter, the stress conditions

on the two boundaries can be integrated with respect to the arc-length parameter s
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to yield
J(2) + 2f'(2) + 7 (2) = =2 + Aolt) (2.6)
f(2) +2f'(2) +7(2) = —z% + Ar(t) (2.7)

on the outer and inner boundaries of the blob respectively where Ap(t) and A;(t)
are constants of integration which are, in general, functions of time. It follows, using

(1.10), that on the outer blob boundary,

ut v = ~z% + Ao(t) — 2f(2) (2.8)
while on the inner blob boundary,

v = —iz—; A1) - 2f(2) (2.9)

Although the main problem of physical interest in this paper is that where the
evolution of the annular blob is driven purely by surface tension (corresponding to
the function ¢'(z) having no singularities in the fluid region), mathematically the
formulation developed in this chapter can be extended to find mathematical solutions
corresponding to ¢'(z) having an arbitrary distribution of poles in the fluid region.
This extension was incorporated explicitly in chapter 1, but we do not include details
in this chapter — we simply state that the extension is possible here too. Physically,
it is well-known that an nth order multipole singularity at a point 24y, in the fluid
corresponds to ¢'(z) having an nth-order pole at zgpn,. As mentioned earlier, it is
to be expected, from a physical standpoint, that the strengths and locations of any
singularities in the fluid should be externally specifiable, and a corresponding flow
field found. Unfortunately, at present we are only able to get a restricted set of
(exact) solutions for which it seems to be possible to specify only the strengths of the

multipole singularities and their initial positions. For the exact solutions obtained
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Figure 2.1: Conformal mapping domains

here, the subsequent positions of the singularities evolve in a way determined by the
solution itself and cannot be externally specified. The physical relevance of such
mathematical solutions appears to be limited, except possibly as a convenient model

of qualitative phenomena.

2.3 Conformal Mapping

The analysis proceeds by defining a conformal map from an annulus C' in a complex
(-plane where C is p < |[¢] < 1 to the fluid region in physical space, the circle || =1
mapping to the outer boundary of the fluid annulus, the circle |(| = p mapping to the
inner boundary. This conformal map will be called z((, t). It is known, by Riemann’s
theorem, that any given doubly-connected fluid domain can be mapped to such an
annulus C for some p. For a general time-evolving domain in physical space, the
conformal modulus of the region (see [15] for a definition) must therefore be assumed,

a priori, to change in time. Thus we suppose that p(t) is a function of time to be
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determined as part of the solution. The remaining degree of freedom of the Riemann
Mapping Theorem will be fixed in a convenient way later in the analysis. We will
seek solutions for which z(¢, t) is analytic in C and, for blobs with smooth boundaries
with no corners or cusps, has the property that |z;| # 0 everywhere inside C' and on
the boundary C. Further, in order for the solutions to be physically relevant, z(¢,0)
will be restricted to functions that are univalent in C. A posteriori examination of
the exact solutions obtained clarifies if and when z((,¢) fails to be univalent beyond
a certain time. The solutions fail to be physically relevant beyond such a time (if it
exists).

The kinematic boundary condition on both blob boundaries can be written

dz .
Im [C“—(:Jr—w)] = (2.10)
Using the facts that
2 = % on |¢| =1 (2.11)
20 = =2 on [¢| = p(t) (2.12)
T pla 7 '

then substituting these expressions into the kinematic conditions and using (2.8) and

(2.9) yields

Zt+2F(C,t) _ 1 AO
e Lonf] e

on the outer boundary, where we define

F(C,t) = f(2(G 1), 1) (2.14)
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and on the inner boundary,

B EELF(C’Q]:_ L p g [ﬁ] 5 15
e[ Cze 2pl2| P+ ‘¢ (2.15)

We also define the function

G((,t) = 4'(2(¢, 1), 1) (2.16)

Our solution method and results are so far restricted to the case where Ag = Aj.
It is emphasized that this special choice involves a definite loss of generality in the
class of solutions being considered. However, it is clear that without any further loss
of generality, the value of Ao (and hence A;) can be taken to be zero. This can be

seen by redefining f(z) and ¢'(z) as follows:

1) 1)+ 22 (217

§(2) - () + 52 (2.18)

— a transformation that does not alter the velocity field, but which effectively removes
the constants of integration in (2.6) and (2.7) once the choice Ap = A; has been made.
It remains to specify the rotational degree of freedom in the problem but once that is
done, the evolution of the annular blob is uniquely determined, as shall be seen later.
We remark that since it is only the geometrical evolution of the blob boundaries that
is of interest, it is of no importance if the solution is such that the global momentum
of the blob is not conserved. Any overall translation or rotation of the blob can
be subtracted a posteriori, without altering the validity of the solution for the blob
shape.

It is immediately clear that the function in square brackets on the left hand sides
of (2.13) and (2.15) is an analytic function inside C'. Thus, using the Dirichlet formula

(or Poisson integral formula) for a harmonic function in terms of the values of its real
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part on the boundary of C' (see Appendix E), we deduce that for ¢ within C

Zt(gat) + 2F(<7t) = CI(Cat)ZC(C7t) (219)
where I((,t) is given by
I(¢,t) = TT(¢,t) — T(¢, 1) + Ch(t) + iCq(t) (2.20)
where
1 d¢’ ¢ P'(&) 1
(C7) 47?sz 1 /( 2/ L)lil/z ; -1/2 ]
1=t ¢ P(S) ool
and
1 ac (. cP@EN ] 1 2
(ga ) 47TZ f('l*ﬂ ¢ <1 20 P(§)> li 1/2(C/ ) 1/2(%7t) P}
¢ (2.22)

and where the function P(() is defined in Appendix F, C)(¢) is a real function of time

given by

1 ac’ 1 2p
Ci(t) = P j{(’lﬂ) c { UQ(C' 1)z 1/2(< )b } (2.23)
and Cy(t) is an arbitrary real function of time. The remaining rotational degree of
freedom of the Riemann Mapping Theorem is now used up by choosing Cy(t) = 0.
Theorem 2.3.1

With the choice Ay = A; = 0 in the boundary conditions (2.6) and (2.7), the evolution
of the conformal modulus of the corresponding class of solutions is given by the real

equation

P (g dC 1 f{ ¢ 1
P 4mi (fﬂ 1 ¢ 2 1/2 1/2+ icl=p C pzl/2 7L/ (2:24)
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Proof: This follows from the averaging condition E.2 in Appendix E applied to the
harmonic function Re I necessary for I((,t) to be a single-valued analytic function
everywhere in C. Note that right hand side of (2.13) and (2.15), with Ay = 0 = Ay,
determines Re I on the two boundaries. [

Remark 2.3.1

For the class of solutions under consideration, the sign of p is always negative implying

that p(t) — 0 as time evolves.

As mentioned earlier, for a flow driven purely by surface tension ¢'(z) is regular
everywhere in the fluid. f(z) is also taken to be analytic everywhere in the fluid. By

conformality of z((,t) in C, this implies that both G(¢,t) and F((,?) are analytic

everywhere in C

2.4 Conserved Quantities and Exact Solutions

The analysis will again proceed by considering the time evolution of a number of

general (purely geometrical) line integral quantities defined thus
Tt = §K(C02C2(c.0) dS (2.25)

where OC now denotes the boundary of the annulus C with |¢| = 1 traversed anticlock-
wise and the boundary |[¢| = p traversed clockwise. The function K((,t) appearing
in the integrand is again any function of ¢ and ¢ which will be taken to be analytic
in the annulus C. Later, special choices will be made for this function in order to
establish the required results. We now show that, under the assumptions made so far,
the equations giving the time evolution of these line integrals look structurally similar
to those given for the analogous line integrals defined around the simply-connected

region in chapter 1.



35
Theorem 2.4.1

The time evolution of the integral quantity Jx(t) defined above under the equations

of motion for the Stokes flow of an annular blob of fluid is given by

JK(t) = j{ac 2K(C7 t)G(C’ t)ZC(Cv t) dC + f;C (Kt(C7 t) - CI(C, t)KC) 2(57 t)ZC(Ca t) dC
(2.26)

Proof: The proof of this theorem is given in Appendix G. O3

From chapter 1 it is known that in the case of a single simply-connected blob of
fluid with surface tension, exact solutions in the form of an arbitrary rational function,
conformal in the unit circle in the  plane, have been identified. By analogy with
these solutions, we now seek solutions which are again meromorphic in the  plane
(except at zero and infinity) but with an infinite number of poles outside the annulus
C.

We introduce our solution by first defining a set of N parameters {(;| j = 1..N},
each of which satisfy the condition 1 < |{;| < p7!, at least initially. (;(¢) will
evolve in time according to equations to be determined. The solution will cease to be
valid if and when the above condition is violated. It is to be noted that each C_J‘] is

within C. We now define the function P{(), through the infinite product expression

PO =(1-0TL0 -0 Tl (1 - %) (227)

m=1 n=1

Clearly P(¢) has zeros at ( = p*™ for any integer m, positive or negative or zero.
Other properties of P(() are well known and those relevant to this thesis are listed in
Appendix F. Note that P(¢) has already been used in the Dirichlet formula for the
annulus (2.21)-(2.22).

We define the analytic function h((,t) through the relation

LS (2.28)

z(C,t) = . [P(Cgl)}w
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where {v;|j = 1..N} are arbitrary non-negative integers. Since the zeros in the
denominator on the right hand side are clearly outside C and z((, t) is analytic within
C, it follows that an analytic h in C implies an analytic z in C' and vice versa. We

also define
N
Mo =73 (2.29)
7=1

where we assume M, > 2. The reason for this last restriction will become clear

later.

It is now appropriate to consider a subclass of the general line integral quantities

(2.25) given by

I = §KolC, 8 k0)2(C, 7€ )d (2:30)
where
N
Ko(C tiko) = C H[ ggj] Ckg=..—2,-1,0,1,2... (2.31)
j=1

Note that Ky((,t; ko) is analytic in C (indeed it is analytic in the entire (-plane except
for essential singularities at 0 and co — see Appendix F). We now state an important

theorem concerning conserved quantities:

Theorem 2.4.2
(Dynamics) If Jg (0) = 0 for all ko then

Je (t) = 0 for all integers kq (2.32)

provided

d : ——
ZG = =G (G1t) forallj=1.N (2.33)
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Proof: The proof of this crucial theorem is given in Appendix H. O

We now state some theorems which relate the properties of the function h((,t) to

the properties of the infinite set of quantities {J? (¢) | ko any integer }.

Theorem 2.4.3
Consider the quantities JJ (t) defined in (2.30)-(2.31). Then

Jo,(t) =0V ky (2.34)

if and only if the function h((,t) as defined in (2.28) is analytic everywhere in the

plane except at 0 and oo and satisfies the functional equation
R()¢MR(¢,t) = h(p*¢, 1) (2.35)

for all ¢ # 0 where R(t) = [1/,[—¢ ()]

Proof: The proof of this theorem is given in Appendix [. [J

Theorem 2.4.4

The function h(C,t) satisfies the functional equation
R(t)CMh(C 1) = h(p*¢.1) (2.36)

for all ( # 0 and is analytic everywhere except possibly at 0 and oo if and only if
¢, t) =8 I P (¢ht) (2.37)

m=1

for some S(t) and some {7, (t)|m = 1..M,} satisfying the condition

[1 [ ()] = R(#) (2.38)
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Proof: The proof of this theorem is given in Appendix J. Ul

Theorem 2.4.5
If initially h((,0) has the form

Mo

h(¢,0) = 5(0) T P (¢m(0) ) (2.39)

m=1

where [T, [~ (0)] = [1}-,[—(;(0)]" and ;(0) (and equivalent points) are the po-

sitions of the poles of z((,0) and provided

a7 CA (G ) forall j =1.N 2.40
o = —(; (Cj ,t) orall j =1.. (2.40)
then
— — MO
¢, 1) =51) I P (¢im(®) ™) (2.41)
m=1
where
Mo N
I =] = [T[=G; (] (2.42)
m=1 j=1

is the unique solution for all future times that the solution exists.

Proof- From the initial form for A(¢,0), it follows (from Theorems 2.4.3 and 2.4.4)
that

Jo,(0) = 0 Vkq (2.43)

By Theorem 2.4.2 it is known that, provided the poles evolve according to (2.33),
Jo,(t) = 0 V kg is the unique solution for all time that the solution exists. By
Theorem 2.4.3, we then deduce that h((,t) satisfies (2.35) which then implies, by
Theorem 2.4.4, that h((,t) has the form (2.37) for all times. Hence Theorem 2.4.5 is

proved. UJ
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2.5 Evolution Equations

Theorem 2.4.5 provides the crucial result of this chapter and we will now limit the
discussion to initial conditions of the form (2.39), thus implying that z(,t) has the

following form for all time that the solution exists, i.e.

HrAr/L[L P(CW;}) _ 9 44
TP 244

(¢, t) = 5(1)

where {(;(t)}, {n;(t)} satisfy (2.42). Note that we immediately see that such functions
are lozodromic and satisfy the functional equation z(p?(,t) = 2((,t) for all ¢ # 0.
More information on the theory of loxodromic functions is given in Appendix L.
Remark 2.5.1

Since we have deduced z((, t) is a loxodromic function, it is known from Remark 2 in
Appendix L that such a function is uniquely defined once its poles and zeros in the
fundamental annulus p® < |¢| < 1 are known, as well as its value at one other point.

Note that the fundamental annulus is not the same as C.

Remark 2.5.2

To be physically acceptable, z((,t) must be univalent in C. It is therefore necessary
to pick initial values of {n,,(0)|m = 1..My} and {(;(0)|7 = 1..N} such that 2((,0) is
a univalent map for p < || < 1. If the map subsequently evolves such as to violate
this condition then the solution will be deemed invalid thereafter. A necessary though
not sufficient condition for this is to ascertain that there are no zeros of the derivative
z:(¢,t) in this region. Since z((,t) is a loxodromic function with the fundamental
annulus p? < [¢| < 1, (i.e. an elliptic function in the variable log (), it follows
from the well-known theory of elliptic functions of order My, that any value of z will
be taken M, times in this fundamental annulus (or fundamental rectangle if in (
is the variable). For univalence initially, it is necessary to pick initial values of the
parameters so that z attains no value more than once in the subregion p < [(] < 1.
That such a choice is possible is far from obvious and is illustrated through a numerical

example later in this chapter.
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Remark 2.5.3
The reason for the restriction on M mentioned in (2.29) is that a nontrivial loxo-
dromic function (or an elliptic function in the variable log () must be at least of order

two. See Appendix L for more information.

We now examine how to derive the evolution equations for the finite set of time-
evolving parameters appearing in the solution (2.44). To do this, we consider the line

integral quantities defined by

T, (0) = j{ac K5(C, 5 k)2 (G, 1)z (¢ £)dC (2.45)
where
Ky
K;(¢.t: k) = [PCC)]” TT [Peé)]” (2.46)
b
and k'J = 0, 1, 2.

Theorem 2.5.1
For the class of initial shapes considered, the following property of the line integral

quantities defined in (2.45)-(2.46) holds for all j = 1..N :

J,zj (t) =0 for k; > (2.47)

Proof: We use the loxodromic nature of z(¢, t) (and hence of 2((,t)) to reduce J,gj(t)

to the integral around 0C of the following function of ¢

N

[P(cg)]” (H [P<<<p>}“) (¢ 02 (C, 1) (2.48)

p=1
p#j

which, by use of the form (2.44) for z((,¢) can be seen to be analytic in C for all
k; > v; and the theorem follows by Cauchy’s Theorem. [
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Theorem 2.5.2

For the class of initial shapes considered, the J,Zj (t) satisfies the following equation

fork; =0,1,..y;— 1 and j =1..N:

Ho=9 K {k gp (€6, (dgﬂ gj]) oG

P(G) P(C)
v <<J> 4, PG5,
PR ( molie >>+W P(Cép)]w “ g
p#]

Proof: Applying Theorem 2.4.1, with the substitution K (¢, t) = K;((,t; k;), it follows
that

Ji ¢ 7{ K;2G(¢ 1)z + K; [k ¢ P'(¢G) (d@ ij) +kjp_Pp(g§j)

P(G) P(CG)
N pl¢E) (di p(Cp)
PP ( Sl )> " ”pP(CC)]Z A (2:50)
p#j

The analyticity of K;Gz; in C implies that the first term within the integrand on the
right hand side of (2.50) contributes nothing and the result (2.49) follows. O

Remark 2.5.4

Note by inspection that for k; > ~; the pole singularity of z at { = C_j’l is cancelled
out by the zeros of K at the same point; further, when (; satisfies (2.33), there is only
a remowvable singularity at ( = 5]_1 From this, it is easy to see that the integrand in
(2.49) is analytic in such cases and therefore J,g] =0 for k; > ;, which is consistent

with Theorem 2.5.1.

Since the evolution of the N poles {(;| j = 1..N} is given by the N equations
(2.40), it only remains to deduce the evolution of the My+1 time-evolving parameters
S(), {nm(t)lm = 1..My}. Note however that the {n,,(¢)} satisfy the constraint that
120 [—nm(®)] = H;-V:l [—¢;(¢)]". Thus there remains precisely M (generally complex)

parameters to determine. Note however that there are M, non-zero line integral
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quantities, namely
{JL(0)lk; = 0.9, =1}, j = 1.N (2.51)

which can be determined from (2.49). However, this requires us to invoke the following
conjecture that we believe to be true, but which is so far supported only by numerical

evidence.

Conjecture: For a given set of (;(¢), the My quantities in (2.51) at any time ¢
determine uniquely the My + 1 parameters S(t), {n.(t)|m = 1..My} satisfying the
constraint (2.42).

Remark 2.5.5

The conjecture above, if true, implies that for a given set of (;(¢), (2.49) can be viewed
as a differential equation to determine J,fj since quantities appearing in the integrands,
such as z, z and I are completely determined by the parameters characterizing z in

(2.44), which in turn is known for given J,{j.

Remark 2.5.6
We are not asserting a globally unique relation between the quantities in (2.51) and

the parameters appearing in (2.44); only a locally unique relation.

It is noted however that the “counting” in the statement of the conjecture is
consistent, and the validity of the conjecture is supported by the upcoming example
calculation, even though this is but a single special case. First we demonstrate the
remarkable result that the theorem of invariants described in the simply-connected

case in chapter 1 also holds in the doubly-connected scenario.
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2.6 A Theorem of Invariants
Theorem 2.6.1
(Theorem of Invariants) Suppose that the conformal map z((,t) has the form (2.44)
and that the evolution of the poles is given by (2.40). For each j for which the

corresponding «v; = 1, there exists an invariant of the motion given by

B — ) (2.52)

Proof: The proof of this theorem is given in Appendix K. O
Remark 2.6.1
Note that each invariant B, is determined from initial conditions alone. If v; = 1 for

all 7, between 1 and N, then there will be N invariants B; through By

2.7 Case Study

A special class of exact solutions having an appecaling mathematical structure was
found in chapter 1. We now write down the analogous solutions for an annular blob.

Consider the class of exact solutions where z(¢,¢) has the form

s P(Cn)) (2.53)

Z(Cat) = S(t) N—l P(Cgfl)

with

N N
II 7(®) =TT G(®) (2.54)
m=1 j=1

This corresponds to the special case of the above solutions with {y, =1 | j = 1..N},
where N is an arbitrary positive integer, N > 2. The evolution equations for maps
of this form can be written down as a very concise set. Of course, the evolution of

p(t) is always given by (2.24) but by the previous theorems, for a solution of the form
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(2.53) the poles must evolve according to

d¢ j_l
dt

=G (gj—l,t) ,j=1.N (2.55)

which provides the evolution of the poles. In addition, by Theorem 2.6.1, there are

N invariants of the motion given by

J (¢t
B; = —x o (1) ——— j=1.N (2.56)
Hz;j P(ngj )
where {B;] j = 1..N} are complex constants determined from initial conditions.

Thus, with the simple poles ¢; determined from the evolution equations (2.55), the
N + 1 parameters S(t) and {n,(t)] m = 1..N} satisfying the constraint (2.54) are
then determined by inverting the N nonlinear algebraic relations (2.56).

Note finally that in this special case study it is easily seen that the total area of the
fluid region is directly proportional to the sum of the /N invariants of motion, which
means that it is also conserved (as it should be given that there are no sources/sinks

in the fluid).

2.8 Example Calculation

Since the purpose of this thesis is to develop the mathematical theory, we reserve a
full investigation of the physical phenomena exhibited by the class of solutions found
here for a future investigation. However, it is necessary to include here at least one
explicit sample calculation for two reasons: first, as evidence for the validity of the
aforementioned conjecture. Second, to demonstrate, by explicit construction, the
existence of conformal maps that are loxodromic functions and which also satisfy the
required conformality and univalency conditions in the annulus C'

As discussed in the introduction, the example calculation that has been chosen
constitutes a basic paradigm in the study of sintering and represents a natural gen-

eralization of the study of the coalescence of two (unequal) cylinders as carried out



45

recently by Richardson [1] [6]. Here we study the evolution of two (unequal) touching
near-cylinders which also happen to have a small air bubble in the region where they
touch. In the case of just two cylinders, such a bubble may perhaps have been trapped
by some mechanism as the cylinders came into contact. More usefully, this example
(and more sophisticated versions of it) is expected to represent a basic paradigm for
the evolution of a general assemblage of cylinders/particles where there will inevitably
be small air bubbles trapped between the cylinders.

The initial state of the two (almost) cylindrical blobs and an air bubble between

them is represented in Figure 2.2 and corresponds to the case N = 3 with v = v =

v3 = 1 so that
6 = 50y LD EPE) 257
’ P(E)P(E)P(E)
with initial parameters given by
g] = 22, Cg == —125, gg == 129039, m = 2.08
(2.58)

m =14, ny=—121861, p=0.13, S =1.0

Such a map represents a univalent map from the annulus C' to the region shown in
Figure 2.1. Note that there are three simple poles of this mapping which means,
by the theorem of invariants, that we can automatically find three invariants of the
motion.

Since p is initially relatively small, and since it is known that p(¢) — 0 for the class
of solutions found here, certain approximations were made which greatly facilitated
the computations to the point where Mathematica could reasonably be used to carry
them out. Since no numerical pathologies were expected, an obvious and elemen-
tary first method was used in which a simple forward-Euler method was employed
to time step the evolution of p(t), (1(t), (2(t) and (3(¢) (with A = 0.0002), while a
high-accuracy Newton’s method was then used at each time step to invert the three

invariants of motion for 1 (¢), na(t), S(¢) (with nz = %—fi]—?) Mathematica coped well
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with all the calculations once both the function P(¢) and the kernel function in (2.21)
and (2.22) were expanded for small p and approximated to within O(p°) (the errors
due to this approximation are therefore of order 107° — i.e. smaller than the global
error of the simple time-stepping scheme). Given the existence of points of large
curvature in the initial configuration, the blob evolved quickly and the configuration
after just 30 time steps is shown relative to the initial configuration in Figure 2.3.

It is clear that the global momentum of the blob is not conserved and there is
clearly an overall translation of the blob in the positive z-direction. As mentioned
earlier, this is unimportant since it is only the geometrical evolution of the blob
boundary that is of interest. (If desired, these physically irrelevant translations can
be removed by a straightforward shift of the centres of area to a common point
before plotting). Note also that the near-cusps of the initial configuration (observe
that the initial enclosed air bubble has three points of very high curvature) became
smoother under evolution, and the enclosed bubble grew smaller, as expected. It
is clear that the points of high curvature have been smoothed out by the effects of
surface tension. Clearly the enclosed bubble is already quite small after only 30 time
steps and although no further integration was carried out, it is expected that as more
time evolves, the inner bubble will simply continue to get smaller (probably tending
to a circular shape) while the outer boundary of the blob will evolve into a circular
shape as already observed by Richardson (6]

In any event, the principal purpose of including this simple numerical calculation is
to verify that the finite set of nonlinear evolution equations derived in the theory above
can indeed be solved (at least locally) to provide the time evolution of the parameters
in the exact solution (2.57). In this limited example, the physical behaviour was much
as expected. Further studies of the physical properties of the mathematical solutions

presented here will be left for future study.
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2.9 Final Remarks

One of the principal problems in the study of conformal maps of this form is that
of finding initial values of the parameters such that the initial map is a univalent
map from C to the fluid domain. This is a highly nontrivial task and the present
author knows of no systematic method of constructing such functions — the initial
configuration found above for the sample calculation was identified after extensive
trial and error in the parameter space of poles and zeros.

An intriguing theoretical question that arises is whether the boundary of any
doubly-connected fluid domain of given conformal modulus p(t) can be approximated
as closely as required (in some norm) by a map z((, t) satisfying the loxodromic prop-
erty z(pC,t) = z(¢,t) which is a conformal and univalent map from C in the complex
(-plane. If this is true then a further question that arises is whether the subsequent
evolution of the approximating loxodromic function (as given in this chapter) will
remain a good approximation to the true evolution of that fluid region under Stokes
flow driven purely by surface tension. Such mathematical questions require further

investigation.
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Chapter 3
Exact Solutions for Stokes Bubbles

3.1 Introduction

In this chapter, the problem of the slow viscous (Stokes) flow of an infinite fluid
region containing two air bubbles is presented. The methods used are a modification
of those presented in the previous chapter. New physical solutions corresponding to
the evolution of two bubbles in the presence of a source/sink at infinity are presented.
Thus, this chapter extends the analysis of chapter 2 by showing how to incorporate
a (simple) pole in the mapping function and how to incorporate a singularity in the

flow field.

3.2 Mathematical Formulation

The equations and boundary conditions in this case are almost identical to those of
the previous chapter. The differences arise at the point at infinity and also because
of the pole in the conformal mapping function. At infinity, we choose to allow for the
possibility of a strain field as well as a source/sink of strength m(t). Thus, in general,

the flow at infinity will have the following general form

m(t) X
u~ x4+ Up(t) + #TX—’ as |x| —» 00 (3.1)

where

r=- (3.2)
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W Tepresents the vorticity at infinity while 6;(¢) and d5(¢) characterize the strain
field at infinity. It will turn out that, within the class of solutions presented in this
chapter, it is not in general possible to find exact solutions where the strain field,
uniform flow field and mass flux at infinity are all externally specified. This point
is discussed in more detail later. However, it is possible to find exact solutions for
the boundary evolution of two bubbles where there is just a source or sink at infinity
(and no strain field), and where the strength of the source/sink at infinity is externally
specifiable. In order to incorporate as much generality as possible in the presentation
of the theory, the analysis will proceed so as to include the possibility of a non-zero
straining flow at infinity. In this way it will be explicitly demonstrated precisely why
it proves to be impossible (at least using the current methods) to find exact solutions
when a strain field and source/sink strength at infinity is specified.

Again we write the general solution of the biharmonic equation as
b =1Im[zf(z) + g(2)] (3:3)

From (1.10) and the specified conditions at infinity, it follows that

1 1
F(2) ~ 3 Peolt) — ic] 2 4+ D(E) + O <;> as |2] = oo (3.4)
where D(t) is generally complex. The real quantity p.(t) represents the pressure at

infinity. It can also be shown that

g'(z) ~ % (01(t) — 162(1)) z + B(t) + % +0 (;—2> as |z| = o0 (3.5)

where 61(t), 02(t) and m(t) are all real while B(t) is generally complex.
Following the same procedures as in chapter 2, the stress conditions on the bound-
aries of the two bubbles can be integrated with respect to the arc-length parameter

to give

)+ 2 (2) +3(2) = —i5 + A (3.6)
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F(2) + 27 (2) + () = =i + Aalt) (3.7)

on the two bubble boundaries where A;(t) and A,(t) are constants of integration
which are, in general, functions of time. It follows that on the boundary of one of the

bubbles (say, bubble 1),
u+ iy = —7% AL — 21 (2) (3.8)
while on the boundary of bubble 2,

utiv = —7% + Ao(t) — 2f(2) (3.9)

It is again assumed that the fluid flow in each of the bubbles is negligible and that
the pressure in each bubble is given by the same constant value. There is clearly
some loss of generality in this assumption. However, there is no additional loss of

generality in assuming that the constant pressure in each bubble is zero.

3.3 Conformal Mapping

We consider a conformal map from the annulus p < [{] < 1 (denoted Cj) to the
exterior of the two bubbles. This will require the map to have a simple pole at
some point within the annulus (note that the pole must be simple in order that the
map be univalent in the annulus, as required). Let the point in the annulus mapping
to physical infinity be denoted by (. (t). By manipulations identical to those in the

previous chapter, the kinematic conditions on each boundary can be written

2+ 2F(C, 1) 1 A
e I

on the boundary of bubble 1, where we define

F(¢ 1) = f(2(¢,1),1) (3.11)
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z(¢, 1)

Figure 3.1: Conformal mapping domains

and on the boundary of bubble 2,

| 2ol o |Gk

Re (3.12)

The solution method is again restricted to the case where A; = A, — a restric-
tion involving a definite loss of generality in the class of solutions being considered.
However, without any further loss of generality, we take A; = A, = 0.

It can be seen that the function in square brackets on the left hand sides of (3.10)
and (3.12) is an analytic function inside Cy. This is because the singularities in
2(¢,t) and F((,t) at {» in both the numerator and denominator cancel out leaving
a function that is analytic at (.. Thus, using the integral formulae for a harmonic
function in terms of the values of its real part on the boundary of Cj, we deduce that

for ¢ within Cj

2(C 1)+ 2F(C, 1) = CI(C, )2 (C, 1) (3.13)
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where I((,t) is given by the expression defined in the previous chapter. Note that
again we make the choice Cy(t) = 0. This fixes the remaining rotational degree of

freedom.

3.4 Far-field Conditions

Consider the conditions at infinity. Equation (3.13) clearly must hold at the point

(so. Thus, expanding z((,t) about this point yields

_a_(t) 4 a B _ 2
Z(C,t)—”——(c_coo)wL o(t) + a1(t) (¢ — (o) + O(C — (o) (3.14)

for some functions a_1(t), ag(t).... which are all functions of time. Using (3.4) and
expanding the function F'((,t) about (y in equation (3.13) yields the following two

equations (equating the two lowest powers of (¢ — () in equation (3.13) )

oo = —Cool (Coo, 1) (3.15)

(poo(t) - z.(")OO) = —UJAlCooII(Coo) . all(coo) (316)

The first of these equations clearly provides an evolution equation for (. (¢) while the
second equation gives an expression for the pressure and vorticity at infinity in terms
of the solution. The pressure at infinity is a quantity that is not externally specifiable
but is determined by the solution itself. We also remark that, in the special class
of solutions which are symmetrical about the z-axis and for which the vorticity at
infinity is initially taken to be zero, then with the choice C'y, = 0, the vorticity at
infinity remains zero for all time. The example calculation carried out later in this
chapter falls within this special class of solutions. The following theorem gives the

evolution equation for the conformal modulus p(t):
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Theorem 3.4.1

With the choice Ay = A, = 0 in the boundary conditions (3.6) and (3.7), the evolution
of the conformal modulus of the corresponding class of solutions is given by the real

equation

i P f d¢ 1 ?{ d¢ 1
=L S 44 B 3.17
’= ( o1 €757 Sien € ol 317

Proof: See corresponding proof in the previous chapter.

3.5 Conservation Laws and Exact Solutions

Again we consider the class of line integrals:

Jielt) = . K(CH2Cz(C.0) de (3.18)

where 0C denotes the boundary of the annulus Cy with || =1 traversed anticlock-
wise and the boundary |(| = p traversed clockwise. K((,t) is any function of (
and t taken to be an analytic function of ¢ in Cy. The following theorems can be
proved in ways analogous to those in the previous chapter, with more or less trivial

rearrangements of details. The theorems will therefore be presented without proof.

Theorem 3.5.1
The time evolution of the integral quantity Jyi(t) defined above under the equations

of motion for the Stokes flow region is given by

jK(t) = %96'0 2K(<7 t)G(Ca t)ZC(Ca t) dC + ﬁ;co (Kt(ga t) - CI(<7 t)KC) 2(57 t>ZC<C7 t) dC
(3.19)
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We define a set of NV parameters {(;| j = 1..N}, each of which satisfy the condition
1 < |¢| < p7, at least initially. ¢;(¢) will evolve in time according to equations to
be determined. The solution will cease to be valid if and when the above condition

is violated. The function A((,t) is defined through the relation

(¢, t)
o ] . 3.20
= P i [Pl ] o

where {v;|j = 1..N} are arbitrary non-negative integers. Since (4, is known to be the
only pole of z((,t) it follows that an analytic A in Cy implies an analytic z in Cy and

vice versa. The parameter My > 0 is defined
N

My =Y (3.21)
j=1

It is now appropriate to consider integral quantities of the form

Tt = § Kol k)2(C, (G, 1) dC (3.22)
where
N
Ko(¢, 1 ko) = C[P(Co P TT [PCE)] 7 o= o — 2,-1,0,1,2...
= (3.23)

Note that Ky((,; ko) is analytic in Cy. We now state the crucial theorem underlying

the existence of exact solutions:
Theorem 3.5.2

(Dynamics) If J) (0) = 0 for all kg then
Jo,(t) = 0 for all integers ko (3.24)

provided

—( == (G t) forall j =1.N (3.25)
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and

0o

() (3.26)

Note that the evolution equation (3.26) for (., is consistent with that already deduced

(i.e. (3.15)) from a local analysis.

The following two theorems relate the properties of the function h((,¢) to the

0

properties of the quantities {J} (t) | kg any integer }.
/C()\ g

Theorem 3.5.3
Consider the quantities Jp (t) defined in (3.22)-(3.23). Then

Jo (1) =0V ky (3.27)

if and only if the function h((,t) as defined in (3.20) is analytic everywhere in the (

plane except at 0 and oo and satisfies the functional equation
R(t)¢M72h(¢, 1) = h(p*C, 1) (3.28)

for all ¢ # 0 where R(t) = H;yzl[—c_j(t)]“’jgﬂ.

oo

Theorem 3.5.4

The function h((,t) satisfies the functional equation
R()CM7?h(¢, 1) = h(p¢, 1) (3.29)

for all { # 0 and is analytic everywhere except possibly at 0 and oo if and only if

Mo+2

a(¢ ) =50 11 P (m') (3.30)
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for some S(t) and some {7, (t)jm = 1..(My + 2)} satisfying the condition

Mo+2
1T [=m(8)] = R(2) (331)
m=1
Theorem 3.5.5
If initially h((,0) has the form
B Mo+
7(¢,0)=S5(0) T P (¢nm(0)7") (3.32)
m=1

where [T}, [-7,,(0)] = ;yzl[—fj(O)]W%%% and (;(0) (and equivalent points) are the

positions of the poles of z((,0) and provided

T = =G (Gt) forall j=1.N (3.33)
and
dCoo
= ool (G 1) (3.34)
then
WG 0 =56 TT P (em(0) ) (3.39)
where
Mo+2 p
[T (=) = TG0 200 (5.50

for all future times that the solution exists.
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3.6 Evolution Equations

Theorem 3.5.5 provides the crucial result and we will now limit the discussion to
initial conditions of the form (3.32), thus implying that z((,t) has the following form

for all time that the solution exists, i.e.

i’ P(Cn") | (3.37)
PGP T [P ]

z(¢, 1) = S(t)

where {(;(¢)},{n;(t)} and (. (t) satisfy (3.36). Note that we immediately see that
such functions are lozodromic functions.
To derive the evolution equations for the finite set of time-evolving parameters

appearing in the solution (3.37), we consider the line integral quantities defined by

= ¢ K (G E)AC Dl ¢ (3.38)
where
N r = Tp
K tiky) = [PCG)] " Pl P TT [PCG)] (3.39)
b
and k; = 0,1,2... and those defined by
T = ¢ Foolti k) 2(C 1)2(C )G (3.40)
where
Koo N
KooGti koo) = [P(CCo™ D] ™ TT [P1SG)]™ (3.41)
p=1

With these definitions, we now identify further sets of conserved quantities as well
as a finite set of non-trivially evolving line integral quantities the evolution of which
implicitly provides the evolution of the (finite) set of parameters in the conformal

mapping function.
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Theorem 3.6.1

For the class of initial shapes considered, the following property of the line integral

quantities defined in (3.38)-(3.39) holds for all j = 1..N :

JL(t) =0 for k; >, (3.42)

N.B. The above integrals therefore constitute conserved quantities.

Theorem 3.6.2
For the class of Initial shapes considered, the following property of the line integral

quantities defined in (3.40)-(3.41) holds:

JE2(£) = 0 for koo > 3 (3.43)

N.B. These integrals constitute further conserved quantities.

While we have demonstrated the existence of conserved quantities, the evolution of
the finite set of parameters in the mapping function are again given implicitly by the
non-trivially evolving line integrals. The only nontrivial evolution equations are given

in the following two theorems.

Theorem 3.6.3
For the class of initial shapes considered, the J° () satisfies the following nontrivial

equation for k,, = 0,1 and 2

oo (1) — P(C™) (™ - Pp(C™)
(1) = faCOKoo[kooc (Cgm_1)< G e 1I<c,t>>+koop7p<@_]—)

3 (v (- 100) +m e o

n 758 2KeGrd

(3.44)
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Theorem 3.6.4

For the class of initial shapes considered, the J,gj (t) satisfies the following nontrivial

equation for k; =0,1,.v; —1 (j =1.N):

iw={, K [k ey (d@ @I(gt))

P(¢G)
P,(¢5) P'(gcoo*)[ 4. } Pyl
+/€,0 ( ) + C (CCOO_1> dtCoo Coo I(C,t) +3pP(<COO—1)
C. 3.45

Since the evolution of the N poles {(;] 7 = 1..N} is given by the N equations (3.33)
and since the evolution of {, is given by (3.34), it only remains to deduce the evolution
of the My + 3 time-evolving parameters S(t), {1, (t)|m = 1..My + 2}. Note however
that the {n,,(t)} satisfy the constraint that [Tmet?[—n,(t)] = C‘x’gt =G

Thus there remains precisely My + 2 (generally complex) parameters whose time

evolution needs to be determined. Note however that there are My + 3 non-zero line

integral quantities, namely
(TL(@O)k; = 0.7y =1}, j= LN 5 J&°, J°, J5° (3.46)

the evolution of which are given by (3.44) and (3.45) provided the quantities 6; (%),
85(t), B(t) and m(t) are given. This corresponds to specifying the strain field, uniform
flow field and source/sink strength at the point at infinity.

The fact that there are only M-+ 2 quantities to be determined from My + 3 equa-
tions means that, in fact, the problem of finding exact solutions of the form (3.37)
while ezternally specifying the strain field, uniform flow and mass flux at infinity can-
not in general be achieved. Nevertheless, it is possible to find mathematical solutions
of the form (3.37) where the strain field and uniform flow at infinity are externally

specified. In these cases, the mass flux at infinity is governed by the solution itself,
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and, in this sense the mathematical solutions are physically somewhat artificial.

Remark 3.6.1

We remark however, that the existence of such mathematical solutions is significant
firstly because such solutions are likely to share many of the same behavioural char-
acteristics as the solutions where the mass flux at infinity can be externally specified.
The solutions here might therefore be studied to glean information about the general
behaviour of two bubbles in an arbitrary strain field. More importantly, recall that
it was necessary, in order to find this class of solutions, to impose the condition that
Ay = A,, a specification that involved a loss of generality. It might be possible to gen-
eralize the mathematical approach presented here to include the case where A; # A,
and thereby find exact solutions where it is indeed possible to specify not only the

strain rate and uniform flow at infinity, but also the mass flux.

In the important case where there is just a source/sink at infinity (and no strain
field) it is actually possible to glean some physically realistic exact solutions from
the theory presented in this chapter. In this case, there will in gencral be a uniform
flow at infinity and a source/sink of strength m(t). Since it is only the geometrical
evolution of the bubble boundaries which is of physical interest, and since the geomet-
rical evolution of the boundaries is completely unaffected by time-dependent uniform
translations, it is possible to find exact solutions of the form (3.37) where m(¢) can be
externally specified. Having specified m(t), the uniform flow at infinity will be deter-
mined by the solution itself, however since this will not affect the boundary shapes,
this uniform flow at infinity can be subtracted off a posteriori (it has no effect on the
boundary evolution).

Remark 3.6.2

We also note here that, in the case where there is no strain field present, the solutions

need not necessarily have a pole at the point (Z! but that solutions can be found of
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the slightly more general form

et P(¢n )

t) =50 3.47
A =50 e, Pl 340
where
Mop—+1 N ‘
I mm=C¢ I ¢" (3.48)
m=1 7=1

Generalization of the foregoing theory to this alternative class of exact solutions for

this case is straightforward.

With regard to the determination of the time-dependent parameters appearing
in the conformal map from the time evolving line integrals (3.46), it is necessary to
invoke the following conjecture that is believed to be true. The numerical evidence to
be presented at the end of this chapter provides some verification of its validity. Since
the exact solutions corresponding to two bubbles in a flow with just a source/sink
at infinity (and no strain) are the most physically relevant, we therefore state the

conjecture in the context of these particular solutions.

Conjecture: For a given set of (;(¢), and given (), then in the case where there
is no strain field present and provided the parameter m(t) is externally specified, the

My + 3 quantities
{JIZ]- (t)|kj =0,y — 1}, j=1.N; Jse, I, Js° (3.49)

at any time ¢ uniquely determine the My + 3 parameters B(t), S(t), {n.(t)jm =
1.(My + 1)} with 7,42 being given by the constraint (3.36). (It is emphasized
that B(t) only affects the size of an inconsequential uniform flow at infinity and does

not affect the evolution of the bubble shapes. Its value is therefore immaterial).

It is noted that the “counting” in the statement of the conjecture is consistent,

and the validity of the conjecture is supported by the example calculation carried out
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later in this chapter, even though this is but a single special case. Before proceeding

to an example calculation it is noted that the theorem of invariants also carries over:

3.7 A Theorem of Invariants

Theorem 3.7.1

(Theorem of Invariants) Suppose that the conformal map z((,t) has the form (3.37)
and that the evolution of the poles is given by (3.33) and (3.34). For each j for which

the corresponding vy; = 1, there exists an invariant of the motion given by

B B (t)
T PG e I (PGS

p#j

3.8 Example Calculation

Reserving a detailed analysis of the behaviour of the new theoretical solutions pre-
sented here for a future investigation, it is necessary to include an example to demon-
strate the feasibility of the mathematical conjecture just stated. This example also
serves as confirmation that loxodromic functions satisfying the necessary conformality
and univalency conditions exist.

The initial configuration is given in Figure 3.2. This configuration is given by a

mapping of the form

P(¢{nr ) P(Cng )P (Cng )
P(CCHP(Cloo) PCCTY (3.51)

(¢, 1) = 5(t)
where all the parameters are real, and have the following initial values:

(oo =0.5, (1 =—2.2, m = —0.85, 1 = 2.0, n3 = 1.29, S = 1.0
(3.52)

The evolution of this initial condition in the presence of a general sink at infinity is
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calculated. It is assumed that there is no strain field at infinity. Since no numerical
pathologies were expected and since we do not wish to integrate for particularly long
times, an elementary numerical scheme was used. We now briefly describe the method
used.

The parameters (»(t), (1(t) and p(t) were time-stepped using an elementary first-
order forward Euler, the integrals such as /((w,t) being calculated using Romberg
integration. Similarly, the quantities JZ°, ko = 0, 1,2 were similarly time-stepped.
From the Theorem of Invariants, the presence of the simple pole at {; implies that
there is an invariant of the motion. Once the updated p, {, and (; are determined, the
four equations given by the invariant of the motion and the updated J° , koo = 0,1, 2
can be used to determine the quantities ny, 79,73 satisfying (3.36) as well as S(¢)
and B(t), the value of m(¢) having been externally specified. It is noted here that
to avoid unnecessary numerical error induced by integrating around Cj, whenever
the integrand was a meromorphic function within Cj, the Residue Theorem was
employed so that the integral could be computed exactly. It was found that the
best way to implement this was to feed a Fortran program with Laurent coefficients
imported from Mathematica (which was used to expand the various functions around
the appropriate poles). In this way, closed analytical formulae for the integrals were
obtained. The configuration after 400 time steps is shown in Figure 3.3. Notice
that the presence of a sink at infinity causes the bubbles to move apart, each of
them growing bigger, the sharp corners in the initial configuration being caused to
smooth out under evolution. This behaviour is much as might intuitively be expected.
Note that any overall translation of the entire configuration parallel to the z-axis is
immaterial to the evolution of the boundary shapes.

Again the principal difficulty in carrying out a full numerical investigation of the
general behaviour of the class of exact solutions found in this chapter is the construc-
tion of initial maps satisfying the necessary properties (i.e. loxodromy, conformality,
univalence in Cp). Such functions certainly exist, however the present author knows

of no systematic method of constructing them.
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i
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-0.5¢ &
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Figure 3.2: Initial two-bubble configuration
n
0.5}
| )
)
_1:
"—‘o‘.’s"o“OZSH 1 1.5 2 2.5

Figure 3.3: Configuration after 400 time steps (h=0.0001)
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Chapter 4

Alternative Arguments for the Loxodromic

Function Solutions

4.1 Conservation of the Loxodromic Property

It is now demonstrated, by alternative methods to those already employed, that
conformal maps that are initially loxodromic functions remain loxodromic functions
under Stokes evolution, thereby providing an alternative mathematical justification
for the existence of the exact solutions already identified using other methods. In the
process, we will demonstrate a more general result concerning any conformal map (not
necessarily meromorphic) satisfying what shall henceforth be called the lorodromic
property.

Definition: A function L(() satisfying the lozodromic property is a function which

satisfies the functional equation
L(p*¢) = L(¢) (4.1)

A lozodromic function is understood to be a meromorphic function (except at zero
and infinity) that also satisfies the lozodromic property.

To proceed, first define the following three annular regions:

Co:{p<[¢] <1}

Cr{l<[¢l<p}

Co : {p* < [C| < p}

These regions are illustrated in Figure 4.1. The evolution equation for the conformal



Figure 4.1: Definition of annuli

map z((,t) in Cy is known to be given by

where 7((,1) is defined in chapter 2. By standard methods of contour deformation of
the integral function 7((,t) appearing in this equation, the analytic continuation of

this equation into C can be deduced to be

1
(SO ()

2(C,t) +2F(C, 1) = CI(¢, 1)z (¢, ) + (= (¢, 2) Ll/z
¢ (4.3)

Similarly, the analytic continuation of (4.2) into C3 can be deduced to be

1
-~ —2

pz 2 (¢, )2 (021, 1)

ASR Y

2(C, 1) + 2F(C, 1) = CI(C, 1)z¢(C, 1) + Cz(C, 1)

4.4)



68
We first demonstrate the important result that, provided a solution exists, a con-
formal map that initially satisfies the loxodromic property, continues to satisfy it
under evolution. For this purpose it is therefore necessary to quantify the loxodromic
property of the conformal map in some way. Given the definition of the loxodromic
property it is natural to consider the evolution of the following quantity H((,t) de-
fined by

H(C,1) = 2(G, 1) — 2(0%C, 1) (4.5)

Intuitively, H({,t) might be considered a measure of the degree of non-lozodromy of
the conformal map. H(¢,0) = 0 for an initial conformal map satisfying the loxodromic
property. We shall now proceed to prove the non-trivial result that this function

remains zero (under the evolution equations for Stokes flow) if it is zero initially.

Lemma 4.1.1

Define the function Ker((,t) to be the kernel function of the Dirichlet formula for an

annulus (as given in Appendix E) i.e.

Ker((,t)=1— 2{1}1—/((5—% (4.6)
Then the following two identities hold:
Ker(p*(,t) =2+ Ker((, 1) (4.7)
and
Ker((',t) = —Ker((,t) (4.8)
Proof: First note that
P'(¢) 1 S i —~__

(4.9)
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which means that

2]:)I(pQC) B 1 B oo p2m ) p2ﬂ 410
PR T aa- - oo 0

it is therefore straightforward to show that

PO _ L PO .

7P P(O)

Using this, the first result of the Lemma follows. The second result of the Lemma
also follows from similar straightforward manipulations.

Lemma 4.1.2

The function I((,t), as defined in chapter 2, satisfies the following two equations for

(¢ strictly inside Cf:
(Tt = —1(¢ ) (4.12)
(note that this equation does not hold either on || =1 or [{| = p)

I(p*¢,t) = 1(C,1) (4.13)

Proof: The proof of the first result follows by simple manipulations of the integral
definition of the function I((,t). In particular, making a change of variable n = %
in 77(¢,t) and using (4.8) of Lemma 4.1.1 and making a change of variable = ’Z—f
in I7(¢,t) and using (4.7) of Lemma 4.1.1 will give the required result. The proof of

the second result follows from the observation, using (4.7) of Lemma 4.1.1, that

ey Log W !
I@CJ”“%mﬂﬁlczy%awéﬂaﬁ%w

1 ac’ 1 20
_ ot Y S _eP I
271 j{gqp ¢! ( PZE/Q(C',t)Zé/Z(PQC'_l,t) p) +1(¢ 1) (4.14)
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However, by the single-valuedness condition (equivalently, the value of p) the first
two line integrals in equation (4.14) both cancel out. This then provides the result
(4.13).
Theorem 4.1.1
The function H((,t) satisfies the following partial differential equation for ( in the

annulus Cy, namely

Ht(<7 t) - (.Il<<._7t)HC(gu t) - Q3(<7 t)H(Ca t) =0 (415)

(provided the two constants of integration arising in the integrated stress conditions

are both taken to be zero) where

@ (¢, 1) = CI(¢, 1) (4.16)
_ ()
(¢, 1) = 224(4‘*1,15) (4.17)

Proof: For ¢ in C; it is known that z((,t) satisfies

1
2(C, 1) +28(C, 1) = CI(G, 1) 2 (¢, S UNTR
(6 0) + 2P(C,1) = CT(G,1)2¢(G,8) + Czo(C. 1) LC/ €03 (c*,t)]
(4.18)

If ¢ lies in C}, then p2( lies in Cy which implies that for ¢ in C},

pC2* (0%, 1)

— 9/ 2
BT ppCze(pC, )

(4.19)

2(pPC, 1) + 2F(p%C, 1) = p*CL(0*C, 1) 2 (¢, 1) —

This equation is obtained by making the substitution ¢ ~ p?C in (4.4). Thus it
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follows that for ¢ in Cf,

aHa(g’t) = z((, 1) — Zt(p2C,t) — 2PPCZ<(p2C 1)
(2 I/Q(Q,t)
= —2F((,t) + CI(C, 1)z (¢, 1) + W .

1/2, 2 ¢
+ 2F(p*C,t) — pPCL(p*C, t) 2 (p°C, ) + pizfg(ég—’)
2¢ (C 7t>

Now consider the stress conditions on the two boundaries. On || =1,

(¢t Fe(¢h 1)
—2F (¢, 1) + W =2G(C7Ht) + 2mz(g,t) (4.21)
while on |{| = p
()
—OF(C,t
S pz? (021, ) 1 (4.22)
2P 1) + 2%4@

By the principle of analytic continuation, these two expressions also hold everywhere
off the two boundaries of the annulus. In particular, substituting ¢ — p?¢ in (4.22)

implies

(O (4.23)

Subtracting (4.23) from (4.21) yields the expression

C2"* (¢, ) . pC2P(0%C 1)
”2< t> P ()

( (Ca t) - Z(p2<, t))

_QF(C7 t) + 2F(:02<> t)

(4.24)

A
»—'
v

(1,)
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Note that the left hand side of (4.24) is exactly the expression appearing in (4.20) so

that, making the substitution, (4.20) becomes

D) o 20D (a(60t) - ta.0)) + <TG 0 = O t)zdp:, 22)

Finally, equation (4.13) of Lemma 4.1.1 then implies that (4.25) becomes

8H(C7t)_ FC(C_lat) e — 2 5 ~ 2 (0
L )RR CLI CTO R

ot (
(4.26)
equivalently,
Fe(¢h 1) _
Ht(gat) - C[(C:t)HC(Cvt) - QWH(gat) =0 (427)

which is the required result.
Corollary 4.1.1
If H((,0) = 0 then H((,t) = 0 for all subsequent times that the solution exists (i.e.

the solution retains the loxodromic property under evolution).

Proof: Tt is important to note that both coefficients ¢ (¢, t) and ¢5(¢,t) in (4.15) are
analytic functions of ¢ in C;. The result that we are trying to prove, namely that
if H(¢,t) is initially zero it remains zero under Stokes flow evolution, now follows
from the well-known theory of first-order linear partial differential equations with
coefficients that are analytic in some domain. Since H((,0) = 0 for ¢ in C; for an
initially loxodromic conformal map, the unique solution for H((, t) as it evolves under
Stokes flow is therefore H((,t) = 0. Thus we have proved that a conformal map that
initially satisfies the loxodromic property continues to satisfy the loxodromic property
under evolution. Note that we have made no assumption in the above proofs about

whether the mapping function is meromorphic or not.
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4.2 Conservation of Singularity Structure

We now demonstrate the separate result that certain initial singularity distributions
of the conformal map in C; are preserved under evolution. We restrict attention to

the class of initial conformal maps having the general form
N Ei(¢,0
A0 =y 0y o) (4.28)

where M(¢,0) and E;(¢,0), j = 1..N are analytic in C; and {v;| j = 1.V } are any
non-zero real numbers. The poles positions, ;(0), 7 = 1..N, are taken to be strictly
inside C,. (We are restricting consideration to the annular blob scenario. Extension
of the present analysis to the two-bubble problem is straightforward). Note that the
map is also known to be analytic everywhere in Cy. The following demonstration is
modelled on arguments given by Tanveer and Vasconcelos [8] in their treatment of
the related problem of a single bubble in an arbitrary straining flow.

Theorem 4.2.1

Given an initial conformal map of the form (4.28), and satisfying the conditions just
stated, such a map retains the same singularity structure within Cy for all times that

the solution exists provided the singularities at (;(t), j = 1..N evolve according to

-1

—( =G (Gt (4.29)
Proof: 1t has already been deduced that the analytic continuation of equation (4.2)
into C is given by (4.3). Substituting the decomposition (4.28) into (4.3) it is clear
that z((,t) retains the form

Yo Ei(GY)
]2::1 C CJ()) + M(¢,1) (4.30)
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for all times that the solution exists where M((,t) and E;((,t) are analytic in C)

provided the following equations are satisfied

G = —qi(¢1) (4.31)
Mt = q1M< + Q3M + g (432)
_ v E;
Ejt — qlEjQ + Q3Ej + (C . C){Ql(gﬂf) - QI(gjat)} (433)
where we define
3 (¢, 1) =2G(C 1) (4.34)

The crucial point to note is that the coeflicient functions in the first order partial
differential equations (4.32) and (4.33) are known a priori to be analytic in C;. This
therefore implies that if M (¢,0) and FE;(¢, 0) are initially analytic in Cy, then M((, )
and E;((,t) will remain analytic in C for all times that the solution exists. This
therefore implies that z({,t) will retain the singularity structure given in (4.28) (pro-
vided, of course, that none of the singularities move out of C;. Note however that,
if this was to happen, the exact solutions would be deemed invalid thereafter any-
way). Finally, using the result (4.12) of Lemma 4.1.2, it is a simple matter to show
that equation (4.31) is equivalent to equation (4.29) (this latter equation being the

evolution equation of the poles of the mapping as determined in chapter 2).

4.3 Loxodromic Function Solutions

Combining the above two important results, namely that a conformal map that ini-
tially satisfies the loxodromic property continues to satisfy the loxodromic property

under Stokes evolution and the fact that the singularity structure of the above class
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of initial conformal maps in the union of the annuli Cy and C; is conserved under
evolution (recall that for an annular blob, the conformal map is necessarily analytic
everywhere in Cy) then provides the result that, provided a solution exists, a confor-
mal map that is initially a loxodromic function remains a loxodromic function under
evolution. This is because the two properties that define a loxodromic function i.e.
a function that is both meromorphic and satisfies the lozodromic property have been
shown to be conserved under evolution. Note that, by the known loxodromic prop-
erty of the solution and the known singularity structure in Cy and C for all times,
it is well-known that this is enough to define the loxodromic function everywhere
in the finite ¢-plane excluding the origin, i.e. the union of Cy and C) represents a
fundamental annulus for the loxodromic function. Thus the behaviour of the function
z((, ) in every other annulus is also known.

The above analysis provides an instructive alternative mathematical argument
for the existence of the exact solutions detailed in previous chapters, although it
still remains to show that the resulting finite system to which the problem has been
reduced has a solution. This particular question is more clearly studied using the
integral approach developed in previous chapters. We also remark that the two results
just demonstrated can also be used to argue the existence of exact mathematical
solutions for 4-bubbles with symmetry. This problem is treated in chapter 5.

An interesting question which arises from this section is whether non-meromorphic
functions which satisfy the loxodromic property might represent exact solutions of
the problem. For example, it is conceivable that a single-valued function possessing
an infinite number of zeros and poles in the fundamental annulus (thus implying
an essential singularity of the function in Cp) might constitute an exact solution.
Intuitively, for the evolution of the infinity of poles or zeros to be describable in a
finite form it would seem to be necessary that the poles and zeros behave in a way
describable by some finite number of time-evolving quantities, with a corresponding
set of conserved quantities. Perhaps the conservation of loxodromy might provide the

underlying mathematical structure necessary for this to be so.
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Chapter 5

Symmetric 4-Bubble Solutions

5.1 Conformal Mapping with Symmetry

Another natural question to ask, now that exact solutions have been identified in
both the singly and doubly-connected scenarios, is whether exact solutions exist for
fluid regions of connectivity greater than two.

A general answer to this question is not known, at least by the present author, at
the time of writing. However, it is possible to demonstrate, at least in principle, the
existence of a class of mathematical solutions to the Stokes equations corresponding
to a 4-bubble scenario where a certain degree of symmetry is assumed. Physically,
these mathematical solutions turn out to be somewhat artificial in that physical pa-
rameters which one would expect to be externally specifiable, are in fact determined
by the exact solution itself. Nevertheless, it is important to document that such
mathematical solutions exist, since they might point the way to a more physically
relevant generalization. Their existence certainly does nothing to hinder a conviction
that certain classes of exact solutions exist for fluid regions of connectivity greater
than two.

Consider a conformal map from the upper-half annulus between p and 1 that maps
to the region exterior to two half-bubbles centered on the real and imaginary axes in
the first quadrant of the physical plane (see Figures 5.1 and 5.2). In the full physical
domain, it is assumed that each bubble is mirror-symmetric about the axis on which
it is located. It is also assumed that the entire geometric configuration is mirror-
symmetric about both the z- and y-axes. See Figure 5.1. This symmetry assumption
necessarily implies that the origin is a stagnation point of the flow. In addition, the

velocity of the fluid normal to the real and imaginary axes (exterior to the bubbles)



77

Figure 5.1: Four symmetric bubbles

is necessarily zero at any point on these axes. [t is also necessary that the boundary
conditions at infinity are such as to respect the flow symmetries. Thus, we assume
a linear strain flow at infinity which is symmetric with respect to the four-quadrants
of the physical plane. It must also be assumed that there is no uniform flow field at

infinity. The velocity u therefore has the form

u= (6 (), —6()y) + %;—' as |z — oo (5.1)

where 6;1(¢), m(t) are real time-dependent parameters.

Remark 5.1.1

It is noted that it is also possible to find another class of 4-bubble solutions by
assuming a greater degree of symmetry. In this case, all four bubbles are assumed
to be geometrically identical so that each bubble is a rotation about the physical
origin through some integer multiple of 7 of any other bubble. While the existence

of this class of solutions is equally important, we choose to present the theory for the
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Figure 5.2: Conformal mapping domains

more general class where a lesser degree of symmetry is assumed — such solutions will

presumably contain the more symmetric solutions as a subclass.

It is straightforward to show that the conformal map must take the following
general form for all times

(C—'a(t))l/QA (52)

z(¢,8) = i(c—_”ﬁwh(@t)

where the real point «(t) maps to the physical origin while the real point 3(¢) maps
to infinity. See Figure 5.2. The upper half of the circle [{| = 1 is taken to map
to bubble 1 centred on the imaginary axis and the upper half of circle |¢| = p to
bubble 2 centered on the real axis. To respect the assumed symmetries, the function
iL(C, t) must be taken to be real on the real axis and analytic in the upper half of C
(with C; defined as in the previous chapter). By the Schwarz reflection principle, we
immediately deduce that ﬁ((, t) is analytic everywhere in Cy. It will also be assumed
in what follows that a suitable H(Q, 0) can be found such that the mapping is conformal
and univalent in the upper half annulus.

Since f(z) and ¢'(z) are analytic functions of z at z = 0 and since the velocity
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field at z = 0 must vanish, it is necessary that

f(z) ~ Fyz + O(2%) (5.3)

g'(2) ~ Goz + O(2%) (5.4)

as z — 0 for some Fy, Go. This can be seen from the expression (1.10) for the velocity
field in terms of f(z) and ¢'(z). In addition, it is known by the boundary conditions

at infinity that

F(2) = Fooz +0(1) (5.5)

g (z) = Gooz +O(1) (5.6)

as z — oo for some F., Guo. Thus, from these local analyses, it is clearly seen that

F(¢,t) and G(¢, ) must also have decompositions of the form

_, !
(¢ =a@) -
G(Cu t) =1 (C _ /B(t))l/QG(C7 t) (08)

where F'(¢,t) and G(¢,t) must be analytic everywhere in the upper-half of Cp. From
the expression (1.10) for the velocity field in terms of f(z) and g¢'(z), it can also
be deduced that F(¢,t) and G(¢,t) must be real on the real axis. This will ensure
that the velocity of the fluid anywhere on the real or imaginary axes (exterior to the
bubbles) is tangential to the respective axes. This is a necessary condition due to
the symmetry constraints. By the Schwarz reflection principle we then immediately

deduce that I and G are also analytic everywhere in Cj.
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The kinematic boundary conditions on the upper-arcs ( = 1, p can be written

R ilt(47 t) - <2((z(_t)a) - 2(€(j)g)> iL(Ca t) + 2F(C7 t) 1
e - - = — —75 =
C (hg(g,t) + (2(%&_) - Zgl_—ﬁ)) h(ga t)) 2Z(/2(g) t)Zé/Q(C,t) (59>
R iLt(Cv t) - (2(0&(5)00 - %%) B(ga t) + 2F(<7 t) 1
€ = = = - -
¢ (he(C, ) + (s — 5) MGD) m%”mw%”mqaw)

The function in square brackets on the left hand sides of (5.9) and (5.10) can be seen
to be analytic everywhere in the upper-half annulus p < |¢| < 1 (including at { = «
and 8 where the square-root branch points of the numerator and denominator cancel
out) and also real on the real axis for p < |¢| < 1. By the Schwarz reflection principle,
the function in square brackets on the left hand side of (5.9) and (5.10) must therefore
be analytic everywhere in Cy and also satisfy (5.9) on the lower-arc |¢| = 1 and satisfy

(5.10) on the lower-arc |¢| = p. By the Villat formula, we can therefore write

il't(Ca t) - (% - g(ﬁc(_t)/g)> iL(C:ﬂ + 2F((> t)

¢ (he(¢. ) + (s — 3aom) MED)

= I(C, 1) (5.11)

which is valid everywhere inside and on Cy. In this equation, the function I(¢,?) is
the function defined in chapter 2. (We remark that, due to the symmetries in this
case, there is no choice but to have Cy(¢) = 0). Given the decomposition (5.2), (5.11)

is equivalent to saying that the equation

20 2F(C, 1) = CI(G,8)2(C, 1) (5.12)

holds everywhere in the annulus Cy. In addition, the stress condition on the upper-arc
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|| =1 is known to be given by

2G(C,t) = —2F(¢,t) — 22(¢, 1) + (5.13)

(Gt ()

F(Gt) |, ¢2*(6 1)
C —
(where the constant of integration has been taken to be zero) thus, by analytic contin-
uation this also holds everywhere else (including on the lower arc |(| = 1). The same
can be shown for the stress condition on |(| = p (again with this second constant of
integration taken to be zero — resulting in a similar loss of generality of the solutions
as was the case in previous chapters). We also remark that the evolution equation

for the conformal modulus p(t) is exactly as given in chapter 2.

The result of these arguments is that we have shown that, for the class of symmet-
ric 4-bubble solutions under consideration, the equations for the relevant conformal
map are the same equations, valid in the same regions of the parametric ¢-plane, as
those that were treated in chapter 3 for the general two-bubble problem.

It is now possible to immediately import the general results established in chapter
4 for conformal maps satisfying the above equations, namely

(i) a conformal map that initially satisfies the loxodromic property continues to
satisfy it under the evolution equations derived in chapter 3

(ii) certain classes of initial singularities of the conformal map in C; are preserved

under evolution, with no spontaneous production of additional singularities.

5.2 Form of the Exact Solutions

Now we consider an initial map of the form

B
=~
Q
=
L
R
~
S
c

1/2
N

P(CB(0)-D)P(CB(0)) (¢, 0) (5.14)

2(¢,0) =

where h((, 0) is taken to be a loxodromic function with real poles and zeros. Note that
z(¢, 0) satisfies the loxodromic property even though it is not a loxodromic function

of ¢ (it is not meromorphic). Note also that z(¢,0) also has the required local (square
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root) behaviour at ( = «, § that is required from earlier considerations. As mentioned
earlier, it is assumed that it is possible to find a suitable h((,0) such that the map
has the necessary univalency and conformality properties in Cj.

The important observation is that an initial condition of the form (5.14) falls
within the special class of initial conditions mentioned in (i) and (ii) above and so,
combining results (i) and (ii), it is straightforward to show that, given that a solution
exists, the only possible way for z((,0) to evolve in time is for it to remain of the form

1/2

h(C,?) (5.15)

2(¢, 1) =

where h((,t) remains a loxodromic function of the same order as h((,0). This is the
unique solution (if it exists).

Remark 5.2.1

This deduction implicitly utilizes the fact (established from the general considerations
in chapter 4) that the singularities in C; at points a(¢)~! and 8(¢)~! must evolve

according to the following equations

d
%Oz(t)_l = —a (a1t (5.16)

d -1 _ -1 —1
S0 = =577 (5.17)

(this can be deduced from (4.31)) while it must also be the case that «(t) and §(¢)

satisfy the equations

d
aa(t) = —al(a,t) (5.18)

d
SB(E) = ~01(8,) (519

(this can be deduced from equation (5.12)). Due to the result of Lemma 4.1.2, the
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two (seemingly different) evolution equations for a(t) and 3(t) are in fact identical

and there is no inconsistency.

Thus provided the finite set of evolution equations for the finite set of parameters
in h(¢,t) can be found, (5.15) constitutes an exact solution for the symmetric 4-
bubble problem.

We also observe that the natural domain of the function given in (5.15) is a
highly complicated two-sheeted Riemann (-surface. One might visualize the two
Riemann surfaces as being “boot-laced” together at an infinity of different points. The
loxodromic property means that consideration can be confined to a fundamental region
and on the fundamental annulus there will be two Riemann sheets associated with the
four square-root branch points at o, 3, &' and S~ '. There will also be four equivalent
branch points in each of the countable infinity of equivalent annuli. However, moving
from one of these sheets to another involves no more than a flipping of the sign of
2(¢,t) (and also F(¢,t) and G(¢,t)). This is clear from the decompositions of these
functions as detailed above. Such a flipping of sign in 2, F' and G can be shown
to have no effect on the equations (derived from the kinematic and stress boundary
conditions) relating the functions z, F' and G and their derivatives on each sheet of
the (-surface. Therefore it is enough to solve the problem on just one sheet of the
Riemann (-surface.

In summary, the assumed symmetry of the problem combined with the non-trivial
fact that the loxodromic property of a mapping function can be shown to hold for all
times if it holds initially, both conspire to allow reduction of the problem to just one
sheet of a highly complicated two-sheeted Riemann surface. It is remarkable that the
equations admit such a reduction.

Having justified, in principle, the existence of mathematical solutions of the form
given in (5.15), it remains to investigate whether the equations for the evolution of the
finite number of parameters appearing in (5.15) can indeed be solved to yield solutions.
If not, exact solutions of the deduced form simply do not exist. The considerations

above reduce this investigation to a “counting” problem. Further, if the counting
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problem is consistent, it remains to verify solvability of the resulting finite nonlinear
system. Note that the purely local considerations of this (and the previous) chapter
reveal no information about conserved quantities. Nor do they reveal, in a clear
fashion, whether the counting problem to which the problem is reduced is solvable,
even in principle. The easiest way to proceed with the question of consistency in the
“counting” is to attempt an extension of the more global considerations expounded
in previous chapters and to investigate whether the line integral approach can be

extended to incorporate this 4-symmetric bubble scenario.

5.3 Line Integral Formulation

There are two important reasons for investigating whether the line integral approach
can be extended to the present four bubble case: first, from a mathematical viewpoint,
the line integral approach seems to display the underlying structure of the equations
in a very transparent way (e.g. the evolution equations for the line integral quantities
had an attractive “triangular” shape); second, it is of interest to sce whether the line
integral approach is “robust” i.e. that it is general enough to incorporate this new
class of exact solutions.

We first review the general methodology of the line integral approach. In essence,
the approach involves defining a countable infinity of “moments” (in a generalized
sense) of the geometrical quantity z((,t)2.((,t) about each and all of its initial sin-
gularities in the region corresponding to the fluid domain. In the cases studied so
far, it was then shown that all but a finite set of the moments are conserved under
the equations of Stokes evolution. This was true principally because the only initial
singularities of the integrand in the region corresponding to the fluid domain (in the
cases considered so far) was a finite distribution of multipoles, and these could be
“cancelled off”, one by one, by appropriate choices of the kernel function K((,1),
analytic in the fluid region. The finite set of non-trivially evolving “moments” then
(implicitly) gave the evolution of the parameters in the conformal map.

One immediate concern in generalizing this approach to this case is the appearance
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of the square root branch points of z, F' and G at points «(t) and 3(t) inside Cy. At
first glance, it appears that it will be necessary to integrate around cuts within Cj
thereby destroying the structure on which the success of the line integral approach
seems to depend. However, more careful inspection reveals that this is not necessary
for the decomposition as given in (5.15) because the integrands of the line integral
quantities (as well as the integrands of all the integrals appearing in the time evolution
equations) are such that all square root singularities conveniently cancel out yielding
integrands that have (at worst) multipole singularities inside Cj and no branch points.

Indeed, it was precisely the desire to have the possible branch points of the inte-
grand (inside Cjy) disappear that led to the choice of the square root prefactor given
in (5.15). Indeed, this is the only choice of prefactor that had the three necessary

properties, namely:

1. the necessary square root behaviors at { = « and § in Cy (and nowhere else

inside Cp)
2. the loxodromic property

3. invariance to the transformation ¢ ~ (~! so that the branch points of the

integrands in the line integrals disappear.

It is a remarkable fact that the quadratic nature (in z) of the integrand of the
line integrals facilitates the cancelling out of the possible square root branch points,
resulting in an integrand that is purely meromorphic in Cy with no branch point

singularities.

5.4 Evolution Equations

It still remains to find evolution equations for the zeros and poles of h((, ). Assume

that h((,t) has the following form:

_lé@l P(Q?EI)
=7 P(¢¢

h(C,t) = R() (5.20)
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where ~y; is the order of the pole at the point ¢; taken to be in the annulus C;. Note
that since A((,t) must be real on the real axis, all parameters appearing in (5.20)
must be real.
We shall now state (without proof) the modifications to this case of the line
integral approach expounded earlier in this thesis. The initial singularities inside Cq
of Zz; (for the initial form (5.14)) are clearly at ¢ = a(0), 8(0), ¢;1(0) (j = 1..N).

Therefore, we deduce from the line integral approach that provided

&= —al(a,t), B=—BI(3,1) (5.21)
and provided the poles of h((,t) evolve according to

d i1 - (

then, defining the following line integral quantities

T (0 = § KuolG, )26, 126, 1C (5.23)
where
N
Koo(C, 15 koo) = P(CB)*= TT P(CG)Y, koo = 0,1, ... (5.24)
j=1
and
) = ¢ Ko(C,t: k)2 0z (€, )dC (5.25)
where

N
Ko(C, 1 ko) = P(Ca)*P(¢B)? [ P(CG)Y, ko =0,1,.... (5.26)
j=1
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and finally,
R0 = § K (G582 )2(C1)dC (5.27)
where
N
Kj(C7 t; kj) P(¢B) 2P CCJ H CCp , kj=0,1,.... (5.28)
oy

the only time-evolving line integrals are
Joo (1), ke = 0,1 (5.29)
and
J(1), j=0.7; — Lfor j =1.N (5.30)

all other line integrals being initially zero and, more importantly, remaining zero
under evolution. Note that J{ (¢) = 0 for all kg = 0,1,... provided «(t) satisfies
(5.21).

In total, there will be My + 2 non-trivially evolving line integrals. Note that the
equations for the evolution of the two quantities in (5.29) will depend on both 4, (¢) and
m(t). For a physically meaningful solution, we expect that these should be externally
specifiable parameters. Unfortunately, there are only My unknown parameters in
the conformal map whose evolution needs to be determined, namely the M, zeros of

h((,t) satisfying the constraint
N Mo
H ;= H Tlp

as well as the parameter R(¢). This makes a total of My parameters. Since there are
M, + 2 time evolving line integrals whose evolution depends on 2 parameters, 6,(t)

and m(t) (namely, strain rate and mass flux at infinity), the only way that this finite
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system has a solution at all is if 6;(¢) and m(t) are not externally specified but are
quantities determined by the exact solutions themselves. It is in this sense that the
problem has exact mathematical solutions (i.e. the finite system to which the problem
has been reduced can be solved) which, unfortunately, have a rather artificial physical

significance.

5.5 Discussion

It is remarkable that the “counting problem” above conveniently works out so as
to provide the existence of exact mathematical solutions (albeit solutions with a
rather artificial physical significance). Had there been more non-trivially evolving
line-integrals than undetermined parameters in the mapping, the finite nonlinear
system to which the problem has been reduced would not be solvable and exact
mathematical solutions of the form deduced in this chapter would quite simply not
exist. Even given the artificiality of the solutions from a physical standpoint, the
potential usefulness of exact mathematical solutions of the form deduced here as
qualitative models of the true physical behaviour should not be underestimated. The
usefulness of the exact solutions as a “check” on a numerical code designed to solve
the full free boundary value problem is also clear.

We mention here that it is possible to extend the Theorem of Invariants to this
case. For completeness, it is also necessary to state a conjecture, analogous to that
stated in chapters 1-3, on the matter of whether the evolution of the above line
integral quantities uniquely defines (at least locally) the evolution of the parameters
appearing in the conformal map. By analogy with earlier chapters, although we do
not explicitly verify it here, such a conjecture is again expected to be true (in general).

Despite the drawbacks of the solutions from a physical viewpoint, the existence
of such mathematical solutions is of enormous theoretical interest. These solutions
provide evidence for the case that a mathematical generalization of the above methods
might be possible in order to find a more general class of exact solutions for 4-bubbles

without any assumed symmetry.



89

PART II
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Chapter 6

General Solutions to the Two-Dimensional

Liouville Equations

6.1 Introduction

This chapter! presents the most general exact solutions of the quasi-linear partial

differential equations

Ygg + Wy = ce™ (6.1)

wmz - wyy — Eedd) (62)

where ¢ and d are real non-zero constants. Equations (6.1) and (6.2) are both gen-
erally recognized as being forms of the two-dimensional Liouville equation [25], and
throughout this paper they will be referred to as the elliptic and hyperbolic Liouville
equations respectively. The importance of these equations in various areas of mathe-
matical physics from plasma physics and field theoretical modelling to fluid dynamics
has made them the topic of many investigations for solution. A variety of exact so-
lutions has been reported in the literature, many derived using highly sophisticated
mathematical techniques [18]-[22],[25]-[34], [37]. For example, most recently Popov
[37] employed a geometrical method on a Lobachevskii plane to obtain some gen-
eral solutions to (6.1) from solutions of the two-dimensional Laplace equation, while

Bhutani, Moussa and Vijayakumar [18] recently reported a new general solution of

IThis chapter is based on material from an article entitled “General Solutions to the 2D Liouville
Equation” by Darren G. Crowdy, International Journal of Engineering Science, 35, Issue 2, pp.
141--149, Copyright (1997). It is reproduced here with the kind permission of Elsevier Science Ltd.,
The Boulevard, Langford Lane, Kidlington, OX5 1GB, U.K.
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(6.2), and retrieved all previously known general solutions, using a direct method
based on the formalism devised by Clarkson and Kruskal [36]. Neither of these two
solution methods provide the most general solutions to (6.1) and (6.2) and solutions
of the generality presented in this chapter have not, to the best of the author’s knowl-
edge, been reported before. This chapter therefore serves as a unification of many
disparate results spread throughout the literature, and also provides many previously
unknown exact solutions.

The methods employed here are essentially elementary yet the solutions obtained
are shown to be the most general. It is indicated how to retrieve currently known
solutions as special cases of these most general solutions. The general solution to (6.1)
is shown to depend on two arbitrary analytic functions and some constants while the
general solution to (6.2) depends on four arbitrary real functions and some constants.
For clarity, the development is presented as a series of theorems and proofs, but the
exposition is non-rigorous. Accordingly, any deeper mathematical implications of the

results will not be treated here.

6.2 The Elliptic Case

To illustrate the method of solution for the elliptic case we solve the elliptic Liouville

equation in the (z,y)-plane given by

szx + wyy = 5ed1/1 (63)

where & d are real constants which are assumed to be non-zero. By shifting to

characteristic coordinates, z = z + iy and Z = z — iy, we can equivalently solve

U,z = ce™ (6.4)
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for real solutions ¥ where ¢ = %. It is noted that by the linear change of dependent

variable
& = dup + logJed)) (6.5)
(6.4) can be written in the canonical form

¢.> = sgncd] e? (6.6)

Theorem 6.2.1

Any function v(z,z) that is twice differentiable with respect to z and z and is a

solution to

P, = c e (6.7)
also satisfies
b = E(2) (6.8)

where F is some analytic function of z.

Proof: Integrating (6.7) with respect to z gives
V; = c/ e®dz + F(2)
20

for some arbitrary analytic function F(z). On differentiating with respect to z and

using (6.7), we obtain

d _

7/’22 = §¢§ + E(Z) (6-9)

where E(2) = F'(z). Hence Theorem 6.2.1 follows.
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Theorem 6.2.2
Any real-valued solution v(z, Z) to (6.8) that is sufficiently differentiable with respect

to z and z is also a solution to (6.7) for some real constant c.

Proof: A direct proof of this is possible — the general real solution of (6.8) can be
found directly (see Theorem 6.2.3) and it can be checked by substitution that the
resulting solutions satisfy (6.7) for some value of c. An alternative approach is to

take the second derivative of (6.8) with respect to z giving
Vrzez — APsthzzs — dipF, = 0 (6.10)
Taking the complex conjugate of (1.10) gives
Vazzzr — APuthezs — dipl, = 0 (6.11)
We now define w(z, Z) = 1,,. Subtracting (6.10) from (6.11) we obtain
Yrw, — hwz; =0 (6.12)

It follows from (6.12) that w = f(¢) for some real-valued function f. Differentiating

(6.8) once with respect to z yields

ez, — dipsatps = 0 (6.13)
Using w(z, Z) = f(¢) then implies

b:(f' =d f)=0 (6.14)

from which it is concluded that any non-trivial real-valued solution (z, z) of (6.8)

satisfies (6.7) for some constant c.
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Theorem 6.2.3

Every real valued solution to (6.7) is of the form

v=—2loglan(@n(d) + anE)Re)

+ c(2)72(2) + Gt (2)y2(2) (6.15)
where i1(2) and yo(z) are two independent solutions to

Yzz + Q‘E(é)y =0 (6-16)

for some analytic E (z) while ¢; and ¢4 are real constants and cy is some complex
constant.

Remark 6.2.1

Real solutions are only defined in regions of the (z,y)-plane where the argument of
the logarithm in (6.15) is positive.

Remark 6.2.2

The conjugate function f(z) is defined as

Proof: From Theorem 6.2.1 it follows that a solution to (6.7) is also a solution to (6.8)
for some E(z). Note that (6.8) is in the form of a Riccati equation and can be made
into the linear second order differential equation (6.16) for y = e~%/2, Therefore, it

follows that

y(z,2) = Ev(2)71(2) + Ea(2)72(2) (6.17)



95
for some functions F;(z) and Fy(z). Since ¢ (and therefore y) is real, by taking the

complex conjugate of (6.17), it follows that
y(z,2) = E1(2)y1(2) + Ea(2)y2(2) (6.18)
Now, since (6.18) is a solution to (6.16), it follows that

Ei(2) = afn(2) + t202(2) (6.19)

FEy(2) = &351(2) + €192(2) (6.20)

for some constants ¢, ¢a, ¢3 and ¢s. On substituting (6.19) and (6.20) back into (6.17)
and (6.18) and equating the two different expressions for y, we obtain the condition

that ¢; and ¢4 are each real and that c; = ¢3. Thus,

y(2,2) = c1y1(2)71(2) + cayz2(2)y2(Z) + 201 (2)72(2) + G2 (2)y2(2)
(6.21)

Thus, from the definition of y in terms of ¢, (6.15) follows.

Remark 6.2.3

Since E(Z) is some arbitrary analytic function, the requirement that ¢ (2) and 7,(Z2)
are independent solutions to (6.16) can be replaced by choosing #; to be an arbitrary
analytic function of z while determining ¢,(Z) from the condition that the wronskian
w(2) = 51(2)75(2) — 7, (2)y2(2) = 1 (this can be done without any loss of generality).
Clearly, once 7 (Z) is chosen, an expression for F(Z) follows from (6.16). This unwieldy
method of determining 4»(z) from the wronskian can be avoided by use of the following
theorem:

Theorem 6.2.4

Let Y (z) and Y3(z) be two arbitrary but independent analytic functions of z. Denote
their wronskian by W (z) = Y1(2)Y;(2) — Y] (2)Ya(z). Then yi(z) = Yl(z)/\/m and
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yo(z) = Ya(2)/y/W(z) are two independent analytic functions with unit wronskian.

Proof: Since Y; and Y3 are independent, then W(z) is not zero. The relation ¢,y; +
coys = 0 clearly implies ¢1Y] + ¢oYs = 0 in some open set; from the independence of
Y] and Y5, this implies ¢; = 0, ¢ = 0; i.e. y; and y are independent. On substituting

for y; and y, in terms of Y] and Y5, it follows that the wronskian w(z) of y; and y, is

Y1(2)Y5(2) — Ya(2)Y](2)

w(z) = =1 (6.22)

Hence Theorem 6.2.4 is proved.

Theorem 6.2.5
Any real solution to (6.7) is of the form

b= Tlog|eVi((2) + V(2B + V()

+ 02}71(2)5/2(2)}+;1j~10g (W)W ()] (6.23)

for some independent analytic functions Yi(z) and Yy(z), where ¢, and c4 are real

constants and ¢y is a complex constant, while W(z) is the wronskian of Y(z) and
Proof: This follows by substituting for y;(z) and y(z) in terms of functions Yi(z)
and Y3(z) (and their wronskian W (z)) into (6.15).

Theorem 6.2.6
The most general real solution to (6.7) is given by (6.23), where Y)(z) and Y,(z) are
any independent analytic functions of z, W {z) is their wronskian, with real constants

¢, and ¢, and complex constant ¢y satisfying the constraint
cd = —2(c; ¢4 — |eg)?) (6.24)

but which are otherwise arbitrary.
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Proof: Since we know any solution of (6.7) is of the form (6.23), by directly substi-
tuting (6.23) into equation (6.7), it is found that (6.7) is satisfied if and only if the
constraint (6.24) is satisfied.

According to Theorem 6.2.6 it should be possible to retrieve all known solutions
of the elliptic Liouville equation as special cases of (6.23). The well-known general
solution given by Liouville [8,16-18] is trivially retrieved as a special case of this most
general solution. Liouville’s solution of (6.7) when cd < 0, can be written

o0 2 (ug® +uy?)

= W 1P (6.25)

where v and v are arbitrary conjugate functions. This corresponds to the choice

Y1(z) = f(z) = u+iv where f(z) is an arbitrary analytic function and Y5(z) = 1 with

c1 = ¢4 = /—% and ¢; = 0. The resulting solution (using (6.23)) is
2 d - 1 _
w:—amg[~%«ﬂwﬂa+n PlegdfrEl (620)

Observing that f(z)f(z) = u? +v? and f'(2) f'(2) = u,? + u,? we retrieve Liouville’s
solution (6.25) as a special case of (6.23). Stuart [34] lists a number of exact solutions
of (6.7) including one that is similar to Liouville’s solution for the case cd > 0 in the
form

(uz2 + uy2)

ay _ 2
e PP y]
cd (u? 4+ v? — 1)

(6.27)

This corresponds to Yi(z) = f(z) = u + iv (f(z) arbitrary) and Yz(2) = 1 with
c1 = g—d, Cy = —\/CQE and ¢, = 0. Stuart [34] also reports a class of solutions

(attributed to Varley) for the case cd < 0 in the form

e 12 — o (2)an (2) + an(2)an(2) (6.28)
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where «1(2), as(z) are independent analytic functions of z satisfying the equation

with a;(2)ah(2) — as(2)a) () = X and |A|?> = —cd/2 and G(z) is an arbitrary analytic
function of z. In fact, using the theorems just developed, it can now be demonstrated
that this general solution is equivalent to the most general solution for e¢d < 0. To
see this, by combining and rewriting the various results of Theorems 6.2.1-6.2.6, it

has now been established that the most general solution of (6.7) can be written

2 c C cd
Y= —=log | <y1 + —2y2> (ﬂl + —2‘ﬂ2> — Y2l (6.30)
d ci C1 2¢y

where y; and 3, are independent solutions of (6.16) for some F(z). If cd < 0 it is
clear that in order for the argument of the logarithm in (6.30) to be positive then
necessarily ¢; > 0. Identifying ay(2) = \/cT(gh + %yg) and as(z) = —%yz(z) it
is seen that (6.28) is in fact equivalent to the most general solution for ed < 0. This
very important and significant fact is not stated in Stuart [34], nor does it seem to
have been acknowledged elsewhere in the literature. The three types of solution of
V%) = e¥ (corresponding to ¢ = 1/4, d = 1 in our notation) recently identified by

Popov [37] using geometrical methods can be written

2 2

¢ = log [W] (6.31)
92 2 2

)= log[ (;i;;;zy)} (6.32)
92 2 2

W = log {%} (6.33)

where v(z,y) = Re[f(z)] and f(z) is a general analytic function of z = z +iy. To
retrieve (6.31) take ¢ = ¢y = 0, ¢ = ¢ with Yi(z) = [(z), Ya(z) = 1 in (6.23).
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Noting that v2 +v? = f'(z)f'(2) we retrieve the required result. To obtain (6.32) we
take ¢ = ¢4 =0, ¢ = ﬁ with Y1(z) = sinh[f(2)/2], Ya2(z) = cosh[f(2)/2]. Result
(6.33) is obtained by taking c; = c4 = 0, ¢ = % with Y1(z) = sin[f(2)/2], Ya(z) =
cos[f(z)/2].

Note that from the canonical form (6.6) it is clear that there are essentially two
distinct types of elliptic Liouville equation depending on sgn[cd] which, by (6.24), is
the same as the sign of the determinant-like quantity |c2|> — ¢1cq. The solutions in
each case have somewhat different behaviours. In particular it is known from more
general analyses [38] [39] that when cd > 0 the elliptic Liouville equation possesses
no solution valid in the entire plane, while for c¢d < 0 it does possess such solutions.
These properties can now be demonstrated explicitly for the elliptic Liouville equation
using the above general representation of the solutions. For example, we briefly sketch
a direct proof of the fact that for ¢d > 0, (6.7) has no solutions valid in the entire
complex z-plane. The proof is by contradiction. Suppose there exists a solution
of (6.7) for e¢d > 0 valid in the entire plane. Then by Theorems 1-6, the solution
necessarily has the form (6.30) where y,(z) and ys(z) are independent solutions of
(6.16) for some E(z) and, without loss of generality, ¢; > 0. Since the solution is
valid everywhere, y;(z) and y(z) must be entire functions. Also, in order that the
argument of the logarithm in (6.30) is strictly positive, the following inequality must

hold everywhere in the finite z-plane

c cd

!\/01 (y1 + —292> > 45— vel (6.34)
Cy 261

In addition, y1 + Zy» can have no zeros in the finite z-plane because the argument

of the logarithm in (6.30) would fail to be strictly positive at any zero of y1 + Zys.
Equation (6.34) thus implies that

2
2ct

cd

y2(z)
yi(z) + 2y2(2)

(6.35)
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However, since y; + £y, has no zeros and since yi(2) and y2(z) are entire then the

function yl(z)yj(_é)yz(z) is also entire. But (6.35) states that it is a bounded entire function
€1

which implies (by the Liouville theorem) that it must be a constant function. Finally,

this then implies that y;(z) and yo(z) are linearly dependent, which is the required
contradiction. It is a nice feature that the Liouville theorem proves to be the result
from analytic function theory needed to prove this result on solutions to the Liouville
equation.

Finally, we remark that the Dirichlet boundary value problem in a bounded do-
main with finite boundary values always has a unique solution when ¢d > 0 (but not
when ¢d < 0, e.g. [40]). Thus, as one example of the utility of the solutions presented
here in solving real physical problems, it can be envisaged that the above repre-
sentation of the most general solution, combined perhaps with conformal mapping
techniques, might be used to solve such classical Dirichlet boundary value problems.

The form given in (6.23) would seem to be the most convenient for such purposes.

6.3 The Hyperbolic Case

We now extend this analysis to the two-dimensional hyperbolic Liouville equation in

the (Z, g)-plane given by
iz — Vyy = Ge™ (6.36)

where ¢, d are again real constants, assumed to be non-zero. By shifting to charac-

teristic coordinates (z,t) where £ = Z + § and t = & — § we can equivalently solve
ot = ce® (6.37)

where = and ¢ are real coordinates, and ¢ = g. Note that by the linear change

of dependent variable (6.5) the canonical form for the hyperbolic Liouville equation



101

(6.37) can be written
¢z = sgnfcd] e (6.38)

We now demonstrate that the general solution of the hyperbolic Liouville equation de-
pends on four arbitrary real functions, in contrast to two arbitrary analytic functions

as in the elliptic case in §2.

Theorem 6.3.1
Any function (z,t) that is twice differentiable with respect to both x and t and is a

real solution to
g = ce™ (6.39)

simultaneously satisfies the two equations

d 2
Py — —2fz/1t = F(t) (6.41)

for some choice of functions E(z) and F(t).

Proof: Integrating (6.39) with respect to ¢ gives

Yy = c/t e™dt + G(z)

to

for some arbitrary real function G(x). Differentiating this equation with respect to z

and using (6.39) gives
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where E(r) = G'(z). Hence ¢ satisfies equation (6.40). By the symmetry of (6.39)
in z and ¢, the same manipulations imply 1 also satisfies eqn (6.41) for some F'(t).
Thus Theorem 6.3.1 follows.
Theorem 6.3.2
Any sufficiently differentiable solution of both (6.40) and (6.41) satisfies equation

(6.39) for some choice of the constant c.

Proof: A direct proof of this is possible — general simultaneous solutions to equations
(6.40) and (6.41) can be found directly (see Theorem 6.3.3), and it can be checked
by substitution that these are solutions of (6.39). An alternative approach is to

differentiate (6.40) twice with respect to ¢ giving

q/’mtt - dwztth - d¢xt2 =0 (6-43)

Similarly, differentiating (6.41) twice with respect to z yields

Uitgs — AiazPr — d?/)tQ:Q =0 (6-44)

Subtracting (6.43) from (6.44) implies

wacttd}z - wtxxwt =0 (645)

which implies

Vot = (1) (6.46)

for some real function f(¢). Differentiating (6.40) once with respect to ¢ and using

(6.46) gives

o f' = d f) =0 (6.47)
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Thus implying that any non-trivial simultaneous solution of equations (6.40) and

(6.41) satisfies (6.39) for some value of c.

Theorem 6.3.3
Every solution of (6.39) is of the form

¥ =~ loglan(thun(s) + e (Bhus(z)

+ caya()wn(z) + caye(tywa(z) (6.48)
There y,(t), y2(t) are two independent solutions of

d
Yyt + §F(t) y=0 (6.49)

and wi(x), wo(z) are two independent solutions of

d
Weg + f2~E(x) w =10 (6.50)

and c1, ¢o, c3, ¢4 are real constants.

Remark 6.3.1
Real solutions are defined in regions of the (z,t)-plane where the argument of the

logarithm in (6.48) is positive.

Proof: From Theorem 6.3.1, solutions of (6.39) simultaneously satisfy (6.40) and
(6.41) for some E(z) and F(t). Note that (6.40) is of the Riccati form and can be made
into a linear second order equation for M(x,t) = e~%/2. Using this transformation

the resulting equation for M (z,t) is (6.50) i.e.
d
My, + 5 B(x) M =0 (6.51)

Therefore,

M(z,1) = BEy(Dw (z) + Ea(t)ws () (6.52)
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for some functions E;(t) and E»(t). Now since ¢ is also a solution of (6.41) then

Mz, t) is also a solution to (6.49) and we deduce that

Er(t) = cin(t) + esya(t) (6.53)
and

Ea(t) = cayn (1) + caya(t) (6.54)

for some real constants ci, ¢y, c3, ¢4. Substituting (6.53) and (6.54) into (6.52) gives
the result (6.48).

Theorem 6.3.4
Any real solution to (6.39) is of the form

= —210g YiOWi(2) + Vi) Walz) + csYa(t) Wi (z)

b ea(OWa()| + Sl (W ()] (65)

where Y;(t), Ya(t) are independent sufficiently differentiable functions with wron-
skian Y (t), Wi(z), Wa(z) are independent sufficiently differentiable functions with

wronskian W (z) and ¢y, ¢a, c3, ¢4 are real constants.

Proof: Analogous to proof of Theorems 6.2.4 and 6.2.5.

Theorem 6.3.5

The most general real solution to (6.39) is given by (6.55), where Y|(t), Y,(t) are
any independent functions with wronskian Y (t), Wy (z), Wa(z) are any independent
functions of x with wronskian W (x) and ¢y, ¢z, 3, ¢4 are real constants satisfying the

constraint
wd= —2(c1eq — Coc3) (6.56)

but which are otherwise arbitrary.
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Proof: Since we know any solution of (6.39) is of the form (6.55), by substituting
(6.55) into equation (6.39), we find that (6.39) is satisfied if and only if constraint

(6.56) is satisfied.
Theorem 6.3.5 implies that all known solutions of (6.39) should be retrievable as

special cases of (6.55). For example, the choice

Yi(t) = o(t) + 20, Ya(t) = 1, Wi(z) = 0(x), Wa(z) =1 (6.57)

withey =¢4 =0, ca =c¢3 = % and with o(¢) and (z) arbitrary real functions and zq
a real constant, represents a well-known general solution to the hyperbolic Liouville

equation (6.39) (with ¢ =d = 1)

20/ (x)" (£)

0() +0(0) + )’ (6:58)

Y(z,t) = log

which coincides with the one obtained by Ibragimov [21] using Backlund transforma-
tion techniques, by Tamizhmani and Lakshmanan [22] using a Painleve analysis, and
by Bhutani, Moussa and Vijayakumar [18] using a direct method for finding similarity
solutions following the Clarkson and Kruskal formalism [36]. It is also the general

solution which normally appears in text-books [23] [24]. The choice

Y;(t) = cosh , Y3(t) = sinh

(—\FC(UQ(t) + z0)> (—ﬁ(UQ(t) + z0)>

W, (z) = sinh (@) , Wa(z) = cosh (i?-@> (6.59)

with ¢; = ¢3 = ~\}~§ and ¢; = ¢4 = 0 and where C is a real constant gives the solution

ve )| o)

W = log [~ (%) 8 ()0 (t)sech? (“T(e(x) + o) + 20)

which is the solution of (6.39) (for ¢ = d = 1) discovered recently by Bhutani et al

[18] using different methods and which can be related to that found in [19] using an
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isovector approach. The choice

Y4 (t) = cos <\/5(o(;f) + zo)> V() = —sin (ﬁ(a(;) + z0)>

Wi(z) = sin (\/529@)) , Wa(z) = cos <ﬁ§($)> (6.61)
with ¢ = ¢35 = \/LE and ¢; = ¢4 = 0 gives the solution
Y = log [(%) 0'(z)o' (t) sec? (@(9(3:) +o(t) + zo)ﬂ (6.62)

which corresponds to a solution of (6.39) (for ¢ = d = 1) reported in Ibragimov [21]
(when C = 4) and which was also retrieved by Bhutani et al [18].
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PART III




108

Chapter 7
A Note on the Linear Stability of Burgers Vortex

7.1 Overview

In this chapter®, a two-parameter family of analytical solutions of the linearized equa-
tions for axially-dependent disturbances to the three-dimensional base strain field
associated with the well-known axisymmetric Burgers vortex is presented. The solu-
tions are valid asymptotically at large axial distances from the stagnation point. By
a formal perturbation analysis, perturbative solutions are also found for disturbances
to the Burgers vortex for small Reynolds numbers. The solutions are believed to pro-
vide important insights into the nature of the as yet unsolved problem of the linear

stability of Burgers vortex to axially-varying disturbances.

7.2 Introduction

The axisymmetric Burgers vortex represents one of the few known exact solutions
to the full Navier-Stokes equations, however very little has been deduced about its
stability properties since its discovery nearly fifty years ago [41]. Given the extensive
use of the vortex as a model of the fine scale structure of turbulence, its stability prop-
erties are of great importance. The vortex consists of a pure swirl flow superposed on
an irrotational base strain flow. The flow is incompressible. In cylindrical coordinates
(in which lengths are non-dimensionalized with respect to the Burgers length-scale

\/g and times with respect to a~! where a is the strain rate of the background flow

1This chapter is based on an article entitled “A Note on the Linear Stability of Burgers Vortex”
by Darren G. Crowdy, to appear in Studies in Applied Mathematics. 1t is reproduced here with the
kind permission of The Editor (Professor David Benney), Studies in Applied Mathematics, M.LT.,
2-341, 77 Massachusetts Avenue, Cambridge, MA 02139.
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field) the solution can be written

u(r,0,z) = (—r, Vg(r), 22) (7.1)
where
Vis(r) = %(1 2y = % () (7.2)

Re= — (7.3)

where v is the viscosity of the fluid.

Robinson and Saffman [42], and more recently, Prochazka and Pullin [43] have
investigated the linear stability of the vortex to a general disturbance in the plane
perpendicular to the axial straining direction and found it to be stable, at least for
moderately high Reynolds numbers. Leibovich and Holmes [44] analysed the global
stability of the vortex and showed it to be globally unstable for all Reynolds numbers.
These results say nothing about the linear stability of the vortex to the important
class of z-dependent disturbances, and no study of this, either analytical or numeri-
cal, seems to have been carried out before. This is probably due to the difficulty in
even formulating the linear stability problem — the classical notion of “wave-number”
typically associated with Fourier-mode eigenfunctions is not available owing to the
lack of translational symmetries of the base strain flow on which the Burgers vor-
tex is superposed. Rather than viewing this as a drawback, this note ezploits the
non-autonomous nature of the linearized disturbance equations to glean important
analytical information on the large-z behaviour of solutions. We also note that the
two-dimensional linear stability of the related Burgers vortex layer has recently re-
ceived attention [45] but again, the important question of the its three-dimensional
linear stability was not broached.

To elucidate our approach, consider the procedure for analysing the linear stability
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of a two-dimensional Blasius boundary layer [46]. Suppose z is the coordinate along
the wall, and y is the coordinate perpendicular to the wall. In this case the linearized
equations are also not autonomous in z, but by use of a parallel-mean flow assumption
[46], the equations can be approximated by an autonomous set (especially at large
Re - see [46]). The approximate equations then admit the following eigenfunctions

for the streamfunction

iz, y,t) = fly)e*re ™" (7.4)

Fitting the boundary conditions on f(y) (i.e. on the wall at y = 0 and at y — oc) then
provides an eigenvalue relation between k and w. For Burgers vortex, owing to the
non-autonomous nature of the linearized partial differential equations, eigenfunctions
analogous to the Fourier modes above are not available in general. However, in this
chapter, we explicitly find a two-parameter family of self-consistent large-z asymptotic
solutions of the linearized partial differential equations for small Reynolds numbers.
For Re = 0 the solutions have an algebraic dependence on z as z — co. Fitting the
appropriate boundary conditions at » = 0 and r — oo then provides the eigenvaluc
relation between the frequency and the exponent of z in the asymptotic solutions as
expected by analogy with the Blasius boundary layer analysis.

The principal aim of this note is to present our analytical observations on the
structure of a class of solutions of the linearized disturbance equations about the
Burgers vortex for small Reynolds numbers. However, we go further and conjecture
some possible implications of these observations. In the discussion section, we use the
evidence of the explicit large-z solutions found here to put the case for a spatial mode
analysis of the linear stability of the Burgers vortex to axially varying disturbances
and conjecture the possible role played in such an analysis by the solutions found
here. In particular, a spatial mode analysis would essentially involve causing a general
oscillatory disturbance at some z-station near the stagnation point at the origin and
observing whether the disturbances grow spatially as they are convected with the flow

to z — oo. Clearly the possible behaviour of solutions as z — oo is then of crucial
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interest and is fundamental to understanding the linear stability problem. We argue
here that, for perturbations to the base strain field with no vortex (corresponding to
Re = 0) there are two fundamental behaviours of solutions as z — co: some solutions
grow exponentially with z, while the remainder have milder (less-than-exponential)
behaviour as z — co. The existence of the latter class of solutions is demonstrated by
explicit construction, and the subset of such solutions found here is shown to have an
algebraic dependence on z as z — oo. It is argued that it is these solutions (and not
the exponentially growing solutions) that are relevant to the linear stability analysis.
By a formal perturbation procedure, similar explicit large-z asymptotic solutions can
be found for perturbations to weak Burgers vortices (small Re). It does not seem to
be possible to derive explicit analytic forms for the exponential solutions. Because the
family of solutions presented here is not derived in any systematic way (so that there
may well be other behaviours at infinity that we have not identified) it is not possible
to make any definite statements on the linear (spatial) stability of the Burgers vortex
for small Reynolds numbers, but some informed speculations on how to formulate a

numerical treatment of the problem can now at least be made based on this analysis.

7.3 Large-z Solutions for Re =0

It is clearly sufficient to consider the half-space r € [0,00), z € [0, 00). The solution
method is straightforward: an ansatz for large-z asymptotic solutions to the linearized
disturbance equations is made. Assuming the ansatz, certain terms in the linearized
equations are shown to be asymptotically negligible at large z. Solutions of the
resulting asymptotic equations (satisfying appropriate boundary conditions at 7 = 0
and r — oo) are then explicitly found having the form assumed initially. Thus, such
solutions are consistent large-z solutions of the original equations. This is a standard

dominant balance argument [47]. The velocity field is written

u(r, z,t) = (—r +u(r, 2,t), Va(r) +o(r,z,t), 22+ w(r, z,1)) (7.5)
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and the pressure field,
P(?",Z,t) :PB(T’Z)+p(T7Z7t) (76)

where u(r, z,t),v(r, z,t),w(r, z,t) and p(r,z,t) represent the perturbation quanti-
ties to be determined. Ppg(r,2) represents the pressure field associated with the
steady Burgers vortex solution. For simplicity (and through lack of an analogue
to Squire’s theorem for this case) we simply assume that the solutions have no az-
imuthal dependence. This is permissible by the axisymmetry of the Burgers vortex
and strain field. Substituting into the Navier-Stokes equations and linearizing, the

non-dimensionalized evolution equations become,

ou Ou Ou 2V (r) op *u 10u u
R RTID P A AV I T B S T
a T8r+ ‘82 Re( T >U or 8r2+r87" r2+622
(7.7)
ov ov v Vg Vg v 10v v 0%
A T Pl o ¥YB) Y7 YY"
o " T8r+282+R6<8r+r>u oz T rar T T a2
(7.8)
ow ow ow op Ow 10w 0O*w
AR W AT Vi T T .
8t+ v T8r+ “ 2 8z+8r2+ra’r+822 (7.9)
10(ru) Ow
;—~8T + g =0 (7.10)

Note that the solution structure is most clearly seen by working with the above
equations. Thus we have deliberately avoided the alternative streamfunction-vorticity
formulation. Any solutions for u, v, and w must be regular at » = 0. Since we are
seeking perturbations to the Burgers vortex where the vorticity decays exponentially

as r — oo, we shall require all components of the perturbation vorticity also to decay
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exponentially as 7 — oco. A sufficient (but not necessary) condition is that u, v and w
decay exponentially. Thus, for our purposes, we shall impose the boundary condition
on the perturbation velocities that they decay exponentially as r — oc.

We make the following ansatz for large-z asymptotic solutions:

1
—ut
u(r,2.0) ~ alr)e
1
w(r, z,t) ~ w(r)e M —
ZU
1
v(r,z,t) ~ U(r)e‘“tzg+1 (7.11)
1
_ (N —ut
p(?”, 2, t) ~ p(’f‘)e g Z0+1

where p, o are some (generally complex) parameters. It is understood throughout
that the real part of all functions should be taken to obtain a physical solution — by
linearity this can always be done. Assuming the ansatz, it is clear that as 2 — oo the
;—; terms in equations (7.7)-(7.9) can be consistently neglected with respect to the
other terms, as can the % in equation (7.9). All neglected terms in cach equation
are O(Z) (i.c. small for z > 1) compared to the terms retained. Note also that
since z has been non-dimensionalized with respect to the Burgers length scale, the

asymptotic solutions are valid for (dimensional) z > \/g . Note that the alternative of

balancing z-advection with z-diffusion in any of the momentum equations (7.7)-(7.9)

e.g.

0 2
+22—u Y

o~ s (7.12)

is likely to lead to perturbation velocities growing exponentially with z as z — oo.
Substituting the above ansatz for w(r, z,t) into the asymptotic version of (7.9)
yields the following ordinary differential equation (o.d.e) for @(r)

_d2u_)+<+l)du_)+< 2+2)_ 0 (713)
r+ -] — — = .
dr? r/) dr . v
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In principle, if w(r) (satisfying the boundary conditions) can be determined from
(7.13), (7.10) must be solved for a @(r) which also satisfies the boundary conditions.
If an appropriate %(r) can be found, the asymptotic version of (7.8) then provides
an o.d.e for v(r). Finally, if a suitable 4(r), satisfying the boundary conditions can
be found, the asymptotic version of (7.7) can be directly integrated to give the cor-
responding p(r). It remains to see if appropriate solutions to the o.d.e’s can be
determined. (7.13) can be identified with a confluent hypergeometric equation and,

in the notation of [17], the solution can be written

B(r) = M [%@ 1 - (7.14)

where M is the confluent hypergeometric function, regular at the origin. The general

asymptotic behaviour of this function as r — oo is

o () RERE) o)]

where [a],, = a(a+1)...(a+m —1). The requirement of ezponential decay as r — oo

gives the eigenvalue condition ['(b—a) ' =0, i.e. (b—a) = —k where £ =0,1,2....
(using well-known properties of I'(z)). Using the parameters in (7.14), the eigenvalue

condition 1s
p=2k—20+4 (7.16)

Using Kummer’s transformation to identify the solutions in terms of the generalized

Laguerre polynomials L™ (2/2), to within normalization,

o(r) =e " PLOG2/2), k=0,1,2... (7.17)
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with  as in (7.16). The function %(r) must now be deduced from (7.10). It is easily

shown that

1 T
a(r) = oU(r) where U(r) = = / 7o (7) dF (7.18)
r Jo
In general, for arbitrary choices of function w(r), regular at r = 0 and exponentially
decaying as r — oo, the function obtained by integration as in (7.18) clearly cannot
be expected to be exponentially decaying. However, we now illustrate that this is not
the case for w(r) having the special form (7.17) provided k > 1. Substituting from
(7.17) in (7.18) yields
1 &b,

Ulr)y ==~ /0 Fe L0 (72 )2)dF = - Z 2—;Ij(r) (7.19)

where we denote the coefficients of the k-th order Laguerre polynomial L,(CO) (r?/2) by
{b;|7 = 0.k} so that

k
: b o
LY (r*/2) = ;) 57 (7.20)
and we define
L(r) = / P2 g (7.21)
0

It can be shown using integration by parts that
Lir) = f;(r})e ™ /? + 275195 >0 (7.22)
for some polynomial f;(r?). Thus
Ny 2 1
> fire P =5 byt (7.23)

1

from which, without further inspection, it might be concluded that U(r) ~ _ as
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r — o0o. But remarkably,

b = —— — (7.24)
which implies

ébg‘ﬂ sz:(~1)j <f) =0Vk>1 (7.25)

j=0

which then implies that U(r) is indeed exponentially decaying as r — oo (for all
k > 1) as required to satisfy the boundary conditions. Also, it is clear that @(r) is
regular at r = 0. It still remains to establish that an appropriate v(r) can be found.
Substituting the ansatz for v(r, 2,t) and u(r, z,t) into the asymptotic form of (7.8)
yields

d?@ 1\ dv 1 . —p2/9
WjL(r+;)%+<u+3+2a—r—2)v:(h’e)e /24 (7.26)

Even more remarkably, it can be shown that the spectrum of the self-adjoint linear
differential operator (LDO) in (7.13) is a subset of the spectrum of the self-adjoint
LDO on the left hand side of (7.26). Therefore, if (7.16) holds, the solution to the
homogeneous equation (7.26) which satisfies the boundary condition at » = 0 and

r — o0 1s in fact given by

p+4+ 20 r?

5(r) =71 M 9. 7.97
U(T) r 2 ? 2 ( )

or, again using Kummer’s transformation (to within normalization)
o(r) =r e L), (r*/2) (7.28)

Thus, in order for a #(r) (satisfying the boundary conditions) to exist, a Fredholm

alternative compatibility condition will have to be satisfied by the inhomogeneous
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term of (7.26), namely,
((Re)e™Pa(r), r e ™ Ly (r*/2)) = 0 (7.29)
where angle brackets denote the inner product defined by

(£0), 90 = [ g ) orar (7.30)

associated with the self-adjoint LDO on the left hand side of (7.26). In general, for
Re # 0, (7.29) will not hold and there will be no solution for ©(r) satisfying the
boundary conditions and hence no solution having the form of the assumed ansatz.
However, for Re = 0, the equation for #(r) can be solved and is given (to within
normalization) by (7.28). The corresponding p(r) then follows immediately from
integration of the asymptotic form of (7.7). We have therefore succeeded in finding a
family of consistent large-z solutions (for Re = 0) parametrized by integers & > 1 and
the complex parameter o, with u given by the eigenvalue relation (7.16), having the
form originally hypothesized in the ansatz (7.11) and satisfying the required boundary

conditions at r = 0 and r — oc.

7.4 Perturbation Theory for Small Re

Despite the string of fortuitous circumstances that led to the identification of the
above two-parameter family of solutions, it is not expected that these represent iso-
lated solutions which exist only for Re = 0. Indeed we expect to be able to find
perturbative solutions about the Re = 0 results valid for small non-zero Re, although
they will clearly not have the simple form given in (7.11), as already noted by the
failure of such solutions to satisfy the secularity condition (7.29). The relevant per-
turbation analysis is outlined in detail in Appendix M. The analysis is not only
interesting as an example of a tractable perturbation analysis on a system of linear
partial differential equations (an analysis with some very interesting properties — in

particular the eigenvalue relation for small Re can be determined to all orders and
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summed), but it also provides valuable insights into how the large-z solutions found
for Re = 0 change when a weak Burgers vortex is superposed on the base strain field.

To summarize the results obtained, the zeroth order solution is taken to be given by

1

w(r, z,t) = w(r)e H'—

ZU

1

v(r,z,t) = v(r)e Hol—
z *i (7.31)

— ot
u(r,z,t) = oU(r)e” " gy

Mo = 2k — 20 +4
where we define

w(r) = e LY (r2)2)

o(r) =r e PLY, (r2/2) (7.32)
1 /7 _
U(r) =~ [ e IO 2)d7
0

The final perturbed solution for the velocity field can be written in the following

form:

—pt
v(r,z,t) = g (T)(r) + Re 71(r)
+ Re? (2152) (r)(log 2)* + o$(r) log 2 + o (7")) + >
1
_ = —pt
U(’F, <, t) - OU(T)B g 25+1 (733)
~ 1 Repn
=0 |l—- —F—
20 + Repy

p=2k+4—25

with p, given by

(r)) (7.34)
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and where the functions {v{)(r)|0 < j < n,n > 2} can be found as eigenfunction
expansions if needed. See the analysis in appendix M for full details.

Finally, note that as Re gets larger it is not expected that the large-z asymptotic
assumptions (i.e. the “dominant balances”) made to simplify the equations will con-
tinue to be valid and a numerical study of the full equations will probably be needed to
see how these solutions continue for larger Re. However, for small Re, we have shown
by explicit construction of self-consistent solutions that the asymptotic assumptions
were the correct ones to make to find those solutions. The two important results of
this section are to note that when Re # 0 the solutions become more complicated
and do not take the simple separable form as given in (7.11), and also to note how

the eigenvalue relation changes for small Re i.e. to first order

(=" u(r)

(r))
o) (7.35)

™)

u=2k+4—-2c+Reo

7.5 Discussion

We now discuss the possible relevance of these solutions to the linear stability problem
of Burgers vortex to axially-varying perturbations. Using the results of this note
we now argue the case for a spatial mode analysis (see [48] and references therein).
Such analyses are usually more appropriate than a temporal mode analysis in stability
problems where there is an overall mean flow direction (the z-direction in this case). A
suggested stability problem is to find the large-z asymptotic behaviour of disturbances
forced by a general localized oscillatory perturbation near the stagnation point (cf.
the oscillating Schubauer ribbon experiment in boundary-layer stability analysis [46]).
In classical spatial mode analyses for flow problems allowing the usual Fourier-mode
decomposition (cf. (7.4)), the eigenvalue relation is interpreted as a relation giving
the (generally complex) wave-number & as a function of the real frequency w, rather
than a relation for the (generally complex) frequency w as a function of the real
wavenumber k (temporal mode analysis). The existence of spatially growing modes

(e.g. a mode with Tm[k]> 0 for some real w in (7.4)) then implies spatial instability
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provided the group velocity of the spatially growing modes is such that the waves travel
downstream of the excitation. We conjecture that the proposed exponentially growing
modes suggested by the balance in (7.12) propagate towards the stagnation point from
infinity and thus would be discounted physically using some generalized radiation
condition. Note that it is clear that if a temporal mode analysis were being carried
out, some form of boundary condition at z — oo will be needed. In that case, it is not
at all clear what form this boundary condition should take. We conjecture that the
appropriate boundary condition should be to discount ezponentially growing solutions,
although the reason for this choice is more easily understood (if the radiation condition
conjecture is correct) from a spatial mode perspective. Thus ruling out solutions
which grow ezponentially with z as physically irrelevant, then naively inverting the
cigenvalue relation (2.12) for o setting u = 4w for the class of large-z solutions found
for Re = 0 yields

0:k+2—%, E=1,2.. (7.36)
Since Re[o] = k+ 2 > 0 for k = 1,2.., implying algebraic decay as z — oo of all the
solutions of the form (7.11) forced by a purely oscillatory excitation of frequency w
(note that the analysis here made no a priori assumptions on the sign of Relo]), this
suggests spatial stability for Re = 0, but since we have not been able to systematically
find all modes, no such comprehensive statement can be made. However, it can further
be speculated that a possible solution (after transients) for Re = 0 to an initial value
problem (IVP) with, say, no initial disturbance in z > 0 and forced by an appropriate

excitation of single frequency w at some z-station near the stagnation point could be

written
oo —r2/2L(0) 2
—iwt € k (T /2)
w(r,z,t) ~ Re |e kz::lAk(w) JesE as z — 00 (7.37)
for some {Ax(w)lk = 1,2..}, with similar expressions for u and v. By the term

“appropriate” we mean a specially manufactured disturbance that will excite (at large
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z) only those modes that we have explicitly found. Since we have not systematically
found all modes, we cannot hope to write down the most general large-z asymptotic
solution generated by a general oscillatory excitation of frequency w. Note that for

Re # 0, again formally inverting (7.35) for o with g = iw implies that

2k +4—

o (e 2a(r), o(r))
2 — Re "0y 5(m)

o= (7.38)
It is then seen from (7.38) (setting u = iw) that by introducing a weak Burgers vortex,
the real part of the exponent of algebraic decay of the perturbation swirl velocity v

is seen to increase or decrease according as the sign of the real quantity

(r)) (7.39)

(e a(r), v
u(r))

(o(r),
is positive or negative, while that of © and w remains the same. Thus we might say
that the particular Re = 0 solutions given in (M.1) become more or less spatially
stable by the addition of a weak Burgers vortex according as the real quantity in
(7.39) is positive or negative (note that the quantity in (7.39) depends implicitly on
the integer k).

Even if we had systematically found all possible asymptotic behaviours, it would
still be necessary to determine, using perhaps some generalized notion of group ve-
locity, which modes propagate downstream of the excitation i.e. towards z — oo, and
in particular that the proposed exponentially growing modes can be genuinely dis-
counted for the physical reasons just conjectured. In general, given the complexity of
the equations, a numerical solution of the full IVP will probably be needed to verify or
disclaim these conjectures. This would constitute a somewhat formidable undertak-
ing, especially if perturbations with azimuthal dependence are also included, and this
is left for future study. In any event, it will be of great interest to see precisely what
role the explicit asymptotic solutions found here play in the linear stability problem

of Burgers vortex to axially-varying perturbations for small Reynolds numbers.
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7.6 Summary

In summary, the analytical observations presented in this chapter throw light on the
structure at large axial distances of a certain class of solutions of the linearized dis-
turbance equations about the Burgers vortex. Given the complexity of the equations,
it is remarkable that any such explicit analytical insights can be made at all. In this
section it has further been argued that these observations are important for provid-
ing clues for the formulation of the linear stability problem for the vortex to general
three-dimensional disturbances. At the very least, the results allow some definite
mathematical questions to be asked which a future numerical treatment of the linear
stability problem might attempt to answer. Certainly they suggest that allowance
should be made in any numerical treatment for a continuous spectrum associated
with the z direction and a discrete spectrum associated with the r direction (some
collocation method using the complete set of Laguerre polynomials found above seems
appropriate). The solutions found above might provide a useful check for a numerical
code. Finally, we remark that the results also suggest the possible use of some form

of Mellin transform technique as a tool in the numerical study of this problem.
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Appendix A Proof of Theorem 1.4.2

Proof: First, assume that JQ (t) = 0 for kg > M — M,. Then, from (1.39) and the

definition of JJ in (1.47), it follows that

7§C<J'H(g,t) dc=0for j=ko— M+ My > 0 (A1)

where
H(¢ 1) = CMR(1/C,t) 2 (A.2)
since H((,t) is known to be analytic on |(| = 1, it must have a Laurent series

convergent for |[¢| = 1 (and locally in an enclosing annulus). Writing this as
H(Gt)= > Ha(t) (" (A.3)

it is clear that (A.1) implies that H_; 1 = 0 for j > 0, i.e. all negative coefficients of
the Laurent expansion for H((,t) are zero. Thus H((,t) is analytic in |¢| < 1. Since
it is known that z. is analytic and nonzero there, then it follows that CMB(%, t) is also
analytic in || < 1. We conclude that h(¢,?) must be polynomial of degree at most
M.

Conversely, assume that h((, t) is a polynomial of degree M or less. It follows that
CMh(1/¢, 1)z is analytic for |¢| < 1. By Cauchy’s theorem, we deduce Jp (t) = 0
for kg > M — M, and the proof of Theorem 1.4.2 is complete.
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Appendix B Proof of Theorem 1.4.4

Proof: Note that since M — My > ry by (1.34), then (1.53) gives the appropriate
evolution equation for J) when ky > M — M,. By inspection of (1.53), J¢ (t) = 0
for kg > M — M, is clearly a solution of the initial value problem. However, this does
not address the question of uniqueness. In order to show uniqueness, for || < 1, it

is convenient to express

=S L (B.1)
n=0
N I(¢,t 'r
3G T6R0 S g (5.2
p=1 ¢ Cp
It is clear from (1.50) that
dn = —koln +Tp, 1> 0 (B.3)

Note that 7,, and 7}, are not dependent on kg, unlike d,, defined in (1.50). Equation

(1.53) can be then be rewritten as

j/(ﬂ)o Z kOI ‘] (ko+7) + Z T JH (ko+j) (B'4)

j=0

It is convenient to extend the definition of I; and Tj for j < 0 by setting them to
zero. Then for ky > M — M,,

Ty =— > kO]jJ(()ko+j)+ > TjJ(OkoH) (B.5)

j:—oo j:—OO
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We define new variables

Up(t) = J2(t) for k > M — M, (B.6)
Then for kK > M — M,
Up=— > kLiUip+ >, T Uy (B.7)
j= o0 j=—eo0

We extend Uy to k < M — My by requiring U (0) = 0 and demanding that it satisfies
(B.7), even for k < M — M,. If we now define

UG = 3 Uklect (B3)
fe)= Y Lo =1 (B.9)
(G = Y T =10 (B.10)

Multiplying (B.7) by ¢* and summing over k it is clear that U((,t) satisfies
U+CIU)-TU=0 (B.11)

We know that as long as z; # 0in [(] < 1, I((,t) defined by (1.38) is analytic
for || < 1. This implies I((,t) = I(¢™',t) is analytic for [(| > 1. Further,
by inspection, it is clear that T(¢,t) is analytic in this domain as well. The initial
conditions on J,go for ky > M — My imply Uy, = 0 for all kg and hence U((,0) =
0. From the well known theory of first order partial differential equations, whose
coeflicients are known a priori to be analytic over some domain, it follows from
(B.11) that the unique solution is U((,t) = 0. This implies all Uy (¢) (and hence all
J2(t)) for k > M — M, are zero. Thus, Theorem 1.4.4 is proved.
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Appendix C Proof of Theorem 1.5.1

Proof: We use Theorem 1.4.1 and the expression for K; in (1.56) to conclude that

— (M = My) § K;(C, k)T ()2, )¢, )¢
+ § K k)26 )2 )G

Using (1.51) the integrands in (C.1) are seen to be analytic for |(| < 1, except
possibly at { = fj_l. We deform the contour and rewrite (C.1) as

4 (E — CI(C 1)
(-G
&

JL(t) = k; K;(C,t; k) [

] #(E,0)2¢(C, D)
(¢~ =

Cl (C,t)]

2(¢, 1)z (¢, 1)dC

N ( —
. L dt
+ ;’Ypﬂi_c_j”:f KJ(Cat’ k]) [ 5

P#j

SO M) KGR0 Dz e o

. KGHR)2G(C )2(C e

where ¢ is chosen small enough to ensure that the series in (1.57) is convergent for
|C—§j_1] < e Using (1.57), and carrying out term by term integration (valid since the
convergence is uniform), the result (1.58) immediately follows. Further, if k; > 7r; it
is clear that the integrand K (¢, t; k;)2G((, t)2¢(¢, ) is analytic everywhere in || < 1
and hence (1.59) follows. The proof of the Theorem 1.5.1 is then complete.
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Appendix D Proof of Theorem 1.6.1

Proof: 1t is clear from the results of previous sections that the evolution of the blob

is given by

)
GO = e ooy (1)

where h((,t) remains a polynomial of degree M, and the poles (;, j = 1..NV, evolve
according to (1.51). Suppose there exists an index j such that v; = 1 with r; = 0,
i.e. G(C, ) is free of any singularity at ¢ = ;. Consider k; = 0 in (1.58); it is clear

from (1.58) that since r; = 0,
J=—diJ} (D.2)

Using (1.51) and (1.57), it follows that

Z% (g)?@)~W—mm¢w (D.3)

p#J

From (D.2) and (D.3),

d d N d -
Eloﬁ(ﬂ vadt log(¢; ' = ¢t — (M — Mo) = 10g(G;) (D.4)

pséj

Integrating with respect to time yields,

B, = _ (D.5)

where the complex constants B; are determined from initial conditions. Hence the

theorem is proved.
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Appendix E Dirichlet Formula for an Annulus

In this appendix we derive the Poisson integral formula for a general function f(({) =
u(r, §) +iv(r, ) (where ¢ = r exp(i¢)) analytic in an annulus p < [¢| < 1in terms
of the values of u on the two boundaries || = 1 and |(| = p. Since f(¢) is analytic
in the annulus, its real part will be harmonic there. One way to derive the result is

to use the well-known result that a general harmonic function in the annulus can be

written

7L

u(r, @) = ap + i [anr" + cnp”} cos(ng) + {2 [bnr” + d;f ] sin(ng)
n=1

n
r n=1

(E.1)

where

vo= o [l 8)a6 = [ ulp.¢)dg (£:2)

:277. o7

(this might be termed an ‘averaging condition’) and for n > 1 it is easily shown that

= s [ (1,6 = P, )] cos(nd ) €3)
b= gy ) [0(1.6) = ulp, )] sin(ne )i (B.4)
o=~ ) (o) = (1, )] cosne ) (E5)
dn = W_l—p—) [ w8 — ut, ) sin(ng')as (E.6)
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Substituting these integral expressions for the coefficients into E.1 yields

u(r, ¢) = é}% /027r w(l, d)dd + %/OQW db'u(l, &) <§1 {Tn B g;”_} cos((lrb(_aﬁp;nc)b’)))
+ % /OQF de'u(p, ¢') <§:1 {—rnpn + f_:] COS((f(_¢p;n<)I5'))> -

We now make two important observations: first,

Thus substituting these expressions (and summing the geometric series appearing in

gm0 -6

&) — pn
2§_, o} 2n g
TSR KZ)

them) we can write

Q=5 [ dou(1,8) |1

1 27
v 5o [ ddule.9)
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where C is some purely real constant. This can be rewritten as

e ()]

%ﬁé " 25; (1—5;27) [(ZQ) R (9 *”” (F.11)

2w
— iw/o do'u(p, d") +iC

f(C %/wlé

1 2 , ,
_ﬁ 0 d¢U(p,¢)

Now note that the kernel function can be rewritten in a natural way in terms of the

function P(¢) which is defined in Appendix F. To see this, note that

P/ ( C) p2m o0 p2m
EPO T +%G7+Z%w%7£m%%9
1

_ +<+222p2mn<n_£ﬁ>

m=1n=1

2n
:1+C+22<Cn > f 2n

p

(E.12)

Using this result we clearly get (in obvious notation)

1 ¢’ ¢ P'(7)
1O =5 @) (1—2—,P -

_L dé’ B _P 1
2m/<’; = (" u(c) <1 ’ 'P(%)

1 d¢’
- %/m = ¢ Tl +ic

) (E.13)

Thus the result is an integral representation of the function f({) in terms of its real

parts on the two boundaries of the annulus.
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Appendix F The Function P(()

The function P(() is defined, for all { # 0, by the following product representation

o0

Po=0-aTa-moll (1-7) (F1)

m=1

where p is taken to be any positive real number, 0 < p < 1. The function has an
implicit dependence on the parameter p which is suppressed in the present notation.

We note the following important properties of this function:

1 1
P(z) = _EP(O (F.2)
P@%)=—§P@> (F.3)

P(C) is related to the first theta function via

P(C) = —iG " p~ /"™ 0, (wu, p) (F.4)
where
¢ =e" and G= [[(1-p™) (F.5)
n=1

See Whittaker and Watson [13] for more details. P(¢) has simple zeros at all points
¢ = p?" where n is any integer, and no zeros at any other points. The origin and the
point at infinity are limit points of these zeros. It is also noted that P(() is analytic
everywhere in the finite ¢ plane apart from the origin.

Further properties of the function P(() can be found, for example, in [13].
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Appendix G Proof of Theorem 2.4.1

Proof: First note that on |{| =1
d
i —2F + 1z (G.1)
while on |C| = p
d p

where L%z is defined to be the time derivative of z, keeping v = Arg ( fixed. Note, this
is not the same as z,((,t) on the inner boundary ¢ = pe”. Throughout this proof,
all conjugate functions are understood to be functions of the conjugate variable (.
Also z¢(¢, t) is understood to mean the partial derivative of z with respect to the first

variable. Consider the time derivative of Jg (%):

d dK dz d
STt = ¢~z + K2 de + Kz

o o7 (7cdC) (G-3)

Using (G.1) and (G.2) this becomes (writing out the integrals on each boundary

separately)
d
%J ]{ Ktzz<+K< 2F+<Iz<> z¢+Kz( 25 + C(UZC)> d¢
— 7{| (Kt + —§K<> EZQ + KZ( (—QF + %]fc + p—CpZ<>
Cl=p

(G.4)
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Now we use the stress conditions on the boundary circles of the annulus which takes

the form on || =1,

21/221/2
—2Fz — 2Fyz = 2Gz — =* << (G.5)
while on || = p,
) p21/221/2
—2Fz — 2Fz = 2Gz + —QC—C (G.6)

Consider first the integral around |(| = 1 in (G.4). Using parts and the stress condi-
tion (G.5) this takes the form

1/2_1/2 _
2 Z N 2
K, — CIK) 2z + K | 2Gz, — 2 4 (14 1) =X G.7
7{41:1( t ¢) 2% ( ¢ c (1+1) c (G.7)
Now using the fact that on || =1
- 1
% A
which follows from (2.13) (with Ao = 0). This reduces to
jlfq (K, — CTK,) 72 + 2K GzedC (G.9)
=1

Now consider the integral around || = p in (G.4). By parts and using the stress

condition (G.6) we get
5 pZ1/221/2 0
K, + LK ~(IK>22 + K| 2Gz + = 1 T T +1) 22
ﬁgw(t/} ¢ <) ¢ ¢ g( ) 2

P, 2pp . _
— ;CKQZZQ =+ TKZ(Zg dC (GlO)
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Using the fact that on |{| = p

1 2p

T2 12
P2z, p

I+I=2Rel =
that follows from (2.13) (with A; = 0), (G.10) becomes
7{ U= QT 22dC + 2K G
Cl=o

Subtracting (G.12) from (G.9) gives the required result.

(G.11)

(G.12)
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Appendix H Proof of Theorem 2.4.2

Proof: First we observe that

2 Ko(C, ko) = KolG, o) [Z”Cd_g_jpl((cc_))
2 (H.1)
‘s p(ccj)}
P(CG)

where P'(() denotes the usual differentiation with respect to the argument, and P,
denotes differentiation with respect to the parameter p. Note that our notation
suppresses the dependence of P({) on the parameter p. Also,

0

3—(KO(C t; ko) = Ko((, t; ko)

ko = P'(CG)
¢t LB

Applying the results of Theorem 2.4.1 we deduce

Jo (1) ]{ Ko2GzedC + f KO{ kol + Z( Z—(@j—) (%g‘j _ @1(415))

¢Gi)
RACONE
+ 5P Pp(céj) )}224 d¢ (H.3)
We now define the following function
Z”)’J ) CJ (€:t) ) + 0 P(CC) (H4)

Note that

_ . 1 1
P,(¢G) = —2P(¢¢; el — :

J
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Notice P,/ P is singular at ¢ = fj"po” for a non-zero integer n and therefore is analytic
in C. The first term on the right hand side of (H.4) is also free of singularitics in C'
provided (;(t) is evolved according to %il = (1 (C_j’l,t), which can equivalently be

written as

¢t
dt

= -G (¢Nt) j=1.N (H.6)
Since T'(¢,t) is then analytic in C' it therefore has a Laurent series which we denote

T )= Y T (5.7)

j=—o0

This expansion is convergent everywhere in C. We also define the following Laurent

series

I(¢,t) = fi L¢? (H.8)

j=—00

which is also convergent in C. Using these expansions it is straightforward to see that

equation (H.1) can be written

B == 3 koliJsy + 2 Tiiy (H.9)

Jj=—00 J=—00

Note that the first integral on the right hand side of (H.3) gives no contribution since
G(C,t) is assumed to be analytic in C. We now define the function J((,t) via

=3 2 (H.10)

j=—o0

and also the following functions

[(¢, 1) =1(¢H ) (H.11)
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T(¢ 1) =T, 1) (H.12)

Multiplying (H.9) by (¥ and summing over all integers ko yields the following partial
differential equation for J(¢,t)

oJ J, - A

— —(1J)-TJ=20 H.13

S+ G 1) (H.13)
Note that in the annulus 1 < |[¢| < p ! the coefficient functions of the first order
partial differential equation (H.13) are known a priori to be analytic. Thusif J(¢,0) =
0 in this domain, then by the well-known theory of first order linear partial differential
equations whose coefficients are known a priori to be analytic over some domain, we

deduce that the unique solution is J((,t) = 0 for all times that the solution exists.

Hence the theorem is proved.
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Appendix I Proof of Theorem 2.4.3
Proof: Define the Laurent series of z, as follows

(6= 7" (11)

Since 2 is analytic in C then this series converges everywhere inside C and on the

boundary dC. We also denote the Laurent expansion of h(¢,t) by
h(C,t) =D Hal" (L.2)

which is also known to be convergent everywhere inside C' and on the boundary 9C.
First note the following facts which result from the relation (2.27) for z(¢,¢) and the
properties (F.2) and (F.3) (in Appendix F) for P(()

A¢CHLt) =R PN
0= Trce)]

2’ ) = =17
D Y TP

Now suppose that Jp (t) = 0 for all ky. This implies that Vko

RO, OB 0(G 0 do= f, R 0G0 ¢
(L.5)

where each of the contour integrals in (I.5) is taken in the anticlockwise sense. Since

|7 =1on |¢|=1and |p*¢ | = pon |(| = p then we can write

R(Ct) = 3 HaC ™ on [¢] = 1 (L6)
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h(p*¢h ) = Huyp™ (" on (¢ =p (L.7)

Similarly expanding z;(¢,t) as a Laurent series (valid on both boundaries of C) (1.5)

becomes

R(t) ﬁ[([:l Z Clco+m+Mo Z HnZn—«—de:f Z Ckoer Z HnPQTLZn—&—mdg

m=—00 n=-00 I¢l=p m=—wo n=-00
(L.8)
for all ;. Computing the integrals gives
R Y. HpZnggoi-mo = 9, Hup™ Zn_ko—1 Vko (1.9)

n=—oo n——oo

Now multiply equation (1.9) by ¢**! and sum over all k;. Using k instead of ko we

then get
R(t) i ¢! i HyZop 1 k-my = i ¢! i Hunp™ Zn——1
e e (1.10)
Define the function H((,t) by the Laurent series
H(C ) = n:io H,p?" (" (L11)
where the coefficients {H,} are the same as in (1.2). Tt is known that on (| = %

this series converges and equals h(p%(,t) there. Note also that the left hand side
of (1.10) is equal to R(t)("Mh((,t)z¢(¢("",t) on (| = 1, where it is known to be
analytic with a convergent Laurent expansion. This equality must hold anywhere the
series converges. From consideration of the right hand side of (1.10), it is clear that
it is equal to H((,t)z:(¢™1,t) on [¢| = p~', where it is known to be analytic with a

convergent Laurent expansion. Thus the series in (I1.10) is convergent on [(| = p~!,
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as well. From the principle of analytic continuation, this implies
R(£)¢Mh(¢, 1)z (¢ 1) = H(G 1)z (¢ t) (L.12)

with each side of the equality (I.12) having the same convergent Laurent series. From

the relation of H with h, It follows that
R()CMR(C 1) = h(p*C, 1) (1.13)

Since we know that h((,t) is analytic (at least) in the entire annulus p < |¢] < p ',
(1.13) furnishes the analytic continuation of h((,t) into the entire plane, excluding
the points at 0 and oo. This is the required result.

Conversely, if h((, ) satisfies condition (2.35) for all ¢, and is analytic everywhere
except at 0 and oo then it is clear that J{ () reduces to the integral around 9C' of

the following function of ¢ i.e.
R()CHTMOR(C, 1)z (¢, 1) (L14)

which is known to be analytic in C for all kg, thus the result follows by Cauchy’s

theorem.
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Appendix J Proof of Theorem 2.4.4

Proof: Suppose that h(C,t) satisfies (2.36) and is analytic everywhere except possibly
at zero and infinity. Consider the function M((,t) defined by

MGty = P <§;—1> (J.1)
where {f,,(t)jm = 1..M,} are taken to satisfy
11~ n(0)] = R(1) (1.2

m=1

Note that M ((,t) satisfies the following functional equation which results from the

properties of P({) as described in Appendix F
M(p*¢) = R(t)C M M(C,1) (J.3)

Now define the function N((,t) by

h(¢,t
N(G 1) = &) (7.4
Then it is clear from the definitions of N((,¢) and M((,t) and the known analyticity
of h((,t) everywhere except at zero and infinity that N (¢, ¢) is a meromorphic function
everywhere (excluding 0 and oo) with poles at the points {5,,(¢)} and all equivalent
points {p?"B,,(t)}, where n is an arbitrary integer. It is also easily seen that it satisfies

the functional equation

N(p*¢t) = N(C.1) (J.5)
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for all ¢ # 0. Thus, N((,t) is a lozodromic function in the sense defined in Appendix L.
By the representation theorem (Theorem 4 of Appendix L) for loxodromic functions

we conclude that N((,t) necessarily has a representation of the form

o Imes P(5)
N, t) = SHt) = J.6
(€0 =50 5% (16)
for some S(t) and some functions {7, (t)|rm = 1..M,} satisfying the condition
Mo Mo
L[ (®)] = I [=6n(0)] = R(?) (7.7)
m=1 m=1

Thus by comparison with the definition of N((,t) we conclude that h((,t) can be

written
e =5 11 P () (1)

for some S(t) with the {7,,(¢)} satisfying (J.7). This is the required result.
The converse result is trivially established by using the properties F.2 and F.3 of
the function P((,t) in Appendix F.
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Appendix K Proof of Theorem 2.6.1 (Theorem of

Invariants)

Proof: Consider the time derivative of JJ. From (2.49), it follows that

A1y AL (4G - P'(¢G) |, PelCS)
R {Z T ( il “’”)ﬁa«ép) WP

224 dg
(K.1)

By inspection it can be seen that the only contribution to the integral in (K.1) comes
from the simple pole in Z at @* ! since the rest of the integrand is analytic if the
evolution of the poles is given by (2.40). Since the pole at C_j_l is simple, it is easily

seen that (K.1) can be written as:

A R A 0 PG, ! By(GG )|
&~ {Z Y (ﬁ - cpf(cj"l,t)> DU ) s )
p=1 ' ) '
v (K.2)

Using the fact that

- dlog(¢:t
1G5y = 28t ) (K.3)
(K.2) can be written
dlog Ji(t) X d - 2 1\]
i =2 gls([ PG (K-4)
p#]

which can clearly be directly integrated with respect to time to give the required

result.
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Appendix . Loxodromic Functions

Again it is assumed that the real parameter p is such that 0 < p < 1. A loxodromic

function L(¢) is a meromorphic function satisfying the functional equation

L(p*¢) = L(¢) (L.1)
for all ¢ # 0. The fundamental annulus is defined as the annulus

pP<lC] <1 (L.2)

Note that whenever zeros and poles are discussed in the following, each zero or pole
is assumed to appear repeatedly according to its multiplicity. We now state, without
proof, some of the important theorems concerning loxodromic functions that are used
in the main body of this paper. The proofs can be found in the standard references
(e.g. [12]-[14]).

Theorem 1

A loxodromic function L(() has the same number of zeros and poles in the funda-
mental annulus.

Theorem 2

If a loxodromic function L(C) has zeros at points {n;|7 = 1..M} and poles at points
{¢;l7 =1..M} then

e
J= . 2u

=p (L.3)
HjM:I Ty

for some integer u (positive, negative or zero).
Theorem 3
If ( =, is a zero of a loxodromic function, it has countably many equivalent zeros at

the points n; p°™ where n is any integer. Similarly if ( = (; is a pole of a loxodromic
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function it has countably many equivalent poles (of the same order) at points ( =

2n

G1p
Theorem 4
(Representation Theorem for Loxodromic Functions) Any loxodromic function with

zeros at points {n;|j = 1..M} and poles at points {(;|j = 1..M} can be written

P()P(5)P()

LI)=R 28
© P(é)P(-C%)....P(%)

(L.4)

for some integer p.

Remark 1

Loxodromic functions and elliptic functions are intimately related. In particular, by
use of the exponential map in Appendix F and Theorem 4, we see that a general

loxodromic function L(¢) can be written

. 0i[—i/21og(), PO [—1/210g(;5,), ]

- R n i L5
O = g a2 108(£), 1 Oh] /2 08(22). 4] (L-5)

where p is an integer, and R is a constant. This is the well-known representation
theorem for elliptic functions. In particular, defining u = log ¢ and L{u) = L(¢) it is

clear that

L(u+2logp) = L(u) (L.6)

L{u+ 2mi) = L(u) (L.7)

ie. f/(u) is a meromorphic, doubly-periodic function of u, that is, an elliptic function.
This identification is useful since the theory of elliptic functions is very well developed

and many results can be imported to assist in the calculations carried out in this

paper.
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Remark 2

From the above representation theorem it is clear that a loxodromic function is com-
pletely determined once its zeros and poles in the fundamental annulus are known,
as well as its value at one other point.

Theorem 5

A loxodromic function cannot have only one simple pole in the fundamental annulus.

Theorem 6
(Liouville Theorem for loxodromic functions) A loxodromic function with no poles is

a constant function.

Further information on the theory of loxodromic and elliptic functions can be found

in [12] [13] [14] [16] [17].
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Appendix M Perturbation theory of small Re

The zeroth order solution is taken to be given by

1
w(r, z,t) = w(r)e *t—
ZU
_ _ 1
v(r, z,t) = 0(r)e “OtZUH L)
) .
_ ~pot
u(r, z,t) = aU(r)e ™ g

Mo = 2k - 20+ 4
where we define

@(r) = e 2L (r?/2)

o(r) =r e 2L, (r?/2) (M.2)
1 T =2

U(r) = —/ Fe 1210 (72 /2)dF
7T JO

It is taken to be understood that the solutions sought are asymptotic solutions valid at
large z, although we shall use = rather than ~ throughout. We now seek to continue
these solutions for small non-zero Re. In the following analysis, special care must
be taken to ensure that we are always finding a perturbation to the above zeroth
order solution for given k£ and o, and that we do not add onto the perturbed solution
any contributions from neighbouring solutions. This will ensure uniqueness of the
perturbed solution.

We now attempt to solve the same large-z asymptotic equations as done in chapter
7 in the case of zero Reynolds number — in other words, the same dominant balance
is expected to be good for solutions for small Re. First it is observed that the large-

z asymptotic equation for w(r, z,¢) is independent of Reynolds number. Thus the
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perturbed solution for w(r, z,t) must also have the form

w(r, z,t) = e_rz/QLch) (r2/2)6_“tzi& (M.3)
where we take
=ty + Re py + Re? pg + ... (M.4)
Note also that the eigenvalue condition continues to be
w=2k—-20+4, k>1 (M.5)
Thus we immediately conclude that
6:U—R€%—RC2H;~... (M.6)

It is seen that the perturbed expression for w(r, z,t) has exactly the same functional
form as the zeroth order solution but with perturbed parameters. By continuity, the

same is true of the perturbed w(r, z,¢) which can be written

o [T _ _p2 - N\ 1
u(r, z,t) = <-r~/0 e /QL,(CO)(TQ/2)dr) e mzf}ﬂ (M.7)

This is again fortuitous because it means that exactly the same arguments as used
before ((7.19)-(7.25)) can be applied to the perturbed u(r, z,t) to demonstrate that
it is a function decaying exponentially as r — oo. It remains to determine py, po...
which are derived from solvability conditions for the perturbed wv(r, z,t). We note
at this point that while solving for v(r, z,t), care will be taken not to add into the
solution any terms having the following form

CRe? logz (r)

Za+1

e Mt (M.8)

for any integer j and any constant C. This is clearly the O(Re’) term in a small
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Reynolds number expansion of

L:)le‘“t where 6 = o — C Re’ (M.9)
ZO'

It is straightforward to show that adding in any such solution would correspond to
altering the parameter o in the zeroth order solution, however it is assumed that a

particular value of o is specified a prior:.

As a convenient shorthand we define the following linear operators:

2 1\ 0 0
= — - = — =) —2z—
M(r,z) r? +(T+r> ar " (ﬂ+1 2) “92
0* 1\ & 1 0
Mofr2) = gt () gt (ot 1= ) — 225
d? d (M.10)
1W0(7“):ﬁ+ <T+—> 5‘*‘ <M0+1——> +2(O’+1)
Note that the solution of the ordinary differential equation
My(r)Q(r) =0 (M.11)
is
Q(r) = Av(r) (M.12)

for some constant A.

Note also how the operator Mo(r, z) acts on functions such as Q(r)'%:Z (p an integer):

og? z og? z (=1,
M) ()22 ) = (2] aarae) - 20 (2

(M.13)

We now write

Il
3>
[l
=

v(r, z,t) (r,z)e ™™, wu(r, z,t) (r, z)e # (M.14)
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where it is already known from (M.7) that
Ur) (M.15)

u(r,z) =46 g

with & given by (M.6). In terms of this notation, the equation for o(r,z) can be

written
(M.16)

M(r,z) o(r,z) = (Re) e " /% a(r, 2)

This is a partial differential equation for ¢(r, z) with an O(Re) forcing depending on

@(r, z). Expanding (M.15) for small Re gives

) B oU(r) i logz
a(r, z) = o <1+Re< 5 9,
2] (M.17)
pu1-log U2 M1 [25)
Re? I = )=
+ < 8 + ( 2 40) 20))
We now write
(M.18)

o(r, z) = vo(r, 2) + Re vy (r, 2) + Re® va(r, 2) + ...

Substituting the expansions for u, u(r, z,t) and v(r, z,t) into (M.16) gives

(Mo(r, 2) + Re py + (Re*)ps + ) (UQ(T, 2) + (Re)vi(r, 2) + (Re)?vy(r, 2) + )

U(r)> <1+ (Re) (in L 120gz> + ) (M.19)

— o(Re)e /2 | 2221
o(Re)e <Z"+1 5

The leading order equation obviously gives the zeroth order solution

o(r) (M.20)

oc "2 (r) (M.21)
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To solve this, we try vi(r, z) = —ﬁ% yielding
My(r)o,(r) = = d(r) + oe 72U (r) (M.22)

This is an ordinary differential equation for the function o;(r) and by the self-
adjointness of the operator My(r) a solution for 7,(r) satisfying the boundary condi-
tions only exists provided a Fredholm alternative condition is satisfied by the inho-

mogeneous term in (M.22), namely,
(= o(r) + oe " 2U(r), 5(r)) =0 (M.23)

yielding the result

(o U )

) 5(r))
M=, o) (M.24)

Given this solvability condition, ©1(r) can, in principle, be computed as an ex-
pansion in the complete set of eigenfunctions {rL{"(r?/2)exp(—r?/2)|p = 0,1..} if
needed. Observe that 7;(r) seems only to be determined to within an arbitrary multi-
ple of ¥(r), but adding any amount of the function #(r) simply alters the normalization
of the zeroth order solution which is assumed fixed a priori. At second order in Re
we obtain

i (r)  pav(r) mU(Me ™ opU(r)e ™ ?log 2
Lo+1 Lo+l 9 ,o+1 + 9 ,0+1

My(r, 2)vo(r, 2) = —

(M.25)

We try

log?z\ logz\ _ 1\
IUQ(T’ Z) - ( Za'+1 ) UéQ) (T> + (ZU+1> ’Uél) (T> + <ZU‘+"“1> ’Uéo)<7")
(M.26)
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Substitution and use of (M.11)-(M.13) yields

(282 ) o0+ (55 ) w0100+ () o0

_ (10g Z) <4@<2)(T) . fwlU(T)e‘ﬂ/Q) _m(r)  p(r)

4o+l 2 9 S0+1 So+1

M.27
U2 25 () (20
o 9 40+1 + So+1
Using linearity and equating coefficients of the three different functions of z,
Mo(r)oP (r) =0 (M.28)
from this we deduce that
s (r) = Av M.29
vy (r) = Av(r) (M.29)
for some constant A. Also,
i —r2/2
Mo(r) () = 4A45(r) + 22U (M.30)

2
The Fredholm alternative condition that an appropriate 7751) (r) should exist yields the

value of the constant A. We can then solve for the function 'Eél)(r) as an eigenfunction

expansion to within an arbitrary multiple of ¥(r), the kernel function. As previously

discussed, if we were to add any of the kernel function to 1751)(7"), we would be adding

a term of the form (M.8) which we have disallowed for reasons discussed earlier. This
requirement implies that z_)g]‘)(r) is uniquely determined. Finally

_ mU(r)e

Mo(r)q';éo)(r) = — it (r) — pa(r) 4 2651)(T)

(M.31)

By construction, the first and fourth terms on the right hand side are orthogonal to
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v(r) but solvability for @go)(r) uniquely gives the value of uy i.e.

o (mUme 2 w(r)
S O T (M.32)

Again, Uéo)(’l“) can be written as an eigenfunction expansion if required. The pertur-
bation calculation was carried out to O(Re?) and it became clear that the procedure
could in principle be carried out indefinitely. Indeed, the perturbation analysis reveals
a particularly interesting structure which in fact allows the eigenvalue relation to be
not only determined to all orders, but also summed. This is primarily a result of the

fact that the form of the forcing in (M.16) is known at all orders in Re. It becomes

clear that

& ?)7>( r) _ _2%#”_1 Vn > 2 (M.33)

(e U
T ),

U (7 = i

Z log 2)7v{ (r) Vn > 2 (M.34)

where v{)(r) are some functions of r which can be determined as eigenfunction expan-
sions from the perturbation analysis. The results (M.33) and (M.34) can be formally

proved by induction. Using (M.33) in (M.6) it becomes clear that

Qv
Il

1
- §(Re p1 + Re? g + Re® g+ ...)

R i 1\ 2
g H1 T (1 — ReP 4 Re? (ﬂ) + ) (M.35)
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The final perturbed solution for the velocity field can therefore be written

w(r, z,t) = w(r)e ™

N
q~‘ =

—put

;H <1‘)(7‘) + Re v1(r)

v(r, z,t) =

+ Re? (vé”(r)(log 2)* + Uél)(T) log z + Uéo)(T)) + )

1
u(r, z,t) = U (r)e ™ ——
ZO'
) e (M.36)
=01 —-—
20 + Repy

p=2k+4-25

with gy given in (M.24) and where the functions {v{(r)[0 < j < n,n > 2} can be
found as eigenfunction expansions if needed.

Although the radius of convergence of the expansion in Re is not known, we do
not anticipate any problems with convergence. The fact that the eigenvalue can be
found to all orders and has a finite sum lends credence to this. It is straightforward
to see that the corresponding perturbation pressure will have the large-z asymptotic
form

p(r)

p(r,z) = g + Re

s S0+

(0) 1
Di (T‘) + (1)(7") ng}

(0) 2
- log z log” z
py (r) +p§1)(7“) g +p§2)(7n) & -’ -+ O(Reg) (M.37)

2
+ Re zg+1 ZU+1 Zfr+1

where the functions of r appearing in (M.37) can be obtained by direct integration of

the asymptotic form of (7.7).
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