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Chapter 2.  Online detection and sorting of extracellularly recorded 

action potentials 

2.1  Introduction1 

Recent technological advances have made it possible to simultaneously record the 

activity of large numbers of neurons in awake and behaving animals using implanted 

extracellular electrodes.  In densely packed neuronal structures such as the cortex and the 

hippocampus, the activity of multiple neurons can be recorded from a single extracellular 

electrode.  A complete understanding of neural function requires knowledge of the activity of 

many single neurons and it is thus crucial to accurately attribute every single spike observed to a 

particular neuron.  This task is greatly complicated by uncertainties arising from noise caused by 

firing of nearby neurons, inherent variability of spike waveforms due to bursts or fast changes in 

ion channel activation/deactivation, uncontrollable movement of the electrodes, and external 

electrical noise from the environment. 

There are two different ways to acquire and analyze electrophysiological data: i) store the 

raw electrical potential observed on all electrodes and perform spike detecting and sorting later 

(offline sorting), or ii) detect and sort spikes immediately (during acquisition) and only store the 

sorted spikes (realtime online sorting).  A combination of the above approaches is to detect spikes 

                                                 

1 The material in this chapter is based on Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2006b). Online detection 
and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci 
Methods 154, 204-224. 
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online and only store the detected spikes for later offline sorting. While it is reasonable to use 

offline sorting methods in certain cases, it is becoming increasingly necessary to develop realtime 

online sorting methods.  There are three main reasons to use such methods: i) Realtime online 

decoding allows "closed-loop" experiments, e.g., the adaptation of the experiment to the specific 

neural responses observed (compare to dynamic clamp on the single-cell level, see (Prinz et al., 

2004) for a review); ii) Fast data analysis: sophisticated offline spike sorting methods require 

extensive amounts of computation, whereas online sorting allows immediate data analysis. iii) 

massive reduction in data transmission and storage.  Moving from offline sorting to realtime 

online sorting requires two separate technological advances: i) developing an online spike 

detection and sorting algorithm, and ii) developing a realtime implementation of this algorithm.  

The first condition is strictly necessary before a realtime version can be implemented and presents 

the main methodological challenge that needs to be addressed.  An algorithm that is online only 

uses information available at the current point in time and not information available in the future.  

Applied to our approach, “online sorting” means that a spike observed at time t is sorted only 

using all information observed prior to and including point of time t.  This is in contrast to offline 

sorting algorithms, which require that all spikes are available before sorting can start and thus 

require that all data is acquired and stored beforehand.  Removing this requirement for total spike 

availability presents a formidable challenge and we focus exclusively on doing so in this paper.  

Note that it will be possible to implement the algorithm presented here for realtime analysis of 

many channels in parallel; this will be the focus of our future efforts. 

While the problem of offline sorting has been intensively investigated (for a review see 

(Lewicki, 1998), but also see (Abeles and Goldstein, 1977; Fee et al., 1996a; Harris et al., 2000; 
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Pouzat et al., 2004; Pouzat et al., 2002; Quiroga et al., 2004; Redish, 2003; Sahani et al., 1998; 

Shoham et al., 2003)),  relatively little work has been done on online sorting. Early attempts at 

online sorting focused on techniques which require manual definition of each cluster before 

sorting commences (Nicolelis et al., 1997). Other online classification approaches require a 

learning phase, after which neurons are classified in realtime (Aksenova et al., 2003; Chandra and 

Optican, 1997).  The disadvantage of this class of online methods is that only neurons which fire 

during the learning phase can be classified. In addition, if the spike shapes change during the 

experiment, the neuron can no longer be recognized.  In this paper, we present and demonstrate 

an online spike detection and sorting method.  Spikes originating from different neurons are 

distinguished based on spike waveform shape and amplitude differences, features which are 

unique for individual neurons. The algorithm iteratively updates the model and assigns spikes to 

clusters.  It thus does not require a separate learning phase and is capable of detecting new 

neurons during the experiment. This feature is particularly crucial for experiments with human 

subjects because firing is very sparse and the “optimal” stimuli for recorded neurons are often 

unknown. As a result,  it is not possible to excite all neurons during a learning phase that precedes 

the experiment. We will discuss this point further at a later stage in the paper. 

We demonstrate our method by applying it to data recorded from arrays of single-wire 

depth electrodes that are semi-chronically implanted in the medial temporal lobe of human 

epilepsy patients.  This analysis is particularly challenging because the data were acquired in an 

electrically noisy clinical setting without the option of re-positioning the electrodes to optimize 

spike detection.  As a result, the data are compromised by low signal-to-noise ratios (SNR) as 

well as non-stationarities in the noise levels.  Additionally, electrodes are implanted in densely 
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packed neuronal structures (for example, the hippocampus), which complicates separating single-

unit activity.  These neurons generally have very low basal firing rates and can respond very 

selectively to certain stimuli. 

Our experimental setup allows us to conduct long-term recordings simultaneously with 

complex behavioral experiments which can only be done with awake behaving humans.  In these 

experiments, fast data analysis is highly desirable.  Our patients are extremely rare (< 8 a year) 

and our recording sessions are short (1–4 hours).  Although we can record for 1–5 days, the same 

neuron cannot be obtained with any reliability on subsequent recording days.  There is always a 

trade-off between sorting quality and fast data analysis, but in this kind of experiment it is crucial 

to know as fast as possible to what a neuron responded, so that the experiment can be adapted 

immediately.  One possible compromise to achieve this is to use a simple, but online, algorithm 

which is capable of detecting most neurons and correctly sorting their spikes.  This approach is 

reasonable for recordings from chronically implanted arrays of electrodes that do not allow for 

the individual movement of the electrodes to optimize response properties.  Additionally, 

implanted arrays allow the simultaneous recording of many neurons over a long period of time 

and thus yield large amounts of data.  However, it has proven difficult to store, process, and 

analyze these large data sets because efficient methods for processing and analysis are lacking 

(see (Buzsaki, 2004) for a discussion of these issues).  An online spike detection and sorting 

algorithm, such as the one described below, will enable experimenters to process complex and 

large amounts of data in an efficient and effective way. 
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2.2  Methods 

2.2.1  Glossary of mathematical symbols and notation 

Symbol Definition 

iS
v

 The raw waveform of spike i  

jM
v

 Mean waveform of cluster j  

kM
v

 Number of spikes assigned to cluster k  

m  Total number of mean waveforms 

C  Number of spikes used to calculate mean waveforms (last N spikes 
 assigned to each cluster) 

MS TT ,  Threshold for sorting (S) and merging (M) 

N  Number of datapoints of a single waveform 

D
v

 Vector of distances 

Z
r

  Matrix of noise traces (with N datapoints each, 

   each row is a noise trace) 

C
r

 Noise covariance matrix (dimensions: NxN) 

iP
r

 Prewhitenend raw waveform of spike i  

MS dd ,  Distance between 2 clusters for sorting (S) and merging (M) 

d  Distance between 2 clusters (projection test) 
 

All population measurements are specified as mean ± standard deviation. 
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The raw waveform of spike i  is referred to as iS
v

.  A waveform is a vector that consists of 

N=256 datapoints.  For every spike i , )(lSi

v
 refers to the amplitude of the waveform at the 

sampling point l  ( l  can take any value between N...1 ). T denotes the threshold and is always a 

scalar. )(tf  and )(tp  refer to the bandpass filtered raw signal amplitude and the local energy at 

time point t  respectively. 

2.2.2  Filtering and spike detection 

 Spikes are detected using threshold crossings of a local energy measurement 

)(tp  of the bandpass filtered signal (Bankman et al., 1993; Kim and Kim, 2003), which allows 

more reliable spike detection than thresholding the raw signal (Appendix A).  If )(tp  is locally 

bigger than five times  the standard deviation of )(tp , (or another factor, referred to below as the 

extraction threshold), a candidate spike is detected (Csicsvari et al., 1998).  For each threshold 

crossing (Figure 2-1C,D), a sample of 2.5 ms (64 samples at a  25 kHz sampling rate) is extracted 

from the filtered signal.  This sample is upsampled 4 times using interpolation (Bremaud, 2002), 

that is, by transforming the sample to Fourier space using FFT and back with more data points.  

After upsampling, the spike is sampled at 100 kHz and consists of  N= 256 data points, with the 

maximum realigned at position 95: )95())((maxarg ii
l

SlS = .  Upsampling eliminates the 

roughness in the waveform introduced by undersampling the signal and the high-pass filtering, 

and also allows a more accurate determination of the real peak of the waveform.  Note that the 
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peak of the waveform is typically not measured accurately because it is only reached for a very 

short time and thus often  falls between points of time at which the signal is sampled. 

 

Figure 2-1. Filtering and detection of spikes from continuously acquired data. 
Shown are 412000 timepoints, corresponding to 16.48 sec at a sampling rate of 25000 
Hz. A) Raw signal. The amplitude is in units as measured after amplification, not 
corrected for gain. B) Bandpass filtered signal 300–3000 Hz. The two lines indicate 
possible thresholds for direct spike extraction (see text). C) Average square root of the 
power of the signal, calculated with a running window of 1 ms and thresholded (line). 
The y axis is arbitrary. D) Position and amplitude of detected spikes (detected in C), but 
extracted from B). 
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2.2.3  Distance between the waveforms of two spikes 

The estimation of the number of neurons present, as well as the assignment of each spike 

to a neuron, is based on a distance metric between two spikes (Appendix A).  Based on this 

distance, a threshold is used to decide i) how many neurons are present, and ii) to assign each 

spike uniquely to one neuron or to noise, if unsortable.  A crucial element of this approach is the 

threshold, which is calculated from the noise properties of the signal (Appendix A) and is equal to 

the squared average standard deviation of the signal, calculated with a sliding window.  The 

threshold is thus not a parameter as it is automatically defined by the noise properties of the 

recording channel and is equal to (in a theoretical sense) the minimal signal-to-noise ratio 

required to be able to distinguish two neurons.  It is assumed that the background noise is additive 

(see results) and the presence of a spike does not influence the noise properties (Fee et al., 

1996b).  It can thus be assumed that the variance of the noise of all waveforms of the same 

neuron is approximately constant (Pouzat et al., 2002).  One concern is that the estimation of the 

threshold is strictly valid only if it is independent of the number of neurons and their spiking 

frequency on a specific channel.  It is worth noting, however, that even if there exist multiple 

neurons, each with high spiking frequency, most data points of the raw signal will not belong to a 

spike (but see (Quiroga et al., 2004)).  We are thus assuming that the variance of the raw signal is 

approximately independent of the number of neurons (Fee et al., 1996b). 

2.2.4  Online sorting 

Each newly detected spike is sorted as soon as it is detected (Figure 2-2).  The raw 

waveform of a newly detected, as of yet unsorted spike, is used to calculate the distance to all 
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already known mean waveforms (clusters).  The spike is assigned to the existing cluster to which 

it has minimal distance if the distance is smaller than a threshold value.  If the minimal distance is 

larger than the threshold, a new cluster is automatically created.  Every time a spike is assigned to 

a cluster, the mean waveform of that cluster is updated by taking the mean of the last C spikes 

that were assigned to this cluster.  This causes the mean waveforms of each cluster to change as 

well, which might result in two clusters which have mean waveforms whose distance is less than 

the threshold.  In this case, the two clusters become indistinguishable and they are thus merged.  

The spikes assigned to both clusters will be assigned to the newly created cluster (see Appendix B 

for details of the algorithm). Note that  not every cluster created in this manner will represent a 

single unit.  In fact, many small clusters will be created which represent noise. These can easily 

be discarded by requiring a minimal number of spikes for a valid cluster. However, noise of a 

stereotypic shape will create large clusters; these are also discarded.  See the section below on 

how to evaluate potential single-unit clusters below for a discussion of this issue. 
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Figure 2-2. Schematic illustration of spike detection and sorting. 
The signal is (continuously) bandpass filtered 300 - 3000Hz. Spikes are detected by 
thresholding a local energy signal that is continuously calculated from the raw filtered 
signal. After detection and appropriate re-alignment, a distance metric is used to calculate 
the distance to all known clusters at the current point in time. If the minimal distance is 
smaller than a threshold MT , the spike is assigned to this cluster. Otherwise, a new cluster 
is created and the new spike is assigned to it. The thresholds are automatically and 
continuously calculated from the noise properties of the raw filtered signal. After 
assigning a spike to a cluster, that cluster’s mean waveform is updated accordingly. This 
enables tracking of moving electrodes as well as short-term changes due to bursts. After 
updating the mean waveform, clusters might overlap. If this is the case, they are merged 
and the spikes assigned to the cluster are reassigned. Periodically, the statistical 
evaluation criteria (ISI distribution, power spectrum, and autocorrelation) as well as the 
projection test for each pair of clusters are calculated. This allows us to continually 
discard noise and multi-unit activity. 
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2.2.5  Calculating the threshold 

 There are two thresholds used in the algorithm: The threshold for considering a 

new spike part of an existing cluster ST and the threshold for considering two clusters apart MT . 

We considered two possible ways of estimating these two thresholds from the background noise 

of the raw signal. Common to both are that they are calculated automatically from the data. 

 The first (exact) approach is to pre-whiten the waveforms of detected spikes 

using the covariance matrix of the noise (see Appendix D). In this way, the datapoints of a given 

waveform can be considered uncorrelated and the noise is white and of standard deviation 1 in 

each dimension (by design). The summed squared residuals of the difference between two 

waveforms (Eq 3b) can thus be considered 2χ distributed with the number of degrees of freedom 

equal to the number of datapoints that constitute a waveform.  The threshold of the distance 

calculated as such can be estimated from the 2χ distribution (Eq 5). The distance between the 

mean waveforms of two clusters can be calculated as the square root of the summed squared 

residuals, which is, by definition, the standard deviation multiplied by the number of datapoints. 

The threshold for merging can thus be set in terms of number of standard deviations by which 

clusters should be separated until they are considered equal. This procedure allows us to estimate 

the two thresholds ST  and MT automatically by using the covariance of the noise. While this is 

the statistically optimal estimate of the thresholds, it requires an accurate estimate of the 

covariance. This turns out to be a non-trivial task for real data and its iterative computation is 

computationally expensive. Additionally, pre-whitening requires computation of the inverse of 

the covariance matrix.  Unfortunately, the determinant of the covariance matrix is often small 
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(close to singularity), which makes this operation numerically unstable in some situations. To 

circumvent this problem we also tested the algorithm by using an approximated version of the 

threshold which does not require pre-whitening of the waveforms. The approximated thresholds 

(both ST  and MT ) are equal to the variance of the raw signal (Eq 4a).  The distance between two 

waveforms, both for sorting and merging, is calculated as the sum of the squared residuals of the 

difference between two waveforms (Eq 3a).  Here, the raw waveforms (after upsampling and re-

alignment) are used.  No pre-whitening is performed. In the results section we present 

performance estimates for both the exact as well as the approximation method for estimating the 

threshold. 

2.2.6  Simulation of synthetic data 

Simulated raw data traces were generated by using a database of 150 mean waveforms 

taken from well-separated neurons recorded in previous experiments.  To generate random 

background noise, a large number of those waveforms were randomly selected, randomly scaled, 

and added to the noise traces.  Executing this procedure many times resulted in realistic 

background noise, as judged by comparing the raw signal, the filtered signal, and its 

autocorrelation (Figure 2-3) to the real data. This random background noise trace can be 

arbitrarily rescaled to a pre-specified standard deviation to simulate different noise situations.  

Noise is scaled to a standard deviation of 0.05, 0.10, 0.15, and 0.20. 

Identifiable neurons are added by simulating a number of neurons (between 3 and 5 in the 

following cases) with a renewal Poisson process with a refractory period of 3ms and a fixed firing 

rate between 1 and 10 Hz (which corresponds to the typical firing rate of real neurons in our 
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data).  For each neuron, one pre-defined mean waveform was used.  Mean waveforms were re-

scaled such that they were bounded in the range [-1..1] (arbitrary units).  By systematically 

varying the noise levels, signal-to-noise ratios (SNR) comparable to those observed in real data 

were simulated.  We calculate the SNR ratio (Eq 6 in Appendix A) as the root mean square value 

of the mean waveform divided by the standard deviation of the noise (Bankman et al., 1993).  The 

average SNR is calculated by averaging the SNR of each waveform. To aid comparison, this 

method of generating simulated raw data traces was intentionally chosen to be essentially the 

same as the one used by Quian Quiroga et al. 2004. 

 

Figure 2-3. Autocorrelation of raw data. 
Autocorrelation of real (A) and simulated (B) data. The autocorrelation is calculated from 
noise traces (which do not contain spikes). A): Autocorrelation of the raw signal from 
real data. Notice that the signal is strongly autocorrelated untill approximately 1.2 ms. (B) 
Autocorrelation of simulated data. The autocorrelation remains significant up to 1.2 ms 
(stars indicate p < 0.001, t-test for null hypothesis mean = 0). Error bars shown are ± s.d. 
(n = 8542 noise traces). 

2.2.7  Extracellular recordings 

We use data recorded from human patients implanted with hybrid chronic depth 

electrodes to treat drug-resistant epileptic seizures.  The electrodes contain an inner bundle of 
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eight 50 μm microwires that extend approximately 5 mm beyond the tip of the depth electrode 

(Fried et al., 1999). The clinical reason for implanting electrodes is to record electrical activity 

during epileptic seizures to locate the anatomical locus of seizure onset. 

Electrodes were surgically removed approximately 2–4 weeks after implantation.  

Recording sessions, each 1–2h long, started approximately 48 hours after electrode implantation 

and lasted up to 4 days.  We recorded extracellularly from 3 macroelectrodes with a total of 24 

single channels (each connected to a single wire). One wire of each macroelectrode (with low 

impedance) was used for local grounding. Electrodes were implanted in the amygdala and 

hippocampi of subjects and data was recorded while subjects performed visual psychophysical 

experiments, similar to those reported in (Kreiman et al., 2000a), as well as other behavioral 

experiments, such as navigating in a virtual world.  Data were acquired continuously with a low-

pass cutoff of 9 kHz, sampled at 25 kHz, and stored for later analysis.  The gain of the amplifiers 

(Neuralynx Inc) was set individually on a case-by-case basis (based on electrode impedance and 

noise) in the range of 20000 to 50000, with an additional A/D gain of 4. 

All subjects gave informed consent to participate in the research, and the research was 

approved by the Institutional Review Boards of both Huntington Memorial Hospital and the 

California Institute of Technology.  The location of the implanted electrodes was solely 

determined by clinical requirements for locating the seizure onset and the research team had no 

influence on electrode placement.  The exact location of the electrodes was determined from 

high-resolution structural MRI images taken immediately before and after electrode implantation. 
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2.2.8  Criteria to identify clusters representing single-units 

A collection of spikes is well separated if the following criteria are met: i) a small (e.g., < 

3.0 %) percentage of all spikes have an ISI of less than 3 ms (refractory period), ii) the power 

spectrum is within ± 5 standard deviations in the range of 20–100Hz (excluding < 20 Hz because 

of theta/gamma oscillations) and does not go to zero for high frequencies (Poisson process). Note 

that at low frequencies (< 40Hz), a dip is expected due to the refractory period (Franklin and Bair, 

1995; Gabbiani and Koch, 1999).  

2.2.9  Quality of separation evaluation criteria 

We use a statistical tool commonly called a projection test to quantify both the degree of 

overlap between the clusters and the goodness-of-fit to the theoretically expected distribution of 

spikes around the cluster center.  In the context of spike sorting this test was originally proposed 

by (Pouzat et al., 2002).  We only summarize the procedure here and mention some additional 

problems associated with it (see also Discussion and Appendix D):  The raw waveforms are first 

pre-whitened (e.g., decorrelated) using the known autocorrelation (Figure 2-3) of pure noise 

segments (where no spikes were detected).  Mathematically, this implies that the noise must be of 

full bandwidth and the covariance matrix of the noise traces is thus invertible.  However, this is 

not always the case.  See appendix D for further discussion of this issue.  After this step, each 

datapoint of the raw waveform is independent of all the others, with white noise of standard 

deviation 1.  This is done for the waveform of each detected spike.  Afterwards, each waveform 

(with N datapoints) can be regarded as one point in N-dimensional space.  The center of a cluster 

is represented by the point in N dimensional space that corresponds to the mean of all waveforms 
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assigned to the cluster.  Since the noise is white with a known standard deviation of 1, the 

theoretically expected distribution of spikes of the same cluster around this center is known (a 

multivariate Gaussian with a standard deviation of 1). 

For any pair of clusters found on a single wire, the projection test can be applied to 

quantify the overlap between the two clusters.  This is done by projecting the difference of every 

spike and the center of the cluster it is assigned to (residuals) onto the vector that connects the 

two centers of the clusters.  This results in two distributions of a single one-dimensional quantity, 

centered on the two centers (Figure 2-5D and Figure 2-7D).  The distance between these two 

centers can conveniently be used as a measure of separation.  If the distance is too small, one or 

both of the clusters have to be discarded.  If the goodness-of-fit of the two clusters to the expected 

distribution is reasonably good (see below), then the overlap can be estimated: a distance of >5 

guarantees an overlap of less than 1%, a distance > 3.2 an overlap less than 5% and a distance of 

> 2.8 an overlap of less than 7.5%.  Please see the discussion for an application to our data. 

 For any given pair of clusters, the theoretically expected distribution (normal 

with standard deviation  = 1) of the projected residuals can be compared against the empirically 

observed distribution.  We use a R2 goodness-of-fit between the empirically- estimated 

probability density function and the theoretically expected probability density function to 

quantify this.  Note that the empirically estimated distribution of the same cluster can look 

different if compared to different (other) clusters, since the residuals are a projection of the 

residuals onto the vector connection the two centers (e.g., Figure 2-5D the first 2 subplots, where 

cluster 1 is compared against cluster 2 and 3). The projection test can either be applied posthoc 
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after sorting is finished or periodically (e.g., every few minutes) during the recording session. If it 

is applied periodically, clusters that don't qualify can be discarded automatically. 

2.2.10  Implementation 

We implemented the proposed system in MATLAB (Mathworks, Natick, MA) to assess 

its usefulness and evaluate its properties.  The implementation is split into two parts: spike 

detection and sorting.  Spike detection reads a raw data stream either from the network (broadcast 

by the acquisition system) or from a file and detects spikes.  The raw data stream is in the 

Neuralynx (Neuralynx Inc, Tucscon, AZ) NCS format.  The detected spikes are passed on to the 

online sorting part, which sorts the spikes one-by-one, as they become available.  The results of 

the sorting are stored and later analysed using the statistical methods described.  Our 

implementation is not optimized for speed at this time.  All running time measurements were 

made on the same machine (Intel Xeon 3Ghz) with MATLAB version R14SP1. 

2.3  Results and Discussion 

2.3.1  Signal acquisition and filtering 

The continuously recorded signal (with a sampling rate of 25 kHz, Figure 2-1A) is 

bandpass filtered by a 4-pole Butterworth filter with a high-pass frequency of 300 Hz and a low-

pass cutoff of 3000 Hz (Figure 2-1B) to exclude both the low-frequency components, e.g. local 

field potentials (LFP), and high-frequency components (noise) of the signal. 
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2.3.2  Spike detection 

Spike detection from raw data with high noise levels (Figure 2-1B) was reliably achieved 

using the local energy thresholding method (see Methods).  Figure 2-1C demonstrates the 

advantage of the method: whereas the spikes between 8 s and 10 s (x axis) cannot be detected in 

the filtered signal (Figure 2-1B), they are reliably picked up by the local energy signal (Figure 

2-1C). 

2.3.3  Waveform extraction and re-alignment 

For every spike detected, 64 data samples are extracted, with the peak at sample 25.  The 

waveform is then upsampled 4x and re-aligned again, such that the peak is at sample 95 (see 

methods for details).  Re-aligning twice, once before extraction and once after upsampling, is 

crucial because the upsampling will change the location of the peak.  The position of the peak is 

estimated more accurately after upsampling.  The accurate determination of where the peak of the 

waveform is located is crucial.  This is, however, difficult and great care needs to be taken to 

avoid the erroneous splitting of one cluster into two because of re-alignment issues.  This 

situation arises because we observe many very different waveforms in our recordings.  Often the 

waveform has a dominant peak in either the positive or negative direction, but sometimes the 

situation is less obvious.  Consider, for example, the 3 waveforms shown in Figure 2-4C.  

Whereas the blue and the red waveform have a dominant peak on the positive and negative side 

respectively, the situation for the green waveform is less clear.  It has a peak of approximately the 

same amplitude in the negative and positive direction and either could be used for re-alignment.  

This situation is not artificial and arises often in our recordings (e.g., Figure 2-7A).  If the 
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simplest re-alignment procedure is chosen, e.g., re-align all spikes at their absolute maximal 

amplitude, the spikes originating from the green neuron shown would artificially be split into two 

clusters.  This is because variance caused by noise would sometimes make the negative peak 

maximal and sometimes make the positive peak maximal.  The strategy we have found to avoid 

this problem as best as possible is to use the order in which the peaks occur.  If the peak in the 

negative direction appears before the peak in the positive direction, the waveform is re-aligned at 

the negative peak.  If, on the other hand, the positive peak appears before the negative peak, the 

positive peak is used to re-align.  Exceptions to this procedure are used if only one or none of the 

peaks are significant, that is, their peak amplitude is less than the standard deviation of the noise 

(see Algorithm 3 in Appendix C).  Using this procedure, we can accurately re-align and sort 

spikes such as the one shown in Figure 2-4C. However, there are still situations in which this 

method is not able to correctly re-align spikes. For example, if the waveform of a neuron has a 

first peak which is barely significant and a peak which is highly significant, the cluster will be 

artificially split. This will only be the case for neurons which are close to the distinguishable 

signal-to-noise level and in our experience this case is rather rare. But in the rare occurrence, this 

problem is detected by the projection test and this cluster is then discarded. 

2.3.4  Evaluation of sorting— synthetic data 

We performed spike detection and online sorting on synthetic data to evaluate the online 

algorithm’s performance.  Data were simulated to resemble the real data as closely as possible.  

Specifically, we observe that the noise in our data is strongly autocorrelated (Figure 2-3) and thus 

we do not assume independent Gaussian noise.  Rather, the noise itself likely consists of many 
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randomly mixed waveforms of unidentifiable neurons.  Identifiable neurons are simulated as 

independent Poisson renewal processes with a pre-set firing rate (see Methods).  Every time the 

simulated Poisson neuron fires, its waveform is added to the noise trace.  The waveforms, both 

for the simulated background noise and the simulated neurons, are  chosen such that they closely 

resemble waveforms we have observed in previous experiments. 

 Since the mean waveform is added to the already generated noise trace, the added 

waveform will be corrupted by the strongly correlated background noise.  As Poisson neurons fire 

independently, it is possible that there are overlapping spikes.  Since the background noise and 

the neuronal firing are independent, it will be the case that some of the spikes will not be 

detectable and thus the number of sortable spikes could be less than the number of spikes 

originally inserted.  In addition, for real datasets, low sample rates, compared to the frequency of 

spike waveforms, can cause problems in spike sorting due to misaligned peaks (the real peak was 

not sampled).  We include this effect in our simulated data by originally simulating the data at 4 

times the sampling rate (100 kHz) and then downsampling the data afterwards (to 25 kHz) before 

it is used for detection.  This reproduces the misalignment of peak values that can be observed in 

real datasets.  We used the approximation method for estimating the thresholds for sorting and 

merging. See the next section for a performance comparison of the two methods (exact and 

approximate) of estimating the threshold. 
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N 
# 

Spikes 
# 

# Detected *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
red 

475 475 475 448 366 459 455 414 328 

2 
blue 

718 718 718 701 568 693 694 674 521 

3 
green 

383 383 383 377 306 361 354 319 245 

Tot 1576 1576 
100% 

1576 
100% 

1526 
97% 

1240 
79% 

1513 
100% 

1503 
100% 

1407 
97% 

1094 
89% 

Thr  4 4 4 4     
N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
red 

0 0 15 
(12/3) 

54 
(51/
3) 

16 20 34 38 

2 
blue 

0 1 
(0/1) 

29 
(7/22) 

101 
(59/
42) 

25 24 27 47 

3 
green 

0 1 
(0/1) 

2 
(0/2) 

8 
(2/6) 

22 29 58 61 

Tot 0 
0% 

2 
0% 

46 
3% 

163 
11% 

63 73 119 146 

Thr         

Table 2-1. Simulation 1. 
Simulation 1, consisting of 3 neurons with a peak amplitude of 1 and a firing rate of 5 Hz, 
7 Hz, and 4 Hz, respectively, simulated for 100 s. The colors in column 1 refer to Figure 
2-4. The 4 noise levels are as follows: 1) s.d = 0.05 and SNR = 6.7 2) s.d. = 0.10 and 
SNR = 3.4, 3) s.d. = 0.15 and SNR = 2.2, 4) s.d = 0.20 and SNR = 1.2. The case with the 
lowest SNR is marked bold because it is the situation we most commonly observe in our 
real data. Abbreviations: Thr: Extraction threshold, TP: True positive, FP: False Positive. 
*1 Percentages for # detected are in terms of % theoretically detectable. *2 Percentages for 
TP and FP are in terms of  % of all spikes assigned to the sorted cluster. *3 The numbers 
in parentheses represent a split up of the FP into false positives due to noise (first 
number) and false positives due to assignment to wrong cluster (second number). 
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Simulated Dataset 1: This dataset contains 3 neurons (Figure 2-4), each simulated by a 

renewal Poisson process with a refractory period of 3 ms and a mean firing rate of 5, 7, and 4 Hz, 

respectively.  To provide equal SNR ratios for all waveforms, the mean waveforms of the 3 

neurons were rescaled so that their peak amplitude was 1 (Figure 2-4C).  A 100 s background 

noise trace was simulated as described (see Methods) and scaled so that it had a standard 

deviation of 0.05, 0.10, 0.15, or 0.20.  Neuronal firing was simulated for 100 s each and the point 

of time at which each neuron fired was stored.  For each of the 4 noise levels, the noise trace is 

rescaled appropriately and then the mean waveforms of the neurons are added to the trace at the 

timepoints the Poisson neuron fired.  Using this procedure, there will be 4 traces with different 

noise levels that contain exactly the same noise (same signal, but different amplitude) and exactly 

the same neuronal firing (In Figure 2-4A,B, the noise trace with added firing for noise level 0.20 

is shown). 

The simulated raw data traces were processed exactly as real data is processed (bandpass 

filter, spike detection, spike extraction, online sorting).  The different noise levels (1, 2, 3, and 4) 

were processed and evaluated independently (Table 2-1).  They correspond to an SNR of 6.7, 3.4, 

2.2, and 1.2, respectively.  No parameters were modified or specified manually except the 

extraction threshold (row “Thr” in Table 2-1).  The results of the algorithm were evaluated 

independently for both detection and sorting. 

To illustrate how to read the detailed results in Table 2-1, we consider the results of one 

particular noise level (level 3, noise standard deviation = 0.15, SNR of waveforms 3.4).  

Theoretically, there were 475, 718, and 383 spikes, respectively, generated by the 3 neurons.  Of 
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those, 97% were correctly detected (448, 701, and 377).  This implies that 3% of the generated 

spikes were not detectable, either because they were corrupted by noise and hence failed to cross 

the threshold or they were inappropriately aligned.  Of the 1526 correctly detected spikes, 1407 

were correctly assigned to one of the 3 clusters. 46 spikes were incorrectly assigned to one of the 

3 clusters (false positives (FP)).  False positives can be either true spikes which are assigned to 

the wrong cluster (misses) or noise waveforms inappropriately detected as spikes and then 

assigned to one of the clusters.  Both forms of FP are shown in the table.  In this case, 119 spikes 

were misses.  The number of misses plus the number of correctly assigned (TP) equals the 

number of detected spikes.  The number of TP plus FP equals the number of spikes assigned to a 

cluster.  TP and FP are specified as percent (%) of total number of spikes assigned to a cluster. 

This dataset demonstrates that the algorithm is capable of correctly sorting 3 

distinguishable neurons with equal SNR.  Even in the worst case, where the SNR equals 1.2, 79% 

of all spikes could be detected correctly and 89% of all spikes assigned to one of the 3 clusters 

were assigned correctly.  Figure 2-4D illustrates the result for all 4 levels of noise and also 

indicates for each noise level the variance of individual waveforms.  Figure 2-4A and Figure 2-4B 

show an extract of a raw data trace with the most difficult noise level (SNR=1.2).  This is a 

situation we commonly observe in our real data (see Figure 2-9A). 

The results of dataset 1 thus demonstrate the basic capabilities and limits of the algorithm 

and the parametric choices made.  With the following two datasets we will address more specific 

elements of the algorithm: the limits of detectability (spike detection) and the limits of 

discriminability (spike sorting). 
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Simulated Dataset 2 — Limits of detectability: This second set of data addresses the 

limits of detectability, that is, under what conditions will the spiking of a neuron become 

undetectable due to background noise.  To address this issue, a more realistic situation is 

simulated: we simulated 3 neurons with mean waveforms of different peak amplitude and thus 

different SNR.  The 3 waveforms are illustrated in Figure 2-5A.  All other conditions of the 

simulation were the same as in dataset 1.  The average SNR of the 4 noise levels is 5.2, 2.6, 1.7 

and 1.3.  However, the SNRs of the individual waveforms are not equal and some will thus be 

harder to detect (see Table 2-2 for details).  An additional difficulty presented by the 3 mean 

waveforms in Figure 2-5A is that they all have approximately equal peak amplitudes in the 

negative and positive direction.  This makes this task more difficult and where a spike should be 

re-aligned is sometimes ambiguous. 

The algorithm’s performance on dataset 2 is shown in Table 2-2.  Looking at the case of 

noise level 3, with mean waveform SNRs of 1.4, 1.4 and 2.3 (average 1.7), 56%, 56%, and 98% 

of the spikes of each unit could be detected, respectively.  Compared to noise level 2, this 

presents a substantial drop in the percent detected for the first two units.  Further, looking at noise 

level 4, where the SNR of the first 2 neurons drops to 1.1, only 21% and 15% of the spikes were 

detected.  The limits of our spike detection and re-alignment technique are thus between an SNR 

of 1.1 and 1.4 for waveforms which are difficult to re-align.  Detectability is limited because low 

SNR spikes do not cross the spike detection threshold or, if they do cross the threshold, they 

cannot be correctly re-aligned and are discarded (see section on re-alignment). For waveforms 

(e.g., unit 3 in this dataset) that possess an easily detectable peak, a substantial number of spikes 

can be correctly detected and re-aligned at relatively low SNR values (e.g., 70% for an SNR of 
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1.7).  The extraction threshold (column labeled “Thr” in Table 2-2) used for the 4th noise level 

was 4.5, which is a conservative value compared to the value of 4.0 used in dataset 1.  This value 

was chosen to diminish the false positive rate.  The choice of the extraction threshold is always a 

trade-off between missed detections and false detections, but as can be seen in this simulation, a 

value of 4.5 seems to provide a good balance between these two opposing factors. 
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N 
# 

Spikes 
# 

# Detected  *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
blue 

470 470 466 
99% 

263 
56% 

101 
21% 

442 384 184 25 

2 
green 

706 706 700 
99% 

395 
56% 

105 
15% 

644 523 235 45 

3 
red 

392 392 392 
100% 

384 
98% 

274 
70% 

374 344 343 242 

Tot 1568 1568 
100% 

1558 
99% 

1042 
66% 

480 
31% 

1460 
100% 

1251 
99% 

762 
82% 

312 
76% 

Thr  3.0 3.0 4.0 4.5     
 

N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
blue 

0 12 
(11/1) 

40 
(19/
21) 

4 
(0/4) 

28 82 79 76 

2 
green 

0 1 
(1/0) 

11 
(8/3) 

15 
(12/3) 

62 177 160 60 

3 
red 

0 1 
(0/1) 

151 
(32/
119) 

115 
(38/7
7) 

18 48 41 32 

Tot 0 
 

14 
1% 

202 
18% 

134 
24% 

108 307 280 168 

Thr         

Table 2-2. Simulation 2. 
Simulation 2, consisting of 3 neurons with varying amplitude with a firing rate of 5 Hz, 7 
Hz, and 4 Hz, respectively, simulated for 100 s. The colors in column 1 refer to Figure 
2-5. The 4 noise levels are as follows: 1) s.d. = 0.05 and SNRs of the 3 neurons 4.3, 4.3, 
6.9. 2) s.d = 0.10 and SNRs 2.1, 2.1, 3.5. 3) s.d = 0.15 and SNRs 1.4, 1.4, 2.3. 4) s.d. = 
0.20 and SNRs 1.1, 1.1, 1.7. The results for the third noise level correspond most closely 
to what we observe in our data and are marked bold. Abbreviations: Thr: Extraction 
threshold, TP: True positive, FP: False Positive. *1 Percentages for # detected are in 
terms of % theoretically detectable. *2 Percentages for TP and FP are in terms of  % of 
all spikes assigned to the sorted cluster. *3 The numbers in parentheses represent a split 
up of the FP into false positives due to noise (first number) and false positives due to 
assignment to wrong cluster (second number). 
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N 
# 

Spikes 
# 

# Detected *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
blue 

509 508 474 191 112 463 408 0 
(m) 

0 
(m) 

2 
green 

672 671 586 186 100 446 318 65 27 

3 
red 

375 329 163 31 
8% 

26 296 110 0 
(-) 

0 
(-) 

4 
l-blue 

591 591 590 394 225 539 532 349 182 

5 
mag. 

839 839 839 817 678 787 777 779 611 

 2986 2938 
98% 

2652 
89% 

1619 
54% 

1141 
38% 

2531 
100% 

2145 
87% 

1193 
82% 

820 
58% 

Thr  3 3 4 4     
 

N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
blue 

6 
(0/6) 

55 
(13/42) 

n/a n/a 45 66 191 111 

2 
green 

0 10 
(3/7) 

12 
(2/10) 

61 
(28/33) 

225 268 121 73 

3 
red 

1 
(0/1) 

28 
(4/24) 

n/a n/a 33 53 31 25 

4 
l-blue 

0 215 
(10/205
) 

97 
(14/83) 

128 
(56/72) 

52 58 45 43 

5 
mag. 

0 9 
(0/9) 

161 
(9/152) 

119 
(40/79) 

52 62 38 67 

 7 317 
13% 

270 
18% 

308 
42% 

407 507 426 319 

Thr         

Table 2-3. Simulation 3.  
Simulation 3, consisting of 5 neurons with varying amplitude with a firing rate of 5 Hz, 7 
Hz, 4 Hz, 6 Hz, and 9 Hz, respectively, simulated for 100 s. The colors in column 1 refer 
to Figure 2-5B. The 4 noise levels are 1) std = 0.05, SNRs of 5 neurons 4.3, 3.8, 2.8 4.9, 
7.9. 2) std=0.10, SNRs 2.1,1.9,1.4,2.4,3.9. 3) std=0.15, SNRs 1.4, 1.3, 0.9, 1.6, 2.6. 4) 
std=0.20, SNRs 1.1, 0.9, 0.7, 1.2, 1.9. The results for the third noise level correspond 
closest to what we observe in our data and are marked bold. Notice in noise level 3 that 
neuron #3 becomes undetectable and in level 4 neurons 1 and 2 merge, which can be seen 
by the high percentage of false positives in the one remaining cluster. Abbreviations: (m): 
merged, (-): not detected, Thr: Extraction threshold, * : only detected clusters considered, 
TP: True positive, FP: False Positive. *1 Percentages for # detected are in terms of % 
theoretically detectable. *2 Percentages for TP and FP are in terms of  % of all spikes 
assigned to the sorted cluster. 
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Simulated Dataset 3 — Limits of Discriminability: This dataset combines the factors 

addressed by dataset 1 and 2 and adds difficulty by using 5 simulated neurons (Figure 2-5B), 

some of which have very similar waveforms (basically just scaled versions of each other).  This 

will, at high noise levels, lead to merging of similar neurons because they can no longer be 

distinguished from one another.  Additionally, all 5 neurons have similar firing rates (5, 7, 4, 6, 

and 9 Hz respectively).  The detailed results are listed in Table 2-3.  Figure 2-5C shows part of 

the raw data trace for all 4 noise levels. 

 Consider noise level 2, with an average SNR of 2.3 (individual SNRs of 2.1, 1.9, 

1.4, 2.4, 3.9). Detection as well as sorting of all 5 units works reliably:  89% of all spikes were 

correctly detected and 87% of all sorted spikes were assigned to the correct cluster.  Noise level 3 

has an average SNR of 1.6 (individual SNRs of 1.4, 1.3, 0.9, 1.6, 2.6).  Unit 3 becomes very hard 

to detect in this scenario and thus only 8% of all unit 3’s spikes were correctly detected.  

However, due to additional difficulties presented by this waveform (red mean waveform in Figure 

2-5B) in terms of re-alignment, none of them could be sorted.  This is because both peaks of the 

mean waveform have an amplitude that is less than the noise standard deviation, and thus, due to 

precautions taken in the re-alignment procedure, the spikes have been discarded.  Also, the false 

positive rate increased markedly, indicating that clusters started to merge.  Units 1 and 5, for 

example, were partially merged, with most of the spikes of unit 1 missclassified as belonging to 

unit 5.  Note that the two waveforms are very similar to each other (magenta and blue waveforms 

in Figure 2-5B).  This makes it hard to discriminate between these two units at high noise levels. 

Figure 2-5C illustrates the difficulties of detecting units with small SNRs in high levels of noise.  

Shown is the same data segment (length 1 s) for all 4 levels of noise. 
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The merging of neurons poses a unique problem: Can we detect merging without 

knowing the true number of neurons (as is the case in real recordings)?  To accomplish this, the 

projection test can be used.  As illustrated in Figure 2-5D, the projection test quantifies the 

overlap between every pair of clusters.  For each cluster, the distribution of the residuals around 

the mean projected onto the line between the two mean waveforms in high-dimensional space is 

shown.  Due to transformations applied to the data to calculate this test (see Methods), the 

residuals distribute (if sorting is perfect) around the mean with standard deviation = 1.  This 

knowledge can be used to estimate two important factors: i) Do spikes which were assigned to 

one cluster really belong to one cluster? and ii) Are two clusters separate enough so as to be 

considered independent?  The answer to the first question can be addressed by evaluating the 

goodness-of-fit of a normal distribution with standard deviation = 1.  We use an R2 value to do so.  

The closer to 1.0 this value is, the better the fit.  In case of corrupted clusters, the distribution will 

start to be skewed to one side and the R2 value will be lower (for example, the combination 1 -> 4 

in Figure 2-5D).  The second question can be addressed by measuring the distance between two 

neurons (in terms of standard deviations).  If two clusters are too close to each other to be 

accurately separated, they overlap (e.g. 1 -> 5 and 3 -> 4 in Figure 2-5D, where the distance 

between the means is 4.6 and 5.0 standard deviations, respectively).  If both clusters that are 

compared are well fit by a normal distribution, a theoretical minimal distance can be calculated 

by setting an upper bound of overlap between the two normal distributions (e.g., distance >= 5 

equals less than 1% overlap). 
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Figure 2-4. Simulated raw signal (dataset 1). 
Simulated raw signal (dataset 1) from a model extracellular electrode with 3 
distinguishable single-units (total length 100 s). A and B): Simulated raw signal 
(bandpass filtered 300–3000 Hz) with a noise standard deviation of 0.20 (Level 4 in 
Table 2-1). Shown are 1.2 s (A) and a zoom-in of 0.3 s (B). The colored crosses indicate 
spikes fired by the randomly firing neurons superimposed on noise. C) The mean 
waveforms of the three single-units. The peak amplitude of each mean waveform is 
rescaled to 1 (of arbitrary units) to normalize the signal-to-noise ratio. The units fire with 
a mean frequency of 7, 5, and 4 Hz, respectively (blue, red, green). D) Result of detection 
and sorting for different noise levels (indicated by the respective signal-to-noise (SNR) 
ratios). The length of the simulated raw data trace was 100 s. Correctly sorted spikes are 
colored (compare to C) while all detected waveforms not associated with any of the 3 
units are plotted in black.   
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Figure 2-5. Mean waveforms used for simulated dataset 2 and 3. 
Simulated data set 2 (A) and 3 (B). In contrast to dataset 1 (Figure 2-4), the peak 
amplitudes of each waveform are scaled randomly, with only one waveform possessing a 
maximal amplitude of 1. The amplitude is of arbitrary units. C): Raw bandpass-filtered 
data segment of simulated dataset 3 for all 4 levels of noise (from top to bottom). Each 
segment shown contains spikes of the same 5 neurons. Notice, for example, the two 
spikes at the right side of the trace (red crosses), which become hard to detect in noise 
level 3 and 4. D): Projection test for simulated dataset 3.  Shown are all combinations of 
the 5 neurons shown in B) for noise level 2, matched with color of the histogram and the 
waveform, as well as by number. The histograms depict the probability density function 
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estimated from the residuals of all spikes associated with one cluster. Fit to each 
distribution is a normal density function with standard deviation = 0. The goodness-of-fit 
is shown using R2 values. For each combination of neurons, the distance between the two 
distributions is described by how many standard deviations they are apart (D = in the title 
of the plots). It can clearly be seen that neurons 1 and 5 as well as 3 and 4 overlap. Also, 
some of the units are corrupted by noise and thus the R2 value is low. Note that the form 
of the histogram for the same cluster changes as it is compared to different clusters 
because the residuals are projected on the line between the two clusters (see text for 
further discussion). 

2.3.5  Comparison between exact and approximate threshold calculation 

methods 

In the Methods section, we compare two different ways of calculating the threshold: a 

computationally cheap method that approximates the threshold, and a computationally more 

demanding method that calculates the statistically optimal threshold. In the previous section we 

used the approximation method to calculate the threshold. We repeated the same analysis for all 3 

simulated datasets using the exact threshold calculation method. The results are illustrated in 

Table 2-4 and Figure 2-6. The mean improvement in true positive rates for the 3 simulations is 

2.9%, 3.1%, and 2.6%. By definition, false positives are lowered by the same percentages. Also, 

in simulation 3 the exact threshold estimation method found 4 of the 5 existing clusters for the 2 

most difficult noise levels. The exact threshold estimation method had its biggest advantage for 

the most difficult noise levels, where it lead to an average true-positive increase (and therefore 

false-positive reduction) of 7.5%.  On the other hand, the performance increase for the first 2 

noise levels was only minor. It is thus only advantageous to use the exact estimation method if 

neurons are hard to distinguish and/or background noise is high.  In those cases the removal of 

correlations caused by the background noise results in a remarkable performance increase. The 
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information contained in the background noise is thus useful for improving performance, as 

others have demonstrated before for offline sorting algorithms (Pouzat et al., 2002). 

 

Table 2-4. Comparison of sorting results for the two different threshold estimation 
methods, as well as other algorithms.  

Percentages of true positives (TP) are specified in terms of percent of all spikes assigned 
to the cluster. False positives (FP) are thus by definition 100-TP. The column “nr valid 
clusters found” specifies how many of the original clusters were found. The right column 
“percentage of spikes missed” specifies what percentage of all correctly detected spikes 
(spikes which are known to belong to one of the simulated neurons, excluding noise 
detections) were not assigned to the correct cluster. This number includes both spikes 
assigned to background noise and those assigned to the wrong cluster. 

2.3.6  Comparison with offline sorting algorithms 

We used the same simulated datasets as described in the previous section to evaluate how 

the performance of our algorithm compares to other algorithms. We used two commonly used 

algorithms. Both algorithms are offline sorting algorithms, that is, they require all data to be 

available before sorting starts. The first algorithm (referred to as Offline 1) that we compared 
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against is the well known KlustaKwik clustering algorithm (Harris et al., 2000). We used the first 

10 principal components, computed using PCA (Jolliffe, 2002), as features. The minimum 

number of clusters was set to 3 and the maximum number clusters to 30.  Otherwise, all 

parameters were set to the default values. All parameters were the same for all simulations and 

noise levels. The second algorithm we compared against is the WaveClus algorithm developed by 

(Quiroga et al., 2004), referred to as Offline 2.  This algorithm is particularly relevant for our 

comparison because it has been used to sort data similar to ours. Since this algorithm selects its 

own features (wavelets) directly from the data, we used the waveforms as input features. For both 

algorithms, we used the publicly available version of the code written by the authors. To exclude 

influences on sorting performance of different detection methods, we used our detection method 

to detect spikes. Spikes were upsampled and re-aligned before processing. Both algorithms thus 

had the exact same input data. The clusters generated by the two algorithms were manually 

matched to the clusters which originally generated the data. Clusters which do not exist in the 

original data (overclustering, noise) were assigned to noise.  

 The results of the comparison are summarized in Figure 2-6 and Table 2-4. The 

performance of a given algorithm can not be reduced to a single number because, depending on 

the experimental situation, different criteria of performance are most crucial for the experimenter. 

To allow a fair comparison, we calculated 4 performance measurements: true positives (TP), false 

positives (FP), number clusters found, and misses. We calculated the TP/FP in terms of the 

percentage of all spikes assigned to a given cluster that actually belong to this cluster (true 

positives, TP). The false positives (FP) are thus by definition the difference between the TP and 

100%. Misses are in percent of all detected spikes which were missassigned. This includes spikes 



70 

 

which were assigned to background noise. Overall, we find that all algorithms perform 

remarkably similar on all datasets. This is particularly true for the first two noise levels (Figure 

2-6A–C, levels 1 and 2).  Performance differences are larger for the more difficult noise levels  3 

and 4. While all algorithms show a drop in performance for these two levels, the two offline 

algorithms identify fewer clusters  than our online algorithm. This is because in the high noise 

situations, some of the clusters become very small and partially overlap with other clusters. The 

differences between these clusters cannot be resolved if correlations introduced by the 

background noise are not taken into account. This explains why in the case of noise level 4 in 

simulation 2 (Figure 2-6B, red line) the online algorithm using the exact threshold clearly has the 

best performance of all algorithms compared. Generally we observed that the offline algorithms 

appear to artificially merge clusters earlier than our algorithm. This causes an increase in the 

number of false positives, which then decreases the number of true positives.  This does not imply 

that fever spikes were correctly assigned but is a consequence of our definition of true positives, 

which we believe is the most relevant for experimental purposes. We also observed that the 

offline sorting algorithms generally tend to overcluster — that is, they generate ficticious clusters. 

As these artificial clusters also tend to be small, they typically do not violate the refractory period 

condition of no ISIs < 3 ms. One possibility to avoid this problem is to use the projection test as a 

post-hoc test after sorting with one of the offline sorting algorithms. 
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Figure 2-6. Performance comparison of different spike sorting algorithms. 
We compared the performance of our algorithm to two other offline sorting algorithms 
(Offline 1 is the Klustakwik Algorithm, and Offline 2 the WaveClus Algorithm, see text) 
, examining the  true positives (% of spikes assigned to a given cluster that actually 
belong to the cluster). For our algorithm we used the two different threshold estimation 
methods (thr exact and thr approximation). Please see Table 2-4 for details. The false 
positive rate is by definition 100-TP. 

2.3.7  Evaluation of sorting — real data 

We chose 2 datasets from 2 different recording sessions to demonstrate the application of 

the algorithm to real datasets.  In both sessions, we recorded from the right and left hippocampus 

(RH, LH) and from either the right or left amygdala (RA, LA). These two recording sessions 

were chosen because the first one represents an example with a high number of neurons per 

channel (on average, 3.7 ± 1.7 neurons per active channel, range 1–7) and the second a more 

typical case of fewer, but hard to distinguish, neurons (On average 2.0 ± 0.8 neurons per active 

channel, range 1–3).  Using these two examples demonstrates that the algorithm works reliably in 

both cases. 

Using our algorithm as described, with all parameters automatically estimated from the 

data and the extraction threshold set to 5 (see simulations for how to find this value), we found a 

total of 76 well-separated single neurons that pass all statistical tests and visual inspection.  
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Figure 2-7 shows the result and the statistical criteria used for one particular channel (a single 

wire, implanted in the RA).  A total of 9096 raw waveforms were detected, 7237 (80%) of which 

were assigned to one of the 5 well-separated single units (1682, 3669, 210, 142, and 1534 for 

each cluster, respectively).  In Figure 2-7A (from left to right), an overlay of all raw waveforms, 

the mean waveforms, and the decorrelated raw waveforms and means are shown.  Each neuron is 

color-matched across the whole figure (1=cyan, 2=yellow, 3=green, 4=red, 5=blue).  For the first 

two neurons detected, the raw waveforms, the interspike interval histogram (ISI), the 

powerspectrum of the ISI and the autocorrelation of the ISI are shown in Figure 2-7B and C 

(from left to right).  The pertinent features for evaluation that are used are as follows: the fraction 

of ISIs shorter than 3 ms (specified in % of all ISIs), the absence of peaks in the power spectrum 

and an approximately zero autocorrelation for small (< 3 ms) timelags.  We find that only the 

combination of all 3 criteria allow a sufficient classification of clusters as single unit or not.  We, 

for example, often observe clusters which have a perfect ISI (no < 3 ms) but with large peaks in 

the powerspectrum caused by noise (e.g., 60 Hz and harmonics).  Such clusters have to be 

discarded.  Other indications of potential problems are an autocorrelation which does not return to 

0 at long (> 100 ms) timelags. 

 Applying the above criteria allows us to identify all well-defined clusters that 

might represent single units, but it is not sufficient   For example, special concern is warranted if 

two mean waveforms appear to be linearly scaled versions of each other, without any other 

distinguishing features (e.g., neuron 1 and 2 in Figure 2-7).  In contrast, some neurons (e.g., 

neuron 4 and 5 in Figure 2-7) are very similar on some, but importantly not all, indices.  Two 

waveforms that are linearly scaled versions of each other could be the result of spike height 
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attenuation during a burst or electrode movement.  The artificial splitting of a single unit into 

multiple clusters as well as erroneous merging of two single units into one cluster can be detected 

using the projection test.  There are two indicators of the projection test that can be used to assess 

splitting and merging: the distance between the two means of the clusters and the goodness-of-fit 

of the empirical to the theoretical distribution.  If the distance between the two means is not 

sufficiently large (e.g., > 5 for less than 1% overlap) and/or the goodness-of-fit to the distribution 

is bad, one or both of the clusters has to be discarded.  Figure 2-7D illustrates this method for the 

4 pairs of neurons in which overlap might be suspected.  As the left panel in Figure 2-7D shows, 

the distance between neuron 1 and 2 is sufficiently large (6.6) and the fit to the distributions is 

very good.  In contrast, the fit of neuron 4 (3rd panel, red) is less good but still sufficient.  Also, a 

few outliers can be identified which represent missalignments (far right of red distribution).  

Another reason for poorly separated single units is the merging of two clusters representing 

unique units.  This can also be detected by the projection test.  In this case, the distribution of 

spikes around the mean will be too broad (long, fat tails), which is an indication for merged 

clusters.  Such clusters represent multi-unit activity and can be used as such in the further 

analysis. It is also helpful to look at a post-hoc PCA plot of the first two principal components 

(Figure 2-8). The principal components are computed from the raw, not pre-whitened, 

waveforms. The color is assigned by the clustering algorithm. In this plot it is also evident that 

cluster 1 and 2 are indeed separate. From the PCA plot it is less clear whether clusters 4 and 5 are 

indeed separate. Consultation of the projection test (Figure 2-7D) confirms that the clusters are 

separate but also indicates that there is some degree of overlap, as can also be seen in the PCA 

plot. 
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 For comparison, we repeated the sorting of the same detected waveforms as 

shown in Figure 2-7 with the WaveClus offline sorting algorithm (see offline algorithm section 

for details). The algorithm identified a very similar number of spikes for each cluster (same order 

as above: 1529, 3452, 197, 113, and 1513). No other clusters were found except for the noise 

cluster.  In total it assigned 75% of the total 9096 detected waveforms to one of the 5 clusters. 

Population data for all 76 sorted neurons is shown in Figure 2-9.  The average SNR of all 

mean waveforms, calculated by using the noise standard deviation for each channel, was 2.12 ± 

0.85 (Figure 2-9A).  This measurement defines the SNR typically observed in experiments and 

thus serves as a guideline for the estimation and verification of parameters using the simulated 

data.  A good general indicator of separation quality is the percent of ISIs which are shorter than 

3 ms (on average 0.21 ± 0.27%, Figure 2-9B).  For all channels on which there was more than 

one neuron we calculated the distance between all pairs of neurons on each channel.  The average 

distance was 12 ± 5 (Figure 2-9C). 
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Figure 2-7. Illustration of tools for evaluation of the sorting result, using real data. 
All data shown is from the same channel, which was recorded from the right amygdala. 
Five well-separated neurons could be sorted, with 1682, 3669, 210, 142, and 1534 spikes, 
respectively (neurons are numbered 1–5 in this order). All subfigures are color matched. 
A) From left to right, all raw waveforms, mean waveforms, decorrelated raw waveforms, 
and mean decorrelated raw waveforms (see text for discussion of decorrelation). B and 
C) Details for two of the neurons (#1 and #2, cyan and yellow). From left to right: raw 
waveforms, ISI histogram, powerspectrum of the ISI and autocorrelation of the ISI. Note 
that the gamma distribution fitted to the ISI is for illustration purposes only and is not 
used for evaluation. D) Projection test for the 4 combinations of mean waveforms which 
are “closest” and could possibly overlap/be not well separated. For example, take mean 
waveforms #1 and #2. They appear to be scaled versions of each other, and clear 
separation is thus difficult to achieve. It might thus be suspected that they overlap. 
Consulting the projection test probability density functions shown in the first panel of D), 
however, allows us to conclude with confidence that these two sets of spikes are well 
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separated and thus likely represent two unique neurons. The distance (6.6) is big enough 
and the fit to the theoretical distribution is reasonable. 

 

Figure 2-8. Illustration of PCA analysis for one channel of real data. 
PCA analysis for one channel of real data together with data obtained using our algorithm 
to sort. Shown is the projection of the first 2 principal components for all waveforms 
detected on the channel. The colors refer to the same 5 neurons as identified in Figure 
2-7.  Black points are detected waveforms which are not assigned to any of the 5 clusters 
(noise or unsortable). The numbers refer to Figure 2-7A. This data represents 
approximately 45 minutes of continuous recording. 
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Figure 2-9. Population statistics from the 76 neurons obtained from in vivo 
recordings. 

A) Histogram of the SNR of all 76 neurons. The SNR is calculated from the mean 
waveform. The mean SNR was 2.12 ± 0.85 (±s.d.). B) Histogram of the percent of all 
interspike intervals (ISI) which are shorter than 3 ms. The threshold for accepting a 
neuron is 3%. The mean of all 76 neurons was 0.21 ± 0.27% (± s.d.). C) Histogram of the 
distance between pair of neurons, calculated using the projection test. This test can only 
be calculated for channels which have at least one neuron. The mean distance was 12.0 ± 
5.4 (± s.d.). The distance is expressed as the number of standard deviations of the 
distribution of waveforms around the mean waveform, which is 1 (by design) for each 
neuron. 

2.3.8  Bursts 

The calculation of the threshold for sorting (minimum distance between clusters required) 

thus far only takes into account variance due to extracellular sources.  However, the waveforms 

of a single neuron also vary due to intracellular reasons, mainly due to spikes which follow each 

other with an interspike interval of less than 100 ms (Fee et al., 1996b; Harris et al., 2000; Quirk 

and Wilson, 1999).  This additional variance needs to be accounted for.  As such, it is necessary 

to assume a slightly higher threshold than is estimated from the background noise.  If it is known 

that the data which is sorted does not contain bursts, this correction does not need to be applied.  

A rough estimate whether there are bursts or not can be made by looking at a plot of the first two 
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principal components of all detected raw waveforms.  If there are distinct elongated clusters, 

bursting neurons are probably present and a correction needs to be applied. 

The extracellular waveform during short ISIs is changed in a characteristic way.  Most 

features of the spike remain the same, but the amplitude changes.  That is, the waveform is 

linearly scaled.  This will mainly affect the peak region of the spike.  In our case, the peak region 

occupies approximately 0.5 ms.  The overshoot region will also be scaled, but the increase in 

variance due to this is minor because of its smaller amplitude relative to the spike peak.  Peak 

spike amplitudes can be attenuated by up to 40% (Quirk and Wilson, 1999).  To account for this, 

the variance used to calculate the threshold has to be increased by 40% for the 0.5 ms region of 

the peak region.  See Equations 4b and 4c in Appendix A for the calculation, which results in a 

correction factor for the threshold of approximately 1.2.  The fact that short ISIs cause scaling of 

the extracellular waveform also has important implications for the evaluation of the sorting 

results.  Cases where two seemingly well-separated clusters have mean waveforms which appear 

to be linearly scaled versions of each other can be further evaluated manually. 

2.3.9  Non-stationarities of noise levels 

 Depending on the environment, the levels of background noise can change over 

time.  Whereas this problem is manageable for recordings done in a controlled research 

environment, it is not possible to control external noise levels in clinical or other uncontrolled 

(e.g., behavioral studies) environments.  The ability to dynamically adapt to non-stationary noise 

levels is thus crucial.  We adapt to changing noise levels on two timescales: for fast, high-

powered bursts of noise, we immediately stop extracting waveforms until the burst is over 
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(usually far less than 200 ms).  To slowly changing levels of noise we adapt by calculating the 

threshold (which is calculated from the standard deviation of p(x), see methods) for spike 

extraction as a running average over a long time window (e.g., 1 minute). 

2.3.10  Computation cost 

Our implementation (details in the methods) serves as a proof of principle and is not 

optimized for speed.  We nevertheless report approximate running times for the different stages 

of the algorithm to enable a comparison against other algorithms, but it should be noted that 

careful optimization and more efficient implementation in a compilable programming language 

such as C++ will provide substantial improvements over the numbers reported here.  We 

measured the running times while sorting a session consisting of 21 active channels, each 

recorded in parallel over a duration of 35 min.  Raw data was read from data files from the 

harddisk (one file per channel) A total of 143947 spikes were detected (average 6854 ± 5234 

spikes per channel).  Detection took on average 194 ± 13 sec per channel.  This includes 

detection, extraction of pure noise sweeps, calculation of the noise autocorrelation, and pre-

whitening of each spike detected.  Per channel, approximately 100000 noise traces (40 per 

second) were extracted.  Sorting took on average 18.24 ± 13.9 sec per channel.  Considering the 

number of spikes on each channel, this results in a sorting speed of  376 spikes/s.  In total, this 

allows processing of a single channel at approximately 10 times the duration of data acquisition 

(on average 3.5 minutes for each channel).  Optimizing this implementation will allow the  

processing of many hundreds of channels in realtime. 
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2.3.11  Future  improvements 

There are multiple ways in which the procedure presented here could be improved.  One 

issue that is currently not addressed in our implementation2 is overlapping spikes, which are 

caused by two nearby neurons firing in synchrony or by neurons firing closely together by 

chance.  If two close-by neurons are synchronized such that they always fire together in a 

systematic and consistent way, the overlapping spike becomes detectable because a distinct 

cluster will be created.  However, in the more common situation where spikes overlap in widely 

different situations, such spikes would be disregarded and classified as noise.  It is imaginable to 

also test for linear combinations of mean waveforms to allow classification of such combined 

spike events.  Indeed such an approach has been proposed (Atiya, 1992; Takahashi et al., 2003). 

The proposed algorithm has so far only been applied to the sorting of data from single 

wire electrodes but it would be straight forward to extend its usage also to tetrode data (Harris et 

al., 2000).  Instead of one mean waveform per identified source there would be four mean 

waveforms.  This would further enhance performance and reliability while still using the same 

principle. 

The re-alignment procedure we have described allows the accurate re-alignment of many 

difficult cases, but sometimes it still fails.  Accurate re-alignment is necessary because our 

distance measurement for comparing two spikes requires that the two spikes are accurately re-

                                                 

2 Our implementation (Matlab), as well as the real+simulated data we used for testing is available at 
http://emslab.caltech.edu/software/spikesorter.html or http://www.urut.ch/ . Our opensource implementation “Osort” 
can also process other file formats (such as Medtronic or Neuralynx Digital Cheetah) not discussed here. It also 
implements more advanced spike detection methods not discussed here. It includes a graphical user interface (GUI) for 
ease of use. 
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aligned (at the same position).  If this is not the case, the procedure fails.  There are two possible 

improvements that could be made to remedy this situation.  One would be to enhance the distance 

measurement so that it does not rely on realignment (e.g., re-positioning the two waveforms on a 

case-by-case basis for each distance measurement or using a translation-invariant distance 

measurement).  The second improvement could utilize a combined spatial and frequency space 

measurement, as has been proposed (Rinberg et al., 2003). 

Our algorithm assigns each spike to one cluster only. This decision is taken at the point of 

time the spike is detected (“hard clustering”). An alternative approach would be to assign each 

spike a probability to which cluster it belongs and update this probability as the model (mean 

waveforms) change over time (“soft clustering”). While we have not taken this approach, it is 

imaginable that it could be implemented in the framework we present here. Because we build and 

update our model iteratively over time, it is indeed possible that the model converges to the 

wrong solution. This is rather unlikely, though, because if a cluster slowly converges towards 

another cluster, the two cluster centers eventually get too close and they are merged. However, 

merges are never reversed. If two clusters are very close by and are merged erroneously, this 

situation will never be resolved. Soft clustering could possibly deal with this situation. 

2.4  Conclusions and relevance 

Here, we propose a general online sorting algorithm and demonstrate and evaluate its 

sorting ability by applying it to a challenging dataset recorded in a clinical environment.  There 

are a wide variety of applications made possible by online sorting which we are only starting to 

explore.  The experimental approach taken in most animal single-unit recordings involves first the 
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design of an experiment and then the search for neurons that respond appropriately to the 

experimental task.  Obviously, this type of experimental design requires that electrodes can be 

moved freely by the experimenter; this is not possible in human studies.  Of the many limitations 

posed by a clinical environment, the most constraining one is that chronically implanted 

electrodes are at a fixed position that can not be moved (Fried et al., 1999).  Thus, only the 

neurons that can be recorded in the vicinity of the electrode can be analyzed.  While it is still 

possible to design a static experiment and observe a neuronal response, it is the case that most 

neurons will not react in any systematic way to the stimuli presented.  As one does not have 

access to the response properties of neurons during the experiment, these (non-stimulus-related) 

spike events are recorded and then during offline analysis discovered to be essentially useless.  

Electrodes in epilepsy surgery patients are implanted in higher-level brain structures such as the 

medial temporal lobe (MTL), including the hippocampus or the amygdala, and prefrontal cortex.  

Unlike the response properties of neurons in the primary sensory cortices, MTL neuron responses 

are multi-sensory and complex (Brown and Aggleton, 2001), and hence possess less-predictable 

response properties. 

Thus, to make the most of the information obtainable with chronic implants in humans 

the traditional approach has to be reversed: the experiment needs to adapt itself to the neuronal 

response observed.  Creating an adaptive experiment poses significant technological challenges 

which need to be addressed.  The work presented in this paper is one of the main required 

techniques to be able to conduct adaptive experiments.  Online sorting for the first time allows the 

experimenter to conduct real "closed-loop" experiments in awake behaving animals, similar to 

what is already possible with dynamic-clamp in single-cell experiments (Prinz et al., 2004).  Such 
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experiments will be designed to immediately react to the neuronal response observed to a certain 

stimulus.  

 Additionally, online sorting is tremendously useful for conducting extracellular 

recordings in a noisy environment, like the hospital room.  It is very hard and often impossible to 

judge manually (by visual inspection) whether the signals visible in the raw data trace are of 

sortable neurons or not.  This can make the decision on which amplifier settings to use and from 

which electrodes to record arbitrary and often wrong.  We, for example, often face the situation 

that there are more electrodes implanted than we can record from simultaneously.  As such, we 

have to make an on-the-spot decision about which subset of electrodes to record from.  Using 

offline data analysis, it sometimes becomes clear that the best available electrode was not chosen 

because it was not possible to identify the spikes by visual inspection alone.  On the other hand, 

channels which look active and interesting often turn out to be corrupted by noise, so that they 

can't be used.  Online spike sorting, implemented in realtime, will enable the experimenter to 

make the best-informed choices about which electrodes to include during an experiment. 

 Another possible area of application is brain-machine interfaces.  It has been 

demonstrated that it is possible to decode intended movements using chronically implanted 

electrodes in non-human primates using single-cell spike data from motor cortex (reviewed in 

(Mussa-Ivaldi and Miller, 2003)) and higher cortical areas, e.g. (Musallam et al., 2004).  

Combined with the recent development of microdrive-driven chronically implanted arrays of 

electrodes this will ultimately allow online control of cortically controlled neural prosthetics 

(Schwartz, 2004).  The algorithms for decoding intentions of movements (Chapin, 2004) depend 

on the ability to simultaneously record the activity of many single neurons over a long time and it 
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is thus crucial that spikes can be detected and sorted reliably in realtime.  This presents a 

particular challenge in the uncontrolled and noisy environments in which such devices will have 

to function.  Moving from the well-controlled laboratory environment to a noisy real-world 

environment will increase the difficulty of spike detection and sorting tremendously.  Our 

algorithm could be of use for such applications. 

2.5   Appendix A — Signal processing and spike detection 

2.5.1  Spike detection 

The local energy, or power, )(tp  (Eq 1) of the signal is the running square root of the 

average power of the signal )(tf  using a window size of 1 ms (n = 20 samples at 25 kHz 

sampling), the approximate duration of a spike (Bankman et al., 1993). )(tf is the running 

average, going back n samples in time.  )(tp  can be efficiently calculated for a signal of 

arbitrary length using a convolution kernel or a running window in online decoding.  
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2.5.2  Distance between waveforms 

The distance between two spikes iS
v

 and jS
v

is calculated as a residual-sum-of-squares 

(Eq. 3a) for the approximated threshold method. For the exact threshold estimation method, the 

same equation applies because the covariance matrix Σ  in Eq 3b is equal to I for pre-whitened 

waveforms (by definition). Note that this distance is generally used to calculate the distance 

between a spike and a mean waveform of a neuron, and not between two spikes. 

 ( )∑
=

−=
N

k
jijiS kSkSSSd

1

2)()(),(
vv

  (3a) 

 T
jijijiS PPPPPPd )()(),( 1
rrrrrr

−Σ−= −  (3b) 

Calculating the distance between the means of two clusters is achieved differently for the 

two methods of estimating the threshold: i) for the approximated threshold, SM dd =  , and ii) for 

the exact threshold, SM dd = (equal to Eq 11 in the projection test). 

2.5.3  Calculation of the threshold 

There are two thresholds which need to be calculated: ST  (sorting) and MT (merging). In 

the case of the approximated threshold method, TTT MS == , whereas T is calculated as shown 

in Eq 4a. rσ  is the average standard deviation of the filtered signal f(x), calculated 

continuously with a long (e.g., 1 minute) sliding window. For efficiency reasons, the distance 
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calculated in Eq 3a is not divided by N to normalize for the number of datapoints, but rather the 

threshold is multiplied by N in Eq 4a.  This is mathematically equivalent, but Eq 3 can be 

calculated more efficiently in matrix notation in this form. 

2
rNT σ=      (Eq 4a) 

In the case of the exact threshold estimation method, the two thresholds are calculated 

differently: Since Sd  is 2χ  distributed (Johnson and Wichern, 2002), the distance that includes 

all points belonging to the cluster with probability α−1  can be calculated from the 2χ  

distribution (Eq 5). The threshold Md  for merging is simply the number of standard deviations 

clusters need to be apart to be considered separate, which we assumed to be 3. α  is typically set 

to 0.05 or 0.10 (5%, 10%) and p is the number of degrees of freedom (see text). 

ααχ −=≤−Σ− − 1)]()()[( 21
p

T
jiji PPPPP
rrrr

           (5) 

2.5.4  Correction factor for bursts 

The distance as calculated by Eq 4 does not take into account systematic variability of the 

waveform for reasons other than extracellular noise.  To account for systematic waveform 

changes, particularly in spike amplitude, a correction factor is applied to increase T appropriately 

(Eq 4b).  

cTTC =  (4b) 
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The correction factor c is calculated as following (here, N is assumed to be 256 

datapoints): A burst is going to scale the peak region of the spike, which occupies approximately 

50=B  datapoints (0.5 ms).  Correcting T for B datapoints using a higher variance and leaving 

the other  BN −  with the baseline variance is calculated using Eq 4c.  

)(
N
Bb

N
BNTT c

C +
−

=   (4c) 

The correction factor cb  specifies how much the variance is assumed to increase due to 

this.  A conservative estimate is 2=cb .  Using above numbers, this results in a correction factor 

of 1.2, as is used throughout this paper. This correction factor is only applied if the threshold is 

calculated using the approximation method. 

2.5.5  Signal-to-noise ratio 

The signal-to-noise ratio is calculated as the root-mean-square (rms) of a spike divided by 

the standard deviation (Bankman et al., 1993) of the raw data trace (Eq 6). 

.2σN

S
SNR

i

r

=  (6) 

2.6  Appendix B — Online sorting 

For each detected spike iS
v

 the distance of iS
v

 to all mean waveforms is calculated. 

Using algorithm 1, a spike is associated to cluster j  if it meets the following criteria: i) 
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),( ji MSd
vv

is minimal compared to all other mean waveforms, and ii) TMSd ji <)),(min(
vv

.  

If these conditions are met, Algorithm 2 is used to assign iS
v

 to the existing cluster that meets the 

conditions.  Also, the mean waveform of the cluster is updated using the last C spikes that were 

associated to this cluster.  This change could potentially create overlapping clusters (and will do 

so, especially when not many spikes have been processed), which are automatically merged by 

Algorithm 2 (see below). 

2.6.1  Algorithm 1 

Task: Assign newly detected spike iS
v

 to cluster or create new cluster if necessary. 

1: ),( ijSj SMdd
vv

=  for mj ...1=  {distance to all known clusters} 

2: if Sm Tddd ≤),...,,min( 21 then 

3:  assignSpike( iS
v

) {call Algorithm 2} 

4: else 

5: 1+⇐ mm   

6: im SM
vv

⇐  

7: end if 

2.6.2  Algorithm 2 

Task: Assign spike iS
v

 to cluster and merge clusters if necessary. 

1: ),...,,min(arg 21 mdddj ⇐  

2: assign iS
v

 to cluster j  

3: kj SM
vv

⇐ , for jj MCMk
vv

...−=  {update mean waveform as average of last C 
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assigned spikes} 

4: ),( ijM MMdD
vvv

= , for mjji ...1,1...1 +−=   {distance of update mean waveform to all 
other mean waveforms} 

5: while MTD <)min(
v

 

6: )min(arg Dk
v

⇐  

7: merge cluster j  with cluster k  

8: remove cluster k  

9: reassign all iS
v

 assigned to cluster k to cluster j  

10: ),( jjM MMdD
vvv

= , for mj ...1=  {distance between all mean waveforms} 

11: end while 

 

2.7  Appendix C — Spike realignment 

2.7.1  Algorithm 3 

Task: Decide where the peak of iS
v

 is that is to be used for realignment. 

1: sigLevel rσ*2⇐   {twice the std of the raw signal, see Eq4} 

2: if sigLevelSabs i >=))(min(
v

 and sigLevelSabs i >=))(max(
v

then 

3: {Align according to temporal order of peaks} 

4: if ))min(())max(( iiii SSfindSSfind
vvvv

==<==  then 

5:  peakInd = ))max(( ii SSfind
vv

==   {realign at positive peak} 

6: else 

7:  peakInd = ))min(( ii SSfind
vv

==   {realign at negative peak} 

8: end if 

9:else 
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10: if sigLevelSabs i >=))(min((
v

 and )))(max( sigLevelSabs i <
v

 or 

 sigLevelSabs i <))(min((
v

 and )))(max( sigLevelSabs i >=
v

 then 

11:  {only one peak is significant, realign at it} 

11:   if )(min())(max( ii SabsSabs
vv

>  then 

12:   peakInd = ))max(( ii SSfind
vv

==  

13:  else 

14:   peakInd = ))min(( ii SSfind
vv

==  

15:  end if 

16: else 

17:  {This spike can't be re-aligned, discard} 

18: end if 

19:end if 

 

2.8  Appendix D — Projection test 

2.8.1  Pre-whitening of waveforms 

The raw waveform, consisting of N datapoints, is corrupted by strongly correlated noise.  

To de-correlate the noise, that is, to make each datapoint statistically independent of the others, a 

pre-whitening procedure (Kay, 1993) is applied as follows.  A large number of noise traces 

(usually many thousand) is extracted from the same raw data signal as the spike waveforms but 

from the parts where no spike is detected.  Each noise trace has the same number of datapoints as 

a spike waveform (N).  Arranging all these traces in a large matrix Z
r

(each row is one noise 

trace), the covariance matrix C
r

 of the noise can be calculated (Eq 7).  Using the Cholesky 
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decomposition (Eq 8), this matrix can be decomposed such that the product of the resulting 

matrix multiplied by its inverse results in the original matrix C
r

 (Eq 9). 

)cov(ZC
rr

=  (7) 

)(CcholR
rr

=  (8) 

RRC
rrr

'=  (9) 

By multiplying each raw spike waveform iS
v

 by the inverse of R
r

 from the right side, all 

correlations are removed (Eq 10).  After this operation, all datapoints of iP
r

 uncorrelated. 

1−= RSP ii

rrr
 (10) 

The Choleksy decomposition (Eq 8, 9), however, requires that the covariance matrix C
r

 

is invertable, that is, of full rank.  But this is generally only the case for full bandwith noise.  

Various other forms of noise, for example narrow-band noise, result in a rank deficiency of the 

covariance matrix C
r

.  Unfortunately we commonly observe this situation in our data.  There 

exist methods for prewhitening of signals with rank-deficient noise (Doclo and Moonen, 2002; 

Hansen, 1998), but this is beyond the scope of this paper.  Since all significant covariance values 

are usually very large, it is technically sufficient to add a very small amount of white noise to the 

covariance matrix (e.g., with a mean that is only 0.0001% of the covariance values) to make it 

full rank.  While this is theoretically incorrect, it works sufficiently and we have not observed any 
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noticeable differences in the decorrelated data with a rank-deficient pre-whitening method and the 

above method.  We are thus using this approach to maximize efficiency.  

 An alternative approach for whitening is to design a whitening filter and whiten 

the signal itself before detecting and extracting spikes. This can for example be done by using the 

matlab function lpc to design a filter, and using this filter to whiten the signal. This way of 

processing is less susceptible to the numerical problems mentioned above but is harder to 

implement in a realtime environment. We used this method of whitening for the results reported 

in this paper (simulations with exact threshold estimation method). 

2.8.2  Projection test 

The projection test is entirely calculated on the basis of the pre-whitened waveforms iP
r

 

as described above.  In the following, a waveform associated to cluster j is denoted as 
)( j

iP
r

 and 

the center of cluster j is )( jP
r

. 

)()( kj PPd −=
r

  (11) 

)()(

)()(
)()( )(

kj

kj
jj

ii
PP
PPPPr

−

−
•−= r

r
r

 (12) 

The distance between two clusters is calculated by taking the norm of the difference 

between the two centers of cluster j and k (Eq 11).  The residual ir  (scalar) for each spike 
)( j

iP
r

 

that is assigned to cluster j against cluster k (pairwise comparison between clusters j and k) is 
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calculated by the dotproduct of the difference vector between the center and the spike 
)( j

iP
r

, 

projected onto the vector that connects the two cluster centers (Eq 12). 


