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Abstract 

Episodic memories allow us to remember not only that we have seen an item before but 

also where and when we have seen it (context). Neurons in the medial temporal lobe 

(MTL) are critically involved in the acquisition of such memories. Since events happen 

only once, the ability to distinguish novel from familiar stimuli is crucial in order to 

rapidly encode such events after a single exposure. Theoretically, this is a hard learning 

problem (single-trial learning). Yet, successful detection of novelty is necessary for many 

types of learning. During retrieval, we can sometimes confidently report that we have 

seen something (familiarity) but cannot recollect where or when it was seen. Thus 

episodic memories have several components which can be recalled selectively. We 

recorded single neurons and local field potentials in the human hippocampus, amygdala, 

and anterior cingulate cortex while subjects remembered, and later retrieved, the identity 

and location of pictures shown. We describe two classes of neurons that exhibit such 

single-trial learning: novelty and familiarity detectors, which show a selective increase in 

firing for new and old stimuli, respectively. The neurons retain memory for the stimulus 

for at least 24 h. During retrieval, these neurons distinguish stimuli that will be 

successfully recollected from stimuli that will not be recollected. Similarly, they 

distinguish between failed and successful recognition. Pictures which were forgotten by 

the patient still evoked a non-zero response. Thus, their response can be different from 

the decision of the patient. Also, we demonstrate that listening to these neurons (during 

retrieval) enables a simple decoder to outperform the patient (i.e., it forgets fewer 

pictures). These data support a continuous strength of memory model of MTL function: 

the stronger the neuronal response, the better the memory (as opposed to a dual-process 

model). I also describe specific power increases in specific frequencies of the local field 

potential that are predictive of later retrieval success. These neural signatures, recorded 

during learning, thus indicate whether plasticity was successful or not. 
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Chapter 1.  Introduction 

In this chapter I introduce what we know about the function and anatomy of the brain 

areas discussed in this thesis (medial temporal lobe and cingulate cortex). I further discuss some 

features of epilepsy, with an emphasis on temporal lobe epilepsy and its treatment. All data 

presented in this thesis has been acquired from epilepsy patients. This thesis is not about epilepsy 

as such, but it is beneficial for the reader to understand the basics of epilepsy to better appreciate 

the clinical situation in which this research was conducted. The aim of this chapter is to set the 

stage for the results reported in this thesis so as to enable the reader to place them into context.  

1.1  Memory 

The capacity to learn and remember a seemingly infinite amount of information is one of 

the key facilities that makes us human. To illustrate this, ask yourself the following question: 

“Where where you on the following day: September 11th, 2001?”. Chances are, you not only 

know where you were, but also how you heard about what happened that day, who told you about 

it, what you felt and what you thought was going to happen. This example illustrates the many 

components of memory — not only does this day mean something to you, but you can also 

retrieve a large amount of associated attributes. These attributes are not neutral facts. Rather, 

many of them have an emotional component. Thinking about the past does (introspectively) not 

just bring up a list of facts but rather each attribute is remembered with many of its significant 

autonomic attributes still attached. Have you ever met somebody, knew with high confidence that 

you knew the person but could not remember who the person is nor where you last met? This 

example illustrates a further example of memories: they are not all-or-nothing monolithic entities. 
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Rather, it is possible to retrieve some aspects of a memory (e.g., that it exists, “I have met this 

person before”) without any other of the attributes associated with it. Nevertheless the not-

remembered information is often not lost — after some time, it might very well possible to 

retrieve the missing information. 

What is most remarkable about memories is that they can be acquired very quickly. Most 

events for which we have memories happen only once and often last a very short time. This is 

nevertheless sufficient to build a representation that can last a lifetime. Life events are special in 

that they occur at a certain time to you personally (egocentric, i.e., they are episodic memories). 

This is distinct from other types of memories, such as memories for facts (semantic memories). 

Not only are fact memories not acquired from a single learning experience (usually one rehearses 

or studies facts) but also usually no attributes are associated with them — like, where and when 

did you learn this fact? Together, episodic and semantic memories build the class of all explicit 

long-term memories referred to as declarative memories. Another distinguishing feature of a 

declarative memory is a strong sense of confidence about whether one remembers something or 

not — performance and confidence are highly correlated (Bayley and Squire, 2002).  

The other major class of memories are procedural, non-declarative memories. These 

include motor skills such as riding a bike which we can do effortlessly, but without the ability to 

articulate how we do it. That is, procedural memories are expressed by performance rather then 

recollection. Such memories require hundreds of learning trials (with feedback) to acquire. 

Procedural memories rely, for the most part, on brain structures distinct from those involved in 

declarative memories.  These structures, such as the cerebellum and the basal ganglia, are not 

discussed here. 
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1.2  Anatomy, connectivity, and function of the medial temporal lobe 

The neuronal structures necessary for the acquisition of declarative memories are situated 

in the medial temporal lobe (MTL). The MTL consists of a cortical and subcortical part. The 

cortical parts include the perirhinal, entorhinal, and parahippocampal cortices. Subcortically, the 

MTL includes the hippocampal formation (CA fields, dentate gyrus, subiculum) as well as the 

Amygdala (Squire et al., 2004; Squire and Zola-Morgan, 1991; Suzuki and Amaral, 2004). The 

MTL exhibits remarkable evolutionary consistency across several major mammalian species such 

as rodents, monkeys, and humans. While the absolute size differs, the gross anatomical and 

neurophysiological features are remarkably similar. 

Destruction, inactivation or surgical removal of the MTL due to accidents, surgery, or 

stroke results in severe anterograde amnesia, manifested by profound forgetfulness. Some 

retrograde amnesia occurs as well, but memories of events that happened more than a few months 

before the injury are typically well preserved (but see below). Other cognitive capabilities are not 

impaired. In particular, short-term memory (working memory) is not impaired. Also, intelligence 

is not impaired. This is well illustrated by the well-studied patient H.M., who had bilateral MTL 

removal for treatment of epilepsy (Corkin, 2002; Milner et al., 1968; Scoville and Milner, 1957). 

H.M. has profound anterograde amnesia, but can remember events of his childhood. Also, he can 

learn new motor skills (procedural memory) such as mirror drawing but does not remember 

having done so. Even if the MTL is only deactivated temporarily, such as in global amnesia, the 

events that happened during this period are not remembered later. 

The role of the MTL (and in particular the hippocampus) in memory is time limited. The 

loss of parts of the MTL causes temporally graded retrograde amnesia. In humans, such loss of 
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memory can be cover up to 15 years back in time (Corkin, 2002; Squire and Alvarez, 1995) . The 

extent of retrograde amnesia depends on how much of the MTL is damaged. For example, 

selective damage to CA1, an area of the hippocampus, resulted in 1–2 years of retrograde 

amnesia whereas more extensive damage can erase up to 15 years of memories (Rempel-Clower 

et al., 1996). Very remote autobiographical and factual memories beyond this time period appear 

unimpaired (Kirwan et al., 2008; Squire and Bayley, 2007). In animals, hippocampal damage 

induces retrograde amnesia lasting days to weeks only (rather then years in humans, see 

(Frankland and Bontempi, 2005) for a review). Thus, the hippocampus is not necessary for the 

retrieval of such memories.  Rather, it is responsible for acquiring the memory. Over time, 

memories become independent of the hippocampus. While these facts are well established, it is 

not clear what the mechanisms are that make the hippocampus only necessary initially and lead to 

gradual independence. One framework originally formulated by Marr proposes that memories are 

first stored in the hippocampus and are then gradually transferred to cortical areas (Marr, 1970, 

1971). He proposed that such transfer would occur through replay of activity during offline states 

(such as inactivity or sleep). While there have been several reports of such “replay” of activity 

(Buzsaki, 1998; Diba and Buzsaki, 2007; Foster and Wilson, 2006; Wilson and McNaughton, 

1994), it remains to be demonstrated whether this indeed serves the purpose of transferring 

memories from the hippocampus to the cortex. 

1.2.1  Anatomy of the hippocampal formation 

The hippocampal formation consists of the hippocampus proper (cornu ammonis fields 

(CA), divided into CA3, CA2, and CA1) as well as the dentate gyrus (DG), subiculum, 
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presubiculum, parasubiculum, and entorhinal cortex (Andersen et al., 2007; Duvernoy, 2005). 

Note that in the human literature, the entorhinal cortex is often referred to as the 

“parahippocampal area”. The hippocampal formation (hippocampus and dentate gyrus) is about 

100x bigger in humans than in rats (rat 32mm3, monkey 340mm3, human 3300mm3). 

Nevertheless, the basic anatomical features are remarkably similar between these 3 species. Not 

all areas show a similar increase in size from rats to monkeys (and humans). One noteworthy 

difference is the thickness of the pyramidal layer in CA1: it is about 5 cells thick in rats compared 

to 10–15 cells in monkeys. In humans, it is as much as 30 cells thick. It is estimated that the 

human hippocampal formation contains about 60 million neurons, compared to ~ 4 million in the 

rat (Andersen et al., 2007).  

The hippocampus is tightly interconnected with the rest of the brain. It is distinct from 

cortical areas in that the connections with other brain areas are largely unidirectional. Cortical 

areas, on the other hand, are connected reciprocally (Felleman and Van Essen, 1991).  Most input 

to the hippocampus first reaches the entorhinal cortex. From the entorhinal cortex, two major 

input pathways project to the hippocampus: the perforant path (to the dentate gyrus) and the 

temporoammonic alvear pathway (to CA1). The dentate gyrus does not project back to the 

entorhinal cortex (unidirectional). The dentate gyrus projects exclusively to CA3 (via the mossy 

fibers). All granule cells in the DG project to CA3. Their axons terminate in a stereotypical region 

of the CA3 cell body layer (stratum lucidum). CA3 pyramidal neurons send axons onto 

themselves (recurrent) as well as to CA1 (Schaffer collaterals). This circuit makes up what is 

referred to as the trisynaptic circuit. Synapse 1 is EC->DG, synapse 2 DG ->CA3, and synapse 3 
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is CA3->CA1. CA1 projects back to the entorhinal cortex as well as to the subiculum. There are 

no known direct connections between CA3/CA1 and the neocortex. 

The entorhinal cortex receives input from a large number of cortical areas. The primate 

EC receives substantially more diverse cortical input than the rat EC. Prominent connections are 

from (and to) various high-level unimodal visual areas such as areas TE and TEO (through 

perirhinal cortex), area V4 (through parahippocampal cortex), numerous polysensory regions in 

the superior temporal gyrus, frontal areas such as the orbitofronal cortex, and the cingulate, as 

well as the insula. The EC also receives input from subcortical structures, such as the amygdala or 

the claustrum (see below). 

1.2.2  Computational principles of hippocampal function 

Due to the recurrent nature of CA3 pyramidal cell connectivity it has long been proposed 

that CA3 is the site of implementation of a large randomly connected recurrent network 

(Hasselmo et al., 1995; Kanerva, 1988; Marr, 1970, 1971; Rolls, 2007; Treves and Rolls, 1994). 

Such networks can be used to rapidly establish new attractors as well as for pattern completion 

(as demonstrated by Hopfield networks (Hopfield, 1982)). Pattern completion is crucial to 

implement content-addressable memories.  However, the role of CA3 as a pattern completion 

engine has remained largely theoretical. A recent study using a genetically modified mouse strain 

that allows a selective and specific knockout of area CA3 function after animals reach adulthood 

reveals selective deficits that support this hypothesis (Nakazawa et al., 2002). Rather then being 

unable to learn at all, this mouse was unimpaired at a number of tasks such as the Morris water 

maze. There were no behavioral impairments in learning and retrieval of spatial memory. 
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Crucially, however, the mouse was unable to learn from single trials (such as a novel location of 

the platform) nor was it able to retrieve the platform location if only a partial set of the previous 

sets of cues were presented (Nakazawa et al., 2002; Nakazawa et al., 2003).  

The dentate gyrus (DG), on the other hand, has been proposed to implement a 

complementary function: pattern separation (O'Reilly and McClelland, 1994; Rolls, 1996; 

Shapiro and Olton, 1994; Treves and Rolls, 1994). This suggestion is motivated by the following 

observations: i) Connectivity between DG dentate cells and CA3 pyramidal cells is very sparse. 

This results in a small degree of divergence (~ 14 pyramidal cells per granule cell) (Acsady et al., 

1998). ii) There are large differences in the number of neurons in the EC (200’000), DG 

(1’000’000) and CA3 (300’000). All estimates are for the rat (Amaral et al., 1990; Amaral and 

Lavenex, 2007; Boss et al., 1985; Henze et al., 2002) but similar proportions are valid for the 

monkey and human DG (Amaral and Lavenex, 2007; West and Slomianka, 1998). This leads to 

an expansion (EC->DG) followed by a contraction (DG->CA3) of effective dimensionality (see 

below). Thus, every CA3 neuron receives (with high probability) input from a different subset of 

DG granulate cells. iii) Only a small fraction of granule cells is activated in any given task 

(Chawla et al., 2005; Jung and McNaughton, 1993; Witter, 1993).  From theoretical studies it is 

known that such a projection effectively increases the distance between every possible pattern, 

thus making the patterns more dissimilar to a downstream region. This is due to the increase in 

the effective dimensionality. The powerful computational properties of such a construct are well 

demonstrated by “liquid state machines”, which essentially consist of random sparse projections 

from a low-dimensional space into a high-dimensional space and back (Maass and Markram, 

2004; Maass et al., 2002). Several experimental studies support this hypothesis. Until recently, 
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the only experimental support for this hypothesis has come from behavioral observations after 

DG lesions in rats (Gilbert et al., 2001). In match-to-sample tasks, DG lesioned rats show deficits 

in distinguishing different objects (some of which indicate food and others don’t) if they are close 

together in space. They have little deficits if objects are far apart (spatially). A more direct 

demonstration of the role of the DG in pattern separation comes from genetic NR1 knockouts 

restricted to DG granule cells (McHugh et al., 2007). Since NR1 is a necessary subunit of the 

NMDA receptors, this mutation prevents NMDA dependent plasticity in granule cells. No 

perforant path (EC->DG) potentiation could be invoked in these mice. Behaviorally, these mice 

had difficulty distinguishing between different contexts as measured by inappropriate freezing in 

contexts which are similar to, but slightly different, from the context in which conditioning took 

place. Mice with intact DG had no problem in distinguishing the two contexts. Interestingly, the 

deficit was only temporarily: more training (experience) could overcome the deficit. Thus, pattern 

separation is important for the rapid acquisition of new experiences. In spatial tasks, DG granule 

cells have place fields which are similar to CA3 and CA1 pyramidal cells. Place fields rapidly 

change their firing preference if the external environment (size, color, shape) is changed 

(“remapping”). Interestingly, remapping of DG place fields occurs more rapidly (for smaller 

environmental differences) than for CA3 cells. This is demonstrated by the finding that 

correlations between the firing activity of populations of DG cells decay  rapidly as a function of 

small changes of the environment, whereas CA3 cells decorrelate only after large changes 

(Leutgeb et al., 2007).  
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These experimental findings (for both CA3 and DG) are the first to offer direct support 

for the long-standing theoretical proposal that one of the functions of the hippocampus is pattern 

separation (DG) followed by pattern completion (CA3). 

1.2.3  Amygdala 

The amygdala receives direct inputs from all sensory systems as well as the hippocampus 

(Aggleton, 2000). Its projections, amongst others, to different areas in the hypothalamus and 

brain steam and can thus directly influence the autonomic nervous system. The amygdala consists 

of several separate nuclei (central, basal, lateral, and medial).  Each nucleus is either mainly an 

input or an output structure. The lateral nucleus receives input from all sensory systems. The 

central nucleus projects to the brainstem and hypothalamus, whereas the basal nucleus projects to 

cortical areas as well as the striatum. There is very substantial reciprocal connectivity between the 

hippocampus and the amygdala. The lateral and basal nuclei of the amygdala project prominently 

to the entorhinal cortex. Feedback connections from the EC terminate mostly in the basal nucleus 

of the amgydala.  The amygdala is necessary for some kinds of rapid learning such as Pavlovian 

fear conditioning (Fanselow and LeDoux, 1999).   Forms of synaptic plasticity like long-term 

potentiation (LTP) can be induced both in vivo and in vitro (Chapman et al., 1990; Rogan et al., 

1997). While the amygdala is not necessary for declarative memory formation, it nevertheless 

modulates the  strength of such memories (Phelps, 2004; Richardson et al., 2004). The amygdala 

is thus crucially involved in the acquisition of some types of memories. In the following chapters 

I will show that many of the single-neuron responses related to single-trial learning can be 

observed similarly in both the amygdala and the hippocampus. 
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1.2.4  Adult neurogenesis 

Most neurons in the adult brain are postmitotic. Remarkably, there are a few exceptions: 

there are progenitor cells (stem cells) in the subgranular and subventricular zone that 

continuously divide and send new neurons to the adult dentate gyrus and the olfactory bulb, 

respectively. There are indications that other regions of the brain contain new neurons as well 

(Garcia et al., 2004; Gould et al., 1999). This adult form of neurogenesis occurs throughout life 

and has been shown to be modulated by numerous environmental factors such as stress, learning 

and exercise (van Praag et al., 1999; van Praag et al., 2002). Of interest to the results of this 

thesis, some report a relationship between the sensitivity to novelty and the number of new 

neurons in the dentate gyrus (Lemaire et al., 1999). The discovery of postnatal neurogenesis in 

the MTL suggests the intriguing possibility that it is related to our capacity to learn. It will be 

very interesting to explore the computational implications of the incorporation of new neurons 

into existing circuits, because new neurons have very distinctly different electrophysiological 

properties (van Praag et al., 2002), such as increased plasticity (Schmidt-Hieber et al., 2004). It is 

unclear how these different single-cell properties affect circuit function (Lledo et al., 2006). 

Evidence has recently accumulated that inappropriate incorporation of new neurons is implicated 

in epiloptogenesis (Buhl et al., 1996; Covolan et al., 2000; Parent et al., 1997). Whether this is a 

cause or an effect, however, is unclear, but it is a very promising route for further experimental 

investigation (Parent, 2007). 
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1.3  Mechanisms of plasticity—Circuit and single-cell properties 

Establishing new memories (learning) is thought to require structural changes (plasticity) 

for long-term storage (Martin et al., 2000). Here, any mechanism that changes the composition, 

shape, size, or configuration of a cell is referred to as structural plasticity. Examples are insertion 

or removal of proteins such as neurotransmitter-activated ion channels, the removal or growth of 

new spines, as well as the growth of new axons. This form of memory is distinct from activity-

based memories such as working memory, iconic memory, adaptation, or priming which (at least 

in theory) do not require permanent structural changes. Such memories only last as long as the 

neuronal activity (in the form of spiking or subthreshold processes such as deactivation) remains 

active—typically only a few seconds (see (Wang, 2001) for a review and (Romo et al., 1999) for 

an example of pre-frontal working memory activity). Longer-lasting memories, however, do not 

require constant activity. We do not lose our memories after we sleep, go into deep anesthesia, or 

have a severe epileptic seizure. A mechanism must exist that transforms information about the 

external environment (represented as neural activity) into changes in the brain. The exact nature 

of these changes is a matter of great debate and is largely unknown (see below). Understanding 

this mechanism at all levels involved has been one of the goals of neuroscience research since its 

beginning (Bliss and Lomo, 1973; Hebb, 1949; Pavlov, 1927). The results presented in this thesis 

contribute to this understanding by demonstrating that there are single neurons in the brain that 

function as generic novelty/familiarity detectors. It is hypothesized that these detectors are part of 

the system that initiates learning for a novel stimulus.  

Long-term potentiation (LTP) and long-term depression (LTD) are a class of molecular 

and cellular mechanisms that can trigger such long-lasting changes in synaptic strength (Bliss and 
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Lomo, 1973). Here, I will briefly summarize what we know about LTP as well as its relevance to 

behavioral changes related to learning. 

The amount of postsynaptic current influx evoked by presynaptic release depends on 

many different factors, such as the number of vesicles released, the number of channels in the 

postsynaptic terminal, internal Ca2+ stores, and the number, types, and composition of voltage-

dependent channels (among many others).  The modification of any of these factors potentially 

leads to changes in synaptic strength, i.e., the degree and amount of influence presynaptic release 

has on the postsynaptic neuron. Similarly, the number of synaptic contacts between two neurons 

can change as well (formation and destruction of synapses). It has been observed consistently that 

the synapses connecting two neurons get strengthened when the presynaptic neuron fires shortly 

before the postsynaptic neuron (LTP). Reversal of the temporal order (postsynaptic neuron fires 

before presynaptic) leads to a decrease of the synaptic weight (LTD). The existence of LTP/LTD 

has by now been shown in a wide variety of species and brain structures including the 

hippocampus, amygdala, and the neocortex.  This is one of the fundamental principles of synaptic 

plasticity— loosely summarized “what fires together wires together”. Hebb originally postulated 

that “when an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such 

that A’s efficiency, as one of the cells firing B, is increased” (Hebb, 1949). LTP/LTD is a 

candidate mechanism that implements this rule (see below). 

This principle (Hebb’s law or Hebbian learning) is commonly expressed as a correlation-

based learning rule that describes the incremental change of the synaptic weight as the product of 

the pre and postsynaptic firing rates: ijvvw =Δ . Since this implies that weights can grow 
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infinitely, a maximum weight ),min( maxwwww Δ+=  is usually imposed. Also, in this simple 

form, weights never decrease (see below for more detailed discussion). This principle can be 

observed at many different levels of organization, starting with a single synapse between two 

neurons all the way to behavioral observations (for example, Pavlovian conditioning). While we 

have some understanding of the detailed molecular mechanisms, the intermediate levels are much 

less clear and are poorly understood. For example, during Pavlovian conditioning, how is it that 

plasticity can be induced selectively at exactly the right synapses while not influencing all the 

other existing synapses? After all, acquisition of a new memory does not require that an existing 

memory be overwritten. Also, whether the mechanism of LTP is sufficient and/or necessary for 

learning of new memories remains to be demonstrated (Martin et al., 2000; Shors and Matzel, 

1997; Stevens, 1998). One strategy to demonstrate that LTP is indeed sufficient for learning 

would be to monitor a large number of synapses during memory acquisition. If reverting these 

very same synapses after learning back to their original strength erases the memory it is 

demonstrated that these synaptic changes did  indeed result in the observed behavioral change 

(Neves et al., 2008). A large number of studies have been conducted that attempt to demonstrate 

that LTP is indeed the mechanism underlying learning (see (Martin et al., 2000) for a review). For 

example, it has recently been demonstrated that behavioral single-trial learning of inhibitory 

avoidance by rats induces molecular and electrophysiological changes in the hippocampus very 

similar to those induced by artificial LTP induction in CA1 (Whitlock et al., 2006). While these 

and others suggest a close link between LTP and learning, this has not been convincingly 

demonstrated at this point of time. 



14 

 

The amount and direction of plasticity at a single synapse depends on many factors (see 

above). One of the most important factors, however, is time. For a long time, it was not clear 

what exactly qualifies as “fires together”. What qualifies as “together” ? Within 1 sec or within 1 

ms ? Also, does the order matter (first presynaptic, then postsynaptic or the opposite)? One of the 

fundamental principles that has emerged is that both the temporal order as well as temporal 

distance matter on the order of milliseconds. Technical advances allowed the first experimental 

demonstration by dual intracellular patch recordings from two synaptically connected neurons (Bi 

and Poo, 1998; Markram et al., 1997). The remarkable finding was that evoking a spike in the 

presynaptic neuron 10 ms before evoking a spike in the postsynaptic neuron lead to strengthening 

of the synapse. The reverse (presynaptic spike follows the postsynaptic spike) leads to weakening 

of the synapse. Spacing the spikes closer together in time evokes stronger changes. Spikes that 

occur too far apart in time (> 40 ms) fail to induce any changes in synaptic strength. This 

mechanism is referred to as spike-timing-dependent plasticity (STDP). The time window for 

induction of STDP is at best ± 40 ms. In classical conditioning, the conditioned stimulus (CS) can 

be separated by up to several seconds from the unconditioned stimulus (US) (Pavlov, 1927). This 

is thus much bigger then the timescale over which STDP can occur. Additional mechanisms (such 

as working memory) must thus exist to bridge this time gap. Many computational learning 

algorithms such as reinforcement can be implemented with STDP as a mechanism. Such learning 

is usually referred to as correlation-based learning (or “Hebbian learning”). The existence of 

STDP has been shown in a large number of different species, brain areas, and cell types (see 

(Caporale and Dan, 2008) for a review). 



15 

 

The induction of long-lasting plastic changes is often dependent on changes in 

intracellular calcium (Ca2+).  There are many different types of neurotransmitter or voltage-gated 

ion channels which are permeable to calcium. This accumulation of intracellular Ca2+ triggers 

many molecular events which eventually lead to long-lasting changes of synaptic strength. 

Without calcium influx, LTP can not occur. This is convincingly demonstrated by the absence of 

LTP if the NMDA channels are blocked pharmacologically during LTP induction. The induction 

of plasticity itself is not sufficient to ensure a long-lasting structural change. If certain molecular 

processes are disrupted, the change does not last long. For long-lasting LTP (“late LTP”), gene 

transcription and the synthesis of new proteins is required (Huang et al., 1996; Kelleher et al., 

2004; Schuman, 1999; Squire, 1992; Sutton and Schuman, 2006). This is also true in vivo: 

memories do not last if synthesis is inhibited (Davis and Squire, 1984; Flexner et al., 1963; 

Squire, 1992). The blockage of protein synthesis (during induction) thus prevents the conversion 

of a short-term to a long-term synaptic change. Rather, it decays back to baseline within a few 

hours. Synaptic changes can, however, occur without new proteins, i.e., the modification and 

relocation of existing proteins is sufficient. While protein synthesis blockers present during the 

induction of LTP only affect the late phase of LTP using traditional LTP induction protocols, 

there are other induction protocols for LTP where protein synthesis is required also for the early 

phase. Application of neurotrophic factors such as BDNF can induce potentiation without 

electrical stimulation (Kang and Schuman, 1995; Levine et al., 1995; Lohof et al., 1993). 

Application of synthesis inhibitors prevents this kind of induction of LTP (Kang and Schuman, 

1996). There are also situations where synthesis is required for early LTP, such as high synaptic 
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background activity (Fonseca et al., 2006). In the hippocampus, synthesis can also be modulated 

by changes in extracellular dopamine (Smith et al., 2005).  

1.4  Temporal lobe epilepsy 

Epilepsy is one of the most common forms of neurological impairment. The lifetime risk 

of experiencing  at least one seizure is 3% (Chang and Lowenstein, 2003). About 1% of all 

people develop unprovoked seizures without any obvious reason (Steinlein, 2004). In the USA, 

an estimated 1.1 - 2.3 million people have epilepsy. Epilepsy is a medical condition characterized 

by the presence of recurrent seizures.  Clinical manifestations  of seizures can include loss of 

consciousness, involuntary twitching of muscles, brief periods of amnesia, sleep disturbances as 

well as other sensory, cognitive, psychic, or autonomic disturbances. 

Seizures are fundamentally a circuit-level phenomenon. Thus, the study of seizures 

requires a systems perspective. They are thought to occur due to hypersynchronous neuronal 

discharges that lead to uncontrolled spread of excitatory activity to other areas of the brain. Any 

complex neuronal circuit relies on a tight balance between inhibition and excitation to function 

properly. This is particularly true for the cortex as well as the hippocampus due to extensive 

recurrent excitation. Reasons for synchronous discharges can either be loss of inhibition, an 

increase of excitation, or a mixture thereof. In some cases, the causes of epilepsy are clearly 

attributable to a specific component of the circuit, such as specific genetic mutations of voltage-

gated ion channels. Such mutations have been identified for potassium (K), sodium (Na+) and 

chloride (Cl) channels. These mutations directly affect the excitability of the circuit. One 
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particular example is a loss-of-function mutation in the Na+ channel Beta1 subunit (SCN1B) 

which leads to slower inactivation and thus more current influx (Wallace et al., 1998).  

Epileptic seizures are classified on several different dimensions. Complex seizures result 

in loss of consciousness whereas simple seizures do not. Generalized seizures arise 

simultaneously in the entire brain (bilateral) whereas partial seizures arise from a local 

(unilateral) area of the brain. Partial seizures can spread and progress to a generalized seizure 

(secondary generalization). Generalized seizures include absence (petit mal) and grand-mal 

(tonic-clonic) seizures. Absence seizures are special because they are very brief and occur 

without warning. Patients cease normal activity and stare for only a few seconds and then return 

to normal immediately afterwards. They have no memory of the epileptic episode. These events 

can occur hundreds of times a day. 

One of the most common forms of epilepsy in humans is temporal lobe epilepsy (TLE) 

(Engel, 2001; Ojemann, 1997). TLE seizures are usually complex partial and thus manifest 

themselves with alteration of consciousness. Often, a simple partial seizure precedes the complex 

partial. This phenomenon is referred to as an aura, as patients get a physical awareness of the 

onset of seizure before it progresses to cause an alteration in consciousness.  In contrast to other 

types of epilepsies, medial temporal lobe epilepsies are often difficult to control with antiepileptic 

drugs (AEDs). It has been speculated that this might be due to biased criteria for the pre-clinical 

evaluation of drug candidates, which are usually screened only for effectiveness for petit mal 

absences and tonic-clonic seizures. As a result, about 50% of patients (Ojemann, 1997) require 

other treatment to achieve control of their seizures.  For many, surgical removal of the 

epileptogenic parts of the MTL is an option. 70–90% of patients become free of disabling 
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seizures after surgical treatment (Engel, 2001). This indicates that an underlying cause of TLE is 

a structural abnormality restricted to the MTL. Post-surgical histology of the removed tissue often 

shows marked loss of principal neurons of the hippocampus (sclerosis). 

Planning for surgery requires extensive preparation to evaluate the location and extent of 

the resection, as well as an evaluation of possible loss of function resulting from the resection. 

Accurate localization can be very difficult and time consuming. This is particularly true for one of 

the most common pathologies that results in temporal lobe epilepsy: hippocampal sclerosis. The 

neuronal loss in the hippocampus is hard to detect using conventional structural MRI (see below) 

unless it is severe.  

Several non-invasive indicators can be used to identify possible seizure origin areas: 

structural magnetic reasonance imaging (MRI), computed tomography (CT), positron emission 

tomography (PET), surface electroencephalography (EEG), or the behavioral symptoms 

accompanying a seizure. Only about 30% of all seizures are caused by tumors or lesions that are 

visible on MRI or CT (Engel, 2001). Others can be identified from surface EEG recordings of 

multiple seizures. If these methods fail to clearly localize the seizure (or if the methods contradict 

each other), invasive recording techniques can be used (Spencer et al., 2007). These include 

subdural grids of electrodes placed on the surface of the cortex as well as depth electrodes (see 

below). Together with video monitoring and surface EEG, such recordings allow accurate and 

high-resolution tracking of the evolution (pre-ictal, ictal, post-ictal) of a seizure (the “ictal” event) 

Intraoperative recordings on the surface of the cortex typically only allow the recording of 

interictal spikes (epileptoform EEG) but not spontaneously occurring seizures. It is thus 

frequently necessary to implant semi-chronic electrodes to record activity continuously until a 



19 

 

seizure occurs. Electrodes are implanted bilaterally at likely epileptogenic sites using a lateral 

approach. We always implanted electrodes in the hippocampus, amygdala, anterior cingulate 

cortex, orbitofrontal cortex, and supplementary motor cortex. The exact implantation site was 

determined based on clinical criteria with the help of co-registered CT, structural MRI, and 

angiogram. Implantation was guided by a stereotactic frame fixed to the head of the patient 

(Spencer et al., 2007).  Monitoring can take up to several weeks of continuous observation and 

recording.  If activity preceding a seizure has a clear unilateral origin at a restricted set of 

electrodes (for example, the anterior hippocampus) surgical removal of that part of the brain 

controls seizures in a large fraction of cases (70–90%) with little or no functional deficits 

(Spencer et al., 2007; Vives et al., 2007). Since activity has to be recorded continuously (while 

waiting for a seizure to occur), there are large periods of time where brain function is normal but 

intracranial signals can be recorded. This gives us (scientists) the unique opportunity to directly 

observe the electrical activity of the awake human brain during behavior. The data reported in this 

thesis are all recorded during these periods of time.  

It should also be mentioned that as non-invasive diagnostic technologies improve, the 

need for invasive electrode implantation will decrease. Thus, the window of opportunity to record 

from epilepsy patients for research purposes could eventually close. While this seems far into the 

future one should nevertheless keep this in mind when planning a new research program on the 

approach described here. There are, however, several other surgeries such as deep brain 

stimulation (DBS) implantation and small resection for treatment of severe psychological 

problems such as OCD (Williams et al., 2004) that will open up new opportunities to apply this 

approach.  
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1.5  Electrophysiology in epilepsy patients 

1.5.1  Clinical 

For clinical electrophysiology, two primary types of electrodes are used: subdural 

grids/strips and depth electrodes. Depth electrodes have 4–12 regularly spaced contacts (2–6 mm 

spacing) along the entire length and can thus be used to record intracranial EEG along the entire 

depth of the cortex and subcortical structures if implanted perpendicular to the cortex. Grid 

electrodes have arrays of disk electrodes (3–4 mm diameter) imbedded in a thin sheet of plastic so 

that the uninsulated side of the electrode rests on the pial surface of the cortex (Wilson, 2004).  

1.5.2  Research 

Two types of signals acquired from epilepsy patients with implanted electrodes can be 

used for research purposes. First, the signals originating from the clinical contacts (on grids as 

well as depth electrodes) can be utilized to record low-frequency (typically < 100Hz)  local field 

potential (LFP). Due to their low impedance (< 1 kOhm) and large size, however, these 

electrodes do not allow the recording of local, small and fast extracellular currents such as those 

evoked by spikes. Second, microwires embedded in the depth electrode (the so-called “hybrid 

depth electrode”, AD-Tech Medical Instrument Corp, Racine WI), can be used to record well 

localized LFP as well as single-unit activity. The wires are made of isolated Platinum/Iridium and 

are 40 μm in diameter (Fried et al., 1999). We used electrodes with 8 embedded micro wires. 

Their tip is exposed by cutting the wires to appropriate length (5 mm typical) during surgery. Due 

to their much smaller exposed tip, microwires have much higher impedance (several 100–500 
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kOhm at 1 kHz; see methods for detailed measured values). This allows the measurement of 

single-unit activity with high reliability. 

1.5.3  Previous human single-neuron studies 

Recording from single neurons in awake, behaving humans offers the unique opportunity 

to address questions about the function and structure of our brains– addressing questions that 

have proven difficult or impossible to address using animal models. While it is possible to 

investigate a large number of mechanisms using animals, there are capabilities which are either 

very difficult to assess in animals or are unique to humans. These include language, episodic 

memory, rapid learning, emotions, remote memory, planning, and subjective experience. In the 

following I will review what has been discovered so far using single-cell recordings from humans 

(Engel et al., 2005; Kreiman, 2007; Wilson, 2004), with an emphasis on studies reporting 

findings that would have been hard or impossible to achieve with animals. Also, the focus will be 

mainly on learning and memory and thus on medial temporal lobe recordings. Such recordings 

are predominantly from epilepsy patients who are being evaluated for surgery. The many studies 

reporting single-cell recordings from sub-corticial structures such as the subthalamic nucleus or 

the thalamus will not be reviewed here. These recordings are made interoperatively from 

Parkinson’s patients and are mostly related to motor responses rather then memory. 

Human in-vivo single-unit recordings have a long history. The earliest recordings were 

made interoperatively before resection of tissue (Verzeano et al., 1971; Ward and Thomas, 1955). 

Some of the earliest comprehensive studies that used semichronically implanted depth electrodes 

in the MTL already identified neurons that are selective to specific words, faces, stimulus 
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on/offset, or motor responses (keypresses) (Halgren et al., 1978a; Heit et al., 1988, 1990). This 

has started a long debate as to whether these responses are visual or memory responses. The 

ventral visual stream contains consecutively more invariant and selective neurons that respond to 

very abstract concepts with the highest level of abstraction observed in the inferior temporal 

cortex. It is thus conceivable that responses in the hippocampus and closely connected cortical 

areas represent a continuation of such responses. On the other hand, they could be completely 

different in that high-level ventral stream responses are the fixed “vocabulary” of very well-

known entities (such as animals, cars, trees) and MTL responses reflect whether these particular 

objects had been seen before or not. This strict dichotomy between memory and visual responses 

seems somewhat artificial, however. After all, any visually selective response that is not 

genetically innate is a “memory”. I propose that a more natural way to look at this distinction is 

as a continuous gradient of recency: abstract, long-term, and stable category-type memories (like 

“animal”) are represented in the ventral stream (inferior temporal areas such as TE and IT in 

monkeys) whereas more recent or specific memories such as “this particular animal” are 

represented in the MTL. This gradient could continue even further down the ventral stream to 

areas such as V4, where very long-term knowledge about basic visual features (such as colors) is 

represented (Gallant et al., 1996; Gallant et al., 2000). It is conceivable that such responses are 

plastic as well over the long-term. As a memory becomes more permanent and abstract (such as 

learning a new category), responses gradually emerge in the inferior temporal lobes. Available 

data about object selectivity and its emergence in non-human primates is well compatible with 

this view. 
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Studies by Fried et al. revealed a much better understanding of the responses evoked by 

presentation of visual stimuli such as objects and faces (Fried et al., 2002; Fried et al., 1997). 

First, neurons were identified that distinguished between faces and objects. However, neurons 

also responded selectively to attributes of faces (such as gender and the emotions happy, surprise, 

fear, disgust, angry, sad, and neutral). Additionally, many neurons respond differently when being 

exposed to a stimulus that has never been seen before by the patient (novel) compared to a 

familiar stimulus. Further recordings by Kreiman et al. revealed that a widespread feature of 

neurons in the amygdala, hippocampus, and entorhinal cortex is the selectivity to visual 

categories (Kreiman et al., 2000a). Such neurons show a highly invariant response to any instance 

of a broadly defined visual class such as animals, cars, objects, or faces. Also, these neurons 

follow the actual percept rather then the physical (retinal) input in a rivalry design (Kreiman et 

al., 2002; Reddy et al., 2006). Even when patients are asked to imagine a previously seen picture 

(such as of the well-known politician Bill Clinton), the same neurons respond both to a picture of 

Bill Clinton and to an imagined image of Bill Clinton (Kreiman et al., 2000b). Thus the response 

of these neurons follows the actual visual percept rather then the physical input.  Extending this 

finding, the group of Koch et al. identified neurons which are highly selective (such as for a 

particular person) as well as highly invariant (Kraskov et al., 2007; Quiroga et al., 2007; Quiroga 

et al., 2005; Waydo et al., 2006). That is, their response is sparse in the sense that any given 

neuron only responds to a very small subset of all tested stimuli (response sparseness). Other 

studies of single-unit activity in relation to learning, particularly comparisons between viewing a 

stimulus the first and second time, are discussed in the following chapters (Cameron et al., 2001; 

Viskontas et al., 2006). 
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Another line of investigation that has benefited greatly from human single-unit 

recordings has been the study of language (Creutzfeldt et al., 1989a, b; Ojemann et al., 1988; 

Ojemann et al., 2002). Taking advantage of the possibility to record from temporal cortex that is 

later resected, Ojemann et al. has recorded a large variety of responses evoked by language 

comprehension and production. While not part of the MTL, the lateral temporal cortex is known 

to be crucial for declarative memory of verbal material (Ojemann et al., 1988; Ojemann and 

Dodrill, 1985; Perrine et al., 1994). Language function is strongly lateralized in the dominant 

hemisphere and the ability to record from both the dominant and non-dominant hemisphere has 

contributed to this understanding. Interestingly, only few neurons sampled from the surface of the 

lateral temporal cortex respond to visual stimulation (in contrast to the MTL responses 

summarized above). Rather, neurons responded to either silent (reading without pronouncing) or 

overt speech. Other neurons responded to the memorization or retrieval of verbal memory 

material.  Superior temporal gyrus neurons respond very prominently while subjects listened to 

spoken language and were often selective to specific combinations of consonants (Creutzfeldt et 

al., 1989a). Also, neurons were found that respond preferentially to the patient’s own voice. 

A series of electrical stimulation studies by Halgren et al. revealed crucial insights into 

the results of direct temporary disruption of the MTL (Halgren et al., 1978b; Halgren and Wilson, 

1985; Halgren et al., 1985). While it was well known that bilateral structural damage caused 

severe amnesia, the causal functions of the MTL can only be established by selective (and 

reversible) disruption. This has been achieved by injecting a short pulse (100 μs) of current into a 

number of depth electrodes simultaneously with the onset of a novel or repeated stimulus 

(Halgren et al., 1985). This single pulse of stimulation disrupted normal ongoing activity for 400 
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ms. Patients where shown a series of stimuli and had to indicate whether the stimulus had been 

shown before or not (old/new). Stimulation was applied either during learning, retrieval, or both. 

This stimulation protocol did not disrupt performance if the delay between presentation of the two 

stimuli (new and old) was short (2 s). Performance was severely impaired if stimulation was 

applied during both learning and retrieval (16% correct vs. 66% without stimulation). Most 

interestingly, performance was severely impaired if stimulation was selectively applied either 

during learning (no acquisition) or retrieval. The same stimuli that could not be retrieved if 

stimulated during retrieval could be retrieved if there was no stimulation. This demonstrates a 

direct causal role of the human MTL in both memory acquisition as well as retrieval (at least of 

relatively recent memories). It also demonstrated, together with other studies (Chapman et al., 

1967; Halgren and Wilson, 1985; Ojemann and Fedio, 1968), that MTL stimulation does not 

disrupt perception, decision making, response execution, retrieval of remote memories, or 

otherwise severely alter the cognitive state. It is also interesting to note that patients reported with 

confidence that they had not seen the stimulus before and not that they did not know or could not 

answer the question (Halgren and Wilson, 1985). 

Electrical stimulation of the temporal lobe (using similar techniques as described above) 

during the absence of external visual input can evoke a series of phenomena such as deja-vu (a 

strong sense of familiarity), complex hallucinations, alimentary sensations, fear or anxiety, and 

amnesia (Bancaud et al., 1994; Halgren et al., 1978b; Penfield, 1958; Penfield and Perot, 1963). 

Authors have also remarked on the extreme variability of the type of effects evoked (stimulation 

sites and patients). This confirms that the temporal lobes are directly involved in the retrieval of 

memories. 
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1.6  The anterior cingulate cortex 

The cingulate cortex is located directly above the corpus callosum (Allman et al., 2001; 

Paus, 2001). Its anterior part is referred to as the anterior cingulate cortex (ACC). It is thought to 

play a crucial role in many higher cognitive functions such as error monitoring, attentional 

control, conflict resolution and reward processing. Similarly, ACC dysfunction has been 

attributed to several major pathologies such as obsessive-compulsive disorder (OCD), bipolar 

affective disorder (BAD), chronic pain, and major depression. Surgical removal of parts of the 

ACC has proven to be a successful treatment of last resort for these pathologies (Jung et al., 

2006a; Williams et al., 2004). The ACC also plays a major role in cue-induced craving in drug 

addiction (Kalivas and Volkow, 2005). Despite this, the function of the ACC remains poorly 

understood and controversial.  One of the common elements of the above pathologies is a major 

learning deficit. In OCD, for example, inappropriate actions are repeated over and over despite 

explicit knowledge of their negative consequences. Similarly in cue-induced craving, drug 

consumption is induced because of a strong association between a cue and rewarding behavior.  

A variety of functions have been attributed to the ACC; however, it has proven difficult 

to study with animal models (lesions, electrophysiology; but see (Frankland et al., 2004; Han et 

al., 2003)). While this is certainly partly due to the poorly understood function of the ACC, 

another likely reason is that the ACC is important for cognitive functions that are difficult or 

impossible to study and quantify in animals. Additional difficulty is added in that the non-human 

primate homologue of ACC is not clearly anatomically defined and overlaps with the cingulate 

motor area (CMA). In non-primate mammals the anterior cingulate exists but the anterior part 

(subgenual) is referred to as the prelimbic and infralimbic areas (Uylings et al., 2003). Also, the 
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ACC (Brodmann’s Area 24) contains especially large spindle cells (“von economo neurons”) that 

exist only in humans and great apes, but not other mammals including monkeys (Allman et al., 

2001; Nimchinsky et al., 1999). This suggests that parts of the function of the ACC might be 

unique to humans and very closely related species. 

Here I synthesize the conclusions from a number of studies and critically review what is 

known about the function of the ACC. I will start by reviewing what has been learned from event-

related potential studies and will proceed by discussing how these findings have been extended 

and revised based on fMRI studies. Finally, I will compare those findings to human lesion studies 

and point out a number of discrepancies with the fMRI studies. 

1.6.1  Reward and Dopamine 

Dopamine (DA) is a crucial modulator of learning. It is released by DA neurons located 

in the ventral midbrain and the striatum. One of the prominent projections of midbrain DA 

neurons is the ACC (Gaspar et al., 1989). These DA neurons fire in short bursts in response to 

unexpected rewards, the expectation of reward, as well as novel items (Schultz, 2000). Similarly, 

many drugs of abuse induce the release of massive amounts of dopamine. Learning-induced 

plasticity such as long-term potentiation (LTP) is profoundly modulated by the presence of DA. 

Changing behavior in response to external feedback such as reduced reward is signaled by single 

neurons in the monkey ACC (Shima and Tanji, 1998). The reversal learning task requires subjects 

to associate arbitrary stimuli with actions. From time to time, the reward contingencies reverse. 

Thus, the optimal behavior in this task is to switch to the other action in response to receiving 

reduced reward. Similarly, if there is no error, the beneficial action should be sustained. 
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Deactivation of the ACC by lesions (Kennerley et al., 2006; Williams et al., 2004) or temporary 

deactivation (Shima and Tanji, 1998) profoundly impairs performance in this task in both 

monkeys and humans.  

1.6.2  Event-Related Potentials 

Before the advent of fMRI studies, the function of the ACC had mostly been studied with 

event related potentials (ERPs). Using reaction time (RT) tasks that require a fast response to 

sometimes conflicting stimuli, subjects make errors. Subjects are usually aware that the response 

was an error before the feedback signal. An example of such a task is the Stroop interference task 

(Kerns et al., 2004): subjects are shown a word on a screen, printed in a particular color. The task 

is to respond, as fast as possible, by pressing a button that indicates the color the words are shown 

in. For example, the word could either be red or green. These two words are printed either in red 

or green. Of the 4 possible combinations, 2 are congruent (red, green) and 2 incongruent (red, 

green). Incongruent trials require a significantly longer time to respond than do congruent trials 

(typically 40–80 ms on average). Additionally, if speed is more important than accuracy, 

incongruent trials evoke more erroneous responses. 

A prominent observation during such tasks is a negative potential referred to as the error-

related negativity (ERN). The potential peaks over frontal-parietal electrodes at 100 to 150 ms 

after the response (Paus, 2001). But because ERPs are recorded on the scalp, it is impossible to 

localize the source of the signal precisely. However, dipole models can be utilized to predict 

possible configurations of electric sinks and sources that could account for the data. One possible 
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model is a dipole located in the ACC. These observations motivated a number of imaging studies 

that attempted to definitively localize the source of this potential. 

1.6.3  Neuroimaging studies: PET and fMRI 

Early imaging studies, comparing blocks of trials between which only the variable of 

interest changed (“block design”), have suggested that the ACC is generally involved in the 

executive control of cognition. These studies have used tasks that require selective attention, 

working memory, and self-monitoring for errors (Bush et al., 1998). None of these tasks was 

found to elicit ACC activity that was specific to a particular function and it was thus proposed 

that the ACC generally responds to task difficulty, irrespective of the specific task. PET studies 

have generally reached the same conclusion (Paus et al., 1998): ACC activity is most strongly 

correlated with task difficulty. Since these results are achieved by subtracting the activity of two 

different blocks (easy and difficult), task difficulty refers to any possible variable that can make a 

task more difficult. This, for example, includes different demands for working memory, attention, 

difficulty of cognitive analysis (e.g., reading versus telling the font), and increased demand for 

motor commands (e.g., precision of movement). Because many experimental manipulations have 

been observed to change ACC neural activity, a number of different hypotheses for ACC function 

have been advanced. Two influential theories are the “conflict monitoring” and the “error 

detection theory”. It has, however, proven difficult to clearly disambiguate the predictions that 

different theories make by using blocked designs.  
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1.6.4  Conflict monitoring, error monitoring, and cognitive control 

One of the prevalent views is that one of the functions of the dACC (dorsal part of the 

ACC) is conflict monitoring. This interpretation was primarily developed because of earlier 

blocked studies of the Stroop interference task that showed enhanced activation of a part of the 

dorsal ACC when comparing blocks with and without interference effects. However, interference 

can cause multiple effects. Firstly, it creates a conflict between a fast, overtrained automatic 

process (reading the word) with a slower process (telling the color of the ink the word is printed 

in). Secondly, the very same effect increases attentional load, task difficulty, and behavioral 

errors. It is thus important to attempt to dissociate between these effects. One possibility is to use 

an event-related design where the degree of interference is modulated separately from task 

difficulty. One study (Carter et al., 1998) applies this approach. Carter et al. use a task where the 

subject is first presented with a cue (A or B) and than later with a probe (X or Y). The subject is 

instructed to only respond if the cue is an A and the probe an X. All other combinations are 

presented with low probability. They can be divided into low (BY) and high (BX,AY) 

interference trials. Task difficulty was modulated by removing pixels from the cue and probe 

stimuli (harder to read). The authors found that activity within ACC was higher for interfering vs. 

non-interfering trials (compatible with conflict monitoring hypothesis). However, they also found 

increased activity for error trials vs. correct trials. Interestingly, the authors found that ACC 

activity was also increased (relative to baseline) for the correct and non-interfering trials, but less 

than in error or interference trials. This finding resolves the previous debate in demonstrating that 

ACC is actually activated by both error and interference. However, this finding does not rule out 

that both types of activation are the result of a common underlying cause. There are multiple 
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possibilities that could cause this pattern of activity without any relationship to conflict or error 

monitoring. One example is increased attentional load, which could be caused both by an error as 

well as by interference. Also, errors are not independent from interference: more errors are made 

if interference is higher. The conclusions that can be drawn regarding the function of the ACC 

from these types of design are thus limited. 

Two follow-up studies (Botvinick et al., 1999; Kerns et al., 2004) have shed light on this 

issue by using a Stroop interference task (color naming, see above). In an attempt to disambiguate 

conflict monitoring from error-related activity, the authors compared BOLD ACC activity of 

incongruent trials (I) which were either followed by a congruent (c) or an incongruent (i) trial (cI 

or iI). If ACC activity is related to interference itself, activity on both types of trials should not 

differ. If, however, ACC activity relates to the monitoring of conflict and the subsequent 

induction of control, activity on iI trials should be lower than activity on cI trials. Also, the 

reaction time for the I trials which follow an incongruent trials should be inversely correlated 

with the strength of ACC activity on the preceeding i trial. This is indeed what the authors found. 

This strengthens the hypothesis that one function of the ACC is the monitoring of conflict and the 

ensuing induction of control. This argument is supported by the observation that there was a trial-

by-trial correlation with strength of ACC activity in the first incongruent trial with the reaction 

time on the following incongruent trial. 

Another area which is frequently seen to increase activity with task difficulty is the 

dorsolateral prefrontal cortex (DLPFC). In many tasks the ACC as well as the DLPFC increase 

activity under the same conditions. It has thus remained unclear whether the two areas have 

different functions. Mainly based on human lesions, the prefrontal cortex has long been 
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implicated in cognitive control whereas ACC has been implicated in the inhibition of control. 

Also, DLPFC has been observed in the absence of ACC activity in working memory tasks 

(Fletcher et al., 1998), whereas ACC activity without DLPFC activity has been observed for 

incongruent response situations like in the Stroop task. To combine these two types of tasks, 

(MacDonald et al., 2000) have used a modified version of the Stroop color naming task. Before 

the start of a trial, an instruction was displayed as to whether the color of the word (ink) or the 

meaning of the word should be reported in this given trial. BOLD activity was examined both 

during the display of the instruction as well as during the response period. As previously reported, 

greater ACC activity was found for incongruent vs. congruent trials during the response period. 

DLPFC activity was elevated but equal for both types of trials. However, left DLPFC activity was 

different during the instruction period for color vs. word instructions. The authors conclude that 

this pattern of activation is indicative of a role for the DLPFC in cognitive control (setting of 

task) and the ACC in conflict monitoring. This finding is also supported by the study discussed in 

the previous paragraph (Kerns et al., 2004), which found that ACC activity predicted the extent of 

later PFC activity. That is, ACC signals a conflict, and due to this PFC takes the necessary actions 

("control"). 

1.6.5  Error likelihood and reward 

Another study (Brown and Braver, 2005) has challenged the above finding by proposing 

that ACC activity represents error likelihood rather than a conflict monitoring signal. The authors 

directly compared these two hypotheses using a go/nogo task with high- and low-error trials. 

Subjects were instructed to respond with a left or right button press to a left or right arrow (go 
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cue) appearing on the screen. However, in some trials, the go cue was reversed shortly after 

displaying it (no-go). The incidence of the no-go signal appearing was low in low-error trials and 

high in high-error trials. The subject was instructed by a color cue whether the current trial was a 

high- or low-error trial. Following the error monitoring hypothesis, activity should not differ 

between correct low- and high-error trials that were not followed by the no-go cue. In contrast, 

following the error likelihood hypothesis, activity in the high error-likelihood trials should be 

higher than the low error-likelihood trials, regardless of whether the no-go cue was actually 

displayed or not. This is because both trials have a higher likelihood of error, regardless of 

whether the error actually happened or not. Also, the comparison between high and low error-

likelihood error trials that were not aborted (go cue) allows excluding effects of conflict (there is 

none) as well as error monitoring (there is none). The only parameter that differs is error 

likelihood. Indeed, the authors found that the fMRI signal measured in the ACC follows the error-

likelihood hypothesis. That is, the signal was positively correlated with the potential negative 

reinforcement associated with a given trial. This is also in line with another study that found that 

fMRI ACC activity was positively correlated with the false alarm rate (Casey et al., 1997), 

because the higher false alarm rate was presumably related to trials where more errors could be 

made. 

Another possible function of the ACC is the representation of some function of reward. 

This is in addition to uncertainty, as discussed in the previous paragraph. ACC modulation by 

reward is expected because it is known that the ACC has the highest density of innervation by the 

mesocortical dopamine system originating in the midbrain (Schultz and Dickinson, 2000). The 

midbrain dopaminergic system responds strongly to expectancy mismatches of reward. While 
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these dopaminergic connections itself are not capable of exciting neurons in the ACC (they are 

modulatory), dopamine is known to have a strong modulatory influence on synaptic plasticity and 

could thus influence ACC firing indirectly. Indeed, (Critchley et al., 2001) found that the extent 

of ACC activity (fMRI BOLD) is positively correlated with the amount of uncertainty (risk) as 

well as arousal (measured by skin conductance). 

1.6.6  Lesions and human intracranial recordings 

Given the contested nature of the function(s) of the ACC it is instructive to consult 

studies of the human ACC that look at causal rather than correlative effects. A rare opportunity of 

doing so are human patients that have lesions restricted to the ACC. One study investigated the 

performance in Stroop interference and go/nogo tasks in 4 patients with damage to the dorsal 

ACC and compared it with 12 healthy controls (Fellows and Farah, 2005). Overall reaction time 

in both the go/nogo task as well as the Stroop task were higher (slower) for the lesion patients. 

However, both the error rate as well as the size of the Stroop effect (percentage RT difference 

congruent vs. incongruent) were not different. Also, the modulation of the error rate and the 

Stroop effect size by high vs. low conflict was equal to controls. Slowing of the RT following an 

incongruent trial is considered one of the effects of cognitive control induced by ACC activity. 

However, it was observed at the same rate as in controls. Surprisingly, this study thus finds no 

difference in all measures of conflict that are traditionally considered functions of the ACC. Other 

studies (Stuss et al., 2001; Vendrell et al., 1995), however, agree with this finding. This finding is 

also in line with a number of non-human primate single-unit recordings that have generally failed 

to find neurons that respond to Stroop-like incongruence tasks. Rather, the neurons were found to 
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respond to functions of reward expectancy (Shidara and Richmond, 2002). The same has been 

found by a human study of selective cingulotomy patients (Williams et al., 2004) that allowed 

behavioral and electrophysiological measurements of performance on a task before and after 

resection. They found that performance was only impaired on trials that are related to reward, but 

not without.  

The difficulty of studying ACC at the single-unit or LFP level is also illustrated by a 

recent study (Wang et al., 2005): the authors administered several different tasks to the same 

subjects and recorded LFPs from depth electrodes implanted for purposes of epileptic seizure 

localization. Tasks included auditory oddball detection, new/old word recognition (memory), and 

a reaction time task. Interestingly, the authors found activity that distinguishes between the 

different task elements (new/old, wrong/correct, rare/frequent) at each site—indicating that the 

function of the ACC at this particular site could not be attributed to one of these very different 

processes exclusively. 
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Chapter 2.  Online detection and sorting of extracellularly recorded 

action potentials 

2.1  Introduction1 

Recent technological advances have made it possible to simultaneously record the 

activity of large numbers of neurons in awake and behaving animals using implanted 

extracellular electrodes.  In densely packed neuronal structures such as the cortex and the 

hippocampus, the activity of multiple neurons can be recorded from a single extracellular 

electrode.  A complete understanding of neural function requires knowledge of the activity of 

many single neurons and it is thus crucial to accurately attribute every single spike observed to a 

particular neuron.  This task is greatly complicated by uncertainties arising from noise caused by 

firing of nearby neurons, inherent variability of spike waveforms due to bursts or fast changes in 

ion channel activation/deactivation, uncontrollable movement of the electrodes, and external 

electrical noise from the environment. 

There are two different ways to acquire and analyze electrophysiological data: i) store the 

raw electrical potential observed on all electrodes and perform spike detecting and sorting later 

(offline sorting), or ii) detect and sort spikes immediately (during acquisition) and only store the 

sorted spikes (realtime online sorting).  A combination of the above approaches is to detect spikes 

                                                 

1 The material in this chapter is based on Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2006b). Online detection 
and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci 
Methods 154, 204-224. 
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online and only store the detected spikes for later offline sorting. While it is reasonable to use 

offline sorting methods in certain cases, it is becoming increasingly necessary to develop realtime 

online sorting methods.  There are three main reasons to use such methods: i) Realtime online 

decoding allows "closed-loop" experiments, e.g., the adaptation of the experiment to the specific 

neural responses observed (compare to dynamic clamp on the single-cell level, see (Prinz et al., 

2004) for a review); ii) Fast data analysis: sophisticated offline spike sorting methods require 

extensive amounts of computation, whereas online sorting allows immediate data analysis. iii) 

massive reduction in data transmission and storage.  Moving from offline sorting to realtime 

online sorting requires two separate technological advances: i) developing an online spike 

detection and sorting algorithm, and ii) developing a realtime implementation of this algorithm.  

The first condition is strictly necessary before a realtime version can be implemented and presents 

the main methodological challenge that needs to be addressed.  An algorithm that is online only 

uses information available at the current point in time and not information available in the future.  

Applied to our approach, “online sorting” means that a spike observed at time t is sorted only 

using all information observed prior to and including point of time t.  This is in contrast to offline 

sorting algorithms, which require that all spikes are available before sorting can start and thus 

require that all data is acquired and stored beforehand.  Removing this requirement for total spike 

availability presents a formidable challenge and we focus exclusively on doing so in this paper.  

Note that it will be possible to implement the algorithm presented here for realtime analysis of 

many channels in parallel; this will be the focus of our future efforts. 

While the problem of offline sorting has been intensively investigated (for a review see 

(Lewicki, 1998), but also see (Abeles and Goldstein, 1977; Fee et al., 1996a; Harris et al., 2000; 
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Pouzat et al., 2004; Pouzat et al., 2002; Quiroga et al., 2004; Redish, 2003; Sahani et al., 1998; 

Shoham et al., 2003)),  relatively little work has been done on online sorting. Early attempts at 

online sorting focused on techniques which require manual definition of each cluster before 

sorting commences (Nicolelis et al., 1997). Other online classification approaches require a 

learning phase, after which neurons are classified in realtime (Aksenova et al., 2003; Chandra and 

Optican, 1997).  The disadvantage of this class of online methods is that only neurons which fire 

during the learning phase can be classified. In addition, if the spike shapes change during the 

experiment, the neuron can no longer be recognized.  In this paper, we present and demonstrate 

an online spike detection and sorting method.  Spikes originating from different neurons are 

distinguished based on spike waveform shape and amplitude differences, features which are 

unique for individual neurons. The algorithm iteratively updates the model and assigns spikes to 

clusters.  It thus does not require a separate learning phase and is capable of detecting new 

neurons during the experiment. This feature is particularly crucial for experiments with human 

subjects because firing is very sparse and the “optimal” stimuli for recorded neurons are often 

unknown. As a result,  it is not possible to excite all neurons during a learning phase that precedes 

the experiment. We will discuss this point further at a later stage in the paper. 

We demonstrate our method by applying it to data recorded from arrays of single-wire 

depth electrodes that are semi-chronically implanted in the medial temporal lobe of human 

epilepsy patients.  This analysis is particularly challenging because the data were acquired in an 

electrically noisy clinical setting without the option of re-positioning the electrodes to optimize 

spike detection.  As a result, the data are compromised by low signal-to-noise ratios (SNR) as 

well as non-stationarities in the noise levels.  Additionally, electrodes are implanted in densely 
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packed neuronal structures (for example, the hippocampus), which complicates separating single-

unit activity.  These neurons generally have very low basal firing rates and can respond very 

selectively to certain stimuli. 

Our experimental setup allows us to conduct long-term recordings simultaneously with 

complex behavioral experiments which can only be done with awake behaving humans.  In these 

experiments, fast data analysis is highly desirable.  Our patients are extremely rare (< 8 a year) 

and our recording sessions are short (1–4 hours).  Although we can record for 1–5 days, the same 

neuron cannot be obtained with any reliability on subsequent recording days.  There is always a 

trade-off between sorting quality and fast data analysis, but in this kind of experiment it is crucial 

to know as fast as possible to what a neuron responded, so that the experiment can be adapted 

immediately.  One possible compromise to achieve this is to use a simple, but online, algorithm 

which is capable of detecting most neurons and correctly sorting their spikes.  This approach is 

reasonable for recordings from chronically implanted arrays of electrodes that do not allow for 

the individual movement of the electrodes to optimize response properties.  Additionally, 

implanted arrays allow the simultaneous recording of many neurons over a long period of time 

and thus yield large amounts of data.  However, it has proven difficult to store, process, and 

analyze these large data sets because efficient methods for processing and analysis are lacking 

(see (Buzsaki, 2004) for a discussion of these issues).  An online spike detection and sorting 

algorithm, such as the one described below, will enable experimenters to process complex and 

large amounts of data in an efficient and effective way. 
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2.2  Methods 

2.2.1  Glossary of mathematical symbols and notation 

Symbol Definition 

iS
v

 The raw waveform of spike i  

jM
v

 Mean waveform of cluster j  

kM
v

 Number of spikes assigned to cluster k  

m  Total number of mean waveforms 

C  Number of spikes used to calculate mean waveforms (last N spikes 
 assigned to each cluster) 

MS TT ,  Threshold for sorting (S) and merging (M) 

N  Number of datapoints of a single waveform 

D
v

 Vector of distances 

Z
r

  Matrix of noise traces (with N datapoints each, 

   each row is a noise trace) 

C
r

 Noise covariance matrix (dimensions: NxN) 

iP
r

 Prewhitenend raw waveform of spike i  

MS dd ,  Distance between 2 clusters for sorting (S) and merging (M) 

d  Distance between 2 clusters (projection test) 
 

All population measurements are specified as mean ± standard deviation. 
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The raw waveform of spike i  is referred to as iS
v

.  A waveform is a vector that consists of 

N=256 datapoints.  For every spike i , )(lSi

v
 refers to the amplitude of the waveform at the 

sampling point l  ( l  can take any value between N...1 ). T denotes the threshold and is always a 

scalar. )(tf  and )(tp  refer to the bandpass filtered raw signal amplitude and the local energy at 

time point t  respectively. 

2.2.2  Filtering and spike detection 

 Spikes are detected using threshold crossings of a local energy measurement 

)(tp  of the bandpass filtered signal (Bankman et al., 1993; Kim and Kim, 2003), which allows 

more reliable spike detection than thresholding the raw signal (Appendix A).  If )(tp  is locally 

bigger than five times  the standard deviation of )(tp , (or another factor, referred to below as the 

extraction threshold), a candidate spike is detected (Csicsvari et al., 1998).  For each threshold 

crossing (Figure 2-1C,D), a sample of 2.5 ms (64 samples at a  25 kHz sampling rate) is extracted 

from the filtered signal.  This sample is upsampled 4 times using interpolation (Bremaud, 2002), 

that is, by transforming the sample to Fourier space using FFT and back with more data points.  

After upsampling, the spike is sampled at 100 kHz and consists of  N= 256 data points, with the 

maximum realigned at position 95: )95())((maxarg ii
l

SlS = .  Upsampling eliminates the 

roughness in the waveform introduced by undersampling the signal and the high-pass filtering, 

and also allows a more accurate determination of the real peak of the waveform.  Note that the 
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peak of the waveform is typically not measured accurately because it is only reached for a very 

short time and thus often  falls between points of time at which the signal is sampled. 

 

Figure 2-1. Filtering and detection of spikes from continuously acquired data. 
Shown are 412000 timepoints, corresponding to 16.48 sec at a sampling rate of 25000 
Hz. A) Raw signal. The amplitude is in units as measured after amplification, not 
corrected for gain. B) Bandpass filtered signal 300–3000 Hz. The two lines indicate 
possible thresholds for direct spike extraction (see text). C) Average square root of the 
power of the signal, calculated with a running window of 1 ms and thresholded (line). 
The y axis is arbitrary. D) Position and amplitude of detected spikes (detected in C), but 
extracted from B). 
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2.2.3  Distance between the waveforms of two spikes 

The estimation of the number of neurons present, as well as the assignment of each spike 

to a neuron, is based on a distance metric between two spikes (Appendix A).  Based on this 

distance, a threshold is used to decide i) how many neurons are present, and ii) to assign each 

spike uniquely to one neuron or to noise, if unsortable.  A crucial element of this approach is the 

threshold, which is calculated from the noise properties of the signal (Appendix A) and is equal to 

the squared average standard deviation of the signal, calculated with a sliding window.  The 

threshold is thus not a parameter as it is automatically defined by the noise properties of the 

recording channel and is equal to (in a theoretical sense) the minimal signal-to-noise ratio 

required to be able to distinguish two neurons.  It is assumed that the background noise is additive 

(see results) and the presence of a spike does not influence the noise properties (Fee et al., 

1996b).  It can thus be assumed that the variance of the noise of all waveforms of the same 

neuron is approximately constant (Pouzat et al., 2002).  One concern is that the estimation of the 

threshold is strictly valid only if it is independent of the number of neurons and their spiking 

frequency on a specific channel.  It is worth noting, however, that even if there exist multiple 

neurons, each with high spiking frequency, most data points of the raw signal will not belong to a 

spike (but see (Quiroga et al., 2004)).  We are thus assuming that the variance of the raw signal is 

approximately independent of the number of neurons (Fee et al., 1996b). 

2.2.4  Online sorting 

Each newly detected spike is sorted as soon as it is detected (Figure 2-2).  The raw 

waveform of a newly detected, as of yet unsorted spike, is used to calculate the distance to all 
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already known mean waveforms (clusters).  The spike is assigned to the existing cluster to which 

it has minimal distance if the distance is smaller than a threshold value.  If the minimal distance is 

larger than the threshold, a new cluster is automatically created.  Every time a spike is assigned to 

a cluster, the mean waveform of that cluster is updated by taking the mean of the last C spikes 

that were assigned to this cluster.  This causes the mean waveforms of each cluster to change as 

well, which might result in two clusters which have mean waveforms whose distance is less than 

the threshold.  In this case, the two clusters become indistinguishable and they are thus merged.  

The spikes assigned to both clusters will be assigned to the newly created cluster (see Appendix B 

for details of the algorithm). Note that  not every cluster created in this manner will represent a 

single unit.  In fact, many small clusters will be created which represent noise. These can easily 

be discarded by requiring a minimal number of spikes for a valid cluster. However, noise of a 

stereotypic shape will create large clusters; these are also discarded.  See the section below on 

how to evaluate potential single-unit clusters below for a discussion of this issue. 
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Figure 2-2. Schematic illustration of spike detection and sorting. 
The signal is (continuously) bandpass filtered 300 - 3000Hz. Spikes are detected by 
thresholding a local energy signal that is continuously calculated from the raw filtered 
signal. After detection and appropriate re-alignment, a distance metric is used to calculate 
the distance to all known clusters at the current point in time. If the minimal distance is 
smaller than a threshold MT , the spike is assigned to this cluster. Otherwise, a new cluster 
is created and the new spike is assigned to it. The thresholds are automatically and 
continuously calculated from the noise properties of the raw filtered signal. After 
assigning a spike to a cluster, that cluster’s mean waveform is updated accordingly. This 
enables tracking of moving electrodes as well as short-term changes due to bursts. After 
updating the mean waveform, clusters might overlap. If this is the case, they are merged 
and the spikes assigned to the cluster are reassigned. Periodically, the statistical 
evaluation criteria (ISI distribution, power spectrum, and autocorrelation) as well as the 
projection test for each pair of clusters are calculated. This allows us to continually 
discard noise and multi-unit activity. 
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2.2.5  Calculating the threshold 

 There are two thresholds used in the algorithm: The threshold for considering a 

new spike part of an existing cluster ST and the threshold for considering two clusters apart MT . 

We considered two possible ways of estimating these two thresholds from the background noise 

of the raw signal. Common to both are that they are calculated automatically from the data. 

 The first (exact) approach is to pre-whiten the waveforms of detected spikes 

using the covariance matrix of the noise (see Appendix D). In this way, the datapoints of a given 

waveform can be considered uncorrelated and the noise is white and of standard deviation 1 in 

each dimension (by design). The summed squared residuals of the difference between two 

waveforms (Eq 3b) can thus be considered 2χ distributed with the number of degrees of freedom 

equal to the number of datapoints that constitute a waveform.  The threshold of the distance 

calculated as such can be estimated from the 2χ distribution (Eq 5). The distance between the 

mean waveforms of two clusters can be calculated as the square root of the summed squared 

residuals, which is, by definition, the standard deviation multiplied by the number of datapoints. 

The threshold for merging can thus be set in terms of number of standard deviations by which 

clusters should be separated until they are considered equal. This procedure allows us to estimate 

the two thresholds ST  and MT automatically by using the covariance of the noise. While this is 

the statistically optimal estimate of the thresholds, it requires an accurate estimate of the 

covariance. This turns out to be a non-trivial task for real data and its iterative computation is 

computationally expensive. Additionally, pre-whitening requires computation of the inverse of 

the covariance matrix.  Unfortunately, the determinant of the covariance matrix is often small 
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(close to singularity), which makes this operation numerically unstable in some situations. To 

circumvent this problem we also tested the algorithm by using an approximated version of the 

threshold which does not require pre-whitening of the waveforms. The approximated thresholds 

(both ST  and MT ) are equal to the variance of the raw signal (Eq 4a).  The distance between two 

waveforms, both for sorting and merging, is calculated as the sum of the squared residuals of the 

difference between two waveforms (Eq 3a).  Here, the raw waveforms (after upsampling and re-

alignment) are used.  No pre-whitening is performed. In the results section we present 

performance estimates for both the exact as well as the approximation method for estimating the 

threshold. 

2.2.6  Simulation of synthetic data 

Simulated raw data traces were generated by using a database of 150 mean waveforms 

taken from well-separated neurons recorded in previous experiments.  To generate random 

background noise, a large number of those waveforms were randomly selected, randomly scaled, 

and added to the noise traces.  Executing this procedure many times resulted in realistic 

background noise, as judged by comparing the raw signal, the filtered signal, and its 

autocorrelation (Figure 2-3) to the real data. This random background noise trace can be 

arbitrarily rescaled to a pre-specified standard deviation to simulate different noise situations.  

Noise is scaled to a standard deviation of 0.05, 0.10, 0.15, and 0.20. 

Identifiable neurons are added by simulating a number of neurons (between 3 and 5 in the 

following cases) with a renewal Poisson process with a refractory period of 3ms and a fixed firing 

rate between 1 and 10 Hz (which corresponds to the typical firing rate of real neurons in our 
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data).  For each neuron, one pre-defined mean waveform was used.  Mean waveforms were re-

scaled such that they were bounded in the range [-1..1] (arbitrary units).  By systematically 

varying the noise levels, signal-to-noise ratios (SNR) comparable to those observed in real data 

were simulated.  We calculate the SNR ratio (Eq 6 in Appendix A) as the root mean square value 

of the mean waveform divided by the standard deviation of the noise (Bankman et al., 1993).  The 

average SNR is calculated by averaging the SNR of each waveform. To aid comparison, this 

method of generating simulated raw data traces was intentionally chosen to be essentially the 

same as the one used by Quian Quiroga et al. 2004. 

 

Figure 2-3. Autocorrelation of raw data. 
Autocorrelation of real (A) and simulated (B) data. The autocorrelation is calculated from 
noise traces (which do not contain spikes). A): Autocorrelation of the raw signal from 
real data. Notice that the signal is strongly autocorrelated untill approximately 1.2 ms. (B) 
Autocorrelation of simulated data. The autocorrelation remains significant up to 1.2 ms 
(stars indicate p < 0.001, t-test for null hypothesis mean = 0). Error bars shown are ± s.d. 
(n = 8542 noise traces). 

2.2.7  Extracellular recordings 

We use data recorded from human patients implanted with hybrid chronic depth 

electrodes to treat drug-resistant epileptic seizures.  The electrodes contain an inner bundle of 
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eight 50 μm microwires that extend approximately 5 mm beyond the tip of the depth electrode 

(Fried et al., 1999). The clinical reason for implanting electrodes is to record electrical activity 

during epileptic seizures to locate the anatomical locus of seizure onset. 

Electrodes were surgically removed approximately 2–4 weeks after implantation.  

Recording sessions, each 1–2h long, started approximately 48 hours after electrode implantation 

and lasted up to 4 days.  We recorded extracellularly from 3 macroelectrodes with a total of 24 

single channels (each connected to a single wire). One wire of each macroelectrode (with low 

impedance) was used for local grounding. Electrodes were implanted in the amygdala and 

hippocampi of subjects and data was recorded while subjects performed visual psychophysical 

experiments, similar to those reported in (Kreiman et al., 2000a), as well as other behavioral 

experiments, such as navigating in a virtual world.  Data were acquired continuously with a low-

pass cutoff of 9 kHz, sampled at 25 kHz, and stored for later analysis.  The gain of the amplifiers 

(Neuralynx Inc) was set individually on a case-by-case basis (based on electrode impedance and 

noise) in the range of 20000 to 50000, with an additional A/D gain of 4. 

All subjects gave informed consent to participate in the research, and the research was 

approved by the Institutional Review Boards of both Huntington Memorial Hospital and the 

California Institute of Technology.  The location of the implanted electrodes was solely 

determined by clinical requirements for locating the seizure onset and the research team had no 

influence on electrode placement.  The exact location of the electrodes was determined from 

high-resolution structural MRI images taken immediately before and after electrode implantation. 
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2.2.8  Criteria to identify clusters representing single-units 

A collection of spikes is well separated if the following criteria are met: i) a small (e.g., < 

3.0 %) percentage of all spikes have an ISI of less than 3 ms (refractory period), ii) the power 

spectrum is within ± 5 standard deviations in the range of 20–100Hz (excluding < 20 Hz because 

of theta/gamma oscillations) and does not go to zero for high frequencies (Poisson process). Note 

that at low frequencies (< 40Hz), a dip is expected due to the refractory period (Franklin and Bair, 

1995; Gabbiani and Koch, 1999).  

2.2.9  Quality of separation evaluation criteria 

We use a statistical tool commonly called a projection test to quantify both the degree of 

overlap between the clusters and the goodness-of-fit to the theoretically expected distribution of 

spikes around the cluster center.  In the context of spike sorting this test was originally proposed 

by (Pouzat et al., 2002).  We only summarize the procedure here and mention some additional 

problems associated with it (see also Discussion and Appendix D):  The raw waveforms are first 

pre-whitened (e.g., decorrelated) using the known autocorrelation (Figure 2-3) of pure noise 

segments (where no spikes were detected).  Mathematically, this implies that the noise must be of 

full bandwidth and the covariance matrix of the noise traces is thus invertible.  However, this is 

not always the case.  See appendix D for further discussion of this issue.  After this step, each 

datapoint of the raw waveform is independent of all the others, with white noise of standard 

deviation 1.  This is done for the waveform of each detected spike.  Afterwards, each waveform 

(with N datapoints) can be regarded as one point in N-dimensional space.  The center of a cluster 

is represented by the point in N dimensional space that corresponds to the mean of all waveforms 
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assigned to the cluster.  Since the noise is white with a known standard deviation of 1, the 

theoretically expected distribution of spikes of the same cluster around this center is known (a 

multivariate Gaussian with a standard deviation of 1). 

For any pair of clusters found on a single wire, the projection test can be applied to 

quantify the overlap between the two clusters.  This is done by projecting the difference of every 

spike and the center of the cluster it is assigned to (residuals) onto the vector that connects the 

two centers of the clusters.  This results in two distributions of a single one-dimensional quantity, 

centered on the two centers (Figure 2-5D and Figure 2-7D).  The distance between these two 

centers can conveniently be used as a measure of separation.  If the distance is too small, one or 

both of the clusters have to be discarded.  If the goodness-of-fit of the two clusters to the expected 

distribution is reasonably good (see below), then the overlap can be estimated: a distance of >5 

guarantees an overlap of less than 1%, a distance > 3.2 an overlap less than 5% and a distance of 

> 2.8 an overlap of less than 7.5%.  Please see the discussion for an application to our data. 

 For any given pair of clusters, the theoretically expected distribution (normal 

with standard deviation  = 1) of the projected residuals can be compared against the empirically 

observed distribution.  We use a R2 goodness-of-fit between the empirically- estimated 

probability density function and the theoretically expected probability density function to 

quantify this.  Note that the empirically estimated distribution of the same cluster can look 

different if compared to different (other) clusters, since the residuals are a projection of the 

residuals onto the vector connection the two centers (e.g., Figure 2-5D the first 2 subplots, where 

cluster 1 is compared against cluster 2 and 3). The projection test can either be applied posthoc 
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after sorting is finished or periodically (e.g., every few minutes) during the recording session. If it 

is applied periodically, clusters that don't qualify can be discarded automatically. 

2.2.10  Implementation 

We implemented the proposed system in MATLAB (Mathworks, Natick, MA) to assess 

its usefulness and evaluate its properties.  The implementation is split into two parts: spike 

detection and sorting.  Spike detection reads a raw data stream either from the network (broadcast 

by the acquisition system) or from a file and detects spikes.  The raw data stream is in the 

Neuralynx (Neuralynx Inc, Tucscon, AZ) NCS format.  The detected spikes are passed on to the 

online sorting part, which sorts the spikes one-by-one, as they become available.  The results of 

the sorting are stored and later analysed using the statistical methods described.  Our 

implementation is not optimized for speed at this time.  All running time measurements were 

made on the same machine (Intel Xeon 3Ghz) with MATLAB version R14SP1. 

2.3  Results and Discussion 

2.3.1  Signal acquisition and filtering 

The continuously recorded signal (with a sampling rate of 25 kHz, Figure 2-1A) is 

bandpass filtered by a 4-pole Butterworth filter with a high-pass frequency of 300 Hz and a low-

pass cutoff of 3000 Hz (Figure 2-1B) to exclude both the low-frequency components, e.g. local 

field potentials (LFP), and high-frequency components (noise) of the signal. 



53 

 

2.3.2  Spike detection 

Spike detection from raw data with high noise levels (Figure 2-1B) was reliably achieved 

using the local energy thresholding method (see Methods).  Figure 2-1C demonstrates the 

advantage of the method: whereas the spikes between 8 s and 10 s (x axis) cannot be detected in 

the filtered signal (Figure 2-1B), they are reliably picked up by the local energy signal (Figure 

2-1C). 

2.3.3  Waveform extraction and re-alignment 

For every spike detected, 64 data samples are extracted, with the peak at sample 25.  The 

waveform is then upsampled 4x and re-aligned again, such that the peak is at sample 95 (see 

methods for details).  Re-aligning twice, once before extraction and once after upsampling, is 

crucial because the upsampling will change the location of the peak.  The position of the peak is 

estimated more accurately after upsampling.  The accurate determination of where the peak of the 

waveform is located is crucial.  This is, however, difficult and great care needs to be taken to 

avoid the erroneous splitting of one cluster into two because of re-alignment issues.  This 

situation arises because we observe many very different waveforms in our recordings.  Often the 

waveform has a dominant peak in either the positive or negative direction, but sometimes the 

situation is less obvious.  Consider, for example, the 3 waveforms shown in Figure 2-4C.  

Whereas the blue and the red waveform have a dominant peak on the positive and negative side 

respectively, the situation for the green waveform is less clear.  It has a peak of approximately the 

same amplitude in the negative and positive direction and either could be used for re-alignment.  

This situation is not artificial and arises often in our recordings (e.g., Figure 2-7A).  If the 
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simplest re-alignment procedure is chosen, e.g., re-align all spikes at their absolute maximal 

amplitude, the spikes originating from the green neuron shown would artificially be split into two 

clusters.  This is because variance caused by noise would sometimes make the negative peak 

maximal and sometimes make the positive peak maximal.  The strategy we have found to avoid 

this problem as best as possible is to use the order in which the peaks occur.  If the peak in the 

negative direction appears before the peak in the positive direction, the waveform is re-aligned at 

the negative peak.  If, on the other hand, the positive peak appears before the negative peak, the 

positive peak is used to re-align.  Exceptions to this procedure are used if only one or none of the 

peaks are significant, that is, their peak amplitude is less than the standard deviation of the noise 

(see Algorithm 3 in Appendix C).  Using this procedure, we can accurately re-align and sort 

spikes such as the one shown in Figure 2-4C. However, there are still situations in which this 

method is not able to correctly re-align spikes. For example, if the waveform of a neuron has a 

first peak which is barely significant and a peak which is highly significant, the cluster will be 

artificially split. This will only be the case for neurons which are close to the distinguishable 

signal-to-noise level and in our experience this case is rather rare. But in the rare occurrence, this 

problem is detected by the projection test and this cluster is then discarded. 

2.3.4  Evaluation of sorting— synthetic data 

We performed spike detection and online sorting on synthetic data to evaluate the online 

algorithm’s performance.  Data were simulated to resemble the real data as closely as possible.  

Specifically, we observe that the noise in our data is strongly autocorrelated (Figure 2-3) and thus 

we do not assume independent Gaussian noise.  Rather, the noise itself likely consists of many 
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randomly mixed waveforms of unidentifiable neurons.  Identifiable neurons are simulated as 

independent Poisson renewal processes with a pre-set firing rate (see Methods).  Every time the 

simulated Poisson neuron fires, its waveform is added to the noise trace.  The waveforms, both 

for the simulated background noise and the simulated neurons, are  chosen such that they closely 

resemble waveforms we have observed in previous experiments. 

 Since the mean waveform is added to the already generated noise trace, the added 

waveform will be corrupted by the strongly correlated background noise.  As Poisson neurons fire 

independently, it is possible that there are overlapping spikes.  Since the background noise and 

the neuronal firing are independent, it will be the case that some of the spikes will not be 

detectable and thus the number of sortable spikes could be less than the number of spikes 

originally inserted.  In addition, for real datasets, low sample rates, compared to the frequency of 

spike waveforms, can cause problems in spike sorting due to misaligned peaks (the real peak was 

not sampled).  We include this effect in our simulated data by originally simulating the data at 4 

times the sampling rate (100 kHz) and then downsampling the data afterwards (to 25 kHz) before 

it is used for detection.  This reproduces the misalignment of peak values that can be observed in 

real datasets.  We used the approximation method for estimating the thresholds for sorting and 

merging. See the next section for a performance comparison of the two methods (exact and 

approximate) of estimating the threshold. 
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N 
# 

Spikes 
# 

# Detected *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
red 

475 475 475 448 366 459 455 414 328 

2 
blue 

718 718 718 701 568 693 694 674 521 

3 
green 

383 383 383 377 306 361 354 319 245 

Tot 1576 1576 
100% 

1576 
100% 

1526 
97% 

1240 
79% 

1513 
100% 

1503 
100% 

1407 
97% 

1094 
89% 

Thr  4 4 4 4     
N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
red 

0 0 15 
(12/3) 

54 
(51/
3) 

16 20 34 38 

2 
blue 

0 1 
(0/1) 

29 
(7/22) 

101 
(59/
42) 

25 24 27 47 

3 
green 

0 1 
(0/1) 

2 
(0/2) 

8 
(2/6) 

22 29 58 61 

Tot 0 
0% 

2 
0% 

46 
3% 

163 
11% 

63 73 119 146 

Thr         

Table 2-1. Simulation 1. 
Simulation 1, consisting of 3 neurons with a peak amplitude of 1 and a firing rate of 5 Hz, 
7 Hz, and 4 Hz, respectively, simulated for 100 s. The colors in column 1 refer to Figure 
2-4. The 4 noise levels are as follows: 1) s.d = 0.05 and SNR = 6.7 2) s.d. = 0.10 and 
SNR = 3.4, 3) s.d. = 0.15 and SNR = 2.2, 4) s.d = 0.20 and SNR = 1.2. The case with the 
lowest SNR is marked bold because it is the situation we most commonly observe in our 
real data. Abbreviations: Thr: Extraction threshold, TP: True positive, FP: False Positive. 
*1 Percentages for # detected are in terms of % theoretically detectable. *2 Percentages for 
TP and FP are in terms of  % of all spikes assigned to the sorted cluster. *3 The numbers 
in parentheses represent a split up of the FP into false positives due to noise (first 
number) and false positives due to assignment to wrong cluster (second number). 
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Simulated Dataset 1: This dataset contains 3 neurons (Figure 2-4), each simulated by a 

renewal Poisson process with a refractory period of 3 ms and a mean firing rate of 5, 7, and 4 Hz, 

respectively.  To provide equal SNR ratios for all waveforms, the mean waveforms of the 3 

neurons were rescaled so that their peak amplitude was 1 (Figure 2-4C).  A 100 s background 

noise trace was simulated as described (see Methods) and scaled so that it had a standard 

deviation of 0.05, 0.10, 0.15, or 0.20.  Neuronal firing was simulated for 100 s each and the point 

of time at which each neuron fired was stored.  For each of the 4 noise levels, the noise trace is 

rescaled appropriately and then the mean waveforms of the neurons are added to the trace at the 

timepoints the Poisson neuron fired.  Using this procedure, there will be 4 traces with different 

noise levels that contain exactly the same noise (same signal, but different amplitude) and exactly 

the same neuronal firing (In Figure 2-4A,B, the noise trace with added firing for noise level 0.20 

is shown). 

The simulated raw data traces were processed exactly as real data is processed (bandpass 

filter, spike detection, spike extraction, online sorting).  The different noise levels (1, 2, 3, and 4) 

were processed and evaluated independently (Table 2-1).  They correspond to an SNR of 6.7, 3.4, 

2.2, and 1.2, respectively.  No parameters were modified or specified manually except the 

extraction threshold (row “Thr” in Table 2-1).  The results of the algorithm were evaluated 

independently for both detection and sorting. 

To illustrate how to read the detailed results in Table 2-1, we consider the results of one 

particular noise level (level 3, noise standard deviation = 0.15, SNR of waveforms 3.4).  

Theoretically, there were 475, 718, and 383 spikes, respectively, generated by the 3 neurons.  Of 
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those, 97% were correctly detected (448, 701, and 377).  This implies that 3% of the generated 

spikes were not detectable, either because they were corrupted by noise and hence failed to cross 

the threshold or they were inappropriately aligned.  Of the 1526 correctly detected spikes, 1407 

were correctly assigned to one of the 3 clusters. 46 spikes were incorrectly assigned to one of the 

3 clusters (false positives (FP)).  False positives can be either true spikes which are assigned to 

the wrong cluster (misses) or noise waveforms inappropriately detected as spikes and then 

assigned to one of the clusters.  Both forms of FP are shown in the table.  In this case, 119 spikes 

were misses.  The number of misses plus the number of correctly assigned (TP) equals the 

number of detected spikes.  The number of TP plus FP equals the number of spikes assigned to a 

cluster.  TP and FP are specified as percent (%) of total number of spikes assigned to a cluster. 

This dataset demonstrates that the algorithm is capable of correctly sorting 3 

distinguishable neurons with equal SNR.  Even in the worst case, where the SNR equals 1.2, 79% 

of all spikes could be detected correctly and 89% of all spikes assigned to one of the 3 clusters 

were assigned correctly.  Figure 2-4D illustrates the result for all 4 levels of noise and also 

indicates for each noise level the variance of individual waveforms.  Figure 2-4A and Figure 2-4B 

show an extract of a raw data trace with the most difficult noise level (SNR=1.2).  This is a 

situation we commonly observe in our real data (see Figure 2-9A). 

The results of dataset 1 thus demonstrate the basic capabilities and limits of the algorithm 

and the parametric choices made.  With the following two datasets we will address more specific 

elements of the algorithm: the limits of detectability (spike detection) and the limits of 

discriminability (spike sorting). 
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Simulated Dataset 2 — Limits of detectability: This second set of data addresses the 

limits of detectability, that is, under what conditions will the spiking of a neuron become 

undetectable due to background noise.  To address this issue, a more realistic situation is 

simulated: we simulated 3 neurons with mean waveforms of different peak amplitude and thus 

different SNR.  The 3 waveforms are illustrated in Figure 2-5A.  All other conditions of the 

simulation were the same as in dataset 1.  The average SNR of the 4 noise levels is 5.2, 2.6, 1.7 

and 1.3.  However, the SNRs of the individual waveforms are not equal and some will thus be 

harder to detect (see Table 2-2 for details).  An additional difficulty presented by the 3 mean 

waveforms in Figure 2-5A is that they all have approximately equal peak amplitudes in the 

negative and positive direction.  This makes this task more difficult and where a spike should be 

re-aligned is sometimes ambiguous. 

The algorithm’s performance on dataset 2 is shown in Table 2-2.  Looking at the case of 

noise level 3, with mean waveform SNRs of 1.4, 1.4 and 2.3 (average 1.7), 56%, 56%, and 98% 

of the spikes of each unit could be detected, respectively.  Compared to noise level 2, this 

presents a substantial drop in the percent detected for the first two units.  Further, looking at noise 

level 4, where the SNR of the first 2 neurons drops to 1.1, only 21% and 15% of the spikes were 

detected.  The limits of our spike detection and re-alignment technique are thus between an SNR 

of 1.1 and 1.4 for waveforms which are difficult to re-align.  Detectability is limited because low 

SNR spikes do not cross the spike detection threshold or, if they do cross the threshold, they 

cannot be correctly re-aligned and are discarded (see section on re-alignment). For waveforms 

(e.g., unit 3 in this dataset) that possess an easily detectable peak, a substantial number of spikes 

can be correctly detected and re-aligned at relatively low SNR values (e.g., 70% for an SNR of 
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1.7).  The extraction threshold (column labeled “Thr” in Table 2-2) used for the 4th noise level 

was 4.5, which is a conservative value compared to the value of 4.0 used in dataset 1.  This value 

was chosen to diminish the false positive rate.  The choice of the extraction threshold is always a 

trade-off between missed detections and false detections, but as can be seen in this simulation, a 

value of 4.5 seems to provide a good balance between these two opposing factors. 
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N 
# 

Spikes 
# 

# Detected  *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
blue 

470 470 466 
99% 

263 
56% 

101 
21% 

442 384 184 25 

2 
green 

706 706 700 
99% 

395 
56% 

105 
15% 

644 523 235 45 

3 
red 

392 392 392 
100% 

384 
98% 

274 
70% 

374 344 343 242 

Tot 1568 1568 
100% 

1558 
99% 

1042 
66% 

480 
31% 

1460 
100% 

1251 
99% 

762 
82% 

312 
76% 

Thr  3.0 3.0 4.0 4.5     
 

N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
blue 

0 12 
(11/1) 

40 
(19/
21) 

4 
(0/4) 

28 82 79 76 

2 
green 

0 1 
(1/0) 

11 
(8/3) 

15 
(12/3) 

62 177 160 60 

3 
red 

0 1 
(0/1) 

151 
(32/
119) 

115 
(38/7
7) 

18 48 41 32 

Tot 0 
 

14 
1% 

202 
18% 

134 
24% 

108 307 280 168 

Thr         

Table 2-2. Simulation 2. 
Simulation 2, consisting of 3 neurons with varying amplitude with a firing rate of 5 Hz, 7 
Hz, and 4 Hz, respectively, simulated for 100 s. The colors in column 1 refer to Figure 
2-5. The 4 noise levels are as follows: 1) s.d. = 0.05 and SNRs of the 3 neurons 4.3, 4.3, 
6.9. 2) s.d = 0.10 and SNRs 2.1, 2.1, 3.5. 3) s.d = 0.15 and SNRs 1.4, 1.4, 2.3. 4) s.d. = 
0.20 and SNRs 1.1, 1.1, 1.7. The results for the third noise level correspond most closely 
to what we observe in our data and are marked bold. Abbreviations: Thr: Extraction 
threshold, TP: True positive, FP: False Positive. *1 Percentages for # detected are in 
terms of % theoretically detectable. *2 Percentages for TP and FP are in terms of  % of 
all spikes assigned to the sorted cluster. *3 The numbers in parentheses represent a split 
up of the FP into false positives due to noise (first number) and false positives due to 
assignment to wrong cluster (second number). 
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N 
# 

Spikes 
# 

# Detected *1 
1 / 2 /3 /4 

TP *2 
1 / 2 /3 /4 

1 
blue 

509 508 474 191 112 463 408 0 
(m) 

0 
(m) 

2 
green 

672 671 586 186 100 446 318 65 27 

3 
red 

375 329 163 31 
8% 

26 296 110 0 
(-) 

0 
(-) 

4 
l-blue 

591 591 590 394 225 539 532 349 182 

5 
mag. 

839 839 839 817 678 787 777 779 611 

 2986 2938 
98% 

2652 
89% 

1619 
54% 

1141 
38% 

2531 
100% 

2145 
87% 

1193 
82% 

820 
58% 

Thr  3 3 4 4     
 

N 
# 

FP *2,3 
1 / 2 /3 /4 

Misses (Sorting) 
1 / 2 /3 /4 

1 
blue 

6 
(0/6) 

55 
(13/42) 

n/a n/a 45 66 191 111 

2 
green 

0 10 
(3/7) 

12 
(2/10) 

61 
(28/33) 

225 268 121 73 

3 
red 

1 
(0/1) 

28 
(4/24) 

n/a n/a 33 53 31 25 

4 
l-blue 

0 215 
(10/205
) 

97 
(14/83) 

128 
(56/72) 

52 58 45 43 

5 
mag. 

0 9 
(0/9) 

161 
(9/152) 

119 
(40/79) 

52 62 38 67 

 7 317 
13% 

270 
18% 

308 
42% 

407 507 426 319 

Thr         

Table 2-3. Simulation 3.  
Simulation 3, consisting of 5 neurons with varying amplitude with a firing rate of 5 Hz, 7 
Hz, 4 Hz, 6 Hz, and 9 Hz, respectively, simulated for 100 s. The colors in column 1 refer 
to Figure 2-5B. The 4 noise levels are 1) std = 0.05, SNRs of 5 neurons 4.3, 3.8, 2.8 4.9, 
7.9. 2) std=0.10, SNRs 2.1,1.9,1.4,2.4,3.9. 3) std=0.15, SNRs 1.4, 1.3, 0.9, 1.6, 2.6. 4) 
std=0.20, SNRs 1.1, 0.9, 0.7, 1.2, 1.9. The results for the third noise level correspond 
closest to what we observe in our data and are marked bold. Notice in noise level 3 that 
neuron #3 becomes undetectable and in level 4 neurons 1 and 2 merge, which can be seen 
by the high percentage of false positives in the one remaining cluster. Abbreviations: (m): 
merged, (-): not detected, Thr: Extraction threshold, * : only detected clusters considered, 
TP: True positive, FP: False Positive. *1 Percentages for # detected are in terms of % 
theoretically detectable. *2 Percentages for TP and FP are in terms of  % of all spikes 
assigned to the sorted cluster. 
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Simulated Dataset 3 — Limits of Discriminability: This dataset combines the factors 

addressed by dataset 1 and 2 and adds difficulty by using 5 simulated neurons (Figure 2-5B), 

some of which have very similar waveforms (basically just scaled versions of each other).  This 

will, at high noise levels, lead to merging of similar neurons because they can no longer be 

distinguished from one another.  Additionally, all 5 neurons have similar firing rates (5, 7, 4, 6, 

and 9 Hz respectively).  The detailed results are listed in Table 2-3.  Figure 2-5C shows part of 

the raw data trace for all 4 noise levels. 

 Consider noise level 2, with an average SNR of 2.3 (individual SNRs of 2.1, 1.9, 

1.4, 2.4, 3.9). Detection as well as sorting of all 5 units works reliably:  89% of all spikes were 

correctly detected and 87% of all sorted spikes were assigned to the correct cluster.  Noise level 3 

has an average SNR of 1.6 (individual SNRs of 1.4, 1.3, 0.9, 1.6, 2.6).  Unit 3 becomes very hard 

to detect in this scenario and thus only 8% of all unit 3’s spikes were correctly detected.  

However, due to additional difficulties presented by this waveform (red mean waveform in Figure 

2-5B) in terms of re-alignment, none of them could be sorted.  This is because both peaks of the 

mean waveform have an amplitude that is less than the noise standard deviation, and thus, due to 

precautions taken in the re-alignment procedure, the spikes have been discarded.  Also, the false 

positive rate increased markedly, indicating that clusters started to merge.  Units 1 and 5, for 

example, were partially merged, with most of the spikes of unit 1 missclassified as belonging to 

unit 5.  Note that the two waveforms are very similar to each other (magenta and blue waveforms 

in Figure 2-5B).  This makes it hard to discriminate between these two units at high noise levels. 

Figure 2-5C illustrates the difficulties of detecting units with small SNRs in high levels of noise.  

Shown is the same data segment (length 1 s) for all 4 levels of noise. 
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The merging of neurons poses a unique problem: Can we detect merging without 

knowing the true number of neurons (as is the case in real recordings)?  To accomplish this, the 

projection test can be used.  As illustrated in Figure 2-5D, the projection test quantifies the 

overlap between every pair of clusters.  For each cluster, the distribution of the residuals around 

the mean projected onto the line between the two mean waveforms in high-dimensional space is 

shown.  Due to transformations applied to the data to calculate this test (see Methods), the 

residuals distribute (if sorting is perfect) around the mean with standard deviation = 1.  This 

knowledge can be used to estimate two important factors: i) Do spikes which were assigned to 

one cluster really belong to one cluster? and ii) Are two clusters separate enough so as to be 

considered independent?  The answer to the first question can be addressed by evaluating the 

goodness-of-fit of a normal distribution with standard deviation = 1.  We use an R2 value to do so.  

The closer to 1.0 this value is, the better the fit.  In case of corrupted clusters, the distribution will 

start to be skewed to one side and the R2 value will be lower (for example, the combination 1 -> 4 

in Figure 2-5D).  The second question can be addressed by measuring the distance between two 

neurons (in terms of standard deviations).  If two clusters are too close to each other to be 

accurately separated, they overlap (e.g. 1 -> 5 and 3 -> 4 in Figure 2-5D, where the distance 

between the means is 4.6 and 5.0 standard deviations, respectively).  If both clusters that are 

compared are well fit by a normal distribution, a theoretical minimal distance can be calculated 

by setting an upper bound of overlap between the two normal distributions (e.g., distance >= 5 

equals less than 1% overlap). 
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Figure 2-4. Simulated raw signal (dataset 1). 
Simulated raw signal (dataset 1) from a model extracellular electrode with 3 
distinguishable single-units (total length 100 s). A and B): Simulated raw signal 
(bandpass filtered 300–3000 Hz) with a noise standard deviation of 0.20 (Level 4 in 
Table 2-1). Shown are 1.2 s (A) and a zoom-in of 0.3 s (B). The colored crosses indicate 
spikes fired by the randomly firing neurons superimposed on noise. C) The mean 
waveforms of the three single-units. The peak amplitude of each mean waveform is 
rescaled to 1 (of arbitrary units) to normalize the signal-to-noise ratio. The units fire with 
a mean frequency of 7, 5, and 4 Hz, respectively (blue, red, green). D) Result of detection 
and sorting for different noise levels (indicated by the respective signal-to-noise (SNR) 
ratios). The length of the simulated raw data trace was 100 s. Correctly sorted spikes are 
colored (compare to C) while all detected waveforms not associated with any of the 3 
units are plotted in black.   
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Figure 2-5. Mean waveforms used for simulated dataset 2 and 3. 
Simulated data set 2 (A) and 3 (B). In contrast to dataset 1 (Figure 2-4), the peak 
amplitudes of each waveform are scaled randomly, with only one waveform possessing a 
maximal amplitude of 1. The amplitude is of arbitrary units. C): Raw bandpass-filtered 
data segment of simulated dataset 3 for all 4 levels of noise (from top to bottom). Each 
segment shown contains spikes of the same 5 neurons. Notice, for example, the two 
spikes at the right side of the trace (red crosses), which become hard to detect in noise 
level 3 and 4. D): Projection test for simulated dataset 3.  Shown are all combinations of 
the 5 neurons shown in B) for noise level 2, matched with color of the histogram and the 
waveform, as well as by number. The histograms depict the probability density function 
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estimated from the residuals of all spikes associated with one cluster. Fit to each 
distribution is a normal density function with standard deviation = 0. The goodness-of-fit 
is shown using R2 values. For each combination of neurons, the distance between the two 
distributions is described by how many standard deviations they are apart (D = in the title 
of the plots). It can clearly be seen that neurons 1 and 5 as well as 3 and 4 overlap. Also, 
some of the units are corrupted by noise and thus the R2 value is low. Note that the form 
of the histogram for the same cluster changes as it is compared to different clusters 
because the residuals are projected on the line between the two clusters (see text for 
further discussion). 

2.3.5  Comparison between exact and approximate threshold calculation 

methods 

In the Methods section, we compare two different ways of calculating the threshold: a 

computationally cheap method that approximates the threshold, and a computationally more 

demanding method that calculates the statistically optimal threshold. In the previous section we 

used the approximation method to calculate the threshold. We repeated the same analysis for all 3 

simulated datasets using the exact threshold calculation method. The results are illustrated in 

Table 2-4 and Figure 2-6. The mean improvement in true positive rates for the 3 simulations is 

2.9%, 3.1%, and 2.6%. By definition, false positives are lowered by the same percentages. Also, 

in simulation 3 the exact threshold estimation method found 4 of the 5 existing clusters for the 2 

most difficult noise levels. The exact threshold estimation method had its biggest advantage for 

the most difficult noise levels, where it lead to an average true-positive increase (and therefore 

false-positive reduction) of 7.5%.  On the other hand, the performance increase for the first 2 

noise levels was only minor. It is thus only advantageous to use the exact estimation method if 

neurons are hard to distinguish and/or background noise is high.  In those cases the removal of 

correlations caused by the background noise results in a remarkable performance increase. The 
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information contained in the background noise is thus useful for improving performance, as 

others have demonstrated before for offline sorting algorithms (Pouzat et al., 2002). 

 

Table 2-4. Comparison of sorting results for the two different threshold estimation 
methods, as well as other algorithms.  

Percentages of true positives (TP) are specified in terms of percent of all spikes assigned 
to the cluster. False positives (FP) are thus by definition 100-TP. The column “nr valid 
clusters found” specifies how many of the original clusters were found. The right column 
“percentage of spikes missed” specifies what percentage of all correctly detected spikes 
(spikes which are known to belong to one of the simulated neurons, excluding noise 
detections) were not assigned to the correct cluster. This number includes both spikes 
assigned to background noise and those assigned to the wrong cluster. 

2.3.6  Comparison with offline sorting algorithms 

We used the same simulated datasets as described in the previous section to evaluate how 

the performance of our algorithm compares to other algorithms. We used two commonly used 

algorithms. Both algorithms are offline sorting algorithms, that is, they require all data to be 

available before sorting starts. The first algorithm (referred to as Offline 1) that we compared 
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against is the well known KlustaKwik clustering algorithm (Harris et al., 2000). We used the first 

10 principal components, computed using PCA (Jolliffe, 2002), as features. The minimum 

number of clusters was set to 3 and the maximum number clusters to 30.  Otherwise, all 

parameters were set to the default values. All parameters were the same for all simulations and 

noise levels. The second algorithm we compared against is the WaveClus algorithm developed by 

(Quiroga et al., 2004), referred to as Offline 2.  This algorithm is particularly relevant for our 

comparison because it has been used to sort data similar to ours. Since this algorithm selects its 

own features (wavelets) directly from the data, we used the waveforms as input features. For both 

algorithms, we used the publicly available version of the code written by the authors. To exclude 

influences on sorting performance of different detection methods, we used our detection method 

to detect spikes. Spikes were upsampled and re-aligned before processing. Both algorithms thus 

had the exact same input data. The clusters generated by the two algorithms were manually 

matched to the clusters which originally generated the data. Clusters which do not exist in the 

original data (overclustering, noise) were assigned to noise.  

 The results of the comparison are summarized in Figure 2-6 and Table 2-4. The 

performance of a given algorithm can not be reduced to a single number because, depending on 

the experimental situation, different criteria of performance are most crucial for the experimenter. 

To allow a fair comparison, we calculated 4 performance measurements: true positives (TP), false 

positives (FP), number clusters found, and misses. We calculated the TP/FP in terms of the 

percentage of all spikes assigned to a given cluster that actually belong to this cluster (true 

positives, TP). The false positives (FP) are thus by definition the difference between the TP and 

100%. Misses are in percent of all detected spikes which were missassigned. This includes spikes 
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which were assigned to background noise. Overall, we find that all algorithms perform 

remarkably similar on all datasets. This is particularly true for the first two noise levels (Figure 

2-6A–C, levels 1 and 2).  Performance differences are larger for the more difficult noise levels  3 

and 4. While all algorithms show a drop in performance for these two levels, the two offline 

algorithms identify fewer clusters  than our online algorithm. This is because in the high noise 

situations, some of the clusters become very small and partially overlap with other clusters. The 

differences between these clusters cannot be resolved if correlations introduced by the 

background noise are not taken into account. This explains why in the case of noise level 4 in 

simulation 2 (Figure 2-6B, red line) the online algorithm using the exact threshold clearly has the 

best performance of all algorithms compared. Generally we observed that the offline algorithms 

appear to artificially merge clusters earlier than our algorithm. This causes an increase in the 

number of false positives, which then decreases the number of true positives.  This does not imply 

that fever spikes were correctly assigned but is a consequence of our definition of true positives, 

which we believe is the most relevant for experimental purposes. We also observed that the 

offline sorting algorithms generally tend to overcluster — that is, they generate ficticious clusters. 

As these artificial clusters also tend to be small, they typically do not violate the refractory period 

condition of no ISIs < 3 ms. One possibility to avoid this problem is to use the projection test as a 

post-hoc test after sorting with one of the offline sorting algorithms. 
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Figure 2-6. Performance comparison of different spike sorting algorithms. 
We compared the performance of our algorithm to two other offline sorting algorithms 
(Offline 1 is the Klustakwik Algorithm, and Offline 2 the WaveClus Algorithm, see text) 
, examining the  true positives (% of spikes assigned to a given cluster that actually 
belong to the cluster). For our algorithm we used the two different threshold estimation 
methods (thr exact and thr approximation). Please see Table 2-4 for details. The false 
positive rate is by definition 100-TP. 

2.3.7  Evaluation of sorting — real data 

We chose 2 datasets from 2 different recording sessions to demonstrate the application of 

the algorithm to real datasets.  In both sessions, we recorded from the right and left hippocampus 

(RH, LH) and from either the right or left amygdala (RA, LA). These two recording sessions 

were chosen because the first one represents an example with a high number of neurons per 

channel (on average, 3.7 ± 1.7 neurons per active channel, range 1–7) and the second a more 

typical case of fewer, but hard to distinguish, neurons (On average 2.0 ± 0.8 neurons per active 

channel, range 1–3).  Using these two examples demonstrates that the algorithm works reliably in 

both cases. 

Using our algorithm as described, with all parameters automatically estimated from the 

data and the extraction threshold set to 5 (see simulations for how to find this value), we found a 

total of 76 well-separated single neurons that pass all statistical tests and visual inspection.  
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Figure 2-7 shows the result and the statistical criteria used for one particular channel (a single 

wire, implanted in the RA).  A total of 9096 raw waveforms were detected, 7237 (80%) of which 

were assigned to one of the 5 well-separated single units (1682, 3669, 210, 142, and 1534 for 

each cluster, respectively).  In Figure 2-7A (from left to right), an overlay of all raw waveforms, 

the mean waveforms, and the decorrelated raw waveforms and means are shown.  Each neuron is 

color-matched across the whole figure (1=cyan, 2=yellow, 3=green, 4=red, 5=blue).  For the first 

two neurons detected, the raw waveforms, the interspike interval histogram (ISI), the 

powerspectrum of the ISI and the autocorrelation of the ISI are shown in Figure 2-7B and C 

(from left to right).  The pertinent features for evaluation that are used are as follows: the fraction 

of ISIs shorter than 3 ms (specified in % of all ISIs), the absence of peaks in the power spectrum 

and an approximately zero autocorrelation for small (< 3 ms) timelags.  We find that only the 

combination of all 3 criteria allow a sufficient classification of clusters as single unit or not.  We, 

for example, often observe clusters which have a perfect ISI (no < 3 ms) but with large peaks in 

the powerspectrum caused by noise (e.g., 60 Hz and harmonics).  Such clusters have to be 

discarded.  Other indications of potential problems are an autocorrelation which does not return to 

0 at long (> 100 ms) timelags. 

 Applying the above criteria allows us to identify all well-defined clusters that 

might represent single units, but it is not sufficient   For example, special concern is warranted if 

two mean waveforms appear to be linearly scaled versions of each other, without any other 

distinguishing features (e.g., neuron 1 and 2 in Figure 2-7).  In contrast, some neurons (e.g., 

neuron 4 and 5 in Figure 2-7) are very similar on some, but importantly not all, indices.  Two 

waveforms that are linearly scaled versions of each other could be the result of spike height 
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attenuation during a burst or electrode movement.  The artificial splitting of a single unit into 

multiple clusters as well as erroneous merging of two single units into one cluster can be detected 

using the projection test.  There are two indicators of the projection test that can be used to assess 

splitting and merging: the distance between the two means of the clusters and the goodness-of-fit 

of the empirical to the theoretical distribution.  If the distance between the two means is not 

sufficiently large (e.g., > 5 for less than 1% overlap) and/or the goodness-of-fit to the distribution 

is bad, one or both of the clusters has to be discarded.  Figure 2-7D illustrates this method for the 

4 pairs of neurons in which overlap might be suspected.  As the left panel in Figure 2-7D shows, 

the distance between neuron 1 and 2 is sufficiently large (6.6) and the fit to the distributions is 

very good.  In contrast, the fit of neuron 4 (3rd panel, red) is less good but still sufficient.  Also, a 

few outliers can be identified which represent missalignments (far right of red distribution).  

Another reason for poorly separated single units is the merging of two clusters representing 

unique units.  This can also be detected by the projection test.  In this case, the distribution of 

spikes around the mean will be too broad (long, fat tails), which is an indication for merged 

clusters.  Such clusters represent multi-unit activity and can be used as such in the further 

analysis. It is also helpful to look at a post-hoc PCA plot of the first two principal components 

(Figure 2-8). The principal components are computed from the raw, not pre-whitened, 

waveforms. The color is assigned by the clustering algorithm. In this plot it is also evident that 

cluster 1 and 2 are indeed separate. From the PCA plot it is less clear whether clusters 4 and 5 are 

indeed separate. Consultation of the projection test (Figure 2-7D) confirms that the clusters are 

separate but also indicates that there is some degree of overlap, as can also be seen in the PCA 

plot. 



74 

 

 For comparison, we repeated the sorting of the same detected waveforms as 

shown in Figure 2-7 with the WaveClus offline sorting algorithm (see offline algorithm section 

for details). The algorithm identified a very similar number of spikes for each cluster (same order 

as above: 1529, 3452, 197, 113, and 1513). No other clusters were found except for the noise 

cluster.  In total it assigned 75% of the total 9096 detected waveforms to one of the 5 clusters. 

Population data for all 76 sorted neurons is shown in Figure 2-9.  The average SNR of all 

mean waveforms, calculated by using the noise standard deviation for each channel, was 2.12 ± 

0.85 (Figure 2-9A).  This measurement defines the SNR typically observed in experiments and 

thus serves as a guideline for the estimation and verification of parameters using the simulated 

data.  A good general indicator of separation quality is the percent of ISIs which are shorter than 

3 ms (on average 0.21 ± 0.27%, Figure 2-9B).  For all channels on which there was more than 

one neuron we calculated the distance between all pairs of neurons on each channel.  The average 

distance was 12 ± 5 (Figure 2-9C). 
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Figure 2-7. Illustration of tools for evaluation of the sorting result, using real data. 
All data shown is from the same channel, which was recorded from the right amygdala. 
Five well-separated neurons could be sorted, with 1682, 3669, 210, 142, and 1534 spikes, 
respectively (neurons are numbered 1–5 in this order). All subfigures are color matched. 
A) From left to right, all raw waveforms, mean waveforms, decorrelated raw waveforms, 
and mean decorrelated raw waveforms (see text for discussion of decorrelation). B and 
C) Details for two of the neurons (#1 and #2, cyan and yellow). From left to right: raw 
waveforms, ISI histogram, powerspectrum of the ISI and autocorrelation of the ISI. Note 
that the gamma distribution fitted to the ISI is for illustration purposes only and is not 
used for evaluation. D) Projection test for the 4 combinations of mean waveforms which 
are “closest” and could possibly overlap/be not well separated. For example, take mean 
waveforms #1 and #2. They appear to be scaled versions of each other, and clear 
separation is thus difficult to achieve. It might thus be suspected that they overlap. 
Consulting the projection test probability density functions shown in the first panel of D), 
however, allows us to conclude with confidence that these two sets of spikes are well 
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separated and thus likely represent two unique neurons. The distance (6.6) is big enough 
and the fit to the theoretical distribution is reasonable. 

 

Figure 2-8. Illustration of PCA analysis for one channel of real data. 
PCA analysis for one channel of real data together with data obtained using our algorithm 
to sort. Shown is the projection of the first 2 principal components for all waveforms 
detected on the channel. The colors refer to the same 5 neurons as identified in Figure 
2-7.  Black points are detected waveforms which are not assigned to any of the 5 clusters 
(noise or unsortable). The numbers refer to Figure 2-7A. This data represents 
approximately 45 minutes of continuous recording. 
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Figure 2-9. Population statistics from the 76 neurons obtained from in vivo 
recordings. 

A) Histogram of the SNR of all 76 neurons. The SNR is calculated from the mean 
waveform. The mean SNR was 2.12 ± 0.85 (±s.d.). B) Histogram of the percent of all 
interspike intervals (ISI) which are shorter than 3 ms. The threshold for accepting a 
neuron is 3%. The mean of all 76 neurons was 0.21 ± 0.27% (± s.d.). C) Histogram of the 
distance between pair of neurons, calculated using the projection test. This test can only 
be calculated for channels which have at least one neuron. The mean distance was 12.0 ± 
5.4 (± s.d.). The distance is expressed as the number of standard deviations of the 
distribution of waveforms around the mean waveform, which is 1 (by design) for each 
neuron. 

2.3.8  Bursts 

The calculation of the threshold for sorting (minimum distance between clusters required) 

thus far only takes into account variance due to extracellular sources.  However, the waveforms 

of a single neuron also vary due to intracellular reasons, mainly due to spikes which follow each 

other with an interspike interval of less than 100 ms (Fee et al., 1996b; Harris et al., 2000; Quirk 

and Wilson, 1999).  This additional variance needs to be accounted for.  As such, it is necessary 

to assume a slightly higher threshold than is estimated from the background noise.  If it is known 

that the data which is sorted does not contain bursts, this correction does not need to be applied.  

A rough estimate whether there are bursts or not can be made by looking at a plot of the first two 
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principal components of all detected raw waveforms.  If there are distinct elongated clusters, 

bursting neurons are probably present and a correction needs to be applied. 

The extracellular waveform during short ISIs is changed in a characteristic way.  Most 

features of the spike remain the same, but the amplitude changes.  That is, the waveform is 

linearly scaled.  This will mainly affect the peak region of the spike.  In our case, the peak region 

occupies approximately 0.5 ms.  The overshoot region will also be scaled, but the increase in 

variance due to this is minor because of its smaller amplitude relative to the spike peak.  Peak 

spike amplitudes can be attenuated by up to 40% (Quirk and Wilson, 1999).  To account for this, 

the variance used to calculate the threshold has to be increased by 40% for the 0.5 ms region of 

the peak region.  See Equations 4b and 4c in Appendix A for the calculation, which results in a 

correction factor for the threshold of approximately 1.2.  The fact that short ISIs cause scaling of 

the extracellular waveform also has important implications for the evaluation of the sorting 

results.  Cases where two seemingly well-separated clusters have mean waveforms which appear 

to be linearly scaled versions of each other can be further evaluated manually. 

2.3.9  Non-stationarities of noise levels 

 Depending on the environment, the levels of background noise can change over 

time.  Whereas this problem is manageable for recordings done in a controlled research 

environment, it is not possible to control external noise levels in clinical or other uncontrolled 

(e.g., behavioral studies) environments.  The ability to dynamically adapt to non-stationary noise 

levels is thus crucial.  We adapt to changing noise levels on two timescales: for fast, high-

powered bursts of noise, we immediately stop extracting waveforms until the burst is over 
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(usually far less than 200 ms).  To slowly changing levels of noise we adapt by calculating the 

threshold (which is calculated from the standard deviation of p(x), see methods) for spike 

extraction as a running average over a long time window (e.g., 1 minute). 

2.3.10  Computation cost 

Our implementation (details in the methods) serves as a proof of principle and is not 

optimized for speed.  We nevertheless report approximate running times for the different stages 

of the algorithm to enable a comparison against other algorithms, but it should be noted that 

careful optimization and more efficient implementation in a compilable programming language 

such as C++ will provide substantial improvements over the numbers reported here.  We 

measured the running times while sorting a session consisting of 21 active channels, each 

recorded in parallel over a duration of 35 min.  Raw data was read from data files from the 

harddisk (one file per channel) A total of 143947 spikes were detected (average 6854 ± 5234 

spikes per channel).  Detection took on average 194 ± 13 sec per channel.  This includes 

detection, extraction of pure noise sweeps, calculation of the noise autocorrelation, and pre-

whitening of each spike detected.  Per channel, approximately 100000 noise traces (40 per 

second) were extracted.  Sorting took on average 18.24 ± 13.9 sec per channel.  Considering the 

number of spikes on each channel, this results in a sorting speed of  376 spikes/s.  In total, this 

allows processing of a single channel at approximately 10 times the duration of data acquisition 

(on average 3.5 minutes for each channel).  Optimizing this implementation will allow the  

processing of many hundreds of channels in realtime. 
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2.3.11  Future  improvements 

There are multiple ways in which the procedure presented here could be improved.  One 

issue that is currently not addressed in our implementation2 is overlapping spikes, which are 

caused by two nearby neurons firing in synchrony or by neurons firing closely together by 

chance.  If two close-by neurons are synchronized such that they always fire together in a 

systematic and consistent way, the overlapping spike becomes detectable because a distinct 

cluster will be created.  However, in the more common situation where spikes overlap in widely 

different situations, such spikes would be disregarded and classified as noise.  It is imaginable to 

also test for linear combinations of mean waveforms to allow classification of such combined 

spike events.  Indeed such an approach has been proposed (Atiya, 1992; Takahashi et al., 2003). 

The proposed algorithm has so far only been applied to the sorting of data from single 

wire electrodes but it would be straight forward to extend its usage also to tetrode data (Harris et 

al., 2000).  Instead of one mean waveform per identified source there would be four mean 

waveforms.  This would further enhance performance and reliability while still using the same 

principle. 

The re-alignment procedure we have described allows the accurate re-alignment of many 

difficult cases, but sometimes it still fails.  Accurate re-alignment is necessary because our 

distance measurement for comparing two spikes requires that the two spikes are accurately re-

                                                 

2 Our implementation (Matlab), as well as the real+simulated data we used for testing is available at 
http://emslab.caltech.edu/software/spikesorter.html or http://www.urut.ch/ . Our opensource implementation “Osort” 
can also process other file formats (such as Medtronic or Neuralynx Digital Cheetah) not discussed here. It also 
implements more advanced spike detection methods not discussed here. It includes a graphical user interface (GUI) for 
ease of use. 
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aligned (at the same position).  If this is not the case, the procedure fails.  There are two possible 

improvements that could be made to remedy this situation.  One would be to enhance the distance 

measurement so that it does not rely on realignment (e.g., re-positioning the two waveforms on a 

case-by-case basis for each distance measurement or using a translation-invariant distance 

measurement).  The second improvement could utilize a combined spatial and frequency space 

measurement, as has been proposed (Rinberg et al., 2003). 

Our algorithm assigns each spike to one cluster only. This decision is taken at the point of 

time the spike is detected (“hard clustering”). An alternative approach would be to assign each 

spike a probability to which cluster it belongs and update this probability as the model (mean 

waveforms) change over time (“soft clustering”). While we have not taken this approach, it is 

imaginable that it could be implemented in the framework we present here. Because we build and 

update our model iteratively over time, it is indeed possible that the model converges to the 

wrong solution. This is rather unlikely, though, because if a cluster slowly converges towards 

another cluster, the two cluster centers eventually get too close and they are merged. However, 

merges are never reversed. If two clusters are very close by and are merged erroneously, this 

situation will never be resolved. Soft clustering could possibly deal with this situation. 

2.4  Conclusions and relevance 

Here, we propose a general online sorting algorithm and demonstrate and evaluate its 

sorting ability by applying it to a challenging dataset recorded in a clinical environment.  There 

are a wide variety of applications made possible by online sorting which we are only starting to 

explore.  The experimental approach taken in most animal single-unit recordings involves first the 
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design of an experiment and then the search for neurons that respond appropriately to the 

experimental task.  Obviously, this type of experimental design requires that electrodes can be 

moved freely by the experimenter; this is not possible in human studies.  Of the many limitations 

posed by a clinical environment, the most constraining one is that chronically implanted 

electrodes are at a fixed position that can not be moved (Fried et al., 1999).  Thus, only the 

neurons that can be recorded in the vicinity of the electrode can be analyzed.  While it is still 

possible to design a static experiment and observe a neuronal response, it is the case that most 

neurons will not react in any systematic way to the stimuli presented.  As one does not have 

access to the response properties of neurons during the experiment, these (non-stimulus-related) 

spike events are recorded and then during offline analysis discovered to be essentially useless.  

Electrodes in epilepsy surgery patients are implanted in higher-level brain structures such as the 

medial temporal lobe (MTL), including the hippocampus or the amygdala, and prefrontal cortex.  

Unlike the response properties of neurons in the primary sensory cortices, MTL neuron responses 

are multi-sensory and complex (Brown and Aggleton, 2001), and hence possess less-predictable 

response properties. 

Thus, to make the most of the information obtainable with chronic implants in humans 

the traditional approach has to be reversed: the experiment needs to adapt itself to the neuronal 

response observed.  Creating an adaptive experiment poses significant technological challenges 

which need to be addressed.  The work presented in this paper is one of the main required 

techniques to be able to conduct adaptive experiments.  Online sorting for the first time allows the 

experimenter to conduct real "closed-loop" experiments in awake behaving animals, similar to 

what is already possible with dynamic-clamp in single-cell experiments (Prinz et al., 2004).  Such 
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experiments will be designed to immediately react to the neuronal response observed to a certain 

stimulus.  

 Additionally, online sorting is tremendously useful for conducting extracellular 

recordings in a noisy environment, like the hospital room.  It is very hard and often impossible to 

judge manually (by visual inspection) whether the signals visible in the raw data trace are of 

sortable neurons or not.  This can make the decision on which amplifier settings to use and from 

which electrodes to record arbitrary and often wrong.  We, for example, often face the situation 

that there are more electrodes implanted than we can record from simultaneously.  As such, we 

have to make an on-the-spot decision about which subset of electrodes to record from.  Using 

offline data analysis, it sometimes becomes clear that the best available electrode was not chosen 

because it was not possible to identify the spikes by visual inspection alone.  On the other hand, 

channels which look active and interesting often turn out to be corrupted by noise, so that they 

can't be used.  Online spike sorting, implemented in realtime, will enable the experimenter to 

make the best-informed choices about which electrodes to include during an experiment. 

 Another possible area of application is brain-machine interfaces.  It has been 

demonstrated that it is possible to decode intended movements using chronically implanted 

electrodes in non-human primates using single-cell spike data from motor cortex (reviewed in 

(Mussa-Ivaldi and Miller, 2003)) and higher cortical areas, e.g. (Musallam et al., 2004).  

Combined with the recent development of microdrive-driven chronically implanted arrays of 

electrodes this will ultimately allow online control of cortically controlled neural prosthetics 

(Schwartz, 2004).  The algorithms for decoding intentions of movements (Chapin, 2004) depend 

on the ability to simultaneously record the activity of many single neurons over a long time and it 
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is thus crucial that spikes can be detected and sorted reliably in realtime.  This presents a 

particular challenge in the uncontrolled and noisy environments in which such devices will have 

to function.  Moving from the well-controlled laboratory environment to a noisy real-world 

environment will increase the difficulty of spike detection and sorting tremendously.  Our 

algorithm could be of use for such applications. 

2.5   Appendix A — Signal processing and spike detection 

2.5.1  Spike detection 

The local energy, or power, )(tp  (Eq 1) of the signal is the running square root of the 

average power of the signal )(tf  using a window size of 1 ms (n = 20 samples at 25 kHz 

sampling), the approximate duration of a spike (Bankman et al., 1993). )(tf is the running 

average, going back n samples in time.  )(tp  can be efficiently calculated for a signal of 

arbitrary length using a convolution kernel or a running window in online decoding.  

( ) 2
1

1

2
)()(1)(
⎭
⎬
⎫

⎩
⎨
⎧

−−= ∑
=

n

i
tfitf

n
tP        (1) 

∑
=

−=
n

i

itf
n

tf
1

)(1)(         (2) 



85 

 

2.5.2  Distance between waveforms 

The distance between two spikes iS
v

 and jS
v

is calculated as a residual-sum-of-squares 

(Eq. 3a) for the approximated threshold method. For the exact threshold estimation method, the 

same equation applies because the covariance matrix Σ  in Eq 3b is equal to I for pre-whitened 

waveforms (by definition). Note that this distance is generally used to calculate the distance 

between a spike and a mean waveform of a neuron, and not between two spikes. 

 ( )∑
=

−=
N

k
jijiS kSkSSSd

1

2)()(),(
vv

  (3a) 

 T
jijijiS PPPPPPd )()(),( 1
rrrrrr

−Σ−= −  (3b) 

Calculating the distance between the means of two clusters is achieved differently for the 

two methods of estimating the threshold: i) for the approximated threshold, SM dd =  , and ii) for 

the exact threshold, SM dd = (equal to Eq 11 in the projection test). 

2.5.3  Calculation of the threshold 

There are two thresholds which need to be calculated: ST  (sorting) and MT (merging). In 

the case of the approximated threshold method, TTT MS == , whereas T is calculated as shown 

in Eq 4a. rσ  is the average standard deviation of the filtered signal f(x), calculated 

continuously with a long (e.g., 1 minute) sliding window. For efficiency reasons, the distance 
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calculated in Eq 3a is not divided by N to normalize for the number of datapoints, but rather the 

threshold is multiplied by N in Eq 4a.  This is mathematically equivalent, but Eq 3 can be 

calculated more efficiently in matrix notation in this form. 

2
rNT σ=      (Eq 4a) 

In the case of the exact threshold estimation method, the two thresholds are calculated 

differently: Since Sd  is 2χ  distributed (Johnson and Wichern, 2002), the distance that includes 

all points belonging to the cluster with probability α−1  can be calculated from the 2χ  

distribution (Eq 5). The threshold Md  for merging is simply the number of standard deviations 

clusters need to be apart to be considered separate, which we assumed to be 3. α  is typically set 

to 0.05 or 0.10 (5%, 10%) and p is the number of degrees of freedom (see text). 

ααχ −=≤−Σ− − 1)]()()[( 21
p

T
jiji PPPPP
rrrr

           (5) 

2.5.4  Correction factor for bursts 

The distance as calculated by Eq 4 does not take into account systematic variability of the 

waveform for reasons other than extracellular noise.  To account for systematic waveform 

changes, particularly in spike amplitude, a correction factor is applied to increase T appropriately 

(Eq 4b).  

cTTC =  (4b) 
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The correction factor c is calculated as following (here, N is assumed to be 256 

datapoints): A burst is going to scale the peak region of the spike, which occupies approximately 

50=B  datapoints (0.5 ms).  Correcting T for B datapoints using a higher variance and leaving 

the other  BN −  with the baseline variance is calculated using Eq 4c.  

)(
N
Bb

N
BNTT c

C +
−

=   (4c) 

The correction factor cb  specifies how much the variance is assumed to increase due to 

this.  A conservative estimate is 2=cb .  Using above numbers, this results in a correction factor 

of 1.2, as is used throughout this paper. This correction factor is only applied if the threshold is 

calculated using the approximation method. 

2.5.5  Signal-to-noise ratio 

The signal-to-noise ratio is calculated as the root-mean-square (rms) of a spike divided by 

the standard deviation (Bankman et al., 1993) of the raw data trace (Eq 6). 

.2σN

S
SNR

i

r

=  (6) 

2.6  Appendix B — Online sorting 

For each detected spike iS
v

 the distance of iS
v

 to all mean waveforms is calculated. 

Using algorithm 1, a spike is associated to cluster j  if it meets the following criteria: i) 
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),( ji MSd
vv

is minimal compared to all other mean waveforms, and ii) TMSd ji <)),(min(
vv

.  

If these conditions are met, Algorithm 2 is used to assign iS
v

 to the existing cluster that meets the 

conditions.  Also, the mean waveform of the cluster is updated using the last C spikes that were 

associated to this cluster.  This change could potentially create overlapping clusters (and will do 

so, especially when not many spikes have been processed), which are automatically merged by 

Algorithm 2 (see below). 

2.6.1  Algorithm 1 

Task: Assign newly detected spike iS
v

 to cluster or create new cluster if necessary. 

1: ),( ijSj SMdd
vv

=  for mj ...1=  {distance to all known clusters} 

2: if Sm Tddd ≤),...,,min( 21 then 

3:  assignSpike( iS
v

) {call Algorithm 2} 

4: else 

5: 1+⇐ mm   

6: im SM
vv

⇐  

7: end if 

2.6.2  Algorithm 2 

Task: Assign spike iS
v

 to cluster and merge clusters if necessary. 

1: ),...,,min(arg 21 mdddj ⇐  

2: assign iS
v

 to cluster j  

3: kj SM
vv

⇐ , for jj MCMk
vv

...−=  {update mean waveform as average of last C 



89 

 

assigned spikes} 

4: ),( ijM MMdD
vvv

= , for mjji ...1,1...1 +−=   {distance of update mean waveform to all 
other mean waveforms} 

5: while MTD <)min(
v

 

6: )min(arg Dk
v

⇐  

7: merge cluster j  with cluster k  

8: remove cluster k  

9: reassign all iS
v

 assigned to cluster k to cluster j  

10: ),( jjM MMdD
vvv

= , for mj ...1=  {distance between all mean waveforms} 

11: end while 

 

2.7  Appendix C — Spike realignment 

2.7.1  Algorithm 3 

Task: Decide where the peak of iS
v

 is that is to be used for realignment. 

1: sigLevel rσ*2⇐   {twice the std of the raw signal, see Eq4} 

2: if sigLevelSabs i >=))(min(
v

 and sigLevelSabs i >=))(max(
v

then 

3: {Align according to temporal order of peaks} 

4: if ))min(())max(( iiii SSfindSSfind
vvvv

==<==  then 

5:  peakInd = ))max(( ii SSfind
vv

==   {realign at positive peak} 

6: else 

7:  peakInd = ))min(( ii SSfind
vv

==   {realign at negative peak} 

8: end if 

9:else 
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10: if sigLevelSabs i >=))(min((
v

 and )))(max( sigLevelSabs i <
v

 or 

 sigLevelSabs i <))(min((
v

 and )))(max( sigLevelSabs i >=
v

 then 

11:  {only one peak is significant, realign at it} 

11:   if )(min())(max( ii SabsSabs
vv

>  then 

12:   peakInd = ))max(( ii SSfind
vv

==  

13:  else 

14:   peakInd = ))min(( ii SSfind
vv

==  

15:  end if 

16: else 

17:  {This spike can't be re-aligned, discard} 

18: end if 

19:end if 

 

2.8  Appendix D — Projection test 

2.8.1  Pre-whitening of waveforms 

The raw waveform, consisting of N datapoints, is corrupted by strongly correlated noise.  

To de-correlate the noise, that is, to make each datapoint statistically independent of the others, a 

pre-whitening procedure (Kay, 1993) is applied as follows.  A large number of noise traces 

(usually many thousand) is extracted from the same raw data signal as the spike waveforms but 

from the parts where no spike is detected.  Each noise trace has the same number of datapoints as 

a spike waveform (N).  Arranging all these traces in a large matrix Z
r

(each row is one noise 

trace), the covariance matrix C
r

 of the noise can be calculated (Eq 7).  Using the Cholesky 
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decomposition (Eq 8), this matrix can be decomposed such that the product of the resulting 

matrix multiplied by its inverse results in the original matrix C
r

 (Eq 9). 

)cov(ZC
rr

=  (7) 

)(CcholR
rr

=  (8) 

RRC
rrr

'=  (9) 

By multiplying each raw spike waveform iS
v

 by the inverse of R
r

 from the right side, all 

correlations are removed (Eq 10).  After this operation, all datapoints of iP
r

 uncorrelated. 

1−= RSP ii

rrr
 (10) 

The Choleksy decomposition (Eq 8, 9), however, requires that the covariance matrix C
r

 

is invertable, that is, of full rank.  But this is generally only the case for full bandwith noise.  

Various other forms of noise, for example narrow-band noise, result in a rank deficiency of the 

covariance matrix C
r

.  Unfortunately we commonly observe this situation in our data.  There 

exist methods for prewhitening of signals with rank-deficient noise (Doclo and Moonen, 2002; 

Hansen, 1998), but this is beyond the scope of this paper.  Since all significant covariance values 

are usually very large, it is technically sufficient to add a very small amount of white noise to the 

covariance matrix (e.g., with a mean that is only 0.0001% of the covariance values) to make it 

full rank.  While this is theoretically incorrect, it works sufficiently and we have not observed any 
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noticeable differences in the decorrelated data with a rank-deficient pre-whitening method and the 

above method.  We are thus using this approach to maximize efficiency.  

 An alternative approach for whitening is to design a whitening filter and whiten 

the signal itself before detecting and extracting spikes. This can for example be done by using the 

matlab function lpc to design a filter, and using this filter to whiten the signal. This way of 

processing is less susceptible to the numerical problems mentioned above but is harder to 

implement in a realtime environment. We used this method of whitening for the results reported 

in this paper (simulations with exact threshold estimation method). 

2.8.2  Projection test 

The projection test is entirely calculated on the basis of the pre-whitened waveforms iP
r

 

as described above.  In the following, a waveform associated to cluster j is denoted as 
)( j

iP
r

 and 

the center of cluster j is )( jP
r

. 

)()( kj PPd −=
r

  (11) 
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r

 (12) 

The distance between two clusters is calculated by taking the norm of the difference 

between the two centers of cluster j and k (Eq 11).  The residual ir  (scalar) for each spike 
)( j

iP
r

 

that is assigned to cluster j against cluster k (pairwise comparison between clusters j and k) is 
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calculated by the dotproduct of the difference vector between the center and the spike 
)( j

iP
r

, 

projected onto the vector that connects the two cluster centers (Eq 12). 
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Chapter 3.  Single-trial learning of novel stimuli by individual neurons of 

the human hippocampus-amygdala complex 

3.1  Introduction3 

 One prominent feature of nervous systems is the ability to distinguish novel from 

familiar stimuli.  A rapid assessment of stimulus novelty is a prerequisite for certain kinds of 

learning (Davis et al., 2004; Kohonen and Lehtio, 1981; Li et al., 2003; Stark and Squire, 2000; 

Yamaguchi et al., 2004).  For instance, conditioned taste aversions (CTA) and some forms of 

conditioned fear can be acquired in a single learning trial. Crucially, successful conditioning 

depends on the novelty of the conditioned stimulus (CS) (see Welxl, 2000 for a review).  Pre-

exposure to the CS  severely diminishes associative learning (a.k.a. “latent inhibition”).  Further, 

conditioning is also reduced if only some aspects of the CS are novel while others are familiar. 

The sensitivity to CS novelty, but not the taste aversion itself, is blocked by hippocampal lesions 

(Gallo and Candido, 1995). The novelty dependence of single-trial learning in the CTA paradigm 

points to the importance of a rapid assessment of stimulus novelty or familiarity. 

 The medial temporal lobe (MTL) is crucial for the acquisition of declarative 

memories and some functional imaging techniques have shown activation of MTL structures 

associated with either novel or familiar stimuli (Stark and Squire, 2000; Stern et al., 1996; 

Tulving et al., 1996; Yamaguchi et al., 2004).  Lesion studies have repeatedly demonstrated that 

                                                 

3 The material in this chapter is based on Rutishauser, U., Mamelak, A.N., and Schuman, E.M. (2006a). Single-trial 
learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron 49, 805-813. 
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MTL damage impairs or abolishes behavioral, electrographic, and skin responses to novel stimuli 

(Kishiyama et al., 2004; Knight, 1996; Yonelinas et al., 2002). While these studies suggest a role 

of the MTL in novelty detection, the cellular basis for this discrimination has yet to be described.  

We report here that single neurons in the human MTL can alter their firing behavior to 

discriminate between novel and familiar complex stimuli following a single trial, exhibiting rapid 

plasticity as a result of single-trial learning.  

3.2  Results 

3.2.1  Task paradigm and behavioral results 

 We recorded single neuron activity using microwires implanted in the human 

hippocampus-amygdala complex (Figure 3-1A,B; see Table 3-1 for electrode locations), while 

subjects performed a object learning and recognition task.  The delay between the learning and 

the initial recognition period was approximately 30 min, during which time the subject performed 

a different, cognitively demanding task.  During learning, subjects were shown 12 different visual 

images.  Each image was presented once, randomly in one of four quadrants on a computer screen 

(Figure 3-1C).  Subjects were instructed to remember both the identity and the position of the 

image(s) presented.  During the recognition period, subjects saw either previously viewed 

(familiar) or new images (novel) presented at the center of the screen (Figure 3-1D).  For each 

image, the subject was asked to indicate whether the stimulus was new (novel) or old (familiar). 

Note that the novelty of a stimulus is only defined by whether it has been seen before or not 

(contextual).  No other attributes of the stimulus changed.  For each image identified as familiar, 

the subject was also asked to identify the quadrant in which the stimulus was originally presented 
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(spatial recollection). Subjects correctly identified, on average, 88.5 ± 2.8% of all familiar and 

novel items during recognition (Figure 3-5).  Subjects correctly recalled the quadrant location for 

49.5 ± 8.0% of the familiar stimuli. 
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Figure 3-1. Electrode placement and task design. 
 (A) Saggital and (B) axial post-implantation structural MRI of one patient.  The 
electrodes implanted in the amygdala (red) and the hippocampus (green) are indicated 
with arrowheads. The experiment has a learning (C) and a recognition block (D). 
Learning trials consisted of 12 images presented in one of 4 quadrants on the screen.  2 
seconds after the stimulus was removed and replaced by a blank screen, the subject was 
asked to report in which quadrant the stimulus was presented. During recognition trials 
(30 min later), the subject was shown the 12 old images mixed with a set of 12 new 
images and asked to indicate whether the image had been viewed before (old) or not 
(new). After classifying an image as "old", the subject was also asked to indicate where 
the picture was during learning (spatial recognition). 
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3.2.2  Neural representations of single-trial learning, novelty, and familiarity 

 We analyzed the response of every neuron recorded (total number of neurons 

across all subjects = 244) during the baseline, stimulus presentation, and post-stimulus delay 

period.  A neuron was considered selective if it exhibited an altered firing rate as a function of the 

stimulus (novel vs. familiar) (p < 0.05, bootstrap, see methods) and as a function of the task 

(learning vs. recognition phase).  Neurons that increased their firing when exposed to novel vs. 

familiar stimuli were classified as signaling "novelty", whereas neurons that increased their firing 

to familiar stimuli were classified as signaling "familiarity" (Figure 3-2).  Additionally, we 

classified responding neurons according to when they increased their firing: during the stimulus 

presentation of the stimulus or during the post-stimulus period (Figure 3-6D). Note that neurons 

signaling "novelty" increased their firing to new stimuli during the learning phase and also 

increased their firing to new stimuli presented during the recognition phase. 

Are individual neurons capable of signaling that learning has occurred?  If this is the 

case, then once the subject learns something about a stimulus (e.g., that it has been seen before) 

the firing properties of the neuron should reflect this knowledge.  In our task, any knowledge 

about whether the specific stimulus presented has been seen before must result from a single trial 

experience.  We indeed found subsets of neurons that showed enhanced or depressed firing rates 

on the second of two stimulus presentations, indicating the capacity for single-trial learning of 

familiarity.  There are two different patterns of responses we observed that indicate single trial 

learning.  One set of neurons ("familiarity detectors") exhibited enhanced firing when previously 

viewed stimuli were presented a second time during the recognition phase of the experiment.  An 

example of this type of response is shown in Figure 3-2, where the neuron does not exhibit any 
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appreciable response to the stimuli when first presented (Figure 3-2B) but when these same 

stimuli are presented a second time a dramatic increase in firing rate was observed (Figure 3-2D).  

These cells, which form a class of “familiarity” detectors, thus exhibit single-trial learning, 

exhibiting memory for a stimulus that was presented only one time.  The other class of cells 

increased firing only for the first presentation of the stimulus ("novelty detectors”, see Figure 3-8 

for an example).  All told, 40 neurons consistently signaled either novelty (n = 23) or familiarity 

(n = 17) (Figure 3-3A,B).  To characterize the firing differences of all neurons, we used two 

measures: i) average firing rate increase relative to baseline for new or old stimuli (depending on 

type of neuron), and ii) the average firing rate difference between new vs. old stimuli.  For both 

measures, spikes were counted in the entire 6 s period following stimulus onset. We find that 

neurons increase firing on average 47% relative to baseline and the average firing difference 

between old vs. new stimuli is 76% (Figure 3-3C). The larger difference when comparing new vs. 

old firing indicates that in addition to increasing firing to the preferred stimulus (e.g., familiar), 

neurons decrease firing for the other stimulus type (e.g., novel).  The large change in firing rate 

observed was induced by a single presentation of the stimulus and as such, these neurons provide 

a potential source for the rapid single-trial memory exhibited behaviorally by the subjects. 

 Do the observed neuronal changes reflect either a priming or a habituation 

response, or alternatively, do they reflect a form of long-term memory? If the former is the case, 

one would expect that, if presented with the same familiar stimuli (as well as new stimuli) 24 h 

later, the neuronal response to the familiar stimulus would be diminished. On the other hand, if 

the response reflects long-term memory, the altered firing pattern should still be observed the 

next day. To address this, we conducted a recognition session on the second and/or third day of 
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recording, presenting subjects with the stimuli learned the previous day (4 sessions total in 3 

patients) as well as a new set of stimuli. The time delay between the learning and the second 

recognition session was approximately 24 h (including one night of sleep). The behavioral 

performance (recognition and recollection) of these 3 patients did not differ significantly after a 

30 min or 24 h time delay.  Unfortunately, single-unit microwire recordings do not allow one to 

unambiguously determine whether the same individual neurons can be recorded on two sequential 

days.  As such, we asked whether individual neurons, recorded 30 min or 24 hrs after the stimulus 

presentation, showed differences in firing to old vs. new stimuli.  We then compared the average 

response strength per neuron after 30 min and 24 h time delays.  We found that neither the 

average response strength per neuron nor the average increase in firing rate relative to baseline 

(Figure 3-3D) differed significantly for the two different time delays (2-way ANOVA with 

groups neuron type (Novelty/Familiarity) and time delay (30 min/24 h), p < 0.05). These neurons 

thus reflect the memory of the stimulus learned 24 h earlier but do not exhibit any further 

increases in firing rate (see discussion). The majority of neurons (37 of 40) exhibited a significant 

response within the first 2 s after stimulus onset (Figure 3-7C).  Does the response strength 

decrease as a function of trial number?  We found that neither novelty nor familiarity neurons 

significantly reduce their response strength over the duration of the experiment, during either 

learning or recognition (1-way ANOVA with block-nr and p < 0.05 reveals no significant effects 

for blocks of 1, 2, 3, or 4 trials).  In addition, we found both types of neurons, familiarity and 

novelty detectors, in the amygdala as well as the hippocampus (Figure 3-6).  However, the overall 

incidence of these neurons was significantly less in the amygdala when compared to the 

hippocampus:  19.7 ± 4.9% (n = 11) of all hippocampal neurons and 8.3 ± 2.7% (n = 12) of all 
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amygdala neurons were classified as either novelty or familiarity neurons (n is number sessions, p 

< 0.05). 
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Figure 3-2. Example of a single hippocampal neuron during learning and 
recognition. 

(A) Schematic representation of the experiment. Baseline (blank screen) from 0 to 2s, 
stimulus presentation from 2 to 6s, and post-stimulus period (blank screen) from 6 to 8s. 
(B) Average responses (spikes/sec). (C-E) The top portion of each figure shows the 
rasters depicting individual spikes.  The stimulus was presented during the epoch defined 
by the dashed vertical lines. The bottom portion of each figure shows the binned 
histograms across all trials.  Insets show overlays of all spike waveforms during the phase 
of the experiment depicted. (C) Responses during each learning trial. (D) Responses 
during the recognition phase for all new (not previously viewed) stimuli. (E)  Responses 
during the recognition phase for all previously viewed (old) stimuli. Trials were 
randomly ordered during the experiment but are shown in (E) in the same order as during 
learning (C).   This neuron increases its firing rate for stimuli seen before (E) but not for 
stimuli viewed for the first time (novel during both learning and recognition) (C and D). 
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Note that in C and E, the exact same visual stimuli are presented to the subject (12 
images). When the stimuli are presented the first time (C), the neuron does not respond, 
whereas for the second presentation (E) it responds strongly.  

 

3.2.3  Single neuron and population decoding 

 We analyzed how reliably these neurons can signal novelty or familiarity with an 

ideal-observer model.  The model has access to the number of spikes fired during the 6 s period 

following stimulus onset.  Using this information, a “decision” is made as to whether the subject 

is viewing a novel or a familiar stimulus.  By parametrically varying the threshold (number of 

spikes) above which a single trial was considered novel or familiar, we conducted a receiver 

operator characteristic (ROC) analysis for each single neuron (Figure 3-7) and compared the true 

and false positives ratio at different thresholds.  As a summary measure, we computed the area 

under the curve (Britten et al., 1996), which is the probability of correctly predicting whether the 

subject is currently viewing a novel or familiar stimulus (probability is between 0 and 1.0;  0.5 

represents chance performance).  We found that our neurons have an average single-trial single-

neuron prediction probability of 0.72 ± 0.02.  The population average is significantly above the 

chance level, which is determined by randomly shuffling the novel/familiar labels while keeping 

the spike trains intact.  An observer that only has access to a single neuron can thus predict with 

on average 72% success whether a subject is seeing a familiar or novel stimulus.  

 How much information does the population of all recorded neurons contain about 

the familiarity of a stimulus?  While ROC analysis quantifies how much information a single 

neuron conveys about the stimulus, it remains to be investigated how well this information can 
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actually be decoded from a population of neurons on a single-trial basis.  Single trials are highly 

variable and noisy.  Does combining multiple neurons allow more accurate decoding than 

observing only a single neuron?  Only if the signal or the noise were uncorrelated among neurons 

would one expect an improvement in decoding accuracy. 

 To address these questions, we used a simple population decoder which has 

access to all simultaneously recorded neurons that were previously identified as signaling novelty 

or familiarity. The decoder does not know the identity (novelty or familiarity detector) of the 

neurons. The only information available to the decoder is the number of spikes each neuron fired 

in the 6 s period following stimulus onset. The weighted sum (Figure 3-4A) of all spike counts is 

used to predict whether, for a given trial, an Old or New stimulus was presented. The weights are 

estimated from a set of labeled trials (Old or New) using multiple linear regression (see Methods).  

 We evaluated the properties of the classifier by considering only behaviorally 

correct recognition trials. For each recording session, we trained the classifier with all trials 

except a randomly chosen one (the “left-out trial”).  Afterwards, we tested the classifier’s 

performance by using it to predict whether the “left-out trial” was Old or New. Repeating this 

procedure many times for each session gives an accurate estimate of classifier performance 

(leave-one-out cross validation, see Methods).  Additionally, we restricted the number of neurons 

that the classifier has access to. We found that the average single-trial classification performance 

increases from 67% correct for one neuron to 93% when 6 simultaneously recorded neurons are 

considered (Figure 3-4B, red line).  A 1-way ANOVA reveals a significant effect of number of 

neurons (F = 6.6, p = 0.0001). Repeating the same procedure using randomly scrambled labels for 

the test trial results in a chance (50%) level performance (Figure 3-4B, black line). This analysis 
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shows that it is beneficial for an "ideal" decoder to look at multiple neurons simultaneously.  This 

indicates that the spikes fired by individual neurons signaling familiarity are uncorrelated in the 

sense that each of them contributes additional information that can be used to increase the 

accuracy of decoding. 
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Figure 3-3. Population summary of all responding neurons. 
Learning trials are in green, recognition old (familiar) trials are in red and recognition 
new (novel) trials are in blue. Neurons were classified according to which stimulus (old 
or new) they exhibited an increased firing rate and when they increase their firing (during 
either the stimulus or post-stimulus period or both).  (A,B) Population average of all 
novelty (n=18) and familiarity neurons (n=10) which signal during the stimulus period. 
(C) Summary of response, quantified either as percentage firing rate difference during the 
6 s post-stimulus period for old vs. new stimuli (right) or as percentage rate change 
relative to baseline (left). Note that the average rate increase of 75% is the result of a 
single stimulus exposure — the stimulus is learned after one trial.  (D) Comparison of 
response for different time delays between learning and recognition.  Shown is the 
average response strength with 30 min and 24 h delay. There is no significant difference 
in response strength for 30 min and 24 h delay (ttest, p < 0.05) nor is there a difference 
for novelty and familiarity detectors (not shown, 2-way ANOVA, p < 0.05). All errorbars 
are ±s.e. and n specifies number neurons. 
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Figure 3-4. Population decoding from simultaneously recorded neurons. 
(A) Illustration of the decoding approach. Spikes of each neuron that signals 
novelty/familiarity (9 neurons in this example) are counted in the 6 s period following 
stimulus onset (first red line). Each neuron is assigned a weight determined by multiple 
linear regression. For a given trial, y predicts whether the trial is "Old" or "New". (B) 
Performance of the single trial-predictor as a function of number of simultaneously 
recorded neurons. Decoding performance increases when information from multiple 
recorded neurons is considered. The number of neurons used for decoding has a 
significant effect on performance of the decoder (1-way ANOVA, p < 0.001). n indicates 
the number of recording sessions. (C) The population decoder as trained in (B) applied to 
error trials. For 75% of all error trials in each session it predicts the correct response, that 
is, the neurons have better memory than the patient has behaviorally. The maximum 
number of available neurons is used for each session (mean number of  neurons =  4.5). 
Only sessions that have at least 2 error trials are included (8 sessions). Errorbars are s.e. 
per session (n = 8) and the mean per session is significantly different from chance (p < 
0.01). 
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3.2.4  Relations between neural responses and behavior 

 What is the relationship between the familiarity/novelty responses of individual 

neurons and the behavioral performance of the subject?  The neuronal activity associated with 

behavioral errors allows us to answer this question.  In our experiments, there were two kinds of 

error trials: i) recognition (novel vs. familiar) errors and ii) spatial recollection (which quadrant) 

errors.  Below we investigate each type of error separately, beginning with spatial recollection 

errors.  

 There have been conflicting accounts as to whether retrieval-related activity in 

the hippocampus is related to familiarity recognition or recollection (Cameron et al., 2001; Stark 

and Squire, 2000; Yonelinas et al., 2002).  One hypothesis states that the hippocampus is not 

involved in the retrieval of pure recognition memory, that is, memory without a recollective 

component.  To investigate this issue, we examined neural activity during trials with successful 

recognition but failed recollection (spatial location of stimulus).  We found that the subsequent 

successful spatial recollection is not required for neurons to exhibit familiarity responses.  In fact 

we observe novelty and familiarity selective neurons in subjects who perform at chance levels for 

spatial recollection: In 4 (of 12) sessions, spatial recollection performance was at chance (21.7 ± 

15.8%) and yet we found that 12 of the total 68 recorded units (17%) signaled novelty or 

familiarity. Thus, despite the fact that these patients weren't able to correctly recollect the spatial 

location in any of the trials, the same percentage of cells signaled novelty as in the other sessions.  

Also, for the sessions in which spatial recollection performance was above chance, we repeated 

our analysis including only trials associated with failed spatial recollection.  Of the original 30 
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neurons, 26 remained significant (see Methods for details).  We thus conclude that successful 

recollection is not required to observe a novelty/familiarity response in the hippocampus.  

 How is the neuronal activity during the stimulus presentation related to errors in 

recognition?  Recognition of pictures is a highly automatic and reliable form of memory and 

subjects are usually very confident in their responses.  This results in a small number of errors 

even when a large stimulus set is used, which has prevented analysis of such error trials in the 

past (Xiang and Brown, 1998).  In our experiments, however, we record from many neurons 

simultaneously and can thus use a population decoder that allows accurate single-trial decoding 

(see discussion above).  For each recording session, we trained the population decoder using all 

behaviorally successful trials.  Afterwards, we used it to investigate what it would predict for the 

spiking activity observed during error trials. What might the population decoder (classifier) 

predict for an error trial? The classifier could: i) be at chance, ii) mimic the subject’s (incorrect) 

response, or iii) predict the (correct, but  not chosen) response.  Each outcome would be 

informative: i) if it is at chance, these neurons do not contain any information about the stimulus 

on error trial; ii) if it predicts the behavioral response given, these neurons would likely represent 

some form of decision taken by the patient or motor planning activity related to the key the 

patient used to indicate the response; iii) if it predicts the correct response, these neurons would 

likely represent some form of high-fidelity memory.  The third possibility is intriguing because it 

would suggest that these neurons exhibit “better memory” than the subject’s behavioral response 

indicated.  Since we are interested in the fraction of error trials per session that predict a certain 

outcome, we consider only sessions which contain at least 2 error trials (8 out of 12 sessions with 

a total of 33 error trials).  For each session, we trained a classifier with all available neurons (on 
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average 4.5) that signaled novelty/familiarity using all behaviorally correct trials and used it to 

predict the outcome of each error trial.  We find that the classifier predicts the actual correct 

response for 75±7% of all error trials.  The classifier is thus able to correctly predict the correct 

response in 75% of all cases even when the subject responded incorrectly (Figure 3-4C).  These 

neurons thus have better memory than the patient exhibited behaviorally.  This also suggests that 

the neuronal activity reported here does not represent some form of motor activity related to the 

subject’s intended or actual response.  

 

 

3.3  Discussion 

3.3.1  Novelty and familiarity detectors in the human brain 

 We identified single neurons in the human hippocampus and amygdala that 

signal novelty or familiarity with an increase in firing rate.  Several other groups have described 

non-human primate neurons that gradually (over many trials) decrease their response magnitude 

as specific stimuli become more familiar (Asaad et al., 1998; Fahy et al., 1993; Li et al., 1993; 

Rainer and Miller, 2000; Rolls et al., 1993).  These types of neurons have also been observed in 

rodents (Berger et al., 1976; Vinogradova, 2001).  The opposite pattern, neurons that increase 

their response magnitude for familiar stimuli, have largely not been observed in the primate brain 

(Fahy et al., 1993; Heit et al., 1990; Rolls et al., 1993; Xiang and Brown, 1998), and only rarely 

in humans (Fried et al., 1997).  Also, studies investigating the relative proportion of 

novelty/familiarity- selective neurons in different areas of the MTL  have usually failed to find 
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any such neurons in the non-human primate hippocampus (Riches et al., 1991; Xiang and Brown, 

1998) or, in one case,  found only a very small proportion of such cells (Rolls et al., 1993).  In 

contrast, we found a large proportion (17%) of familiarity/novelty-sensitive neurons, with an 

approximately equal number of neurons that increased firing for novelty or familiarity in the 

human hippocampus and amygdala.  It has been speculated that the apparent absence of 

novelty/familiarity neurons in the primate hippocampus can be attributed to the lack of a spatial 

component in the tasks used (Riches et al., 1991; Xiang and Brown, 1998).  To address this point, 

we used a non-spatial (old/new) and spatial recollective component in our task and find that the 

responses observed do not depend on successful spatial recollection. Another crucial difference is 

the behavioral task. Our task consists of a learning and recognition block with an interposed time 

delay.  During the delay, other tasks are conducted.  Others have used a serial recognition task 

where learning and recognition trials are intermixed and as such, there is no time delay that would 

permit a diversion of cognitive resources.  It is possible that the emergence of the neuronal 

response requires time to develop.  In our experiments, the firing rate increase can be observed 

after an initial delay of 30 min and remains equally strong for at least 24 h.  This indicates that 

these neurons represent some form of long-term memory.  Also note that the response strength 

does not increase further between 30 min and 24 h delays.  The ability to correlate neuronal 

responses with human behavior may also be critical: we used an abstract task that can be rapidly 

learned thus facilitating the detection of these rapidly changing neuronal responses.  In contrast, 

in non-human primates a simple associative memory task can take many trials for animals to 

reach criterion and learning-induced changes in hippocampal activity show a similar prolonged 

temporal profile (Wirth et al., 2003). 
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Could it be that the different findings are caused by eye movements?  Most primate 

studies require the animal to fixate.  In our experiments, subjects are free to move their eyes as 

they like.  This is to make the task as natural as possible.  Owing to clinical constraints, we were 

unable to record eye movements but there are several pieces of evidence which argue that eye 

movements cannot explain our results.  The first few fixations made on any picture are mostly 

dominated by the statistics of the stimulus and do not change as a function of the familiarity of 

the stimulus (Noton and Stark, 1971).  Also, a previous study of human MTL neurons found no 

influence of the fixated location of the picture on the visual response properties (Kreiman et al., 

2002). 

 Others have reported that some neurons in the human MTL (Kreiman et al., 

2000a) and the primate cortex  (Li et al., 1993) are sharply tuned to the visual category of stimuli.  

Here, we used stimuli from many different visual categories (e.g., planes, cars, bottles, animals, 

mountains, people, computers, cameras, houses, books, chairs, and trucks) with one example per 

category.  While the small stimulus set required for this kind of memory experiment prevents us 

from testing large numbers of stimuli from different categories, the response observed is invariant 

to at least a majority of the visual categories we have used.  Thus, the neurons we describe here 

are capable of signaling the familiarity of the stimulus regardless of its visual category.  One 

possibility is that the neurons preserve their tuning to categories and additionally increase or 

decrease their firing to indicate familiarity in an additive way.  If this were the case, we would 

only detect broadly tuned units because narrowly tuned units would respond to a very limited set 

of stimuli.  The neuronal responses we describe could thus serve as “general” novelty detectors 
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that serve to establish the significance of behavioral stimuli during the acquisition of new or 

consolidation of existing memories (Lisman and Otmakhova, 2001). 

 Recognition and recollection are two largely distinct memory processes.  Here 

we study recognition memory, but to allow a comparison with earlier human studies of 

recall/recollection we have included a spatial recollective component.  Importantly we find that 

the response to the second presentation of the stimulus does not depend on whether spatial 

recollection is successful.  This is in agreement with an earlier study of recollective memory 

which found that recall success is not correlated with the response of hippocampal neurons 

(Cameron et al., 2001). Also note that (Cameron et al., 2001) used the same stimuli many times 

during learning, so that the resulting neuronal changes cannot be related to any specific stimulus 

presentation.  Similar studies of associative memory in the monkey hippocampus (Wirth et al., 

2003; Yanike et al., 2004) are also complicated by this issue: stimuli were presented a large (10–

30) number of times in order for the monkey to achieve behavioral criterion.  These studies 

generally find that hippocampal neurons only change their response after many learning trials and 

thus seem to represent some form of "well learned" information. In contrast, in our study of 

human MTL neurons we use a single-trial learning paradigm that reveals that neurons are capable 

of rapid, single-trial plasticity. 

3.3.2  Neurons that remember better than subjects 

 The finding that the neuronal activity during a majority of the error trials predicts 

the correct response represents an interesting disassociation between behavior and neuronal 

activity.  In theory, an error could occur because the subject did not pay attention (not see the 
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stimulus), accidentally pressed the wrong button, or because the subject did not remember the 

image correctly. Since the population decoder was not at chance levels for error trials, the first 

possibility can be excluded. Whether the subject accidentally pressed the wrong button or did not 

remember the image correctly cannot be determined from the available data. However, given the 

generally very high performance in the task and the absence of pressure to respond fast, it is 

unlikely that a majority of the error trials are caused by accidental wrong responses.  If one 

examines the successful recognition trials exclusively, one might conclude that the neuronal 

responses represent the outcome of the decision taken (Old or New) or a consequence of that 

decision, e.g., planning and/or pre- or post-motor activity. If this were the case, however, activity 

during error trials would have to predict the response that was actually observed. However, we 

observed the opposite: activity during error trials predicts the correct response. We thus conclude 

that the neurons reported here represent some form of memory.  In addition, the proportion of 

trials correctly identified by the neuronal responses is higher than what we observed behaviorally. 

Our data do not address at what point in the circuit the accurate neuronal responses on error trials 

fail to translate into correct behavioral responses. However, it is likely that information from 

multiple brain areas must be integrated to decide about the novelty of a stimulus. Any system of 

this nature requires an internal threshold for what is considered sufficient cumulative evidence for 

a stimulus to be classified as familiar. One could thus imagine situations where some brain areas 

provide input indicating familiarity but the cumulative evidence does not pass this threshold. 

Such a system would be maximally robust because it integrates multiple sources of information, 

perhaps trusting some more than others (Pouget et al., 2003).  While it seems puzzling to have 
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neurons that have better memory than is behaviorally observable, it makes sense in light of 

resistance to noise and erroneous transmission. 

 It has previously been observed that the average firing rate of some MTL neurons 

differs for successful vs. non-successful retrieval (Fried et al., 2002; Fried et al., 1997). However, 

in these studies, activity of the same neuron was not recorded during learning and it has thus 

remained impossible to determine whether these neurons changed their firing as a function of 

previous stimulus exposure or as a function of the task. In contrast, here we demonstrate that 

these changes result from a single stimulus exposure.  

3.3.3  Relationship to fMRI and ERP findings 

 It has proven difficult to find human MTL fMRI activity correlated with 

behavioral success in recognition memory tasks (Manns et al., 2003; Stark and Squire, 2000).  

Using single-unit recordings we find evidence for the coexistence of novelty and familiarity cells 

recorded at the same time in the same brain region. On half of all macroelectrodes (18 of 36), we 

detected both novelty and familiarity neurons. On 2 of 6 microwires with more than one 

novelty/familiarity neuron both types were found.  Since fMRI methods have limited spatial and 

temporal resolution and often rely on subtractive techniques, it is likely that the presence of both 

classes of neurons prevented their detection (Logothetis et al., 2001).  The coexistence of MTL 

neurons that signal novelty or familiarity is likely an important feature used in establishing the 

significance of environmental events during learning.  

 Scalp and intracranial event-related potentials (ERP) recorded during serial 

recognition tasks have revealed a prominent potential (P300) to novel as well as target stimulus 
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items (McCarthy et al., 1989; Sutton et al., 1965).  That is, there is a potential to both novel as 

well as familiar (task relevant) items, but not to distractors.  In hippocampal lesion patients it has 

been observed that the P3a component of the P300 is reduced (Knight, 1996).  While we did not 

record ERPs in this study, the P300 response has been observed previously with intracranial 

electrodes in similar locations (McCarthy et al., 1989).  It is thus of interest to note that the 

identified subpopulations of novelty and familiarity neurons we identified here could contribute 

to the P300. 

3.3.4  Interaction with other brain systems 

 What is driving the response of these neurons?  Neurons from multiple other 

brain areas can signal novelty or, more generally, the behavioral relevance of stimuli encountered 

in the environment. These include noradrenergic neurons in the locus coeruleus, cholinergic 

neurons in the basal forebrain as well as dopaminergic neurons in the midbrain (see (Schultz and 

Dickinson, 2000) for a review).  Their response to novel events habituates with brief delays, 

evidence for short-term memory. Common to all these areas is the modulatory nature of their 

output — it is thus unlikely that their output is sufficient to account for the MTL responses we 

observe.  These modulatory systems are known  to regulate the strength of hippocampal-

dependent learning, however (Frey et al., 1990; Neuman and Harley, 1983; Williams and 

Johnston, 1988), raising the possibility that the rapid plasticity we describe is related to the 

simultaneous release of neuromodulators that help induce long-lasting memories.  

 It is well known that animal behavior can be modified by a single exposure to a 

relevant stimulus (Sokolov, 1963).  One instance of such memory is episodic memory, which is, 
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by definition, memory of a single experience (Tulving et al., 1996). Other instances of single-trial 

learning include object recognition (Standing et al., 1970), spatial learning, and food caching 

(Clayton et al., 2001).  In contrast, other forms of learning, like classical conditioning or rule 

learning (Wirth et al., 2003), require many learning trials.  The neurons that underlie or 

participate in the rapid behavioral plasticity have, for the most part, evaded detection.  Here we 

find that MTL neurons exhibit remarkable plasticity: a single exposure to a stimulus was 

sufficient to induce a dramatic and significant change in the spiking pattern.  The observation of 

single-trial learning in MTL neurons indicates that, at least in principle, the rapid learning that 

human subjects exhibit has an electrophysiological correlate that occurs at the level of individual 

neurons.   

3.4  Experimental procedures 

3.4.1  Subjects and electrophysiology 

 Subjects were 6 patients (3 male, 3 female; mean age 37.5 ± 5.5 years; all native 

English speakers) diagnosed with drug-resistant temporal lobe epilepsy and implanted with 

intracranial depth electrodes to record intracranial EEG and single-unit activity.  Patients 

underwent stereotactic placement of hybrid  depth electrodes containing both clinical field 

potential contacts and microwire (50 μm) single-unit contacts, as described by (Fried et al., 

1999).  Briefly, electrodes were placed using orthogonal trajectories through the dorsolateral 

cortex, with the tip of the electrode targeting the amygdala, anterior hippocampus, orbitofrontal 

region, supplementary motor area, or anterior cingulate gyrus.  The commercially available 

electrodes (Behnke hybrid depth electrode, Adtech Inc, Racine, MN), contain 4–6 platinum-
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iridium 5 mm long circular electrodes, with a hollow center.  After insertion of the electrode in 

the target, the inner cannula was removed and a bundle of microwires was passed through the 

center of the electrode, extending 5 mm beyond the tip of the electrode in a “flower spray” 

design.  The electrodes were secured in place via a skull anchor bolt.  All electrodes were placed 

based on clinical criteria alone.  Patients were recruited for the research study after surgery was 

completed and EEG monitoring was initiated.  Participation was voluntary and patients could 

withdraw from the study at any time.  Informed consent was obtained and the protocol was 

approved by the Institutional Review Boards of the Huntington Memorial Hospital and the 

California Institute of Technology. For further details regarding the electrophysiological 

recordings, please see the supplemental material. 

3.4.2  Data analysis 

 Spikes were sorted with a template-matching method  (Rutishauser et al., 2006b). 

Only well-separated single neurons were used (see supplemental methods for details). We used a 

nonparametric bootstrap statistical test (Efron and Tibshirani, 1993) to assess significance at p < 

0.05 (see supplement for discussion why not a t-test).  To determine whether a neuron responds to 

new or old stimuli we compared the number of spikes fired for old vs. new stimuli during the 

stimulus on (4 s) and the post stimulus (2 s) period.  For bootstrapping, 10,000 randomly re-

sampled (with replacement) sets of spike counts were generated and tested for equality of means 

(Efron and Tibshirani, 1993).  A second statistical test was performed to determine whether the 

firing of a neuron between old stimuli during recognition and all stimuli during learning (which 

are, by definition, new) was different.  Only if both statistical tests were passed with p < 0.05 was 
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the neuron determined to function as a novelty or familiarity detector. We randomly shuffled the 

start/endpoints of trials (in time) while keeping everything else the same to establish chance 

performance for this statistical procedure.  We repeated this procedure 10 times and found a 

chance performance of 4.4% of all neurons (Figure 3-6D).  Error trials during learning (incorrect 

position) and recognition (New/Old wrong) were excluded from this analysis. 

All errors are standard error (s.e.), unless noted otherwise. 

3.4.3   Population analysis 

 To quantify how well we were able to decode information about the novelty of 

the stimulus for a single trial, we used a population decoder.  This also allowed us to analyze 

whether and how the decoding performance depends on the number of simultaneously recorded 

neurons.  We used a simple weighted sum classifier of the form nn sasaay +++= ...110 , where 

xs  represents the number of spikes in the 6 s period following stimulus onset for neuron x, and 

xa is the weight of this neuron.  The weights are determined from labeled training data using 

multiple linear regressions (Johnson and Wichern, 2002).  The label y is either set to 1 (New) or -

1 (Old).  Only neurons which were previously found to be signaling novelty/familiarity were 

considered for this analysis. 

 For verification purposes, we trained the classifier on behaviorally correct trials 

using leave-one-out cross validation.  The performance of this classifier was then verified by 

evaluating its prediction for the left-out trial. Repeating this procedure many times gives an 

accurate estimate of the true performance of the estimator. We repeated the same analysis by 

restricting the number of neurons the classifier had access to. In cases where more neurons were 
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available than the classifier could consider, a random subset of the available neurons was chosen 

and the procedure was repeated multiple times so that all possible combinations were explored.  

All error bars in the population analysis are given as s.e., with n being the number of sessions, to 

demonstrate the variance over multiple patients and recording sessions rather than over multiple 

neurons. 

 

3.5  Supplementary material 

3.5.1  Electrophysiology 

 Recordings were conducted using a commercial (Neuralynx Inc, Arizona) 

acquisition system with specially designed, head-mounted pre-amplifiers.  Signals were filtered 

and amplified by hardware amplifiers before acquisition.  The frequency band acquired was either 

1–9000Hz or 300–9000Hz, depending on the noise levels.  Great care was taken to eliminate 

noise sources.  This included using batteries to power the amplifiers, experimental computers, IV 

machines and heartbeat monitors.  Recordings commenced the second day after surgery and 

continued for 2–4 days for about 1 hour per day.  The experiments reported in this paper were 

done on two consecutive days for all 6 patients (12 sessions in total). 

 The amplifier gain settings, set individually for each channel, were typically in 

the range of 20000–35000 with an additional A/D gain of 4 (2 in some cases). The raw data was 

sampled at 25 kHz and written to disk for later filtering (300–3000Hz bandpass), spike detection, 

and spike sorting.  Spikes were detected using a local energy method (Bankman et al., 1993) and 
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sorted by a template-matching method (Rutishauser et al., 2006b).  Great care was taken to ensure 

that the single units used passed stringent statistical tests (projection test (Pouzat et al., 2002)) . It 

is thus likely that we underestimate the number of single units present. Only neurons with mean 

firing rates ≥ 0.25 Hz were included in the analysis. 

3.5.2  Electrodes 

 In each macroelectrode, 8 microwires were inserted (Fried et al., 1999). One 

microwire was used as local ground and the other 7 were used for recordings. The impedance of a 

total of 56 microwires in 2 patients was, on average, 135 ± 62kOhm (± s.d.) with a range of 38–

245 kOhm. 

  Electrode position was determined by an experienced neurosurgeon (ANM) from 

structural MRIs taken 1 day after electrode implantation on a clinical 1.5 Tesla MRI system 

(Toshiba, Inc).  We always recorded from 3 macroelectrodes simultaneously: left/right 

hippocampus and either left or right amygdala (total of 24 channels, 8 channels for each 

macroelectrode with 1 channel used as local ground). 

3.5.3  Localization of electrodes 

 We localized the position of each macroelectrode in a standardized stereotactic 

coordinate system (Talairach) in a subset of 4 patients for which high-resolution structural MRIs 

were available (Table 3-1).  We transformed each structural 1.5 T MRI scan to Talairach space by 

manually identifying the anterior and posterior commisure as well as the anterior, posterior, 

superior, and inferior points of the cortex. We used BrainVoyager (Brain Innovation B.V.) for 
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this procedure. After co-registration we identified the Talairach coordinates by finding a 

consensus from the different structural scans.  For each patient, we performed 4 different scans 

with 1x1 mm resolution in the following plane: coronal, sagittal, and 2 axial with different pulse 

sequences (2TW and FLAIR). 

Patient Amygdala (r/l) Hippocampus (r/l) 
P2 -20,1,-19 

26,-2,-20 
 

-26,-9,-11 
28,-11,-20 

P3 -20,-3,-15 
18,-4,-15 
 

-23,-13,-12 
33,-12,-16 
 

P4 -19,4,-26 
28,7,-26 

-21,-9,-25 
27,-7,-26 

P6 -23,-2,-14 
23,-6,-13 

-25,-13,-12 
29,-18,-12 

Table 3-1. Electrode position in stereotactic coordinates (Talairach) 

 

3.5.4  Implementation of behavioral task 

 The task was implemented using Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) in Matlab (Mathworks Inc) and ran on a notebook PC placed directly in front of the patient.  

Distance to the screen was approximately 50 cm and the screen was approximately 30 by 23 

degrees of visual angle. The pictures used were approximately 9 by 9 degrees. Specially marked 

keys ("New", "Old") on the keyboard were used to acquire subject responses. We chose to use 

natural pictures as stimuli rather than words or faces because it has been shown that pictures 

reliably result in bilateral fMRI activation of the MTL, whereas words and faces result in 

primarily unilateral (left) activation (Kelley et al., 1998). 
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3.5.5  Data analysis 

 We conducted all statistical analysis using bootstrap tests (see Methods of main 

text). To be thorough, we repeated the same analysis using a two-tailed t-test (p < 0.05) and found 

reasonable overlap with the pool of neurons determined to signal novelty or familiarity using the 

above bootstrap method.   We found, however, that using the t-test more neurons were classified 

as novelty/familiarity detectors, some of which (by visual inspection) were likely false positives.  

Also, the chance performance determined by random shuffling was high (~ 10%). We thus 

decided to exclusively use the bootstrap method since it yielded the most consistent and 

conservative results.   Post-stimulus histograms (PSTH) were created by binning the number of 

spikes into 250 ms bins. To convert the PSTH to an instantaneous firing rate, a Gaussian kernel 

with standard deviation  = 300 ms was used to smooth the binned representation.  Population 

averages (Figure 3-3C and D) were constructed by averaging the normalized firing rate of each 

neuron.  Firing rates were normalized to the mean firing rate of the neuron during the particular 

part of the experiment (learning block or recognition block). We averaged the raw normalized 

PSTH of each neuron (above PSTH smoothing is not applied to normalized PSTH of each 

neuron, nor to the population average). 

3.5.6  Spatial recollection analysis 

 To investigate whether the response observed during familiarity/novelty 

recognition required later successful spatial recollection we conducted additional data analyses.  

Based on several pieces of evidence we find that successful spatial recollection is not required for 

emergence of novelty/familiarity cells: i) In 4/12 sessions spatial recollection performance was at 
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chance levels (mean 21.7 ± 7.9%) and yet we found that 14.8% of the recorded neurons in these 

sessions signaled novelty/familiarity during recognition and showed single-trial learning. This 

percentage is remarkably similar to the percentage of all neurons that signal novelty or familiarity 

(Figure 3-6). Thus despite the fact that these patients weren't able to correctly recollect the spatial 

location in any of the trials the same percentage of cells signaled novelty as in the other sessions. 

ii) In the 8 sessions with above-chance spatial recollection performance (mean 63.91±7.02%), 28 

neurons were found (17.2% of all recorded neurons). Repeating the analysis as described above, 

but only including trials with successful recollection, results in 26 of those 30 neurons remained 

significant. The number of selective neurons is thus decreased if only trials with successful spatial 

recollection are included and error trials are thus contributing valuable information. iii) In 9 

sessions there were at least 4 spatial recollection error trials (correctly recognized as Old, but 

location wrong). Considering only these error trials (disregarding trials with correctly 

remembered locations), 20 out of originally 26 (77%) neurons remain significant. A high 

proportion of all originally identified neurons thus signal novelty/familiarity even in the absence 

of successful spatial recollection. 

3.5.7  Single-neuron ROC analysis 

 To determine how well the response of a single neuron during recognition 

predicts whether the patient is currently viewing a familiar or novel stimulus we conducted an 

ROC (receiver-operator characteristic) analysis (Britten et al., 1996; Green and Swets, 1966). 

This analysis assumes that an ideal observer, who only has access to the number of spikes fired 

by a single neuron during the presentation of the stimulus and the post-stimulus period (6 s 
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period), should be able to correctly classify individual neurons as signifying novelty vs. 

familiarity.  Only trials where the subject correctly replied with "Old" or "New" were used for 

this analysis (this was 88.5% of all trials). We quantify the ROC for each neuron recorded by 

integrating the area under the curve (AUC) of the ROC.  This number equals the probability of 

correctly predicting, on a single-trial basis, whether the “subject” has viewed a novel or familiar 

stimulus. An AUC of 0.5 equals chance.  We confirmed the validity of our analysis by randomly 

shuffling the labels "New" and "Old" while leaving the spike trains intact.  Repeating this 

procedure 50 times for each neuron resulted in AUC values clustered around 0.5 (Figure 3-7A,B). 

 We conducted this ROC analysis without preclassifying neurons into 

novelty/familiarity detectors. This results in a cluster of neurons with a prediction probability 

significantly below 0.5 and one significantly above 0.5. Since Old/New is a binary state, this 

contributes equal information and we thus subtracted 1-x for all ROC values x < 0.5 to get an 

unimodel distribution, as shown in Figure 3-7A. 

 We repeated the analysis above for different time bins following stimulus onsets 

(step size 500 ms), e.g. counting spikes in bins 2000–2500 ms, 2000–3000 ms, 2000–3500 ms, 

etc. Using this analysis we defined for each neuron when its ROC value became significantly 

above chance the first time (Figure 3-7C). 

3.5.8  Epileptic vs. non-epileptic tissue 

 One concern regarding the neurons described in this paper is that they were 

recorded from epilepsy patients. To confirm that our findings are also valid for "healthy" tissue, 

we repeated our analysis but excluded all electrodes which were in tissue that was later resected 
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(Table 3-2). Of the total 244 recorded neurons, 138 were in tissue which was not resected. Of 

these 138 neurons, 22 signalled novelty or familiarity (15.9%).  

Patient Side of temporal 
lobe lobectomy 

P1 left 

P2 left 

P3 right 

P4 left 

P5 left 

P6 right 

Table 3-2. Location of resected tissue (temporal lobe lobectomy in each case). 
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3.6  Supplementary figures 

 

Figure 3-5. Behavioral performance of all subjects.  
Recognition performance (Old/New) was close to 90% (chance 50%) whereas spatial 
recollection, in which the subject reports the quadrant in which the images was presented 
for all images classified as "Old", was 49%. All performance levels are significantly 
different from chance (p < 0.05). 
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Figure 3-6. Population statistics for all neurons. 
(A) as well as the subset of significantly responsive neurons (B-F). (A) The mean firing 
rates of all neurons recorded (n = 244) was 1.96 ± 0.14 Hz. The mean firing rate was not 
significantly different among different brain areas (1-way ANOVA, p < 0.05). (B) The 
mean firing rate of all responsive neurons (n = 40) was 2.17 ± 0.30 Hz, with no 
significant difference amongst different brain areas. (C)  The mean firing rate for novelty 
and familiarity neurons was not statistically different from all other neurons recorded (1-
way ANOVA, p  <0.05) during either learning or recognition. (D) Considering all 
sessions, 16.5% of all recorded neurons indicated novelty or familiarity in every session 
(2 sessions each in 6 patients). There were slightly more novelty neurons (9.2%/per 
session) than familiarity neurons (7.3%/per session). (E) We found a total of 40 
significant neurons, 18 of which signaled during the stimulus period, 13 during the post-
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stimulus period, and 9 during both;  (F) There were 24 novelty and 18 familiarity 
neurons.  

Abbreviations: RH, right hippocampus; RA, right amygdala, LH, left hippocampus; LA, 
left amygdala; hippo, hippocampus; amygd, amygdala. All error bars are ±s.e and n 
always specifies number of neurons. 

 

Figure 3-7. Single-neuron prediction probabilities. 
(A) Histogram of the single-trial prediction probabilities for all 40 significant neurons. 
The mean probability was 0.72±0.02. The prediction probability is equal to the area under 
the curve of the ROC of each neuron and specifies the ratio of recognition trials in which 
novelty or familiarity is successfully predicted on a trial-by-trial basis by observing a 
single neuron. Randomly shuffling (scrambled) the spike counts of new and old trials 
results in a mean of 0.5 (red in A, error bars are s.d.). The ROC for the same neuron as 
shown in figure 2 is shown in (B) (blue = real trials, red = randomly shuffled). (C) 
Latency of response for all neurons. Shown are, for each time following stimulus onset, 
the percentage of neurons which became significant for the first time in this time bin. 
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Figure 3-8. Example of a novelty-sensitive neuron.  
Neuron which increases firing to novel stimuli during both learning and recognition. (A) 
Raster for all spikes during learning (green), recognition old (red), and recognition new 
(blue). (B) Histogram summarizing the response. Note the decrease to familiarity. (C) 
Comparison of the number of spikes fired during the 4 s stimulus period (white in B). 
The number of spikes fired for familiar items is significantly different from the number of 
spikes fired during learning and recognition of new items. (p < .001 for both 
comparisons, 1-way ANOVA with posthoc multiple comparison. n = 12 (number of 
trials)). 
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Chapter 4.  Activity of human hippocampal and amygdala neurons 

during retrieval of declarative memories 

4.1  Introduction4 

 Episodic memories allow us to remember not only whether we have seen 

something before but also where and when (contextual information). One of the defining features 

of an episodic memory is the combination of multiple pieces of experienced information into one 

unit of memory. An episodic memory is, by definition, an event that happened only once. Thus, 

the encoding of an episodic memory must be successful after a single experience. When we recall 

such a memory, we are vividly aware of the fact that we have personally experienced the facts 

(where, when) associated with it. This is in contrast to pure familiarity memory, which includes 

recognition, but not the “where” and “when” features. The MTL, which receives input from a 

wide variety of sensory and prefrontal areas, plays a crucial role in the acquisition and retrieval of 

recent episodic memories. Neurons in the primate MTL respond to a wide variety of stimulus 

attributes such as object identity (Heit et al., 1988; Kreiman et al., 2000a) and spatial location 

(Rolls, 1999). Similarly, the MTL is involved in the detection of novel stimuli (Knight, 1996; 

Xiang and Brown, 1998). Some neurons carry information about the familiarity or novelty of a 

stimulus (Rutishauser et al., 2006a; Viskontas et al., 2006) and are capable of changing that 

response after a single learning trial (Rutishauser et al., 2006a). The MTL, and in particular the 

                                                 

4 The material in this chapter is based on Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2008). Activity of human 
hippocampal and amygdala neurons during retrieval of declarative memories. Proc Natl Acad Sci U S A 105, 329-334. 
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hippocampus, are thus ideally suited to combine information about the familiarity/novelty of a 

stimulus with other attributes such as the place and time of occurrence. 

 The successful recall of an experience depends on neuronal activity during 

acquisition, maintenance, and retrieval. The MTL plays a role in all three components. Here, we 

focus on the neuronal activity of individual neurons during retrieval. The MTL is crucially 

involved in the retrieval of previously acquired memories: brief local electrical stimulation of the 

human MTL during retrieval leads to severe retrieval deficits (Halgren et al., 1985). Two 

fundamental components of an episodic memory are whether the stimulus is familiar and if it is, 

whether information is available as to when and where the stimulus was previously experienced 

(e.g., recollection). How these components interact, however, is not clear. A key question is 

whether there are distinct anatomical structures involved in these two processes (familiarity vs. 

recollection).  

 Some have argued that the hippocampus is exclusively involved in the process of 

recollection but not familiarity (Eldridge et al., 2000; Yonelinas, 2001). Evidence from behavioral 

studies with lesion patients, however, seems to argue against this view (Manns et al., 2003; Stark 

et al., 2002; Wais et al., 2006). Rather than removing the capability of recollection while leaving 

recognition (familiarity) intact, hippocampal lesions cause a decrease in overall memory capacity 

rather than the loss of a specific function. Lesion studies, however, do not allow one to 

distinguish between acquisition vs. retrieval deficits. 

 Recollection of episodic memories is difficult to study in animals (but see 

(Hampton, 2001)) but can easily be assessed in humans. Recordings from humans offer the 

unique opportunity to observe neurons engaged in the acquisition and retrieval of episodic 
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memories. We recorded from single neurons in the human hippocampus and amygdala during 

retrieval of episodic memories. We used a memory task that enabled us to determine whether a 

stimulus was only recognized as familiar or whether an attribute associated with the stimulus (the 

spatial location) could also be recollected. We hypothesized that the neuronal activity evoked by 

the presentation of a familiar stimulus would differ depending on whether the location of the 

stimulus would later be recollected successfully or not. We found that the neuronal activity 

contains information about both the familiarity and the recollective component of the memory.  

4.2  Results 

4.2.1  Behavior  

 During learning, subjects (see Table 4-1 for neuropsychological data) were 

shown 12 different pictures presented for 4 seconds each (Figure 4-1A). Subjects were asked to 

remember the pictures they had seen (recognition) and where they had seen them (position on the 

screen). After a delay of 30 min or 24 h, subjects were shown a sequence of 12 previously seen 

("Old") and 12 entirely different ("New") pictures (Figure 4-1B). Subjects indicated whether they 

had seen the picture before and where the stimulus was when they saw it the first time. We refer 

to the true status of the stimulus as Old or New and the subject’s response as Familiar or Novel. 

With the exception of error trials the two terms are equivalent. Subjects remembered 90 ± 3% of 

all old stimuli and for 60 ± 5% of those they remembered the correct location (Figure 4-1C). 

Some subjects were not able to recollect the spatial location of the stimuli whereas others 

remembered the location of almost all stimuli. For each 30 min retrieval session, we determined 

whether the patient exhibited, on average, above chance (R+) or at chance (R-) spatial recollection 
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and then calculated the behavioral performance separately (Figure 4-1D,E). Patients with good 

same-day spatial recollection performance (30 min R+) remembered the spatial location of on 

average 77±6% (significantly different from 25% chance, p < 0.05, z-test) of stimuli they 

correctly recognized as familiar whereas at-chance patients (30 min R-) recollected only 35±4% 

of stimuli (approaching but not achieving statistical significance, p = 0.07). There were thus two 

behavioral groups for the 30 min delay: one with good and one with poor recollection 

performance. 

We also tested a subset of the subjects that had good recollection performance on the first 

day with an additional test 24 h later (4 subjects). Subjects saw a new set of pictures and were 

asked to remember them overnight. Overnight memory for the spatial location was good (66±1%, 

p < 0.05). All 3 behavioral groups (30 min R+, 30 min R-, 24 hr R+) had good recognition 

performance (Figure 4-1E) that did not differ significantly between groups (ANOVA, p = 0.24). 

The FP rate was on average 7±3% and did not differ significantly between groups (ANOVA,p = 

0.37).  
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Figure 4-1. Experimental setup and behavioral performance. 
The experiment consists of a learning (A) and retrieval (B) block. (C) Patients exhibited 
memory for both the pictures they had seen (recognition) as well as where they had seen 
them (recollection). n = 17 sessions. (D) Two different time delays were used: 30 min 
and 24 h. 30min delay sessions were separated into two groups according to whether 
recollection performance was above chance or not. (E) For all groups, patients had good 
recognition performance for old stimuli, regardless of whether they were able to 
successfully recollect the source. n = 7,5,4 sessions, respectively. Errors are ± s.e.m. 
Horizontal lines indicate chance performance. R+ = above chance recollection, R- at 
chance recollection. 
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4.2.2  Single-unit responses during retrieval 

 We recorded the activity of 412 well separated units in the hippocampus (n = 

218) and amygdala (n = 194) in 17 recording sessions from 8 patients (24.24±11.51 neurons 

(±s.d.) per session). The mean firing rate of all neurons was 1.45±0.10 Hz and was not 

significantly different between the amygdala and the hippocampus (Figure 4-5A). For each 

neuron we determined whether its firing differed significantly in response to correctly recognized 

old vs. new stimuli. Note that “old” indicates that the subject has seen the image previously 

during the learning part of the experiment. Thus, the difference between a novel and old stimulus 

is only a single stimulus presentation (single-trial learning). We found a subset of neurons (114, 

6.7±4.7 per session, see Table 4-2) that contained significant information about whether the 

stimulus was old or new. Because error trials were excluded for this analysis, the physical status 

(old or new) is equal to the perceived status (familiar or novel) of the stimulus. Neurons were 

classified as either familiarity (n = 37) or novelty detectors (n = 77) depending on the stimulus 

category for which their firing rate was higher (see methods). The analysis presented here is 

based on this subset of neurons. The mean firing rate of all significant neurons (1.6±0.2Hz, 

n=114) did not differ significantly from the neurons not classified as such (1.4±0.1Hz, n = 298). 

Similarly, the mean firing rate of neurons that increase firing in response to novel stimuli was not 

different from neurons that increase firing in response to old stimuli (Figure 4-5C,D).  

 The response of a neuron that increased firing for new stimuli is illustrated in 

Figure 4-2A–C. This neuron fired on average 1.1±0.2 spikes/s when a new stimulus was 

presented and only 0.6±0.1 spikes/s when a correctly recognized, old stimulus was presented 

(Figure 4-2C). Of the 10 old stimuli (2 were wrongly classified as novel and are excluded), 8 
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were later recollected whereas 2 were not. For the 8 later recollected items (R+) the neuron fired 

significantly less spikes than for the not recollected items (0.5±0.1 v. 0.9±0.3, p < 0.05, Figure 

4-2C). Thus, this neuron fired fewer spikes for items which were both recollected and recognized 

than for items which were not recollected. We found a similar, but opposite pattern for neurons 

that increase their firing in response to old stimuli (see below). We thus hypothesized that these 

neurons represent a continuous gradient of memory strength: the stronger the memory, the more 

spikes that are fired by familiarity-detecting neurons (Figure 4-2D). Similarly, we hypothesized 

that the opposite relation would hold for novelty neurons: the fewer spikes, the stronger the 

memory.  

We analyzed 3 groups of sessions separately: Same day with good recollection 

performance (30 min R+), same day with at chance recollection performance (30 min R-) and 

overnight with above-chance recollection (24 h R+). Sessions were assigned to the 30 min R+ or 

30 min R- groups based on behavioral performance. We hypothesized that if the neuronal firing 

evoked by the presentation of an old stimulus is purely determined by its familiarity, the neuronal 

firing should not differ between stimuli which were only recognized and stimuli which were also 

recollected. On the other hand, if there is a recollective component, then a difference in firing rate 

should only be observed for recording sessions in which the subject exhibited good recollection 

performance. 

 First we examined the novelty (Figure 4-2E) and familiarity neurons (Figure 

4-2F) in the 30 min R+ group. The pre-stimulus baseline was on average 1.7±0.4 Hz (range 0.06–

9.5) and 2.6±1.0 Hz (range 0.2–12.9) for novelty and familiarity neurons, respectively, and was 

not significantly different. Units responding to novel stimuli increased their firing rate on average 



138 

 

by 58±5% relative to baseline. Similarly, units responding to old stimuli increased their firing by 

41±8% during the second stimulus presentation. We divided the trials for repeated stimuli into 

two classes: stimuli that were later recollected (R+) and not recollected (R-). A within-neuron 

repeated measures ANOVA (factor trial type: new, R- or R+) revealed a significant effect of trial 

type for both novelty (p < 1e-12) as well as familiarity units (p < 1e-6). This test assumes that 

neurons respond independently from each other. For both types of units we performed two 

planned comparisons: i) New vs. R- and ii) R- vs. R+. For novelty neurons, the hypothesis was 

that the amount of neural activity would have the following relation: New > R- and R- > R+. For 

familiarity, the hypothesis was the opposite: New < R- and R- < R+ (Figure 4-2D). For novelty as 

well as familiarity neurons, each prediction proved to be significant (one-tailed t-test. Novelty: 

New vs. R- t = 4.3, p < 1e-4 and R- vs. R+ t = 2.2, p = 0.01. Familiarity: New vs. R- t = -1.7, p = 

0.05 and R- vs. R+ t = -2.0, p = 0.02). Thus both novelty- and familiarity-detecting neurons 

signaled that a stimulus is repeated even in the absence of recollection (New vs. R-) and whether 

a stimulus was recollected or not (R- vs. R+). 

The same analysis applied to the remaining groups (30 min R- and 24 h R+) revealed a 

significant main effect of trial type for novelty (p < 1e-4 and p < 1e-5, respectively) as well as 

familiarity neurons (p < 0.001 and p < 0.001, respectively). However, only the New vs. R- 

planned comparison was significant (Novelty: p < 0.001 and p < 0.001; Familiarity: p < 0.001 and 

p < 0.001) whereas the R- vs. R+ comparison was not significant for either group (Novelty: p = 

0.6 and p = 0.7; Familiarity: p = 0.68 and 0.49). Thus, the activity of these units was different for 

new vs. old stimuli but the response to old items was indistinguishable for recollected vs. not 

recollected stimuli.  
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Figure 4-2. Single cell response during retrieval. 
(A–C) Firing of a unit in the right hippocampus that increases its firing in response to 
new stimuli that were correctly recognized (novelty detector). (A) Raster of all trials 
during retrieval and the waveforms associated with every spike. Trials: New (blue), old 
and recollected (red, R+) and old and not recollected (green, R-). (B) PSTH. (C) Mean 
number of spikes after stimulus onset. Firing was significantly larger in response to new 
stimuli and the neuron fired more spikes in response to stimuli which were later not 
recollected compared to stimuli which were recollected. (D) The hypothesis: the less 
novelty neurons fire, the more likely it is that a stimulus will be recollected. The more 
familiarity-detecting neurons fire, the more likely it is that a stimulus will be recollected. 
The dashed line indicates the baseline. (E–F) Normalized firing rate (baseline = 0) of all 
novelty (E) and familiarity-detecting (F) neurons during above-chance sessions (30 min 
R+). Novelty neurons fired more in response to not recollected items (R-) whereas 
familiarity neurons fired more in response to recollected items (R+). Errors are ±s.e.m. nr 
of trials, from left to right, 388, 79, 259, 338 (E) and 132, 31, 96, 127 (F). 
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4.2.3   Quantification of the single-trial responses 

 Both groups of neurons distinguished recollected from not recollected stimuli, 

but the difference was of opposite sign. In the novelty case, neurons fire less for recollected items 

(Figure 4-2E) whereas in the familiarity case neurons fire more (Figure 4-2F). We thus 

hypothesized that both neuron classes represent a continuous gradient of memory strength. In one 

case, firing increases with the strength of memory (familiarity detectors) whereas in the other 

case firing decreases with the strength of memory (novelty detectors). Thus, a strong memory 

(R+) is signaled both by strong firing of familiarity units as well as weak firing of novelty 

neurons. Weak memory (R-) is signaled by moderate firing of familiarity and novelty neurons. 

No memory (a new item) is signaled by strong firing of novelty detectors and weak firing of 

familiarity detectors. Another feature of the response is that it is often bimodal (see also Figure 

4-6). For example, familiarity neurons do not only increase their firing for old items but also 

decrease firing to new items (Figure 4-2F). This pattern can also be observed in the firing pattern 

shown in Figure 4-2A: Immediately after stimulus onset, this neuron reduces its firing if the 

stimulus is old.  

We developed a response index R(i) that takes into account the opposite sign of the 

gradient for the two neuron types, the bimodal response as well as different baseline firing rates. 

This index makes use of the entire dynamic range of each neuron’s response. R(i) is equal to the 

number of spikes fired during a particular trial i, minus the mean number of spikes fired to all 

new stimuli divided by the baseline (Eq 1). For example, if a neuron doubles its firing rate for an 

old stimulus and remains at baseline for a novel stimulus the response index would equal 100%. 
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By definition, R(i) is negative for novelty units and we thus multiplied R(i) by -1 if the unit was 

previously classified as a novelty unit.  

  First, we describe the response of the 30 min R+ group. In terms of the 

response index, the average response was significantly stronger to presentation of old stimuli that 

were later recollected when compared to stimuli which were later not recollected. This was true 

for a pairwise comparison for every neuron (Figure 4-3A, 68% vs. 50%, n = 45 neurons from 4 

subjects) as well as for a trial-by-trial comparison (Figure 4-3B, 67% vs. 45%, p < 0.01, n = 

number of trials). Note that the same difference exists if neurons from the hippocampus (n = 30, 

R+ vs. R-, p < 0.05) or the amygdala (n = 15, R+ vs. R-, p < 0.05) are considered separately (see 

Figure 4-7A and Table 4-2). The difference in response (of 22%) is entirely due to recollection of 

the source. Re-plotting the data as a cumulative distribution function (cdf) shows a shift of the 

entire distribution due to  recollection (Figure 4-3C, green vs. red line; p ≤ 0.01). The cdf shows 

the proportion of all trials that are smaller than a given value of the response index. It illustrates 

the entire distribution of the data rather than just its mean. We also calculated the response index 

for correctly identified new items. By definition the mean response to novel stimuli is 0, but it 

varies trial-by-trial (blue line). The shift in response induced by familiarity alone (blue vs. green, 

p ≤ 10-5) lies in between the shift induced by comparing novel stimuli with old stimuli that were 

successfully recollected (Figure 4-3C, blue vs. red, p ≤ 10-19). The response index is thus a 

continuous measure of memory strength. From the point of view of this measure, novel items are 

distractors and old items are targets. We fitted normal density functions to the three populations 

(distractors, R- and R+ targets). R+ targets showed a greater difference from the distractors than 

R- targets (Figure 4-3D).  
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 Is there a significant difference between recollected and not recollected stimuli 

for patients whose behavioral performance was near chance levels? We found that the mean 

response to recollected and not recollected stimuli did not differ (Figure 4-3E,F. 45% vs. 46%, p 

= 0.93). This is further illustrated by the complete overlap of the distribution of responses to R+ 

and R- stimuli (Figure 4-3F, p = 0.53). (This is also true if hippocampal neurons are evaluated 

separately, Figure 4-7). Thus, the difference (22%) associated with good recollection performance 

was entirely abolished in the subjects with poor recollection memory. 

 Was the neuronal response still enhanced by good recollection performance after 

the 24 h time delay? Subjects in the 24 h delay group had good recollection performance (66%) 

that was not significantly different from their performance on the 30 min delay period. Thus, 

information about the source of the stimulus was available to the subject. Surprisingly, however, 

we found that the firing difference between recollected and not recollected items was no longer 

present (Figure 4-3G,H). Firing differed by 59% for recollected items compared to 61% for not 

recollected items (Figure 4-3G,H. p = 0.81). (This is also true if hippocampal neurons are 

evaluated separately; Figure 4-7C). This lack of difference between R+ and R- items is in contrast 

to the 30 min R+ delay sessions, where a difference of 22% was observed. 
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Figure 4-3. Neuronal activity distinguishes stimuli that are only recognized (R-) 
from stimuli that are also recollected (R+). 

 (A–E) Same day sessions with above-chance recollection performance (30 min R+). (A) 
Pairwise comparison of the mean response for all 45 neurons (paired t-test). (B) Trial-by-
trial comparison. The response was significantly higher for stimuli which were recalled 
(R+, n = 386) compared to the response to stimuli which were not recalled (R-, n = 123). n 
is number of trials. (C) Cumulative distribution function (cdf) of the data shown in (B). 
The response to new stimuli is shown in blue (median is 0). The shift from new to R- 
(blue to green) is induced by familiarity only. (D) Normal density functions showing a 
shift of R+/ R- relative to new stimuli. (E–F) Same plots for  sessions with chance level 
performance. There is no significant difference. The cdfs of R+ (n = 127) and R- (n = 254) 
overlap completely but are different from the cdf of new trials (blue v. red/green, p < 10-
9). (G–H) activity during retrieval 24h later did not distinguish successful (n = 226) from 
failed (n=114) recollection. Errors are ±s.e.m. 
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4.2.4  Neural activity during recognition errors 

 What was the neural response evoked by stimuli that were incorrectly recognized 

by the subject? Patients could make two different types of recognition errors: i) not remembering 

an item (false negative, FN) and ii) identifying a new picture as an old picture (FP). Here, we 

pooled all same-day sessions (13 sessions from 8 patients) regardless of recollection performance. 

First, we focused on the FNs. We hypothesized that if the neuronal activity truly reflects the 

behavior, the response should be equal to the response to correctly identified novel stimuli. On 

the other hand, if the neurons we recorded from represent a general representation of memory 

strength, we expect to see a response that is smaller than that observed for correctly recognized 

items. Indeed, we found that the mean response during "forgot" error trials was 14±3% (Figure 

4-4A, yellow), significantly different from the response to novel stimuli (Figure 4-4B, blue vs. 

yellow; p < 10-4, ks-test). It was also significantly weaker when compared to all correctly 

recognized items (Figure 4-4B, yellow v. green and red, p ≤ 0.05, ks-test, Bonferonni corrected). 

What was the response to stimuli which were incorrectly identified as familiar? We hypothesized 

that if the FPs represent responses that were truly wrongly identified as old (rather than an 

accidental button press) we would observe a neuronal response that was significantly different 

from that observed for novel items. Indeed we found that the response to FPs was significantly 

different from 0 as well as from the response to novel stimuli (Figure 4-4B, blue v. gray; ks-test p 

= 0.007). The response to FPs and FNs was not significantly different (Figure 4-4B, gray vs. 

yellow; ks-test, p = 0.14). (For the previous analysis we pooled neurons recorded from the 

hippocampus as well as the amygdala. The same response pattern holds, however, if hippocampal 
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units are evaluated separately; Figure 4-7D). This pattern of activity during behavioral errors is 

consistent with the idea that the neurons represent memory strength on a continuum. 

 

Figure 4-4. Activity during errors reflects true memory rather than behavior. 
All 30 min sessions are included for this analysis. (A) Neural response. (B) Response 
plotted as a cdf. Notice the shift from novel to false negatives (p < 10-4): the same 
behavioral response (novel) leads to a different neural response still differed significantly 
when compared to real novel pictures. The inset shows the different possible trial types. 
Errors are ±s.e.m, n is nr of trials (759, 521, 1372, 148, and 56, respectively; 13 sessions, 
8 patients). 

4.3  Discussion 

 We analyzed the spiking activity of neurons in the human MTL during retrieval 

of declarative memories. We found that the neural activity differentiated between stimuli that 

were only recognized as familiar and stimuli for which (in addition) the spatial location could be 

recollected. Further, we found that the same neural activity was also present during behavioral 

errors, but with reduced amplitude. This data is compatible with a continuous signal of memory 

strength: the stronger the neuronal response, the better the memory. Forgotten stimuli have the 
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weakest memory strength and stimuli which are only recognized but not recollected have medium 

strength. The strongest memory (and thus neuronal response) is associated with stimuli which are 

both recognized and recollected. 

We used the spatial location of the stimuli during learning as an objective measure of 

recollection. An alternative measure is the “remember/know” paradigm (Eldridge et al., 2000). 

However, this measure suffers from subjectivity and response bias. Alternative theories hold that 

remember/know judgments reflect differences in memory strength rather then different 

recognition processes (Donaldson, 1996). Thus we chose to use an explicit measure of 

recollection instead.  

 We tested 2 different time delays: same day (30 min) and overnight (24 h). 

Despite good behavioral performance on both days, the neuronal firing only distinguished 

between R+ and R- trials on the same day. Thus, while the information was accessible to the 

patient, it was not present anymore in the form of spike counts — at least in the neurons from 

which we recorded. In contrast, information about the familiarity of the stimulus was still present 

at 24 hrs and distinguished equally well between familiar and novel pictures (Figure 4-8). While 

the lack of recordings from cortical areas prevents us from making any definitive claims about 

this phenomena, it is nevertheless interesting to note that these two components of memory 

(familiarity and recollection) may be transferred from the MTL to other brain areas with different 

time courses. Indeed, recent data investigating the replay of spatial sequences by hippocampal 

units suggest that episodic memories could be transferred to the cortex very quickly. Replay starts 

in quiet (but awake) periods shortly after encoding and continues during sleep (Foster and 

Wilson, 2006). 
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We found that the responses described here can be found both in the hippocampus and 

the amygdala. Previous human studies have similarly found that visual responses can be found in 

both areas with little difference (Fried et al., 1997; Kreiman et al., 2000a). Similarly, recordings 

from monkeys have also identified amygdala neurons which (i) respond to novelty and (ii) 

habituate rapidly (Wilson and Rolls, 1993). It has long been recognized that the amygdala plays 

an important role in rapid learning. This is exemplified by its role in conditioned taste aversion 

(CTA), which is acquired in a single trial, is strongly novelty-dependent, and requires the 

amygdala (Lamprecht and Dudai, 2000). 

The subset of neurons that we selected for analysis exhibited a significant firing 

difference between old and new stimuli during the stimulus presentation period. This selection 

criteria allows for a wide variety of response patterns. The simplest case is when a neuron 

increases firing to one category and remains at baseline for the other. But more complex patterns 

are possible: the neuron could decrease firing for one category and remain at baseline for the 

other. Or the response could be bimodal, e.g., increase to one category and decrease to the other. 

To further investigate this, we compared firing during the stimulus period to the pre-stimulus 

baseline (see supplementary discussion and Table 4-2). 54% of the neurons changed activity 

significantly for the trial type for which the unit was classified (i.e., old trials for familiarity 

neurons). 92% of the neurons change their firing rate relative to baseline for either type of trial 

(e.g., decrease in firing rate of familiarity neurons for new trials). Thus, 38% of the neurons 

signal information by a significant firing decrease and 8% of the neurons have a bimodal 

response which individually is not significantly different from baseline. We maintain that the 

firing behavior of this 8% group contains information about the novelty of the stimulus, even 
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though the responses are not significantly different from baseline. Below we describe several 

scenarios by which this 8% population might contain decodable information. We repeated our 

analysis with only the remaining 92% of neurons to assess whether our previous conclusions, 

based on the entire data-set, still hold true. We found that all results remain valid: The within-

repeated ANOVA for the 30 min R+ group revealed a significant difference of New vs. R- as 

well as R+ vs. R- for both novelty (p < 1e-4 and p = 0.03, respectively) as well as familiarity units 

(p = 0.05 and p = 0.02, respectively). Similarly, the per-neuron (N = 42 neurons, p = 0.03) as well 

as the per-trial comparison (p = 0.01) remained significant (compare to Figure 4-3A-C). 

Considering only hippocampal neurons that fire significantly different from baseline, the 

difference between R+ and R- (p = 0.04), R- and New (p < 0.001) and New vs. FNs (p = 0.003) 

remained significant (all are tailed ks-tests; compare to Figure 4-7A). All R+ vs. R- comparisons 

for the 30 min R- and 24 h sessions remained insignificant.  

How might a neural network decode the information about a stimulus if it is signaled 

with no change or a decrease in firing rate? One obvious possibility is by altering excitatory-

inhibitory network transmission: if the neuron that signals with a decrease in firing is connected 

to an inhibitory unit that in turn inhibits an excitatory unit, the excitatory neuron would only fire 

if the input neuron decreases its firing rate. A similar network could be used to decode 

information that is present in an unchanged firing rate. How can a network decode information 

from units that are significantly different new vs. old but not relative to baseline? One possibility 

is that the network gets an additional input that signals the onset of the stimulus. Thus, it knows 

which time period to extract. Also, while we can only listen to one single neuron, a readout 
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mechanism gets input from many neurons and can thus read signals with much lower signal-to-

noise ratios. 

4.3.1  Models of memory retrieval 

It is generally accepted that recognition judgments are based on information from (at 

least) the two processes of familiarity and recollection. How these two processes interact, 

however, is unclear. Here we have shown that both components of memory are represented in the 

firing of neurons in the hippocampus and amgydala. Clearly, the neuronal firing described here 

can not be attributed to one of the two processes exclusively. Rather, the neuronal firing is 

consistent with both components summing in an additive fashion.  

This result has implications for models of memory retrieval. There are two fundamentally 

different models of how familiarity and recollection interact. The first (i) model proposes that 

recognition judgments are either based on an all-or-nothing recollection process (“high 

threshold”) or on a continuous familiarity process. Only if recollection fails is the familiarity 

signal considered (Mandler, 1980; Yonelinas, 2001). An alternative (ii) model is that both 

recollection as well as familiarity are continuous signals that are combined additively to form a 

continuous signal of memory strength that is used for forming the recognition judgment (Wixted, 

2007). Our data is more compatible with the latter model (ii). We found that the stronger the 

firing of familiarity neurons, the more likely that recollection will be successful. However, the 

ability to correctly decode the familiarity of the stimulus does not depend on whether recollection 

will be successful. This is demonstrated by the single-trial decoding (Figure 4-8): recognition 

performance only marginally depends on whether the stimulus will be recollected or not. Also, 
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the familiarity of the stimulus can be decoded equally well in patients that lack the ability to 

recollect the source entirely. Thus, the firing increase caused by recollection is additive and 

uncorrelated with the familiarity signal. This is incompatible with the high-threshold model, 

which proposes that either the familiarity or the recollective process is engaged. The neurons 

described here distinguished novel from familiar stimuli regardless of whether recollection was 

successful. Thus the information carried by these neurons does not exclusively present either 

index. Rather, the signal represents a combination of both. 

4.3.2  Neuronal firing during behavioral errors 

 What determines whether a previously encountered stimulus is remembered or 

forgotten? We found that stimuli which were wrongly identified as novel (forgotten old stimuli) 

still elicited a significant response. Previously we found that this response allows single-trial 

decoding with performance significantly better than the patient’s behavior (Rutishauser et al., 

2006a). Thus, information about the stimulus is present at the time of retrieval. This implies the 

stimuli were (at least to some degree) properly encoded and maintained. However, the neural 

activity associated with false negative recognition responses was weaker than the responses to 

correctly recognized but not recollected stimuli (about 60% reduced, Figure 4-4A). The response 

to false negatives fell approximately in between the response to novel and correctly recognized 

familiar stimuli (Figure 4-4B). The neuronal response can thus be regarded as an indicator of 

memory strength. The memory strength for not remembered items is less than for remembered 

items but it is still larger than zero. However, the memory strength was not strong enough to elicit 

a "familiar" response. Others (Messinger et al., 2005) have also found neurons that indicate, 
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regardless of behavior, the "true memory" associated with a stimulus. Thus, the neurons 

considered here likely signal the strength of memory that is used for decision making rather than 

the decision itself. 

 False recognition is the mistaken identification of a new stimulus as familiar. The 

false recognition rate in a particular experiment is determined by many factors, including the 

individual bias of the subject as well as the perceptual similarity of the stimuli (gist) or their 

meaning (for words). Here, we found that neurons responded similarly (but with reduced 

amplitude) to stimuli that were wrongly identified as familiar when compared to truly familiar 

stimuli. Thus, from the point of view of the neuronal response, the stimuli were coded as 

somewhat familiar. As such, it seems that the behavioral error possesses a neuronal origin in the 

very same memory neurons that respond during a correct response — and can thus not be 

exclusively attributed to simple errors such as pressing the wrong button. MTL lesions result in 

severe amnesia, measured by a reduction in the TP rate and an increased FP rate relative to 

controls. However, in paradigms where normal subjects have high FP rates due to semantic 

relatedness to studied words, amnesics have lower FP rates than controls (Schacter and Dodson, 

2001). Thus, in some situations, a functional MTL can lead to more false memory. Similarly, 

activation of the MTL (and particularly the hippocampus) during false memory has also been 

observed with neuroimaging (Schacter et al., 1996). This and our finding that neuronal activity 

does consider such stimuli as familiar suggests that FPs are not due to errors in decision making.  
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4.4  Methods 

4.4.1  Subjects and electrophysiology 

 Subjects were 10 patients (6 male, mean age 33.7). Informed consent was 

obtained and the protocol was approved by the Institutional Review Board. Activity was recorded 

from microwires embedded in the depth electrodes (Rutishauser et al., 2006a). Single units were 

identified using a template-matching method (Rutishauser et al., 2006b).  

 

4.4.2  Experiment 

 An experiment consisted of a learning and retrieval block with a delay of either 

30 min or 24 h in between. During learning, 12 unique pictures were presented in random order. 

Each picture was presented for 4 s in one of the 4 quadrants of a computer screen. We asked 

patients to remember both which pictures they had seen and where on the screen they had seen 

them. To ensure alertness, patients were asked to indicate where the picture was after each 

presentation during learning. 

 In each retrieval session, 24 pictures (12 New, 12 Old, randomly intermixed) 

were presented at the center of the screen. Afterwards, the patient was asked whether he/she had 

seen the picture before or not. If the answer was "Old", the question "Where was it?" was asked 

(see Figure 4-1A). During the task no feedback was given. 



153 

 

4.4.3  Data analysis 

 A neuron was considered responsive if the firing rate in response to correctly 

recognized old vs. new stimuli was significantly different. We tested in 2 sec bins (0–2, 2–4, 4–6 

s relative to stimulus onset). A neuron was included if its activity was significantly different in at 

least one of these 3 bins. We used a bootstrap test (p <= 0.05, B = 10000, two-tailed) of the 

number of spikes fired to New vs. Old stimuli. We assumed that each trial is independent, i.e. the 

order of trials does not matter. Neurons with more spikes in response to new stimuli were novelty 

neurons whereas neurons with more spikes in response to Old stimuli were familiarity neurons.  

We also used an aggregate measure of activity that pools across neurons. For each trial 

we counted the number of spikes during the entire 6 s post stimulus period. The response index 

(Eq 1) quantifies the response during trial i relative to the mean response to novel stimuli.  
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R(i) is negative for novelty detectors and positive for familiarity detectors (on average). 

R(i) was multiplied by -1 if the neuron is classified as a novelty neuron. Notice that the factor -1 

depends only on the unit type. Thus, negative R(i) values are still possible. 

 The cdf was constructed by calculating for each possible value x of the response 

index how many examples are smaller than x. That is, F(x) = P(X ≤ x) where X is a vector of all 

response index values. 

All statistical tests are t-tests unless stated otherwise. Trial-by-trial comparisons of the 

response index are Kolmogorov-Smirnov tests (abbreviated as ks-test). All errors are ± s.e. unless 

indicated otherwise. 
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4.5  Supplementary results 

4.5.1  Behavior quantified with d’ 

d’ was 3.11±0.08, 2.40±0.28 and 2.67±0.68 for the 30 min R+, 30 min R- and 24 h 

groups, respectively. Pairwise tests revealed a significant difference between the 30 min R+ and 

R- group (t-test, p≤0.05). Thus, in terms of d’, patients that exhibited no recollection had 

significantly lower recognition performance. 

4.5.2  Neuronal ROCs 

 Based on the response values as summarized in Figure 4-3 we constructed two 

neuronal ROCs (Macmillan and Creelman, 2005): one for trials with spatial recollection and one 

without (Figure 4-9). The z-transformed ROC was fit well by a straight line (R = 0.997 and R = 

0.988 for R+ and R-, respectively). The slope for both curves was significantly different from 1, 

indicating that the variance of the targets and distractors was different (for a 95% confidence 

interval the slope was 1.11±0.03 and 1.16±0.07, respectively). The d' for recognized and 

recollected targets was 0.81 and for targets that were only recognized it was 0.55. Thus, the d' 

was increased by the addition of recollective information. This is in analogy to the behavioral 

recognition performance, which was also increased (Figure 4-1E, see above). 

 Interestingly, the slopes of the neuronal z-ROCs are bigger than 1 (see above). 

This indicates greater variability for distractors (here new items) compared to familiar items. z-

ROC slopes derived from behavioral data are found to be smaller than 1 (Ratcliff et al., 1992). 
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This has been used as evidence that the target distribution has higher variance compared to the 

distractor distribution. Intriguingly, we found that the slopes of our z-ROCs are bigger than 1. 

This further indicates that the neuronal signals in the medial temporal lobe (which we analyze 

here) represents a memory signal that should be regarded as the input to the decision process, not 

its output. What is measured behaviorally is the decision itself and it is thus conceivable that the 

decision process adds sufficient variance to change the slope of the z-ROC. 

4.5.3  Responses of novelty and familiarity neurons compared to baseline 

 The neurons used for our analysis were selected based on a significant difference 

in firing in response to new vs. old stimuli. This is the most sensitive test because it detects many 

different patterns in which activity could differ. Example patterns that are detected by this way of 

classifying units are: i) increase of firing only for one category (new or old) whereas the other 

remains at baseline, ii) decrease of firing only for one category, with the other remaining at 

baseline, iii) a bimodal response with an increase to one category and a decrease to the other 

category. One concern with this analysis is that the response itself might not be significantly 

different from baseline. This would primarily be the case if the response is bimodal, i.e., a slight 

increase to one category and a slight decrease to the other. To investigate this possibility we 

performed additional analysis by comparing the activity of neurons which are classified as 

novelty or familiarity detecting units against baseline (Table 4-2). We used two different 

methods: the first (“method 1”) tests whether the unit increases its firing rate significantly for 

either the old (familiarity neurons) or the new trials (novelty neurons). However, there are several 

classes of units which this method misses. For example, a unit which remains at baseline for old 
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trials and reduces its firing rate for new trials would be classified as a familiarity unit. However, it 

would not pass the baseline test since the response for old trials remains at baseline. To include 

such units we used a second method (“method 2”): for a unit to be considered responsive, the 

activity of either the new or the old trials needs to be significantly different from baseline. The 

unit in the above example would pass this test. 

 Using method 2, we found that 92% of all units which were classified as 

signalling a difference between new and old were in addition also firing significantly different 

relative to baseline (see Table 4-2 for details). Using method 1, 54% of all units pass this 

additional test. Thus approximately 40% of the units signal information by a decrease in firing 

rate rather then an increase. 

4.5.4  Population activity 

 So far we have analyzed the spiking of single neurons which fired significantly 

different for new vs. old stimuli. However, the majority of neurons (72% of neurons; 298 of 412) 

did not pass this test and thus were not considered in our first set of analyses. Was there a 

difference in mean firing between new and old stimuli if neurons were not pre-selected? To 

address this, we calculated a mean normalized activity for all recorded neurons in all sessions, 

separately for new and old trials (Figure 4-10A).  This signal reflects the overall mean spiking 

activity of all neurons and is thus similar to what might be measured by the fMRI signal (see 

discussion). Only trials where the stimulus was correctly recognized were included. The mean 

firing activity of the entire population was significantly different in the time period from 2–4 s 

relative to stimulus onset (p ≤ 0.05, t-test, Bonferroni corrected for n = 8 comparisons). Thus, a 
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difference in overall mean activity for novel vs. familiar stimuli can be observed even without 

pre-selecting neurons. However, the initial response (first 1 s, Figure 4-10A) did not differentiate 

between the two types of stimuli. Rather, a sharp onset in the response could be observed for both 

classes of stimuli.  Did the population only differentiate because the novelty and familiarity 

detectors were included in the average?  We also calculated the population average (as in Figure 

4-10A) using only the units which were not classified as either novelty or familiarity detectors.  

The average population activity still exhibited a sharp peak for both types of stimuli after 

stimulus onset and significantly differentiated between novel and familiar items in subsequent 

time bins (p ≤ 0.05, t-test, Bonferroni corrected for n = 8 comparisons). 

 Is the population response different for stimuli which are recollected compared to 

stimuli which are only recognized? The previous average included all old trials, regardless of 

whether the stimulus was recollected or not.  Next, we averaged all trials from all neurons 

recorded for the 30 min delay sessions with good recollection performance (30 min R+). We 

found a similar pattern of population activity (Figure 4-10B). Crucially, however, the neuronal 

activity in response to familiar stimuli which were later not recollected peaked earlier.  Measured 

in time bins of 500 ms, the only significant difference between familiar stimuli that were 

recollected or not was in the first 500 ms after stimulus onset (p ≤ 0.05, t-test, Bonferroni-

corrected for n = 16 comparisons). Thus, the population activity peaks first for stimuli that are not 

recollected, followed by novel and recollected stimuli. 
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4.5.5  Decoding of recognition memory 

 Is the ability to determine whether a stimulus is old influenced by whether the 

stimulus was recollected or not? In the main text we have shown that the responses to recollected 

stimuli are stronger compared to items which are not recollected. Here, we investigate whether 

this increased response leads to an improvement in the ability to determine (based on the neuronal 

firing only) whether a stimulus is new or old. If the two types of information (familiarity and 

recollection) interact, one would expect that the ability to recollect would increase the ability to 

determine whether a stimulus has been seen before. Alternatively, recollection could be a process 

that is only triggered after the familiarity is already determined and these two types of 

information would thus be independent. Thus, one would expect no difference in the ability to 

determine the familiarity from the spiking of single neurons in cases of successful vs. failed 

spatial recollection. To answer this question, we used a simple decoder.  It used the weighted 

linear sum of the number of spikes fired after the onset of the stimulus. The weights were 

determined using regularized least squares, a method very similar to multiple linear regression 

(see methods). The decoder had access to the number of spikes in the 3 consecutive 2 s bins 

following stimulus onset (3 numbers per trial). 

 First, we used the decoder to determine for how many trials we could correctly 

predict whether the stimulus was new or old, based only on the firing of a single neuron. For all 

sessions (n = 17), the decoder was able to predict the correct identity for 63  ± 1% of all trials. We 

repeated this analysis for each of the 3 behavioral groups (R+ 30 min, R- 30 min, and R+ 24 hr).  

We found (Figure 4-8A) that the recognition decoding accuracy (chance 50%) did not depend on 

whether the subject was able to recollect the source of the stimulus or not (1-way ANOVA, p = 
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0.35). Thus, decoding of familiarity is equally effective, even in the group where patients were 

not able to recollect at all (Figure 4-8A, 30 min R- sessions).  

 Was there a difference in decoding performance in the same-day group where 

subjects had good recollection performance? We selectively evaluated the performance of the 

decoder for two groups of trials: trials with correct recollection and trials with failed recollection. 

We find that firing during trials with failed recollection does carry information about the 

familiarity of the stimulus (Figure 4-8B, R-). The ability to predict the familiarity of the stimulus 

was slightly improved for the behavioral group with good recollection performance on the first 

day (Figure 4-8B, right. p = 0.03, paired t-test). 

 

4.6  Supplementary discussion 

4.6.1  Differences between amygdala and hippocampal neurons 

 So far, we have analysed neurons recorded from the amygdala and the 

hippocampus as a single group. We pooled the responses from both groups because we 

previously found that both structures contain units which respond to novel and familiar items in a 

very similar fashion (Rutishauser et al., 2006a). Nevertheless we also analyzed the activity 

separately for both brain structures. We find that the previous finding still holds — while the 

response magnitude differs, the overall response pattern is very similar. In particular, all primary 

findings of our paper hold independently for the hippocampus as well as the amygdala (see 

below). 
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We found that the increased response to old stimuli which are recollected (R+) compared 

to stimuli which are not recollected (R-) is present in both hippocampal as well as amygdala 

neurons (Figure 4-11; 74.8±5.3% v. 61.3±8.6% for the hippocampus and 52.2±6.8% vs. 

13.7±14.2% for the amygdala). The response magnitude (comparing all old trials, regardless of 

whether they are R+ or R-), however, is larger in the hippocampus (71.6±4.5% v. 42.8±6.3%, p < 

0.001). While the amplitude of the response is different there is nevertheless a significant 

difference between R+ and R- trials in both  areas. 

This is further illustrated in Figure 4-7, where we replotted the response to old R+, old R, 

new, and false negatives (forgotten items) for all 3 behavioral groups only considering 

hippocampal units (Figure 4-7A–C). The relevant differences (R+ vs. R-, New vs. false negative) 

are the same as for the pooled responses (see Figure 4-7 legend for statistics). Similarly, the 

responses during the error trials (false negatives and false positives) are the same (compare Figure 

4-7D to Figure 4-4B). 

We also repeated the within-group ANOVA for only the hippocampal units of the 30min 

R+ session. The ANOVA was significant for novelty (p = 4.1e-6) as well as familiarity (p = 1.3e-

19) units. The planned contrasts of R- v.s New and R+ vs. R- revealed a robust difference for 

novelty (p = 5.1e-5 and p = 0.04, respectively) units. For familiarity units, the R- vs. New contrast 

was significant (p = 0.002) whereas the R+ vs. R- contrast was only approaching significance (p 

= 0.17). This is because there were only 7 familiarity units that contribute to this comparison. 

Repeating the same comparisons while excluding all units that do not fire significantly different 

from baseline (see Table 4-2) reveals a similar pattern: the ANOVA for familiarity units remains 
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unchanged (all units different from baseline) whereas the novelty units ANOVA still shows a 

significant difference between R- vs. New (p = 2.7e-5) as well as R+ vs. R- (p = 0.016). 

4.6.2  Differences between epileptic and non-epileptic tissue 

 Was the neuronal response reported here influenced by changes induced by 

disease? All subjects for this study have been diagnosed with epilepsy and as such some of the 

effects may not extend to the normal population. Behaviorally, our subjects were comparable to 

the normal population (see Table 4-1). Also, we separately analyzed a subset of neurons which 

were in a non-epileptic region of the subject’s brain. We found a comparable (but stronger) 

response to old stimuli in this “healthy” neuron population (Figure 4-11D). Similarly, we find that 

neurons from the “to be resected” tissue still exhibited a response to old stimuli (Figure 4-11E). 

This response was, however, weaker and there was no significant difference between recollected 

and not recollected stimuli. Thus, it is possible that the average difference between recollected 

and not recollected items in normal subjects will be larger than that observed in the epileptic 

patients in our study.  

4.6.3  Relationship to previous single-cell studies 

A previous human single-cell study (Cameron et al., 2001) concluded that the neuronal 

activity observed during retrieval is due to recollection. The task used was the repeated 

presentation of word pairs with later free recall and thus included no recognition component. Due 

to the choice of words and the repeated presentation of the same word pairs, the 

novelty/familiarity of the stimuli was not controlled for. It is thus not clear whether the activity 
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observed was related to recollection or to the recognition of the familiarity of the stimuli. Here, 

we combine both components in the same task and thus demonstrate that the same neurons 

represent information about both aspects of memory simultaneously. Similar paired associates 

tasks have been used with monkeys (Sakai and Miyashita, 1991; Wirth et al., 2003). Changes in 

neuronal firing were, however, only observed after many learning trials (> 10). A neuronal 

correlate of episodic memory requires changes after a single learning trial. It thus seems possible 

that this study documented the gradual acquisition of well-learned associations rather than 

episodic memories. 

4.6.4  Relationship to evoked potentials 

 Both surface and intracranial evoked potentials show prominent peaks in 

response to new stimuli. Scalp EEG recordings during recognition of previously seen items show 

an early frontal potential (~ 300 ms) which distinguishes old from new items, as well as a late 

potential (~ 500–600 ms) that is thought to reflect the recollective aspect of retrieval (Rugg et al., 

1998). However, the signal origin of these scalp recordings is not known. These differences 

between evoked potentials in response to new and old items are reduced or absent in patients with 

hippocampal sclerosis (Grunwald et al., 1998). Intracranial EEG recordings from within the 

hippocampus as well as the amygdala show prominent differences between new and old items 

(around 400–800 ms) (Grunwald et al., 1998; Mormann et al., 2005; Smith et al., 1986), further 

suggesting the MTL as a potential source for the scalp signal. The latencies and nature of these 

potentials are also in agreement with the average population activity that we have analyzed 

(Figure 4-10). We find that the peak activity is within the 500–1000 ms timeframe (Figure 
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4-10B). Remarkably, the activity peaks first (within the first 500 ms) if recollection fails. If 

recollection is successful, the peak is in the second bin (500–1000 ms). This suggests that a 

recognition judgment based purely on familiarity occurs quicker. In addition, it is worth noting 

that the average population activity we recorded is compatible with the previous intracranial EEG 

findings but conflicts with BOLD signals obtained by others (Eldridge et al., 2000; Yonelinas et 

al., 2005) . 

4.6.5  Relationship to fMRI studies 

This is also in apparent conflict with previous functional magnetic resonance imaging 

(fMRI) findings (Eldridge et al., 2000; Yonelinas et al., 2005) that identified regions within the 

MTL that are selectively activated only for memories that are recollected. Crucially, however, 

these studies assumed a priori that model (i) above is correct by searching for brain regions 

which correlate with the components identified by that model. If model (i) is not correct, 

however, these results are subject to alternative interpretation. Also, these studies used the 

“remember/know” paradigm to identify memories which were recollected by the subjects. 

However, this paradigm requires a subjective decision (yes/no) as to whether the memory was 

recollected or not (as discussed above). It is thus possible that the brain areas identified using 

these paradigms reflect the decision taken about the memory rather than the retrieval process 

itself. In our study, no decision as to whether or not recollection succeeded was necessary. Also, 

our data analysis makes no assumptions about the validity of any particular model.  

What is the appropriate baseline activity to consider in the MTL? The MTL is highly 

active during quiet rest. In fact it is often more active during rest than during memory retrieval 
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(Stark and Squire, 2001). Imaging studies can suffer from this undefined baseline and results may 

vary owing to different choices of representative baseline activity (Stark and Squire, 2001). This 

may also contribute to the apparently disparate findings regarding the involvement of the MTL in 

recognition memory. 

To further investigate the discrepancy between fMRI and single-cell studies, we averaged 

the neuronal activity of all neurons recorded regardless of their behavioral significance, to 

approximate a signal that might be similar to an fMRI signal (Figure 4-10, see Results). We found 

that even under this condition, the overall population activity successfully distinguished between 

new and old items. The response to old items was not selective for recollected items and was 

clearly present even if the failed recollected trials were considered separately (Figure 4-10B). 

Clearly these data differ from previously measured hippocampal BOLD signals (e.g. (Eldridge et 

al., 2000)). 

4.7  Supplementary methods 

4.7.1  Electrophysiology 

 All patients were diagnosed with drug-resistant temporal lobe epilepsy and 

implanted with intracranial depth electrodes to record intracranial EEG and single units. 

Electrodes were placed based on clinical criteria. Electrodes were implanted bilaterally in the 

amygdala and hippocampus (4 electrodes in total). Each electrode contained 8 identical 

microwires, one of which we used as ground. We were able to identify single neurons in the 

hippocampus and/or amygdala in 9 of the 10 patients. One additional patient was excluded 

because he had no recognition memory (performance was at chance). Thus, this study is based on 
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8 patients (6 of which overlap with a previous study; (Rutishauser et al., 2006a)). We recorded a 

total of 21 retrieval sessions from these 8 patients. 4 of these sessions (from 4 different patients) 

were excluded due to insufficient recognition performance (see below). Thus, this study is based 

on 17 retrieval sessions from 8 different patients. The 17 retrieval sessions were distributed over 

16 different days (on one day, 2 retrieval sessions were conducted). We recorded from 24–32 

channels simultaneously (3 or 4 electrodes) and found, on average, 11.9±4.4 (±s.d.) active 

microwires (counting only microwires with at least one well-separated unit). The average number 

of identified units per wire was 2.0±1.0 (± s.d.). Inactive wires (no units identified) are excluded 

from this calculation (77 of 280). There were 130 wires with more than one unit (on average 

2.6±0.8 for all wires with > 1 unit). For those wires, we quantified the goodness of separation by 

applying the projection test (Rutishauser et al., 2006b) for each possible pair of neurons. The 

projection test measures the number of standard deviations the two clusters are separated after 

normalizing the data such that each cluster is normally distributed with a standard deviation of 1 

(see (Rutishauser et al., 2006b) for details). We found that the mean separation of all possible 

pairs (n=315) is 13.68±6.98 (± s.d.) (Figure 4-12A). We identified, in total, 412 well-separated 

single units. We quantified the quality of the unit isolation by the percentage of all interspike 

intervals (ISI) which are shorter than 3 ms. We found that, on average, 0.3±0.4 percent of all ISIs 

were below 3ms (Figure 4-12B). The signal-to-noise ratio (SNR) of the mean waveforms of each 

cluster relative to the background noise was on average 2.4±1.2 (Figure 4-12C). 

 For the purpose of comparing only neurons from the "healthy" brain side (left or 

right), we excluded all neurons from either the left or right side of the patient if the patient’s 
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diagnosis (Table 4-1) included temporal lobe damage (Figure 4-11). No neurons were excluded if 

the diagnosis indicated that the seizure focus was outside the temporal lobe. 

4.7.2  Behavior 

 Each session consisted of a learning and retrieval block.  We quantified, for each 

session, the recognition rate (percentage of old stimuli correctly recognized), the false positive 

rate (percentage of new stimuli identified as old), and the recollection rate.  The recollection rate 

was the percentage of stimuli identified as old for which the spatial location was correctly 

identified.  Sessions with a recognition rate of ≤ 50% were excluded (3 sessions).  Each session 

was assigned to either the 24 h or 30 min delay group.  

 For each session, we estimated whether spatial recollection rate was significantly 

different from chance (25%).  Due to the small number of trials (maximally 12), the significance 

was estimated using a bootstrap procedure (see below).  Based on this significance value, we 

further divided each of these two groups into a group with good spatial recollection performance 

(p ≤ 0.05, above chance, R+) and one with poor spatial recollection performance (not significantly 

different from chance, p > 0.05, R-).  For the 24 h group there was only one session with poor 

recollection performance and thus this analysis was not conducted.  Thus, there were 3 behavioral 

groups which were used for the neuronal analysis: 30 min R+ (n = 7), 30 min R- (n = 6) and 24 h 

R+ (n = 4). The assignment of sessions to groups was based entirely on behavioral performance. 

Neuronal activity was not considered. 
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4.7.3  Data analysis — behavioral 

 We labeled each retrieval trial during which a correctly recognized old stimulus 

was presented as either correctly or incorrectly recollected.  For each session we then tested 

(bootstrap, p ≤ 0.05, one-tailed, B = 20000) whether recollection performance was above chance 

level.  We used the bootstrap test instead of the z-test because of the small number of samples.  

The resulting p values were more conservative (larger) compared to the p values obtained with 

the z-test.  Only sessions which passed this test were considered to have “above chance” 

recollection performance.  Trials which failed this test were considered as "at chance".  This was 

to ensure that only neurons from patients that had a clearly demonstrated capability for source 

memory were included.  Also, recording sessions with less than a 50% hit rate for old stimuli 

were excluded to ensure that only sessions with sufficient recognition performance were 

included.  We verified for each group of sessions (Figure 4-1) whether performance was 

significantly above chance using a z-test. For this, we pooled all trials of a particular group and 

labeled each as either correct or incorrect.  Then we used one z-test to test whether the ratio 

correct:incorrect was above chance.  We used this instead of individual tests for each session to 

avoid artificially boosting performance due to the small sample size (e.g., 4 out of 12 correct) in 

each particular session. 

4.7.4  Data analysis — response index 

 We compared, trial-by-trial, the response (quantified by the response index) to 

old stimuli which were successfully recollected (R+) to old stimuli which were not recollected (R-

). For this comparison, trials with recognition errors were excluded (thus, all trials are familiar). 
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The error trials were analysed separately. There was one data point for every trial for every 

neuron (e.g., if there are 10 trials and 10 neurons, there are 100 data points). There were 1368 old 

stimulus trials (12 retrieval sessions with total 114 neurons), with 1230 trials with a correct 

recognition response (familiar, TP), and 138 trials which were errors (misses). We analyzed the 

error trials separately. 

We compared the responses of the R+ and R- trials with a two-tailed t-test, as well as 

using a Kolmogorov-Smirnov test. Both were significant at p ≤ 0.05. Paired comparisons were 

made with a t-test. Normal density functions were constructed by estimating the mean and 

standard deviation from the data (using maximum likelihood). 

4.7.5  Data analysis — baseline comparison 

 To determine whether a unit was responsive relative to baseline we compared the 

firing during the 2 s period in which the new vs. old comparison is significant to the 2 s period 

before the stimulus onset. These comparisons were performed using a boostrap test as described 

in the main methods. 

4.7.6  Neuronal ROCs 

 Neuronal ROCs (Figure 4-9) were constructed by considering all trials as old if 

the response R(i) was above a threshold T. The threshold T was varied in variable steps (see 

below) from the smallest to the largest value of R(i). Thresholds were varied such that each 

increase accounted for a 5% quantile of all available datapoints (the 0% and 100% quantiles were 

excluded). This procedure assured that the same number of datapoints was used for the 
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calculation of each point in the ROC. The hit/false positive rate was calculated for each threshold 

value. d' was calculated for each pair of hit/false positive rates and averaged.  We z-transformed 

the ROC and fit a line through all points using linear regression to find the slope of the curve. A 

slope of 1.0 indicates that the two distributions (distractors and targets) are of equal variance 

whereas a slope of unequal 1.0 indicates a difference in variance. The z transformed ROC was fit 

well by a straight line for both R+ and R- trials (Macmillan and Creelman, 2005). 

4.7.7  Population averages 

 Population averages (Figure 4-6, Figure 4-10) were constructed by normalizing 

each trial to the mean baseline firing in the 2 s before stimulus onset. The number of spikes were 

binned into 1 s bins (non-overlapping) and averaged for all neurons. No smoothing was applied. 

To avoid normalization artifacts, only neurons with a baseline rate of at least 0.25Hz were 

considered for the population averages (346 of 412 neurons for Figure 4-5). Also, for Figure 4-10 

only neurons with a significant response in the stimulus period (first two of the 2 s bins) were 

considered (this does not apply for the trial-by-trial analysis). 

4.7.8  Decoding 

 We used a linear classifier to estimate how well the firing of a single neuron 

during a single trial can signal the identity (new or old) of the presented stimulus. The classifier 

was provided with the number of spikes fired in 3 consecutive 2 s bins after stimulus onset (0–2 s, 

2–4 s, 4–6 s). The classifier consisted of a weighted sum of these 3 numbers. The weights were 

estimated using regularized least squares (RLSC) (Evgeniou et al., 2000; Rifkin et al., 2003). This 
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method is equal to multiple linear regression with the exception of an added regularizer term λ 

(see below; we used λ = 0.01 throughout).  The decoding accuracy of the classifier was estimated 

using leave-one-out crossvalidation for all training samples available. The estimated prediction 

error was equal to the percentage of correct leave-one-out trials. There were maximally 12 

samples in each class (old or new). However, due to behavioral errors, fewer trials were 

sometimes available for analysis.  Error rates for false positives and false negatives were 

approximately equal and the number of samples was thus approximately balanced in both classes.  

Of concern was whether a slight imbalance of the number of samples in one class could bias the 

results. We performed two controls to assess whether this was the case: we performed leave-one-

out cross-validation with the label of the test sample randomly re-assigned with 50% probability. 

If the classifier was biased, the resulting error would be different from 50%.  We found that this 

was not the case (Figure 4-8A).  Also, we re-ran all analysis that used the decoder with a balanced 

number of samples (that is, equal number of samples in either class) and found no difference in 

the results. 

 The weights were determined by regularized least squares. Regularized least 

squares are very similar to multiple linear regression. In the following we would like to point out 

these differences because in a previous study we used a multiple linear regression (Rutishauser et 

al., 2006a). 

 With multiple linear regression (Eq S1), the weights w are determined by 

multiplying the inverse of data samples Z with the trainig labels y  (Johnson and Wichern, 2002). 

[ ] yZZZw '' 1−=  (S1) 
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In contrast, in regularized least squares (Evgeniou et al., 2000; Hung et al., 2005; Rifkin 

et al., 2003), an additional term is added to the data samples (Eq S2). Here, I is the identity matrix 

and λ is a scalar parameter (the regularizer). 

[ ] yZIZZw '' 1−+= λ       (S2) 

The value of the regularizer is arbitrary. The bigger it is, the more constraints are placed 

on the solution (the less the solution is determined by the data samples). A small value of the 

regularizer, on the other hand, makes the solution close to the multiple linear regression solution. 

Importantly, however, even a small value of the regularizer punishes unrealistically large weights 

and also guarantees full rank of the data matrix. Regularization becomes particularly important 

when there are a large number of input variables relative to the number of training samples. This 

is the case in our study because each neuron contributed 3 variables (3x 2 s time periods) and the 

number of training samples was small (on the order of 10). Thus, regularization was necessary. 

We found that performance was maximal for a small (but non-zero) regularizer and used 

01.0=λ  throughout. 
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4.8  Supplementary figures 

 

Figure 4-5. Population average of all recorded neurons. 
(A) Population average of all recorded neurons that have a baseline firing rate of >0.25Hz 
(n = 346).  While the firing of most neurons was not significantly different between new 
vs. old, a significant difference between new and old stimuli could still be observed in the 
population average.  Errors are ±s.e.m and ** indicates significance of a one-tailed t-test 
at p ≤ 0.006 (p ≤ 0.05 Bonferonni-corrected for 8 multiple comparisons).  (B) Population 
average of all neurons with recollected and not recollected familiarity trials shown 
separately.  (C) Population average of all neurons recorded in the 30 min delay sessions 
with above chance recollection performance.  The signal for the not recollected items 
peaked earlier than the signal for recollected items. ** indicates a significant difference 
between recollect (R+) and not recollected (R-) items at p ≤ 0.003 (p ≤ 0.05 Bonferonni-
corrected for 16 multiple comparisons).  The only difference was for the first time bin (0–
500 ms after stimulus onset). n = 134 neurons. 
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Figure 4-6. Population response. 
 (A-B) Population average of all neurons that responded significantly during the stimulus 
period. The stimulus was on the screen during the 4 s period marked in white. (A) 
Average of all neurons that increased firing to correctly recognized new items (“novelty 
detectors”) (n = 48). (B) Average of all neurons that increased firing to correctly 
recognized old items (“familiarity detectors”) (n = 26). Errors are ± SEM and ** 
indicates significance of a one-tailed t test at P ≤ 0.006 (P ≤ 0.05 Bonferroni corrected for 
multiple comparisons). Firing was normalized to the 2 s baseline firing before stimulus 
onset marked in gray. Note that this does not mean all neurons fired during the entire 
period; but rather represents the population average. 
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Figure 4-7. A continuous strength of memory gradient exists when the hippocampal 
neuronal population is considered in isolation.  

In this figure, the same measures are replotted, but all units recorded from the amygdala 
are excluded. All findings remain valid. (A) Trials from the 30 min R+ sessions. There is 
a significant difference between R+ and R- trials (P = 0.03) as well as between new and 
false negatives (P = 0.001). Compare to Figure 4-3C. (B) Trials from the 30 min R- 
session. There is no significant difference between R+ and R- trials (P = 0.93) but false 
negatives are still significantly different from new trials (P = 0.07). Compare to Figure 
4-3F. (C) Trials from the 24 h sessions. There is no significant difference between R+ 
and R- trials. Error trials are not shown (not enough for 24 h sessions). Compare to Fig. 
4-3H. (D) cdf of response index of all hippocampal neurons recorded in all 30 min 
sessions. R+ and R- trials are significantly different (red v. green, P = 0.01) as are new 
and false negatives (blue vs. yellow, P < 0.001). Not enough false positive trials are 
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available to allow statistical analysis of false positives. Compare to Fig. 4-4. All errorbars 
are ± SE. 

 

 

Figure 4-8. Whether a stimulus is new or old can be predicted regardless of whether 
recall was successful or not.  

The decoder had access to the number of spikes fired in the 3 consecutive 2 s bins 
following stimulus onset (3 numbers total). (A) Session-by-session differences. The 
performance of the decoder did not change for all 3 groups (ANOVA, P = 0.35). n = 
7,6,4 sessions, respectively. (B) Trial-by-Trial differences. Here, the decoder was trained 
on the complete set of trials but its performance was evaluated separately either for failed 
(R-) or successful (R+) recall trials. Clearly, the familiarity of the stimulus could be 
decoded for trials with failed recall (R-). In the 30 min delay sessions with successful 
recall (30 min R+), firing during successful recall trials contained significantly more 
information about the familiarity of the stimulus (P = 0.037, paired t test, n = 7 sessions). 
All errorbars are ± SE. 
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Figure 4-9. ROC analysis of the neuronal data for all 3 behavioral groups. 
(A: 30 min above chance, B: 30 min at chance, C: 24 h above chance). The top row 
shows the raw datapoints as well as fits computed from d’. The bottom row shows the 
same but z-transformed. R2 is > 0.97 for all straight line fits. See the supplementary 
methods for how the ROC was computed. A) d’ for R+ and R- groups was 0.81 and 0.55, 
respectively. The slope (s) of the z-transformed line was 1.11 ± 0.03 and 1.16 ± 0.07, 
respectively. ± are 95% confidence intervals. B) d’ was 0.55 and 0.61 and s was 1.07 ± 
0.06 and 1.05 ± 0.04, respectively. C) d’ was 0.73 and 0.69 and, was 1.14 ± 0.04 and 1.02 
± 0.08, respectively. 
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Figure 4-10. Population average of all recorded neurons. 
(A) Population average of all recorded neurons that have a baseline firing rate of > 0.25 
Hz (n = 346). While the firing of most neurons was not significantly different between 
new vs. old, a significant difference between new and old stimuli could still be observed 
in the population average. Errors are ± SEM and ** indicates significance of a one-tailed 
t test at P ≤ 0.006 (P ≤ 0.05 Bonferonni-corrected for 8 multiple comparisons). (B) 
Population average of all neurons with recollected and not recollected familiarity trials 
shown separately. (C) Population average of all neurons recorded in the 30 min delay 
sessions with above chance recollection performance. The signal for the not recollected 
items peaked earlier than the signal for recollected items. ** indicates a significant 
difference between recollect (R+) and not recollected (R-) items at P ≤ 0.003 (P ≤ 0.05 
Bonferonni-corrected for 16 multiple comparisons). The only difference was for the first 
time bin (0–500 ms after stimulus onset). n = 134 neurons. 
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Figure 4-11. Comparison of trial-by-trial response strength for different 
subcategories of neurons. 

In this figure, only neurons from 30 min delay with successful recollection (30 min R+) 
are included. (A) All trials from all areas (same as Figure 3B). (B) Only trials from 
hippocampal neurons. (C) Only trials from amygdala neurons. (D) Only trials from the 
“healthy” hemisphere. (E) Only trials from neurons in the eventually resected 
hemisphere. In (A-D), the response to R+ compared to R- trials is significantly different 
(P < 0.05, two-tailed Kolmogorov-Smirnov test, compare to Figure 3B). The response in 
(E) is not significantly different. 
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Figure 4-12. Sorting quality for the 412 recorded units. 
(A ) Histogram of the distance, in standard deviations, between all pairs of clusters. Only 
channels on which more than one unit was detected are included (315 pairs from 130 
channels). The mean distance was 13.68 ± 6.98 (± s.d.)  (B) Histogram of the percentage 
of interspike intervals (ISI) that were shorter than 3 ms. On average 0.32 ± 0.44% of all 
ISIs were shorter than 3 ms (n = 412). (C) Histogram of the SNR of all 412 units. 
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Figure 4-13. Comparison of response strength across different recording sessions 
(days). 

The difference is only significant for the 30 min R+ sessions. The data displayed here is 
the same as detailed in Figure 4-3. However, here the mean response index for R+ and R- 
trials is compared between recording sessions. (A) The response index for all recording 
sessions that had above chance recollection. The difference approaches significance (P = 
0.07). Number of sessions is 7 and 6, respectively (from 4 patients; one session had no R- 
trials). (B) Same as (A) but for all recording sessions with at chance recollection. Number 
of sessions is 6 for both groups (from 5 patients). There was no significant difference (P 
= 0.63). (C) Same as (A) but for all recording sessions with 24 h delay and above chance 
recollection. Number of sessions is 4 from 3 patients. There was no significant difference 
(P = 0.57). Errorbars are ± SEM with n as specified. p values are from a t test. 
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4.9  Supplementary tables 

    WAIS-III WMS-R 

Patient Age Sex Diagnosis PIQ VIQ FSIQ Verbal 

Mem 

Mental 

control 

VPA 

2 

LM 2 Vis Rep 

1 

Vis 

Rep 2 

1 28 m left temporal 125 98 110 114 6 4 24 37 39 

2 41 f left temporal 92 91 91 91 5 8 18 37 29 

3 20 f left temporal 92 93 93 83 6 8 16 34 28 

4 58 f left temporal 85 83 83 83 6 4 10 22 7 

5 23 m left temporal 

& frontal pole 

144 111 126 122 6 8 26 39 39 

6 44 m right temporal 76 92 84 83 6 5 10 29 14 

7 51 f left temporal 90 95 93 89 6 4 23 34 34 

8 16 m right lateral 

frontal 

84 91 88 n/a n/a 8 n/a 31 29 

av 35.1 - - 98.5 94.3 96.0 95.0 5.9 6.1 18.1 32.9 27.5 

mean 

raw 

       5.0±1.2 7.6±0.

7 

21.9±

9.2 

32.5±5.3 29.5±7.

1 

Table 4-1. Neuropsychological evaluation of patients. 
Intelligence was measured using the Wechsler Intelligence Scale (WAIS-III) measures of 
performance IQ (PIQ), verbal IQ (VIQ), and full scale IQ (FSIQ).  All IQ scores have an 
average of 100 (by design). Memory measures are from the Wechsler Memory Scale 
Revised (WMS-R). Verbal memory is an WMS-R index score with a mean of 100 of the 
normal population (by definition). The remaining WMS-R scores are raw (unnormalized) 
scores. For the raw scores, the mean and standard deviation of the normal population 
(from WMS-R) is shown in the last row for the average age of our population. 
Abbreviations: Verbal paired associates 2 (VPA 2), Logical Memory 2 (LM 2), Visual 
Reproduction 1 (Vis Rep 1), Visual Reproduction 2 (Vis Rep 2). 
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 Group Hippocampus Amygdala All 

Recorded 30min R+ 77 103 180 

30min R- 96 47 143 

24h R+ 45 44 89 

all 218 194 412 

  Nov Fam All Nov Fam All Nov Fam All 

New v. old 30min R+ 25 7 32 10 5 15 35 12 47 

30min R- 11 11 22 13 3 16 24 14 38 

24h R+ 11 6 17 7 5 12 18 11 29 

all   71   43 77 37 114 

New v. old &  
baseline 1 

30min R+ 14 5 19 6 3 9 20 8 28 

30min R- 5 6 11 6 1 7 11 7 18 

24h R+ 5 4 9 5 2 7 10 6 16 

all   39 
(55%) 

  23 
(53%) 

  62 
(54%) 

New v. old & 
baseline 2 

30min R+ 22 7 29 10 5 15 32 12 44 

30min R- 10 10 20 11 3 14 21 13 34 

24h R+ 9 6 15 7 5 12 16 11 27 

all   64 
(90%) 

  41 
(95%) 

  105 
(92%) 

Table 4-2. Number of neurons recorded. 
Number of neurons recorded in each area (first row) and number of neurons that 
responded in each behavioral group(2nd, 3rd, 4th row). The second row shows the number 
of neurons which had a significantly different firing rate for old vs. new trials during the 
post-stimulus period (6s). The last two rows show the number of neurons which are, in 
addition, also significantly different for two different baseline comparisons (1 and 2). The 
two baseline comparisons are: i) The trials associated with the type of unit are significant 
from baseline. (That is, if the neuron is classified as a familiarity neuron, the old trials 
were significantly different from baseline. The same applies for the novelty neurons, but 
for the new trials). ii) Either the new or the old trials are significantly different from 
baseline. Note that the first (i) baseline condition is the most restrictive: for example, a 
familiarity unit that decreases firing to novel items but remains at baseline for familiar 
items would not pass this test. For the second baseline condition, 92% of units (105 of 
114) remain significant. Thus, almost all units fired significantly different from baseline 
for either the new or old condition. Note that some of the n’s reported in the main 
analysis are slightly lower than the numbers reported in this table. This is because 
additional constraints were applied (for example, at least one R+ and one R- trial for each 
included unit). 
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Chapter 5.  Predictors of successful memory encoding 

5.1  Introduction 

Whether a memory is successfully retrieved or forgotten is determined by many different 

factors. The first step in establishing a new memory is encoding it. The cellular, molecular, and 

network processes triggered during encoding set into motion a permanent change that is sufficient 

to later recall the memory. Many other factors influence this process, such as attention, arousal, 

consolidation, interference with other memories, sleep, and emotional significance (Paller and 

Wagner, 2002). Here we asked how much of the retrieval performance can be explained by the 

neural activity during initial learning. Thus, we are looking for indicators of successful memory 

encoding.  

We recorded single units and LFP data from three areas strongly involved in memory 

formation: two structures in the MTL (the hippocampus and amygdala) as well as one structure of 

the cortex (anterior cingulate cortex). Lesions of the MTL produce severe memory deficits (see 

Chapter 1 for details). Also, hippocampal lesions, in particular, produce deficits in the detection 

of novelty (Knight, 1996). The successful detection of  novelty is a prerequisite for memory 

formation in many instances (Rutishauser et al., 2006a). While the function of the ACC is poorly 

understood, it is clear that it has a prominent role in performance monitoring and attention (focus, 

effort), and it is thus expected that it will also contribute to memory encoding. From animal 

studies it is known that lesions of the ACC (particularly area 24) severely impair the acquisition 

of Pavlovian conditioning (Gabriel et al., 1991). Similarly, recordings from the ACC reveal 

prominent theta oscillations which interact with hippocampal theta, as well as single units (in the 
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cingulate) that modulate their firing relative to hippocampal theta (Colom et al., 1988; Gabriel et 

al., 1991; Gabriel et al., 1987). Novelty-related responses in the ACC have also been observed. 

Thus, in addition to its role in attention, the ACC is likely to play an important role in learning. 

Does the neural activity present during the encoding of memory (during the first stimulus 

presentation) predict memory success? Activity before the stimulus onset has been shown to 

predict successful memory recollection (Otten et al., 2002; Otten et al., 2006). This is a 

manifestation of the influence of the baseline state (attention, arousal, focus, motivation, or some 

form of task-preparation) on encoding. Otten et al. demonstrated this effect by comparing the 

event-related potentials (ERPs) evoked by a cue that predicts stimulus onset a fixed time later 

(Otten et al., 2006). The authors found that ERPs, sorted according to whether the stimuli were 

later recollected or not, were different. This is remarkable because it shows that not only does 

neural activity (measured by ERPs) before stimulus onset correlate with encoding success, but 

that it can change fast enough to have an effect trial-by-trial. This is difficult to reconcile with 

baseline states of the brain, which are thought to change on a slower timescale. Top-down 

attention can, however, influence processing differentially trial-by-trial (Einhauser et al., 2008; 

Rutishauser and Koch, 2007).  

The neural activity present in the MTL shortly after the onset of a stimulus is directly and 

causally related to whether a memory is formed or not. A demonstration of this involves temporal 

disruption of neural activity in the hippocampus (of macaques) in a match-to-sample task: 

performance was only influenced if stimuliation onset was within 300 ms of the stimulus (Ringo, 

1995). Afterwards, performance was not disrupted.  In humans, intracarotid injection of 

amobarbital 1 min after acquiring a new memory does not disrupt memory for retrieval after 
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recovery from anesthesia (Gleissner et al., 1997).  This form of anesthesia causes extreme 

hyperpolarization and thus prevents spiking.  This suggests that new memories become at least 

partially independent of electrical neural activity shortly after initial acquisition. 

 Mechanistically, induction of synaptic plasticity requires tightly coordinated pre- and 

postsynaptic activity (on the order of 10 ms). Neurons tend to fire in synchrony with others in the 

same circuit and thus the inputs to a particular neuron oscillate. A prominent oscillation in the 

hippocampus (and other areas) is the theta rhythm. In vivo, only stimulation around the peak of 

theta induces strong LTP (Holscher et al., 1997; Hyman et al., 2003; McCartney et al., 2004; Orr 

et al., 2001; Pavlides et al., 1988). Neurons are most excitable and most depolarized at the peak of 

theta and fire more sparsely in the presence of theta (Buzsaki et al., 1983; Fox, 1989; Wyble et 

al., 2000). The presence or absence of hippocampal theta also has a direct behavioral effect on 

learning: learning rates during conditioning are are positively affected by the presence of theta 

prior to training (Berger et al., 1976; Berry and Thompson, 1978).  

Gamma oscillations (30–80 Hz) are very prominent in many areas of the human brain, 

including the hippocampus, the amygdala (Jung et al., 2006b; Oya et al., 2002), and a large 

number of cortical areas (see (Jensen et al., 2007) for a review). In humans, the intracranially 

measured power of gamma oscillations correlates with working memory load, attention, and 

sensory perception (Engel and Singer, 2001; Howard et al., 2003; Tallon-Baudry and Bertrand, 

1999; Tallon-Baudry et al., 2005). The presentation of visual stimuli triggers gamma oscillations 

in many areas (Tallon-Baudry et al., 2005). The power of stimulus-triggered increases and 

decreases in gamma oscillations have also been shown to correlate with recall success in a free-

recall task (Sederberg et al., 2007). 



186 

 

We recorded LFP from intracranial depth electrodes during performance of a single-trial 

learning task. In a similar task, we previously observed single units that indicated the novelty or 

familiarity of the stimulus presented (Rutishauser et al., 2006a; Rutishauser et al., 2008). Here we 

asked whether the LFP, recorded during learning, contained information about the success or 

failure of plasticity. We compared the power of oscillations (during learning) between stimuli 

which were later recognized and stimuli which were forgotten. Our task was a recognition 

memory test (new/old) with continuous confidence ratings and a long delay (> 15 min) to test for 

true long-term recognition memory. The stimuli that we used were all novel and had never been 

seen before by the patient. This is distinct from previous paradigms used by others, which used 

short delays, highly familiar stimuli (words), free recall of words, or subjective judgments of 

recollection (remember/know). We also repeated the same experiment with a longer (24 h, 

overnight) delay and a new set of novel stimuli. We then tested whether periods of changed 

oscillatory power identified from the same-day data could predict whether stimuli would be 

remembered after the overnight delay. We found that there are several distinct frequencies of 

oscillations in the hippocampus, amygdala, and anterior cingulate that are good predictors of 

memory success.  Also, we find that the oscillatory periods that correlate with same day memory 

can be used to predict memory performance the next day (overnight memory). 

5.2  Methods 

5.2.1  Task 

During each trial, the stimulus (a picture) was presented at the center of the screen. 

Distance to the screen was approximately 50 cm and the screen was approximately 30 by 23 
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degrees of visual angle. Stimuli were 9 by 9 degrees.  A trial consisted of the following displays 

(in this order): delay (1 s), stimulus (1 s), delay (0.5 s), question (variable). During delay periods, 

the screen was blank. After the delay, the question (see below) was displayed until an answer was 

provided. The answer could only be provided when the question was on the screen to avoid motor 

artifacts (keys presses during stimulus presentation were ignored). 

During learning trials, patients were asked to answer the question “Was there an animal 

in the picture?” to facilitate attention and focus. Patients answered this question almost perfectly 

(≥ 98%), confirming that they were looking at the images on the screen during learning. 

During retrieval trials, patients were asked to indicate, for each picture, whether they had 

seen it before (during learning) or not (e.g. new or old).  Also, patients were asked to indicate 

their subjective confidence of their judgment.  Answers were provided on a 1-6 scale from: 1 = 

new, confident, 2 = new, probably, 3 = new, guess, 4 = old, guess, 5 = old, probably, 6 = old, 

confident). 

All psychophysics was implemented using Psychophysics toolbox (Brainard, 1997; Pelli, 

1997) in Matlab (Mathworks Inc). 

Stimuli were photographs of natural scenes of 5 different visual categories (animals, 

people, cars, outdoor scenes, flowers). There were the same number of images presented for each 

category. Categories were balanced during retrieval to avoid any inherent bias in memory for 

individual subjects for certain categories. All stimuli were novel and had never been seen by the 

patient. Each stimulus was presented at most two times (once during learning, once during 

retrieval). 
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5.2.2  Data analysis — LFP 

For details on how we analyzed LFP data (in particular wavelet decomposition, 

power/phase estimation), please refer to the methods chapter of this thesis. Here, only the 

parameter settings and techniques specific to this chapter are described. 

Frequency bands were sampled logarithmically spaced: xf 2=  with 8/]52:2:2[∈x  

(see appendix for details). Here, the maximal frequency examined was 90 Hz. In total 24 

frequencies were examined (all in Hz): 1.68, 2.00, 2.38, 2.83, 3.36, 4.00, 4.76, 5.66, 6.73, 8.00, 

9.51, 11.31, 13.45, 16.00, 19.03, 22.63, 26.90, 32.00, 38.05, 45.25, 53.81, 64.00, 76.11, 90.50. 

All channels were included that contained appropriately distributed 1/f wideband signal. 

Channels with 60 Hz were filtered using a 4th-order Butterworth notch filter. Channels were not 

pre-selected for the presence of particular peaks in the spectrogram. Thus, it is expected that 

many of the channels have only weakly detectable energy in prominent LFP bands such as theta 

or gamma (due to inappropriate impedances or the location of wire).  Since we could not find any 

good (and objective) criteria to judge what constitutes a “good” LFP channel, we opted to include 

all channels to avoid any biases. Also note that the LFP reported here was recorded 

simultaneously with spikes.  Since we recorded spikes relative to a local ground (one of the other 

wires on the same macroelectrodes), the LFP signals reported in this chapter are also locally 

grounded. This implies that the signals discussed here represent the activity of a local population 

of neurons/synapses (maxmally a few millimeters, often much less). They are distinct from other 

types of recorded LFPs which are globally grounded (e.g., by an electrode in the other 

hemisphere or the skull).  Examples of globally grounded signals include intracranial EEG and 

surface EEG. It is thus important to note that LFP in this thesis refers to a local signal. Due to this 
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type of grounding, oscillations in the brain that are the same over long distances (several 

millimeters) can not be observed (requires global grounding). Other reports of LFP recorded from 

similar microwires (simultaneously with spikes) also have this caveat, although they usually 

neglect to mention this explicitly (Ekstrom et al., 2007; Jacobs et al., 2007; Kraskov et al., 2007; 

Nir et al., 2007). It is also important to keep this caveat in mind when comparing human 

microwire LFP to animal LFP data, which is usually not locally grounded (and similarly to 

intracranial EEG). 

 The LFP power in these 24 different frequency bands was calculated as a 

continuous function of time using wavelet decomposition (see appendix). We compared the mean 

LFP power in 250 ms bins from stimulus onset to 500 ms after stimulus offset (total duration 

1500ms). We tested for differences in mean power in each bin using 5000 bootstrap samples 

(Efron and Tibshirani, 1993). The LFP power at a particular frequency has a heavy tail (χ2 

distributed) and it is thus inappropriate to compare these populations using parametric tests such 

as the t-test. The bootstrap test we used is entirely non-parametric and makes no assumptions 

about the distribution of the values. For each channel, there were thus 148 (6 x 24) comparisons. 

We corrected for multiple comparisons using false discovery rate (FDR) with a q = 0.05 across 

time (Benjamini and Hochberg, 1995). This thus guarantees a FDR of 5% at each frequency, 

regardless of the number of time bins used. Thus, it is expected that 5% of the channels will show 

a significant difference at each frequency due to chance. Note that FDR was thus not controlled at 

the level of an entire electrode (but rather at the frequency). It is thus not meaningful to state the 

percentage of electrodes that show a significant difference due to memory (DM) effect because 

the false positives are not controlled for this measure (and, in the worst case, could be very high 
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due to 24 independent frequency bands at a 5% level each). Nevertheless, some authors have still 

reported % of channels significant using the same multiple comparisons approach we use here 

(Sederberg et al., 2003; Sederberg et al., 2007). In our opinion, these reported numbers (reported 

to be > 70%) are meaningless because conservative (complete independence between 

frequencies) chance levels are of the same magnitude. 

 We further confirmed that the 5% chance level enforced using FDR was 

appropriate. There are many reasons why the chance level could be much higher even if using p < 

0.05/q < 0.05:  i) small sample sizes (15–35 samples in each group, i.e., the stimuli that subjects 

remembered/forgot), ii) the heavy-tailed distribution of LFP power, iii) the imbalance between 

the two classes (typically more pictures are remembered then forgotten, although a high number 

of forgotten pictures does not indicate the absence of memory if false positives are low), or iv) the 

different dynamics due to the 1/f properties of the signal (faster signals can change faster, thus 

more noise). It was thus necessary to calculate the empirical chance (bootstrapped). To create a 

bootstrapped sample, we randomly re-assigned the labels “forgot” and “remembered” (sampled 

with replacement). This created two samples of LFP powers, which were then compared as 

described above (at each frequency and time bin). The same random sampling was used for all 

channels of one subject (since these channels were recorded simultaneously). Repeating this 

procedure 200 times for each subject resulted in a percentage of channels which showed 

significant DM effects (as a function of frequency). We found that the chance level calculated 

with this procedure was only marginally above 5% and our procedures are thus appropriate (see 

results for details). Chance levels were, however, not entirely independent of frequency (higher 
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for higher frequencies). This further reinforces the need for empirically estimating the chance 

levels to assure that effects are not spurious. 

5.2.3  Data analysis — LFP decoding 

Decoding was performed using regularized least-square classifiers (RLSC; see appendix 

for details). The classifier was binary (hit or miss). Each stimulus was classified as either a hit or 

miss based on whether it was correctly remembered or not (regardless of confidence). Thus, the 

number of examples in each class was determined by the performance of the subject and varied 

from session to session. To avoid any biases, classes were balanced 50/50 before testing and 

training the classifier. This assured that the true chance performance of the classifier was 50%. 

Otherwise, if (for example) the subject remembered 80% of the stimuli the true chance 

performance would be 80% (a classifier that always says “hit” could reach this performance 

without even considering the input). Classifiers were always trained separately for each recording 

session. Data were not artificially pooled. 

 For the overnight sessions, we trained a classifier on all time/frequency bins that 

significantly differed for hit vs. miss same-day trials. The significance of bins was also 

determined based on the same-day trials. We then used this classifier on the trials that were used 

for overnight recognition to predict whether the stimuli will be remembered or not. The measure 

of performance was the percentage of overnight trials that the classifier predicted correctly.  
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Figure 5-1. Retrieval performance (behavior) shown as a receiver operator 
characteristic (ROC) curve. 

All subjects had above-chance performance for all confidence levels (points are above the 
diagonal). Also, subjects had a good sense of confidence (lower false alarms for high 
confidence). The summary measures d' and area under the curve (AUC) values are shown 
for each session (title). Each panel shows the performance for one individual retrieval 
session (6 are shown). The location of each data point (red dot) is determined by a pair of 
false alarm and true positive rates (x and y axis, respectively). Subjects rated their 
confidence on a 6 point scale: 1=new sure, 2=new probably, 3=new guess, 4=old guess, 
5=old probably, 6=old confident. The leftmost datapoint corresponds to 6 (“old 
confident”) and the rightmost point is 1 (“new sure”). Also shown is the analytical fit 
(full line) that was used to determine the d' value.  
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Figure 5-2. Retrieval performance for all subjects. 
 (a) ROC curve of one retrieval session (see Figure 5-1 for details). (b) The z-transformed 
representation of the same ROC curve as shown in (a). Each datapoints corresponds to 
one level of confidence. The z-transformed performance was fit well by a straight line 
(R2 = 0.95) and thus d' is an appropriate summary measure of performance. (c) d' for each 
retrieval session. Performance was above chance (d' = 0) for all sessions. Errorbars are 
±s.e. and show within-subject confidence intervals. (d) Average d' for all sessions (n = 7) 
was significantly different from chance (p = 0.007, chance is d' = 0). (e)   Average area 
under the curve (AUC) for all sessions (n = 7) was significantly different from chance (p 
= 0.0002, chance is AUC = 0.5). AUC is a nonparametric summary measure with no 
assumptions and thus confirms the d' result. (f) Percentage of errors as a function of 
confidence. The lower the confidence, the higher the error rate. Each session is a different 
color.  Subjects had a good sense of confidence: error rates decreased significantly with 
an increase in confidence (1 = highest confidence, 3 = lowest; R2 = 0.31, p = 0.009). 
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5.3  Results 

We administered a simple picture memorization task in two stages: learning and retrieval. 

Pictures were photographs of natural scenes that contained objects (see Methods). Memory was 

tested 10–20min after learning. A distraction task (Stroop) was administered during the delay 

period. During learning, 50–100 pictures (depending on the memory capacity of the patient, see 

Methods) were presented. Patients were instructed to remember which pictures they had seen. 

Each picture was shown for 1 s.  

 Memory was tested by asking patients to indicate whether they had seen the 

picture shown before as well as the confidence of their judgment (on a 1–6 scale, see Methods). 

Patients had both good memory for the stimuli shown as well as a good subjective sense of 

confidence (Figure 5-1 and Figure 5-2). We quantified retrieval performance using receiver 

operator characteristice (ROC) analysis and d’ (Macmillan and Creelman, 2005). Example ROCs 

for six retrieval sessions are shown in Figure 5-1. Each data point in the ROCs illustrates one 

confidence level. The point in the lower left corner (lowest false as well as true positive rate) 

corresponds to the highest confidence level (“old confident”). As a summary measure of the 

entire ROC, we used d’ and area under the curve (AUC) of the ROC.  Using d’ requires that the 

values underlying the ROC are normally distributed (thus, it makes assumptions about the shape 

of the ROC curve). For our patients this assumption was well justified: the z-transformed ROC 

was fit well by a straight line (an example is shown in Figure 5-2B with an R2 = 0.95). The 

average  d’ (“d-Prime”) for all 7 retrieval sessions (from 5 patients) was 1.22±0.18 (Figure 

5-2C,D). Nevertheless we also quantified retrieval performance using the average AUC, which is 

the integrated area below the ROC curve.  For example, the ROC shown in Figure 5-1A  has an 
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AUC of 0.79). The AUC varies between 0.5 (chance) and 1.0 (perfect). In contrast to d’, it makes 

no assumptions about the underlying distributions (non-parametric). Patients had an average AUC 

of 0.72±0.03 (Figure 5-2E). Subjects not only had good memory but they also had a good sense 

of subjective confidence.  This is indicated by the monotonically increasing ROC curves (Figure 

5-2A), as well as  the increasing percentage of errors made as a function of decreasing 

confidence. This is illustrated in Figure 5-2F: the lower the confidence, the higher the error rate 

(quantified as the percentage of all responses made). Errors increased by 6% per decreased 

confidence level and were well fit by a linear model (p = 0.009, R2 = 0.31). 

 Next, we analyzed the neural activity during learning. The general approach for 

this analysis was to compare learning trials for pictures that were later remembered with learning 

trials for pictures that were not remembered (difference due to memory (DM) effect). If the 

failure to retrieve the forgotten stimuli is directly attributable to a failure to evoke plasticity 

during  learning, it is hypothesized that such differences can be observed in the LFP and/or single 

unit data. Obviously there could be many other reasons why retrieval failed and it is thus not 

expected that every retrieval failure can be attributed to a failure of plasticity during learning. 

Other possible factors are attention during retrieval, misattribution due to confusions with similar-

looking stimuli, memory consolidation, rehearsal, incorporation into personal memories 

(episodic), sleep, or emotional attributes evoked by the stimuli (which differ in each patient). 
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Figure 5-3. Example LFP traces (raw, theta, gamma). 
Shown are 2 s of data from the hippocampus (HF; A+B), amygdala (Amy; C+D) and 
anterior cingulate (ACC; E+F). Traces were from data recorded during the learning part 
of the task (stimulus onset at 500 ms). Each panel shows the raw fullband trace (high-
pass 1 Hz) and a bandpass filtered version (theta 3–10 Hz, gamma 30–80 Hz; note that 
these frequency bands are for illustration purposes only and were not used for analysis). 
Left column shows theta, right column gamma. Note the clear presence of gamma and 
theta oscillations in all three areas. The amplitudes of oscillations varied widely between 
channels. 

 
First, we compared the power in different frequency bands of the LFP. We recorded the 

wideband extracellular signal from single wire electrodes in the amygdala, hippocampus, and 

anterior cingulate cortex bilaterally (see Methods). Many channels showed prominent activity in 

the gamma and theta bands, which were visible in the raw unfiltered signal (Figure 5-3). Since the 

traditional boundaries of which frequencies constitute a “theta” or “gamma” oscillation are 
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somewhat arbitrary, we only use these terms here for discussion purposes. Also, there are 

indications that the frequency of many of the intrinsic oscillations (which are mostly defined 

based on recordings in small rodents) are slower in bigger mammals and particularly in humans 

(Buzsáki, 2006; Penttonen and Buzsaki, 2003).  To avoid assumptions, all analysis was conducted 

independently at each frequency, regardless of which (hypothesized) band it belonged to.  

 

Figure 5-4.  Example of LFP power difference due to memory. 
All data in this figure is from a microwire in the left hippocampus. The frequency band 
illustrated is 53 Hz (gamma). (A) shows the LFP power (at 53 Hz) as a function of time 
for all learning trials. Trials for stimuli which were later remembered (green) had more 
gamma power compared to trials with stimuli that were not remembered (red). The 
stimulus is on the screen for 1 s, indicated by the vertical red lines. (B) Distribution of 
power for the 3rd timebin (500–750 ms) illustrated as a cdf. Notice the large shift to the 
right (larger values) of remembered (hit, green) trials. (C) P-Values for all timebins and 
all frequency bands. Each bin is 250 ms long. Only values which survived the per-
frequency FDR are shown. Notice the highly significant difference for gamma-band 
frequencies for the 3rd timebin, an example of which is shown in A+B. 

 
We compared, at each frequency, the power of the LFP signal between stimuli that were 

later remembered vs. stimuli that were forgotten (see Methods for details). We found that 

prominent differences exist in several distinct frequency bands. An example channel from the left 

hippocampus is shown in Figure 5-4A.  This channel had higher power in the 53 Hz band for 

stimuli which were later remembered. We found similar differences due to memory in all brain 
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areas we recorded from for a variety of frequencies (examples are shown in Figure 5-5, see below 

for statistics). One observation was a prominent increase in power for remembered stimuli that 

was seen both during (Figure 5-5F) as well as shortly after presentation of the stimulus (Figure 

5-5C). Some channels also had a decrease in power that correlated with remembered stimuli 

(Figure 5-5B). In the anterior cingulate, some channels showed prominent overall power 

decreases that started shortly before stimulus onset (Figure 5-5A).   

We found significant differences in several distinct frequency bands (Figure 5-6). To 

differentiate which frequency differences were not attributable to chance, we calculated an 

unbiased boostrap estimate of the chance level as a function of frequency for each brain area 

(Figure 5-6, blue bars; theoretical level of 5% is indicated by the black line). We found that the 

empirical chance level generally increased somewhat as a function of frequency. A comparison of 

the expected number of channels different due to chance with the observed number of channels 

using a goodness-of-fit χ2 reveals a significant difference for all 3 brain areas (hippocampus χ2 

=164, amygdala χ2 =84, cingulate χ2 =56; all p < 0.0001; all df = 24). Several frequency bands 

with prominent DM effects become apparent (compare blue and red in Figure 5-6): < 3 Hz, 4–8 

Hz, 9–12 Hz, 16–30 Hz and > 30 Hz.  Differences due to very low frequency oscillations (< 3 

Hz) were only apparent in the amygdala and hippocampus (Figure 5-6A,B). Gamma band 

differences were prominent in all brain areas (> 30 Hz). Alpha-band differences (9–12 Hz) were 

particularly prominent in the cingulate, present in the hippocampus and absent in the amygdala.  

Beta-band differences (16–30 Hz) were prominently present in the amygdala.  

 Are the power differences described above predictive of whether a stimulus will 

be remembered? So far we have only demonstrated a correlation: on some channels, power is 
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distributed differently for stimuli which are later remembered compared to stimuli which are not. 

We used a decoding approach to quantify how far this activity is truly predictive. We used a 

regularized least square classifier (RLSC; see methods). This decoder is very simple: it takes the 

weighted sum of all available bins. The weights are determined based on the training samples and 

a regularizer term, which enforces smoothness. 
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Figure 5-5. Examples of DM effects from all three brain areas as well as different 
frequency ranges.  

Shown are two examples from each: anterior cingulate (A,B), amygdala (C,D), and 
hippocampus (E,F). The frequency of each is indicated in the panel (f = X Hz). Time 
units are in milliseconds. The stimulus is present on the screen for 1 s (between red 
vertical lines). Notice that for A,E the y axis is in terms of 10^5. 
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Figure 5-6. Summary of DM effects for all brain areas and frequencies.  
Shown are the number of electrodes as a function of frequency that have a DM effect for 
at least one timebin. Red bars show the real data, blue bars the bootstrapped chance level 
and the black line the theoretical chance level. All comparisons are multiple comparisons 
corrected using FDR. Note the distinct frequency bands that have significant effects: < 3 
Hz, 4–8 Hz, 11–16 Hz and > 30 Hz. Data is shown separately for the hippocampus (A), 
amygdala (B), and anterior cingulate (C). Note the clear presence of theta-band difference 
in the hippocampus and cingulate, but not the amygdala (see text). 

 

For decoding we focused on the overnight sessions. Decoding from same-day trials was 

possible as well (with percentage correct > 80%, compare to below), but this is not unexpected: 

time-frequency bins were selected such that they showed a significant difference.  It is thus more 

meaningful to decode overnight trials, which are entirely independent. We were able to record an 

overnight retrieval session from a subset of our patients (2 sessions from 2 separate patients). 

These patients had sufficient memory capacity to learn 100 images in one session. Half (50) of 

these images were used for same-day retrieval (10–20 min delay) and the other half were used for 

retrieval 24 h later. The images the patients saw after 24 h were different from the images the 

patients saw after the short delay. Patients were able to remember pictures overnight: average d’ 

was 0.45±0.15 (excluding guess trials) and the average AUC was 0.56±0.01. Also, patients had a 

good sense of confidence (both FP and TP increased monotonically as a function of decreasing 
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confidence). First, we analyzed the learning trials for the stimuli used for same-day retrieval; we 

identified the frequency/time bins that showed a significant difference between hits vs. non-hits 

(as described above).  Also, we trained a classifier using this data. This analysis was based 

entirely on the 50 trials that were used for same-day retrieval. No data from the learning trials for 

overnight retrieval was used. Afterwards, we used the time/frequency bins identified by this 

analysis to investigate whether these had predictive power for overnight retrieval. An example of 

one channel is shown in Figure 5-7. Note that the distribution of the hits and non-hit trials is 

similar for same-day and overnight retrieval sessions. The overnight learning trials constitute a 

perfect out-of-sample testset. All parameters of all the analysis steps are exclusively estimated 

from the same-day learning trials. It is an open question as to whether overnight memory could be 

predicted based on firing patterns that predict same-day memory. It is conceivable that different 

physiological mechanisms are responsible for these different memory spans. Also, it is 

conceivable that the influence of the plasticity triggered during initial acquisition is less 

prominent the longer the time delay (due to processes such as consolidation). One indication for 

this is that retrieval performance is worse after the 24 h delay (average overnight AUC = 0.56 and 

average same-day AUC = 0.67, for the two patients that have both overnight and same day 

sessions). Despite this, we found that activity patterns identified from same-day activity are 

predictive of overnight memory: decoding overnight trials results in correct prediction (of 

whether the stimulus will be remembered or not) for 58.5±0.04% of all trials (Figure 5-8; 

significantly bigger than chance p = 0.036). Percentage correct as a summary measure of 

decoding performance can be misleading, and we thus also quantified performance using A’ 

(Macmillan and Creelman, 2005). A’ for overnight decoding was 0.66±0.02 (0.5 is chance). Thus, 
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the activity patterns that predict successful same-day memory also have predictive power for 

long-term (overnight) memory. Decoding performance is, however, worse then for same-day 

retrieval (as expected, due to the factors mentioned above). 

 

Figure 5-7 Example of LFP power difference, shown for learning trials that were 
retrieved on the same day (green and red) and overnight (magenta and blue).  

This channel was selected entirely based on the statistics for the same-day trials. (A) raw 
trace of LFP power in the 5.6 Hz band. Note that the units are in terms of 10^5. The 
stimulus was on the screen for 1 s (vertical red lines). Notation for colored lines is shown 
in (B). (B) Illustration of the distribution of all 4 trial types using a cdf. 
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Figure 5-8. LFP power can be used to predict overnight memory.  
Channels were identified that correlate with success of retrieval after the short delay 
(same day) and were then used to train a classifier. This classifier is able to predict 
overnight memory successfully if used on the learning trials for the overnight trials. 
Shown is the the mean performance (left) as well as the individual performance for the 2 
patients that completed this task. The dashed line indicates chance performance (50%). 

5.4  Discussion 

We found that LFP power in different frequency bands in the hippocampus, amygdala 

and cingulate correlates with later retrieval success. Thus, LFP power changes (during learning) 

are correlates of the successful induction of plasticity and thus retrieval success. Power changes 

were specific to certain frequency bands (< 3 Hz, 4–8 Hz, 16–30 Hz, > 30 Hz) rather then overall 

increases in LFP power. We also found that the LFP power changes can be used to predict 

whether retrieval will be successful or not. Thus, they are not just a correlation but a valid 

predictor. Our findings thus represent a direct demonstration (by later behavior) that the strength 

of local extracellular field oscillations is a relevant factor in the induction of plasticity.  

While we show that certain LFP power changes are predictive of later retrieval success it 

remains to be demonstrated why this is so. Increased power of oscillations likely indicates higher 
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synchrony of firing between different neurons, which thus could induce plasticity more easily 

(Axmacher et al., 2006). It is also possible that increased LFP power enhances the effectiveness 

of information transmission between different areas, such as the hippocampus and the cortex.  

These effects could be mediated by increased phase locking due to more dominant oscillations. 

Phase locking to, for example, theta or gamma is a prominent feature of both hippocampal and 

cortical neurons (see Introduction for details). While phase locking is relatively well understood 

at the circuit level, its behavioral relevance is unknown. What triggers the increases in oscillatory 

power also remains unclear. In part these can probably be attributed to attentional processes, but 

there are probably also other causes of increased oscillations. Increased power can also be caused 

by phase resets (triggered by stimulus onset) of existing oscillations, which can be observed 

during memory tasks (Mormann et al., 2005; Rizzuto et al., 2006; Rizzuto et al., 2003).  

Candidates for regulation of LFP oscillations are modulation by emotional factors 

(arousing stimuli), reward (such as reward predictors), or depth-of processing modifications. One 

indication that reward predictors might influence memory encoding is the correlation of retrieval 

success with activation (measured with BOLD) of the ventral tegmental area (VTA) (Adcock et 

al., 2006; Knutson et al., 2001; Wittmann et al., 2005), an area which projects dopamine releasing 

axons to the hippocampus (Bjorklund and Dunnett, 2007; Gasbarri et al., 1997; Gasbarri et al., 

1994), amygdala (Fallon et al., 1978; Fried et al., 2001), and prefrontal areas (Bjorklund and 

Dunnett, 2007; Vogt et al., 1995; Williams and Goldman-Rakic, 1998). It is thus conceivable that 

dopamine release contributes to the increase in LFP power. Such dopamine release is also 

hypothesized to be triggered by novel stimuli (Lisman and Grace, 2005). In vitro, dopamine has 

been shown to have a strong modulatory role in the strength of plasticity (Chen et al., 1996; 
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Huang and Kandel, 1995; Otmakhova and Lisman, 1996; Smith et al., 2005). Of particular 

interest is the finding that dopamine acts as a high-pass filter at the synapse that relays direct 

cortical input to the hippocampus (Ito and Schuman, 2007). BOLD activity recorded in the VTA, 

in fact, has been shown to be activated by absolute novelty rather then emotional content, general 

saliency, or rarity (Bunzeck and Duzel, 2006). This indicates that a fruitful avenue for future 

experiments would be the modulation of reward during learning with a paradigm known to 

activate the VTA, while simultaneously recording LFP in the hippocampus. Similar arguments 

can be made for the hypothesized modulation of memory strength of emotional stimuli by the 

amygdala (Sharot et al., 2004). One possibility for the amygdala to achieve this is to induce or 

enhance oscillations in the hippocampus or other areas. Simultaneous recordings of LFP in the 

amygdala and hippocampus while performing a memory task comprising both emotional and 

non-emotional stimuli would be a useful experiment to elucidate these effects. A frequently used 

paradigm to change memory strength has been a modification of depth of processing, for example 

counting the number of characters vs. imagining a sentence describing the situation in the case of 

remembering words (Paller et al., 1987). Such modifications effectively modify attention. A 

mixture of such a paradigm and another modulator of memory strength (such as emotion) might 

allow one to disambiguate attentional from other effects of increased encoding success. 

This study is different from others in several crucial aspects. We exclusively used novel 

stimuli which had never been seen by the patient. We did so to ensure that we examined the 

encoding of novel information rather then the judgment of recency. The time delay between 

learning and retrieval was substantial ( > 10min). Also, a distraction task was performed 

immediately after completing learning. To assess memory strength, we used a recognition 
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memory test (new/old) with confidence ratings. This allowed us to systematically assess the 

behavioral performance of the patients using ROC diagrams.  Previous studies used lists of highly 

familiar words that were then freely recalled by the patient after a short (often 30 s) delay 

(Cameron et al., 2001; Fernandez et al., 1999; Sederberg et al., 2003; Sederberg et al., 2007). 

Thus, these studies report predictors of memory success for recall (“recency”) of verbal memory 

(for words that were very familiar) after short time delays.  In contrast, we report predictors of 

encoding success for a much more general class of novel stimuli (complex natural scenes of 

objects) that were learned in a single trial. Also, we show that these changes are truly predictive. 

One other  study (using words and free recall) claims to document this too, but in fact only shows 

a correlation (Sederberg et al., 2007). Note also that we did not normalize the LFP power to 

baseline (in contrast to others). Thus, the differences that we analyzed include both stimulus-

triggered as well as other differences (such as more slowly varying state changes, possibly 

evoked by changes in the neuromodulatory environment).  

 One curious aspect of our findings is the lack of specificity to a particular brain 

area. While there were differences in terms of the frequencies that were predictive between areas, 

in general all three areas investigated (amygdala, hippocampus, ACC) correlated with encoding 

success to a similar degree. Our recordings were locally grounded (see methods), and the LFP 

reported here is thus of a very local nature. This effect can thus not be explained by large-scale 

synchronous oscillations. Rather, it appears that all three areas contribute to encoding success to a 

similar degree (on average). Since our stimulus set contained a very heterogeneous set of stimuli 

of different categories and emotional saliency, we cannot exclude that this is an effect of 

averaging all stimuli. This finding is, however, in agreement with many surface EEG and MEG 
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studies that report differences due to later memory in a widespread collection of areas (Klimesch 

et al., 1996; Osipova et al., 2006; Takashima et al., 2006). Our recordings, which have much 

higher spatial resolution, confirm that power changes can be observed very locally in all three 

areas we recorded from. Since the areas responsible for encoding of memories are tightly 

interconnected in many different ways, it is perhaps not surprising that all areas show increased 

activity. It is possible that one area seeds the increase in synchrony, which then quickly spreads to 

all the other areas such that increases in LFP power are visible in the entire network. The non-

specificity of predictive oscillatory power increases also indicates that an important component of 

encoding success is the coordination of large-scale brain circuitry. For example, BOLD signal 

correlations between extrastriate visual areas (face/place selective) and prefrontal (DLPC) 

correlate with successful episodic memory formation (Summerfield et al., 2006). Thus, cortical-

cortical correlations are important for memory success. Similarly, hippocampal-cortical 

interactions are crucial for memory formation (Wiltgen et al., 2004). For example, it has been 

demonstrated that prefrontal neurons in the rat can phase-lock to hippocampal theta (Siapas et al., 

2005), and it has been proposed that this facilitates information transfer between these two 

structures. It is thus perhaps not surprising that power increases can be observed in both structures 

simultaneously.  
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Chapter 6.  Summary and General Discussion 

6.1  Novelty detection and single-trial learning 

This thesis is about single neurons in the human brain that express a fundamental piece of 

information: whether a stimulus is novel or familiar. By definition, a stimulus is novel only once. 

The second time it is seen, it is familiar. Novelty- and familiarity detecting neurons follow this by 

rapidly changing their firing pattern. The response of novelty- and familiarity detecting neurons is 

not binary. Rather, the response strength (or absence, in the case of novelty neurons) is 

proportional to the strength of memory. Familiarity detecting neurons, by definition, increase 

their firing rate for stimuli which are familiar (have been seen before). Their response is strongest 

for stimuli that are recognized and recollected, intermediate for recognized stimuli (but not 

recollected), and weak (but non-zero) for forgotten stimuli. Novelty detecting neurons, by 

definition, only increase firing for novel items. For familiar items, however, they tend to decrease 

their firing. The stronger the memory, the larger the firing rate decrease (relative to the response 

to novel stimuli). Thus, both novelty and familiarity detecting neurons signal the strength of 

memory, but with opposite polarity. 

The neurons discussed here are capable of the most rapid form of plasticity: single-trial 

learning. Most events in life occur only once. Thus it is of fundamental importance to investigate 

this form of learning. Responses to novel stimuli are extremely prevalent in the brain and in 

behavior (Sokolov, 1963). Many neurons in many areas of the brain respond differently if a 

stimulus is novel or otherwise salient in some way. Responses to novelty can also be observed 

behaviorally: animals such as rats have a natural tendency to explore novel objects. In fact, this 
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effect is commonly used to test recognition memory for objects in rodents (Ennaceur and 

Delacour, 1988). Animals automatically orient towards novel stimuli (Sokolov, 1963; 

Vinogradova, 2001). Humans and non-human primates automatically move their eyes towards 

novel objects and they spend more time fixating novel objects (Althoff and Cohen, 1999; Smith et 

al., 2006; Yarbus, 1967). This preference exists even in infants (Fantz, 1964). Autonomic 

reactions such as skin conductance (Knight, 1996), heart rate (Weisbard and Graham, 1971), or 

pupil diameter-dilation (Hess and Polt, 1960) also show prominent novelty responses. Many of 

these novelty responses are severely reduced by lesions of parts of the medial temporal lobe 

(Honey et al., 1998; Kishiyama et al., 2004; Knight, 1996; Knight and Nakada, 1998; Yonelinas 

et al., 2002). This is particularly the case for hippocampal lesions. Being novel (or more 

generally, different) is a very effective modulator of memory strength. This is true even if the 

attribute that makes a stimulus novel is task irrelevant. This is the well known “von Restorff” 

effect (Hunt, 1995; Kinsbour and George, 1974; Kishiyama et al., 2004; Parker et al., 1998; von 

Restorff, 1933; Wallace, 1965). Thus, it is clear that novelty is an efficient modulator of memory 

strength. Some have proposed that novelty increases dopamine release, which is known to induce 

strong and long-lasting plasticity (Lisman and Grace, 2005). Given the persistence of this 

phenomenon, it seems warranted to speculate that the feature that novelty enhances memory 

constitutes an evolutionary advantage and is thus selected for.  

While remembering something as best as possible (and thus detecting novelty as well as 

possible) is usually advantageous, there are also situations where strong memories are not 

advantageous for the individual. Examples are memories which can, despite best efforts, not be 

erased such as in post-traumatic stress disorder (PSTH), drug-induced place preference, or 
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memories connected to strong emotions. What these examples have in common is that the 

memory was established by a single experience (a single trial). Thus, the novelty advantage 

conveyed to memories can also be a disadvantage. 

 Given the importance and prevalence of novelty-dependent effects, surprisingly 

little is known about the neuronal mechanisms of such rapid learning. Among the many 

behavioral paradigms used to study learning, most require a large number of learning trials. 

Examples are conditioning (both classical and instrumental), the Morris water maze (learning the 

escape location), and maze learning. There are sophisticated models for these types of learning 

(see (O'Doherty et al., 2003; Schultz, 2002; Seymour et al., 2004) for examples). Such models are 

typically variants of reinforcement learning (Sutton and Barto, 1998). However, in everyday life 

most learning tasks we face are not of this nature. Rather, they are of the more rapid kind of 

learning where we, at best, learn from a few trials (Exceptions are acquiring new habits). 

Examples of behavioral paradigms for rapid learning are those described in this thesis (for 

humans), conditioned taste aversion as well as some forms of fear conditioning. In these 

paradigms, the failure to detect a stimulus as novel impairs learning severely (Welzl et al., 2001). 

For such rapid learning tasks we lack the formal understanding that we have for incremental 

learning (such as reinforcement learning models).  This also applies to learning by machines. In 

machine learning, learning from many examples by training classifiers is well established. There 

is no equivalent technique to learn from just a few trials. In tasks which require many trials to 

learn (such as maze navigation), it has become clear that neural activity during the first few 

learning trials (in a novel environment) is very different to that observed when learning is 

completed (see (Cheng and Frank, 2008) for an example). This stresses the importance of 
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recording from the very initial learning trials rather then when the animal is well trained (or over-

trained), as is most often done in the case of hippocampal recordings. Given that the hippocampus 

is thought to be most important for learning, it is likely that many important processes are never 

observed because they are over by the time recording starts. 

6.2  The relationship between memory responses and behavior 

The firing rates of single neurons in the human amygdala and hippocampus can be used 

to construct a simple new/old decoder that outperforms the patient. That is, if the patient made an 

error (either forgetting a stimulus or wrongly declaring it familiar), the neuronal responses often 

indicated what would have been the correct decision (which was not made by the patient). Thus, 

these neurons had better memory than the patient. Here, we used this fact to argue that these 

neurons do not represent the motor output nor the decision of the patient. This is because there is 

a clear dissociation between the decision (and thus motor output) and the neural response. For 

both types of trials (forgot and new trial), the behavioral response is the same: a press of the 

“New” button. The neuronal response, however, is very different. Thus, these neurons do not 

represent the patient’s decision, rather they may represent the input to the decision-making 

process. 

Research in decision making typically focuses on decisions about external stimuli, i.e., 

which cue is most likely to indicate a reward. Memory retrieval, however, involves a different 

kind of decision making: decisions about internal states. Deciding whether a stimulus is novel 

requires deciding that there is no trace or representation of the presented stimulus in the system 

and thus the stimulus is novel. Similarly, deciding that a stimulus is familiar requires judgment of 
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whether there is enough evidence of previous occurence. Both types of decisions are about 

neuronal firing, which represents an internal state rather than an external stimulus. Little is known 

about how such decisions are made. The paradigms and neuronal responses presented in this 

thesis lend themselfs well to investigating this process. A first step would be to identify an area of 

the brain that contains novelty/familiarity detectors (such as the ones documented here) that 

follow the decision rather then the memory (and that are not trivially related to motor output). 

Candidates for such area(s) are frontal areas such as the anterior cingulate, medial prefrontal, or 

orbitofrontal areas (Badre and Wagner, 2007; Koechlin and Hyafil, 2007; Lepage et al., 2000; 

Wagner et al., 2001). For saccadic decisions, it is known that the frontal eye fields (FEF) 

represent the decision rather then the visual input (Hanes and Schall, 1996). Simultaneous 

recordings from the hippocampus/amygdala and this yet to be identified area (preferably in 

humans, which is possible for several candidate areas) would be a powerful system to investigate 

how decisions are made about the presence or absence of memories. Asking humans to judge 

their confidence would be particularly useful in this setting. While identifying the location of 

such neurons itself only tells us where the decision is represented, simultaneous recordings from 

both areas will allow detailed investigation into how the decision itself is made (e.g., by looking 

at their interactions in time during errors). 

 

6.3  Novelty and familiarity responses in the amygdala 

Most of the data reported in this thesis are pooled across the amygdala and the 

hippocampus. We also analyzed the data separately, however. Surprisingly, the differences in 
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terms of novelty/familiarity responses are (on average) subtle. This is in agreement with previous 

human record data (Fried et al., 1997; Kreiman et al., 2000a). Clearly, both the amygdala and the 

hippocampus contain neurons which respond as described in detail in this thesis. What is 

remarkable, however, is that the difference between recollected and not-recollected familiar items 

is much more pronounced in the amygdala (Figure 4-11). The response for stimuli which are only 

familiar but not recollected is much smaller in the amygdala than in the hippocampus. At first, 

this seems surprising, as it suggests that the amygdala is more involved in recollective memory 

than the hippocampus is. However, an alternative interpretation is that the amygdala is 

proportionally more active for memories that have an emotional component. Since the emotional 

component is only attributed to an object if it is recollected, it seems reasonable that the response 

to objects which are not recollected is rather weak in the amygdala. Also note that this 

comparison is based on the average response to all stimuli. The stimuli we used could have an 

emotional value for some patients and not for others. Averaging would erase these effects. In a 

trial-by-trial comparison it is possible that there are stimuli which evoke a stronger amygdala 

familiarity/novelty response due to some stimulus property such as emotional content. This 

suggests a further experiment, using trial-by-trial correlations with image rankings along different 

dimensions (saliency, emotional content). Stimuli could either be rated by an independent subject 

population or a standardized dataset can be used (such as the International Affective Picture 

System dataset, (Lang and Cuthbert, 1993)).  

 The amygdala is well known to have a strong influence on memory. Emotional 

stimuli are remembered better than non-emotional stimuli (Heuer and Reisberg, 1990). Patients 

with amygdala lesions have good memory but lack the enhanced memory for emotional stimuli 
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(Adolphs et al., 1997; Adolphs et al., 2000; Phelps et al., 1997). Thus, the role of the amygdala in 

memory formation seems to be modulatory (Mcgaugh et al., 1990; Phelps, 2004).  However, in 

some situations the amygdala is necessary for rapid (and often novelty-dependent) learning as, for 

example, in conditioned taste aversion (Lamprecht and Dudai, 2000) or in fear conditioning 

(Wilensky et al., 2006). It thus seems reasonable that neurons in the amygdala are novelty 

sensitive as well as plastic. 

6.4  Differential response strength in epileptic tissue 

All data reported in this thesis has been recorded from patients with a long history of 

epilepsy. Based on careful neuropsychological measures, we have argued that our patient 

population is not different from the normal population in their ability to learn, remember, or 

reason (Table 4-1). It is thus reasonable to conclude that, in the absence of seizures, their brains 

function comparable to normals since they achieve the same behavior. One of the primary clinical 

aims of intracranial electrode implantation is to determine whether seizures have a clear unilateral 

origin. If this is the case, unilateral resection of parts of the MTL is a possible treatment (see 

Introduction). Excluding all patients who did not receive a clear unilateral MTL diagnosis, we 

used knowledge of the laterality of the epileptic focus to compare neural responses between the 

epileptic and the presumably non-epileptic side. As a measure of response strength we used a 

response index that is equal to the absolute difference between the response to novelty and 

familiarity of neurons that are novelty sensitive. Using this index we find (Figure 4-11) that the 

response index for neurons in the epileptic hemisphere was much weaker when compared to the 

non-epileptic side (For recollected trials, 88% vs. 36%). Also, neurons in the epileptic side did 
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not fire significantly differently for recollected vs. not-recollected trials (for healthy neurons there 

was a 20–30% difference). While we have not verified this with a predictive study, this finding 

nevertheless suggests potential value for this paradigm as a useful diagnostic. Due to the large 

difference it is imaginable that similar differences in novelty/familiarity responses also exist in 

multi-unit data or even LFP, which would make it easier to use this diagnostic clinically. 

6.5  Predictors of successful learning 

 Transforming a new experience into a long-term memory is a complex process 

that is poorly understood. It starts with the neural activity during the initial acquisition and 

continues at least for hours (but probably for much longer) after initial acquisition 

(consolidation). At the time of retrieval, which can be many years after initial acquisition, these 

changes are sufficient to evoke the feeling of familiarity, sometimes together with other attributes 

that were part of the learning experience (an episode). While it is clear that the initial acquisition 

is clearly necessary for successful retrieval, it is unclear how much of the retrieval variability can 

be attributed directly to it rather then all the other events that contribute to a memory (Paller and 

Wagner, 2002). Representing a robust memory likely requires changes (plasticity) in a large 

number of neurons. Inducing the cellular changes thought to underlie these changes requires 

tightly coordinated neuronal activity. It is thus thought that one of the important contributors to 

successful learning is synchrony (Axmacher et al., 2006).  In this thesis I show that specific 

components of the LFP, measured during learning, are predictive of whether a stimulus will be 

remembered or not. This supports the hypothesis that increased synchrony is crucial for 

successful learning.  
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6.6  The value of studying single-unit responses in humans 

The observation of spike trains emitted by single neurons in the human brain while the 

subject is awake and engaged in a task is a tremendous opportunity. Spikes are arguably the 

common currency of communication of brains, and thus the appropriate units that we would like 

to observe and study. There are a multitude of functions that are extremely difficult (or sometimes 

impossible) to study in animal models (see Introduction for details). The object of study in this 

thesis, episodic memory, is one example of this. Recording from humans in a clinical setting has 

many disadvantages over animal models. For example, the experimental conditions are relatively 

poorly controlled. Head and eye movements can not be constrained, nor can patients be over-

trained to do a task perfectly (owing to human subjects concerns). Single-unit isolation quality is 

often not as good as with animals (due to single-wire recordings rather then tetrodes, and to 

electrode movement issues). Electrode location is known only approximately and cannot be 

confirmed with histology. No cellular or molecular manipulations are possible. With these 

caveats in mind, human recordings nevertheless offer a tremendous opportunity that should be 

utilized as much as possible. Great care should be taken to only use this rare opportunity to 

address problems that are well-suited to this technique, and not better addressed in other systems. 

It seems of dubious value to me to simply reproduce standard experiments done in monkeys or 

rats to conclude that it is the same in humans. Also, there are clearly questions which are better 

addressed with other techniques such as surface EEG or fMRI. Examples of such experiments are 

questions related to which brain area responds to some particular condition. Given the restricted 

(and fixed) implantation sites of depth electrodes, the questions best approached with this 

question are distinctively different. Examples are: What subclasses of neurons respond to a given 
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stimulus? What is the latency of the response? How does the response, trial-by-trial, relate to 

behavior (particularly during errors, or different confidence levels, or awareness)? How selective 

are the responses of the same neurons to different stimuli? What are the dynamics of interactions 

between neurons in the same population? These are questions which cannot be addressed using 

other techniques. This also stresses the importance of robust behavior. Many neuronal responses 

only make sense if studied in the context of an appropriately designed task where all behavioral 

variables are properly controlled. The true power of human recordings is combining behavior 

with the observation of single neurons. In the absence of behavior (such as passive viewing), 

many of the benefits of awake human recordings are not taken advantage of. 

6.7  Note on visual tuning of MTL neurons 

Many neurons in the MTL respond selectively to certain aspects of the visual input, such 

as its category (i.e., animal, person, house) or its identity (see Introduction for details). One 

curious aspect of these studies is that in almost every patient recorded, one finds such cells. This 

is remarkable, since in a typical recording session there are at very best several tens of neurons 

(and often fewer). Out of these few neurons, which are sampled entirely randomly from 

implanted fixed electrodes, invariably a few are tuned to the task variable (such as visual 

category) at hand. This indicates that the tuning of these neurons is probably not static. Rather it 

seems to be the case that MTL neurons are automatically tuned to all relevant attributes of a 

particular task. One of the earliest single-unit studies already remarked on this aspect by stating 

“These data suggest that MTL stimulus-specific responses represent a temporary allocation of a 

subset of MTL neurons to the ensemble encoding of distinct events within a given context” (Heit 
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et al., 1988). While this aspect of sensitivity to the task has not been studied systematically, it 

nevertheless suggests that this aspect of MTL neuron function is distinctively different from 

neurons found in sensory areas, where tuning is typically thought to be static (such as receptive 

fields in early visual areas or even object-selective neurons in IT cortex). Alternatively, if tuning 

is static, this would imply that each neuron responds to many different categories (Waydo et al., 

2006). However, this would make it difficult to reconcile the finding that one finds tuning to 

almost everything that is task relevant, whatever the task. This puzzling finding suggests further 

experiments such as changing the task-relevant categories or similar manipulations. 
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Chapter 7.  Appendix A: Methods for signal-processing, analysis of spike 

trains, and local field potentials (LFPs) 

 

7.1  Signal acquisition  

All extracellular recordings were acquired continuously using Neuralynx Hardware 

(Neuralynx Inc, Tucson, AZ). We used two generations of systems: An Analog Cheetah system 

(25 kHz sample rate) with 32 channels, and a Digital Cheetah system (32 kHz sample rate) with 

64 channels. In both systems, signals were first pre-amplified as close as possible to the source 

(pre-amplifiers were placed on the head of the patient). After pre-amplification, signals were fed 

into the acquisition system, which was located in the room of the patient (but several meters 

away). The acquisition system amplified the analog signals (with gain in the range of 2000–

50000) and fed them into an A/D converter (analog system) or directly fed them to the A/D 

converter (digital system, no analog amplification). Spike times were determined offline after the 

recording (see spike detection and sorting chapter for details). All parts of the system that were in 

contact with the patient were powered by DC batteries to avoid safety problems as well as to 

reduce line-noise interference. The interface between the acquisition system and the recording PC 

(acquisition card) was optical. We used the Cheetah software to acquire all data (Neuralynx Inc, 

Tucson, AZ). 

Each macroelectrode contained 8 microwires (see Introduction for details). One of these 

wires was used as ground. The choice of ground wire (based on background noise levels and 
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impedance) occurred on the first day of recording for every patient. Special care was taken to 

identify a ground wire that had very low levels of electrical activity, as otherwise the activity on 

the groundwire would be recorded on all other wires as a signal. All our recordings were locally 

grounded. Thus, the measured voltage (the output of the amplifier) is the difference between the 

two inputs to the amplifier (differential amplification, relative): the measuring wire and the 

ground wire. Thus, the signal iS (output of the amplifier) represents Gii VVS −= , where iV  is the 

voltage on each microwire measured relative to a distant ground (i.e., the skull). All microwires 

of the same macroelectrode are located very closely together (spatially, typically < 1 mm). This 

kind of differential recording thus allows the measurement of very local electrical activity. All 

activity that is common to both wires (such as global line noise, long-range oscillations) is 

cancelled from the signal due to the subtraction. This has implications for the LFP signal recorded 

from these electrodes: It is very different from a traditional iEEG signal (see the LFP chapter for 

details). 

Signals were acquired with the widest bandpass filter settings possible (given the level of 

background noise). However, emphasis was placed on recording spikes rather then LFP. Thus, if 

the dynamic range of the low-frequency components was too large to have appropriate 

amplification to see clear spikes (given the limited dynamic range), a bandpass filter was used to 

allow appropriate increases in gain. All gain and filter settings were determined before recording 

started. This limitation only applies to the first-generation system (analog) that we used. The 

second-generation system did not have this constraint due to the increased dynamic range of the 

A/D converter, which has 18 effective bits. With this system, we could always record the entire 

frequency band (1 Hz–9000 Hz bandpass filter).  
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7.2  The origin and structure of the extracellular signal 

The wideband extracellular signal recorded from a microwire electrode with relatively 

high impedance (200 kOhm–1 MohM) and small surface area contains a mixture of electrical 

signals from many different sources. Electrical events in neurons occur on two fundamental 

timescales: i) spikes are fast events that last 0.4 – 1 ms and ii) excitatory and inhibitory post 

synaptic potentials (EPSPs and IPSPs), on the other hand, are slow events that last from 10–100 

ms. These two timescales are reflected in the structure of the wideband extracellular signal. The 

high-frequency components (> 300 Hz) are dominated by spikes, whereas the low-frequency 

components (< 300 Hz) are dominated by synaptic events. Simulations show that spikes 

contribute dominantly to the 300–3000 Hz frequency band and have negligible power at lower 

frequencies (See Figure 15 in (Logothetis, 2002) for an insightful illustration of this fact). This is 

the justification for using the 300-3000Hz frequency band for extracting spikes from the 

extracellular signal. Simulated synaptic potentials, on the other hand, have their dominant power 

at frequencies lower than 150 Hz (Logothetis, 2002).  

 The shape of the waveform of the spikes of a particular neuron (see spike sorting 

chapter for examples) depends on many factors such as the location, surface shape, and 

impedance of the electrode, as well as neuronal morphology and type, and the expression of 

different ion channels (Gold, 2007; Gold et al., 2006). For this reason waveforms from different 

neurons recorded on the same electrode are different. We exploit this fact to attribute each 

waveform to a particular neuron (see spike sorting chapter). These differences can also be 

exploited to infer properties of the recorded neuron from the shape of the action potential. For 

example, inhibitory neurons have sharper waveforms than excitatory neurons (McCormick et al., 
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1985). This fact can be used to infer the identity of the neuron recorded from (Buzsaki and 

Eidelberg, 1982; Csicsvari et al., 1999; Fox and Ranck, 1981; McCormick et al., 1985; Mitchell 

et al., 2007; Viskontas et al., 2007). Extracellularly recorded waveforms have amplitudes on the 

order of 50–200 μV (peak-to-peak). Background noise levels are in the range of 5–20 μV (RMS). 

Given these noise levels and the fact that the amplitude decays linearly with the distance from the 

source, it is estimated that an extracellular electrode can record spikes from neurons within a 

radius of perhaps up to 140 uM (Buzsaki, 2004; Gold, 2007; Gold et al., 2006; Henze et al., 2000; 

Holmgren et al., 2003).  

 The origin of the low-frequency components of the extracellular field, the local 

field potential (LFP), are much less clear (Bullock, 1997). It is thought that the LFP is mostly 

composed of the sum of large numbers of postsynaptic discharges. It is estimated that the LFP 

from a single extracellular electrode is influenced by potentials within a radius of 0.5–3 mm 

(Juergens et al., 1999; Logothetis, 2002; Mitzdorf, 1985). Due to its (predominantly) synaptic 

origin, the LFP can be independent of the spiking output measured at a particular location 

(Logothetis, 2002). The LFP is dominated by synchronized synaptic/dendritic components of 

neurons that are oriented in space such that their potentials add rather then cancel. The 

organization of cortical pyramidal neurons yields a particularly large LFP because neurons are 

parallel, with dendrites in one direction and axons in the other direction. This yields an open field 

geometrical arrangement (Mitzdorf, 1985). Due to its dominantly synaptic origin, the LFP is 

thought to represent the synaptic input as well as local processing. Some have used this to argue 

that spikes measure the output and LFP the input to a particular area. There are cases, however, 

where this strict distinction does not hold. Also, the exact origin of the LFP (in general) remains 
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unknown, and making this argument thus requires detailed knowledge about the neuronal 

architecture of the area under investigation. 

7.3  Signal processing 

7.3.1  Filtering  

All filters were 4th order zero-phase-lag Butterworth filters unless otherwise noted. For 

spike extraction, signals were bandpass filtered between 300–3000 Hz. For LFP, signals were 

down-sampled to 1000 Hz sampling rate and lowpass filtered < 300 Hz. To extract specific LFP 

frequencies (for example 4–8 Hz), a narrow bandpass filter was applied. 

7.3.2  Local field potential (LFP) 

The LFP is the sum of all oscillations that influence the extracellular electrical field at the 

point of space where the electrode is placed. There are many different forms of oscillations of 

widely varying frequencies. Some of these oscillations are known to have distinct physiological 

mechanisms. For example, oscillations of some frequencies are only present during sleep or 

during motor movement. The LFP bands are traditionally (and arbitrarily) decomposed into the 

following frequency bands (Buzsáki, 2006; Penttonen and Buzsaki, 2003): Delta (δ, 0–4 Hz), 

theta (θ, 4–8 Hz) , Alpha (α, 8–12 Hz), Beta (β, 12–24 Hz), Gamma (γ, 24–100 Hz or higher for 

high gamma). The frequency of a particular oscillation, however, can vary substantially 

depending on brain state (wake, sleep, drowsy) as well as between species (Steriade et al., 1993). 

For example, the frequency of theta is slower in larger mammals (such as primates or cats; 3–5 
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Hz) compared  to rodents (6–9 Hz) (Robinson, 1980).  These terms should thus only be used as 

guidelines but not as fixed entities. 

 Since the recorded LFP is a mixture of many frequencies (a voltage as a function 

of time), it is necessary to decompose the signal into a different representation which is a function 

of both frequency and time W(t,f). The fundamental technique to achieve this is the Fourier 

transform (FT), which transforms a function of time x(t) into a function of frequency x(f) (and 

vice versa). While this is useful to calculate a power spectrum, all time resolution is lost. One 

technique to circumvent this is to split the data into small time bins and calculate the FT for each 

(windowed fourier transform, WFT) (Teolis, 1998). Due to the small window in time, this 

technique will prevent estimation of frequencies whose wavelength is less than the window size. 

A more sophisticated version of WFT is wavelet analysis. Wavelets (see below) are functions 

which are well localized in both time and frequency. Their effective window size is adapted based 

on the frequency and is thus always optimal. Here, wavelets or the Hilbert transform were used to 

compute a continuous estimate of power and phase as a function of time. 

 

Time-frequency decomposition using wavelets: The raw signal )(tS  was decomposed into a 

function of frequency and time using the continuous wavelet transform (cwt). In the following I 

am using the notation developed in (Torrence and Compo, 1998). The mother wavelet used was 

always a complex Morlet wavelet: 
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The two parameters are the center frequency 0f  and the number of cycles. We used 

10 =f and 4=ω cycles, unless mentioned otherwise (see below). 

 

The cwt of the raw signal )(tS  is a function of both scale (frequency) and time: ),( stW . It is 

computed by convolving the raw signal (of length N ) with the wavelet function )(0 ηψ  for a 

number of different frequencies (scales) s . 
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)(* ηψ  is the complex conjugate of the wavelet function )(ηψ . )(ηψ  is a normalized version of 

the wavelet )(0 ηψ . See (Torrence and Compo, 1998) for details. 

 

The effective resolution of the Morlet wavelet depends on the center frequency 0f and the scale 

s . If Tδ is the spacing between two sampled points (due to the sampling rate), the effective 

frequency of a Morlet wavelet at scale s  is 
Ts

ff
δ

0= . Thus, the higher the scale, the lower the 

frequency. The resolution is measured separately in terms of the standard deviation in time 

tσ and frequency fσ . Time resolution at scale s  is Taδ and frequency resolution is 
a

fσ
. Thus, 

the better the resolution in time the worse it is in frequency and vice versa (uncertainty principle, 
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a fundamental limit, dictates
π

σσ
2
1

≤ft ). The time width of a wavelet is defined as (Najmi and 

Sadowsky, 1997): 
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= . To illustrate this trade-off, Figure 7-1 shows Morlet wavelets in both time 

and frequency space for 3 different parameter combinations. The time and frequency resolution 

for the same 3 wavelets are shown in Figure 7-2. Notice the trade-off between accuracy in time 

and frequency clearly visible from the size of the error bars in Figure 7-2 (bottom row). Since the 

width in frequency space increases as a function of frequency, the frequencies at which the 

wavelets are calculated are logarithmically scaled. This leads to an even sampling in frequency 

space (Figure 7-2). Here, we sampled at frequencies of xf 2=  with 8/]52:2:2[∈x  (not all are 

shown in Figure 7-2).  
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Figure 7-1. Illustration of the complex morlet wavelet.  
The wavelet is illustrated for 3 different combinations of parameters of cycle number and 
center frequency: (4,1), (6,1), and (6,2) (from left to right). The top row shows the 
wavelet in time (blue: real part; red: complex part) and the bottom row in frequency 
(Fourier transform of the above). Notice the tight tuning in both time and frequency. 
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Figure 7-2. Illustration of the trade-off between specificity in time and frequency 
space. 

Illustrated is the complex morlet wavelet for three different parameters (cycle number 
and center frequency): (2,1), (4,1), and (6,1). The top row shows the frequency resolution 
(left) and the time resolution (right). The y axis shows one standard deviation as a 
function of frequency. Note that whenever one wavelet has better time resolution (left, 
red) it has worse frequency resolution (right, red) and vica-versa. The bottom row 
illustrates this property by showing the 95% confidence interval (±2*s.d.) for both time 
(y axis) and frequency (y axis). Note how the left wavelet (2,1) has better resolution in 
frequency compared to the wavelet on the right (6,1). However, the left wavelet has 
better time resolution. Only a subset of the frequencies used for the analyis are shown 
(every second is shown). Note that in the bottom row, the y axis is in log units, and thus 
the error bars appear to be of equal length. 
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 Computation of the analytic signal with the Hilbert transform: To estimate the phase and 

power of a narrowly bandpass-filtered signal without using the wavelet transform (such as in the 

theta band), the Hilbert transform was used to calculate an analytical signal. The analytical signal 

)(tX  is complex and can be used to calculate the phase/power with the same methods as for 

wavelet coefficients (see below). The Hilbert transform )(tSH is equal to the signal phase shifted 

by 90°. The real part of the analytic signal equals the raw signal and the complex part is the 

Hilbert transformed signal.  

)()()( tiStStX H+=  

 

Estimation of instantaneous phase and power (energy): Given a complex signal as a function 

of time )(tX , the following methods were used to estimate the instantaneous phase )(tφ  and 

power )(tR . )(tX  is either the result of a Hilbert transform or a continuous wavelet transform 

(see above). In the following, }{Xℜ  and }{xℑ  refer to the real and imaginary part of X , 

respectively. 

22 )}({)}({)( tXtXtR ℑ+ℜ=  

)})({)},({2(atan))(arg()( tXtXtXt ℜℑ==φ   
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Wavelet power spectrum and distribution of wavelet power: The wavelet power spectrum is 

equivalent to )(tR  as defined above, as a function of frequency.  The real and the imaginary parts 

of the wavelet coefficients ),( stW  for any particular scale are normally distributed random 

variables with mean 0 and unknown variance. Since the wavelet power )(tR  is the squared sum 

of the real and imaginary part of ),( stW , )(tR  is 2χ distributed with 2 degrees of freedom. 

Since the variance is unknown (but not 1), however, the mean of this variable is unknown. Since 

the LFP is 1/f distributed, the mean of this distribution is a function of the frequency. The 2χ  

distribution needs to be scaled appropriately to allow statistical tests (Caplan et al., 2003). 

 An alternative approach is to normalize the real and complex part of ),( stW  to a 

variance of 1 independently before calculating the power. This removes the 1/f frequency 

dependency and allows easy statistical comparisons with a unscaled 2χ  distribution. I estimated 

the variance of ),( stW  (separately for the real and imaginary part) for each scale for the entire 

experiment and normalized (divided) all samples by this value to assure that each are normally 

distributed with mean zero and variance 1. This allows the construction of a flat power spectrum 

(instead of 1/f) where peaks correspond to a deviation from the null hypothesis of no signal. 

   

Statistics of phase locking: All statistics related to phases were performed using circular 

statistics (Batschelet, 1981; Fisher, 1993). The phase was measured (in radians) in the range 

]...[ ππ−  (-180°–+180°) with 0 equal to the peak and ππ /−  equal to the through of the 
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oscillation. Statistics of a sample of n angles iθ (phases) were calculated based on the mean 

resultant vector:  

∑
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The mean angle θ  is also calculated from above measures: 

R
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S
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The larger the length of the mean resultant R (range 0–1), the stronger the phase locking of the 

sample. The sample circular variance is RV −=1 . To test whether a neuron is significantly 

phase locked, the sample of all phase angles was compared against uniformity using a Rayleigh 

test. The Rayleigh test is based on the length of R : 
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If P is sufficiently small, the null hypothesis of uniformity can be rejected. The alternative 

hypothesis is that the data is unimodal (one mean direction). To quantify the distribution of a 

sample of phase values that was significantly non-uniform, we fit a Von Mises distribution to the 

data using maximum likelihood. The Von Mises distribution is the normal distribution adapted 

for circular data. The following is its density function: 

)cos(exp(
)(2

1)(
0

μθκ
κπ

θ −=
I

f  



233 

 

It is fully specified by a mean direction μ  and a concentration parameter κ . The concentration 

parameter is analogous to the standard deviation of a normal distribution, although of opposite 

direction: The larger κ , the more concentrated the distribution (the smaller its variance). For 

0=κ , the Von Mises distribution is equivalent to the uniform distribution on the circle. ()0I is 

the modified Bessel function of order zero. A definition of it can be found in (Fisher, 1993).  

 

Simulated LFP: For systematic evaluation of our methods we used artificially simulated LFP 

which has a phase spectrum similar to real data (“red noise”, i.e., “1/f”). Such LFP was simulated 

using sinusoidal pink noise (Cohen, 1995; Rohani et al., 2004): 

N
i

i
ttX

N

i
i∑

=

+=
2/

1
))2sin()( φπ

 

This generates a time series of length N . The phase is sampled randomly from a uniform 

distribution, i.e., ]2,0[ πφ Ui ∈ . 
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7.4  Spike train analysis 

7.4.1  Single neurons: Spike times and the distribution of interspike intervals 

In the following I describe the statistical properties of a series of spikes (a “spike train”). 

In probability theory, this is commonly referred to as a point process. For details and proofs refer 

to (Dayan and Abbott, 2001; Gabbiani and Koch, 1999; Kass et al., 2005; Koch, 1999). 

 For the purposes of analysis, spikes are treated as unitary events that occur at a particular 

point of time it . Spikes emitted by real neurons last 0.5–1.5 ms and are thus not restricted to a 

single point of time. Here, the peak (maximal deviation from baseline) of the waveform is used as 

the point of time the neuron spikes. The measurement accuracy of it  is restricted by the sampling 

rate and uncertainty in determining the peak. Here, the accuracy is estimated to be on the order of 

0.1 ms. Time is measured relative to a fixed reference point, such as the start of the experiment or 

trial. The unit of time is usually assumed to be milliseconds (ms), but any units can be used. 

Observing the N  spikes emitted by a single identified neuron leads to a set of spike times 

}.,...,,{ 21 NtttT = T is thus a list of events emitted by a point process. Observing the properties 

of T allows us to make inferences about the properties of this point process (which here is equal 

to a single neuron). The most important measure to quantify the behavior of a point process is the 

interspike interval (ISI). The interspike intervals are defined as the times between two 

neighboring spikes, i.e., ,...232121 , ttIttI −=−= . The set of ISIs },...,,{ 121 −= NIIII  is the set 

of all differences between neighboring spikes. The shape of the distribution of the ISIs can be 

used to infer a great number of properties about the neuron that emitted the spikes. Examples are: 
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inferences about the firing rate (the mean), the variability of the firing rate, bursting behavior, or 

whether the neuron fires periodically.  Also, the shape of the ISI can be used to judge whether the 

set of spikes used for calculating it could have been emitted by a single neuron or not. This can be 

used to judge spike sorting quality (see the spike sorting chapter for details). 

 The spikes fired by a neuron are, in the great majority of cases, Poisson distributed 

(Dayan and Abbott, 2001; Holt et al., 1996; Softky and Koch, 1993). Due to biophysical 

constraints (such as the refractory period), neurons cannot fire at extremely high firing rates. 

Thus, it is unlikely that a neuron will fire more than one spike within approximately 3 ms 

(although there are cell types which have a shorter refractory period). For this reason, the firing 

probability at any particular point of time is a function of the time since the last spike. Such a 

process is modeled as a renewal process.  For this reason the intervals deviate systematically from 

a pure Poisson distribution. 

 Given a homogenous Poisson process with rate r , the probability of observing n  spikes 

within a time period T is: 

rT
n

T e
n

rTnP −=
!
)(][  

The Poisson process is entirely defined by the rate r . Given a Poisson process, the waiting times 

between two spikes are exponentially distributed: 

ττ r
ISI reP −=)(  
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The above function specifies the probability that, given a spike at 0=t , no spike will have 

occurred in the interval τ+t . For a homogenous Poisson process this is the expected shape of 

the ISI distribution. Given a sample of ISIs, the mean ISI is 
r

ISI 1
=  and the variance is 

[ ] 2
22 1

r
ISIISI =−=σ . The mean and variance of the underlying Poisson process can thus 

be calculated from the ISI distribution. 

If an absolute refractory period reft is introduced, this function is shifted (to the right on 

the time axis) by reft :  )()( refISIref tPP −= ττ .  Another possibility for expression of the ISI 

distribution of a neuron with a refractory period is to use a gamma distribution:  

!
)()(
k

errP
rk

ISI

τττ
−

=  

This representation has two parameters: the rate r  and the parameter k , which is the order of the 

gamma distribution. When 0=k   an exponential distribution results. With 0>k (estimated 

from the data using maximum likelihood), this typically provides a very good fit for ISI 

distributions. Also note that the mean of a gamma process with  0>k  is the same as for 0=k . 

The estimate of the mean rate as 
r

ISI 1
=  remains thus valid, regardless of the order of the 

gamma process. 

Computationally, a random series of spike times that are Poisson distributed can be 

generated by sampling randomly from an exponential distribution (and discarding the ones which 
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are less than the refractory period). The returned numbers are wait times (interspike intervals). 

This is the strategy that we used whenever random spike trains were generated. 

Also note that (under the Poisson assumption) the standard deviation of the ISI 

distribution is equal to its mean (the rate). Thus, the variance is not independent of the mean for 

neurons. The ratio of the standard deviation to the mean of the ISI of a perfectly homogenous 

Poisson process is thus equal to 1. This ratio is the coefficient of variation (CV): 

r
CVISI

σ
=  

The CV is an important measure of the regularity of firing of a neuron. A neuron that fires 

perfectly at a single rate has a CV of 0. A neuron that fires perfectly according to a Poisson 

distribution has a CV of 1.0. A neuron with highly irregular firing (for example, complex spikes, 

bursts) will have a CV > 1. The CV is routinely calculated for recorded neurons. There is a wide 

range of observed CV values. For neocortical neurons, it is often close to 1, as expected (Britten 

et al., 1993; Shadlen and Newsome, 1998; Softky and Koch, 1993; Tomko and Crapper, 1974). 

The measured relationship between mean rate and variance is approximately 1.5 (whereas the 

theoretical prediction is 1.0) (Shadlen and Newsome, 1998). A refractory period will impose 

some form of regularity and thus lowers the CV. A perfect Poisson neuron with a refractory 

period will thus have a CV < 1.  
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Chapter 8.  Appendix B: Population decoding: principles and methods 

 

8.1  Motivation and principles 

A principal goal of systems neuroscience is to understand what information is present in 

spike trains and in which form (“neural coding”). Neurons coding for a particular variable or 

stimulus feature are typically identified by comparing the mean firing rate between two 

conditions, repeated over many trials.  While this identifies neurons that differ in firing rate on 

average, it tells us little about how a downstream region (that receives this signal) might use this 

information. In reality, the brain can not average over several trials. The relevant unit of 

information is thus what can be decoded from a single trial and not an average. Of course a 

downstream region receives the simultaneous outputs of many neurons rather then just one. Thus, 

some form of averaging between neurons can take place for a single trial. This does not 

necessarily improve the information content, however. Spiking of pairs of neighboring neurons 

can be highly correlated, and averaging correlated signals can either increase or decrease 

information content based on the exact nature of the correlations (Abbott and Dayan, 1999; 

Mazurek and Shadlen, 2002; Seung and Sompolinsky, 1993; Sompolinsky et al., 2001). External 

noise that influences the spiking of several neighbouring neurons results in positive correlations, 

as does common input or recurrent connectivity. This can lead to a decrease in information due to 

correlations (Sompolinsky et al., 2001), and imposes a fundamental constraint on the amount of 

information that can be represented by a population of neurons. Averaging a large number of 
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units would thus not necessarily improve information content. This effect has been demonstrated 

experimentally by recording from pairs of neurons in area MT of non-human primates (Zohary et 

al., 1994). Surprisingly, the spikes emitted by a single motion-selective MT unit allow perceptual 

discrimination that is as good as the psychophysical sensitivity of the animal. Thus, the sensitivity 

of a single neuron is indistinguishable from the sensitivity of the entire animal. The spiking of 

pairs of neurons was weakly positively correlated. In this particular instance this correlation 

resulted in no increase in information content if more than 50–100 units were averaged (Zohary et 

al., 1994). In this case, averaging could only improve the signal-to-noise ratio by 2–3 times (even 

if large numbers of units were considered). 

 How is information represented in single neurons as well as populations thereof? 

Comparing the output of neurons between different conditions requires the use of features of 

spike trains. The simplest example of a feature is counting the number of spikes emitted per units 

of time (“rate code”). However, many other features could possibly contain information as well, 

such as the time of occurrence of a spike (“temporal code”). Examples of more complex features 

are the number of spikes that are less than 5 ms apart (a burst), the correlations between different 

units, or the phase relationship of a spike to a particular frequency of the local field potential. 

Cortical as well as hippocampal neurons fire highly irregularly (Fenton and Muller, 1998; 

Shadlen and Newsome, 1998; Softky and Koch, 1993). The variability of spike times generally 

increases linearly with the mean firing rate (Poisson). Thus, increasing the firing rate alone does 

not reduce response variability. This inherent uncertainty imposes constraints on possible useful 

features, as any feature that relies on highly accurate timing is unlikely to be useful in general 

(with some exceptions). There are many proposals on what the fundamental unit of neural coding 
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is (Abeles, 1991; MacKay and McCulloch, 1952; Rieke, 1997). While there is little agreement, it 

is acknowledged that the simplest of all codes, spike counts, is surprisingly good. In some cases, 

incorporating time in addition to rate improves decoding performance.  There are only a few 

demonstrated examples where a rate code alone does not allow reading out of a substantial 

amount of the information available (Butts et al., 2007; Johansson and Birznieks, 2004; Laurent, 

2002; MacLeod et al., 1998; Montemurro et al., 2007; Stopfer et al., 1997). This statement only 

refers to readout of information and does not imply that precise spike timing is not important for 

other processes, such as plasticity (discussed elsewhere in this thesis). However, since there are 

exponentially more possible combinations the more neuronal features are used, a rate code can 

transmit much less information per unit of time compared to a more complex code. Population 

decoding is a powerful technique that can address questions of coding and the feature used (see 

below).  

 An alternative method for quantifying the information present in the output of a 

population of neurons is decoding. This method avoids averaging entirely (both across trials and 

across neurons). Mathematically, a decoder is a function )(xfy = that takes as input information 

about all available neurons (such as firing rate or spike times) and gives as output a prediction of 

what the input represents.  For example, x could be the response of a sensory neuron in response 

to a stimulus y. The sensory neuron transforms the stimulus y into a neural response )(ygx = . 

The task of the decoder is to reverse this and reconstruct, from only observing the neuronal 

response x , the input y . Thus in this example 1−= gf . Traditional neurophysiology focuses on 

establishing the transformation of input to neuronal output, i.e., )(ygx = . However, from the 
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perspective of the brain, estimating (“decoding”) the external world from the neuronal responses 

is the relevant task (Bialek et al., 1991). )(xf  can be determined automatically by a machine 

learning algorithm (“classifier”) from a subset of the data. Alternatively, f(x) can also be pre-

defined by a model with a few parameters estimated from the data.  The performance of such a 

decoder, on a separate test set, is an estimate of how much information about the state of the 

neural system can be extracted, on a trial-by-trial basis, by the decoding technique used. Note the 

importance of an entirely independent test set. One mistake, for example, is to pre-select neurons 

(or time bins for LFP) using a statistical test and then estimate decoding performance using leave-

one-out cross-validation. Such a test set is not independent: the samples were already used to pre-

select the input. Thus the decoder will, by definition, return above-chance performance (as the 

inputs passed a statistical test). While this can still be meaningful (for example to estimate how 

difficult it is to decode on a single trial or compare different conditions), the fact that the 

information is present as such is not a new finding. If the particular classifier used has a structure 

that could conceivably be implemented by a network of realistic neurons (such as a linear 

weighted sum, as used in this thesis), one can reasonably assume that a real neural network could 

be reading out this information in a similar fashion. If, on the other hand, the information can 

only be extracted by a mechanism that can hardly be implemented biologically (such as requiring 

sub-millisecond resolution), it is less plausible that this information could be read out by another 

brain area. 

 A decoding approach is particularly useful to quantify how much information is 

present about the state of the system in a population of neurons. Plotting decoding performance as 

a function of variables such as number of units, time relative to stimulus onset, time resolution 
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(binning), or the neuronal code used allows quantification of such effects. Also, decoding can 

determine what state the neural population represented during a behavioral error (such as 

forgetting a picture or making the wrong perceptual decision). This allows one to clearly discern 

whether an area follows the decision, the motor output, or the sensory input.  Another question 

that can be investigated using decoding is the latency of the response: By what point in time does 

a population of neurons distinguish best between two particular stimuli? Decoding can also be 

used to distinguish between different kind of neuronal codes: Does a code that distinguishes exact 

spike timing contain more information then a rate code? The answer to this question will depend 

on the exact experiment and experimental model but can easily be investigated with decoding. 

 There is a trade-off between readout difficulty and the robustness and richness of 

the code. The easiest code to read out would be if every neuron represents a particular concept 

exclusively (“grandmother neuron”). Thus decoding is trivial — counting the number of spikes 

emitted by this neuron is sufficient. The number of represented concepts is limited by the number 

of neurons. This representation is, however, not robust. If this single neuron dies, the 

representation is lost. On the other hand a fully distributed code can represent vastly more 

concepts ( N2 ), but such a representation is very difficult to read out—a decoder needs access to 

all neurons simultaneously.  The decoding approach to neuronal spike train analysis is useful to 

specify the difficulty of readout, because a given decoder quantifies how much information can 

be read out with the given complexity of the decoder. 

 There are a large variety of techniques for constructing population decoders. 

These include simple linear-sum type decoders such as the perceptron and go all the way to 

highly non-linear support vector machines (SVMs). In the following section the decoding 
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techniques used in this thesis are summarized. In our experience the performance of highly 

complex decoders is often only marginally better than simple linear decoders (in the context of 

the analysis performed here). Thus, in the interest of understanding neural coding rather then 

machine learning, it is (in our opinion) often advisable to use a very simple linear decoder. If it 

turns out that higher-order interactions between terms are important, it is still possible to include 

these in a linear decoder by introducing additional variables that represent the higher-order terms. 

Apart from being a valuable approach for data analysis, single-trial decoding of neural 

activity also has practical applications. It has been demonstrated that small numbers of neurons in 

an appropriate area of the brain provide enough information to allow a human or monkey to 

remote-control a robotic device (or a computer) by thought only (Andersen et al., 2004; Carmena 

et al., 2003; Hochberg et al., 2006; Rizzuto et al., 2005; Serruya et al., 2002). This is a direct 

demonstration of the value of decoding approaches. 

8.2  Definitions 

The matrix Z  contains the data samples. Rows correspond to training samples (n) and 

columns to variables (p, such as spike counts). Thus, Z is of dimensionality pn× . Z  contains a 

column of 1s to account for a linear offset relative to the mean. Each sample has one numerical 

label (for example -1 or 1, in the binary case), which is stored in the vector y of dimensionality 

1×n . The vector of weights w  is of dimensionality 1×n . 
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8.3  Multiple linear regression 

With multiple linear regression (Eq B1), the weights w are determined by multiplying the inverse 

of data samples Z  with the training labels y  (Johnson and Wichern, 2002).  

[ ] yZZZw '' 1−=    (Eq B1) 

8.4  Regularized least-square regression (RLSC) 

Multiple linear regression can not determine the weight vector unambiguously if the 

sample matrix is ill conditioned or can not be inverted for other reasons (Eq B1). Even if the 

matrix can be inverted, the resulting matrix can be numerically unstable. In practice, such 

problems often arise due to larger number of variables then training samples (i.e., 100 neurons 

and 50 trials). Another common source is linear dependency between variables, which leads to 

rank-deficiency. 

 To circumvent this problem, additional constraints (on the weights) such as 

smoothness or small numerical values need to be enforced. One way to achieve this is to add a 

constant term (regularizer). Here, we used regularized least squares (RLSC) to achieve this.  In 

RLSC (Evgeniou et al., 2000; Hung et al., 2005; Rifkin et al., 2003), an additional term is added 

to the data samples (Eq B2). Here, I  is the identity matrix and λ is a scalar parameter (the 

regularizer). 

[ ] yZIZZw '' 1−+= λ    (Eq B2) 

The value of the regularizer is arbitrary. The bigger it is, the more constraints are placed on the 

solution (the less the solution is determined by the data samples). A small value of the regularizer, 



245 

 

on the other hand, makes the solution close to the multiple linear regression solution. Importantly, 

however, even a small value of the regularizer punishes unrealistically large weights and also 

guarantees full rank of the data matrix. Regularization becomes particularly important when there 

are a large number of input variables relative to the number of training samples.  

The value of the regularizer is an important determinant of the performance of the 

classifier. Thus, great care must be taken to choose it appropriately. In our experience, the exact 

value of the regularizer is not very important (not sensitive). It is enough to get it approximately 

right (i.e., 10 or 100). If the only aim is to make multiple linear regression numerically stable it is 

sufficient to add a very small regularizer, such as 01.0=λ (this value was used in this thesis, 

unless stated otherwise). Increasing the value of λ will lead to an increased training error but a 

decreased testing error (at least initially). It is an indicator that regularization is necessary (due to 

overfitting) if this pattern is observed. Thus it is possible to find a good regularizer value by 

plotting the testing and training error as a function of λ . The test set used to optimize the value 

of λ  has to be different than the test set used to determine classifier performance. This is only 

true if λ  is optimized in this way. If, on the other hand, λ  is constant, no separate test set is 

required. 

One problem with regularization is bias. For illustration, assume a binary classification 

problem where 80% of the samples are of one class (with label 1). A classifier trained (using 

RLSC) with a large λ  on this dataset will predict “1” for every test sample. Due to the inherent 

bias in the prior distribution, the classifier will achieve 80% correct performance entirely due to 

chance. Thus, while this is a binary classification problem, the chance level for this regularizered 

classifier is 80% rather then 50%. If the bias in the test set is different than in the training set, the 
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chance performance is unclear. One is often presented with this situation in the context of the 

analysis of populations of neurons, such as training on behaviorally correct trials and then 

decoding the error trials (which typically have different bias). To circumvent this problem, the 

number of samples in each class needs to be balanced artificially before training the classifier (by 

removing samples from the bigger class). The excluded samples can nevertheless be used by 

training the same classifier multiple times based on a randomly sampled subset of the training 

data. If excluding samples is not an option, the chance level on the test set needs to be established 

using a bootstrap procedure. It can not be assumed to be 50%. 
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