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Abstract

Computational protein design seeks to identify amino acid sequences that will
fold into a specified three-dimensional structure. Extending this technique from
identification of sequences that retain a native structure to the design of sequences that
will carry out a function has been a significant challenge. Modeling the energetics of
catalysis and binding requires considerations that may not be necessary for the design of
folded, stable proteins. I have investigated models for protein electrostatics with the goal
of improving current methods for the design of functional molecules. The work in this
thesis is focused on the Poisson-Boltzmann model, a dielectric continuum model that
describes the effect of solvent polarization on the electrostatic potential in a protein. I
found that this model is amenable to design calculations, as judged by its ability to be
decomposed into terms that are used in sequence selection.

Aside from energy estimation, there are a number of assumptions that are made in
protein design in order to make the problem computationally tractable. Because of these
assumptions, and also because of incomplete models of protein function, it is expected
that many proteins sequences will need to be experimentally characterized to find one
that meets a difficult design goal. To this end, I examined methods for using
computational tools to produce libraries of protein sequences. These studies showed that
(1) structure-based, computational library design methods can be used to generate
libraries with a high number of folded proteins and (2) computational design is a

promising tool for generating highly mutated proteins with a diverse range of functions.
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Chapter 1

Introduction



The central goal of computational protein design is to identify amino acid
sequences that will fold into a given three-dimensional structure.'” This is accomplished
using the scheme shown in Figure 1-1. The design process starts with the selection of a
three-dimensional protein structure. Residues to be designed are selected: this might
include all of the residues in the protein or just a subset as shown in Figure 1-1. The
conformational flexibility of the candidate amino acid sidechains at each position are
modeled using discrete conformations, referred to as rotamers.’ The energy of each
rotamer is calculated using an energy function that is primarily based on molecular
mechanics force fields.*” Energies are stored for each rotamer’s interaction with the rest
of the protein and for the interaction between all pair of rotamers. This energy table and
specialized search algorithms are used to search the multidimensional sequence/energy
landscape to find the optimal rotameric sequence.® A number of variations have been
made on the general computational protein design scheme in Figure 1-1.

Recently, the goal of protein design has expanded from retention of a target fold

0

to include the design of novel function.”'® This is accomplished by modeling the

structure in a functionally relevant state and designing an amino acid sequence that will

4 I 4 7\ 4 M\
set up the design problem calculate energies optimize sequence
choose positions \w\ search through energies to find
xr;‘é;\, _instructure that <f> N W, the most optimal sequence
<\‘Q ) will most likely \‘Q\\#
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design goal ) [

calculate energies
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"
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energy

sequence space
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Figure 1-1. Computational protein design. An example is shown in which three
positions on the surface of protein G are designed.



favor that conformational or chemical state. The design of functional molecules has
presented a formidable challenge for the field of computational protein design.
Specifically, binding and catalysis have been refractory to de novo design. We do not
have clear answers for why these are such difficult targets, but one can look at the many
assumptions in the process outlined in Figure 1-1 to compile a list of what factors might
hinder the design of function:

1. Crude approximation of energies

2. Fixed protein backbone and other limitations on conformational sampling

3. Lack of consideration of multiple states

4. Poor models for the relevant chemical states.
The central goal of my graduate work was to address the first issue. To this end we
investigated models for polar interactions, an energetic contribution expected to be
crucial for catalysis and binding. The residues involved in catalysis are overwhelmingly

polar.'"-'?

Similarly, the residues found in protein-protein interfaces more closely
resemble the composition of protein surfaces rather than protein cores.”” Therefore, both
of these processes will require accurate modeling of the balance between favorable
electrostatic interactions and the energetic cost of desolvating polar groups. I pursued my
thesis work with the idea that improved modeling of electrostatic interactions will
accelerate the design of functional molecules.

Chapter 2 of this thesis outlines in detail the many methods that have been used
by protein designers to account for electrostatic interactions. All of the models reported

thus far are constrained by the enormous computational demands of the protein design

problem. For example, in a modestly sized design calculation described later in this



thesis, more than 10°' possible rotameric sequences are possible. A one second
calculation to model the energies of electrostatic interactions in each sequence
conformation would lead to a total calculation time of
1576242655205550000000000000000000000000000000000000000 years. Because of
this challenge, all energies are calculated in a “residue pairwise” scheme in which the
energy only reflects the interaction energy between two rotamers (“two-body”) or
between a rotamer and the rest of the protein that is not being designed (“one-body”).
Search algorithms can then use this table of one-body (£;) and two-body (Ej) energies to

calculate sequence energies as needed

n n n—l1
E=Y E+ > > Ej
i=1 j=t+1 i=1 .

The computational benefit of using a residue pairwise calculation comes at the cost of
accurate modeling of the energies since our most complete theories of protein energetics
have “many-body” terms.

Chapters 3 and 4 describe work on formulating a Poisson-Boltzmann (PB) model
that can be implemented in current protein design protocols. The PB model is a
continuum solvation model in which the dielectric environment and the charge
distribution of the protein determine the electrostatic potential at each atom in the protein.
Since the potential is dependent on the dielectric environment, which is itself dependent
on the position of all atoms in the protein, the PB is a many-body energy model. We
address the issue of whether the one- and two-body energy terms used to guide sequence
selection would be meaningful if derived from the PB model. It was found that the one-

and two-body energy terms provide PB energies that are similar to the energy of the



standard many-body PB model, indicating that the PB model is potentially useful for
protein design methods. In Chapter 3, the initial pairwise formulation is introduced, and
in Chapter 4, improvements to this formulation plus comparison with additional models
are presented. I also investigated the Generalized Born (GB) model as an alternative to
the computationally expensive PB model. In Appendix B, I show that the accuracy of the
GB model, judged as the ability to reproduce PB energies, is similar to models that are
currently used in ORBIT. 1 identify features of the GB model that might lead to its
insensitivity to the microenvironments that are sampled in a protein design calculation.
The promising computational results from Chapters 3 and 4 lead me to implement
the residue pairwise PB model into ORBIT and assess the validity of this model in
experimental tests. In Chapter 5, data is presented for these efforts and for computational
characterization of the PB model’s treatment of hydrogen-bonded sidechains. I used the
design of the surface residues in Drosphilia melanogaster engrailed homeodomain
(ENH) as an experimental test case. Using the PB model from Chapter 4 did not lead to
the design of a stabilized variant of ENH. In attempting to make a comparison between
the PB-designed sequences and those designed with other energy functions, I found
unexpected behavior in this test case. This behavior highlights the fact that design
calculations are highly sensitive to factors that might be unrelated to the energy function.
In this chapter, I also investigate the problem of reconciling the incomplete description of
hydrogen-bonding inherent in continuum solvation, an issue that extends beyond protein
design calculations and must be addressed for enzyme design. In a computational

experiment on a set of crystallographic, hydrogen-bonded sidechain pairs, I showed that



the rotamers chosen by the PB model do not necessarily conform to the geometric
description of hydrogen bonds used currently in the ORBIT force field.

During the experimental characterization discussed in Chapter 5, I made a series
of ENH variants to dissect the relationship between rotamer library and energy function.
One of these variants, designed using the standard ORBIT force field and sequence
biasing, had a melting temperature around 95°C. Chapter 6 discusses characterization of
this variant and also a “supercharged” variant. These two molecules represent extremes
of surface plasticity for the ENH fold: one has highly optimal surface electrostatic
properties while the other has a high degree of repulsion between its surface residues. 1|
also investigated the role of surface electrostatics in WT protein G. In Appendix A, data
is presented for an ion pair on the beta-sheet surface protein G. This ion pair was found
to have a favorable free energy of interaction, but removing it caused a negligible change
in the protein’s thermodynamic stability.

An alternative or complementary approach to addressing the shortcomings listed
at the beginning of this chapter is to take a higher throughput strategy in tackling difficult
design targets. Where possible, medium to high throughput screening could be used to
characterize many computationally designed molecules. The challenge is turning the
information from the design calculation into combinatorial libraries of sequences that can
be synthesized in the laboratory. Chapter 7 discusses the evaluation of a number of
different library design strategies by their ability to create libraries that (1) retain function
in the largest number of library members and (2) perturb the function of the WT parent.
Using green fluorescent protein as a test case, we defined the retention of function as

some measurable threshold of fluorescence, which itself could be considered a lower



bound on the number of folded sequences in the library. Diversity of function was
defined by shifts in the emission peak position. Our experiments showed that structure-
based design methods perform well by both metrics: retention and diversity of function.
In Appendix C, data is presented for the design of combinatorial libraries focused on the
substrate-binding pocket of cytochrome p450 BM3 from Bacillus megaterium. The
p450 libraries were screened in the laboratory and shown to have a high number of folded
variants.

The sum of the work in this thesis is the development and evaluation of
computational tools that can be used in the design of functional molecules. The current
outlook for designing enzymes and binding proteins is positive. Recently, much progress

14,15

has been made in the field of ligand placement in active sites and impressive strides

9,10

have been made in designing enzymes de novo. There is also progress in the field

117 With improved modeling strategies and hybrid

protein-protein interaction design.
engineering methods, the technological benefits of protein-based devices and catalysts

will be realized.
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Chapter 2

Electrostatics in computational protein design

The text of this chapter is adapted from a published review article that was co-authored
with Professor Stephen L. Mayo

C.L. Vizcarra and S.L. Mayo, Current Opinion in Chemical Biology 9, 622—626 (2005).
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Abstract

Catalytic activity and protein-protein recognition have proven to be significant challenges
for computational protein design. Electrostatic interactions are crucial for these and other
protein functions, and therefore accurate modeling of electrostatics is necessary for
successfully advancing protein design into the realm of protein function. This review
focuses on recent progress in modeling electrostatic interactions in computational protein

design, with particular emphasis on continuum models.
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Introduction: the electrostatics challenge

Computational protein design seeks to design the amino acid sequence of a
protein in a manner that preserves the target three-dimensional fold.'” The compatibility
of an amino acid sequence with the target fold is determined by an energy function.
Standard components of protein design energy functions are van der Waals, solvation,
electrostatics, hydrogen bonding, and various statistical terms that approximate entropy

>* The balance between these energetic

and other forces that are not modeled explicitly.
terms has generally been trained on experimental stability data'” or on the ability to
recover wild-type amino acid composition.*’

Recently, the goals of many computational protein design projects have shifted
from preserving the folded structure to designing function. Electrostatic interactions play
important functional roles in many biomolecular systems. In enzymes, surface
electrostatic potential can channel substrates to the active site,” where the electrostatic
environment plays a key role in stabilizing the transition state.” Because enzymes are
such efficient catalysts, the de novo design of enzymatic activity has many technological
applications.'’ Protein-protein interfaces contain a proportion of polar and charged
residues similar to that on the protein surface,'' and therefore their design requires a
careful balancing of polar desolvation energy and electrostatic interactions.'>'* The
control of protein recognition is an important goal for protein designers, as this will allow
for the manipulation of biochemical networks'> in ways that may shed light on signal
transduction mechanisms and potentially lead to the design of novel biological circuits.

Residues that impart function may compromise stability.'® The degree to which

electrostatic interactions stabilize the folded state of a protein has been the subject of
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much debate.'” It has been suggested that electrostatic interactions may play a role in
fold specificity instead of stability.'® Since electrostatics may have a relatively small net
contribution to the free energy of folding in most mesophilic proteins, one can design
well-folded, stable proteins by focusing on producing well-packed, hydrophobic cores
and using only a very crude or damped model for electrostatic interactions."” Indeed force
fields with an orientation-dependent hydrogen bonding potential and a small or non-

20-22 :
However, it

existent Coulombic term have yielded stable, well-folded proteins.
stands to reason that a physical model that accurately captures the electrostatic forces that
allow a protein to fold should be adaptable to the challenges imposed by the desire to
design protein function.

Marshall et al.” showed that for the surface of an all alpha-helical protein, current
electrostatic models used in computational protein design did not accurately capture the
electrostatic effects of helix dipole and N-capping interactions. Restricting the amino
acid identities at N-cap positions to those that have high N-capping propensities and
restricting the charge of amino acids at the N-terminal and C-terminal regions of the helix
allowed for the design of a sequence that was stabilized by 3 kcal mol” over an unbiased
design. Similarly, it has been shown that polar amino acids are found in the cores of

2 Bolon et al.*® designed a stabilized variant of thioredoxin by

natural proteins.
imposing empirical hydrogen-bonding rules that would compensate for the cost of polar
desolvation. In order to make protein design force fields more general, it is desirable to

capture the balance between desolvation and electrostatic interaction energy through

physical modeling as opposed to the heuristics used in the approaches described above.
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In the simplest estimate, the number of sequences considered for even a small, 50-
amino-acid protein is astronomically large (~ 10% sequences). Most successful
computational protein design algorithms approach this combinatorial problem by using
computationally tractable pairwise decomposable energy functions that score the
arrangement of at most two sidechain conformations at a time. The limitation to pairwise
decomposable energy functions has led to the development of efficient sequence
optimization algorithms®’ but has precluded certain energy models that do not lend
themselves to pairwise expressions. Because proteins are surrounded by water, which is
highly polarizable, any accurate description of protein electrostatics is a function of the
solvent environment, making the electrostatic energy a many-body term. It is therefore
necessary to reconcile the limitations of the pairwise approximation with the need for an
accurate description of electrostatics. Furthermore, modeling of water explicitly is
currently intractable for the number of conformational energies that must be calculated
for protein design. Therefore continuum or empirical models have been used in most
protein design force fields to address electrostatic interactions as well as polar
desolvation. It has been pointed out by Jaramillo and Wodak®® that protein design may
be a stringent test of continuum models because design requires that an energy function
distinguish between many micro-environments inside the protein.

In the past decade, great effort has gone into updating the electrostatics and polar
solvation portions of molecular mechanics force fields. In this review, we focus on the
advances in continuum electrostatics for computational protein design. It should be noted
that protein design energy functions have often treated the desolvation of polar and

charged sidechains as a separate term from the electrostatic interaction energy. Since
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both of these terms are functions of the dielectric environment, continuum models
generally propose one consistent treatment for solvation and electrostatics. We therefore
consider the modeling of polar and charged residue desolvation as part of the
electrostatics challenge. Previous reviews of computational protein design have covered

29-31

general methodology, energy functions,™ protein-protein interactions,”> metal

33-35

centers, and catalysis.'"” In addition, continuum models for electrostatics and

. . . 36-38
solvation have been reviewed extensively.

Working models

Poisson-Boltzmann  The Poisson-Boltzmann (PB) equation is considered the standard
for accuracy within the limitations of the continuum description. In PB calculations the
solute is described as a low dielectric cavity embedded in a high dielectric solvent, and
the induced polarization in the solvent is used to calculate the electrostatic potential at all
points in the protein. Analytical solutions to the PB equation exist only for simple solute
geometries such as spheres or cylinders. Numerical methods must be employed for
complex shapes like that defined by a protein molecular surface.® Although the PB
model is not readily pairwise decomposable by side chain, Marshall et al.”’ recently
proposed a two-body formulation using the finite difference PB solver DelPhi. In the
two-body approach, a reduced representation of the protein is used and perturbations to
the dielectric boundary are considered explicitly for each sidechain conformation.
Surprisingly, the energies produced by summing two-body terms are quite close to those
obtained by calculation with the entire surface represented. A pairwise model in which

all possible sidechain conformations are used to define the dielectric boundary has been
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used by Georgescu et al.*” for pKa calculations and may be useful in reducing the

complexity of protein design calculations.

Modified Tanford-Kirkwood The original Tanford-Kirkwood model *' treated proteins as
spheres, allowing for an analytical solution to the PB equation.*” Because advances in
structural biology have shown the spherical representation to be a dubious approximation
for many proteins, Havranek and Harbury® developed the modified Tanford Kirkwood
(MTK) method in which the charge distribution of the protein is mapped from the exact
protein geometry onto a sphere. They also use a shell charge representation and an image
charge solution to calculate the electrostatic free energy associated with a protein
conformation. This model, along with a negative design scheme, was used to create a

series of coiled coil systems that specifically formed homo- or hetero-dimers.**

Generalized Born The Generalized Born (GB) model maps each charge in the protein
to the center of a sphere with a radius that reflects the burial of the charge in the protein.
From thi