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Chapter 5.  Predictors of successful memory encoding 

5.1  Introduction 

Whether a memory is successfully retrieved or forgotten is determined by many different 

factors. The first step in establishing a new memory is encoding it. The cellular, molecular, and 

network processes triggered during encoding set into motion a permanent change that is sufficient 

to later recall the memory. Many other factors influence this process, such as attention, arousal, 

consolidation, interference with other memories, sleep, and emotional significance (Paller and 

Wagner, 2002). Here we asked how much of the retrieval performance can be explained by the 

neural activity during initial learning. Thus, we are looking for indicators of successful memory 

encoding.  

We recorded single units and LFP data from three areas strongly involved in memory 

formation: two structures in the MTL (the hippocampus and amygdala) as well as one structure of 

the cortex (anterior cingulate cortex). Lesions of the MTL produce severe memory deficits (see 

Chapter 1 for details). Also, hippocampal lesions, in particular, produce deficits in the detection 

of novelty (Knight, 1996). The successful detection of  novelty is a prerequisite for memory 

formation in many instances (Rutishauser et al., 2006a). While the function of the ACC is poorly 

understood, it is clear that it has a prominent role in performance monitoring and attention (focus, 

effort), and it is thus expected that it will also contribute to memory encoding. From animal 

studies it is known that lesions of the ACC (particularly area 24) severely impair the acquisition 

of Pavlovian conditioning (Gabriel et al., 1991). Similarly, recordings from the ACC reveal 

prominent theta oscillations which interact with hippocampal theta, as well as single units (in the 
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cingulate) that modulate their firing relative to hippocampal theta (Colom et al., 1988; Gabriel et 

al., 1991; Gabriel et al., 1987). Novelty-related responses in the ACC have also been observed. 

Thus, in addition to its role in attention, the ACC is likely to play an important role in learning. 

Does the neural activity present during the encoding of memory (during the first stimulus 

presentation) predict memory success? Activity before the stimulus onset has been shown to 

predict successful memory recollection (Otten et al., 2002; Otten et al., 2006). This is a 

manifestation of the influence of the baseline state (attention, arousal, focus, motivation, or some 

form of task-preparation) on encoding. Otten et al. demonstrated this effect by comparing the 

event-related potentials (ERPs) evoked by a cue that predicts stimulus onset a fixed time later 

(Otten et al., 2006). The authors found that ERPs, sorted according to whether the stimuli were 

later recollected or not, were different. This is remarkable because it shows that not only does 

neural activity (measured by ERPs) before stimulus onset correlate with encoding success, but 

that it can change fast enough to have an effect trial-by-trial. This is difficult to reconcile with 

baseline states of the brain, which are thought to change on a slower timescale. Top-down 

attention can, however, influence processing differentially trial-by-trial (Einhauser et al., 2008; 

Rutishauser and Koch, 2007).  

The neural activity present in the MTL shortly after the onset of a stimulus is directly and 

causally related to whether a memory is formed or not. A demonstration of this involves temporal 

disruption of neural activity in the hippocampus (of macaques) in a match-to-sample task: 

performance was only influenced if stimuliation onset was within 300 ms of the stimulus (Ringo, 

1995). Afterwards, performance was not disrupted.  In humans, intracarotid injection of 

amobarbital 1 min after acquiring a new memory does not disrupt memory for retrieval after 
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recovery from anesthesia (Gleissner et al., 1997).  This form of anesthesia causes extreme 

hyperpolarization and thus prevents spiking.  This suggests that new memories become at least 

partially independent of electrical neural activity shortly after initial acquisition. 

 Mechanistically, induction of synaptic plasticity requires tightly coordinated pre- and 

postsynaptic activity (on the order of 10 ms). Neurons tend to fire in synchrony with others in the 

same circuit and thus the inputs to a particular neuron oscillate. A prominent oscillation in the 

hippocampus (and other areas) is the theta rhythm. In vivo, only stimulation around the peak of 

theta induces strong LTP (Holscher et al., 1997; Hyman et al., 2003; McCartney et al., 2004; Orr 

et al., 2001; Pavlides et al., 1988). Neurons are most excitable and most depolarized at the peak of 

theta and fire more sparsely in the presence of theta (Buzsaki et al., 1983; Fox, 1989; Wyble et 

al., 2000). The presence or absence of hippocampal theta also has a direct behavioral effect on 

learning: learning rates during conditioning are are positively affected by the presence of theta 

prior to training (Berger et al., 1976; Berry and Thompson, 1978).  

Gamma oscillations (30–80 Hz) are very prominent in many areas of the human brain, 

including the hippocampus, the amygdala (Jung et al., 2006b; Oya et al., 2002), and a large 

number of cortical areas (see (Jensen et al., 2007) for a review). In humans, the intracranially 

measured power of gamma oscillations correlates with working memory load, attention, and 

sensory perception (Engel and Singer, 2001; Howard et al., 2003; Tallon-Baudry and Bertrand, 

1999; Tallon-Baudry et al., 2005). The presentation of visual stimuli triggers gamma oscillations 

in many areas (Tallon-Baudry et al., 2005). The power of stimulus-triggered increases and 

decreases in gamma oscillations have also been shown to correlate with recall success in a free-

recall task (Sederberg et al., 2007). 
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We recorded LFP from intracranial depth electrodes during performance of a single-trial 

learning task. In a similar task, we previously observed single units that indicated the novelty or 

familiarity of the stimulus presented (Rutishauser et al., 2006a; Rutishauser et al., 2008). Here we 

asked whether the LFP, recorded during learning, contained information about the success or 

failure of plasticity. We compared the power of oscillations (during learning) between stimuli 

which were later recognized and stimuli which were forgotten. Our task was a recognition 

memory test (new/old) with continuous confidence ratings and a long delay (> 15 min) to test for 

true long-term recognition memory. The stimuli that we used were all novel and had never been 

seen before by the patient. This is distinct from previous paradigms used by others, which used 

short delays, highly familiar stimuli (words), free recall of words, or subjective judgments of 

recollection (remember/know). We also repeated the same experiment with a longer (24 h, 

overnight) delay and a new set of novel stimuli. We then tested whether periods of changed 

oscillatory power identified from the same-day data could predict whether stimuli would be 

remembered after the overnight delay. We found that there are several distinct frequencies of 

oscillations in the hippocampus, amygdala, and anterior cingulate that are good predictors of 

memory success.  Also, we find that the oscillatory periods that correlate with same day memory 

can be used to predict memory performance the next day (overnight memory). 

5.2  Methods 

5.2.1  Task 

During each trial, the stimulus (a picture) was presented at the center of the screen. 

Distance to the screen was approximately 50 cm and the screen was approximately 30 by 23 
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degrees of visual angle. Stimuli were 9 by 9 degrees.  A trial consisted of the following displays 

(in this order): delay (1 s), stimulus (1 s), delay (0.5 s), question (variable). During delay periods, 

the screen was blank. After the delay, the question (see below) was displayed until an answer was 

provided. The answer could only be provided when the question was on the screen to avoid motor 

artifacts (keys presses during stimulus presentation were ignored). 

During learning trials, patients were asked to answer the question “Was there an animal 

in the picture?” to facilitate attention and focus. Patients answered this question almost perfectly 

(≥ 98%), confirming that they were looking at the images on the screen during learning. 

During retrieval trials, patients were asked to indicate, for each picture, whether they had 

seen it before (during learning) or not (e.g. new or old).  Also, patients were asked to indicate 

their subjective confidence of their judgment.  Answers were provided on a 1-6 scale from: 1 = 

new, confident, 2 = new, probably, 3 = new, guess, 4 = old, guess, 5 = old, probably, 6 = old, 

confident). 

All psychophysics was implemented using Psychophysics toolbox (Brainard, 1997; Pelli, 

1997) in Matlab (Mathworks Inc). 

Stimuli were photographs of natural scenes of 5 different visual categories (animals, 

people, cars, outdoor scenes, flowers). There were the same number of images presented for each 

category. Categories were balanced during retrieval to avoid any inherent bias in memory for 

individual subjects for certain categories. All stimuli were novel and had never been seen by the 

patient. Each stimulus was presented at most two times (once during learning, once during 

retrieval). 
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5.2.2  Data analysis — LFP 

For details on how we analyzed LFP data (in particular wavelet decomposition, 

power/phase estimation), please refer to the methods chapter of this thesis. Here, only the 

parameter settings and techniques specific to this chapter are described. 

Frequency bands were sampled logarithmically spaced: xf 2=  with 8/]52:2:2[∈x  

(see appendix for details). Here, the maximal frequency examined was 90 Hz. In total 24 

frequencies were examined (all in Hz): 1.68, 2.00, 2.38, 2.83, 3.36, 4.00, 4.76, 5.66, 6.73, 8.00, 

9.51, 11.31, 13.45, 16.00, 19.03, 22.63, 26.90, 32.00, 38.05, 45.25, 53.81, 64.00, 76.11, 90.50. 

All channels were included that contained appropriately distributed 1/f wideband signal. 

Channels with 60 Hz were filtered using a 4th-order Butterworth notch filter. Channels were not 

pre-selected for the presence of particular peaks in the spectrogram. Thus, it is expected that 

many of the channels have only weakly detectable energy in prominent LFP bands such as theta 

or gamma (due to inappropriate impedances or the location of wire).  Since we could not find any 

good (and objective) criteria to judge what constitutes a “good” LFP channel, we opted to include 

all channels to avoid any biases. Also note that the LFP reported here was recorded 

simultaneously with spikes.  Since we recorded spikes relative to a local ground (one of the other 

wires on the same macroelectrodes), the LFP signals reported in this chapter are also locally 

grounded. This implies that the signals discussed here represent the activity of a local population 

of neurons/synapses (maxmally a few millimeters, often much less). They are distinct from other 

types of recorded LFPs which are globally grounded (e.g., by an electrode in the other 

hemisphere or the skull).  Examples of globally grounded signals include intracranial EEG and 

surface EEG. It is thus important to note that LFP in this thesis refers to a local signal. Due to this 
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type of grounding, oscillations in the brain that are the same over long distances (several 

millimeters) can not be observed (requires global grounding). Other reports of LFP recorded from 

similar microwires (simultaneously with spikes) also have this caveat, although they usually 

neglect to mention this explicitly (Ekstrom et al., 2007; Jacobs et al., 2007; Kraskov et al., 2007; 

Nir et al., 2007). It is also important to keep this caveat in mind when comparing human 

microwire LFP to animal LFP data, which is usually not locally grounded (and similarly to 

intracranial EEG). 

 The LFP power in these 24 different frequency bands was calculated as a 

continuous function of time using wavelet decomposition (see appendix). We compared the mean 

LFP power in 250 ms bins from stimulus onset to 500 ms after stimulus offset (total duration 

1500ms). We tested for differences in mean power in each bin using 5000 bootstrap samples 

(Efron and Tibshirani, 1993). The LFP power at a particular frequency has a heavy tail (χ2 

distributed) and it is thus inappropriate to compare these populations using parametric tests such 

as the t-test. The bootstrap test we used is entirely non-parametric and makes no assumptions 

about the distribution of the values. For each channel, there were thus 148 (6 x 24) comparisons. 

We corrected for multiple comparisons using false discovery rate (FDR) with a q = 0.05 across 

time (Benjamini and Hochberg, 1995). This thus guarantees a FDR of 5% at each frequency, 

regardless of the number of time bins used. Thus, it is expected that 5% of the channels will show 

a significant difference at each frequency due to chance. Note that FDR was thus not controlled at 

the level of an entire electrode (but rather at the frequency). It is thus not meaningful to state the 

percentage of electrodes that show a significant difference due to memory (DM) effect because 

the false positives are not controlled for this measure (and, in the worst case, could be very high 
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due to 24 independent frequency bands at a 5% level each). Nevertheless, some authors have still 

reported % of channels significant using the same multiple comparisons approach we use here 

(Sederberg et al., 2003; Sederberg et al., 2007). In our opinion, these reported numbers (reported 

to be > 70%) are meaningless because conservative (complete independence between 

frequencies) chance levels are of the same magnitude. 

 We further confirmed that the 5% chance level enforced using FDR was 

appropriate. There are many reasons why the chance level could be much higher even if using p < 

0.05/q < 0.05:  i) small sample sizes (15–35 samples in each group, i.e., the stimuli that subjects 

remembered/forgot), ii) the heavy-tailed distribution of LFP power, iii) the imbalance between 

the two classes (typically more pictures are remembered then forgotten, although a high number 

of forgotten pictures does not indicate the absence of memory if false positives are low), or iv) the 

different dynamics due to the 1/f properties of the signal (faster signals can change faster, thus 

more noise). It was thus necessary to calculate the empirical chance (bootstrapped). To create a 

bootstrapped sample, we randomly re-assigned the labels “forgot” and “remembered” (sampled 

with replacement). This created two samples of LFP powers, which were then compared as 

described above (at each frequency and time bin). The same random sampling was used for all 

channels of one subject (since these channels were recorded simultaneously). Repeating this 

procedure 200 times for each subject resulted in a percentage of channels which showed 

significant DM effects (as a function of frequency). We found that the chance level calculated 

with this procedure was only marginally above 5% and our procedures are thus appropriate (see 

results for details). Chance levels were, however, not entirely independent of frequency (higher 
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for higher frequencies). This further reinforces the need for empirically estimating the chance 

levels to assure that effects are not spurious. 

5.2.3  Data analysis — LFP decoding 

Decoding was performed using regularized least-square classifiers (RLSC; see appendix 

for details). The classifier was binary (hit or miss). Each stimulus was classified as either a hit or 

miss based on whether it was correctly remembered or not (regardless of confidence). Thus, the 

number of examples in each class was determined by the performance of the subject and varied 

from session to session. To avoid any biases, classes were balanced 50/50 before testing and 

training the classifier. This assured that the true chance performance of the classifier was 50%. 

Otherwise, if (for example) the subject remembered 80% of the stimuli the true chance 

performance would be 80% (a classifier that always says “hit” could reach this performance 

without even considering the input). Classifiers were always trained separately for each recording 

session. Data were not artificially pooled. 

 For the overnight sessions, we trained a classifier on all time/frequency bins that 

significantly differed for hit vs. miss same-day trials. The significance of bins was also 

determined based on the same-day trials. We then used this classifier on the trials that were used 

for overnight recognition to predict whether the stimuli will be remembered or not. The measure 

of performance was the percentage of overnight trials that the classifier predicted correctly.  
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Figure 5-1. Retrieval performance (behavior) shown as a receiver operator 
characteristic (ROC) curve. 

All subjects had above-chance performance for all confidence levels (points are above the 
diagonal). Also, subjects had a good sense of confidence (lower false alarms for high 
confidence). The summary measures d' and area under the curve (AUC) values are shown 
for each session (title). Each panel shows the performance for one individual retrieval 
session (6 are shown). The location of each data point (red dot) is determined by a pair of 
false alarm and true positive rates (x and y axis, respectively). Subjects rated their 
confidence on a 6 point scale: 1=new sure, 2=new probably, 3=new guess, 4=old guess, 
5=old probably, 6=old confident. The leftmost datapoint corresponds to 6 (“old 
confident”) and the rightmost point is 1 (“new sure”). Also shown is the analytical fit 
(full line) that was used to determine the d' value.  
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Figure 5-2. Retrieval performance for all subjects. 
 (a) ROC curve of one retrieval session (see Figure 5-1 for details). (b) The z-transformed 
representation of the same ROC curve as shown in (a). Each datapoints corresponds to 
one level of confidence. The z-transformed performance was fit well by a straight line 
(R2 = 0.95) and thus d' is an appropriate summary measure of performance. (c) d' for each 
retrieval session. Performance was above chance (d' = 0) for all sessions. Errorbars are 
±s.e. and show within-subject confidence intervals. (d) Average d' for all sessions (n = 7) 
was significantly different from chance (p = 0.007, chance is d' = 0). (e)   Average area 
under the curve (AUC) for all sessions (n = 7) was significantly different from chance (p 
= 0.0002, chance is AUC = 0.5). AUC is a nonparametric summary measure with no 
assumptions and thus confirms the d' result. (f) Percentage of errors as a function of 
confidence. The lower the confidence, the higher the error rate. Each session is a different 
color.  Subjects had a good sense of confidence: error rates decreased significantly with 
an increase in confidence (1 = highest confidence, 3 = lowest; R2 = 0.31, p = 0.009). 
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5.3  Results 

We administered a simple picture memorization task in two stages: learning and retrieval. 

Pictures were photographs of natural scenes that contained objects (see Methods). Memory was 

tested 10–20min after learning. A distraction task (Stroop) was administered during the delay 

period. During learning, 50–100 pictures (depending on the memory capacity of the patient, see 

Methods) were presented. Patients were instructed to remember which pictures they had seen. 

Each picture was shown for 1 s.  

 Memory was tested by asking patients to indicate whether they had seen the 

picture shown before as well as the confidence of their judgment (on a 1–6 scale, see Methods). 

Patients had both good memory for the stimuli shown as well as a good subjective sense of 

confidence (Figure 5-1 and Figure 5-2). We quantified retrieval performance using receiver 

operator characteristice (ROC) analysis and d’ (Macmillan and Creelman, 2005). Example ROCs 

for six retrieval sessions are shown in Figure 5-1. Each data point in the ROCs illustrates one 

confidence level. The point in the lower left corner (lowest false as well as true positive rate) 

corresponds to the highest confidence level (“old confident”). As a summary measure of the 

entire ROC, we used d’ and area under the curve (AUC) of the ROC.  Using d’ requires that the 

values underlying the ROC are normally distributed (thus, it makes assumptions about the shape 

of the ROC curve). For our patients this assumption was well justified: the z-transformed ROC 

was fit well by a straight line (an example is shown in Figure 5-2B with an R2 = 0.95). The 

average  d’ (“d-Prime”) for all 7 retrieval sessions (from 5 patients) was 1.22±0.18 (Figure 

5-2C,D). Nevertheless we also quantified retrieval performance using the average AUC, which is 

the integrated area below the ROC curve.  For example, the ROC shown in Figure 5-1A  has an 
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AUC of 0.79). The AUC varies between 0.5 (chance) and 1.0 (perfect). In contrast to d’, it makes 

no assumptions about the underlying distributions (non-parametric). Patients had an average AUC 

of 0.72±0.03 (Figure 5-2E). Subjects not only had good memory but they also had a good sense 

of subjective confidence.  This is indicated by the monotonically increasing ROC curves (Figure 

5-2A), as well as  the increasing percentage of errors made as a function of decreasing 

confidence. This is illustrated in Figure 5-2F: the lower the confidence, the higher the error rate 

(quantified as the percentage of all responses made). Errors increased by 6% per decreased 

confidence level and were well fit by a linear model (p = 0.009, R2 = 0.31). 

 Next, we analyzed the neural activity during learning. The general approach for 

this analysis was to compare learning trials for pictures that were later remembered with learning 

trials for pictures that were not remembered (difference due to memory (DM) effect). If the 

failure to retrieve the forgotten stimuli is directly attributable to a failure to evoke plasticity 

during  learning, it is hypothesized that such differences can be observed in the LFP and/or single 

unit data. Obviously there could be many other reasons why retrieval failed and it is thus not 

expected that every retrieval failure can be attributed to a failure of plasticity during learning. 

Other possible factors are attention during retrieval, misattribution due to confusions with similar-

looking stimuli, memory consolidation, rehearsal, incorporation into personal memories 

(episodic), sleep, or emotional attributes evoked by the stimuli (which differ in each patient). 
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Figure 5-3. Example LFP traces (raw, theta, gamma). 
Shown are 2 s of data from the hippocampus (HF; A+B), amygdala (Amy; C+D) and 
anterior cingulate (ACC; E+F). Traces were from data recorded during the learning part 
of the task (stimulus onset at 500 ms). Each panel shows the raw fullband trace (high-
pass 1 Hz) and a bandpass filtered version (theta 3–10 Hz, gamma 30–80 Hz; note that 
these frequency bands are for illustration purposes only and were not used for analysis). 
Left column shows theta, right column gamma. Note the clear presence of gamma and 
theta oscillations in all three areas. The amplitudes of oscillations varied widely between 
channels. 

 
First, we compared the power in different frequency bands of the LFP. We recorded the 

wideband extracellular signal from single wire electrodes in the amygdala, hippocampus, and 

anterior cingulate cortex bilaterally (see Methods). Many channels showed prominent activity in 

the gamma and theta bands, which were visible in the raw unfiltered signal (Figure 5-3). Since the 

traditional boundaries of which frequencies constitute a “theta” or “gamma” oscillation are 
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somewhat arbitrary, we only use these terms here for discussion purposes. Also, there are 

indications that the frequency of many of the intrinsic oscillations (which are mostly defined 

based on recordings in small rodents) are slower in bigger mammals and particularly in humans 

(Buzsáki, 2006; Penttonen and Buzsaki, 2003).  To avoid assumptions, all analysis was conducted 

independently at each frequency, regardless of which (hypothesized) band it belonged to.  

 

Figure 5-4.  Example of LFP power difference due to memory. 
All data in this figure is from a microwire in the left hippocampus. The frequency band 
illustrated is 53 Hz (gamma). (A) shows the LFP power (at 53 Hz) as a function of time 
for all learning trials. Trials for stimuli which were later remembered (green) had more 
gamma power compared to trials with stimuli that were not remembered (red). The 
stimulus is on the screen for 1 s, indicated by the vertical red lines. (B) Distribution of 
power for the 3rd timebin (500–750 ms) illustrated as a cdf. Notice the large shift to the 
right (larger values) of remembered (hit, green) trials. (C) P-Values for all timebins and 
all frequency bands. Each bin is 250 ms long. Only values which survived the per-
frequency FDR are shown. Notice the highly significant difference for gamma-band 
frequencies for the 3rd timebin, an example of which is shown in A+B. 

 
We compared, at each frequency, the power of the LFP signal between stimuli that were 

later remembered vs. stimuli that were forgotten (see Methods for details). We found that 

prominent differences exist in several distinct frequency bands. An example channel from the left 

hippocampus is shown in Figure 5-4A.  This channel had higher power in the 53 Hz band for 

stimuli which were later remembered. We found similar differences due to memory in all brain 
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areas we recorded from for a variety of frequencies (examples are shown in Figure 5-5, see below 

for statistics). One observation was a prominent increase in power for remembered stimuli that 

was seen both during (Figure 5-5F) as well as shortly after presentation of the stimulus (Figure 

5-5C). Some channels also had a decrease in power that correlated with remembered stimuli 

(Figure 5-5B). In the anterior cingulate, some channels showed prominent overall power 

decreases that started shortly before stimulus onset (Figure 5-5A).   

We found significant differences in several distinct frequency bands (Figure 5-6). To 

differentiate which frequency differences were not attributable to chance, we calculated an 

unbiased boostrap estimate of the chance level as a function of frequency for each brain area 

(Figure 5-6, blue bars; theoretical level of 5% is indicated by the black line). We found that the 

empirical chance level generally increased somewhat as a function of frequency. A comparison of 

the expected number of channels different due to chance with the observed number of channels 

using a goodness-of-fit χ2 reveals a significant difference for all 3 brain areas (hippocampus χ2 

=164, amygdala χ2 =84, cingulate χ2 =56; all p < 0.0001; all df = 24). Several frequency bands 

with prominent DM effects become apparent (compare blue and red in Figure 5-6): < 3 Hz, 4–8 

Hz, 9–12 Hz, 16–30 Hz and > 30 Hz.  Differences due to very low frequency oscillations (< 3 

Hz) were only apparent in the amygdala and hippocampus (Figure 5-6A,B). Gamma band 

differences were prominent in all brain areas (> 30 Hz). Alpha-band differences (9–12 Hz) were 

particularly prominent in the cingulate, present in the hippocampus and absent in the amygdala.  

Beta-band differences (16–30 Hz) were prominently present in the amygdala.  

 Are the power differences described above predictive of whether a stimulus will 

be remembered? So far we have only demonstrated a correlation: on some channels, power is 
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distributed differently for stimuli which are later remembered compared to stimuli which are not. 

We used a decoding approach to quantify how far this activity is truly predictive. We used a 

regularized least square classifier (RLSC; see methods). This decoder is very simple: it takes the 

weighted sum of all available bins. The weights are determined based on the training samples and 

a regularizer term, which enforces smoothness. 
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Figure 5-5. Examples of DM effects from all three brain areas as well as different 
frequency ranges.  

Shown are two examples from each: anterior cingulate (A,B), amygdala (C,D), and 
hippocampus (E,F). The frequency of each is indicated in the panel (f = X Hz). Time 
units are in milliseconds. The stimulus is present on the screen for 1 s (between red 
vertical lines). Notice that for A,E the y axis is in terms of 10^5. 
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Figure 5-6. Summary of DM effects for all brain areas and frequencies.  
Shown are the number of electrodes as a function of frequency that have a DM effect for 
at least one timebin. Red bars show the real data, blue bars the bootstrapped chance level 
and the black line the theoretical chance level. All comparisons are multiple comparisons 
corrected using FDR. Note the distinct frequency bands that have significant effects: < 3 
Hz, 4–8 Hz, 11–16 Hz and > 30 Hz. Data is shown separately for the hippocampus (A), 
amygdala (B), and anterior cingulate (C). Note the clear presence of theta-band difference 
in the hippocampus and cingulate, but not the amygdala (see text). 

 

For decoding we focused on the overnight sessions. Decoding from same-day trials was 

possible as well (with percentage correct > 80%, compare to below), but this is not unexpected: 

time-frequency bins were selected such that they showed a significant difference.  It is thus more 

meaningful to decode overnight trials, which are entirely independent. We were able to record an 

overnight retrieval session from a subset of our patients (2 sessions from 2 separate patients). 

These patients had sufficient memory capacity to learn 100 images in one session. Half (50) of 

these images were used for same-day retrieval (10–20 min delay) and the other half were used for 

retrieval 24 h later. The images the patients saw after 24 h were different from the images the 

patients saw after the short delay. Patients were able to remember pictures overnight: average d’ 

was 0.45±0.15 (excluding guess trials) and the average AUC was 0.56±0.01. Also, patients had a 

good sense of confidence (both FP and TP increased monotonically as a function of decreasing 
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confidence). First, we analyzed the learning trials for the stimuli used for same-day retrieval; we 

identified the frequency/time bins that showed a significant difference between hits vs. non-hits 

(as described above).  Also, we trained a classifier using this data. This analysis was based 

entirely on the 50 trials that were used for same-day retrieval. No data from the learning trials for 

overnight retrieval was used. Afterwards, we used the time/frequency bins identified by this 

analysis to investigate whether these had predictive power for overnight retrieval. An example of 

one channel is shown in Figure 5-7. Note that the distribution of the hits and non-hit trials is 

similar for same-day and overnight retrieval sessions. The overnight learning trials constitute a 

perfect out-of-sample testset. All parameters of all the analysis steps are exclusively estimated 

from the same-day learning trials. It is an open question as to whether overnight memory could be 

predicted based on firing patterns that predict same-day memory. It is conceivable that different 

physiological mechanisms are responsible for these different memory spans. Also, it is 

conceivable that the influence of the plasticity triggered during initial acquisition is less 

prominent the longer the time delay (due to processes such as consolidation). One indication for 

this is that retrieval performance is worse after the 24 h delay (average overnight AUC = 0.56 and 

average same-day AUC = 0.67, for the two patients that have both overnight and same day 

sessions). Despite this, we found that activity patterns identified from same-day activity are 

predictive of overnight memory: decoding overnight trials results in correct prediction (of 

whether the stimulus will be remembered or not) for 58.5±0.04% of all trials (Figure 5-8; 

significantly bigger than chance p = 0.036). Percentage correct as a summary measure of 

decoding performance can be misleading, and we thus also quantified performance using A’ 

(Macmillan and Creelman, 2005). A’ for overnight decoding was 0.66±0.02 (0.5 is chance). Thus, 
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the activity patterns that predict successful same-day memory also have predictive power for 

long-term (overnight) memory. Decoding performance is, however, worse then for same-day 

retrieval (as expected, due to the factors mentioned above). 

 

Figure 5-7 Example of LFP power difference, shown for learning trials that were 
retrieved on the same day (green and red) and overnight (magenta and blue).  

This channel was selected entirely based on the statistics for the same-day trials. (A) raw 
trace of LFP power in the 5.6 Hz band. Note that the units are in terms of 10^5. The 
stimulus was on the screen for 1 s (vertical red lines). Notation for colored lines is shown 
in (B). (B) Illustration of the distribution of all 4 trial types using a cdf. 
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Figure 5-8. LFP power can be used to predict overnight memory.  
Channels were identified that correlate with success of retrieval after the short delay 
(same day) and were then used to train a classifier. This classifier is able to predict 
overnight memory successfully if used on the learning trials for the overnight trials. 
Shown is the the mean performance (left) as well as the individual performance for the 2 
patients that completed this task. The dashed line indicates chance performance (50%). 

5.4  Discussion 

We found that LFP power in different frequency bands in the hippocampus, amygdala 

and cingulate correlates with later retrieval success. Thus, LFP power changes (during learning) 

are correlates of the successful induction of plasticity and thus retrieval success. Power changes 

were specific to certain frequency bands (< 3 Hz, 4–8 Hz, 16–30 Hz, > 30 Hz) rather then overall 

increases in LFP power. We also found that the LFP power changes can be used to predict 

whether retrieval will be successful or not. Thus, they are not just a correlation but a valid 

predictor. Our findings thus represent a direct demonstration (by later behavior) that the strength 

of local extracellular field oscillations is a relevant factor in the induction of plasticity.  

While we show that certain LFP power changes are predictive of later retrieval success it 

remains to be demonstrated why this is so. Increased power of oscillations likely indicates higher 
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synchrony of firing between different neurons, which thus could induce plasticity more easily 

(Axmacher et al., 2006). It is also possible that increased LFP power enhances the effectiveness 

of information transmission between different areas, such as the hippocampus and the cortex.  

These effects could be mediated by increased phase locking due to more dominant oscillations. 

Phase locking to, for example, theta or gamma is a prominent feature of both hippocampal and 

cortical neurons (see Introduction for details). While phase locking is relatively well understood 

at the circuit level, its behavioral relevance is unknown. What triggers the increases in oscillatory 

power also remains unclear. In part these can probably be attributed to attentional processes, but 

there are probably also other causes of increased oscillations. Increased power can also be caused 

by phase resets (triggered by stimulus onset) of existing oscillations, which can be observed 

during memory tasks (Mormann et al., 2005; Rizzuto et al., 2006; Rizzuto et al., 2003).  

Candidates for regulation of LFP oscillations are modulation by emotional factors 

(arousing stimuli), reward (such as reward predictors), or depth-of processing modifications. One 

indication that reward predictors might influence memory encoding is the correlation of retrieval 

success with activation (measured with BOLD) of the ventral tegmental area (VTA) (Adcock et 

al., 2006; Knutson et al., 2001; Wittmann et al., 2005), an area which projects dopamine releasing 

axons to the hippocampus (Bjorklund and Dunnett, 2007; Gasbarri et al., 1997; Gasbarri et al., 

1994), amygdala (Fallon et al., 1978; Fried et al., 2001), and prefrontal areas (Bjorklund and 

Dunnett, 2007; Vogt et al., 1995; Williams and Goldman-Rakic, 1998). It is thus conceivable that 

dopamine release contributes to the increase in LFP power. Such dopamine release is also 

hypothesized to be triggered by novel stimuli (Lisman and Grace, 2005). In vitro, dopamine has 

been shown to have a strong modulatory role in the strength of plasticity (Chen et al., 1996; 
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Huang and Kandel, 1995; Otmakhova and Lisman, 1996; Smith et al., 2005). Of particular 

interest is the finding that dopamine acts as a high-pass filter at the synapse that relays direct 

cortical input to the hippocampus (Ito and Schuman, 2007). BOLD activity recorded in the VTA, 

in fact, has been shown to be activated by absolute novelty rather then emotional content, general 

saliency, or rarity (Bunzeck and Duzel, 2006). This indicates that a fruitful avenue for future 

experiments would be the modulation of reward during learning with a paradigm known to 

activate the VTA, while simultaneously recording LFP in the hippocampus. Similar arguments 

can be made for the hypothesized modulation of memory strength of emotional stimuli by the 

amygdala (Sharot et al., 2004). One possibility for the amygdala to achieve this is to induce or 

enhance oscillations in the hippocampus or other areas. Simultaneous recordings of LFP in the 

amygdala and hippocampus while performing a memory task comprising both emotional and 

non-emotional stimuli would be a useful experiment to elucidate these effects. A frequently used 

paradigm to change memory strength has been a modification of depth of processing, for example 

counting the number of characters vs. imagining a sentence describing the situation in the case of 

remembering words (Paller et al., 1987). Such modifications effectively modify attention. A 

mixture of such a paradigm and another modulator of memory strength (such as emotion) might 

allow one to disambiguate attentional from other effects of increased encoding success. 

This study is different from others in several crucial aspects. We exclusively used novel 

stimuli which had never been seen by the patient. We did so to ensure that we examined the 

encoding of novel information rather then the judgment of recency. The time delay between 

learning and retrieval was substantial ( > 10min). Also, a distraction task was performed 

immediately after completing learning. To assess memory strength, we used a recognition 
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memory test (new/old) with confidence ratings. This allowed us to systematically assess the 

behavioral performance of the patients using ROC diagrams.  Previous studies used lists of highly 

familiar words that were then freely recalled by the patient after a short (often 30 s) delay 

(Cameron et al., 2001; Fernandez et al., 1999; Sederberg et al., 2003; Sederberg et al., 2007). 

Thus, these studies report predictors of memory success for recall (“recency”) of verbal memory 

(for words that were very familiar) after short time delays.  In contrast, we report predictors of 

encoding success for a much more general class of novel stimuli (complex natural scenes of 

objects) that were learned in a single trial. Also, we show that these changes are truly predictive. 

One other  study (using words and free recall) claims to document this too, but in fact only shows 

a correlation (Sederberg et al., 2007). Note also that we did not normalize the LFP power to 

baseline (in contrast to others). Thus, the differences that we analyzed include both stimulus-

triggered as well as other differences (such as more slowly varying state changes, possibly 

evoked by changes in the neuromodulatory environment).  

 One curious aspect of our findings is the lack of specificity to a particular brain 

area. While there were differences in terms of the frequencies that were predictive between areas, 

in general all three areas investigated (amygdala, hippocampus, ACC) correlated with encoding 

success to a similar degree. Our recordings were locally grounded (see methods), and the LFP 

reported here is thus of a very local nature. This effect can thus not be explained by large-scale 

synchronous oscillations. Rather, it appears that all three areas contribute to encoding success to a 

similar degree (on average). Since our stimulus set contained a very heterogeneous set of stimuli 

of different categories and emotional saliency, we cannot exclude that this is an effect of 

averaging all stimuli. This finding is, however, in agreement with many surface EEG and MEG 
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studies that report differences due to later memory in a widespread collection of areas (Klimesch 

et al., 1996; Osipova et al., 2006; Takashima et al., 2006). Our recordings, which have much 

higher spatial resolution, confirm that power changes can be observed very locally in all three 

areas we recorded from. Since the areas responsible for encoding of memories are tightly 

interconnected in many different ways, it is perhaps not surprising that all areas show increased 

activity. It is possible that one area seeds the increase in synchrony, which then quickly spreads to 

all the other areas such that increases in LFP power are visible in the entire network. The non-

specificity of predictive oscillatory power increases also indicates that an important component of 

encoding success is the coordination of large-scale brain circuitry. For example, BOLD signal 

correlations between extrastriate visual areas (face/place selective) and prefrontal (DLPC) 

correlate with successful episodic memory formation (Summerfield et al., 2006). Thus, cortical-

cortical correlations are important for memory success. Similarly, hippocampal-cortical 

interactions are crucial for memory formation (Wiltgen et al., 2004). For example, it has been 

demonstrated that prefrontal neurons in the rat can phase-lock to hippocampal theta (Siapas et al., 

2005), and it has been proposed that this facilitates information transfer between these two 

structures. It is thus perhaps not surprising that power increases can be observed in both structures 

simultaneously.  

 


