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Chapter 7.  Appendix A: Methods for signal-processing, analysis of spike 

trains, and local field potentials (LFPs) 

 

7.1  Signal acquisition  

All extracellular recordings were acquired continuously using Neuralynx Hardware 

(Neuralynx Inc, Tucson, AZ). We used two generations of systems: An Analog Cheetah system 

(25 kHz sample rate) with 32 channels, and a Digital Cheetah system (32 kHz sample rate) with 

64 channels. In both systems, signals were first pre-amplified as close as possible to the source 

(pre-amplifiers were placed on the head of the patient). After pre-amplification, signals were fed 

into the acquisition system, which was located in the room of the patient (but several meters 

away). The acquisition system amplified the analog signals (with gain in the range of 2000–

50000) and fed them into an A/D converter (analog system) or directly fed them to the A/D 

converter (digital system, no analog amplification). Spike times were determined offline after the 

recording (see spike detection and sorting chapter for details). All parts of the system that were in 

contact with the patient were powered by DC batteries to avoid safety problems as well as to 

reduce line-noise interference. The interface between the acquisition system and the recording PC 

(acquisition card) was optical. We used the Cheetah software to acquire all data (Neuralynx Inc, 

Tucson, AZ). 

Each macroelectrode contained 8 microwires (see Introduction for details). One of these 

wires was used as ground. The choice of ground wire (based on background noise levels and 



221 

 

impedance) occurred on the first day of recording for every patient. Special care was taken to 

identify a ground wire that had very low levels of electrical activity, as otherwise the activity on 

the groundwire would be recorded on all other wires as a signal. All our recordings were locally 

grounded. Thus, the measured voltage (the output of the amplifier) is the difference between the 

two inputs to the amplifier (differential amplification, relative): the measuring wire and the 

ground wire. Thus, the signal iS (output of the amplifier) represents Gii VVS −= , where iV  is the 

voltage on each microwire measured relative to a distant ground (i.e., the skull). All microwires 

of the same macroelectrode are located very closely together (spatially, typically < 1 mm). This 

kind of differential recording thus allows the measurement of very local electrical activity. All 

activity that is common to both wires (such as global line noise, long-range oscillations) is 

cancelled from the signal due to the subtraction. This has implications for the LFP signal recorded 

from these electrodes: It is very different from a traditional iEEG signal (see the LFP chapter for 

details). 

Signals were acquired with the widest bandpass filter settings possible (given the level of 

background noise). However, emphasis was placed on recording spikes rather then LFP. Thus, if 

the dynamic range of the low-frequency components was too large to have appropriate 

amplification to see clear spikes (given the limited dynamic range), a bandpass filter was used to 

allow appropriate increases in gain. All gain and filter settings were determined before recording 

started. This limitation only applies to the first-generation system (analog) that we used. The 

second-generation system did not have this constraint due to the increased dynamic range of the 

A/D converter, which has 18 effective bits. With this system, we could always record the entire 

frequency band (1 Hz–9000 Hz bandpass filter).  
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7.2  The origin and structure of the extracellular signal 

The wideband extracellular signal recorded from a microwire electrode with relatively 

high impedance (200 kOhm–1 MohM) and small surface area contains a mixture of electrical 

signals from many different sources. Electrical events in neurons occur on two fundamental 

timescales: i) spikes are fast events that last 0.4 – 1 ms and ii) excitatory and inhibitory post 

synaptic potentials (EPSPs and IPSPs), on the other hand, are slow events that last from 10–100 

ms. These two timescales are reflected in the structure of the wideband extracellular signal. The 

high-frequency components (> 300 Hz) are dominated by spikes, whereas the low-frequency 

components (< 300 Hz) are dominated by synaptic events. Simulations show that spikes 

contribute dominantly to the 300–3000 Hz frequency band and have negligible power at lower 

frequencies (See Figure 15 in (Logothetis, 2002) for an insightful illustration of this fact). This is 

the justification for using the 300-3000Hz frequency band for extracting spikes from the 

extracellular signal. Simulated synaptic potentials, on the other hand, have their dominant power 

at frequencies lower than 150 Hz (Logothetis, 2002).  

 The shape of the waveform of the spikes of a particular neuron (see spike sorting 

chapter for examples) depends on many factors such as the location, surface shape, and 

impedance of the electrode, as well as neuronal morphology and type, and the expression of 

different ion channels (Gold, 2007; Gold et al., 2006). For this reason waveforms from different 

neurons recorded on the same electrode are different. We exploit this fact to attribute each 

waveform to a particular neuron (see spike sorting chapter). These differences can also be 

exploited to infer properties of the recorded neuron from the shape of the action potential. For 

example, inhibitory neurons have sharper waveforms than excitatory neurons (McCormick et al., 
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1985). This fact can be used to infer the identity of the neuron recorded from (Buzsaki and 

Eidelberg, 1982; Csicsvari et al., 1999; Fox and Ranck, 1981; McCormick et al., 1985; Mitchell 

et al., 2007; Viskontas et al., 2007). Extracellularly recorded waveforms have amplitudes on the 

order of 50–200 μV (peak-to-peak). Background noise levels are in the range of 5–20 μV (RMS). 

Given these noise levels and the fact that the amplitude decays linearly with the distance from the 

source, it is estimated that an extracellular electrode can record spikes from neurons within a 

radius of perhaps up to 140 uM (Buzsaki, 2004; Gold, 2007; Gold et al., 2006; Henze et al., 2000; 

Holmgren et al., 2003).  

 The origin of the low-frequency components of the extracellular field, the local 

field potential (LFP), are much less clear (Bullock, 1997). It is thought that the LFP is mostly 

composed of the sum of large numbers of postsynaptic discharges. It is estimated that the LFP 

from a single extracellular electrode is influenced by potentials within a radius of 0.5–3 mm 

(Juergens et al., 1999; Logothetis, 2002; Mitzdorf, 1985). Due to its (predominantly) synaptic 

origin, the LFP can be independent of the spiking output measured at a particular location 

(Logothetis, 2002). The LFP is dominated by synchronized synaptic/dendritic components of 

neurons that are oriented in space such that their potentials add rather then cancel. The 

organization of cortical pyramidal neurons yields a particularly large LFP because neurons are 

parallel, with dendrites in one direction and axons in the other direction. This yields an open field 

geometrical arrangement (Mitzdorf, 1985). Due to its dominantly synaptic origin, the LFP is 

thought to represent the synaptic input as well as local processing. Some have used this to argue 

that spikes measure the output and LFP the input to a particular area. There are cases, however, 

where this strict distinction does not hold. Also, the exact origin of the LFP (in general) remains 
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unknown, and making this argument thus requires detailed knowledge about the neuronal 

architecture of the area under investigation. 

7.3  Signal processing 

7.3.1  Filtering  

All filters were 4th order zero-phase-lag Butterworth filters unless otherwise noted. For 

spike extraction, signals were bandpass filtered between 300–3000 Hz. For LFP, signals were 

down-sampled to 1000 Hz sampling rate and lowpass filtered < 300 Hz. To extract specific LFP 

frequencies (for example 4–8 Hz), a narrow bandpass filter was applied. 

7.3.2  Local field potential (LFP) 

The LFP is the sum of all oscillations that influence the extracellular electrical field at the 

point of space where the electrode is placed. There are many different forms of oscillations of 

widely varying frequencies. Some of these oscillations are known to have distinct physiological 

mechanisms. For example, oscillations of some frequencies are only present during sleep or 

during motor movement. The LFP bands are traditionally (and arbitrarily) decomposed into the 

following frequency bands (Buzsáki, 2006; Penttonen and Buzsaki, 2003): Delta (δ, 0–4 Hz), 

theta (θ, 4–8 Hz) , Alpha (α, 8–12 Hz), Beta (β, 12–24 Hz), Gamma (γ, 24–100 Hz or higher for 

high gamma). The frequency of a particular oscillation, however, can vary substantially 

depending on brain state (wake, sleep, drowsy) as well as between species (Steriade et al., 1993). 

For example, the frequency of theta is slower in larger mammals (such as primates or cats; 3–5 
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Hz) compared  to rodents (6–9 Hz) (Robinson, 1980).  These terms should thus only be used as 

guidelines but not as fixed entities. 

 Since the recorded LFP is a mixture of many frequencies (a voltage as a function 

of time), it is necessary to decompose the signal into a different representation which is a function 

of both frequency and time W(t,f). The fundamental technique to achieve this is the Fourier 

transform (FT), which transforms a function of time x(t) into a function of frequency x(f) (and 

vice versa). While this is useful to calculate a power spectrum, all time resolution is lost. One 

technique to circumvent this is to split the data into small time bins and calculate the FT for each 

(windowed fourier transform, WFT) (Teolis, 1998). Due to the small window in time, this 

technique will prevent estimation of frequencies whose wavelength is less than the window size. 

A more sophisticated version of WFT is wavelet analysis. Wavelets (see below) are functions 

which are well localized in both time and frequency. Their effective window size is adapted based 

on the frequency and is thus always optimal. Here, wavelets or the Hilbert transform were used to 

compute a continuous estimate of power and phase as a function of time. 

 

Time-frequency decomposition using wavelets: The raw signal )(tS  was decomposed into a 

function of frequency and time using the continuous wavelet transform (cwt). In the following I 

am using the notation developed in (Torrence and Compo, 1998). The mother wavelet used was 

always a complex Morlet wavelet: 
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The two parameters are the center frequency 0f  and the number of cycles. We used 

10 =f and 4=ω cycles, unless mentioned otherwise (see below). 

 

The cwt of the raw signal )(tS  is a function of both scale (frequency) and time: ),( stW . It is 

computed by convolving the raw signal (of length N ) with the wavelet function )(0 ηψ  for a 

number of different frequencies (scales) s . 
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)(* ηψ  is the complex conjugate of the wavelet function )(ηψ . )(ηψ  is a normalized version of 

the wavelet )(0 ηψ . See (Torrence and Compo, 1998) for details. 

 

The effective resolution of the Morlet wavelet depends on the center frequency 0f and the scale 

s . If Tδ is the spacing between two sampled points (due to the sampling rate), the effective 

frequency of a Morlet wavelet at scale s  is 
Ts

ff
δ

0= . Thus, the higher the scale, the lower the 

frequency. The resolution is measured separately in terms of the standard deviation in time 

tσ and frequency fσ . Time resolution at scale s  is Taδ and frequency resolution is 
a

fσ
. Thus, 

the better the resolution in time the worse it is in frequency and vice versa (uncertainty principle, 
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a fundamental limit, dictates
π

σσ
2
1

≤ft ). The time width of a wavelet is defined as (Najmi and 

Sadowsky, 1997): 
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= . To illustrate this trade-off, Figure 7-1 shows Morlet wavelets in both time 

and frequency space for 3 different parameter combinations. The time and frequency resolution 

for the same 3 wavelets are shown in Figure 7-2. Notice the trade-off between accuracy in time 

and frequency clearly visible from the size of the error bars in Figure 7-2 (bottom row). Since the 

width in frequency space increases as a function of frequency, the frequencies at which the 

wavelets are calculated are logarithmically scaled. This leads to an even sampling in frequency 

space (Figure 7-2). Here, we sampled at frequencies of xf 2=  with 8/]52:2:2[∈x  (not all are 

shown in Figure 7-2).  
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Figure 7-1. Illustration of the complex morlet wavelet.  
The wavelet is illustrated for 3 different combinations of parameters of cycle number and 
center frequency: (4,1), (6,1), and (6,2) (from left to right). The top row shows the 
wavelet in time (blue: real part; red: complex part) and the bottom row in frequency 
(Fourier transform of the above). Notice the tight tuning in both time and frequency. 
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Figure 7-2. Illustration of the trade-off between specificity in time and frequency 
space. 

Illustrated is the complex morlet wavelet for three different parameters (cycle number 
and center frequency): (2,1), (4,1), and (6,1). The top row shows the frequency resolution 
(left) and the time resolution (right). The y axis shows one standard deviation as a 
function of frequency. Note that whenever one wavelet has better time resolution (left, 
red) it has worse frequency resolution (right, red) and vica-versa. The bottom row 
illustrates this property by showing the 95% confidence interval (±2*s.d.) for both time 
(y axis) and frequency (y axis). Note how the left wavelet (2,1) has better resolution in 
frequency compared to the wavelet on the right (6,1). However, the left wavelet has 
better time resolution. Only a subset of the frequencies used for the analyis are shown 
(every second is shown). Note that in the bottom row, the y axis is in log units, and thus 
the error bars appear to be of equal length. 
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 Computation of the analytic signal with the Hilbert transform: To estimate the phase and 

power of a narrowly bandpass-filtered signal without using the wavelet transform (such as in the 

theta band), the Hilbert transform was used to calculate an analytical signal. The analytical signal 

)(tX  is complex and can be used to calculate the phase/power with the same methods as for 

wavelet coefficients (see below). The Hilbert transform )(tSH is equal to the signal phase shifted 

by 90°. The real part of the analytic signal equals the raw signal and the complex part is the 

Hilbert transformed signal.  

)()()( tiStStX H+=  

 

Estimation of instantaneous phase and power (energy): Given a complex signal as a function 

of time )(tX , the following methods were used to estimate the instantaneous phase )(tφ  and 

power )(tR . )(tX  is either the result of a Hilbert transform or a continuous wavelet transform 

(see above). In the following, }{Xℜ  and }{xℑ  refer to the real and imaginary part of X , 

respectively. 

22 )}({)}({)( tXtXtR ℑ+ℜ=  

)})({)},({2(atan))(arg()( tXtXtXt ℜℑ==φ   
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Wavelet power spectrum and distribution of wavelet power: The wavelet power spectrum is 

equivalent to )(tR  as defined above, as a function of frequency.  The real and the imaginary parts 

of the wavelet coefficients ),( stW  for any particular scale are normally distributed random 

variables with mean 0 and unknown variance. Since the wavelet power )(tR  is the squared sum 

of the real and imaginary part of ),( stW , )(tR  is 2χ distributed with 2 degrees of freedom. 

Since the variance is unknown (but not 1), however, the mean of this variable is unknown. Since 

the LFP is 1/f distributed, the mean of this distribution is a function of the frequency. The 2χ  

distribution needs to be scaled appropriately to allow statistical tests (Caplan et al., 2003). 

 An alternative approach is to normalize the real and complex part of ),( stW  to a 

variance of 1 independently before calculating the power. This removes the 1/f frequency 

dependency and allows easy statistical comparisons with a unscaled 2χ  distribution. I estimated 

the variance of ),( stW  (separately for the real and imaginary part) for each scale for the entire 

experiment and normalized (divided) all samples by this value to assure that each are normally 

distributed with mean zero and variance 1. This allows the construction of a flat power spectrum 

(instead of 1/f) where peaks correspond to a deviation from the null hypothesis of no signal. 

   

Statistics of phase locking: All statistics related to phases were performed using circular 

statistics (Batschelet, 1981; Fisher, 1993). The phase was measured (in radians) in the range 

]...[ ππ−  (-180°–+180°) with 0 equal to the peak and ππ /−  equal to the through of the 
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oscillation. Statistics of a sample of n angles iθ (phases) were calculated based on the mean 

resultant vector:  
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The mean angle θ  is also calculated from above measures: 
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The larger the length of the mean resultant R (range 0–1), the stronger the phase locking of the 

sample. The sample circular variance is RV −=1 . To test whether a neuron is significantly 

phase locked, the sample of all phase angles was compared against uniformity using a Rayleigh 

test. The Rayleigh test is based on the length of R : 
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If P is sufficiently small, the null hypothesis of uniformity can be rejected. The alternative 

hypothesis is that the data is unimodal (one mean direction). To quantify the distribution of a 

sample of phase values that was significantly non-uniform, we fit a Von Mises distribution to the 

data using maximum likelihood. The Von Mises distribution is the normal distribution adapted 

for circular data. The following is its density function: 
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It is fully specified by a mean direction μ  and a concentration parameter κ . The concentration 

parameter is analogous to the standard deviation of a normal distribution, although of opposite 

direction: The larger κ , the more concentrated the distribution (the smaller its variance). For 

0=κ , the Von Mises distribution is equivalent to the uniform distribution on the circle. ()0I is 

the modified Bessel function of order zero. A definition of it can be found in (Fisher, 1993).  

 

Simulated LFP: For systematic evaluation of our methods we used artificially simulated LFP 

which has a phase spectrum similar to real data (“red noise”, i.e., “1/f”). Such LFP was simulated 

using sinusoidal pink noise (Cohen, 1995; Rohani et al., 2004): 
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This generates a time series of length N . The phase is sampled randomly from a uniform 

distribution, i.e., ]2,0[ πφ Ui ∈ . 

 



234 

 

7.4  Spike train analysis 

7.4.1  Single neurons: Spike times and the distribution of interspike intervals 

In the following I describe the statistical properties of a series of spikes (a “spike train”). 

In probability theory, this is commonly referred to as a point process. For details and proofs refer 

to (Dayan and Abbott, 2001; Gabbiani and Koch, 1999; Kass et al., 2005; Koch, 1999). 

 For the purposes of analysis, spikes are treated as unitary events that occur at a particular 

point of time it . Spikes emitted by real neurons last 0.5–1.5 ms and are thus not restricted to a 

single point of time. Here, the peak (maximal deviation from baseline) of the waveform is used as 

the point of time the neuron spikes. The measurement accuracy of it  is restricted by the sampling 

rate and uncertainty in determining the peak. Here, the accuracy is estimated to be on the order of 

0.1 ms. Time is measured relative to a fixed reference point, such as the start of the experiment or 

trial. The unit of time is usually assumed to be milliseconds (ms), but any units can be used. 

Observing the N  spikes emitted by a single identified neuron leads to a set of spike times 

}.,...,,{ 21 NtttT = T is thus a list of events emitted by a point process. Observing the properties 

of T allows us to make inferences about the properties of this point process (which here is equal 

to a single neuron). The most important measure to quantify the behavior of a point process is the 

interspike interval (ISI). The interspike intervals are defined as the times between two 

neighboring spikes, i.e., ,...232121 , ttIttI −=−= . The set of ISIs },...,,{ 121 −= NIIII  is the set 

of all differences between neighboring spikes. The shape of the distribution of the ISIs can be 

used to infer a great number of properties about the neuron that emitted the spikes. Examples are: 
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inferences about the firing rate (the mean), the variability of the firing rate, bursting behavior, or 

whether the neuron fires periodically.  Also, the shape of the ISI can be used to judge whether the 

set of spikes used for calculating it could have been emitted by a single neuron or not. This can be 

used to judge spike sorting quality (see the spike sorting chapter for details). 

 The spikes fired by a neuron are, in the great majority of cases, Poisson distributed 

(Dayan and Abbott, 2001; Holt et al., 1996; Softky and Koch, 1993). Due to biophysical 

constraints (such as the refractory period), neurons cannot fire at extremely high firing rates. 

Thus, it is unlikely that a neuron will fire more than one spike within approximately 3 ms 

(although there are cell types which have a shorter refractory period). For this reason, the firing 

probability at any particular point of time is a function of the time since the last spike. Such a 

process is modeled as a renewal process.  For this reason the intervals deviate systematically from 

a pure Poisson distribution. 

 Given a homogenous Poisson process with rate r , the probability of observing n  spikes 

within a time period T is: 
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The Poisson process is entirely defined by the rate r . Given a Poisson process, the waiting times 

between two spikes are exponentially distributed: 

ττ r
ISI reP −=)(  
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The above function specifies the probability that, given a spike at 0=t , no spike will have 

occurred in the interval τ+t . For a homogenous Poisson process this is the expected shape of 

the ISI distribution. Given a sample of ISIs, the mean ISI is 
r

ISI 1
=  and the variance is 

[ ] 2
22 1

r
ISIISI =−=σ . The mean and variance of the underlying Poisson process can thus 

be calculated from the ISI distribution. 

If an absolute refractory period reft is introduced, this function is shifted (to the right on 

the time axis) by reft :  )()( refISIref tPP −= ττ .  Another possibility for expression of the ISI 

distribution of a neuron with a refractory period is to use a gamma distribution:  
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This representation has two parameters: the rate r  and the parameter k , which is the order of the 

gamma distribution. When 0=k   an exponential distribution results. With 0>k (estimated 

from the data using maximum likelihood), this typically provides a very good fit for ISI 

distributions. Also note that the mean of a gamma process with  0>k  is the same as for 0=k . 

The estimate of the mean rate as 
r

ISI 1
=  remains thus valid, regardless of the order of the 

gamma process. 

Computationally, a random series of spike times that are Poisson distributed can be 

generated by sampling randomly from an exponential distribution (and discarding the ones which 
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are less than the refractory period). The returned numbers are wait times (interspike intervals). 

This is the strategy that we used whenever random spike trains were generated. 

Also note that (under the Poisson assumption) the standard deviation of the ISI 

distribution is equal to its mean (the rate). Thus, the variance is not independent of the mean for 

neurons. The ratio of the standard deviation to the mean of the ISI of a perfectly homogenous 

Poisson process is thus equal to 1. This ratio is the coefficient of variation (CV): 

r
CVISI

σ
=  

The CV is an important measure of the regularity of firing of a neuron. A neuron that fires 

perfectly at a single rate has a CV of 0. A neuron that fires perfectly according to a Poisson 

distribution has a CV of 1.0. A neuron with highly irregular firing (for example, complex spikes, 

bursts) will have a CV > 1. The CV is routinely calculated for recorded neurons. There is a wide 

range of observed CV values. For neocortical neurons, it is often close to 1, as expected (Britten 

et al., 1993; Shadlen and Newsome, 1998; Softky and Koch, 1993; Tomko and Crapper, 1974). 

The measured relationship between mean rate and variance is approximately 1.5 (whereas the 

theoretical prediction is 1.0) (Shadlen and Newsome, 1998). A refractory period will impose 

some form of regularity and thus lowers the CV. A perfect Poisson neuron with a refractory 

period will thus have a CV < 1.  


