
DEVELOPMENT AND EVALUATION OF PROTEIN DESIGN METHODS FOR 
FUNCTIONAL TARGETS 

 

 

Thesis by 

Christina Luisa Vizcarra 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2008 

(Defended May 23, 2008) 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2008 

Christina Vizcarra 

All Rights Reserved 



 iii 

Acknowledgements 

 It has been a privilege to be at Caltech for the last six years.  I thank my advisor, 

Steve Mayo, for providing a great work environment and for allowing me to learn so 

many new techniques.  Even if it was not in the interest of getting research done quickly, 

the opportunity to participate in both computational and experimental projects certainly 

furthered my education.  I am grateful to the members of my committee, Doug Rees, 

Frances Arnold, and Jim Heath for advice throughout this process.  I am also grateful to 

the funding sources that provided support for my graduate work: the Rosen fellowship 

from Caltech and the National Science Foundation’s graduate research fellowship. 

The Mayo lab has been a unique work environment that I feel fortunate to have 

been a part of.  I am thankful to Ben Allen for providing advice and more computer help 

than should be asked of one graduate student.  Ben and Possu Huang were supportive and 

helpful baymates.  Roberto Chica joined the group near the end of my time here but has 

been a wonderful presence in the lab.  It was both enjoyable and educational to work with 

my collaborators in the lab Corey Wilson, Tom Treynor, Daniel Nedelcu, and Shannon 

Marshall.  I owe much to the other members of the Mayo Lab, in order of appearance: 

Premal Shah, Geoffry Hom, Rhonda DiGiusto, Scott Ross, Marie Ary, Cynthia Carlson, 

Peter Oeschlager, J.J. Plecs, Julia Shifman, Jonathan Kyle Lassila, Jessica Mao, Eun Jung 

Choi, Eric Zollars, Oscar Alvizo, Jennifer Keeffe, Heidi Privett, Karin Crowhurst, Barry 

Olafson, Cathy Miles, Alex Nisthal, Erin Drez, Matthew Moore, Swathi Adindla, and 

Kurt Mou.  Many other good friends at Caltech made my time here great: Justin Bois, 

John Keith, Jesse Bloom, Bonnie Sheriff, Amie Boal, and Heather Wiencko.  



 iv 

I have had the opportunity to work with a great group of collaborators. Ned 

Wingreen, Chen Zeng, and Naigong Zhang were thoughtful and always responsive.   My 

time working with Mike Chen and Chris Snow in the Arnold lab was a lot of fun. I 

received a great deal of help from Emil Alexov and Barry Honig at the start of my 

projects.    

I am particularly grateful to past educators who have helped me get to this point: 

Dave Benson, Estela Gavosto, and Ward Thompson at the University of Kansas, and 

Cole Ogdon at Shawnee Mission East High School.  

My family has provided me with constant support and love.  I thank my parents 

Mary and Jorge Vizcarra for always encouraging me to make education a central focus of 

my life.  I thank my many siblings, nieces, nephews, cousins, and in-laws for being 

supportive and for visiting us out here on the west coast.  Finally, I owe the most thanks 

to my husband Matthias, who moved to L.A. with me and makes life beautiful. 

 



 v 

Abstract 

 Computational protein design seeks to identify amino acid sequences that will 

fold into a specified three-dimensional structure.  Extending this technique from 

identification of sequences that retain a native structure to the design of sequences that 

will carry out a function has been a significant challenge.  Modeling the energetics of 

catalysis and binding requires considerations that may not be necessary for the design of 

folded, stable proteins.  I have investigated models for protein electrostatics with the goal 

of improving current methods for the design of functional molecules.  The work in this 

thesis is focused on the Poisson-Boltzmann model, a dielectric continuum model that 

describes the effect of solvent polarization on the electrostatic potential in a protein.  I 

found that this model is amenable to design calculations, as judged by its ability to be 

decomposed into terms that are used in sequence selection.   

 Aside from energy estimation, there are a number of assumptions that are made in 

protein design in order to make the problem computationally tractable.  Because of these 

assumptions, and also because of incomplete models of protein function, it is expected 

that many proteins sequences will need to be experimentally characterized to find one 

that meets a difficult design goal.  To this end, I examined methods for using 

computational tools to produce libraries of protein sequences.  These studies showed that 

(1) structure-based, computational library design methods can be used to generate 

libraries with a high number of folded proteins and (2) computational design is a 

promising tool for generating highly mutated proteins with a diverse range of functions. 
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 The central goal of computational protein design is to identify amino acid 

sequences that will fold into a given three-dimensional structure.1,2  This is accomplished 

using the scheme shown in Figure 1-1.  The design process starts with the selection of a 

three-dimensional protein structure.  Residues to be designed are selected: this might 

include all of the residues in the protein or just a subset as shown in Figure 1-1.  The 

conformational flexibility of the candidate amino acid sidechains at each position are 

modeled using discrete conformations, referred to as rotamers.3  The energy of each 

rotamer is calculated using an energy function that is primarily based on molecular 

mechanics force fields.4,5  Energies are stored for each rotamer’s interaction with the rest 

of the protein and for the interaction between all pair of rotamers.  This energy table and 

specialized search algorithms are used to search the multidimensional sequence/energy 

landscape to find the optimal rotameric sequence.6  A number of variations have been 

made on the general computational protein design scheme in Figure 1-1.   

 Recently, the goal of protein design has expanded from retention of a target fold 

to include the design of novel function.7–10  This is accomplished by modeling the 

structure in a functionally relevant state and designing an amino acid sequence that will 

Figure 1-1.  Computational protein design.  An example is shown in which three 
positions on the surface of protein G are designed. 
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favor that conformational or chemical state. The design of functional molecules has 

presented a formidable challenge for the field of computational protein design.  

Specifically, binding and catalysis have been refractory to de novo design. We do not 

have clear answers for why these are such difficult targets, but one can look at the many 

assumptions in the process outlined in Figure 1-1 to compile a list of what factors might 

hinder the design of function: 

1. Crude approximation of energies 

2. Fixed protein backbone and other limitations on conformational sampling 

3. Lack of consideration of multiple states 

4. Poor models for the relevant chemical states. 

The central goal of my graduate work was to address the first issue.  To this end we 

investigated models for polar interactions, an energetic contribution expected to be 

crucial for catalysis and binding.  The residues involved in catalysis are overwhelmingly 

polar.11,12  Similarly, the residues found in protein-protein interfaces more closely 

resemble the composition of protein surfaces rather than protein cores.13  Therefore, both 

of these processes will require accurate modeling of the balance between favorable 

electrostatic interactions and the energetic cost of desolvating polar groups.  I pursued my 

thesis work with the idea that improved modeling of electrostatic interactions will 

accelerate the design of functional molecules. 

 Chapter 2 of this thesis outlines in detail the many methods that have been used 

by protein designers to account for electrostatic interactions.  All of the models reported 

thus far are constrained by the enormous computational demands of the protein design 

problem.  For example, in a modestly sized design calculation described later in this 
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thesis, more than 1061 possible rotameric sequences are possible.  A one second 

calculation to model the energies of electrostatic interactions in each sequence 

conformation would lead to a total calculation time of 

1576242655205550000000000000000000000000000000000000000 years.  Because of 

this challenge, all energies are calculated in a “residue pairwise” scheme in which the 

energy only reflects the interaction energy between two rotamers (“two-body”) or 

between a rotamer and the rest of the protein that is not being designed (“one-body”).  

Search algorithms can then use this table of one-body (Ei) and two-body  (Eij) energies to 

calculate sequence energies as needed 

. 

The computational benefit of using a residue pairwise calculation comes at the cost of 

accurate modeling of the energies since our most complete theories of protein energetics 

have “many-body” terms.   

 Chapters 3 and 4 describe work on formulating a Poisson-Boltzmann (PB) model 

that can be implemented in current protein design protocols.  The PB model is a 

continuum solvation model in which the dielectric environment and the charge 

distribution of the protein determine the electrostatic potential at each atom in the protein.  

Since the potential is dependent on the dielectric environment, which is itself dependent 

on the position of all atoms in the protein, the PB is a many-body energy model.  We 

address the issue of whether the one- and two-body energy terms used to guide sequence 

selection would be meaningful if derived from the PB model.  It was found that the one- 

and two-body energy terms provide PB energies that are similar to the energy of the 
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standard many-body PB model, indicating that the PB model is potentially useful for 

protein design methods.  In Chapter 3, the initial pairwise formulation is introduced, and 

in Chapter 4, improvements to this formulation plus comparison with additional models 

are presented.  I also investigated the Generalized Born (GB) model as an alternative to 

the computationally expensive PB model.  In Appendix B, I show that the accuracy of the 

GB model, judged as the ability to reproduce PB energies, is similar to models that are 

currently used in ORBIT.  I identify features of the GB model that might lead to its 

insensitivity to the microenvironments that are sampled in a protein design calculation. 

 The promising computational results from Chapters 3 and 4 lead me to implement 

the residue pairwise PB model into ORBIT and assess the validity of this model in 

experimental tests.  In Chapter 5, data is presented for these efforts and for computational 

characterization of the PB model’s treatment of hydrogen-bonded sidechains.  I used the 

design of the surface residues in Drosphilia melanogaster engrailed homeodomain 

(ENH) as an experimental test case.  Using the PB model from Chapter 4 did not lead to 

the design of a stabilized variant of ENH.  In attempting to make a comparison between 

the PB-designed sequences and those designed with other energy functions, I found 

unexpected behavior in this test case. This behavior highlights the fact that design 

calculations are highly sensitive to factors that might be unrelated to the energy function.  

In this chapter, I also investigate the problem of reconciling the incomplete description of 

hydrogen-bonding inherent in continuum solvation, an issue that extends beyond protein 

design calculations and must be addressed for enzyme design.  In a computational 

experiment on a set of crystallographic, hydrogen-bonded sidechain pairs, I showed that 
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the rotamers chosen by the PB model do not necessarily conform to the geometric 

description of hydrogen bonds used currently in the ORBIT force field. 

 During the experimental characterization discussed in Chapter 5, I made a series 

of ENH variants to dissect the relationship between rotamer library and energy function.  

One of these variants, designed using the standard ORBIT force field and sequence 

biasing, had a melting temperature around 95°C.  Chapter 6 discusses characterization of 

this variant and also a “supercharged” variant.  These two molecules represent extremes 

of surface plasticity for the ENH fold: one has highly optimal surface electrostatic 

properties while the other has a high degree of repulsion between its surface residues.  I 

also investigated the role of surface electrostatics in WT protein G.  In Appendix A, data 

is presented for an ion pair on the beta-sheet surface protein G.  This ion pair was found 

to have a favorable free energy of interaction, but removing it caused a negligible change 

in the protein’s thermodynamic stability. 

An alternative or complementary approach to addressing the shortcomings listed 

at the beginning of this chapter is to take a higher throughput strategy in tackling difficult 

design targets.  Where possible, medium to high throughput screening could be used to 

characterize many computationally designed molecules.  The challenge is turning the 

information from the design calculation into combinatorial libraries of sequences that can 

be synthesized in the laboratory.  Chapter 7 discusses the evaluation of a number of 

different library design strategies by their ability to create libraries that (1) retain function 

in the largest number of library members and (2) perturb the function of the WT parent.  

Using green fluorescent protein as a test case, we defined the retention of function as 

some measurable threshold of fluorescence, which itself could be considered a lower 
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bound on the number of folded sequences in the library.  Diversity of function was 

defined by shifts in the emission peak position.  Our experiments showed that structure-

based design methods perform well by both metrics: retention and diversity of function.  

In Appendix C, data is presented for the design of combinatorial libraries focused on the 

substrate-binding pocket of cytochrome p450 BM3 from Bacillus megaterium.   The 

p450 libraries were screened in the laboratory and shown to have a high number of folded 

variants. 

The sum of the work in this thesis is the development and evaluation of 

computational tools that can be used in the design of functional molecules.  The current 

outlook for designing enzymes and binding proteins is positive.  Recently, much progress 

has been made in the field of ligand placement in active sites14,15  and impressive strides 

have been made in designing enzymes de novo.9,10  There is also progress in the field 

protein-protein interaction design.16,17   With improved modeling strategies and hybrid 

engineering methods, the technological benefits of protein-based devices and catalysts 

will be realized. 
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Electrostatics in computational protein design 

 

The text of this chapter is adapted from a published review article that was co-authored 

with Professor Stephen L. Mayo 

C.L. Vizcarra and S.L. Mayo, Current Opinion in Chemical Biology 9, 622–626 (2005). 
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Abstract 

Catalytic activity and protein-protein recognition have proven to be significant challenges 

for computational protein design.  Electrostatic interactions are crucial for these and other 

protein functions, and therefore accurate modeling of electrostatics is necessary for 

successfully advancing protein design into the realm of protein function.  This review 

focuses on recent progress in modeling electrostatic interactions in computational protein 

design, with particular emphasis on continuum models.  
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Introduction: the electrostatics challenge 

Computational protein design seeks to design the amino acid sequence of a 

protein in a manner that preserves the target three-dimensional fold.1,2  The compatibility 

of an amino acid sequence with the target fold is determined by an energy function.  

Standard components of protein design energy functions are van der Waals, solvation, 

electrostatics, hydrogen bonding, and various statistical terms that approximate entropy 

and other forces that are not modeled explicitly.3,4  The balance between these energetic 

terms has generally been trained on experimental stability data1,5 or on the ability to 

recover wild-type amino acid composition.6,7  

Recently, the goals of many computational protein design projects have shifted 

from preserving the folded structure to designing function.  Electrostatic interactions play 

important functional roles in many biomolecular systems.  In enzymes, surface 

electrostatic potential can channel substrates to the active site,8 where the electrostatic 

environment plays a key role in stabilizing the transition state.9  Because enzymes are 

such efficient catalysts, the de novo design of enzymatic activity has many technological 

applications.10 Protein-protein interfaces contain a proportion of polar and charged 

residues similar to that on the protein surface,11 and therefore their design requires a 

careful balancing of polar desolvation energy and electrostatic interactions.12–14  The 

control of protein recognition is an important goal for protein designers, as this will allow 

for the manipulation of biochemical networks15 in ways that may shed light on signal 

transduction mechanisms and potentially lead to the design of novel biological circuits. 

Residues that impart function may compromise stability.16  The degree to which 

electrostatic interactions stabilize the folded state of a protein has been the subject of 
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much debate.17  It has been suggested that electrostatic interactions may play a role in 

fold specificity instead of stability.18  Since electrostatics may have a relatively small net 

contribution to the free energy of folding in most mesophilic proteins, one can design 

well-folded, stable proteins by focusing on producing well-packed, hydrophobic cores 

and using only a very crude or damped model for electrostatic interactions.19 Indeed force 

fields with an orientation-dependent hydrogen bonding potential and a small or non-

existent Coulombic term have yielded stable, well-folded proteins.20–22  However, it 

stands to reason that a physical model that accurately captures the electrostatic forces that 

allow a protein to fold should be adaptable to the challenges imposed by the desire to 

design protein function.   

Marshall et al.23 showed that for the surface of an all alpha-helical protein, current 

electrostatic models used in computational protein design did not accurately capture the 

electrostatic effects of helix dipole and N-capping interactions.  Restricting the amino 

acid identities at N-cap positions to those that have high N-capping propensities and 

restricting the charge of amino acids at the N-terminal and C-terminal regions of the helix 

allowed for the design of a sequence that was stabilized by 3 kcal mol-1 over an unbiased 

design.  Similarly, it has been shown that polar amino acids are found in the cores of 

natural proteins.24,25  Bolon et al.26 designed a stabilized variant of thioredoxin by 

imposing empirical hydrogen-bonding rules that would compensate for the cost of polar 

desolvation.  In order to make protein design force fields more general, it is desirable to 

capture the balance between desolvation and electrostatic interaction energy through 

physical modeling as opposed to the heuristics used in the approaches described above. 
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In the simplest estimate, the number of sequences considered for even a small, 50-

amino-acid protein is astronomically large (~ 1065 sequences).  Most successful 

computational protein design algorithms approach this combinatorial problem by using 

computationally tractable pairwise decomposable energy functions that score the 

arrangement of at most two sidechain conformations at a time.  The limitation to pairwise 

decomposable energy functions has led to the development of efficient sequence 

optimization algorithms27 but has precluded certain energy models that do not lend 

themselves to pairwise expressions.  Because proteins are surrounded by water, which is 

highly polarizable, any accurate description of protein electrostatics is a function of the 

solvent environment, making the electrostatic energy a many-body term.  It is therefore 

necessary to reconcile the limitations of the pairwise approximation with the need for an 

accurate description of electrostatics.  Furthermore, modeling of water explicitly is 

currently intractable for the number of conformational energies that must be calculated 

for protein design.  Therefore continuum or empirical models have been used in most 

protein design force fields to address electrostatic interactions as well as polar 

desolvation.  It has been pointed out by Jaramillo and Wodak28 that protein design may 

be a stringent test of continuum models because design requires that an energy function 

distinguish between many micro-environments inside the protein. 

 In the past decade, great effort has gone into updating the electrostatics and polar 

solvation portions of molecular mechanics force fields.  In this review, we focus on the 

advances in continuum electrostatics for computational protein design.  It should be noted 

that protein design energy functions have often treated the desolvation of polar and 

charged sidechains as a separate term from the electrostatic interaction energy.  Since 
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both of these terms are functions of the dielectric environment, continuum models 

generally propose one consistent treatment for solvation and electrostatics.  We therefore 

consider the modeling of polar and charged residue desolvation as part of the 

electrostatics challenge.  Previous reviews of computational protein design have covered 

general methodology,29–31 energy functions,3,4 protein-protein interactions,32 metal 

centers,33–35 and catalysis.10  In addition, continuum models for electrostatics and 

solvation have been reviewed extensively.36–38 

 

Working models 

Poisson-Boltzmann The Poisson-Boltzmann (PB) equation is considered the standard 

for accuracy within the limitations of the continuum description.  In PB calculations the 

solute is described as a low dielectric cavity embedded in a high dielectric solvent, and 

the induced polarization in the solvent is used to calculate the electrostatic potential at all 

points in the protein.  Analytical solutions to the PB equation exist only for simple solute 

geometries such as spheres or cylinders.  Numerical methods must be employed for 

complex shapes like that defined by a protein molecular surface.8  Although the PB 

model is not readily pairwise decomposable by side chain, Marshall et al.39 recently 

proposed a two-body formulation using the finite difference PB solver DelPhi.  In the 

two-body approach, a reduced representation of the protein is used and perturbations to 

the dielectric boundary are considered explicitly for each sidechain conformation.  

Surprisingly, the energies produced by summing two-body terms are quite close to those 

obtained by calculation with the entire surface represented.  A pairwise model in which 

all possible sidechain conformations are used to define the dielectric boundary has been 
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used by Georgescu et al.40 for pKa calculations and may be useful in reducing the 

complexity of protein design calculations. 

 

Modified Tanford-Kirkwood The original Tanford-Kirkwood model 41 treated proteins as 

spheres, allowing for an analytical solution to the PB equation.42 Because advances in 

structural biology have shown the spherical representation to be a dubious approximation 

for many proteins, Havranek and Harbury43 developed the modified Tanford Kirkwood 

(MTK) method in which the charge distribution of the protein is mapped from the exact 

protein geometry onto a sphere.  They also use a shell charge representation and an image 

charge solution to calculate the electrostatic free energy associated with a protein 

conformation.  This model, along with a negative design scheme, was used to create a 

series of coiled coil systems that specifically formed homo- or hetero-dimers.44  

 

Generalized Born The Generalized Born (GB) model maps each charge in the protein 

to the center of a sphere with a radius that reflects the burial of the charge in the protein.  

From this Born radius, the electrostatic potential can be calculated at each charge in the 

protein.45  GB implementations are distinguished by the method in which Born radii are 

computed. The GB model has enjoyed wide use in MD simulations, but it has been 

shown that the ability of the GB model to reproduce more accurate PB calculations varies 

widely between implementations.46  It has also been shown that many commonly used 

GB methods drastically underestimate the burial of atoms in the protein core,47 making 

GB a particularly insensitive model for scoring desolvation energies of  individual polar 

and charged sidechains [Vizcarra and Mayo, unpublished results].  Pokala and Handel48 
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have adapted the GBSA method49 for use in protein design.  They overcome the pairwise 

decomposability problem by calculating Born radii using spheres to approximate 

sidechains of unknown identity.  

 

Empirical Models Instead of attempting to calculate the screening of electrostatic 

interactions using Born radii or solvent polarization charges, a distance dependent 

dielectric model (DDD) has been used to damp all Coulombic interactions regardless of 

environment.  The simplest DDD models use a dielectric constant of εr, which means that 

electrostatic interactions have an r-2 dependence as opposed to r-1.  This formulation has 

served to minimize the contribution of electrostatics to the force field3 and is 

computationally efficient.  More sophisticated formulations of the DDD model have also 

been proposed.50,51  Wisz and Hellinga52 improved the DDD model by parameterizing 

dielectric constants and solvation parameters for different regions of the protein.  The 24 

derived parameters were optimized to reproduce hundreds of experimental pKa values.  

Their model includes terms for solvation as well as electrostatic interactions and is 

extremely computationally efficient.  

 Surface-area-based solvation models have been used in many structure-based 

energy calculations, including the ORBIT protein design force field.5,53,54 Although these 

functions have been successful at modeling non-polar solvation, the basis for using 

surface area burial or exposure as a measure of solvation energy for polar or charged 

amino acids is less apparent.  Electrostatic interactions act over a longer range than the 

van der Waals and cavity energies that make up the non-polar solvation energy term.  
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The Lazardis and Karplus (LK)55 semi-empirical model measures the desolvation 

of one atom by another as the product of the volume of the desolvating atom and a 

solvation free energy density around the desolvated atom.  Therefore solute atoms within 

the first solvation sphere of a particular atom have a larger desolvating effect than atoms 

further away.  The LK model is computationally efficient and can be applied to both 

polar and nonpolar solvation.  The physical assumption that makes the LK model so 

simple is that atomic desolvation terms are additive.  The LK model was re-

parameterized by Baker and coworkers and used in the design of a novel fold.56  The 

implementation of the LK model into protein design force fields only includes a solvation 

energy term separate from electrostatic interaction energy.  A reported method for using 

the LK strategy of summing over atomic desolvation terms to approximate effective 

dielectric constants for electrostatic interactions may also be applicable to protein design 

energy functions.50  

 

Looking ahead 

Implementing more sophisticated electrostatic models into highly parameterized protein 

design force fields brings to the forefront the issue of balancing electrostatics with other 

protein design force field terms.  It has been shown that implementing a series of 

theoretically improved polar solvation models in a balanced protein design force field 

does not necessarily lead to improved decoy discrimination.28  Kuhlman and Baker6 have 

reported a readily implemented approach to global optimization of protein design force 

field, including electrostatics and solvation.   
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Force field balancing will be futile without considering certain important aspects 

of protein thermodynamics.  Improved models for entropy will be necessary to correctly 

model salt bridges on the surface of proteins, which may be energetically neutral despite 

their favorable electrostatic energy.  The use of an empirical hydrogen bonding 

potential57,58 has been a key component in many successful designs.  Continuum models 

do not capture the covalent character and resulting orientation dependence of hydrogen 

bonds.  As such, an energy function that not only models electrostatics properly but also 

recognizes favorable hydrogen bonding geometry will be necessary.  Morozov et al.51 

reported a balance between hydrogen bonding and a DDD model that discriminated 

native states from decoys more successfully than either term alone.  Currently, energy 

terms are modeled within the limitation imposed by fixed protein backbone design.  This 

may have a particular impact on electrostatics: if in reality a protein has significant 

conformational heterogeneity, then the energy of a static salt bridge may not be 

meaningful. 

The combinatorial explosion of protein design has made computationally 

demanding energy models intractable.  If more detailed electrostatic models are to be 

implemented, there needs to be an effort to develop numerical methods that take 

advantage of the near redundancy of calculating millions of pairwise rotameric energies.  

Such methods will be necessary to bring electrostatic modeling up to the challenge of the 

larger and more ambitious design projects that lie ahead.  
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Update: May 2008 

Since this review article was published in late 2005, several advances have been 

made in the field of enzyme design.  Baker and coworkers have reported the design of 

enzymes that catalyze the kemp elimination and retro-aldol reactions.59,60  These enzymes 

were designed using a protocol in which contacts to a transition state analog are 

optimized by quantum mechanical calculations.  The resulting constellation of catalytic 

sidechains is then matched with compatible backbone structures, followed by rounds of 

sequence design around the active site and continuous minimization of the structure.  The 

most active of the designed retro-aldol enzymes use a bound water molecule in the active 

site.  The authors point to the failure of catalytic motifs that use a polar amino acid in the 

same capacity as evidence for the difficulty in balancing desolvation and polar 

interactions in catalytic networks. 

In addition to the progress in enzyme design, several new methods for modeling 

polar solvation in protein design energy functions have been reported.  McCammon and 

coworkers developed a method called CIRSE that uses a set of basis functions based on 

distance-dependent dielectric and solvent exclusion models with parameters trained to 

reproduce PB/SA calculations.61  The CIRSE model has been adapted for protein docking 

and design.62  Simonson and coworkers have reported a residue pairwise GB model that 

extends the traditional atom-based Born radii formulation to “residue Born radii” that 

reflect the burial of each residue.63  We have reported an update to our two-body PB 

model that uses generic sidechains to approximate positions with unknown identity.64  

We also showed that this model does better at approximating a full PB calculation than 

the LK solvent exclusion and the distance-dependent dielectric models.  These new 
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solvation models have yet to be experimentally validated (see Chapter 5 of this thesis).  

Together with the advances of Baker and coworkers for identifying scaffolds for novel 

active sites, more accurate modeling of electrostatics should accelerate the pace of 

computational enzyme design. 
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Chapter 3 

 

One- and two-body decomposable Poisson-Boltzmann methods 

for protein design calculations 

 

 
The text of this chapter is adapted from a published manuscript that was co-authored 

with Shannon A. Marshall and Professor Stephen L. Mayo 

 

S.A. Marshall, C.L. Vizcarra, and S.L. Mayo Protein Science 14, 1293–1304 (2005).  
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Abstract 

Successfully modeling electrostatic interactions is one of the key factors required for the 

computational design of proteins with desired physical, chemical, and biological 

properties.  In this paper, we present formulations of the finite difference Poisson-

Boltzmann (FDPB) model that are pairwise decomposable by sidechain.  These methods 

use reduced representations of the protein structure based on the backbone and one or two 

sidechains in order to approximate the dielectric environment in and around the protein.  

For the desolvation of polar sidechains, the two-body model has a 0.64 kcal mol-1 RMSD 

compared to FDPB calculations performed using the full representation of the protein 

structure.  Screened Coulombic interaction energies between sidechains are approximated 

with an RMSD of 0.13 kcal mol-1.  The methods presented here are compatible with the 

computational demands of protein design calculations and produce energies that are very 

similar to the results of traditional FDPB calculations. 
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Introduction 

 Electrostatic interactions are often critical determinants of protein structure and 

function.  In an earlier protein design study, an overly simplistic electrostatic model was 

found to incorporate destabilizing electrostatic interactions into the designed proteins.1 

Energies calculated using the finite difference Poisson-Boltzmann (FDPB) model,2–4 a 

more sophisticated model for describing the electrostatic potential in proteins, correlated 

more strongly with experimentally determined stability.  However, FDPB calculations, as 

normally performed, are computationally too costly for most protein design calculations.   

 Computational protein design algorithms5–8 have relied on simple, often empirical 

methods to model electrostatic interactions between charged and polar protein groups and 

the desolvation of polar and charged sidechains.  For example, the ORBIT (Optimization 

of Rotamers by Iterative Techniques) protein design force field uses Coulomb’s law with 

a distance-dependent dielectric and an explicit hydrogen bond term to describe 

interactions between polar and charged groups and either a penalty for the burial of polar 

hydrogens or a penalty for the burial of polar surface area.5,9 Havranek and Harbury have 

developed a modified Tanford-Kirkwood model to describe electrostatic interactions and 

applied it to the design of homodimeric and heterodimeric coiled coils.10,11 Baker and 

coworkers have used a volume-based solvent exclusion model to describe the desolvation 

of polar groups,12 along with a distance-dependent dielectric model, in the successful 

design of a novel protein fold.13  Hellinga and coworkers have empirically derived a large 

number of dielectric constants and interaction parameters to describe polar desolvation as 

well as charge-charge and charge-polar interactions between protein groups.14  Finally, 
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Pokala and Handel have developed a method for calculating Born radii in the context of 

protein design calculations.15 

 Here, we describe a method for modeling electrostatic interactions in protein 

design calculations using a limited number of FDPB calculations performed with 

simplified surface representations.  Typically, FDPB calculations require atomic 

coordinates for the protein backbone and all sidechains in order to define the spatial 

regions that correspond to the low dielectric protein and high dielectric solvent.  In 

protein design calculations, each possible rotameric sequence (a rotamer is a low energy 

amino acid sidechain conformation), will have a unique structure and require an 

independent FDPB calculation.  Because the combinatorial complexity of design 

calculations is often astronomically large, it is not tractable to perform an independent 

calculation for each possible structure.  Instead, we determine the electrostatic energy for 

each sidechain or pair of sidechains by performing FPDB calculations using simplified 

structures that include only the backbone and one or two sidechains.  The total energy is 

then obtained by summing the contribution of each sidechain and sidechain pair. 

 Like the other electrostatic models that have been used for design, the simplified 

surface approach possesses the computational efficiency required for combinatorially 

complex protein design calculations.  The method is two-body decomposable (meaning 

that each energy term depends on the identity and conformation of at most two amino 

acid sidechains) and therefore compatible with deterministic search algorithms such as 

Dead End Elimination (DEE)16–18 that are often used for sequence selection.  The two-

body FDPB method described in this paper allows for calculation of both desolvation 

energies and electrostatic interactions between polar protein groups using a minimal 
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number of free parameters.  It explicitly captures the impact of sequence changes on the 

structure of the protein surface, which defines the boundary between the low dielectric 

protein and the high dielectric solvent.   Finally, it efficiently produces energies that 

correlate well with standard FDPB methods, providing the accuracy demanded by protein 

design problems.  

 

Strategies for incorporating FDPB methods into protein design calculations 

 In this study, we have used the FDPB solver from the computer program DelPhi4 

to calculate electrostatic energies for 24 proteins selected from a group of 500 high 

resolution protein X-ray structures compiled by Richardson and coworkers.  The results 

of these "exact" FDPB calculations were compared to the results of a tractable number of 

FDPB calculations performed using simplified surface representations that require 

knowledge of the identity and conformation of no more than two amino acid sidechains at 

a time in order to assess the accuracy of the simplified surface approximation. 

 Polar protein groups can form favorable electrostatic interactions with the solvent;  

we refer to the resulting energies as electrostatic solvation energies.  The difference 

between the electrostatic solvation energy of a polar group in the folded state versus the 

unfolded state is the desolvation energy.  In design calculations, the backbone 

conformation is typically held fixed.  As shown in Figure 3-1A, the desolvation energy of 

the protein backbone can therefore be defined as the difference between the electrostatic 

solvation energy of the backbone in the presence of all of the protein's sidechains versus 

the electrostatic solvation energy of the isolated backbone (a reference state that remains 

constant in the design calculation).  As shown in Figure 3-2A, the desolvation energy of a 
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sidechain is defined as the difference between the electrostatic solvation energy of the 

sidechain in the context of the folded protein versus the electrostatic solvation energy of 

the sidechain and local backbone alone, where the local backbone is defined by the 

atoms: CA(i-1), C(i-1), O(i-1), N(i), H(i), CA(i), C(i), O(i), N(i+1), H(i+1), and CA(i+1). 

 Electrostatic interactions between polar protein groups and the solvent also act to 

screen Coulombic interactions within a protein.  The screening energy is generally 

opposite in sign and weaker in magnitude than the Coulombic energy for a given 

interaction.  The procedures used to calculate sidechain/backbone and 

sidechain/sidechain screening energies are shown in Figures 3-2A and 3-3A, respectively.  

In all cases, the screening energies and Coulombic energies are added to yield "screened 

Coulombic energies", and the screened Coulombic energies predicted by the different 

electrostatic models are then compared.  As solvation energies are strongly anti-

correlated with Coulombic energies, comparison of screened Coulombic energies but not 

screening energies alone is appropriate for the validation of approximate electrostatic 

models.19  

 For compatibility with the ORBIT protein design procedure, we have calculated 

backbone desolvation energies, sidechain desolvation energies, sidechain/backbone 

interaction energies, and sidechain/sidechain interaction energies separately.  The total 

electrostatic energy of each rotameric state of a protein is then the sum of the backbone 

desolvation energy (ΔGbb
desolv), the desolvation energy of each sidechain i (ΔGi

desolv), the 

screened Coulombic interaction between each sidechain i and the backbone 

(ΔGi/bb
screenedCoul), and the screened Coulombic interaction between each pair of sidechains i 

and j (ΔGi/j
screenedCoul): 
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When calculating the “exact” FDPB energies, each of the above terms is calculated using 

all of the protein atoms to define the low dielectric protein region versus the high 

dielectric solvent region. 

 

One-body FDPB decomposition 

 Several physical properties of proteins can be calculated using information 

derived from the protein surface.  While protein surfaces cannot be perfectly represented 

using pairwise decomposable methods, earlier protein design studies have demonstrated 

that pairwise or sequence independent approximations can yield satisfactory results for 

hydrophobic solvation and binary patterning, respectively.20,21  Similarly, it may be 

possible to obtain accurate estimates of the FDPB energies obtained using all the atomic 

coordinates to define the surface from FDPB energies obtained using simplified models 

for the protein surface that require knowledge of only one or two sidechain 

conformations at a time.   

 Since the protein backbone is fixed during design calculations, an approximate 

one-body (i.e., one sidechain rotamer) surface can be obtained using the atoms from the 

protein backbone and the sidechain of interest only.  It is necessary to include the 

sidechain of interest when defining the protein surface to ensure that all protein charges 

are located in the low dielectric protein region rather than the high dielectric solvent 

region.  The one-body backbone desolvation energy, which is an approximation of the 

desolvation of the backbone by each sidechain, is calculated as the difference in solvation 

energy between the one-body folded state (which includes only the sidechain of interest 

(1) 
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and the backbone) and the isolated backbone, as shown in Figure 3-1B.  The total 

backbone desolvation energy for each protein is approximated as the sum of the one-body 

backbone desolvation energies of each of its sidechains.   As is shown in Figure 3-2B, 

one-body sidechain desolvation energies are calculated as the difference in solvation 

energy between the one-body folded state (which includes only the sidechain of interest 

and the backbone) and the unfolded state (which includes sidechain i and the local 

backbone).  The one-body sidechain/backbone screened Coulombic energy of each 

sidechain is calculated using the model in Figure 3-2C. 

 To test the accuracy of the one-body decomposition, we calculated the backbone 

desolvation energies, sidechain desolvation energies, and sidechain/backbone screened 

Coulombic energies for the set of 24 proteins.  Backbone desolvation energies can be 

calculated reasonably well by summing the desolvation induced by the presence of each 

sidechain, as shown in Figure 3-4A.  Using the one-body decomposition, the backbone 

desolvation energy resulting from each sidechain can be considered as a component of 

the sidechain/backbone energy of the sidechain in design calculations.  The extent to 

which backbone desolvation energy depends on protein sequence and sidechain 

conformations is not yet fully understood.  Avbelj, Baldwin, and coworkers, however, 

have reported the importance of backbone desolvation in determining amino acid 

secondary structure propensities. 22–24 

 The one-body approximation grossly underestimates the majority of the sidechain 

desolvation and sidechain/backbone screened Coulombic energies, as shown in Figures 

3-4B and 3-4C, respectively.  The one-body model neglects the contribution of the other 

sidechains to the dielectric environment of the sidechain of interest, resulting in an 



 

 

35 

excessively solvated folded state.  Deviations between the one-body and exact FDPB 

results are especially pronounced for large magnitude desolvation and screened 

Coulombic energies, which tend to occur in environments with a low effective dielectric. 

 

Two-body FDPB decomposition 

 More accurate energies can be obtained using two-body methods (i.e., methods 

including two sidechain rotamers), in which the total sidechain desolvation or 

sidechain/backbone screened Coulombic energy for each sidechain i is defined as the sum 

of its one-body energy and the two-body perturbation energies for each other sidechain j.  

As shown in Figures 3-2B and 3-2C, the perturbation energy of each other sidechain is 

defined as the difference between the two-body energy, which is calculated using the 

backbone and two sidechains to define the dielectric boundary, and the one-body energy 

calculated previously.   

 Incorporating the effects of other sidechains using the two-body perturbation 

method allows accurate calculation of electrostatic energies, as shown in Table 3-1 and 

Figures 3-5A and 3-5B.  Five outlier points, representing five different amino acid types 

from four structures, were observed to have large errors in their two-body sidechain 

desolvation energies, as shown in Figure 3-5A.  These outliers likely arise from grid 

placement artifacts, a source of error in FDPB calculations that has been described 

previously.2 Accurate two-body desolvation energies can be obtained for these five points 

by slightly altering the position of the molecule relative to the grid (data not shown).  

The two-body approximation systematically underestimates the magnitude of the 

sidechain desolvation energy.  The systematic error in the two-body desolvation energy 
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was minimized by linearly scaling the two-body perturbation energy.  The set of 24 

structures was divided into two sets of 12 structures, and a scaling parameter, α, was 

derived by a linear least-squares fit for each set (with the five outlier points removed).  

The robustness of the scaling parameter was tested by cross-validation, as shown in Table 

3-2, and sensitivity analysis, as shown in Figure 3-6A.  The error in the two-body 

sidechain desolvation is reasonably insensitive to α around the optimal α value, and both 

sets have similar dependence on α, suggesting that this scaling parameter should be used 

in routine calculations. 

In the one-body FDPB method, we calculated sidechain and backbone desolvation 

energies and sidechain/backbone screening energies, but not sidechain/sidechain 

screening energies.  Simply multiplying the one-body potential generated by sidechain i 

by the partial atomic charges of sidechain j is not very accurate (data not shown), 

especially for charged atoms located at or beyond the dielectric boundary defined by 

sidechain i and the protein backbone.  Sidechain/sidechain screened Coulombic energies 

were calculated using a two-body decomposable method that uses only the backbone and 

two sidechains of interest to define the dielectric boundary, as shown in Figure 3-3B.  

Although the two-body model systematically over-screens the Coulombic interactions, 

the accuracy obtained using a two-body FDPB decomposition is quite good, as shown in 

Table 3-1 and Figure 3-5C.  The two-body approximation is probably less accurate for 

certain large interaction energies due to increased sensitivity to the shape of the dielectric 

boundary in regions of large electrostatic potential.  

 Analysis of the sidechain desolvation and sidechain/backbone screened 

Coulombic energies indicates that, in most cases, the perturbation caused by a second 
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sidechain is negligible.  The small fraction of two-body perturbations that contribute 

significantly to the desolvation or sidechain/backbone energies involve pairs of residues 

that are close in space.  Furthermore, sidechain/sidechain interaction energies for residues 

that are not close in space are typically small in magnitude and may be approximated 

using a simpler electrostatic model.  We performed additional calculations in which two-

body perturbations were calculated only for pairs that separated by less than 6 Å or 4 Å.  

As shown in Table 3-1, we observe a slight decrease in accuracy as the distance cutoff is 

decreased from infinity to 6 Å to 4 Å.  This arises from an increased underestimation of 

the sidechain desolvation energies and sidechain/backbone screened Coulombic energies, 

as well as increased inaccuracy in defining the dielectric environment, as fewer pairs are 

included. 

 When calculating screened Coulombic energies, the interaction of sidechain pairs 

separated by more than a distance cutoff of 6 Å or 4 Å was approximated by a distance-

dependent Coulombic model and the two-body FDPB model was applied only to pairs 

that are close in space.  The two sets of protein structures used for the α parameterization 

were used to derive the optimal distance dependent dielectric values for pairs separated 

by distances greater than the cutoff.  The dielectrics derived for each set are similar, and 

the errors in the two-body approximation with the cutoffs are comparable to the error in 

the full two-body calculation including all pairs, as shown in Table 3-3.  The sensitivity 

of the error and correlation with the exact FDPB energies to the dielectric value is shown 

in Figures 3-6B and 3-6C. 

Considering only a limited subset of pairs significantly reduces the total 

calculation time, which is crucial since the number of pairs in a design calculation is 
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often large.  For instance, the reported surface design calculation for engrailed 

homeodomain considers 15,000,000 rotamer pairs.1 The FDPB calculation for this 

number of pairs would require approximately three weeks of CPU time on a cluster of 

128 IBM PowerPC 970 processors running at 1.6 GHz.  The time required to complete 

the two-body calculation can be reduced to less than one day of CPU time by applying a 

distance cutoff of 4.0 Å. 

 It has been shown that, for a series of designed homeodomain variants, there is a 

correlation between experimental stability and exact FDPB electrostatic energies plus 

ORBIT van der Waals energies.1  In order to assess the predictive power of the two-body 

method presented here, we have compared the two-body FDPB energies to these 

experimental results.  For each variant, the sum of all two-body sidechain/backbone and 

sidechain/sidechain screened Coulombic energies and the sum of all two-body sidechain 

desolvation energies were added to the ORBIT van der Waals energies.  As shown in 

Figure 3-7, the two-body FDPB energies are able to predict, with accuracy close to that 

of the exact FDPB calculations, trends in experimental stabilities of six of the seven 

variants tested, including the wild-type protein and NC3-Ncap, the most stable variant. 

 

Additional considerations   

Thus far, we have developed and tested new electrostatic models for protein 

design calculations by maximizing the agreement between the approximate desolvation 

and screened Coulombic energies with the exact FDPB energies.  While even “exact” 

FDPB energies are an approximation of the true electrostatic energy of the system, it is 

probable that, in the context of design calculations, the accuracy of the structural model 
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will be a greater source of error than the limitations of the underlying FDPB model.  To 

maximize computational efficiency, most protein design methods use a fixed backbone, 

discrete sidechain rotamers, and a very simple model of the unfolded state.  As a result, 

certain errors in electrostatic energies can be observed in design calculations.  For 

example, the energetic benefit of surface salt bridges is overestimated if the entropic cost 

of locking flexible sidechains into a single conformation is not considered.  Similarly, the 

folded state stability conferred by interactions that are populated in the unfolded state, 

such as i, i±2 sidechain/backbone interactions, is overestimated if the unfolded state is 

modeled as the sidechain and local backbone only.  

  Based on a single study of electrostatics in designed proteins,1 either exact or 

two-body FDPB energies (with large magnitude sidechain-sidechain interactions 

truncated) are sufficiently accurate to provide a reasonable correlation with 

experimentally determined stability, as shown in Figure 3-7.  Additional experimental 

studies will be required to assess the performance of the two-body decomposable model 

in the design of proteins with specific catalytic or binding properties.  In cases where 

accurate modeling of electrostatics is especially critical, more sophisticated structural 

models, such as the flexible rotamer model25 and explicit modeling of alternate backbone 

conformations,13 may prove useful. 
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Conclusions 

 Accurate electrostatic models, including the FDPB model, require knowledge of 

the full tertiary structure of the protein.  As a result, these models cannot be applied 

directly to protein design calculations, which often consider over 1050 possible protein 

structures.  While it is not possible to explicitly calculate electrostatic energies in each 

structural environment, it is also not prudent to neglect changes in the shape of a protein’s 

surface that result from modifying the protein sequence. 

 We have found that it is possible to obtain accurate electrostatic energies using 

simplified surface models that depend on the identity and conformation of the protein 

backbone and only one or two sidechains at a time.  The success of the two-body FDPB 

method suggests that it is critical to define the surface accurately in the immediate 

vicinity of the partial charges that are "generating" and "feeling" the electrostatic 

potential in each calculation.  The results also suggest that it is important to account for 

desolvation and screening due to other nearby sidechains, but that the effects of each 

other sidechain are fairly independent and can be captured pairwise.  Finally, we have 

found that the effects of sequence-dependent variation in the dielectric boundary can be 

neglected if the perturbations are reasonably far removed from the partial charges that are 

"generating" or "feeling" the electrostatic potential in a given calculation. 

 Efficient and accurate electrostatic models are also critical for protein folding and 

docking calculations.  The simplified surface methods discussed here could be used to 

explore different sidechain orientations given a fixed backbone conformation.  Similarly, 

derivatives of a small molecule scaffold, such as those generated by combinatorial 

chemistry methods, could be modeled.  However, folding and docking calculations 
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typically sample a large number of backbone conformations or relative molecular 

orientations.  Since each backbone conformation would require an independent set of 

one- or two-body FDPB calculations, the computational demands of folding and docking 

calculations would be far greater than those for design.  

 The stability of designed proteins has already been demonstrated to be sensitive to 

the quality of the electrostatic model used in the design calculations.  It is likely that 

electrostatic interactions are at least as important in determining the functional properties 

of proteins, including binding and catalysis.  As a result, the development and testing of 

accurate electrostatic models is likely to significantly aid in the design of proteins with 

desired physical, chemical, and biological properties. 
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Materials and Methods 

 

Test set of proteins.  All calculations were performed using proteins selected from a 

group of 500 high-resolution protein X-ray structures, including computationally 

optimized hydrogen atom locations, compiled by Richardson and coworkers 

(http://kinemage.biochem.duke.edu/databases/top500.php).  Structural coordinates were 

derived from PDB entries 1IGD, 1MSI, 1KP6, 1OPD, 1FNA, 1MOL, 2ACY, 1ERV, 

1DHN, 1WHI, 3CHY, 1ELK, 2RN2, 1HKA, 3LZM, 1AMM, 1XNB, 153L, 1BK7, 

2PTH, 1THV, 1BS9, 1AGJ, and 2BAA, corresponding to the β1 domain of Streptococcal 

protein G, type III antifreeze protein, alpha subunit of killer toxin KP6, S46A mutant of 

E. coli phosphotransferase, fibronection cell-adhesion module type III, monellin, bovine 

acyl-phosphatase, C73S mutant of human thioredoxin, 7,8-dihydroneopterin aldolase, 

L14 ribosomal protein, CheY, VHS domain of TOM1, ribonuclease H, 

pyrophosphokinase, T4 lysozyme, gamma-B-crystallin, xylanase, goose lysozyme, 

ribonuclease MC1, peptidyl-tRNA hydrolase, thaumatin, acetylxylan esterase, 

epidermolytic toxin A from S. aureus, and endochitinase, respectively.  Only the “A” 

chain was used for monellin, the VHS domain of TOM1, and epidermolytic toxin A. 

 

Exact FDPB calculations.  Finite difference solutions to the linearized Poisson-

Boltzmann equation were obtained using the FDPB solver from the computer program 

DelPhi4 with a grid spacing of 2.0 grids Å-1, an interior dielectric of 4.0, an exterior 

dielectric of 80.0, a salt concentration of 0.050 M, and a probe radius of 1.4 Å.  The grid 

size was selected for each protein so that its backbone atoms fill 70% of the grid.  The 

coordinates of each protein were mapped onto the grid in exactly the same way in all of 

the calculations to minimize errors due to changing grid placement.  The PARSE 

parameter set charges and atomic radii26 were used in all FDPB calculations.  Proline 

residues and cysteine residues in disulfide bonds were considered part of the backbone in 
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all calculations.  All Arg and Lys residues were modeled with a +1 net charge and all Asp 

and Glu residues were modeled with a -1 charge.  All FDPB energies were converted to 

units of kcal mol-1 using the relation kT = 0.593 kcal mol-1 at 25 °C. 

 In the FDPB model, electrostatic solvation energies are obtained by multiplying 

the appropriate atomic charges, q, by the reaction field potential, φ, at the location of each 

charge.  In the following equations, the reaction field potential, φ, is labeled with a 

superscript that indicates which atoms were used to define the dielectric boundary and 

with a subscript that indicates which atoms were assigned non-zero partial atomic charges 

when calculating the reaction field potential.  The entire protein is referred to as "all", the 

protein backbone is referred to as "bb", individual protein side chains are referred to as 

"i" or "j", and a sidechain with its local backbone is referred to as "ib".  A factor of 1/2 

appears in the desolvation energy equations to account for the work of solvent 

polarization in response to the charges on sidechain i. 

 The exact desolvation energy of the backbone ("bb"), shown in Figure 3-1A, is 

defined as the difference between the electrostatic solvation energy of the backbone in 

the presence of all the protein sidechains and the electrostatic solvation energy of the 

backbone alone: 

 

 

where each t is a backbone atom, qt is the partial atomic charge of backbone atom t, φall
bb 

is the reaction field potential at t generated by the set of partial atomic charges on the 

backbone when all of the protein atoms are used to define the dielectric boundary, and 

φbb
bb is the reaction field potential at t generated by the set partial atomic charges on the 

backbone when the backbone atoms only are used to define the dielectric boundary. 

 The exact desolvation energy of a sidechain i, shown in Figure 3-2A, is defined as 

the difference between the electrostatic solvation energy of the sidechain in the folded 

state versus the unfolded state: 

(2) 
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where each u is an atom in sidechain i, qu is the partial atomic charge of sidechain atom u, 

φall
i is the reaction field potential at u generated by the set of partial atomic charges on 

sidechain i when all of the protein atoms are used to define the dielectric boundary, and 

φib
i is the reaction field potential at u generated by the set of partial atomic charges on 

sidechain i when the atoms on sidechain i and its local backbone are used to define the 

dielectric boundary. The molecular surface for the sidechain unfolded state model was 

generated using the sidechain and local backbone and was mapped to the grid exactly as 

in the folded state calculations.  The local backbone was defined to include the following 

atoms:  CA(i-1), C(i-1), O(i-1), N(i), H(i), CA(i), C(i), O(i), N(i+1), H(i+1), and 

CA(i+1).   

 Exact folded state sidechain/backbone screening energies, shown in Figure 3-2A, 

were obtained using the following equation: 

 

 

where i is the sidechain of interest, each t is an atom in the backbone, qt is the partial 

atomic charge of atom t, and φall
i is the reaction field potential at t generated by the set of 

partial atomic charges on sidechain i when all of the protein atoms are used to define the 

dielectric boundary. The screening energies were then added to the Coulombic energies 

to obtain screened Coulombic energies: 

 

 

where the Coulombic energy is calculated using Coulomb's law with a dielectric constant 

equal to the dielectric of the protein interior. 

 Exact sidechain/sidechain interactions, shown in Figure 3-3A, were obtained 

using a similar method: 

(3) 

(4) 

(5) 
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where i and j are the sidechains of interest, each v is an atom in sidechain j, qv is the 

partial atomic charge of atom v, and φall
i is the reaction field potential at v generated by 

the set of partial atomic charges on sidechain i when all of the protein atoms are used to 

define the dielectric boundary.  The screening energies were then added to the Coulombic 

energies to obtain screened Coulombic energies: 

 
 

Sidechain/backbone and sidechain/sidechain interaction energies are assumed to be zero 

in the unfolded state.   

 

One-body FDPB calculations.  One-body FDPB energies were calculated for backbone 

desolvation energies, sidechain desolvation energies, and sidechain/backbone screened 

Coulombic energies.  For each sidechain in the test set, two FDPB calculations are 

carried out: one with non-zero partial atomic charges assigned to the sidechain and one 

with non-zero partial atomic charges assigned to the backbone.  Folded state solvation 

energies for the protein backbone were calculated as in the exact FDPB calculations, 

except that sidechains other than the sidechain of interest were not included: 

 

 

where each t is a backbone atom, qt is the partial atomic charge of backbone atom t, φi,bb
bb 

is the reaction field potential at t generated by the set of partial atomic charges on the 

backbone when sidechain i and the backbone atoms only are used to define the dielectric 

boundary, and φbb
bb is the reaction field potential at t generated by the set of partial atomic 

charges on the backbone when the backbone atoms only are used to define the dielectric 

boundary, as shown in Figure 3-1B.  The total backbone desolvation energy for each 

(6) 

(7) 

(8) 
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protein is approximated by the sum of the one-body backbone desolvation energies, given 

by Equation 8, for each of its sidechains. 

 Sidechain desolvation energies were calculated as in the exact FDPB calculations, 

except only the sidechain of interest and the backbone were used to construct the folded 

state dielectric boundary: 

 
 

where i is the sidechain of interest, each u is an atom in sidechain i, qu is the partial 

atomic charge of atom u, φi,bb
i is the reaction field potential at u generated by the set of 

partial atomic charges on sidechain i when sidechain i and the backbone atoms only are 

used to define the dielectric boundary, and φib
i is the reaction field potential at u generated 

by the set of partial atomic charges on sidechain i when the atoms in sidechain i and its 

local backbone are used to define the dielectric boundary, as shown in Figure 3-2B. 

 Similarly, sidechain/backbone screened Coulombic energies were calculated as in 

the exact FDPB calculations, except only the sidechain of interest and the backbone were 

used to construct the dielectric boundary: 

 

 

where i is the sidechain of interest, each t is a backbone atom, qt is the partial atomic 

charge of atom t, and φi,bb
i is the reaction field potential at t generated by the set of partial 

atomic charges on sidechain i when sidechain i and the backbone atoms only are used to 

define the dielectric boundary, as shown in Figure 3-2C.  The screening energies were 

then added to the Coulombic energies to obtain screened Coulombic energies: 

 

 

where the Coulombic energy is calculated using Coulomb's law with a dielectric constant 

equal to the dielectric of the protein interior. 

(9) 
 

(11) 

(10) 



 

 

47 

 

Two-body FDPB calculations.  Two-body FDPB sidechain desolvation energies, 

sidechain/backbone screened Coulombic energies, and sidechain/sidechain screened 

Coulombic energies were calculated as follows.  First, the one-body energies were 

calculated as described above.  Next, two-body perturbation energies were calculated 

using the atoms in the backbone, bb, the sidechain of interest, i, and one "perturbing" 

sidechain, j, to define the dielectric boundary.  Two-body perturbation energies were 

calculated using each residue other than the sidechain of interest as the perturbing 

residue.  Total energies were calculated by adding the one-body energy to the sum of the 

two-body perturbation energies.  For each pair of sidechains, two FDPB calculations are  

carried out, one with non-zero partial atomic charges assigned to each sidechain.  

 Two-body sidechain desolvation energies were calculated as the sum of a one-

body energy and  two-body perturbation energies:   

 

 

where i is the sidechain of interest, each u is an atom in sidechain i, qu is the partial 

atomic charge of u, and φi,j,bb
i is the reaction field potential at u generated by the set of 

partial atomic charges on side chain i when the backbone and side chains i and j are used 

to define the dielectric boundary, as shown in Figure 3-2B.   

In order to improve the accuracy of the two-body sidechain desolvation energy, a 

scaling parameter, α, was multiplied by the term in Equation 12 that sums over 

sidechains j.  This parameter was fit using two distinct sets of structures.  Structure set 1 

contained 1IGD, 1KP6, 1FNA, 2ACY, 1DHN, 3CHY, 2RN2, 3LZM, 1XNB, 1BK7, 

1THV, and 1AGJ.  Structure set 2 contained 1MSI, 1OPD, 1MOL, 1ERV, 1WHI, 1ELK, 

1HKA, 1AMM, 153L, 2PTH, 1BS9, and 2BAA.  Optimum values of α were determined 

for each set by linear least squares fit, and a sensitivity analysis was performed by testing 

values of α between 1.0 and 2.0 at intervals of 0.05. 

(12) 
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 Two-body sidechain/backbone screened Coulombic energies were calculated as 

the sum of a one-body energy and two-body perturbation energies:  

  

 

where i is the sidechain of interest, each t is a backbone atom, qt is the partial atomic 

charge of t, and φi,j,bb
i is the reaction field potential at t generated by the set of partial 

atomic charges on side chain i when the backbone and side chains i and j are used to 

define the dielectric boundary, as shown in Figure 3-2C.  The screening energies were 

then added to the Coulombic energies to obtain screened Coulombic energies: 

 

 
where the Coulombic energy is calculated using Coulomb's law with a dielectric constant 

equal to the dielectric of the protein interior. 

 Two-body sidechain/sidechain calculations were calculated using the same 

method that was used to calculate the exact sidechain/sidechain screening energies, 

except that the dielectric boundary is defined using only the backbone and the two 

sidechains of interest:  

 

where i and j are the two sidechains of interest, each v is an atom in sidechain j, qv is the 

partial atomic charge of atom v, and φi,j,bb
i is the reaction field potential at v generated by 

the set of partial atomic charges on sidechain i when the backbone and sidechains i and j 

are used to define the dielectric boundary, as shown in Figure 3-3B.  The screening 

energies were then added to the Coulombic energies to obtain screened Coulombic 

energies: 

 

(13) 

(14) 

(16) 

(15) 
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where the Coulombic energy is calculated using Coulomb's law with a dielectric constant 

equal to the dielectric of the protein interior.  Figure 3-8 outlines how the one- and two-

body FDPB calculations described here can be implemented in a protein design code. 

 For the two-body sidechain desolvation and sidechain/backbone screened 

Coulombic energy calculations using only pairs that are close in space, the distance 

between sidechains i and j was defined as the minimum distance between any atom with 

non-zero partial atomic charge on sidechain i and any atom on sidechain j.  For two-body 

sidechain/sidechain screened Coulombic energy calculations using only pairs that are 

close in space, the distance between sidechains i and j was defined as the minimum 

distance between any atom with non-zero partial atomic charge on sidechain i and any 

atom with non-zero partial atomic charge on sidechain j.  In sidechain/sidechain 

calculations, Coulomb's law was used to calculate the energy of pairs that were farther 

apart than the cutoff distance.  For cutoff distances of both 6.0 Å and 4.0 Å, optimal 

distance dependent dielectric values were derived by linear least-squares to maximize 

agreement with the exact FDPB sidechain/sidechain screened Coulombic energies.  

These dielectric values were tested by cross-validation, and the sensitivity of the error in 

the two-body approximation with a cutoff was tested by varying the dielectric values. 

 Two-body energies were calculated for a series of homeodomain variants reported 

by Marshall et al. (2002).  For each variant, FDPB two-body sidechain desolvation 

energies, two-body sidechain/backbone screened Coulombic energies, and two-body 

sidechain/sidechain screened Coulombic energies were added to the total ORBIT van der 

Waals energy.  A threshold of ± 0.90 kcal/mol was applied to the sidechain/backbone and 
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sidechain/sidechain screened Coulombic energies. FDPB calculations were run using 

parameters described previously.1  
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Table 3-1: Accuracy of the electrostatic models 

 RMSD 
(kcal mol-1) R 

A. Backbone desolvation energy 
exact FDPB - - 
one-body  3.96 0.997 
B. Sidechain desolvation energy 
exact FDPB - - 
one-body 1.93 0.718 
two-bodya, all pairs 0.64 0.962 
two-bodya, pairs < 6 Å 0.67 0.968 
two-bodya, pairs < 4 Å 0.82 0.952 
C. Sidechain/backbone screened Coulombic energy 
exact FDPB - - 
one-body 0.90 0.957 
two-body, all pairs 0.36 0.987 
two-body, pairs < 6 Å 0.41 0.984 
two-body, pairs < 4 Å 0.51 0.979 
D. Sidechain/sidechain screened Coulombic energy 
exact FDPB - - 
two-body, all pairs 0.13 0.948 

a Statistics were obtained using all data points, including outliers, and without 
application of α, the scaling parameter for two-body sidechain desolvation. 
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Table 3-2: Cross-validation of α , the scaling  
parameter for two-body sidechain desolvation 

 RMSD 
(kcal mol-1) R 

Structure set 1 
α = 1 0.56 0.967 
α = 1.26a 0.43 0.972 
α = 1.30b 0.43 0.973 
Structure set 2 
α = 1 0.68 0.971 
α = 1.26a 0.50 0.974 
α = 1.30b 0.50 0.974 

aThe optimal value of α determined using structure set 1 

bThe optimal value of α determined using structure set 2 
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Table 3-3: Cross-validation of distance-dependent dielectrics for 
limited pair two-body sidechain/sidechain screened Coulombic 
interactions 

 RMSDa 

(kcal mol-1) Ra 

Structure set 1 
all pairs 0.10 0.968 
pairs > 6 Å, ε = 5.11rb 0.10 0.960 
pairs > 6 Å, ε = 4.75rc 0.10 0.957 
pairs > 4 Å, ε = 5.90rd 0.10 0.955 
pairs > 4 Å, ε = 5.21re 0.10 0.947 
Structure set 2 
all pairs 0.16 0.934 
pairs > 6 Å, ε = 5.11rb 0.16 0.926 
pairs > 6 Å, ε = 4.75rc 0.16 0.923 
pairs > 4 Å, ε = 5.90rd 0.16 0.924 
pairs > 4 Å, ε = 5.21re 0.16 0.917 

aRMSD and R values are for all pairs in each structure set. 
bThe optimal distance dependent dielectric for pairs separated by > 6 Å in structure set 1 

cThe optimal distance dependent dielectric for pairs separated by > 6 Å in structure set 2 
dThe optimal distance dependent dielectric for pairs separated by > 4 Å in structure set 1 
eThe optimal distance dependent dielectric for pairs separated by > 4 Å in structure set 2 
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Figure 3-1.  Free energy cycles used to calculate (A) exact versus (B) one-body 
backbone desolvation energies (as shown in Equations 2 and 8, respectively).  In each 
method, the electrostatic potential generated by the backbone is calculated.  The key 
distinctions between the two methods are as follows: the exact calculation uses the 
protein backbone and all of the sidechains in the protein to define the dielectric boundary, 
while in the one-body method, the dielectric boundary is defined by the backbone and a 
single sidechain only.  The total one-body desolvation is calculated by summing the 
desolvation by each sidechain.  The parameters used in each FDPB calculation are 
indicated as follows:  the protein backbone, shown in red, was assigned partial atomic 
charges from the PARSE charge set; the sidechains, shown in gray, were assigned partial 
atomic charges of 0; the areas drawn in white were assigned a dielectric constant of 4 
(protein interior); and the blue areas were assigned a dielectric constant of 80 (water) and 
a salt concentration of 50 mM. 
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Figure 3-2.  Free energy cycles used to calculate (A) exact sidechain desolvation 
energies (as shown in Equation 3) and sidechain/backbone screened Coulombic energies 
(as shown in Equations 4–5) versus one-body and two-body (B) sidechain desolvation 
energies (as shown in Equations 9 and 12, respectively) and (C) sidechain/backbone 
screened Coulombic energies (as shown in Equations 10–11 and 13–14, respectively).  In 
each method, the electrostatic potential generated by sidechain i is calculated.  This 
potential is multiplied by the charges of sidechain i to calculate the solvation energy of i 
and is multiplied by the charges in the backbone to determine the sidechain/backbone 
screening energy.  The key distinctions between the exact, one-body, and two-body 
methods are as follows.  The exact calculation uses the protein backbone and all of the 
sidechains in the protein to define the dielectric boundary, and a single calculation is used 
to determine the folded state solvation energy.  In the one-body method, the dielectric 
boundary is defined by the backbone and a single sidechain only.  The one-body 
desolvation energy consists of the desolvation of sidechain i by the backbone.  In the two-
body method, a one-body calculation is first performed as shown in parts (B) and (C), 
and then the perturbation in the sidechain desolvation energy and the sidechain/backbone 
screened Coulombic energy that results from adding a second sidechain, j, to the low 
dielectric protein region is determined.  The perturbation due to each other sidechain is 
added to the one-body energy to produce the two-body energy.  The parameters used in 
each FDPB calculation are indicated as follows: sidechain i, shown in red, was assigned 
partial atomic charges from the PARSE charge set; the rest of the protein, when shown in 
gray, was assigned partial atomic charges of 0; the protein backbone, when shown in 
green, was assigned partial atomic charges of 0 in the FDPB calculation, but its PARSE 
partial atomic charges were used to obtain screening energies;  the areas drawn in white 
were assigned a dielectric constant of 4 (protein interior); and the blue areas were 
assigned a dielectric constant of 80 (water) and a salt concentration of 50 mM. 
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Figure 3-3.  Free energy cycles used to calculate (A) exact versus (B) two-body 
sidechain/sidechain screened Coulombic energies (as shown in Equations 6–7 and 15–16, 
respectively).  In each method, the electrostatic potential generated by sidechain i is 
multiplied by the charges in sidechain j to determine the screening energy between 
sidechain i and sidechain j.  The key distinctions between the exact and two-body 
methods are as follows.  The exact calculation uses the protein backbone and all of the 
sidechains in the protein to define the dielectric boundary, while the two-body calculation 
uses the protein backbone and only two sidechains to define the dielectric boundary.  The 
parameters used in each FDPB calculation are indicated as follows: sidechain i, shown in 
red, was assigned partial atomic charges from the PARSE charge set; the rest of the 
protein, when shown in gray, was assigned partial atomic charges of 0; sidechain j, when 
shown in green, was assigned partial atomic charges of 0 in the FDPB calculation, but its 
PARSE partial atomic charges were used to obtain screening energies;  the areas drawn in 
white were assigned a dielectric constant of 4 (protein interior); and the blue areas were 
assigned a dielectric constant of 80 (water) and a salt concentration of 50 mM. 
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Figure 3-4.  Accuracy of the one-body method determined by comparing (A) exact 
FDPB backbone desolvation energies versus one-body backbone desolvation energies, 
(B) exact FDPB sidechain desolvation energies versus one-body sidechain desolvation 
energies, and (C) exact FDPB sidechain/backbone screened Coulombic energies versus 
one-body sidechain/backbone screened Coulombic energies. 
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Figure 3-5.  Accuracy of the two-body method determined by comparing (A) exact 
FDPB sidechain desolvation energies versus two-body sidechain desolvation energies 
with outlier points represented by open circles, (B) exact FDPB sidechain/backbone 
screened Coulombic energies versus two-body sidechain/backbone screened Coulombic 
energies, and (C) exact FDPB sidechain/sidechain screened Coulombic energies versus 
two-body sidechain/sidechain screened Coulombic energies. 
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Figure 3-6.  Sensitivity of error in two-body energies due to changes in (A) α, the scaling 
the parameter for two-body sidechain desolvation energies, (B) the distance dependent 
dielectric for pairs separated by greater than 6.0 Å, and (C) the distance dependent 
dielectric for pairs separated by greater than 4.0 Å.  In all cases, filled symbols refer to 
protein structure set 1, open symbols refer to protein structure set 2, circles indicate 
RMSD, and triangles indicate the correlation coefficient R.  
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Figure 3-7.  Energy predicted using the sum of the FDPB sidechain desolvation energy, 
FDPB sidechain/backbone screened Coulombic energy, FDPB sidechain/sidechain 
screened Coulombic energy and ORBIT van der Waals energy versus the experimentally 
determined stability of each homeodomain variant.  The energies obtained using the two-
body FDPB approximation are shown as filled circles, and the energies obtained using 
the exact FDPB model are shown as open circles.  
 



 

 

66 

 

Figure 3-8.  Protein design protocol, including one and two-body FDPB calculations.  A 
simplified version of the protein design procedure shows the step at which electrostatic 
energies are calculated.  Pseudocode for the electrostatics calculation shows the number 
of times in which the FDPB program DelPhi is called.  For screened Coulombic energies, 
the potential maps from previous calculations are used to obtain screening energies.  As 
described in the methods section, desolvation energies are computed as the difference 
between folded state and reference state solvation energies.  Two-body perturbations for 
sidechain desolvation and sidechain/backbone screened Coulombic energies are 
computed as the difference between the respective two-body and one-body energies. 
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Abstract 

Our goal is to develop accurate electrostatic models that can be implemented in 

current computational protein design protocols.  To this end, we improve upon a 

previously reported pairwise decomposable, finite difference Poisson-Boltzmann (FDPB) 

model for protein design.1  The improvement involves placing generic sidechains at 

positions with unknown amino acid identity and explicitly capturing two-body 

perturbations to the dielectric environment.  We compare the original and improved 

FDPB methods to standard FDPB calculations in which the dielectric environment is 

completely determined by protein atoms.  The generic sidechain approach yields a two- 

to threefold increase in accuracy per residue or residue pair over the original pairwise 

FDPB implementation, with no additional computational cost.  Distance-dependent 

dielectric and solvent-exclusion models were also compared to standard FDPB energies.  

The accuracy of the new pairwise FDPB method is shown to be superior to these models, 

even after re-parameterization of the solvent-exclusion model. 
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Introduction 

Current computational protein design programs could be improved by the 

inclusion of an accurate model for electrostatics.  Since proteins exist in highly 

polarizable solvents, the accuracy of the electrostatics model is dependent on the 

accuracy of the solvation model.  To overcome the computational demands of explicitly 

modeling all of the water molecules in a macromolecular system, a continuum dielectric 

description of water is used in many biomolecular applications.2,3  In continuum solvation 

models, the protein is treated as a low dielectric cavity within a high dielectric solvent.  

The boundary between the protein and solvent dielectric is defined by the protein’s 

molecular surface.  When carrying out amino acid sequence selection for protein design, 

the location of the dielectric boundary becomes ambiguous because the final amino acid 

identities and their conformations are not known until the very end of the calculation.  In 

order to overcome this limitation and to satisfy the need for computationally efficient 

energy functions, alterations to the Generalized Born model,4,5 a modified version of the 

Tanford-Kirkword model,6,7 and various empirical models8–11 have been reported for 

protein sequence design. 

Within the limitations of a continuum solvent description, the Finite Difference 

Poisson Boltzmann (FDPB) model is often considered a standard for accuracy.12,13  A 

general strategy for implementing an FDPB model that is pairwise decomposable by 

sidechain conformation (rotamer) has been reported.1  This strategy involves evaluating 

explicit perturbations to the dielectric boundary.  For example, the desolvation energy of 

a sidechain on being transferred from the unfolded state to the folded state is calculated 

by solving for the difference in solvation energy between the one-body state (i.e., the 
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folded backbone and one sidechain) and the unfolded state model for the sidechain.  

Two-body perturbations are calculated as the difference in solvation energy between a 

state with two sidechains (the “two-body state” in Fig. 4-1B) and the one-body state.  The 

total pairwise sidechain desolvation is thus the desolvation of the sidechain by the 

backbone plus the sum of two-body perturbations.  The energy terms in this method are 

fully pairwise decomposable by sidechain conformation and are therefore compatible 

with the energy matrices and optimization algorithms used in most computational design 

methods. 

The accuracy of the pairwise decomposable FDPB model was assessed by 

comparing the energy calculated with the entire molecular surface defined by all of the 

protein sidechains (the “exact” surface in Fig. 4-1A) to the energy calculated using the 

sum of perturbations method.  It was found that the desolvation of sidechains could be 

accurately approximated with an RMS error of 0.64 kcal mol-1 per sidechain.1  The 

generic sidechains described by Zhang et al.14 for calculation of pairwise solvent-

accessible surface area present a straightforward and efficient strategy for improving the 

accuracy of pairwise approximate FDPB calculations.  Figure 4-1 shows the difference 

between the original pairwise FDPB model and the generic sidechain approach.  At all 

positions for which the identity or conformation of the amino acid is unknown, a generic 

sidechain composed of three spheres is placed, making the one-body state more closely 

resemble the true protein molecular surface and the two-body perturbations less dramatic. 

A generic sidechain approach to approximating the volume occupied by a 

protein’s sidechains has been used previously in many applications, including residue 

classification with respect to the molecular surface,15,16 protein-protein docking,17 and 
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solvation.14  Pokala and Handel have reported a one-body generic sidechain formulation 

of the Generalized Born (GB) model.4  For each residue in a design calculation, they 

approximate the low dielectric environment by spheres at all other positions.  We take a 

similar approach using the FDPB model, but, importantly, we also calculate two-body 

perturbations that lead to a better approximation of the protein environment.  In order to 

overcome the computational limitations of an O(n2) calculation, distance cutoffs are 

tested. 

Due to the computational demands of solving the PB equation numerically, there 

is a great deal of interest in methods that approximate the PB model, such as the GB 

model, and also in fast empirical models.2  The solvent-exclusion model of Lazaridis and 

Karplus (LK)18 is computationally efficient and has been used by Baker and coworkers in 

the successful design of a novel fold.19  Here we test the improved pairwise FDPB model 

against the LK model.  Since the original parameterization of the LK model was based 

primarily on experimental solvation free energies, we derive new parameters based on 

FDPB energies to see how well the functional form of the LK model is able to reproduce 

this particular benchmark.  While it is found that the generic sidechain method out-

performs the LK model, the trade-off between computational efficiency and accuracy of 

the energy function is discussed. 

 

Methods 

FDPB calculations.  A set of 24 proteins with hydrogens added was taken from the 

Richardson Top 500 database of high resolution X-ray crystal structures 

(http://kinemage.biochem.duke.edu/databases/top500.php).  The PDB codes for the set 



 72 

are: 1IGD, 1MSI, 1KP6, 1OPD, 1FNA, 1MOL, 2ACY, 1ERV, 1DHN, 1WHI, 3CHY, 

1ELK, 2RN2, 1HKA, 3LZM, 1AMM, 1XNB, 153L, 1BK7, 2PTH, 1THV, 1BS9, 1AGJ, 

and 2BAA.  The DelPhi program20 was used to solve the linearized Poisson-Boltzmann 

equation using the following settings: 2 grids/Å, 0.05 M salt, a protein dielectric of 4 and 

a solvent dielectric of 80.  In all calculations on a single structure, the protein’s position 

relative to the grid was held constant.  PARSE radii and charges were used.21  The test set 

contains 2028 polar residues when using PARSE charge definitions.  All prolines and 

disulphide bonds were treated as part of the backbone.   

The three sphere generic sidechain method (herein referred to as G3) reported by 

Zhang et al.14 was used in all calculations described below unless otherwise noted.  

Calculations denoted G0 refer to the method of Marshall et al.1  A grid-based search was 

carried out to find a more optimal set of generic sidechain dimensions for FDPB 

calculations.  Within the grid search, the parameters reported previously14, sphere radius 

= 2.85 Å and distance between spheres = 0.61 Å, were found to be near-optimal and were 

used as given.   

 

G3 parameter optimization.  The radius of the generic sidechain spheres and the distance 

between those spheres (Figure 4-1) were varied to find optimal parameters for pairwise 

FDPB calculations.  For the grid search of generic sidechain dimensions, a subset of 10 

structures was used: 1IGD,1KP6, 1FNA, 2ACY, 1DHN, 3CHY, 2RN2, 3LZM, 1BK7, 

and 1THV.  The results of those trials are given in Tables 4-5 and 4-6.  The values in 

Table 4-5 correspond to the force field terms presented in Table 4-1.  Since the error 

values in the various terms did not minimize at the same radius and distance, a more 
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general measure of error in the total reaction field energy was formulated.  Using the 

linearized PB equation, the total solvation or reaction field energy for each structure in 

the folded state can be expressed as 
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The numerical results of this optimization are given in Table 4-6 and a plot of total error 

as a function of radius and distance is given in Figure 4-7.   

 

Protein design energy terms.  In order to be consistent with the ORBIT force field22, 

backbone desolvation, sidechain desolvation, sidechain/backbone screened Coulombic, 

and sidechain/sidechain screened Coulombic energies were calculated.  The one- and 

two-body calculations are analogous to those described in Marshall et al.1  However, for 

all G3 calculations, three sphere generic sidechains were used at all positions for which 

no sidechain was present. The unfolded state reference for sidechain desolvation 

consisted of the sidechain i plus the local backbone atoms: CA(i-1), C(i-1), O(i-1), N(i), 

H(i), CA(i), C(i), O(i), N(i+1), H(i+1), and CA(i+1).  Screened Coulombic interactions 
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were only calculated in the folded state.  The most notable difference between the G0 and 

G3 methods is the calculation of the backbone desolvation energy (ΔGbb
desolv).  The 

unfolded state for the backbone is still described by a crystallographic backbone with no 

sidechains present.  A “zero-body” folded state is then defined by the backbone with 

generic sidechains at all positions.  Single residue (one-body) perturbations to the zero-

body state are summed to get the total one-body backbone desolvation energy: 
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By Equation 1, the backbone desolvation energy is derived from (n + 2) DelPhi 

calculations, where n is the number of residues in the protein.  In order to calculate all of 

the one- and two-body energies for a structure with n residues, p of which are polar, a 

total of  
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DelPhi calculations are needed, where (n + 2) corresponds to backbone desolvation, 2p 

corresponds to the unfolded state and one-body folded state models, p(n - p) corresponds 

to perturbations of polar residues by non-polar residues, and p(p - 1) corresponds to 

perturbations and interactions between polar residues, noting that two-body perturbations 

are not symmetric. 

 

DDD and LK calculations.  New parameters for the solvent-exclusion model originally 

reported by Lazaridis and Karplus (LK)18 were derived using the following 14 structure 

training set: 1MSI, 1OPD, 1MOL, 1ERV, 1WHI, 1ELK, 1HKA, 1AMM, 1XNB, 153L, 

2PTH, 1BS9, 1AGJ, and 2BAA.  While the CHARMM19 parameters described by 

Lazaridis and Karplus18 are atom based, the new parameters are sidechain based. For 
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instance, lysine was assigned a single parameter for all heavy atoms with non-zero partial 

atomic charges in the PARSE charge set: Cε and  Nζ.  Since the desolvation energy of a 

sidechain in the LK model is independent of the ΔGref parameter, only values for ΔGfree 

were derived by fitting to the “exact” FDPB desolvation energy 
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where the function f is the Gaussian free energy density of atom t and Vu is the volume of 

desolvating atom u.  For each sidechain i in the training set, the sum of Gaussian solvent 

exclusion terms was calculated over each atom t in sidechain i and each atom u that is not 

in the sidechain i or its local backbone.  For each set of amino acids, with the following 

amino acids considered together: Asn and Gln; Ser and Thr; and Asp and Glu, a linear 

least-squares fit was used to get ΔGfree from the exact FDPB sidechain desolvation energy 

ΔGdsolv.  The new LK parameters are listed in Table 4-4.  For the distance-dependent 

dielectric (DDD) calculations, dielectrics were assigned as 5.1r for sidechain/backbone 

interactions and 7.1r for sidechain/sidechain interactions, according to Zollars et al.11  

These values were derived by fitting to FDPB screened Coulombic energies.  Since there 

were five structures in common between their training set and the 24 structures used here, 

the error in screened Coulombic energy was assessed for the remaining 19 structures. 
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Results 

The accuracy of the pairwise FDPB methods was measured by comparison to 

“exact” FDPB energies calculated with all protein atoms present.  The results of this 

comparison are shown for both the G0 and G3 models in Table 4-1 and Figures 4-2 and 

4-3.  The G3 model performs better than the G0 model in all cases.  As expected, the one-

body sidechain desolvation improves dramatically over the G0 model in which only 

desolvation of the sidechain by the backbone is counted (Figures 4-2C and 4-2D).  

Similarly, the one-body G3 model is more effective than the one-body G0 model at 

capturing the descreening of strong sidechain/backbone interactions (Figures 4-2E and 4-

2F).  It is interesting to note that the one-body G3 model for sidechain desolvation is 

more accurate than the two-body G0 model with a 4 Å cutoff (Table 4-1).  This indicates 

that the approximate surface provided by the generic sidechains is more effective at 

reproducing the exact energies than adding the one-body energy to the truncated sum of 

two-body sidechain perturbations in the G0 model, a relevant model to consider since a 

distance cutoff will almost certainly be used in design calculations. 

As shown in Table 4-1 and Figure 4-3, the G3 two-body models for sidechain 

desolvation and sidechain/backbone screened Coulombic energy provide improvements 

over the one-body models and the G0 two-body models.  An especially dramatic 

improvement in accuracy is seen for the two-body approximation for sidechain/sidechain 

interactions.  Each data point in Figures 4-3E and 4-3F corresponds to a pair of residues.  

For the G0 model, there are no descreening contributions from other sidechains to 

sidechain/sidechain interactions, whereas the generic sidechains provide a vast 

improvement by approximating the reduced dielectric of other sidechains.  The accuracy 
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of the model is only slightly reduced by using an approximate distance-dependent 

dielectric model for pairs separated by more than the specified cutoffs.  The dielectric 

values were based on those reported by Marshall et al.1  For both cutoff values tested, 

more than 90% of all polar sidechain pairs in the test set were not treated with an FDPB 

calculation.  Such cutoffs would provide a considerable speed enhancement in the energy 

calculation stage of a design calculation. 

Although the G3 model performs better than the G0 model for sidechain 

desolvation, there are noticeable outliers in Figure 4-3B.  There was also one residue in 

the test set with a negative G3 two-body desolvation energy which is not shown in Figure 

4-3B but is included in the calculated error in Table 4-1.  Out of the 2028 residues in the 

test set, there are 19 for which sidechain desolvation is underestimated by more than 1.5 

kcal mol-1 when using the G3 model.  For this set of 19 residues, the amino acid types are 

exclusively Asp, Glu, Arg, and Lys, and they are from 12 different structures.  Two of 

these outliers, shown as “✕” symbols in Figure 4-3B, plus the point with a negative 

desolvation were sensitive to moving the molecule slightly with respect to the grid.  This 

sensitivity to grid placement has been discussed previously for the pairwise FDPB 

calculation1 and for more standard applications.23  An additional seven of the outliers had 

nearby residues that gave large, negative perturbations, leading to two-body energies with 

larger error than the one-body approximation.  In five of the seven cases, these large 

negative perturbations are caused by glycines, the amino acid for which the G3 

approximation is the most inaccurate.  The remaining ten cases with large, negative error 

had exact desolvation energies greater than 8 kcal mol-1 and one-body error greater than 

the two-body error, indicating that these points are simply difficult to capture by a 
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pairwise summation scheme.  For both two-body sidechain desolvation and 

sidechain/backbone screened Coulombic energy, the error decreases slightly when cutoffs 

are imposed.  This may point to the fact that only local perturbations are necessary with 

the G3 model and that inclusion of longer range perturbations leads to errors in 

accounting for sidechain overlap, as described by Zhang et al.14  

The generic sidechain parameters used here are the same as those used in Zhang 

et al.14 for solvent accessible surface area calculations.  Since an alternative set of 

parameters may be more optimal for the molecular surface definition used in FDPB 

calculations, we carried out a grid search of parameters to find a superior set of 

parameters and to assess how sensitive the G3 method is to generic sidechain dimensions.  

As shown in Figures 4-4 and 4-5, the error is sensitive to sphere size and spacing over the 

entire parameter space explored, but parameter sets near radius = 2.85 Å and distance = 

0.61 Å have relatively low error.  The optimality of these parameters for both surface 

area and FDPB calculations supports the assertion that generic sidechains of these 

dimensions accurately represent the average space occupied by amino acid sidechains in 

folded proteins.24 Therefore, if the surface definition (e.g., solvent-accessible or 

molecular surface) is consistent between the pairwise and exact calculations, these 

parameters will be suitable.  It is also notable that the training set with which these 

parameters were originally derived has an overlap of only one protein with the 10 

structures used in the parameter search here, suggesting that these parameters are robust 

for general protein design targets. 

 It is of general interest to see how the pairwise approximate FDPB method 

described here performs in comparison to fast pairwise decomposable methods already 
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used for protein design.2  We compared the performance of the solvent-exclusion model 

of Lazaridis and Karplus (LK)18 and a distance-dependent dielectric (DDD) model with 

the G3 method.  Both of the LK and DDD models are highly parameterized.  Since 

multiple parameter sets have been reported for the LK model, we tried both the 

CHARMM19 LK parameters18 and a new set of parameters tuned specifically to 

reproduce PB energies.  We used the distance-dependent dielectric values that led to a 

stabilized designed protein in a recent experimental protein design study.11  The results of 

this comparison are shown in Table 4-2 and Figures 4-5 and 4-6.  The G3 model is more 

effective than the LK and DDD models at approximating exact FDPB calculations.  

While the performance of the LK model (Figures 4-5B and 4-5C) varies greatly with 

parameters, the LK model has a nonlinear relationship with exact PB desolvation 

energies regardless of parameter set. 

 

Discussion 

We have shown that it is possible to improve the agreement between a pairwise 

decomposable FDPB method and an exact FDPB method with no additional 

computational cost.  The improvement stems from the more accurate approximation of 

the dielectric boundary provided by generic sidechains. The RMS errors for screened 

Coulombic interactions between polar sidechains and between polar sidechains and the 

protein backbone are decreased by nearly threefold and twofold, respectively.  The error 

associated with the desolvation of polar sidechains is reduced by nearly twofold.  For the 

two-body perturbation-based terms (i.e., sidechain desolvation and sidechain/backbone 

screened Coulombic energy), this more accurate description of the dielectric boundary 
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leads to less dramatic perturbations to that boundary, accounting for the inherent non-

additivity of such perturbations more effectively than the previously reported pairwise 

FDPB method.1 

 Ideally, a protein design energy function is both accurate and computationally 

efficient.  The FDPB methods are approximately four orders of magnitude slower than 

the standard ORBIT energy function.  For example, a surface design of the small 51-

residue helical protein engrailed homeodomain gave 6.4 million rotamer pairs for 29 

design positions.  The pre-calculation of all rotamer singles and pairs energies required 

on the order of ~ 0.2 CPU hours using the standard ORBIT energy function with a 

surface-area-based solvation term and ~ 1000 CPU hours using the G3 model.  This large 

computational cost requires one to carefully assess the appropriateness of the G3 model 

for different design problems.  Because of the large investment of time and resources 

involved in synthesizing and characterizing designed proteins, an expensive calculation 

may be worthwhile, especially if the calculation involves positions with important 

electrostatic contacts such as in the active site of an enzyme.  Unfortunately, the cost of 

the FDPB models may preclude large design targets since the calculation also scales 

poorly with the size of the grid on which the PB equation is solved. 

 The results shown here indicate good agreement between standard many-body 

electrostatic energies and those derived from summing one- and two-body perturbations.  

Standard FDPB calculations serve as a reasonable benchmark for assessing the sequence 

energies that will be evaluated by a pairwise decomposable force field.  For search 

algorithms such as Monte Carlo25 or FASTER26, where total sequence energy is 

evaluated and used as a criteria to accept or reject rotamer changes, this benchmark is 
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sufficient. However, the comparison with standard FDPB calculations leaves the 

possibility of a cancellation of error when summing over perturbations: some 

perturbations may be “too small” and some may be “too large.”  This distinction may 

become important when using algorithms based on Dead End Elimination.27  In such 

algorithms the sequence energy is not evaluated, but instead two-body perturbation 

energies are used to eliminate rotamers.  There is no clear way to gauge the accuracy of 

the individual perturbation energies when comparing to standard benchmarks.  Indeed, 

the most stringent test of this improved electrostatics term will be in the context of a 

protein design force field and, ultimately, in experimental validation of designed protein 

sequences.   
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a Marshall et al  20051 
b Sphere radius = 2.85 Å, distance from Cα and distance between spheres = 0.61 Å 
c For pairs separated by more than 6 Å, a distance dependent dielectric constant of  4.93r was 
used. 
d For pairs separated by more than 4 Å, a distance dependent dielectric constant of  5.56r was 
used. 
 

Table 4-1: Accuracy of the electrostatic models 

G0a  G3b 
 RMSD 

(kcal mol-1) R  RMSD 
(kcal mol-1) R 

A. Backbone desolvation energy 

one-body  3.96 0.997 3.51 0.998 

B. Sidechain desolvation energy 

one-body 1.93 0.718 0.79 0.915 

two-body, all pairs 0.64 0.962 0.40 0.979 

two-body, pairs < 6 Å 0.67 0.968 0.35 0.984 

two-body, pairs < 4 Å 0.82 0.952 0.39 0.980 

C. Sidechain/backbone screened Coulombic energy 

one-body 0.90 0.957 0.34 0.987 

two-body, all pairs 0.36 0.987 0.18 0.996 

two-body, pairs < 6 Å 0.41 0.984 0.17 0.996 

two-body, pairs < 4 Å 0.51 0.979 0.23 0.994 

D. Sidechain/sidechain screened Coulombic energy 

two-body, all pairs 0.13 0.948 0.05 0.987 

two-body, pairs < 6 Åc 0.13 0.939 0.06 0.979 

two-body, pairs < 4 Åd 0.13 0.933 0.07 0.972 
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aError is reported as RMSD in kcal mol-1. 
bAll two-body calculations were carried out without distance cutoffs. 
cOnly the exact calculations were carried out with a grid spacing of 4 grids Å-1, while the one- 
and two-body calculations were carried with a grid spacing of 2 grids Å-1. 

 
 
 

Table 4-2: Parameter sensitivity of the G3 model 
grid spacing 2 grids Å-1 2 grids Å-1 2 grids Å-1 4 grids Å-1 c 

ionic strength 50 mM 150 mM 50 mM 50 mM  
# translations 1 1 3 1 

one-body backbone desolvation 3.51 3.57 3.30 3.13 

one-body sidechain desolvation 0.79 0.81 0.79 0.80 

two-body sidechain desolvationb 0.40 0.41 0.38 0.41 

one-body  sidechain/backbone 
screened Coulombic energy 0.34 0.34 0.34 0.34 

two-body sidechain/backbone 
screened Coulombic energyb 0.18 0.18 0.19 0.18 

two-body sidechain/sidechain 
screened Coulombic energyb 0.05 0.06 0.05 0.06 
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Table 4-3: Comparison of FDPB, LK, and DDD models 

 RMSD 
(kcal mol-1) R 

Sidechain desolvation energya,b 

two-body G0 0.53 0.969 

two-body G3 0.36 0.979 

LK (CHARMM19)c 1.90 0.897 

LK (tuned) 0.73 0.914 

Sidechain/backbone screened Coulombic energya,d 

two-body G0 0.37 0.986 

two-body G3 0.19 0.996 

DDD, ε = 5.1re 0.83 0.921 

Sidechain/sidechain screened Coulombic energya.d 

two-body G0 0.13 0.943 

two-body G3 0.05 0.986 

DDD, ε = 7.1re 0.14 0.915 
aAll two-body calculations were carried out without distance 
cutoffs. 
bTen structures in test set: 1IGD,1KP6, 1FNA, 2ACY, 1DHN, 
3CHY, 2RN2, 3LZM, 1BK7, 1THV 
cLazaridis and Karplus, 199918 
d19 structures in test set: 1MSI, 1KP6, 1OPD, 1FNA, 1MOL, 
2ACY, 1ERV, 1DHN, 3CHY, 1ELK, 1HKA, 1XNB, 153L, 1BK7, 
2PTH, 1THV, 1BS9, 1AGJ, 2BAA 
eZollars, et al. 200611 
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Table 4-4:  LK parameters derived from FDPB energies 

amino acid types ΔGfree Rfit polar atomsa 

Arg -3.014 0.919 Cδ, Nε, Cζ, Nη1, Nη2 

Asn / Gln -1.937 0.960 Cγ, Oδ1, Nδ2 / Cδ, Oε1, Nε2 

Asp / Glu -5.344 0.924 Cγ, Oδ1, Oδ2 / Cδ, Oε1, Oε2 

Cys -1.755 0.687 Sγ 

His (neutral) -0.989 0.875 Cβ, Cγ, Nδ1, Cδ2, Cε1, Nε2 

His (protonated) -2.333 0.898 Cβ, Cγ, Nδ1, Cδ2, Cε1, Nε2 

Lys -4.904 0.877 Cε, Nζ 

Met -0.673 0.947 Cγ, Sδ, Cε 

Phe -0.308 0.946 Cβ, Cγ, Cδ1, Cδ2, Cε1, Cε2, Cζ 

Ser / Thr -4.117 0.924 Oγ /  Oγ1 

Trp -0.602 0.897 Cβ, Cγ, Cδ1, Cδ2, Nε1, Cε2, Cε3, Cζ2,  Cζ3, Cη2 

Tyr -0.622 0.872 Cβ, Cγ, Cδ1, Cδ2, Cε1, Cε2, Cζ, Oη 
aAtom types with correlation length λ = 6.0 Å are shown in bold.  All other atoms were  
assigned λ = 3.5 Å.
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Table 4-5:  Accuracy of generic method for varied parametersa 

r 
(Å) 

d 
(Å) 

1-body 
back-bone 
desolvation 

1-body 
side-chain 
desolvation 

2-body 
side-chain 
desolvation 

1-body 
sidechain/ 
backbone 
screened 

Coulombic 
energy 

2-body 
sidechain/ 
backbone 
screened 

Coulombic 
energy 

2-body 
sidechain/ 
sidechain 
screened 

Coulombic 
energy 

1.80 0.30 4.12 1.58 0.50 0.68 0.25 0.10 
1.80 0.40 4.24 1.52 0.47 0.64 0.23 0.09 
1.80 0.60 4.23 1.39 0.42 0.56 0.21 0.09 
1.80 0.80 4.33 1.26 0.39 0.50 0.21 0.08 
1.80 1.00 3.25 1.14 0.36 0.47 0.22 0.07 
1.80 1.20 1.90 1.04 0.38 0.44 0.20 0.07 
1.90 0.40 3.74 1.48 0.45 0.60 0.22 0.09 
1.90 0.60 3.21 1.33 0.43 0.52 0.28 0.08 
1.90 0.80 2.81 1.20 0.37 0.47 0.19 0.08 
1.90 1.00 1.41 1.07 0.41 0.43 0.34 0.07 
2.00 0.30 3.27 1.50 0.46 0.61 0.23 0.09 
2.00 0.40 2.74 1.43 0.45 0.56 0.22 0.09 
2.00 0.60 1.96 1.27 0.39 0.48 0.24 0.08 
2.00 0.80 1.57 1.13 0.35 0.43 0.19 0.07 
2.00 1.00 1.33 0.99 0.39 0.39 0.24 0.06 
2.10 0.40 1.96 1.37 0.42 0.52 0.21 0.09 
2.10 0.60 1.78 1.20 0.36 0.44 0.19 0.08 
2.10 0.80 1.60 1.05 0.33 0.39 0.19 0.07 
2.10 1.00 1.90 0.93 0.42 0.35 0.20 0.06 
2.20 0.30 2.05 1.39 0.42 0.53 0.21 0.09 
2.20 0.40 2.28 1.31 0.43 0.48 0.32 0.08 
2.20 0.60 1.81 1.13 0.35 0.40 0.19 0.07 
2.20 0.80 1.96 0.98 0.32 0.35 0.19 0.06 
2.20 1.00 2.73 0.86 0.33 0.32 0.19 0.05 
2.20 1.20 2.54 0.81 0.33 0.30 0.18 0.05 
2.30 0.50 2.99 1.14 0.36 0.40 0.20 0.07 
2.30 0.70 3.44 0.98 0.35 0.34 0.33 0.06 
2.30 0.90 3.48 0.84 0.32 0.31 0.20 0.05 
2.30 1.10 3.96 0.78 0.33 0.29 0.17 0.05 
2.40 0.30 4.43 1.26 0.38 0.44 0.19 0.08 
2.40 0.50 4.01 1.07 0.54 0.36 0.25 0.07 
2.40 0.70 4.35 0.91 0.32 0.32 0.19 0.06 
2.40 0.90 4.56 0.79 0.31 0.30 0.18 0.05 
2.40 1.10 4.08 0.76 0.35 0.30 0.20 0.05 
2.50 0.50 5.78 1.00 0.34 0.33 0.18 0.06 
2.50 0.60 6.66 0.91 0.31 0.31 0.17 0.06 
2.50 0.70 6.58 0.84 0.32 0.30 0.21 0.05 
2.50 0.80 5.90 0.79 0.32 0.30 0.19 0.05 
2.50 0.90 5.98 0.75 0.33 0.30 0.20 0.05 
2.50 1.00 5.89 0.75 0.36 0.31 0.20 0.04 
2.50 1.10 5.31 0.76 0.35 0.32 0.19 0.04 
2.60 0.30 7.29 1.11 0.37 0.35 0.20 0.07 
2.60 0.40 7.00 1.01 0.44 0.32 0.22 0.06 
2.60 0.60 6.14 0.85 0.39 0.30 0.21 0.05 
2.60 0.80 5.18 0.75 0.42 0.31 0.23 0.05 
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2.60 1.00 4.03 0.75 0.42 0.34 0.24 0.04 
2.60 1.20 3.52 0.84 0.43 0.37 0.23 0.05 
2.70 0.60 5.34 0.80 0.32 0.31 0.17 0.05 
2.70 0.80 3.98 0.73 0.34 0.34 0.16 0.04 
2.70 1.00 3.11 0.78 0.39 0.37 0.19 0.04 
2.75 0.40 5.54 0.91 0.35 0.30 0.18 0.06 
2.75 0.55 4.78 0.81 0.32 0.31 0.18 0.05 
2.75 0.57 4.44 0.79 0.32 0.31 0.17 0.05 
2.75 0.59 4.04 0.78 0.33 0.31 0.18 0.05 
2.75 0.61 3.77 0.77 0.33 0.32 0.18 0.05 
2.75 0.80 2.86 0.73 0.36 0.36 0.16 0.04 
2.80 0.30 5.28 0.97 0.36 0.30 0.19 0.06 
2.80 0.40 4.66 0.88 0.38 0.30 0.27 0.06 
2.80 0.60 3.00 0.76 0.33 0.33 0.20 0.05 
2.80 0.80 2.20 0.74 0.36 0.38 0.19 0.04 
2.80 1.00 1.74 0.83 0.39 0.43 0.21 0.04 
2.85 0.40 3.75 0.85 0.35 0.30 0.19 0.05 
2.85 0.57 2.44 0.76 0.38 0.34 0.18 0.05 
2.85 0.59 2.24 0.75 0.34 0.34 0.18 0.05 
2.85 0.61 1.94 0.74 0.36 0.35 0.18 0.05 
2.85 0.63 1.93 0.74 0.36 0.35 0.18 0.04 
2.85 0.65 1.95 0.74 0.36 0.36 0.18 0.04 
2.85 0.80 1.28 0.75 0.39 0.40 0.18 0.04 
2.90 0.60 2.02 0.74 0.36 0.36 0.19 0.04 
2.90 0.80 1.68 0.76 0.38 0.42 0.18 0.04 
2.90 1.00 2.55 0.91 0.43 0.49 0.20 0.05 
3.00 0.30 3.42 0.86 0.35 0.31 0.18 0.05 
3.00 0.40 4.04 0.79 0.33 0.34 0.17 0.05 
3.00 0.60 4.86 0.74 0.37 0.41 0.19 0.04 
3.00 0.80 4.30 0.83 0.40 0.49 0.20 0.04 
3.00 1.00 5.22 1.00 0.41 0.55 0.20 0.05 
3.00 1.40 8.00 1.45 0.51 0.65 0.24 0.08 
3.20 0.30 13.56 0.79 0.37 0.38 0.23 0.05 
3.20 0.60 13.51 0.82 0.37 0.52 0.20 0.05 
3.20 1.00 14.51 1.22 0.41 0.67 0.21 0.07 

a For each term, RMSD is given in kcal mol-1. 
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Table 4-6: Total error optimizationa 
R 
(Å) 

D 
(Å) 1igd 1kp6 1fna 2acy 1dhn 3chy 2rn2 3lzm 1bk7 1thv total 

0.00 0.00 2.33 5.45 2.36 4.19 7.30 5.99 11.73 19.12 12.59 10.00 81.04 
1.80 0.30 1.97 4.67 2.65 4.71 6.72 6.56 9.92 17.06 10.34 10.17 74.76 
1.80 0.40 2.00 4.38 2.65 4.22 5.36 6.12 8.97 15.94 8.87 9.42 67.93 
1.80 0.60 1.65 3.90 2.09 3.36 4.30 5.22 8.10 13.72 8.99 7.57 58.88 
1.80 0.80 1.60 3.69 1.41 2.74 3.19 4.54 7.28 11.75 8.00 6.90 51.09 
1.80 1.00 1.50 3.00 1.42 2.54 2.29 4.07 6.64 10.12 5.86 5.57 43.03 
1.80 1.20 1.25 2.64 1.21 2.56 2.21 4.13 5.24 9.46 7.78 4.34 40.79 
1.90 0.40 1.77 4.15 2.17 3.91 4.95 5.67 8.67 15.22 8.23 8.56 63.28 
1.90 0.60 1.53 3.99 1.62 2.66 4.03 4.70 7.18 12.31 5.51 7.06 50.58 
1.90 0.80 1.46 3.45 1.31 2.32 2.86 3.70 6.63 11.24 5.88 5.62 44.46 
1.90 1.00 1.32 2.59 1.17 2.40 2.27 3.41 6.13 9.23 3.35 4.62 36.48 
2.00 0.30 1.87 4.40 2.25 4.33 5.31 5.85 8.44 15.41 8.65 8.47 64.98 
2.00 0.40 1.60 4.28 1.69 3.49 4.86 5.13 7.77 13.94 7.95 9.62 60.33 
2.00 0.60 1.42 3.74 1.28 2.32 3.58 4.27 6.45 11.63 6.76 4.97 46.41 
2.00 0.80 1.33 3.30 1.12 1.87 2.44 3.28 5.37 9.51 5.67 5.10 38.96 
2.00 1.00 1.15 2.64 1.12 2.40 1.87 3.14 4.70 8.64 5.92 3.48 35.07 
2.10 0.40 1.36 4.07 1.51 2.99 4.74 4.72 6.83 13.49 7.72 7.16 54.58 
2.10 0.60 1.13 3.57 1.29 1.81 3.29 4.10 5.90 10.22 6.65 5.23 43.19 
2.10 0.80 1.00 3.06 1.21 1.78 2.00 2.74 5.04 9.23 5.26 4.83 36.15 
2.10 1.00 1.55 2.52 1.28 2.42 1.73 3.55 3.78 8.29 6.00 6.53 37.63 
2.20 0.30 1.35 4.04 1.50 3.01 5.02 4.81 7.02 13.60 8.14 7.13 55.64 
2.20 0.40 1.04 3.83 1.43 2.33 4.26 4.27 6.21 11.73 7.67 6.71 49.47 
2.20 0.60 0.74 3.68 1.14 1.42 3.12 3.86 5.42 8.93 6.22 4.64 39.17 
2.20 0.80 0.69 2.76 1.10 1.42 1.89 2.78 4.42 8.14 5.39 4.31 32.88 
2.20 1.00 0.90 2.43 0.77 2.37 1.79 3.04 3.17 7.80 6.66 4.25 33.19 
2.20 1.20 0.99 1.92 1.18 2.77 2.10 3.93 3.19 7.42 7.12 5.16 35.77 
2.30 0.50 0.93 3.74 1.10 1.06 3.74 4.13 5.53 8.98 6.54 6.45 42.20 
2.30 0.70 1.13 2.89 0.96 1.49 2.67 2.99 4.68 7.71 11.04 4.67 40.21 
2.30 0.90 1.14 2.76 0.93 2.11 2.54 2.77 3.51 6.41 6.66 4.41 33.25 
2.30 1.10 1.10 1.88 1.02 2.44 2.94 3.75 2.91 6.61 7.45 5.64 35.72 
2.40 0.30 1.07 4.00 1.26 2.55 4.77 4.48 6.02 11.48 7.82 5.70 49.15 
2.40 0.50 1.22 3.34 1.23 1.32 3.64 4.13 5.58 8.74 6.49 4.32 40.01 
2.40 0.70 1.38 2.69 0.91 1.94 2.64 2.49 5.53 6.53 6.03 4.35 34.49 
2.40 0.90 1.40 2.21 1.05 2.38 2.33 3.21 4.08 5.85 7.24 4.73 34.48 
2.40 1.10 1.59 1.61 0.96 2.46 2.24 3.55 4.00 7.20 7.21 5.67 36.49 
2.50 0.50 1.50 3.11 1.22 1.86 3.52 3.47 5.86 7.92 7.12 4.75 40.32 
2.50 0.60 2.48 2.76 1.29 1.80 2.28 2.94 6.05 7.45 7.14 6.56 40.73 
2.50 0.70 1.85 2.54 0.90 2.33 2.19 3.18 5.81 6.33 8.56 6.02 39.72 
2.50 0.80 1.72 2.20 0.85 2.59 2.32 3.08 5.04 6.34 7.70 4.42 36.25 
2.50 0.90 1.62 1.97 0.95 2.80 2.54 2.94 4.63 6.87 8.05 5.79 38.15 
2.50 1.00 1.93 1.65 0.71 3.06 2.24 3.89 4.47 8.66 7.56 5.33 39.49 
2.50 1.10 1.89 1.41 0.60 3.03 2.39 4.30 3.54 8.96 7.35 3.27 36.75 
2.60 0.30 1.70 3.50 1.63 2.73 4.09 4.62 5.84 9.63 8.64 7.04 49.42 
2.60 0.40 1.88 3.24 1.76 2.08 3.40 4.00 5.93 10.14 8.10 6.92 47.44 
2.60 0.60 1.89 2.73 1.18 2.36 2.00 3.56 5.15 8.73 7.95 3.88 39.41 
2.60 0.80 2.01 2.09 1.12 2.55 2.08 4.17 3.83 9.50 8.26 3.96 39.55 
2.60 1.00 2.19 1.48 0.54 2.94 1.87 4.29 3.65 10.54 6.73 3.39 37.60 
2.60 1.20 2.33 1.15 1.74 2.71 1.89 4.82 1.61 10.75 5.67 3.52 36.18 
2.70 0.60 1.55 2.26 1.06 2.37 2.03 3.57 3.61 5.21 7.79 3.09 32.54 
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2.70 0.80 1.76 1.63 1.10 2.71 1.60 4.10 2.42 4.90 7.34 2.60 30.16 
2.70 1.00 1.84 1.18 1.08 2.83 1.47 4.79 1.69 7.04 6.42 3.01 31.35 
2.75 0.40 1.08 2.73 1.62 2.21 2.43 3.61 4.61 6.35 8.56 3.48 36.68 
2.75 0.55 0.89 2.25 1.07 2.15 2.09 3.23 3.78 5.16 6.97 2.81 30.39 
2.75 0.57 0.94 2.20 0.94 2.09 1.95 3.24 3.24 4.58 7.17 2.78 29.12 
2.75 0.59 0.84 2.13 0.71 2.14 1.91 3.28 3.38 3.96 6.57 2.77 27.69 
2.75 0.61 0.86 2.07 0.58 2.07 1.79 3.26 3.25 3.81 6.58 2.63 26.90 
2.75 0.80 1.15 1.50 1.22 2.47 1.27 4.44 2.53 5.63 6.08 2.55 28.84 
2.80 0.30 0.85 3.03 1.73 1.96 2.72 3.70 4.57 6.63 8.11 3.38 36.68 
2.80 0.40 0.76 2.48 1.47 2.03 2.10 3.22 3.68 5.54 7.07 5.13 33.47 
2.80 0.60 0.95 1.87 0.61 1.96 1.66 3.77 2.95 3.14 5.90 2.59 25.40 
2.80 0.80 1.08 1.40 1.11 2.32 1.61 4.14 2.40 5.33 5.47 2.19 27.04 
2.80 1.00 1.28 0.94 0.99 2.28 1.42 4.47 1.05 7.28 5.29 4.28 29.26 
2.85 0.40 0.59 2.37 0.88 1.84 1.70 3.14 3.63 5.12 6.55 2.95 28.77 
2.85 0.57 0.76 1.80 0.64 1.88 1.15 3.11 3.73 2.95 5.09 2.95 24.05 
2.85 0.59 0.87 1.73 0.58 1.85 1.19 3.32 2.79 2.81 5.16 2.92 23.22 
2.85 0.61 0.89 1.69 0.70 1.81 1.16 3.24 2.58 3.68 4.72 3.41 23.87 
2.85 0.63 0.74 1.64 0.79 1.84 1.22 3.45 2.33 3.57 5.08 3.24 23.90 
2.85 0.65 0.75 1.58 0.80 1.81 1.18 3.66 2.46 3.57 4.99 3.55 24.34 
2.85 0.80 1.00 1.25 0.94 2.18 1.30 4.40 1.82 5.46 5.02 3.33 26.69 
2.90 0.60 0.64 1.64 0.77 1.64 0.66 3.31 2.85 3.70 5.22 3.88 24.30 
2.90 0.80 1.21 1.18 1.11 2.18 1.22 4.00 2.13 5.63 4.60 3.66 26.93 
2.90 1.00 1.59 1.05 1.00 2.02 2.08 4.40 1.91 6.75 5.70 4.91 31.42 
3.00 0.30 0.60 2.84 1.26 1.74 1.73 2.30 4.93 5.39 3.53 4.01 28.32 
3.00 0.40 0.67 2.46 1.52 1.79 2.31 3.83 4.73 4.85 3.99 4.02 30.16 
3.00 0.60 1.32 1.92 1.56 2.01 1.12 3.92 4.59 4.89 4.41 6.55 32.30 
3.00 0.80 1.93 1.59 1.28 2.46 2.14 4.61 4.03 6.65 5.37 5.31 35.36 
3.00 1.00 2.29 1.71 1.86 2.89 3.14 5.35 4.29 6.90 5.44 7.31 41.17 
3.00 1.40 3.93 3.53 3.05 3.87 5.11 5.68 7.34 7.78 5.95 14.49 60.73 
3.20 0.30 3.48 5.54 5.75 6.47 7.22 6.82 11.39 8.54 5.88 9.35 70.42 
3.20 0.60 3.66 5.11 4.85 5.99 6.08 6.37 10.25 8.31 7.51 11.97 70.11 
3.20 1.00 4.04 5.06 5.37 5.36 6.27 9.03 9.62 9.42 9.34 17.26 80.76 

a Error is given in kcal mol-1. 



 92 

 

 
 

 
Figure 4-1. Illustration of exact, no generic sidechain (G0), and generic sidechain (G3) 
calculations.  The dark gray area denotes solvent dielectric (ε = 80) and the white area 
denotes protein dielectric (ε = 4).  (A) The exact molecular surface is defined by the 
backbone and all sidechains of the protein.  (B) The two-body state for the G0 model is 
defined by two sidechains and the protein backbone.  (C) The two-body state for the G3 
model is defined by the two sidechains, the protein backbone, and three-sphere generic 
sidechains at all other positions.  The one-body state is analogous to (B) or (C) but with 
only one sidechain represented explicitly.  (D) The definition of radius and distance for 
the three-sphere generic sidechain is shown with sphere radius, r, and distance between 
spheres, d.   
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Figure 4-2.  Accuracy of one-body G0 and G3 FDPB methods. One-body backbone 
desolvation calculated using the (A) G0 and (B) G3 methods.  One-body sidechain 
desolvation calculated using the (C) G0 and (D) G3 methods.  One-body screened 
Coulombic interaction energy between sidechains and backbone calculated using the (E) 
G0 and (F) G3 methods. 
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Figure 4-3.  (see caption on next page)  
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Figure 4-3.  Accuracy of two-body G0 and G3 FDPB methods.  Two-body sidechain 
desolvation calculated using the (A) G0 and (B) G3 methods.  Points marked with “✕” in 
(B) correspond to sidechains for which the desolvation energy is sensitive to the 
placement of the protein with respect to the grid.  Two-body screened Coulombic 
interaction energy between sidechains and backbone calculated using the (C) G0 and (D) 
G3 methods.  Two-body screened Coulombic interaction energy between pairs of 
sidechains calculated using the (E) G0 and (F) G3 methods. 
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Figure 4-4.  Sensitivity of the G3 FDPB method to generic sidechain parameters.  Each 
line shows the error in a different force field component: two-body sidechain desolvation 
(  ), one-body sidechain/backbone screened Coulombic energy (  ), two-body 
sidechain/backbone screened Coulombic energy (  ) , and two-body sidechain/sidechain 
screened Coulombic energy (  ).  The lower panel shows the radius (open squares) and 
distance (open circles) that were sampled in each trial.  The parameter set radius = 2.85 Å 
and distance = 0.61 Å is indicated by an arrow. 
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Figure 4-5.  Accuracy of the G3 model (A) versus the LK solvent exclusion model (B,C) 
for approximating sidechain desolvation.  Results for both the CHARMM19 (B) and 
tuned (C) LK parameter sets are shown.  All plots contain data for the 758 polar 
sidechains from the 10 structures listed in Table 4-2 and described in the methods 
section. 
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Figure 4-6.  Accuracy of the G3 model (A,C) versus the DDD model (B,D) for 
approximating sidechain/backbone and sidechain/sidechain screened Coulombic 
interactions.  Data is shown for the 19 structures listed in Table 4-2 and described in the 
methods section. 
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Figure 4-7.  The total error associated with varying generic sidechain parameters.  The 
grid surface was obtained by linear interpolation using MATLAB7.  The sampled data 
points are in black. 
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Chapter 5 

 

Experimental and computational characterization of the 

Poisson-Boltzmann model in the ORBIT energy function 
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Abstract 

Experimental validation is a crucial test for a protein design energy function.  We 

sought to test the PB model described in Chapter 4 of this thesis by designing the surface 

residues of Drosophila melanogaster engrailed homeodomain (ENH).  It had been shown 

previously that this design target was a valid test case for the electrostatics term in the 

ORBIT energy function.  The PB model does poorly in producing a stabilized variant of 

ENH.  Potential problems with the ENH test case are discussed.  In addition, there is a 

need to accurately model hydrogen bonds in a protein design energy function, and 

continuum electrostatics model represent an incomplete description of hydrogen bonding.  

This issue was explored by looking at how the PB model in ORBIT alters the 

conformations of crystallographic hydrogen bonds.  In order to reduce the desolvation 

penalty associated with the burial of polar atoms, the PB model does not maintain 

hydrogen-bonding geometries in over half of the cases in a test set of 206 residue pairs.  

The results described in this chapter provide a starting point for further adaptation of the 

PB model for protein design. 
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Introduction 

Computational protein design is a tool that provides a starting point for 

experiments.  That starting point is an amino acid sequence that can be synthesized in the 

lab and characterized for folding, stability, or function.  In order to have confidence that a 

particular design program is valid, the sequences designed by that program must be tested 

in the laboratory.  From a complementary perspective, if computational protein design is 

a test of our knowledge of the energetics of protein structure, experimental 

characterization is necessary to provide feed back about our models.1,2  Other 

computational benchmarks for protein design have been proposed such as WT sequence 

recovery,3 fixed composition design, and point mutation stability prediction.4  None of 

these benchmarks is expected to be a sufficient test of a protein design energy function.  

We developed a residue pairwise decomposable Poisson Boltzmann (PB) model 

and computationally tested its ability to reproduce non-pairwise energy calculations.5  

This pairwise model was able to reproduce standard PB calculations better than the 

solvation and electrostatics terms currently used in the ORBIT energy function.6  This 

result indicates that the pairwise PB model is a valid model, worth testing in the ORBIT 

energy function.  The next step is to test the utility of the energy function with the PB 

model by experimental characterizing sequences designed by that energy function. 

Drosophila melanogaster engrailed homeodomain (ENH) is a model system for 

folding, DNA recognition, and stability.7-10  Residues 5–56 of this protein (here 

numbered 1–51), form a well-folded three helix bundle shown in Figure 5-1A.11 This 

fragment of the WT protein has an unfolding temperature of 50°C, and a net charge of 

+5.12  It has been the subject of many design studies.12-15  Marshall et al. showed that the 
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stability could be dramatically increased by optimizing the electrostatic properties of the 

surface residues on ENH.12  Zollars et al. used the same design target to show that 

sequence design of the surface residues using parameterized dielectrics could also 

increase the stability of ENH.14  Thus the surface residues of ENH have become a 

experimental test of the electrostatics term in the ORBIT energy function.  This stability 

target was chosen instead of an enzyme active site for testing the PB energy function due 

to the need for and subsequent development of conformational sampling algorithms for 

placing ligands in active sites.16  It is also preferable to test energy functions on design 

targets for which computational design has worked in the past, providing some assurance 

that other factors in the design process will not confound the results. 

In addition to experimental validation using the ENH test case, I was interested in 

the problem of a consistent treatment of hydrogen bonds in continuum solvation models.  

Specifically, the continuum dielectric description does not take into account the partial 

covalent character and orientational constraints of hydrogen bonds.17  It is expected that 

that any complete description of protein and active site energetics will require an accurate 

treatment of hydrogen bonds.  Currently, ORBIT and other design programs use an 

angle-dependent hydrogen-bond term (Fig. 5-6A).17-19  Since the PB model has not been 

implemented in a rotamer-based sequence selection scheme like ORBIT, it is unclear 

whether the PB model would inherently capture any of the geometric properties of ideal 

hydrogen bonds.  Here I investigate this issue by identifying hydrogen-bonded pairs in a 

set of crystal structures, optimizing the conformation of the sidechains in each pair using 

various energy functions (including one with the PB model), and finally scoring whether 

the optimized conformation is hydrogen-bonded.  This chapter highlights the current 
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challenges for using the PB energy function in protein design, starting with experimental 

validation. 

 

Methods 

Experimental 

All ENH variants were expressed in a modified pet11 vector with a His6-

Ubiquitin tag N-terminal to the ENH gene.  E. coli strain BL21-DE3 containing the 

vector was induced at OD600 nm  = 0.6–0.9 with 1 mM IPTG for 5 hours at 37°C.  Cells 

were harvested by spinning cultures for 15 min at 5000 g.  Pellets were resuspended in 20 

mM Tris pH 7.4, 10 mM imidazole, 150 mM NaCl, and lysed by french press.  Lysates 

were clarified by centrifuging cultures for 30 minutes at 15000 g.  Clarified lysates were 

batch bound with 3–4 mL Ni-NTA resin for 1 hr at 4°C.  Resin, with bound protein was 

washed with at least 10 column volumes of 30 mM imidazole in 20 mM Tris pH 7.4, 150 

mM NaCl.  Protein was eluted in 250 mM imidazole.  The buffer was changed to 50 mM 

Tris pH 7.8 and the protein was concentrated to 1–1.5 mL.  1 µL of β-mercaptoethanol 

was added to the protein sample.  300 µL 1.4 mg/mL His6-UCH-L3 ubiquitin hydrolase 

was incubated for 15 minutes at room temperature with 3 µL 1 M DTT.  The hydrolase 

and ENH solutions were mixed gently and incubated for 4–8 hours (without mixing) at 

37°C.  The reaction solution was batch bound with 3 mL Ni-NTA resin for 1 hr at 4°C 

and filtered in a gravity column.  The flow through was collected and concentrated in 50 

mM sodium phosphate at pH 5.5. 

Circular dicroism (CD) experiments were carried out on an Aviv 62DS 

spectrometer.  Thermal denaturation data was collected by monitoring the CD signal at 
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222 nm while the temperature was raised in 1°C steps with a 2 minute equilibration time 

and 30 second signal averaging time at each step.  Protein concentrations were obtained 

using theoretical extinction coefficients at 280 nm calculated by the program Central 

Dogma (Huang and Dirks, unpublished).  Data was fit to a two-state unfolding transition 

assuming a temperature-independent heat capacity change ΔCp.20  The inflection point of 

unfolding curves was taken as the temperature T at which the value of signal(T) - 

signal(T-1) was maximal. 

 

The PB model in ORBIT 

The version of DelPhi used in the calculations in Chapters 3 and 4 of this thesis 

was implemented into the SETUP module of ORBIT.  The default parameters were set to 

0.5 Å grid spacing, 70% fill of the grid, 1.4 Å probe radius, and 50 mM ionic strength.  

Rotamer pairs separated by more than 8.0 Å (minimum distance between polar atoms) 

were not treated with PB calculations.  Their two-body perturbations to each other's 

desolvation and roatmer/template screened Coulombic energies were ignored, and their 

rotamer/rotamer screened Coulombic energies were calculated using a distance 

dependent dielectric of 7.1r.  Three-sphere generic sidechains (radius = 2.85 Å and 

distance from Cα and between spheres = 0.61 Å) were included at positions of unknown 

identity. 

To remove non-physical interactions observed between a rotamer at position n 

and the backbone of position n±1 in initial designs using the PB model, we used a 

reference state for interactions between the rotamers and the backbone (Figure 5-2B).  

Specifically, the rotamer/backbone screened Coulombic energy in the standard truncated 
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tri-peptide reference state used in ORBIT was subtracted from the one-body 

rotamer/backbone screened Coulombic energy.  These corrected one-body energies, 

along with the one-body desolvation energies, were stored following the singles energy 

calculation and used to calculate the two-body perturbation energies to be stored in the 

rotamer pairs matrix. 

 

ENH designs 

 Using the same minimized coordinates for ENH used previously,12 the surface 

residues of ENH (2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27, 28, 31, 32, 36, 37, 

38, 41, 42, 45, 46, 48, 49, 50) were designed allowing for the amino acids: Asp, Asn, 

Glu, Gln, His, Lys, Ser, Thr, Ala, and Arg.  Histidine was modeled in its positively 

charged form.  The 1996 or 2002 Dunbrack rotamer libraries with no χ expansions were 

used.21  For all DelPhi calculations, PARSE22 atomic radii and charges were used with 

the parameters described in the previous section.  DREIDING atomic radii scaled by 0.9 

were used for the Lennard-Jones van der Waals term in ORBIT.  For the NC0 and NC3 

designs, the energy function included: the scaled van der Waals term, the hydrogen-

bonding term with a well depth of 8.0 kcal mol-1, and a Coulombic term with a distance 

dependent dielectric of 40r.  For the NC3 design, residues 4, 22, and 36 were constrained 

to high propensity N-capping amino acids (Asn, Asp, Ser, Thr); residues 5, 6, 23, 24, 37, 

and 38 were defined as N-terminal helical residues and were constrained to exclude 

positively charged amino acids; and residues 16, 17, 31, 32, 49, 50 were defined as C-

terminal helical residues and were constrained to exclude negatively charged amino 

acids.  For all designs, the optimal rotameric sequence was obtained using the FASTER 



 107 

algorithm.  The same optimal sequence was found on the majority of the 16 nodes for 

each design.  A list of top-ranking sequences for each design was compiled from 108 

steps of Monte Carlo sampling, with temperature cycling between 150K and 4000K, 

starting from the optimal sequence. 

 

Hydrogen-bonding test 

In a test set of 18 structures (1igd, 1msi, 1opd, 1fna,  2acy, 1erv, 1dhn, 1whi, 

3chy, 2rn2, 1hka, 3lzm, 1amm, and 2pth; plus chain A of: 1agj, 1mol, and 1elk), 

hydrogen bonds were identified as non-zero interaction energies using the ORBIT angle-

dependent hydrogen bond term (Figure 5-5A).  Rotamers for the WT amino acids were 

selected from the backbone-dependent 2002 Dunbrack rotamer library with an expansion 

of one standard deviation about χ1 and χ2 angles.21  The crystallographic rotamer was 

also included in the set of available rotamers.  The energy function included a van der 

Waals term (with DREIDING atomic radii scaled by 0.9) plus the term of interest (PB 

model, distance-dependent dielectric, ORBIT hydrogen-bonding term with damped 

electrostatics, or nothing).  The flow of the computational experiment is shown in Figure 

5-5B.  The ORBIT hydrogen-bonding term used to select rotamers (Table 5-1) is the 

same as that which was used to identify hydrogen bonds and rescore energies of new 

rotamers. 
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Results 

ENH designs 

Using the same set of surface residues as in previous studies,12 the PB model in 

ORBIT was used optimize the sequence of ENH.  In order to compare to previously 

reported data, we also designed sequences using a standard version of the ORBIT energy 

function (“NC0”) and that same energy function plus sequence constraints relating to the 

macro-dipole of the α-helix and the N-capping hydrogen bond at the end of the helix 

(“NC3”).  Stability measurements for sequences designed using these three strategies are 

shown in Figure 5-3B.  Using thermostability as the metric, the PB energy function 

performs the worst of the three methods tested.  Since the list of high-scoring sequences 

for each design contained mutations at positions 8 and 22, residues that were suspected to 

be important for stability, I made a sampling of sequences from each list in Figure 5-3A.   

The stabilities of the mutants (light lines in Fig. 5-3B) cluster near the stability of the 

optimal sequence (dark lines in Fig. 5-3B) for each design strategy.   

It is difficult to identify a single factor that leads to the low stability of the PB 

sequence.  There are 14 mutations between the top-scoring NC0 and NC3 sequences, 20 

mutations between NC0 and PB, and 17 mutations between NC3 and PB.  All variants 

are over 20-fold mutants of WT.  In the top-ranked NC0 designed sequence, there are 

five violations to the helix dipole rules that were strictly enforced for the NC3 design.  

There is only one such violation in the PB sequence, Arg6, which does not make any 

specific interactions with other sidechains or the backbone.  Because the statistically 

derived propensities21 for the rotamers chosen in the PB design were lower than for those 

chosen in the other designs, I made a design that took into account those propensities.  
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This sequence had 16 mutations from the PB design in Figure 5-3, and its stability was 

higher (Tm = 67°C vs.  50°C) but did not approach the maximal stabilities observed for 

this design target (> 85°C). 

Zollars et al. observed a significant increase in stability using the NC0 design 

strategy when using the 1996 Dunbrack rotamer library instead of the older rotamer 

library used by Marshall et al.12  Based on this result, I designed and characterized NC3 

and PB variants using the 1996 rotamer library (Figure 5-4).  It is notable that using this 

rotamer library, the three design strategies perform almost exactly the same.  This points 

to the problem of how sensitive sequence design is to the parameters unrelated to the 

energy function (see conclusions section). 

 

Hydrogen bond test 

I tested the consistency of the rotameric interactions predicted to be optimal by 

the PB model in the ORBIT energy function with the hydrogen-bonding term currently 

used in ORBIT (Figure 5-5A).  An angle-dependent hydrogen-bond term has been shown 

to improve the recovery of WT amino acid identity by the ROSETTA energy function19 

and is expected to be a necessary component of active site design.  In a purely 

electrostatic interaction scheme, the most favorable conformation for a dipole-dipole 

interaction is linear (Figure 5-5A).  For hydrogen bonds, this means 180° angles formed 

by the donor-hydrogen-acceptor atoms and by the hydrogen-acceptor-acceptor base 

atoms.  This orientation is not observed in protein crystal structures and is not supported 

by more detailed electronic structure calculations of hydrogen-bonding partners.17  The 

PB model includes protein-solvent interactions as well as electrostatic interactions within 
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the protein, and it is unclear how the balance of these terms might affect the selection of 

rotamers. 

The outline of the computational experiment is shown in Figure 5-5B.  For each 

pair of residues in a set of crystallographic hydrogen bonds, various energy functions 

were used to select optimized rotamers.  Using the ORBIT hydrogen-bonding potential, 

the hydrogen-bond energies for the rotamers selected by each energy function were 

evaluated.  The results for the various energy functions tested are given in Figure 5-6.  

The rescored energies of the rotamers selected by the various energy functions were 

compared to the energies of the crystallographic rotamers to get the value ΔEh-bond.  The 

sign of ΔEh-bond indicates whether the hydrogen-bond energy of the new rotamers is more 

favorable (ΔEh-bond < 0), less favorable (ΔEh-bond > 0), or the same as the crystal structure 

(Figure 5-6).  I also looked at Eh-bond for the new rotamers to see how many pairs 

maintained any hydrogen-bond character.  In order to control for bias introduced by the 

inclusion of the crystallographic rotamer, the test was carried out using no electrostatics 

or hydrogen-bonding term (“vdw alone” in Table 5-1).  For the 206 pairs examined here, 

the choice of rotamers by the PB model energy function reduced the magnitude of the 

hydrogen-bond energy (ΔEh-bond > 0) for 107 pairs.  The distance-dependent dielectric 

model performed similarly, selecting rotamers with ΔEh-bond > 0 for 113 pairs.  Both of 

these models are between the two extreme cases: (1) no electrostatic or hydrogen-

bonding term (vdw alone), which led to 186 pairs with ΔEh-bond > 0 and (2) an explicit 

hydrogen-bond term with damped electrostatics, which gave only 33 pairs with ΔEh-bond > 

0. 
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To see what factor is driving selection of rotamers in the PB model, for each of 

the 206 pairs in the test set, the crystallographic rotamers were scored using the PB model 

and then compared to the PB model energy of the selected rotamers.  Figure 5-7 shows 

each term in the energy function separately.  The rotamer desolvation energy is 

consistently more favorable in the selected rotamers than in the crystallographic rotamers.  

On the other hand, the screened Coulombic energy (which includes interactions between 

rotamers as well as interactions between rotamers and the rest of the protein) is generally 

more favorable in the crystallographic conformation.  This result indicates that 

minimizing the desolvation of rotamers is driving selection of conformations that are not 

hydrogen bonded.  

 

Conclusions 

 The data presented here highlight several challenges to implementing the PB 

model in protein design calculations.  The results for ENH leave open the question of 

experimental validation of the model.  Based on the widely varying results with different 

rotamer libraries, not only for the PB model but also for the NC0 and NC3 designs, I 

have little confidence in the ENH test case.  The sensitivity of the calculation to 

parameters unrelated to energy function point to the fact energy functions should not be 

validated or discarded based on experimental characterization of a single lowest energy 

sequence.  Even though there was clustering of stabilities in the very small sequence 

“libraries” in Figure 5-3, the distribution of stabilities is wide enough to believe that the 

top 100 or 1000 sequences might show significantly different expectation values for 

stability from the handful investigated here.  In Chapter 7 of this thesis, methods for 
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computationally designing combinatorial libraries of proteins are evaluated.  These 

methods could be used to carry out high throughput energy function validation in cases 

where a suitable experimental screen is available. 

 The other issue addressed here is whether or not the PB model can be considered 

a replacement for an angle-dependent hydrogen-bond term.  Based on the data in Figure 

5-6, the PB model does not have any inherent features that would lead it to select 

hydrogen-bonded rotamers more frequently than a DDD model.  It is possible that the 

force fields used to refine the crystal structure may lead to hydrogen-bond geometries 

that are non-physical and that certain members of the test set used here are pairs in 

incorrect conformations.  Despite that uncertainty, the results here indicate that the 

definition of a favorable hydrogen bond in the current ORBIT energy function is not 

consistent with the geometries produced by the PB model in ORBIT and that to recover 

these interactions, one would need to account for the angle dependence and covalent 

character of hydrogen bonds.  The more general issue may be energy function balancing: 

an improvement in one term requires balancing with the other terms.  Solving this 

multiple dimension optimization problem is not straightforward, but there are some 

computational tests that could serve as a first pass before experimental validation.3,16,23  

Additional considerations that were not addressed here include computational 

efficiency of the PB model and unfolded state modeling.  The computational efficiency of 

the PB model as implemented in ORBIT currently would preclude large design problems.  

This is because for PB designs, computation time scales not only as the square of the 

number of rotamers but also as the cube of the longest dimension of the molecule, the 

latter factor due to the grid-based PB solver.  Unfolded state modeling is a more general 
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problem in biomolecular simulation.  There are a variety of models in the literature for 

how one might approach this problem.24-26  However, in a recent study of several models, 

they all had the same behavior in reproducing pKa values in an unfolded staphylococcal 

nuclease,27  underscoring the difficulty of benchmarking models. 

Despite the challenges described in this chapter, much progress has been made 

toward implementing improved models for electrostatics in protein design.  The PB 

model in ORBIT represents a first step toward developing an environmentally sensitive 

electrostatics model that includes a consistent treatment of desolvation and electrostatic 

interactions.  Combined efforts in improving efficiency of the numerical solver, 

experimental validation, and clever modeling will accelerate the pace of functional 

protein design. 
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Table 5-1. Change in hydrogen-bond energy 
  PB  DDD*  ORBIT 

h-bond†  vdw alone‡ 

Eh-bond < 0§ 
 

157  159  186  64 

ΔEh-bond ≤ 0 
 

99  93  173  20 

ΔEh-bond ≥ 0 
 

107  113  33  186 
* DDD model used ε = 7.1r for sidechain/sidechain interactions and ε = 5.1r for sidechain/backbone 
interactions. 
† ORBIT angle-dependent hydrogen-bonding term with a well-depth of 8.0 kcal mol-1 and ε = 40r  
‡ No other energy terms other than the van der Waals potential were used. 
§ The number of pairs that retain any hydrogen bond character after rotamer selection 
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Figure 5-1.  The ENH test case.  The surface residues that were designed in this study are 
shown in red, with side chains shown as sticks. 
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Figure 5-2.  The PB model in ORBIT. (A) Illustration of the cutoffs used for interactions 
between sidechains. All of the rotamer/rotamer interactions that were treated with PB 
electrostatics in the PB design are connected by orange lines. Only polar hydrogens are 
shown.  Molecule is rotated 180° about the vertical axis from the image in Figure 5-1. (B) 
Reference state for sidechain/backbone interactions.  For each rotamer, the 
rotamer/backbone screened Coulombic energy in the truncated tri-peptide reference state 
(left) used in ORBIT was subtracted from the one-body folded state rotamer/backbone 
screened Coulombic energy (right). 
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Figure 5-3.  Experimental data for the ENH variants.  (A) List of low energy sequences 
for each design.  (B) Thermal denaturations monitored by CD. The dark line is for the 
lowest energy sequence for each design, sequence in (A).  The lighter lines correspond to 
high-scoring sequences found by Monte Carlo sampling around the optimal sequence, 
highlighted in (A).  (C) Plot of Tm values calculated using the inflection point (black 
squares) or two-state non-linear fit (gray circles) of the curves in (B). 
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Figure 5-4. CD data for the ENH variants designed using 1996 rotamer library. Thermal 
denaturations monitored by CD are shown for NC0 (dashed line), NC3 (black line), and 
PB (gray line) variants.  The NC0 data is from Zollars et al.14 



 121 

 

 

 

 

Figure 5-5. Test of hydrogen-bonding geometries.  (A) Idealized geometry for a purely 
electrostatic interaction is shown on the left.  The ORBIT hydrogen bond energy term is 
shown on the right with equations for energy and F for each type of donor-acceptor pair 
(θ = donor-hydrogen-acceptor angle, φ = hydrogen-acceptor-base angle, ϕ = angle 
between normals of the planes defines by the six atoms attached to the sp2 centers, R0 = 
2.8 Å, D0 = 8.0 kcal mol-1).  (B) Scheme for testing the degree to which the PB model 
selects rotamers that have hydrogen-bonding geometries.  The initial identification of 
crystallographic hydrogen bonds was carried out once.  The steps enclosed by the dashed 
line were done for each energy function listed in Table 5-1. 
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Figure 5-6. Results of the hydrogen bond test. For (A) PB model, (B) DDD model, (C) 
ORBIT energy function with hydrogen bond potential, and (D) van der Waals potential 
alone.  As described in the text, ΔEh-bond = Eh-bond(selected rotamers) – Eh-bond(crystal 
structure). 
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Figure 5-7. Desolvation penalty leads to loss of hydrogen-bonding geometries.  For each 
of the 206 pairs in the test set, the change in each force field term between the new and 
selected selected rotamer is shown (van der Waals energy, open circles; electrostatic 
interaction energy, gray squares; polar desolvation of the backbone, black “x”; polar 
desolvation of sidechains, black circles). 
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Chapter 6 

 

The plasticity of surface residues on engrailed homeodomain 
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Abstract 

I have created a hyper-thermostable variant of Drosophila melanogaster engrailed 

homeodomain by mutating its solvent-exposed residues.  This variant, HT_ENH, was 

designed using structure-based computational optimization of the amino acid sequence, 

with sequence constraints for N-capping and helix dipole rules.  HT_ENH has a thermal 

denaturation temperature approximately ~ 50°C higher than the WT sequence.  This 

result is yet another example of protein stabilization via electrostatic optimization of 

surface residues.  In order to reconcile HT_ENH's high stability with recent reports of 

well-folded proteins with poor surface electrostatic interactions and large formal charges, 

I also created a negatively "supercharged" variant of engrailed homeodomain with a 

formal charge of -13.   The super-charged variant has circular dichroism similar to the 

WT sequence.  The thermostability is also close to that of the WT.  As would be 

predicted for electrostatic repulsion or optimization, the super-charged variant is 

stabilized, while HT_ENH is destabilized, by the addition of monovalent salts.  These 

data indicate that for the engrailed homeodomain fold, the plasticity of surface residues 

can be exploited to either impart highly unfavorable electrostatic interactions without 

disrupting the fold or to increase the protein's thermostability by optimizing electrostatic 

interactions. 
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Introduction 

  It is now widely accepted that electrostatic optimization of solvent-exposed 

residues can impart thermodynamic stability on the folded state of proteins.  This 

stabilization has been observed in both naturally occurring and designed proteins.1-8  For 

mesophile/thermophile pairs, there are dramatic examples of electrostatic optimization.  

Perhaps the most studied is in the bacterial cold shock proteins.9,10  A single mutation of a 

surface Glu to an Arg caused at least a 2.5 kcal mol-1 increase in stability of a mesophilic 

cold shock protein.11  Larger database surveys have shown an increased number of close 

range electrostatic interactions12 and optimization of longer-range electrostatic 

properties13 in thermophilic homologues. 

There are also a number of cases of rational design of surface residues leading to 

stabilized variants.  Makhatadze and coworkers have taken a minimalist approach the 

engineering surface electrostatics by identifying a handful of residues that are likely to 

have a larger impact on the stability of the protein.  Mutagenesis of these residues is 

predicted to lead to a more optimal charge distribution, and this result as been confirmed 

in the lab by experimentally characterizing the stability of their rational mutations in a 

number of different folds.7,8  Mayo and coworkers have optimized the surface residues of 

engrailed homeodomain by taking into account the properties of the helix macrodipole 

and helical N-capping interactions or using a Coulombic electrostatics term, creating 

variants with melting temperatures at least 35°C above the WT protein.3,6 

On the other hand, recently it has been shown that folded proteins can tolerate a 

high net charge and a theoretically large amount of electrostatic repulsion between 

surface sidechains.  Both by chemical modification and mutagenesis, variants of proteins 
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that naturally have modest net charge, have been created that have extreme charges 

(±20).  Liu and coworkers created a series of GFP variants that had at least ±30 net 

charges by mutating surface residues.14  These “supercharged” variants showed an 

increased resistance to aggregation compared to the parent GFP from which they were 

derived.  Whitesides and coworkers have used chemical modification of surface lysines 

on bovine carbonic anhydrase to study the role of surface charge in stability, folding 

kinetics, and ligand binding.15-17  The modified enzymes have net charges on the order of 

-19 and retain the ability to refold from chemical denaturants.17  In addition, removal of 

all charge/charge interactions on the surface of ubiquitin did not significantly reduce the 

stability from that of the WT protein, indicating that favorable electrostatic interactions 

are not a prerequisite for folding or stability.18  

Taken together, these studies produce a conflicting picture of the role of surface 

electrostatics in protein stability.  It is clear that favorable electrostatic interactions are 

neither sufficient nor necessary for producing a compact, well-folded protein.14,17,18  In 

cases where specific residue pairs were shown to have a small free energy of interaction, 

it was proposed that these interactions could aid in folding and binding specificity.19  It is 

also proposed that proteins might have charged sidechains on their surface in order to 

prevent aggregation but carry low net charges in order to prevent non-specific binding to 

oppositely charged molecules.20   

However, it is also clear that, in some cases, altering the electrostatic properties of 

protein surfaces can increase the thermodynamic stability of the folded state.7,8,11  One 

way to reconcile these somewhat contradictory ideas it to think of stability as a 

threshold.21  It is possible that rarely is the electrostatic free energy of folding associated 
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with the surface residues so unfavorable as to cross that threshold and favor the denatured 

state.  But it is possible that optimization of the electrostatic free energy can be used to 

increase that the stability further above that threshold.  A possible physical explanation 

for this qualitative model is that polar solvent and mobile counter ions can almost always 

compensate for unfavorable surface electrostatic interactions between surface residues on 

a protein. 

In this chapter, data is presented for two variants of Drosophila melanogaster 

engrailed homeodomain (ENH).  One variant, HT_ENH (“hyperthermophilic ENH”), is 

highly stabilized compared to the WT protein.  It was designed using a similar strategy as 

previous stabilized sequences, but HT_ENH retained certain WT contacts.  In order to 

investigate the paradox of protein surface charge and stability, I created a negatively 

“supercharged” variant (NSC) that has 20 of its 29 surface residues mutated to acidic 

amino acids.  Together these variants show the plasticity of surface residues in ENH to 

stabilize the native fold or to carry extreme charges. 

   

Methods 

Experimental methods.  All proteins were expressed and purified as described in Chapter 

5.  Circular dichroism (CD) data was collected on an Aviv 62DS spectrometer.  Unless 

otherwise noted, conditions were 50 mM sodium phosphate buffer at pH 6.5.  

Sedimentation velocity experiments were done on a Beckman XL-I Ultima analytical 

ultracentrifuge equipped with absorbance optics.  Samples were spun at 55,000 rpm 

(20°C) at protein concentrations of 75 uM and 150 uM in 50 mM sodium phosphate (pH 

6.5) and 150 mM NaCl with detection at 280 nm every 3 minutes.  SEDNTERP was used 
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to calculate the buffer density (1.00886 g mL-1) and partial specific volumes (0.7306 mL 

g-1 for WT ENH and 0.7160 mL g-1 for HT_ENH).  The data was analyzed using 

SEDFIT.  Both data sets collected for 75 µM protein concentration had RMSD values of 

0.005 for their fits (Fig. 6-4).  The data for 150 µM HT_ENH had an RMSD of 0.009 

associated with its fit, but the absorbance was slightly higher than the optimal range for 

the instrument. 

 

Computation.  Designs were carried out on the 29 surface residues of ENH (2, 4, 5, 6, 8, 

9, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27, 28, 31, 32, 36, 37, 38, 41, 42, 45, 46, 48, 49, 50) 

using the same backbone coordinates as previously.3,6  These positions were allowed to 

have the following polar amino acid identities: Asp, Asn, Glu, Gln, His, Lys, Ser, Thr, 

Ala, and Arg.  Histidine was modeled in its positively charged form.  For the HT_ENH 

design, residues 4, 22, and 36 were constrained to high-propensity N-capping amino 

acids (Asn, Asp, Ser, Thr); residues 5, 6, 23, 24, 37, and 38 were defined as N-terminal 

helical residues and were not allowed to mutate to positively charged amino acids; and 

residues 16, 17, 31, 32, 49, 50 were defined as C-terminal helical residues and were not 

allowed to mutate to negatively charged amino acids.   The 2002 Dunbrack rotamer 

library22 (with no expansions) plus the crystallographic rotamers were used to model 

conformational flexibility.  Since the crystallographic rotamer was included in the 

available rotamers, some positions were allowed to remain as their WT non-polar amino 

acid or a WT amino acid that would violate the helix dipole rules.  For the NSC design, 

Asp and Glu rotamers or the crystallographic rotamer were allowed at each position. 
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 DelPhi was used to calculate electrostatic potential surfaces for the WT crystal 

structure (pdb code: 1ENH) and for the design models of HT_ENH and NSC (Figure 6-

2).  PARSE atomic radii and charges were used with a grid spacing of 0.5 Å, probe radius 

of 1.4 Å, 70% grid fill, εwater = 80, and εprotein = 4.  Electrostatic interaction energy for 

each residue shown in Figure 6-2 was calculated by summing the DelPhi solvent-

screened interaction energies between the residue of interest and the other polar 

sidechains and the backbone.   

 

Results 

The HT_ENH sequence was designed by allowing ORBIT to select only amino 

acids favored according to known properties of the α-helix macrodipole and capping 

interactions.  Specifically, positively charged amino acids were excluded from the three 

most N-terminal residues of a helix, and negatively charged amino acids were excluded 

from the three most C-terminal residues of a helix.  In addition, the N-capping residues 

were forced to be high propensity N-capping residues.23  The helix dipole rules account 

for long-range electrostatic effects that may be poorly model by the energy function.  The 

ORBIT energy function was used with an angle-dependent hydrogen-bonding term, a 

damped Coulombic term (ε=40r), and a Lennard-Jones van der Waals term.  No solvation 

model was used on the assumption that all surface residues would be desolvated to the 

same amount.  Unlike previous designs using this approach (see Chapter 5 and Marshall 

et al.3), the crystallographic rotamer was included in the set of rotamers considered in the 

calculation.  This was also true of the negatively supercharged (NSC) ENH variant that I 

designed.  Interestingly, in both cases Leu8 was chosen to remain as the WT amino acid.  



 131 

There is evidence that in solution the sidechain of Leu8 may be more buried than in 

crystal structures of ENH.24  Therefore, the classification of this residue as being on the 

protein surface might be inaccurate. 

The models and sequences for the ENH variants are shown in Figure 6-1.  The 

model of HT_ENH shows more short-range (< 4Å), intra-helical sidechain/sidechain 

interactions than the WT sequence or NSC (Figure 6-1B) but not as many as reported for 

previous generation designs.3  Not surprisingly, the sidechains of NSC are not making 

short-range interactions, and if the design model did show them, it is probable that the 

sidechains would relax in solution to minimize repulsion.  The formal charge listed for 

NSC in Figure 6-1C is most likely more negative than the actual net charge in solution 

due to shifted pKa values of acidic groups and bound counterions.20  Electrostatic 

potential surfaces for the WT crystal structure and the design models are shown in Figure 

6-2.  The solvent-screened Coulombic energy between each polar amino acid and the rest 

of the protein is also shown.  The HT_ENH model has almost no unfavorable 

electrostatic interactions, while WT and NSC have multiple residues with ΔGelectrostatic >> 

0.  It is notable that there are several basic sidechains in the NSC protein that have highly 

favorable interactions.   It is possible that strong favorable interactions with the few 

remaining oppositely charged residues partially compensate for the large repulsion in 

highly charged proteins.14,15  

Stability toward thermal denaturation was measured using circular dichroism 

(CD) (Figure 6-3).  Both HT_ENH and NSC unfold reversibly in native buffer (data not 

shown).  An attempt was made to calculate ΔG of unfolding for HT_ENH.  However, 

HT_ENH does not unfold in 10 M urea, and guanidinium was avoided as denaturant 
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since it is charged.  Therefore, I examined thermal unfolding as an approximation of 

thermodynamic stability, a sound approximation for a range of proteins.25  Only an 

apparent Tm could be obtained for HT_ENH since it does not complete the unfolding 

transition below 100°C (Figure 6-3B).  The inflection point of the unfolding curve is 

94°C.  Since the high stability of HT_ENH could be due to oligomerization of the 

protein, I investigated the oligomerization state using analytical ultracentrifugation.  On 

the timescale of a sedimentation velocity run, HT_ENH appears to be monomeric (Fig. 6-

4).   The unfolding temperature of NSC (48°C) is near that of WT (44°C).  The unfolding 

transition for NSC is more cooperative than that of WT as judged by the slope of the 

transition region.  The denatured state of ENH has been observed to contain significant 

native secondary structure, leading to a less cooperative folding transition.26  It is possible 

that NSC has a more extended denatured state than the WT protein and therefore shows 

more cooperative unfolding behavior.   

The stability of HT_ENH and NSC at varying ionic strength was tested.  The Tm 

of NSC increases monotically with increasing concentration of sodium chloride, while 

opposite trend was observed for HT_ENH (Figure 6-5).  This trend is consistent with 

unfavorable electrostatic interactions in NSC and favorable interactions in HT_ENH.   

Pace and coworkers hypothesized that salt screening will be stronger in the unfolded state 

than in the folded of protein, and therefore, the addition of monovalent salt will 

differentially affect folded and unfolded state electrostatic interactions.27  This will only 

affect the steepness of the slope, not the sign.  It seems more plausible that the salt 

screening of the native state interactions are dominating the different signs of the slopes 

observed in Figure 6-5.  As expected, the stability of NSC is also highly pH dependent 
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and the thermal dentauration temperature increases from 48°C to 59°C when the pH is 

lowered from 6.5 to 5.5 (data not shown).    

 

Conclusions 

The data here indicate that both HT_ENH and NSC assume the native fold of 

ENH.  Crystals of HT_ENH have been obtained, and structure determination is in 

progress.  These two designed proteins represent two extremes of plasticity for surface 

residues.  If we consider plasticity the ability to change into many distinct forms, 

HT_ENH represents a surface charge distribution that is electrostatically optimized and 

NSC represents a charge distribution with a high degree of electrostatic repulsion.  Both 

of these properties were engineered into a fold that has neither of these properties 

naturally.  A survey of the UniProt proteome for D. melanogaster showed that NSC had a 

larger magnitude net charge than any annotated gene with the exception of the L39 

ribosomal protein (51 a.a.; +18).  It should be noted that the design and expression of 

supercharged proteins is not trivial.  Liu and coworkers report poor expression or 

aggregation for several of their variants.14   Efforts to make a positively super-charged 

ENH have not been successful (data not shown). 

In the introduction, I put forward a model for the importance of long-range 

electrostatic interactions for stabilization of the folded state in which unfavorable 

interactions can be mitigated by interaction with the highly polarizable solvent and 

mobile ions.  This model might reconcile some of the contradictory results that have been 

reported in the literature for the importance of surface electrostatics.  The molecules 

reported here are consistent with this idea, but do not count as proof.  Proving this model 
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may be quite difficult.  Measurements of sidechain dynamics might shed light on whether 

the surface sidechains in HT_ENH are less mobile than those in NSC due to the specific 

favorable interactions they are making with the rest of the protein.   There is no reported 

method for studying the dynamics of non-aliphatic sidechains in solution.  Capillary 

electrophoresis might shed light on hydrodynamic drag and also provide a more direct 

measure of the net charge of NSC in solution.20   NMR studies of backbone dynamics 

may provide information about the heterogeneity of the folded state ensembles of the two 

variants.  Based on the data presented here, these variants represent in extreme of surface 

electrostatics in the ENH fold.  In the future, they could be used to explore the role of 

surface electrostatics in the folding pathway and folded state dynamics.   
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Figure 6-1.  Designed ENH variants.  (A) Cartoon representation of the ENH structure 
(pdb code: 1ENH).  (B) Individual helices in ENH designs.  The WT crystal structure is 
shown in CPK-based colors with carbon atoms in green.  The design model for HT_ENH 
is shown with carbons in white.  The design model for NSC is shown with carbons in 
pink.  Electrostatic interactions, with less than 4 Å atom-atom distances, are shown with 
dotted yellow lines.  The HT_ENH model has more intra-helical, short-range 
sidechain/sidechain than the other structures.  (C) Sequences of ENH variants.  Surface 
residues are in black text and other residues (which were not designed) are in gray.  
Among the surface residues, acidic sidechains in highlighted in light red, and basic 
sidechains are highlighted in light blue.  The formal charge is given for each sequence. 
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Figure 6-2.  Electrostatic potential surface and calculated interaction energies for ENH 
variants: (A) WT, (B) HT_ENH, and (C) NSC. The coloring for the molecular surfaces is 
on a scale of ±5 kT.  ΔGelectrostatic (in kcal mol-1) is the sum of the solvent-screened 
Coulombic energy between the sidechain of interest and the backbone and also between 
the sidechain of interest and the other polar sidechains in the protein. 
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Figure 6-3.  CD data for ENH variants.  (A) CD wavelength scans.  (B) Thermal 
denaturations.  WT: gray; HT_ENH: black; NSC: dashed line.  All data was collected at 
pH 6.5 in 50 mM sodium phosphate buffer.  The thermal denaturation temperatures were 
calculated as the inflection points of the curves in (B): WT, 44°C; NSC, 48°C; HT_ENH, 
94°C. 
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Figure 6-4.  Analytical ultracentrifugation of HT_ENH.  Gray line corresponds to WT 
ENH (75 µM).  The solid black line is for HT_ENH at 75 µM protein concentration, and 
the dotted line is for HT_ENH at 150 µM protein concentration.  Data was collected at 
pH 6.5 in 50 mM sodium phosphate and 150 mM NaCl. 
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Figure 6-5.  Effect of ionic strength on thermostability of (A) NSC and (B) HT_ENH.  
Open symbols correspond to Tm values calculated using non-linear fit to Equation 2 in 
Appendix A.  The non-linear fit could not be calculated for HT_ENH due to a lack of 
post-transition baseline.  Solid black circles correspond to the inflection point of thermal 
denaturation curves. 
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Chapter 7 

 

Computationally designed libraries of fluorescent proteins 

evaluated by preservation and diversity of function 

 

 

Parts of this chapter were adapted from a published manuscript that was co-authored 

with Thomas P. Treynor, Daniel Nedelcu, and Professor Stephen L. Mayo 

 

T.P. Treynor, C.L. Vizcarra, D. Nedelcu, and S.L. Mayo, Proceedings of the National 

Academies of Science USA 104, 58–53 (2007). 

 

 

*T.P.T. developed the DBIS algorithm.  Experiments and analysis were a collaborative 

effort with T.P.T. and D.N. 
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Abstract 

In order to determine which of seven library design algorithms best introduces 

new protein function without destroying it altogether, seven combinatorial libraries of 

green fluorescent protein variants were designed and synthesized.  Each was evaluated by 

distributions of emission intensity and color compiled from measurements made in vivo. 

Additional comparisons were made with a library constructed by error-prone PCR.  

Among the designed libraries, fluorescent function was preserved for the greatest fraction 

of samples in a library designed using a novel structure-based computational method. A 

trend was observed towards greater diversity of color in designed libraries that better 

preserved fluorescence.  Contrary to trends observed among libraries constructed by 

error-prone PCR, preservation of function was observed to increase with a library’s 

average mutation level among the four libraries designed with structure-based 

computational methods.  Forty-one unique clones from a designed library were 

sequenced and consistent shifts in emission peak position were observed for three 

mutations in a variety of mutational backgrounds.  
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Introduction 

Protein sequence space is so vast that one can easily imagine the optimal 

sequence for a particular application will never be sampled by random mutation and 

recombination.  Structure-based computational protein design tools seek to screen that 

sequence space more thoroughly than can be screened in the laboratory, but are currently 

based on approximate representations of candidate sequences and an incomplete 

understanding of the relationships between structure and function.  While many 

algorithms used to screen sequences in silico aim to identify a single optimal sequence,1–5 

others aim instead to optimize the composition of a library of sequences. 6–13  Provided 

resources exist to synthesize and screen such libraries, library design algorithms 

compensate for the approximations built into them by increasing the number of attempts 

at designing the desired function.  Viewed from a complementary perspective, such 

algorithms aim to sample sequence space more effectively than methods that randomly 

generate sequence diversity. 

Designed libraries can be synthesized for roughly the same cost as a designed 

sequence by recognizing the opportunities in gene synthesis for the combinatorial 

shuffling of sequence diversity.14–17 Although many algorithms have now been proposed 

to design such combinatorial libraries,7–9,11,12 few computationally designed libraries have 

been characterized experimentally,9,18,19 and to our knowledge, there have been no 

controlled experiments comparing these methods with each other or with libraries of 

randomly generated sequence diversity.  The results of such a comparison would be hard 

to predict, especially since none of these methods models protein function explicitly.  

Instead, these algorithms attempt to model protein stability as a surrogate for protein 
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function on the assumption that libraries with a greater fraction of well-folded proteins 

are more likely to contain variants with the desired function. 

Here we evaluate seven designed combinatorial libraries of green fluorescent 

proteins (GFPs), including one with mutations picked at random. Preservation and 

diversity of function were judged using distributions of brightness and color, 

respectively, compiled from measurements made in vivo with a monochromator-based 

plate reader.  GFP from Aequorea victoria modified by S65T 20 (GFP-S65T) was chosen 

as a reference sequence for each design algorithm because this variant is less extensively 

engineered than other variants whose structures have been solved to similarly high 

resolution.  Positions 57 through 72 were targeted for this test because they form the 

longest contiguous stretch of core positions in the GFP-S65T structure.21  The structure of 

GFP-S65T is illustrated in Figure 7-1A with the targeted positions shown in yellow.  

Because random core mutations are generally more disruptive than random surface 

mutations,22,23 it was assumed that targeting core positions would provide better 

differentiation of designed libraries according to preservation and diversity of function 

criteria.  Contiguity was imposed to allow the economical and high-fidelity cassette-

based library synthesis.  Where possible, libraries were controlled both for theoretical 

size and the precise distribution of mutation levels within each library since one would 

expect these factors to affect library quality when controlled for the same method of 

design. 

We show that the corresponding design algorithms perform quite differently in 

this test.  Four of the seven libraries were designed with structure-based computational 

methods:  two with an algorithm introduced here (see Methods) and two with algorithms 
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described previously.7,9  Among these four libraries, we observe that preservation of 

function increases with a library’s average mutation level, contrary to the trends observed 

for libraries constructed by error-prone PCR (epPCR).24,25  Across all seven libraries, we 

observe a trend towards greater diversity of function in designed libraries with greater 

preservation of function.  An additional library generated by epPCR amplification of the 

entire GFP-S65T gene exhibited much less dispersion of function than designed libraries 

with similar preservation of function. 

 

Results 

Library Composition. The seven combinatorial libraries with compositions listed in Table 

7-1 were designed, synthesized, and characterized as described in the Methods section. 

Briefly, the labels DBISORBIT, DBISORBIT 44, CORBIT, and SCMFORBIT 322 represent the four 

libraries designed using structure-based computational methods that draw on the ORBIT 

suite of protein design tools.1–3  The DBISORBIT and DBISORBIT 44 libraries were designed 

using an algorithm whose principal innovations can be summarized as a diversity benefit 

applied to interacting sets of amino acids (DBIS).  The CORBIT library was designed with a 

consensus method (C) based on the work of Hayes et al.9  The SCMFORBIT 322 library was 

designed using a self-consistent mean field (SCMF) calculation to direct combinatorial 

saturation mutagenesis as suggested by Voigt et al.7  The CMSA and SE/CMSA libraries 

were each designed with the same multiple sequence alignment (MSA) of naturally 

occurring fluorescent proteins.26  Both use a consensus method derived from the work of 

Hayes et al. 9, but the latter is distinguished by directing mutations to positions that have 

the largest site entropies (SE).  Mutations in the Random library were picked with a 
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random number generator.  In order to approach 95% confidence that the true extremes of 

function in each library would be sampled, we aimed to sample most designed libraries 

by three times their theoretical size.27  Considering also that one-half hour was needed to 

acquire each set of 96 high-resolution emission spectra, these constraints dictated that 

theoretical library sizes should be close to 500.  Although this size is orders of magnitude 

smaller than most libraries screened for binding28 or low-resolution fluorescence 

properties,29,30 it is especially relevant to difficult-to-screen functions such as improved 

enzymatic activity with non-fluorogenic substrates.  It was assumed that the best 

differentiation between design algorithms would be achieved by applying them in ways 

that maximized the average number of mutations per sequence, yet each combinatorial 

library was constrained to include the sequence of GFP-S65T so that none would be 

rendered completely non-functional due to a uniquely disruptive mutation.  Thus most 

designed libraries tested here (DBISORBIT, CORBIT, CMSA, SE/CMSA, and Random) have a 

theoretical size of 29 and an average of 4.5 mutations per sequence. The DBISORBIT 44 and 

SCMFORBIT 322 libraries have unique sizes and average mutation levels that are conveyed 

by the labels we have given them.  For example, the SCMFORBIT 322 label indicates that 

this library was made by combinatorial saturation mutagenesis at two positions using 32-

fold degenerate codons. 

It is interesting to note the extent to which the compositions of the designed 

libraries reflect the fact that evolution disfavors ionizable side chains in protein cores. 

The MSA used to design the CMSA and SE/CMSA libraries illustrates this trend, with a 

notable exception being the unusually high degree of conservation at position 69 for a 

buried basic side chain.26  The scoring function used for structure-based design was 
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parameterized specifically to prevent the desolvation of hydrophilic side chains in protein 

cores under most circumstances.31 Thus the DBISORBIT 44 library introduces only one 

acidic side chain among its twelve mutations distributed over four positions, and the 

DBISORBIT and CORBIT libraries do not introduce any ionizable side chains anywhere.   

Although the SCMFORBIT 322 library was designed using the same scoring function as 

these three other libraries, imposing saturation mutagenesis for this one library makes it 

introduce many mutations that are strongly disfavored by this scoring function.  Thus the 

SCMFORBIT 322 library introduces ionizable side chains at core positions with greater 

frequency than each library tested except the Random library. 

 

Preservation of Function. For each of the designed libraries, and for the epPCR library, 

emission spectra were recorded for roughly 1500 bacterial cultures expressing GFP 

variants.  We define the brightness and color of each spectrum sampled as its integrated 

emission intensity and average position, respectively.  Because it is not clear how best to 

define a functional sample, we have quantified each library’s preservation of function in 

three ways.  For each library, the percentage of samples that have at least one-half, one-

tenth, and one-fiftieth the brightness of cultures expressing GFP-S65T are presented as 

bar graphs in Figure 7-2.  By all three of these measures, most of the designed libraries 

performed considerably better than the Random library.  Only 1.6% of samples from the 

Random library had at least one-fiftieth the brightness of cultures expressing GFP-S65T.  

Although the SCMFORBIT 322 library had a larger fraction of functional samples than the 

Random library by this most inclusive definition of function, it had a similar fraction by 

the most exclusive definition.  The relatively poor performance of these two libraries is 
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probably due in part to the relatively large frequencies with which these libraries 

introduce ionizable side chains to the protein core. 

By all three of these measures the DBISORBIT library performed best of all.  More 

than 10% and 40% of its samples were at least one-half and one-fiftieth as bright as 

cultures expressing GFP-S65T, respectively.  The CORBIT library performed nearly as well.  

The SE/CMSA, CMSA, and DBISORBIT 44 libraries performed similarly to each other, with 

close to 1% and 10% of samples being at least one-half and one-fiftieth as bright, 

respectively, as cultures expressing GFP-S65T.  The Q69R mutation, since it introduces 

an ionizable side chain to the protein core, would seem responsible for much of the 

weaker performance of the MSA-based libraries compared to the DBISORBIT and CORBIT 

libraries, which instead introduce the Q69L mutation.  However, even if it is assumed 

that the Q69R mutation always disrupts function and that the Q69L mutation never 

disrupts function, less notable differences among these libraries must account for at least 

half the observed differences in performance. 

Multiple epPCR libraries were synthesized using different mutation rates.  Only 

the library that appeared to have a similar fraction of functional samples as the DBISORBIT 

library was characterized in detail in order to compare average mutation levels and 

diversity of function under this condition.  Despite the fact that random mutations are 

generally tolerated at surface positions better than at core positions,22,23 the average 

number of non-synonymous mutations for genes in this epPCR library was determined by 

DNA sequencing to be 2.5, roughly half the average of 4.5 mutations per gene for the 

core-directed DBISORBIT library. 
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Diversity of Function. Because the dimmest samples have colors biased by emission from 

molecules other than GFP, here we consider only those samples with at least one-half the 

brightness of cultures expressing GFP-S65T.  Of the 11,575 spectra sampled, 701 met 

this criterion.  The red-most and blue-most of these spectra are illustrated in Figure 7-1B.  

The diversity of function for a library of fluorescent proteins may be associated 

with either its extremes of color or its dispersion of color.  The former we define as the 

difference between the positions of the red-most and blue-most spectra in a library.  

Figure 7-3 illustrates the set of colors sampled for each library with black marks, such 

that the separation between left-most and right-most marks illustrates a library’s 

performance according to this extremes-of-function metric.  We define dispersion of 

function as the difference between the positions of the spectra that lie one quartile above 

and below the median for a library.  In Figure 7-3, this median is illustrated with a white 

bar on top of a red box illustrating the positions of the first and third quartiles. 

The seven designed libraries are thus seen to cluster into four performance 

categories based on these complementary metrics.  The DBISORBIT and CORBIT libraries 

outperform all the other designed libraries by having both the largest separation between 

extremes and the greatest dispersion.  The SE/CMSA and CMSA libraries constitute the next 

category by having greater separation between extremes than the DBISORBIT 44 and 

Random libraries, though similar dispersion.  The SCMFORBIT 322 library then constitutes 

the last category by having both the smallest separation between extremes and the least 

dispersion.  By the extremes-of-function metric, the epPCR library performs better than 

each of the designed libraries except the DBISORBIT and CORBIT libraries; however, by the 
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dispersion-of-function metric, the epPCR library performs worse than each of the 

designed libraries except the SCMFORBIT 322 library.  

A complementary illustration of the preservation and diversity of function 

sampled from each library is provided in Figure 7-4.  For each library, the width of each 

spectrum sampled is plotted against its color with a circle of area proportional to its 

brightness.  Although Figure 7-4 does not characterize the libraries with the statistical 

rigor of Figures 7-2 and 7-3, it does provide additional support for the clustering and 

ranking of the designed libraries described above.  It also reveals a striking correlation 

between emission line shape and emission color among the brightest samples in each 

library.  We have investigated the physical mechanisms that may be responsible for this 

trend with additional measurements that will be presented elsewhere Treynor et al. (in 

preparation). 

 

Mutational analysis.  The 96 brightest samples from the DBISORBIT library were 

sequenced, providing 41 unique mutants of GFP-S65T.  In addition, several mutants were 

constructed to complete quadruple mutant cycles to be reported elsewhere Treynor et al. 

(in preparation).  This “synthetic sequence family” for GFP is shown in Figure 7-5A.   

For each mutation in the DBIS ORBIT library, the average affect of mutating that residue in 

the background of many different sequences was evaluated.   In Table 7-2, the average 

shifts in peak position, peak width, Stoke’s shift and apparent Tm are reported for each 

mutation.  There are three mutations that show robust shifts in peak positions in many 

mutational backgrounds: T65A, Q69L, and S72A.  The first two mutations cause blue-

shifted and broadened emission spectra whereas the latter causes red-shifted and 
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narrowed emission spectra.  These residues are highlighted in Figure 7-5B.  The 

sidechain of Ser72 is far from the chromophore, and residue 65 is part of the 

chromophore backbone, indicating that mutations at these residues might act through the 

backbone of the helix to alter fluorescence properties of the chromophore.  The sidechain 

of Gln69 is pointed away from the chromophore but makes contact with several ordered 

waters near the chromophore (Figure 7-5B).  The mutations that caused significant 

change in Stoke’s shift were T62A, V68A, and S72A, indicating that the blue-shifting 

mutations at residues 65 and 69 are not operating by reducing the Stoke’s shift.  The 

largest effects on stability (as judged by apparent Tm) were observed for Q69L, which is 

stabilizing, and T62A, which is destabilizing.  Most mutations had negligible average 

effects on apparent stability (ΔTm ~ 1–2 °C). 

 

Discussion 

Figure 7-2 illustrates that preservation of function increases with average 

mutation level among the four libraries designed using structure-based computational 

methods.  The opposite trend has been observed for protein libraries synthesized by 

epPCR,24,25 and would suggest that, constrained to a particular library size, the designed 

library with the lowest mutation rate should yield the largest fraction of functional 

samples.  It is thus notable that the poor performance of the SCMFORBIT 322 library in this 

respect may have more to do with the overarching strategy that enforced its low mutation 

rate, combinatorial saturation mutagenesis, than the computational method used to select 

positions for mutation.  A library defined by combinatorial saturation mutagenesis would 
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have to tolerate roughly 12 different amino acids per position to preserve function as well 

as the DBISORBIT and CORBIT libraries.  Finding any two core positions in GFP-S65T that 

could accept such great diversity, let alone two between positions 57 and 72, would seem 

an especially difficult problem.  

Figure 7-3 illustrates that diversity of function tends to increase with preservation 

of function among the seven designed libraries.  This result justifies an approach to 

library design where protein stability is modeled as a surrogate for protein function,7–9,11,12 

as long as mutations are directed towards positions likely to perturb function.  Moreover, 

this result suggests that improvements in modeling protein stability should yield designed 

libraries that sample a wider array of protein functions. 

A frequently desired trait among GFP variants has been red-shifted emission.29,32,33   

Although the vast majority of the bright variants sampled from the epPCR library have 

emission spectra nearly identical to cultures expressing GFP-S65T, the one sample from 

this library with a substantial red-shift did have the red-most spectrum sampled in our 

test.   The corresponding GFP gene was sequenced and determined to have the V224I and 

M233K mutations.  Only the V224I mutation is in the core of the protein and close to the 

chromophore, suggesting that it is primarily responsible for the observed red-shift.   The 

fact that neither of these mutations involves the positions targeted in the test underscores 

the way the performance of a designed library is intrinsically limited by the quality of the 

information in the design, such as the choice of positions targeted for mutation.  

Nevertheless, the far greater number of almost identically red-shifted samples from the 

DBISORBIT and CORBIT libraries indicates that our best information at present is a valuable 

tool with which to complement epPCR for sampling diverse functions. 
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Even though red-shifted emission is frequently desired for GFPs, other measures 

described here may be more relevant to the extrapolation of these results to other protein 

engineering projects.  Such projects typically aim to increase the stability of an enzyme, 

its rate of catalysis, or the affinity of a protein for a ligand.28,34   Since denatured GFP 

does not fluoresce,35 one interpretation of Figure 7-2 is that the algorithms that preserved 

function best did so by disrupting the global structure of GFP the least.  According to this 

interpretation, we would predict that the algorithms used to design the DBISORBIT and 

CORBIT libraries would also perform best when attempting to stabilize an enzyme with 

core-directed mutations.  However, the relative performance of the MSA-based methods 

might be expected to increase in this case if the covariances among amino acid 

frequencies important for protein stability can be extracted from evolutionary noise.13,36,37 

The emission spectrum of GFP is a reporter on the local structure of its 

chromophore.  In other words, a more varied sampling of spectral properties is equivalent 

to a more varied sampling of structures at the “active site” of GFP.  Thus, based on 

Figures 7-2 and 7-3, we can predict that the algorithms used to design the DBISORBIT and 

CORBIT libraries will provide the most diverse sampling of active site structures in 

functional enzymes.  Structure-based computational methods should thus prove 

especially useful for relatively low-throughput screening projects in which libraries made 

by epPCR, even those with low mutation rates, cannot be screened thoroughly. 

In summary, we have shown that small combinatorial libraries can exhibit 

considerable diversity of function if designed well.  Based on the design and results of 

this test, we recommend complementing more widely used strategies for generating 

functional diversity such as epPCR and combinatorial saturation mutagenesis with a 
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strategy that defines a combinatorial library by a single conservative mutation at each of 

many positions close to a protein’s active site.  We have found structural information as 

utilized by the DBIS algorithm or the method of Hayes et al.9 to be more successful than 

limited evolutionary information in identifying compatible conservative mutations. 

Although currently limited by the need for an accurate structure, the utility of the 

structure-based design algorithms should improve as methods improve for docking 

ligands onto proteins and for determining protein structures from protein sequences.  

Indeed the great promise of these methods for library design is that they might be used to 

implement a knowledge-based approach to engineering totally novel functions for which 

no natural protein exhibits even the slightest glimmer of the desired function.  In the 

meantime, the mutational analysis presented here shows that this approach to protein 

engineering should prove especially useful for investigations of protein structure-function 

relationships, where ideally large numbers of differently functional variants would be 

related by the same small set of mutations. 

 

Methods 

Rotamer energies.  Rotamer energy calculations were based on a 1.45 Å-resolution 

structure of A. victoria GFP containing the S65T and Q80R mutations (PDB code 

1q4a).21  The united residue “CRO” at position 66 was broken up into three residues 

(positions 65–67), and atoms were renamed according to standard conventions. Hydrogen 

atoms were added to the protein and side chains flipped as suggested by 

MOLPROBITY.38  Hydrogen atoms on the chromophore were hand-edited using 

BIOGRAF (Molecular Simulations, Inc.).  Waters in the structure were removed.  
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The resulting structure underwent conjugate gradient minimization for 50 steps 

using the DREIDING force field,39 without electrostatics.  In order to conduct the 

electrostatics calculations described below, partial charges for residue 66 were assigned 

to values derived by Helms et al. from Restricted Hartree Fock calculations of the S0 state 

of the anionic chromophore.40  All other partial charges were as defined by the PARSE 

parameter set,41 except the N-terminal nitrogen was assigned a partial charge of 0, and the 

carboxyl carbon of T65 was assigned a partial charge of 0.67 to achieve a total charge of 

–1.00 for residues 65–67.  

Rotamer singles and pairs energies were calculated using a scoring function with 

terms for van der Waals interactions (Evdw), hydrogen bonding (Eh-bond), electrostatics 

(Eelec), and atomic solvation (Eas): 

  

! 

E
total

= E
vdw

+ E
h"bond

+ E
elec

+ E
as

 

Van der Waals energies were calculated according to  

    

! 

E
vdw

= D
0

"R
0

R

# 

$ 
% 

& 

' 
( 

12

) 2
"R

0

R

# 

$ 
% 

& 

' 
( 

6* 

+ 

, 
, 

- 

. 

/ 
/ 
 

where R is the interatomic distance between two atoms, D0 is the geometric mean of the 

well depths of the two atoms, R0 is the geometric mean of the van der Waals radii of the 

two atoms, and α is a van der Waals radius scaling factor42 set equal to 0.9. Hydrogen 

bonding energies were calculated according to 

    

! 

E
h"bond

= D
0

5
R

0

R

# 

$ 
% 

& 

' 
( 

12

" 6
R

0

R

# 

$ 
% 

& 

' 
( 

10) 

* 

+ 
+ 

, 

- 

. 

. 
F /,0,1( )  

where R is the distance between hydrogen donor and acceptor atoms, D0 is a hydrogen 

bond well depth set equal to 8 kcal/mol, R0 is a hydrogen bond equilibrium distance set 
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equal to 2.8 Å, and F(θ,φ,ϕ) is a geometric factor defined elsewhere.2  The hydrogen 

bonding energy for any hydrogen bond between a side chain rotamer and the backbone 

atoms in the same residue was set to zero. Electrostatics energies were calculated 

according to 

    

! 

Eelec =
qq'

"R
 

where q and q’ are the partial charges of two atoms, R is the distance between them and ε 

is a dielectric constant set equal to 40R. Atomic solvation energies were calculated 

according to 

    

! 

Eas = " # +1( )$ np Anp,b +#$ np Anp,e +$ p Ap,b 

where 
    

! 

Anp,e  is nonpolar exposed surface area, 
    

! 

Anp,b is nonpolar buried surface area, 
    

! 

Ap,b  

is polar buried surface area, κ is a nonpolar exposure scale factor set equal to 1.6, σp is a 

scale factor set equal to 0.1 kcal/mol/Å2 that penalizes polar burial, and σnp is a scale 

factor set equal to 0.026 kcal/mol/Å2 that benefits and penalizes nonpolar burial and 

exposure, respectively. Solvent-accessible surface areas were calculated using the 

Connolly algorithm as described elsewhere.31,43  

The May 2002 version of Dunbrack’s backbone-dependent rotamer library44 was 

expanded by rotation of ±1 standard deviation about χ1 and χ2 for every rotamer.  

Rotamer singles energies, Erot(ir), were evaluated for each of these rotamers r at each 

position i in the set [57–65, 67–72], except for cysteine and proline rotamers.  At each 

position i the singles energy for the rotamer defined by the conjugate-gradient minimized 

structure, icurrent, was also evaluated.  Any rotamer with a singles energy greater than 20 

kcal/mol was eliminated from the rest of the calculation.  Rotamer pairs energies, 
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Erot(ir,js), were then calculated for the remaining rotamers r and s at positions i and j, 

respectively.  

 

The DBIS Algorithm. One of the fundamental innovations of the DBIS algorithm is that it 

aims to explicitly model the interactions among sets of amino acids at the positions 

targeted for design.  Set singles and pairs energies are constructed analogous to rotamer 

singles and pairs energies in structure-based computational protein design.1  Thus the 

exact optimization algorithms used to determine the global minimum energy 

conformation (GMEC) from a rotameric representation of the sequence design 

problem45,46 can be used instead to determine the global minimum energy combinatorial 

library (GMEL) from a set-based representation of the combinatorial library design 

problem. 

Figure 7-6 illustrates the main components of the generalized DBIS algorithm. A 

symmetric matrix of rotamer singles and pairs energies is first calculated using a template 

structure and rotamer library.1–3  This rotameric representation of the sequence design 

problem is then projected onto a smaller matrix with one row and one column for each 

combination of amino acid and targeted position (vide infra). These amino acid singles 

and pairs energies are then combined to build the set-based representation of the 

combinatorial library design problem by filling a matrix with one row and one column for 

each set of amino acids considered at each position in the library design. 

Here we have implemented the generalized DBIS algorithm such that a library’s 

energy is equal to an arithmetic average of conformational energies calculated for each 

sequence in the library, adjusted for composition and diversity benefits.  Optimizing 
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library composition thus corresponds to minimizing this energy.  For rotamer r at each 

position i, the energy of point mutation, Epm(ir), is evaluated as 

 

! 

Epm (ir ) = Erot (ir) + Erot (ir, jcurrent )
j" i

#   

where Erot(ir) and Erot(ir, jcurrent) are rotamer singles and pairs energies, respectively, and 

jcurrent is the rotamer defined by the amino acid at position j in the template structure. 

Within the set of rotamers r at position i corresponding to amino acid a, ir ∈ ia, the 

rotamer that minimizes Epm(ir) is represented as imin,a. If there exists some ir ∈ ia that has 

survived the previous rotamer pruning step (vide supra), the amino acid singles energy 

for amino acid a at position i, Eaa(ia), is then set equal to 

 
    

! 

Eaa (ia ) = Erot (imin,a ) + Ecomp(ia )   

where the composition benefit Ecomp(ia) has a user-defined value that biases optimization 

towards or away from libraries that include amino acid a at position i.  Otherwise Eaa(ia) 

is set equal to the cutoff value used to prune rotamers, 20 kcal/mol, such that these amino 

acids are effectively eliminated from the calculation; a value similar to some of the better 

rotamer singles energies could conceivably improve library design for some applications 

by complementing the conservative nature of our structure-based method with a desired 

degree of randomness.  Assignment of the amino acid energies in this manner effectively 

prunes the rotamers in the calculation to no more than one rotamer per amino acid per 

position.  

If there exists some ir ∈ ia and some js ∈ jb that have survived the rotamer pruning 

step, the amino acid pairs energy, Eaa(ia,jb), is then set equal to 

     

! 

Eaa (ia , jb ) = Erot (imin,a , jmin,b ) .  
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Otherwise Eaa(ia,jb) is set equal to the cutoff value used to prune rotamers, 20 kcal/mol, 

such that these amino acids are effectively eliminated from the calculation; a value 

similar to some of the better rotamer pairs energies could conceivably improve library 

design for some applications by complementing the conservative nature of our structure-

based method with a desired degree of randomness.  

For the set of amino acids a represented by x, a set singles energy, Eset(ix), is 

calculated at each position i as 
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where Nx is the number of amino acids in set x, and L is a factor used to control the size 

of the optimal library.  We refer to the second term in this equation as a diversity benefit 

and to L as a diversity benefit scale factor.  Faced with two libraries of the same size, the 

logarithmic form of the diversity benefit will tend to favor the one with sequence 

diversity distributed over a greater number of positions.  A quadratic form would have 

the opposite effect and may be more desirable depending on one’s application.  Of 

course, the functional form for the diversity benefit is inconsequential when only two set 

sizes are considered in a design, as was the case in designing the DBISORBIT and 

DBISORBIT 44 libraries (see below). For sets x and y at positions i and j, the set pairs 

energy is then calculated as 
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The composition of the optimal combinatorial library was thus defined by the optimal 

combination of these set singles and pairs energies.  In designing the DBISORBIT and 

DBISORBIT 44 libraries, we first imposed Ecomp(ia) = 0 at all positions; if the GMEL for the 
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value of L that gives the desired library size did not include the GFP-S65T sequence, we 

iteratively altered Ecomp(ia) in –5 kcal/mol increments for the missing GFP-S65T residues 

until this sequence was recovered in the designed library. 

 

Library Design Methods. Composition, set size and genetic code constraints were 

enforced for all tested design algorithms to facilitate comparisons among them.  The 

genetic code constraint allowed each library to be constructed at minimal cost and 

effectively applied some of the physicochemical information that may exist in the genetic 

code to the process of design (it is notable that there were large differences in 

performance among libraries although each shared this constraint).  Relaxing the genetic 

code constraint would change the composition of each designed library substantially and 

could alter the observed performance ranking. 

One set of rotamer singles and pairs energies was used in four different ways to 

design the DBISORBIT, DBISORBIT 44, CORBIT, and SCMFORBIT 322 libraries.  In order for the 

DBIS algorithm to yield a library of 29 sequences that included GFP-S65T, all values of 

Ecomp(ia) were set equal to zero except Ecomp(63T) = –10 kcal/mol and Ecomp(69Q) = –5 

kcal/mol; the only sets considered at each position were the 95 unique sets of either one 

or two amino acids that can be defined by the use of mixed bases during primer synthesis; 

L was set equal to 6.5.  In order for the DBIS algorithm to yield a library of 44 sequences 

that included GFP-S65T, all values of Ecomp(ia) were set equal to zero except Ecomp(63T) = 

–10 kcal/mol and Ecomp(69Q) = –10 kcal/mol; the only sets considered at each position 

were the 113 unique sets of either one or four amino acids that can be defined by the use 

of mixed bases during primer synthesis; L was set equal to 4.6. 
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The SCMFORBIT 322 library was designed by applying the method of Voigt et al. 7 

in the following way.  Each rotamer was first assigned a probability equal to the inverse 

of the number of rotamers at its position.  The self-consistent mean-field solution was 

then calculated for an initial temperature of 50,000 K.  As the temperature was lowered in 

100 K increments, the solution from each previous temperature was used as the initial 

configuration for the next temperature.  Saturation mutagenesis was directed to the two 

positions with site entropies greater than 1.0 at a final temperature of 1000 K. 

The CORBIT library was designed by applying the consensus method (C) of Hayes 

et al. 9 in the following way.  The GMEC for this design problem was used as the initial 

configuration for a Monte Carlo trajectory through conformation space.  One million 

steps were used for each of 100 cycles during which temperature oscillated between 4000 

K and 150 K.  Only the 1010 unique amino acid sequences with the best energies 

sampled were retained for further analysis.  At 9 of 15 positions, there appeared at least 

one mutation that could be introduced to GFP-S65T by a single nucleotide substitution.  

The CORBIT library was thus defined by the one such mutation that appeared with the 

greatest frequency at each of these nine positions.  (At 1000 sequences a unique library 

could not be defined by this method since both alanine and threonine appeared with equal 

frequency at position 58.)  Three apparent deficiencies of this consensus method were 

addressed by developing the DBIS algorithm: first, Monte-Carlo-based sampling of the 

energy landscape is by its nature both inexhaustive and random; second, disruptive 

combinations of amino acids might arise when a library is designed without accounting 

for correlations in an alignment; and third, even if correlations were accounted for, any 
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alignment with enough sequences to truly reflect global trends in these correlations would 

likely be too large to be practical. 

The CMSA and SE/CMSA libraries were each designed with the same alignment of 

naturally occurring fluorescent proteins according to similar consensus methods. Of the 

48 GFP homologs aligned by Shagin et al.,26 we used only the 36 homologs labeled as 

either GFPs, YFPs, CyFPs, or RFPs.  To design the CMSA library, a consensus method (C) 

derived from the one employed by Hayes et al. 9 was used.  At 12 of the positions 

between 57 and 72 there appeared at least one mutation that could be introduced to GFP-

S65T by a single nucleotide substitution.  The nine positions that had at least one such 

mutation represented at least four times were mutated to whichever of these mutations 

occurred with the greatest frequency at each position.  Because two such mutations 

occurred with greatest frequency at positions 62 and 72, we elected in each case to 

introduce the mutation that happened to be shared with the DBISORBIT library.  The 

approach used to design the CMSA library thus directs mutations away from the positions 

that exhibit the least conservation.  To explore the possibility that these least conserved 

positions might tolerate mutation best, the SE/CMSA library was designed by directing 

mutations to the 9 positions (of 12) that had the greatest site entropies, 
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where p(ia) is the frequency of amino acid a at position i, and the sum is taken over all 

amino acids for which p(ia) ≠ 0. The mutations introduced at these positions were chosen 

by the same considerations used to design the CMSA library.  We did not use any design 

algorithms that utilized pairwise correlations among the mutations in the MSA since this 
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alignment was rather small and there may be considerable evolutionary noise in such 

correlations.36,37 

The Random library was designed using a Python script to pick one mutation at 

random at each of the nine positions mutated in the DBISORBIT library. 

 

Library Synthesis and Characterization. Designed libraries were synthesized with a 

cassette-based method derived from that of Hiraga and Arnold for site-directed 

recombination.17 The gene for GFP-S65T was first constructed between unique SfiI 

recognition sequences by gene assembly47 and inserted into a vector derived from 

pBAD18-Cm.48  The sequence for positions 57–72 was then replaced with a restriction 

fragment and recognition sequence for the Type IIB restriction enzyme BsaXI using site-

directed mutagenesis by overlap extension,49 followed by digestion of the modified gene 

with SfiI (New England Biolabs #R0123S) and ligation into the vector with T4 DNA 

ligase (New England Biolabs #M0202S).  The resulting vector is mapped in Figure 7-7.  

The non-coding strand of the BsaXI restriction fragment was designed to have both a stop 

codon and a BlpI recognition sequence.  The modified vector was digested with BsaXI 

(New England Biolabs #R0609S), purified by spin column and dephosphorylated with 

CIP (New England Biolabs #M0290S).  The large restriction fragment was then purified 

by gel extraction. 

Degenerate primers corresponding to the library designs in Table 7-1 were 

ordered from Integrated DNA Technologies.  Each degenerate codon was selected to 

minimize degeneracy and maximize codon usage in E. coli.  Complementary degenerate 

primers were dissolved in 10 mM Tris buffer pH 8.5 to a concentration of 100 µM. 1 µL 
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of each solution was combined and diluted to a final volume of 20 µL in T4 

polynucleotide kinase (PNK) buffer (New England Biolabs #M0201S).  Primers were 

annealed by heating for 2 min at 95 °C and cooling to room temperature on the bench.  1 

µL 0.1 M DTT, 1 µL 0.1 M ATP, and 10 U PNK were added to solution.  This 

phosphorylation reaction was conducted for 3 h at 37 °C.  PNK was deactivated by 

incubation at 65 °C for 20 min.  

A ligation reaction was conducted by mixing 1 µL of a 10-fold dilution of the 

phosphorylation reaction with roughly 100 ng of the gel-extracted vector fragment in 20 

µL T4 ligase buffer with 400 U T4 DNA ligase.  This ligation reaction was incubated at 

room temperature for 1 h.  The ligase was removed and DNA eluted into 30 µL 10 mM 

Tris buffer pH 8.5 using QIAGEN’s QIAquick PCR Purification Kit.  28 µL of this 

solution was then reacted with 20 U BlpI (New England Biolabs #R0585S) for 1 h at 37 

°C to cut open any vector still containing the small BsaXI restriction fragment.  BlpI was 

removed and DNA eluted into 30 µL water using QIAGEN’s QIAquick PCR Purification 

Kit. 

The epPCR library was constructed in a 100 µL reaction mixture containing 20 ng 

vector containing the gene for GFP-S65T, 0.5 µM forward primer (5’- 

CCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTC – 3’), 0.5 µM reverse 

primer (5’- TCTTCTCTCATCCGCCAAAACAGCCAAGCTTGCATGCCTG – 3’), 7 

mM MgCl2, 400 µM MnCl2, 500 µM dTTP and dCTP, 200 µM dATP and dGTP, 1x 

Applied Biosystems PCR Buffer II without MgCl2, and 5 U Applied Biosystems 

AmpliTaq DNA Polymerase.  The PCR program consisted of 95 ºC for 5 min followed 

by 14 cycles of 30 s each at 95 ºC, 50 ºC, and 72 ºC.  The PCR product was purified and 
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eluted with 40 µL 10 mM Tris buffer pH 8.5 using QIAGEN’s QIAquick PCR 

Purification kit.  DNA was then digested with 20 U SfiI (New England Biolabs #R0123S) 

in a 50 µL volume.  The heaviest restriction fragment (~ 1 kb) was cut out and purified 

using QIAGEN’s QIAquick Gel Extraction Kit.  20 ng of the purified insert was mixed 

with 80 ng of SfiI-digested vector and 400 U T4 DNA ligase in a 20 µL volume for 

ligation at room temperature for 1 h.  

Electrocompetent cells were prepared from E. coli strain NM554 purchased from 

Stratagene.  Ligation reactions were transformed with these cells and spread onto agar 

plates containing LB medium, 34 µg/mL chloramphenicol (Cm, Sigma #C0378) and 

0.2% L-(+)-arabinose (Ara, Sigma #A3256).  Seven colonies from each designed library 

were picked for sequencing to judge whether or not each library sufficiently resembled its 

design.  All mutations observed were as designed, and each of the mutations in the 

libraries of 29 sequences were observed at least once.  In order to quantify the mutation 

rate in the epPCR library, nine genes were sequenced.  Each sequence contained at least 

one mutation, and no insertions or deletions were observed.  A rate of 3.4 ± 0.6 mutations 

per gene (standard error calculated assuming Poisson counting statistics) was estimated 

from the 31 mutations (23 non-synonymous) observed among 6453 bases. 

For each library, individual colonies were picked on the bench top with sterile 

toothpicks into 18 sterile 96-well plates (Nunc #263339) containing 250 µL LB/Cm. 

Colonies of every morphology were picked except the few colonies that were distinctly 

larger and whiter than the rest. Roughly 3% of all colonies had this morphology, even 

when a “library” of only GFP-S65T was prepared identically.  The following controls 

were built in to each plate: wells A6-D6 were inoculated with colonies of NM554 
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bacteria expressing GFP-S65T; wells E6-H6 were inoculated with colonies of NM554 

bacteria expressing GFP truncated at position 56; wells B2, B11, G2 and G11 were not 

inoculated. 

Plates were covered with breathable sealing tape (Nunc #249720) and a plastic lid 

(Nunc #249944).  Cultures were grown for 24 h by shaking at 250 rpm at 30 °C (Labline 

#3525).  A 96-pin replicator (Nunc #250520) was then used to inoculate 250 µL 

LB/Cm/Ara with the starter cultures.  After shaking 24 h, these expression cultures were 

pelleted by centrifugation at 5100 rpm using a tabletop centrifuge (Beckman-Coulter 

S5700 Rotor and Allegra 25R Centrifuge).  Supernatant was decanted and pellets were 

washed with two cycles of resuspension in 300 µL PBS buffer, centrifugation and 

decanting.  Pellets were refrigerated for 5 days at 4 °C to allow some of the variants with 

slower rates of chromophore maturation to mature. 

Pellets were then resuspended in 250 µL PBS buffer, and 200 µL was transferred 

to black plates with a clear bottom (Greiner #655096) for absorption and emission 

measurements using a monochromator-based plate reader (Tecan Safire).  First, optical 

density was recorded at 600 nm (OD600) to gauge variations in sample handling across 

wells in the same plate.  Samples prepared as described typically had absorbance near 

0.5.  Second, the optimal detector gain for a plate was determined by exciting samples at 

460 nm with a bandwidth of 12 nm and measuring emission at 510 nm with a bandwidth 

of 2.5 nm. This gain (with a value typically between 80 and 85 units) was then used as 

emission spectra were recorded from 475 to 599 nm with 2 nm steps. 

To prepare proteins expressed in 96-well format for melting measurements using 

a QPCR instrument, cultures were first washed twice with PBS buffer and frozen at –
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80°C.  Cells were then thawed and resuspended in lysis buffer (100 mM NaPi pH 8.0, 10 

mM MgCl2,1 U/mL DNase, 0.5 mg/mL lsyozyme).  After 1 h at 37°C plates were 

centrifuged for 15 min at 5700 rpm.  Lysates were separated from cell debris and diluted 

individually with PBS buffer to allow melt curves to be recorded with similar precision 

for variants initially present at different concentrations.  50 µL aliquots of each dilution 

were used for melting measurements. Just prior to these measurements well factors were 

determined using a separate plate with 50 nM fluorescein in each well in order to avoid 

the unfolding of protein that would have accompanied an internal well factor calibration.  

Melt curves were then compiled from 30 to 100°C in increments of 1°C.  Samples were 

given 2.5 min at each temperature before the plate was imaged briefly with a CCD 

camera.  The apparent Tm value was taken to be the inflection point of the melting curve. 

 

Analysis.  MATLAB scripts were written to calculate each spectrum’s integrated 

intensity, average position, and line width in the following manner.  Spectra were first 

truncated to values measured between 481 and 599 nm in order to avoid artifacts from 

leakage of the light source into the detector at the shortest wavelengths.  In order to report 

positions and widths that more closely reflect the intrinsic energy spectra of the 

molecules studied, wavelengths, λ, were converted to wavenumbers, ν, and emission 

intensities at each wavenumber were multiplied first by λ2 and then by λ3.  The first 

factor compensates for the fixed-wavelength resolution used to measure the spectra and 

the second for the increased rate of emission with increased energy of emission.50  

Integrated intensity (A), average position (

! 

" ) and line width (Δ) were then calculated 

from the spectra     

! 

I (" )  as 
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using the trapezoidal rule. 

The remaining transformations performed to generate Figures 7-2, 7-3, and 7-4 

are as follows.  Each sample’s integrated intensity, A, underwent separate corrections to 

address variations in sample handling across wells and across plates.  A was divided first 

by OD600 and second by the average OD600-corrected A for the four GFP-S65T controls in 

each plate.  On the one occasion that a GFP-S65T control was unusually dim, its A was 

not included in calculating the average.  The positions of GFP-S65T controls were found 

to vary considerably more from plate to plate (standard deviation of 18 cm-1) than from 

well to well within the same plate (2.4 cm-1).  For this reason we have reported each 

sample’s average position relative to the average of the positions of the four GFP-S65T 

controls in its plate.  Accordingly we report 2.4 cm-1 as the error in the position 

measurements reported in Figures 7-3 and 7-4. Only samples with OD600 > 0.1 were used 

for making Figures 7-2, 7-3, and 7-4. 

Errors reported in Figure 7-2 were estimated by the following bootstrap method.  

For each library, the fraction of functional samples was first recalculated for one hundred 

unique subsets of samples generated by selecting two-thirds of all samples at random. 

Error was then estimated as the standard deviation of these calculations.  A potential 

source of systematic error in these experiments is primer synthesis.  It is possible that the 

nucleotides that are mixed to introduce degeneracy are not incorporated with equal 
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frequency even if they are initially present at equal concentrations in solution.  This 

possibility raises the concern that increasing levels of preservation of function may be 

largely determined by stronger biases in nucleotide incorporation towards the sequence of 

GFP-S65T.  However, this cannot be the case since the trend towards increasing diversity 

of function with increasing preservation of function indicates that there is considerable 

sequence diversity in the libraries with the highest levels of preservation of function.  

Statistics represented by the box plots in Figure 7-3 were calculated using 

Kaleidagraph v3.6 (Synergy Software).  Since some quantitative estimates of diversity of 

function are based on relatively few fluorescent samples (e.g., extremes of function for 

the epPCR library or dispersion of function for the Random library), one might expect 

some variability in these estimates if this test were repeated.  However, the overall 

qualitative trends are expected to be quite robust since we have over-sampled each 

designed library. 
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Table 7-1: Library designs 

Pos DBISORBIT DBISORBIT44 CORBIT SCMFORBIT322 CMSA SE/CMSA Random 

57 W W W W W W W 

58 PA PAST PT all P PH PQ 

59 TS T TS T TI T TN 

60 L L L L L L L 

61 VL VALS VL V V VI VD 

62 TA TAGS TA T TA TA TN 

63 T T TA T TA TA T 

64 F F F F FL FL F 

65 TA T TA T TS TS TK 

67 G G G G G G G 

68 VA V V V VF VF VM 

69 QL QELV QL Q QR QR QE 

70 C C C all C C C 

71 FL F FL F FY F FY 

72 SA S SA S SA SA SI 

 
The first amino acid listed at each position is that of GFP-S65T. 
Underlined amino acids are mutations designed as described in Methods. 
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*n is the number of mutational backgrounds in which a given mutation was sampled in the 
sequenced library members. 

Table 7-2: Analysis of mutations 

mut.  δ(peak position)  δ(peak width)  δ(Stoke’s shift)  δ(Tm)  n* 

P58A  3.5 ± 62.6  5.9 ± 20.6  -93.0 ± 315.3  -3.1 ± 2.4  7 

T59S  21.6 ± 33.5  4.2 ± 10.5  62.4 ± 191.6  1.0 ± 3.3  13 

V61L  14.2 ± 48.6  -3.3 ± 6.3  94.6 ± 285.6  -1.1 ± 0.7  4 

T62A  -22.7 ± 34.6  8.3 ± 15.2  154.5 ± 108.6  -6.3 ±2.5  10 

T65A  128.9 ± 28.0  28.7 ± 17.3  103.6 ± 157.3  1.7 ± 2.9  12 

V68A  -30.5 ± 50.3  12.7 ± 7.1  -149.2 ± 101.1  -2.1 ± 3.1  5 

Q69L  65.2 ± 54.5  30.8 ± 15.3  91.6 ± 257.5  7.1 ± 3.9  11 

F71L  28.2 ± 42.1  11.5 ± 16.0  100.9 ± 260.1  0.3 ± 3.1  7 

S72A  -85.9 ± 58.9  -28.8 ± 18.9  -326.7 ± 270.9  -0.7 ±3.5  11 
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Figure 7-1. Structure of GFP-S65T and spectra of variants. (A) The front side of this 
cylindrical protein has been clipped to spotlight residues 57–72 in its core.  Side chain 
atoms for targeted positions 57–65 and 67–72 are illustrated in CPK colors with carbon in 
yellow.  The chromophore of GFP is shown in CPK colors with carbon in green. This 
figure was composed from a 1.45 Å-resolution structure of GFP containing the S65T and 
Q80R mutations (PDB code 1q4a).21 (B) Extremes of function.  Of the 11,575 spectra 
measured, 701 were at least one-half as bright as spectra of cultures known to express 
GFP-S65T. Of these, the red-most spectrum was sampled from the epPCR library (red), 
and the blue-most spectrum was sampled from the CORBIT library (blue).  The spectrum of 
a culture expressing GFP-S65T is shown in green. The three spectra have been 
normalized to the same peak intensity. 
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Figure 7-2. Preservation of function.  A sample is variously defined as being functional if 
its emission intensity is at least one-half (black), one-tenth (red), or one-fiftieth (green) 
the intensity of cultures expressing GFP-S65T.  Designed libraries are listed from top to 
bottom according to preservation of function calculated by the most exclusive definition.   
The theoretical library size, the average number of mutations, and the number of clones 
sampled are listed for each library. 
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Figure 7-3. Diversity of function. Considering only those spectra with at least one-half 
the intensity of cultures expressing GFP-S65T, this plot illustrates the set of colors 
sampled from each library (black marks), the median of each set (white bar), and the first 
and third quartiles (red box).  Positions are calculated relative to GFP-S65T standards as 
described in the Methods section.  Designed libraries are listed from top to bottom 
according to preservation of function calculated by the most exclusive definition of 
function.  
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Figure 7-4. Preservation and diversity of function.  The width of each spectrum sampled 
is plotted against its average position with a circle of area proportional to its integrated 
intensity.  The brightest cultures (largest circles) were found to emit three orders of 
magnitude more light than the darkest cultures, such that the latter have the appearance of 
dots on these plots.  Most dots cluster in the upper-left-hand corner of each plot, where 
the intrinsic fluorescence spectrum of these cultures is found.  The brightest cultures, 
including those expressing GFP-S65T, cluster in the lower-right-hand corner of each plot.  
These plots illustrate that the seven designed libraries cluster into four performance 
categories.  The DBISORBIT and CORBIT libraries performed best in two respects: first, as 
conveyed by the relative sparesensess of dots in the upper-left-hand corners of these 
plots, these libraries had by far the smallest fractions of non-functional variants sampled; 
second, the functional variants in these libraries can be seen to be distributed rather 
evenly across a relatively large range of positions.  In contrast the functional variants in 
the SE/CMSA and CMSA libraries sample a somewhat smaller range of positions, and those 
at the extremes of this range tend to be more weakly fluorescent than those in the middle.  
The DBISORBIT 44 and Random libraries form the third performance category since most, 
but not all of the functional variants in these libraries closely resemble GFP-S65T in 
color.  The SCMFORBIT 322 library forms the last category, since its few functional 
variants exhibit the least variation in color.  It is interesting to note that for most libraries 
we find the brightest cultures exhibit the same linear correlation between spectral width 
and average position.  We have investigated the physical mechanisms that may be 
responsible for this correlation and present them elsewhere Treynor et al. (in 
preparation). 
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Figure 7-5.  Mutational analysis of GFP-S65T variants from DBISORBIT library.  (A) 
Sequences of bright GFP-S65T variants.  For clarity, only the residues (58–72) that were 
mutated in the designed library is shown, with the parent sequence (S65T) at the top.  The 
number of wells for which that sequence was sampled (n) is also shown.  A dash in the 
sequence indicates the WT amino acid identity.  (B) A close-up of the chromophore 
region, showing the residues that cause significant shifts in emission peak position 
(magenta, balls and sticks).  Several ordered waters in the crystal structure are shown as 
grey spheres. 
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Figure 7-6. The DBIS algorithm. The flow chart at top illustrates the core procedure 
shared by many algorithms used for the structure-based computational design of either 
proteins or combinatorial libraries. The flow chart at bottom illustrates the main 
components of the generalized DBIS algorithm. If the components shown in red were 
eliminated, the remaining components would be sufficient to design a single protein 
instead of a library. 
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Figure 7-7. Vector map and BsaXI site. Top: map of vector derived from pBAD18-Cm.48 
Two unique SfiI recognition sequences were added after the pBAD promoter for 
unidirectional gene insertion. The BsaXI recognition sequence and a small restriction 
fragment were substituted for nucleotides corresponding to positions 57–72 as described 
in Methods.  Bottom: small restriction fragment produced by digestion of this vector with 
BsaXI.  Nucleotides in red are the BsaXI recognition sequence.  Underlined nucleotides 
are a BlpI recognition sequence.  Overhanging ends in bold correspond to positions 56 
and 73. 
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Appendix A 

 

Double mutant cycle analysis of an ion pair on the 

surface of protein G 

 

 

Abstract 

The role of ion pairs and salt bridges on the surfaces of proteins is unclear.  Ion 

pairs have been identified in which interactions have either negligible or significant 

contribution to stability.  It has been hypothesized that for cases in which there is no net 

contribution to stability or weak interaction energy, the electrostatic interaction may aid 

in fold specificity.  Here we use double mutant cycle analysis to evaluate the interaction 

energy of an ion pair on the beta sheet surface of the B1 domain streptococcal protein G.  

The interaction energy between Lys4 and Glu15 is found to be favorable by 0.78 ± 0.29 

kcal mol-1 at 75°C.  Mutation of both residues simultaneously indicates that they 

contribute little to the stability of the native state relative to the stability of the double 

mutant K4T/E15T. 
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Introduction 

Electrostatic interactions can play an important role in stabilizing the folded state 

of a protein.1-3    Thermophilic proteins contain an increased number of salt bridges and 

ion pairs over their mesophilic counterparts.1  Experimental analysis has quantified the 

role by which electrostatic interactions can stabilize the native state.2,4  On the other hand, 

equivalent mutagenesis studies in different systems have revealed that these interactions 

can contribute little energy to the stabilization of the native fold.4-7  This has led to the 

proposal that these interactions may be more important for fold specificity than 

thermodynamic stability.6,8  The environment of the ion pair most likely plays a role in 

the degree to which the interaction stabilizes the native state.  For instance, solvent-

exposed interactions may have negligible contribution to the free energy of folding 

because their formation comes at an entropic cost and also because the interaction is 

screened by counterions and polar solvent.  However, ion pairs that are shielded from 

solvent have a desolvation penalty associated with the buried charges.9  The contribution 

to stability of salt bridges and ion pairs in some proteins have been explained by 

examining long-range electrostatic interactions between the interacting pair and the rest 

of the protein.4 

Here we evaluate the interaction energy of the ion pair formed by Lys4 and Glu15 

on surface of the B1 domain of protein G (GB1).  GB1 is a model system for design due 

to its compact structure, large unfavorable free energy of unfolding (ΔGu), and high 

thermal stability.10  Residues 4 and 15 in the WT protein form an ion pair between anti-

parallel strands 1 and 2 on the beta-sheet surface (Figure A-1A).  Here we refer to ion 

pairs as close-range interactions between oppositely charged groups that are not 
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hydrogen-bonded to each other whereas salt bridges refer to hydrogen-bonded 

interactions.  The ORBIT energy function does not recognize the interaction between 

Lys4 and Glu15 in the crystal structure of GB1 as a hydrogen bond.  The nitrogen atom 

of the Lys sidechain is within 4 Å of the Glu carboxylic oxygen atoms.  It has proven 

difficult to increase the thermostability of GB1 by optimizing the amino acid sequence of 

the beta-sheet surface.  This has not been the case for the core residues of GB1.11  The 

amino sidechains on the beta-sheet surface may be optimized for stability. 

The standard method for evaluating the energy of interaction of two residues is 

the double mutant cycle.4,12  This method separates the energetic cost of mutating each 

interacting residue separately from the energetic cost of mutating them simultaneous.  If 

the sidechains have no interaction, the result of mutating one should be independent of 

the identity of the other.  Double mutant cycle analysis assumes that the native state fold 

is not perturbed in the mutant sequences.4  Figure A-1B shows the mutational cycle that 

is investigated in this study.  We hypothesized that the packing interaction between Lys4, 

Glu15 and Ile6 might lead to cooperativity in the network such that the entropic cost of 

forming the Lys4-Glu15 ion pair is partially compensated by the packing interaction of 

both residues with Ile6.  Such a synergistic effect has been observed in other networks of 

interacting residues.13,14 

  

Methods 

GB1 variants were generated using inverse PCR.  Proteins were expressed in E. 

coli BL21-DE3 cells using IPTG induction and a pet11a expression plasmid.  Cells were 

lysed by freeze-thaw cycling.  Lysates were combined 1:1 with acetonitrile, clarified by 
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centrifugation, and purified by reverse phase HPLC using a C8 column with a linear 

0.1% TFA/acetonitrile gradient.  Eluted peaks were rotavapped to remove acetonitrile, 

flash frozen and lyophilized.  Protein masses were confirmed by mass spectrometry.  CD 

data was collected on an Aviv 62DS spectrometer equipped with a thermoelectric unit 

and an autotitrator.  The protein samples were dissolved in 50 mM sodium phosphate 

buffer at pH 6.5.  Thermal denaturation were collected by monitoring the CD signal at 

218 nm using 1°C temperature steps from 1°C to 99°C with 2 minutes of equilibration 

time and 30 seconds of signal averaging time at each step.  Guandinium hydrochloride 

concentration was determined by refractometry.  Titrations were carried out in 0.2 M 

concentration steps with 10 minutes of stirring and 1 minute of signal averaging time at 

each step. 

 

Results and Discussion 

In order to maintain the fold of the beta-sheet surface, each residue was mutated 

to Thr, an amino acid with high propensity to form beta-sheet secondary structure.15,16  It 

should be noted that the energy of interaction derived for a double mutant cycle is 

relative to the interaction energy of the mutant residues.4  Therefore to claim that the true 

interaction between sidechains 4 and 15 has been measured, it must be assumed that Thr 

sidechains at those same positions do not interact. 

All four variants had a CD signal characteristic of the WT protein (data not 

shown).  The stability of each variant was assessed using thermal and chemical 

denaturation (Figure A-2).  Free energies of unfolding, ΔGu, were determined assuming a 

two-state transition with a temperature-independent heat capacity chage, ΔCp (621 cal 
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mol-1 K-1).7,15  Briefly, the relationships between equilibrium constant K, free energy ΔG, 

enthalpy ΔH, and entropy  

    (1a) 

    (1b) 

     (1c) 

can be combined in an expression for the spectroscopic signal, θ, in terms of the 

temperature T, thermal denaturation temperature Tm, gas constant R, enthalpy of 

denaturation at Tm, ΔHm, and ΔCp: 

 . (2) 

Melting temperatures and enthalpies of unfolding derived from Equation 2 were 

substituted back into Equation 1b to get ΔG(T).  Chemical denaturation data was 

analyzed using the linear extrapolation method to obtain the free energy of unfolding at 

zero denaturant concentration.17  Thermodynamic data is given in Table A-1. 

Free energies of unfolding were used to calculate the free energy of interaction, 

ΔΔGKE, between Lys4 and Glu15 

 . (3) 

The error in the free energy of interaction was obtained by propagating the error in 

Equations 1b and 3 

   (4a) 

 (4b) 
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  (4c) 

where the boldface Δ  symbols indicate error in the corresponding parameter.  For ΔHm 

and Tm, the error results from the non-linear fit of Equation 2 to the experimental data.  

From Equations 3 and 4, we obtain an energy of interaction for Lys4 and Glu15 of 0.55 ± 

0.56 kcal mol-1 at 25 °C.  To reduce uncertainty in ΔGu by minimizing the extrapolation 

from the Tm in Equation 1b, the free energy of interaction at 75°C was calculated to be 

0.78 ± 0.29 kcal mol-1.  Therefore, the Lys4-Glu15 ion pair has a negligible interaction 

energy, within the error of the analysis, at 25 °C and a favorable interaction energy at 

75°C.   

The contribution to the overall stability of GB1 by this ion pair, relative to the 

K4T/E15T mutant, seems to be insignificant: the free energy of unfolding of WT, 8.0 

kcal mol-1, is less than that of the K4T/E15T double mutant, 9.0 kcal mol-1.  Makhatadze 

et al. have suggested that medium and long-range electrostatics can effect the 

contribution of an ion pair to stability.4  In the case of GB1, the rest of the protein, other 

than residues 4 and 15, create a negative electrostatic potential at both sites 4 and 15 (data 

not shown), indicating that the reverse ion pair (Glu4-Lys15) may have similar properties 

as the WT ion pair.  This negligible contribution to stability measured in this double 

mutant cycle could be a result of the higher beta-strand propensity of Thr over the WT 

amino acids.  Assessment of the interaction energy with different reference states in the 

double mutant cycle could shed light on this effect.  However, the integrity of the beta-

sheet should be assessed carefully for any Ala mutants at residues 4 and 15. 

 Although we cannot directly compare the free energies of unfolding obtained 

from thermal and chemical denaturation, it is interesting to note that the results obtained 



 191 

using the two different methods show different relative stabilities for the variants.  In fact, 

the ΔΔGKE obtained from fits to the chemical denaturation curves has the opposite sign 

(-0.56 ± 0.18 kcal mol-1) as the ΔΔGKE derived from the thermal denaturation fits.  This 

underscores the fact that charged chemical denaturants can confound the analysis of 

electrostatic interactions.6  It would be desirable to follow up on the data presented here 

by measuring ΔΔGKE using urea as a denaturant.  However, WT GB1 does not unfold 

completely at high concentrations (~ 10 M) of urea.  

Our data suggests that Ile6 could lead to a favorable interaction energy between 

Lys4 and Glu15.  These results is are not completely consistent with the data collected by 

Lassila et al. for an engineered electrostatic triad on the surface of protein G.7  To test 

definitively whether the residues 4-6-15 form an interaction network, the data presented 

here could be extended to a triple mutant cycle in which Ile6 is mutated to Val or Ala to 

reduce packing interactions. 
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* Tm and ΔHm derived from from two-state fit of thermal denaturation curves (Equation 2) 
§ ΔG calculated using Gibbs-Helmholtz equation (Equation 1b) and a constant ΔCp = 621 cal mol-1K-1 
†ΔG calculated using linear extrapolation method (LEM) 
 

Table A-1: Thermodynamic data for GB1 variants 

variant  Tm (°C)  ΔHm 
(kcal mol-1)  ΔG(25°C)§ 

(kcal mol-1)  ΔG(75°C)§ 
(kcal mol-1)  

ΔG(25°C) 
LEM† 

(kcal mol-1) 
WT  83.5 ± 0.3  68.0 ± 1.7  8.0 ± 0.3  1.6 ± 0.2  4.85 ± 0.02 

K4T  78.8 ± 0.2  70.0 ± 1.4  8.0 ± 0.2  0.74 ± 0.11  5.93 ± 0.08 

E15T  82.7 ± 0.3  71.1 ± 2.1  8.5 ± 0.4  1.5 ± 0.2  5.43 ± 0.15 
K4T/E15T  82.1 ± 0.2  74.8 ± 1.2  9.0 ± 0.2  1.5 ± 0.1  5.95 ± 0.06 

ΔΔGKE: 0.55 ± 0.56  0.78 ± 0.29  -0.56 ± 0.18 
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Figure A-1.  The Lys4–Glu15 salt bridge in GB1.  (A) Lys4, Ile6, Glu15 are shown in 
ball and stick representation (Ile6 in gray; Lys4,Glu15 in CPK colors).  (B) The double 
mutant cycle examined in this study is shown with charged sidechains shown in colors 
and neutral sidechains shown in gray. 
 
 
 
 

 
 
 
Figure A-2.  CD data for GB1 variants. (A) Thermal denaturation curves for proteins in 
50 mM sodium phosphate at pH 6.5. (B) Chemical denaturation in guanadinium chloride.  
Both plots were normalized using pre- and post-transition baselines from the raw data. 
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Appendix B 

 

Evaluation of the Generalized Born model for 

computational protein design 

 
 

 

Abstract 

We have assessed the utility of the generalized Born (GB) model for use in 

protein design by looking at the model’s accuracy for calculating rotamer self and pair 

energy terms.  Energies from the GB model were also compared to values obtained using 

a finite difference Poisson-Boltzmann solver.  Both implementations of the GB model 

studied here show promising one- and two-body decomposability.  However, their 

accuracy is not significantly better than the accuracy of solvation and electrostatics 

models currently used in the ORBIT energy function. 
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Background 

An accurate model of the aqueous environment is important for the design of 

well-folded, stable proteins.1 Hydration of polar amino acids and burial of hydrophobic 

amino acids is the key determinant in folding and stability.2 A general representation of 

free energy of solvation, ΔGsolv, is given by 

   (1) 

where ΔGnp is the free energy change due to placing a hypothetical nonpolar solute of the 

same volume as the actual solute into the solvent and ΔGpol is the polar contribution to 

solvation, which is the free energy change from moving the solute’s charge distribution 

from a non-polarizable environment to water.3  Linear surface area-based scaling 

functions have been successful in expressing ΔGnp,4,5 but these models do not account for 

the factors contributing to ΔGpol.6  

A macroscopic continuum representation of water is often used to account for the 

polarizability of water (εout=80).   Although the protein is modeled using a standard all-

atom molecular mechanics representation, a dielectric constant is also assigned to the 

protein interior in order to capture the dielectric response, primarily electronic 

polarization, inside the protein molecule (εin=2-4).7 The continuum representation of the 

solvent/solute system is a simplification, but it has worked well for many applications.7-9 

The Poisson equation is the fundamental equation governing the relationship between 

electrostatic potential (φ), dielectric response (ε) and charge distribution (ρ) in continuum 

systems:   

  .    (2) 
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The solution to this equation becomes an approximation when we assign a dielectric 

constant to the protein region, but Equation 2 is still considered the benchmark for 

evaluating the electrostatic energy of proteins and other macromolecules.9 Various 

numerical methods have been implemented for solving the Poisson equation (or Poisson-

Boltzmann, PB, for non-zero ionic strength).   The finite difference method (FDPB), 

which involves distributing charges and dielectric constants over a grid and solving 

Equation 2 at each grid point, has been used extensively for biomolecular applications.10 

Due to the computational cost of using numerical methods, there is a great deal of interest 

in developing fast analytical methods for calculating electrostatic potential in a protein.   

 The generalized Born (GB) model is a fully analytical approximation of the 

Poisson equation.11,12  It has been developed for use in molecular dynamics simulations 

due to the ease with which forces (first derivatives) can be calculated.13-16 The GB 

equation, formulated by Still and coworkers11, includes the Born energy17 of each partial 

charge in the molecule as well as the screening energy of all charge-charge interactions: 

   (3) 

where rij is the distance between charges qi and qj.  The Born radius, α, is a parameter that 

captures the effective distance from the dielectric boundary of each charge or partial 

charge in the molecule.  The accuracy of Born radii has proven to be essential in 

accurately calculating the electrostatic solvation energy, ΔGpol.18 

 There are a number of methods for calculating Born radii.  These methods include 

but are not limited to: the pairwise descreening approach (PDA),19 the surface integral 

model,20 the asymptotic approach (GBSA),13,21 and the molecular volume approach.22,23 
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The computational speed and obvious generalization to design of the atomic pairwise 

approaches, like GBSA and PDA, make these models the most attractive for further 

study.  Analytical calculation of Born radii is permitted by the assumption that the 

dielectric displacement is Coulombic in form, neglecting the reaction field component 

that would require iterative evaluation.12,24  By integrating over the energy density of the 

Coulombic electrostatic field25 and substituting back into the Born formula for the 

solvation energy of an ion, the Born radius can be expressed as a function of the van der 

Waals radius of the atom and the position of all other atoms in the protein.9,12 

    (4) 

This simplification, termed the Coulomb Field Approximation (CFA), leads to an 

overestimation of the self-energy terms.24  Correction factors have been proposed to 

account for the CFA,23,26 and parameterization using FDPB energies are used to reproduce 

FDPB results within the limitations of the CFA. 

The GBSA method approximates the amount of favorable charge/induced dipole 

interaction energy lost when a neutral atom (j) displaces the dielectric medium in 

proximity to a charge (i) to be Vj/rij
4, where rij is the distance between the charge and the 

atom and Vj is the volume of atom j.21,27  The value Vj/rij
4 is an accurate evaluation of the 

Coulomb integral (Equation 4), as rij becomes large: it is equivalent to moving the 1/ rij
4   

out of the integral in Equation 4.  Still and coworkers21 propose scaling this term 

depending on the spatial relationship, e.g., bonded or non-bonded, between i and j.  The 

original equation of Still and coworkers21 was recast by Dominy and Brooks13 to allow for 

a linear fitting in parameterization: 
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  (5) 

where P1  - P4  and λ are scaling factors that account for the varying inaccuracy of Vj/rij
4.  

The closest contact function (CCF) is a damping function that reduces the volume of 

atoms that are overlapping and it depends on a separate parameter, P5.  This method is 

effective at calculating molecular solvation energies and is computationally fast.9,13 

  The pair-wise descreening approximation (PDA) method for calculating Born 

radii, like the GBSA method, is based on the strategy of summing over atomic 

desolvation effects as estimated by integration of the Coulomb field energy density.19  

The difference between the PDA and GBSA methods is that, for PDA, the analytical 

solution for the Coulomb integral is evaluated over the spherical atomic volumes of 

atoms j surrounding atom i.  The analytical evaluation of the descreening integral H is 

given in Reference 30  

 .   (6) 

In order to account for overlap among the descreening atoms j, these integrals are then 

scaled by factors, Sj, depending on the identity of atom j.  This method has worked well 

for small molecules.28  Case and coworkers suggested a modification to improve the PDA 

method’s performance for large molecules.29 

The problem with summing over atomic volumes (GBSA) or inter-atomic 

distances (PDA) in a continuum context, is that any region of the molecule not occupied 

by a solute atom will be filled by the high dielectric medium even though many such 

small cavities inside the protein are not large enough to accommodate a solvent molecule.  

These micro-dielectrics will cause a systematic underestimation in the Born radii of 
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deeply buried polar atoms.  Since deeply buried atoms, for which the micro-dielectric 

problem will be most deleterious, generally contribute least to the overall solvation 

energy of the molecule, the error was considered acceptable.  For large molecules, Case 

and coworkers proposed a scaling parameter on the second term of Equation 6 in order to 

remove the micro-dielectrics while maintaining accurate results for surface atoms.29 

Below we report on the accuracy of the GB model, compared to FDPB 

calculations, as well as results showing the pairwise decomposability of two GB models.  

The simplified surfaces method, described in Chapter 3 of this thesis, is used to 

implement pairwise decomposable GB models.  Inherent biases of the GB models are 

examined by comparing their atomic Born radii to ideal radii.   

 

Methods  

 The GB method of Dominy and Brooks13 (GBSA) was re-parameterized to give 

values for λ and P1-P5 that are consistent with the PARSE radii set.30  The parameters 

were obtained through the same linear fitting to FDPB values as described by Dominy 

and Brooks.13  Due to the desire for a parameter set to use in protein design calculations, 

an all-protein training set consisting of 22 single-chain high-resolution crystal structures 

was used.  The pdb codes for these structures are: 1ajj, 2erl, 1ptq, 1pga, 1enh, 1vjw, 1igd, 

1ptf, 1rge (chain A), 1rro, 2rhe, 1dhn, 1whi, 4fgf, 1tta (chain A), 194l, 2end, 2rn2, 2cpl, 

3lzm, 1amm, and 1mrj.  Hydrogens were added to the structures using MolProbity,31 and 

no further modifications were made.  Amino acid specific parameter sets were obtained 

by linear fitting with only the polar/charged atoms from the specific sidechain.  Similarly, 
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a separate parameter set was obtained for backbone atoms only.  The overlap volume 

correction of Still and coworkers21 was used to partially account for overlapping atoms. 

 The original and modified GB methods of Case and coworkers29,32 (GB-PDA) 

were used with the published parameter set33 and Bondi radii.34 The value of the packing 

correction factor for the original GB method of Case and coworkers (λ=1.4) was used. 

For all GB calculations, the protein dielectric, εin, was set to 4, and the solvent dielectric, 

εex, was set to 80. 

FDPB calculations were carried out using the DelPhi program10 with a 0.5 Å grid 

spacing, 70% grid fill, zero ionic strength, εin = 4, εex = 80, and the PARSE parameter set. 

Atomic FDPB solvation energies were calculated by placing a unit charge at the atom of 

interest and calculating the energy of the system with all other atoms neutral.  DelPhi 

Born radii were obtained by substituting this atomic solvation energy into the Born 

equation and solving for ionic radius.  The methods for calculating exact, one-body, and 

two-body screening and desolvation energies are described in Chapter 3 of this thesis. 

 

Results and Discussion 

 Using the simplified surfaces method, the one- and two-body decomposability of 

the GBSA and GB-PDA methods are similar to that of the FDPB solver DelPhi (Figure 

B-1 and Table B-1).  For the one-body approximation to backbone desolvation, the 

DelPhi approximation compares most favorably with the exact desolvation calculated 

with all sidechains present (Figure B-1C).   As would be expected for one-body 

desolvation, the GBSA and GB-PDA methods overestimate the backbone desolvation 

when the one-body contributions are added together.  Since one-body backbone 
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desolvation does not take into account an overlap between atoms on separate sidechains, 

some desolvation effects will be counted multiple times.  

The one-body approximation to sidechain desolvation (graph not shown) is not 

well correlated with the exact sidechain desolvation for any of the methods.  This is not 

surprising since one-body sidechain desolvation does not take into account desolvation of 

a sidechain by any other sidechains in the protein. The two-body sidechain desolvation 

results show a very different trend from the one-body backbone desolvation results.  For 

the two-body decomposition, GB-PDA (Figure B-1E) is most consistent with the exact 

sidechain desolvation, while DelPhi (Figure B-1F) is the least decomposable.  The DelPhi 

two-body sidechain desolvation shows a trend of underestimating the desolvation energy 

for sidechains that have a large desolvation penalty.   

 The GB-PDA method is the most decomposable of the three methods for the 

calculation of screened Coulombic energy (Figure B-2).  For both sidechain/sidechain 

and sidechain/backbone values, the two-body decomposition for all methods show a 

tendency to underestimate the magnitude of these interaction energies.  The reduced 

interaction energy is caused by over-screening of the interactions due to the reduced 

representation of the protein in the simplified surface model.  This problem is more 

evident in the DelPhi two-body decomposition of sidechain/sidechain screening energy 

(Figure B-2F).  The one-body approximation for sidechain/backbone screened Coulombic 

energy (data not shown) is nearly as accurate as the two-body decomposition, especially 

for the GB-PDA method.   

The pairwise decomposability of a solvation model is a necessary but not 

sufficient qualification for the model to be used in design.  The accuracy that one would 
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gain from using the GB model also determines whether the model is worth using.  We 

have measured accuracy by comparing results with GB to those with DelPhi.  In a 

comparison of FDPB solvers, DelPhi calculations with a 0.5 Å grid spacing were found 

to have comparable accuracy to other FDPB solvers with smaller grid spacings.9  Since 

the majority of GB studies have looked at calculating molecular solvation energies, it is 

necessary to assess the accuracy of GB methods for calculating the energy terms that are 

used in protein design calculations and compare their accuracy with currently used 

methods for calculating electrostatic energy.  All comparison with DelPhi energies in 

Figures B-3, B-4, B-5, and Table B-2 refer to the exact GB energy, not the one- or two-

body decomposition.    

For backbone and sidechain desolvation, the GBSA method overestimates the 

desolvation effect (Figures B-3A and B-3B), performing particularly poorly for backbone 

desolvation.  The GB-PDA model gives accurate backbone desolvation but tends to 

underestimate sidechain desolvation. This trend in most likely a result of systematic 

underestimation of Born radii for atoms buried in folded proteins (Figure B-5E).  The GB 

methods were compared with the LK solvent-exclusion model,35 using an LK parameter 

set that had been tuned to reproduce PB energies (Marshall & Mayo, unpublished work).  

The sidechain desolvation RMSD and correlation values (Table B-2) show that all three 

models are similar.  The accuracy of a more recently developed, modified GB-PDA 

method,32 which uses a continuous expression for Born radii, (data not shown) is 

comparable to that of the original GB-PDA method shown in Figure B-3C. 

 For screened Coulombic energy, GB methods were compared with the distance-

dependent dielectric (DDD) model currently used in the ORBIT energy function (Figure 
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B-4).  For sidechain/backbone screened Coulombic energy, the GB models and the DDD 

model have similar correlation with DelPhi.  For sidechain/sidechain screened Coulombic 

energy, there seem to be different trends between the GB models and the DDD model: 

while both GB models underestimate the magnitude of screened Coulombic interactions, 

the DDD model has inaccuracy in both directions.  The large screening energy predicted 

by the GB methods has been attributed to the problem of micro-dielectrics in the solute 

interior, causing underestimation of Born radii and thus large screening energies.   

The accuracy of the GB model has been shown to be highly correlated with 

accuracy of the Born radii.18  There are two steps in obtaining the electrostatic energy by 

the GB model: calculation of Born radii for all partial atomic charges in the molecule 

followed by calculation of the electrostatic energy using the GB equation (Equation 3).   

As a test to separate inaccuracy in the GB equation from inaccuracy in Born radii 

calculation, sidechain desolvation and screening energies were calculated using the GB 

equation with Born radii calculated from DelPhi atomic solvation energies (Figure B-5A-

C).   The four outliers in  Figure B-5B and six outliers in Figure B-5C are for cysteines, 

an amino acid that is generally not included in protein design calculations.  Consistent 

with the results of Case and coworkers,18 the agreement between the GB equation with 

perfect radii and energies calculated using DelPhi is much improved over the accuracy of 

the fully analytical Born radii calculation.  There is a bias inherent in using DelPhi Born 

radii to reproduce DelPhi energies.  However, the results in Figure B-5 do confirm that 

the GB equation (Equation 3), with accurate values for α, captures the physics of the 

Poisson equation (Equation 2).12  
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The correlation between DelPhi Born radii and analytically calculated Born radii 

(Figures B-5D and B-5E) is far from ideal (RMSD = 1.57 and 1.90 Å, R = 0.756 and 

0.666 for GBSA and GB-PDA, respectively).   In order to improve the Born radius 

calculation for the GBSA method, we obtained a separate parameter set for each amino 

acid type and the backbone by only using those particular atoms in the linear fitting.  The 

results show an improved trend in sidechain desolvation (slope = 0.93 for aa-specific, 

1.16 for general), but the scatter in the data is worse: for amino acid specific parameters, 

RMSD = 1.57 kcal/mol and R = 0.889 (Figure B-5F).   

Another important metric in assessing the utility of an energy function is its 

computational efficiency.  The two GB methods discussed here have comparable 

computational speeds.  Calculation of the exact and one- and two-body energy terms for a 

protein with 61 amino acids (40 of which are polar) takes 22 CPU minutes on a 195 MHz 

SGI R10,000 processor.  The same calculation using DelPhi (0.5 Å grid spacing) takes 31 

CPU hours.  For a typical protein design calculation there are millions of pairs.  FDPB 

calculations for scoring rotamer pairs could potentially take 45 CPU years for 10 million 

pairs, while GB calculations would take 0.5 CPU years on a single processor.   

Pokala and Handel36 have reported a generic sidechain approach for implementing 

the GB model in protein design calculations.  Their approach involves placing a sphere at 

a set distance from the alpha carbons for all amino acid positions other than that of the 

sidechain for which the Born radii are being calculated.  The Born radii of the backbone 

atoms are calculated with the wild-type sidechains present.  The GBSA method with an 

additional scaling factor to account for the presence of generic sidechains is used for 

Born radii calculations.  For the sake of computational efficiency, there are no two-body 
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perturbations in their method, and as such, the calculation time scales linearly with 

protein size.  The agreement with FDPB calculations for sidechain solvation energy 

(desolvation energy is not reported) using Pokala and Handel’s generic sidechain method 

is better than FDPB agreement using the two-body simplified surface method for GBSA 

(respectively, RMSD = 0.68 and 1.14 kcal/mol, R =  0.996 and 0.995).   Looking at the 

exact GBSA and GB-PDA sidechain solvation energy correlation with DelPhi energies 

(respectively, RMSD = 1.02 and 1.27 kcal/mol, R = 0.996 and 0.994), we see that the 

Pokala and Handel method with generic sidechains is even more accurate than the exact 

GB methods, as implemented here.  Based on the preliminary results, it is therefore 

difficult to judge whether the additive generic sidechain GBSA method is a better method 

for decomposing solvation energy than pairwise simplified surfaces.  The difference in 

error may be a function of the protein test set and indicate that a direct comparison 

between the accuracy of these two methods is only possible with the same set of 

molecules. 

 Based on our results, the GB model for polar solvation is slightly more 

decomposable by residue than the FDPB solver DelPhi.  The GB-PDA model shows the 

best decomposability.  However, the exact backbone and sidechain desolvation and 

sidechain/backbone and sidechain/sidechain screened Coulombic energies do not match 

DelPhi energies significantly better than currently implemented fast solvation models.  In 

contrast to the DDD method’s bias, the GB models tend to overestimate the effect of 

solvent screening.   
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Table B-1: Pairwise decomposability of solvation models  

RMSD (kcal/mol)  R 
 GBSA GB-PDA DelPhi  GBSA GB-PDA DelPhi 

Backbone desolvation 1-body 47.2 13.3 3.03  0.998 0.999 0.998 

1-body 2.41 1.38 1.91  0.868 0.840 0.746 
Sidechain desolvation 

2-body 0.34 0.09 0.60  0.993 0.999 0.967 

1-body 1.25 0.64 1.23  0.936 0.984 0.961 Sidechain/backbone 
screened Coulombic 

energy 2-body 0.63 0.16 0.49  0.967 0.998 0.987 

Sidechain/sidechain 
screened Coulombic 

energy 
2-body 0.08 0.05 0.14  0.973 0.994 0.953 

* All values RMSD and R values are in relation to the energy calculation with an exact dielectric 
boundary for the respective model. 
 
 
 
 
 
 
 
Table B-2:  Accuracy of analytical methods compared to DelPhi* 

RMSD (kcal/mol)  R 
 GBSA GB-PDA LK DDD**  GBSA GB-PDA LK DDD** 

Backbone desolvation 62.1 7.50 10.9 N/A  0.966 0.988 0.965 N/A 

Sidechain desolvation 0.95 0.92 0.95 N/A  0.928 0.921 0.919 N/A 

Sidechain/backbone 
screened Coulombic energy 0.88 0.98 N/A 1.18  0.951 0.964 N/A 0.903 

Sidechain/sidechain 
screened Coulombic energy 0.10 0.11 N/A 0.13  0.977 0.961 N/A 0.930 

• All energy terms were calculated using the full representation of the dielectric boundary. 
** For DDD model, sidechain/backbone dielectric = 3.5r, sidechain/sidechain dielectric = 5.4r 
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Figure B-1.  One and two-body approximation for sidechain and backbone desolvation.  
“Exact” values refer to the energy calculated with all the wild-type amino acids used to 
define the dielectric boundary.  Specifically for GB calculations, “exact” refers to all 
atoms in the protein that are included in the Born radii calculation.  Backbone desolvation 
energy is shown in (A,B,C), and sidechain desolvation energy is shown in (D,E,F). 
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Figure B-2. Two-body decompositions for screened Coulombic energy.  
Sidechain/backbone screened Coulombic energy is shown in (A,B,C), and  
sidechain/sidechain screened Coulombic energy is shown in (D,E,F). 
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Figure B-3. Accuracy of analytical methods for calculating desolvation energy. (A) 
Backbone desolvation energies were calculated with DelPhi (x-axis) and analytically 
(y-axis).  (Coloring: LK-red, GBSA-blue, GB-PDA, green).  Sidechain desolvation 
was calculated using DelPhi (x-axis) and (B) GBSA, (C) GB-PDA, and (D) LK (y-
axis). 
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Figure B-4. Accuracy of analytical methods for calculating screened Coulombic energy. 
Sidechain/backbone screened Coulombic energy were calculated with DelPhi (x-axis) 
and with (A) GBSA, (B) GB-PDA, and (C) DDD (y-axis).  Sidechain/sidechain screened 
Coulombic energies were calculated with DelPhi (x-axis) and with (D) GBSA, (E) GB-
PDA, and (F) DDD (y-axis). 
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Figure B-5. The importance of Born radii. Using the GB equation (Equation 3) and Born 
radii from DelPhi, I calculated (A) sidechain desolvation (RMSD = 0.18, R = 0.971),  (B) 
sidechain/backbone screened Coulombic energy (RMSD = 0.27, R = 0.964 without 
outliers), and (C) sidechain/sidechain screened Coulombic energy (RMSD = 0.056, R = 
0.882 without outliers).  Analytical Born radii were calculated using the (D) GBSA and 
(E)  GB-PDA methods.  (F) Sidechain desolvation energy was calculated using GBSA 
with amino acid specific parameters.  
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Appendix C 

 

Designed combinatorial libraries of cytochrome p450 

 

This project is in collaboration with Prof. Frances Arnold’s group. Mike Chen collected 

the experimental results in the Arnold lab.  Chris Snow made the ROSETTA designs. 

 

 

Abstract 

 Cytochromes P450 represent a promising class of enzymes for engineering novel 

biotransformations.  Our goal is to engineer the P450 BM3 from Bacillus megaterium to 

hydroxylate short-chain alkanes, specifically ethane and methane.  Using two 

complementary strategies, we have computationally designed libraries of BM3 with 

mutations in the substrate-binding pocket.   Experimental characterization of these 

libraries showed that they contain a high fraction of folded members and that at least one 

variant from the library with a high mutation level was active on ethane.   
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Introduction 

 Cytochrome P450 enzymes are a diverse superfamily of heme-containing 

monooxygenases.1  They are crucial for a number of processes including drug 

metabolism and natural product synthesis.  Engineered P450s have promise in the fields 

of drug discovery, bioremediation, and energy production.1  With the goals of converting 

waste gases to transportable products and also furthering the understanding of C-H bond 

activation, there has been considerable progress in shifting the substrate profile of P450s 

toward short chain alkanes.  The P450 from Bacillus megaterium (BM3) has been an 

attractive target for protein engineering due to its fused domain organization and high 

solubility in heterologous expression systems.2-6  Engineering of the heme and reductase 

domains of BM3 has lead to variants that hydroxylate short chain alkanes with high 

efficiency.4-6  To date, there are variants of both BM3 and the P450 Cam from 

Pseudomonas putida that are active on ethane.5,7  The engineered ethane monooxygenases 

have volume-increasing mutations near the active site, for example, Ala to Val or Phe in 

the BM3 variant.  Despite the dramatic shift from fatty acids or pericyclic substrates to 

ethane, a methane hydroxylating enzyme has not been successfully engineered.   

We used computational design tools8,9 to generate libraries of BM3 with a high 

level of mutation in the substrate binding pocket.   Our strategy was to remove the fatty 

acid substrate from the crystal structure and find sequences that would fill the binding 

pocket while packing in energetically favorable conformations.  We chose two 

complementary approaches: (1) the ORBIT method ensured that nearly all sequences in 

the library had a favorable conformation within the crystallographic backbone and (2) the 

CRAM method found large single mutations that could be tolerated by the structure and 
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built a library from these mutations with the idea that backbone relaxation would relieve 

steric clashes between large sidechains.  Since we reasoned that a large number of 

mutations might be necessary to shift the native substrate profile so dramatically, we 

designed libraries with two possible mutations at each of ten positions, providing an 

average mutation level of 5 for the ORBIT library and 7.5 for the CRAM library.  Data is 

presented here for the computational and experimental characterization of these two BM3 

libraries. 

 

Methods 

 The crystal structure of the BM3 heme domain with bound N-palmitoyl glycine 

(pdb code: 1JPZ, chain B, water removed) was subjected to 50 steps of conjugate 

gradient minimization using the DREIDING force field.10  The substrate was removed 

after minimization.  All amino acids except for Cys, Met, and Pro were allowed at nine 

residues: 74, 75, 78, 82, 181, 184, 188, 328, 330.  Residue 87 was constrained to be either 

Ala or Phe in order to have half the library be in the peroxygenase family.3  A shell of 

residues with sidechain atoms within 4 Å of the ten design positions was allowed to 

change conformation but not amino acid identity: 20, 25, 69, 71, 72, 73, 77, 81, 88, 177, 

180, 185, 189, 205, 259, 260, 263, 264, 267, 268, 329, 354, 356, 436, 437, 438.  A 

backbone independent conformer library with binning level of 1.0 was used.11  The 

energy function was the same as in Treynor et al.9 and Chapter 7 of this thesis.  The 

FASTER algorithm was used to find the optimal sequence.  Monte Carlo sampling with 

100 temperature cycles between 150 K and 4000 K and 106 steps per cycle was carried 

out starting from the optimal sequence.  The 20,000 top-scoring sequences were used to 
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generate a frequency table from which the amino acids for the ORBIT library were 

selected.8,9  The ORBIT library composition was constrained to include the WT sequence 

and the most frequent amino acid contained in a degenerate codon with the WT. The 

“CRAM” library was designed by using the ROSETTA program to place volume-

increasing amino acids at each of the nine design positions.  The conformations of the 

single mutants were optimized using a hybrid rotamer placement and continuous 

minimization algorithm.  A list of tolerated amino acids was generated from which the 

final library was chosen.  Residues 74, 78, 82, 328, and 330 were allowed to mutate away 

from WT completely, while 75 was forced to keep the WT amino acid due to proximity 

with the heme moiety. 

 

Results & Discussion 

 The computationally designed libraries were screened in the laboratory for their 

ability to bind heme and to hydroxylate a panel of substrates.  Each library was 

constructed in two mutational backgrounds: the WT BM-3 sequence and a variant, 9-

10A, that contains a number of non-active site mutations and increased activity toward 

propane.4  The activity on a sampling of substrates is shown in Table C-2.  The fraction 

folded was approximated as the fraction of library members that bound carbon monoxide 

and therefore heme.12   The ORBIT libraries had a moderately higher fraction of folded 

variants than the CRAM library but lower activity on most substrates tested.  No variant 

from the ORBIT library had significant ethane hydroxylating activity.  Several members 

of the CRAM library ethane activity, the most active of which is a sevenfold mutant of 
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WT that supports 1800 total turnovers of ethane to ethanol: 

A74L/V78I/A82L/A184V/L188W/A328F/A330W. 

Both libraries were screened computationally to exam the nature of their 

mutations.  The conformation of each of 1024 sequences in each library was predicted 

using the ORBIT program with the same rotamer library used to design the ORBIT 

library.  The energies of those sequences threaded onto the BM3 backbone are shown in 

Figure C-2A.  For 25% of the CRAM library sequences, the ORBIT energy function and 

rotamer library were unable to find conformations with energies less than 400 ORBIT 

units, indicating that there are large clashes between their sidechains.  The distribution of 

channel volume excluded by protein sidechains shows that the mutations in the CRAM 

library reduce the channel volume more severely than those in the ORBIT library (Figure 

C-2B). 

 We sequenced the 75 most active variants on the surrogate substrate DME.4  The 

alignment of these sequences is shown in Table C-3.  The majority of the highly active 

variants were from the CRAM libraries.   Residues 74, 78, 82, 184, 188, 328, and 330 all 

tolerated volume-increasing amino substitutions, while residues 75, 87, and 181 were 

highly biased toward the WT amino acid.  The consensus sequence in Table C-3 will 

inform further rounds of BM3 engineering.  The activity data for these two libraries 

indicate that a more “aggressive” approach to BM3 active site mutagenesis is preferable 

over the more “conservative” fixed-backbone ORBIT design for generating enzymes with 

activity on short chain alkanes.   
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* The WT amino acid is shown for each residue. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

* The number given is the percentage of library members with activity on the 
specified substrate.  Between 700 and 900 clones were sampled for each 
screen. 

† Folded sequences were counted as those that were able to bind carbon 
monoxide and therefore coordinate the heme cofactor properly. 

 
 

Table C-1: Designed BM3 libraries 
residue*  ORBIT  CRAM 
A74  AV  LW 

L75  LF  LF 
V78  VL  FI 
A82  AS  LV 
F87  FA  FA 
L181  LF  LW 
A184  AT  AV 
L188  LW  LW 
A328  AF  FV 
A330  AV  LW 

Table C-2: BM3 library screening* 

  ORBIT  CRAM 

  WT  9-10A  WT  9-10A 

Folded†  86  82  80  68 

DME  34  54  49  53 

methanol  4  5  4  6 

caffeine  3  2  18  6 

indole  50  67  68  79 
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Table C-3: Sequences of the variants with DME activity 
 74 75 78 82 87 181 184 188 328 330 

wt: A L V A F L A L A A 

**      F  W F V 
  L S   T W F  
  L S   T  F  
  L S  F  W F  
  L S    W F  
   S   T  F V 
 F L S     F V 
  L S  F   F  
   S   T W F  
  L S  F   F V 
V  L S   T W F V 
V  L S  F T W F V O

RB
IT

 li
br

ar
y,

 
9-

10
A 

ba
ck

gr
ou

nd
 

V     F T  F V 
L  I L   V W F W 
L  I L   V W F W 
L  I L  W  W V W 
L  I L   V W V W 
L  F V   V W F W 
L  I L   V W V W 
L  I L    W V L 
L  I L    W F W 
L F I V A  V S L F 
W  I L     F W 
W  I L   V W F W 
W  I L   V W V W 
W  I L   V W V W 
W F I L   V W F L 
W  F L   V W F L 
W  I L  W  W V W 
W  I L    W F L 
W  F L    W V W 
W  F L   V W F L 
W  I L    W F W 
W  I L   V W F L 
W  I L     F W 
W F I L A   W F W 

CR
AM

 li
br

ar
y,

 W
T 

ba
ck

gr
ou

nd
 

W  I L   V W V L 
L  I L     V W 
L  I L   V W F L 
L  I L   V W F L 
L F I L   V W F W 
L  I V A   W F W 
L  I L    W V L 
L  I L    W F W 
L  I L   V  V W 
L  I L   V W F L 
L  F V    W F W 
L  F L   V W F W 
W  I L     V L 
W  F L   V  V L 
W  F L   V W V L 
W  I L     V W 
W  F L   V  F W 
W  F L     F W 
W  F L   V  F W 
W F I L     V L 
W  I V   V  F W 
W  I V    W F W 
W F I L A   W V W 
W F F V A    V L 
W  F L   V  F W 
W  I V V    F W 
W  I L   V W F W 
W  I L   V  V W 
W  I L    W F W 
W  I L    W V W 
W  F L   V  V W 
W  F L   V  F W 
W  F L     F W 
W F I L   V W F W 

CR
AM

 li
br

ar
y,

 9
-1

0A
 b

ac
kg

ro
un

d 

W  F L   V  F W 

consensus: LW - ILF LS - - V LW FV W 
* Blank lines correspond to WT amino acid identity. 
** ORBIT library with WT background (one sequence) 
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Figure C-1.  The BM3 structure. (A) The heme domain of BM3 is shown in cartoon 
representation (pdb code: 1JPZ).  The heme and N-palmitoyl glycine are shown as 
spheres.  The magnified images show the rotated substrate-binding pocket with the 
substrate removed.  The top panel shows the cavity left by removing the substrate 
molecule as a grid of pink spheres.  In the bottom panel, the residues targeted for 
mutagenesis are shown as sticks. (B) The WT BM3 protein hydroxylates C12–C18 fatty 
acids at sub-terminal positions.  Myristic acid is shown here.  The desired substrate for 
this engineering project is methane. 
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Figure C-2.  Properties of the designed libraries. (A) Cumulative histogram of library 
energies. The ORBIT energies were calculated for the predicted conformations of each 
sequence in the ORBIT and CRAM libraries. (B) Volume histograms for the ORBIT 
(white) and CRAM (gray) libraries.  In the minimized crystal structure (with the substrate 
removed), the ten design positions were replaced with Ala.  A grid of points was defined 
at locations that were not occupied by any protein atoms in the Ala-substituted structure. 
The predicted conformations of the designed proteins were scored according to how 
many grid points overlapped with their atomic radii (excluded volume).  The excluded 
volume of the WT crystallographic rotamers is marked with a star on the plot.  For both 
plots, the structures of the variants were modeled in the background of the WT sequence. 
 
 


