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Abstract

The Internet research community has focused on the macroscopic behavior of Trans-
mission Control Protocol (TCP) and overlooked its microscopic behavior for years.
This thesis studies the microscopic behavior of TCP and its effects on performance.
We go into the packet-level details of TCP control algorithms and explore the be-
havior in short time scales within one round-trip time. We find that the burstiness
effects in such small time scales have significant impacts on both delay-based TCP
and loss-based TCP.

For delay-based TCP algorithms, the micro-burst leads to much faster queue con-
vergence than what the traditional macroscopic models predict. With such fast queue
convergence, some delay-based congestion control algorithms are much more stable in
reality than in the analytical results from existing macroscopic models. This observa-
tion allows us to design more responsive yet stable algorithm which would otherwise
be impossible.

For loss-based TCP algorithms, the sub-RTT burstiness in TCP packet transmis-
sion process has significant impacts on the loss synchronization rate, an important
parameter which affects the efficiency, fairness and convergence of loss-based TCP
congestion control algorithms.

Our findings explain several long-standing controversial problems and have in-

spired new algorithms that achieve better TCP performance.



vi



vil

Contents

Acknowledgements

Abstract

1

2

Introduction

1.1  Window-based implementation of TCP . . . . ... ... ... ....
1.1.1  Micro-burst . . . . . . ...
1.1.2  Sub-RTT burstiness . . . . . .. .. ... ... ... .....

1.2 Fluidmodels . . . . . . . .

1.3 Controversial problems . . . . . . ... ... .. ... ..
1.3.1 Stability of TCP Vegas . . . . ... .. .. ... .. .. ...
1.3.2  Fairness of homogeneous MIMD congestion control algorithms
1.3.3 Effect of TCP pacing . . . . . . ... ... ... ... .....

1.4 Scopes and limitations . . . . . . ... ... L0

1.5 Summary of results . . . . . ...

1.6  Organization of this thesis . . . . . . . ... .. ... ... ... ...

iii

N O Ot

Microscopic Effects on Delay-based Congestion Control Algorithms 15

2.1 Stability of a single TCP-Vegas flow . . . . . . ... ... ... ....
2.1.1  Modeling ack-clocking . . . . . . .. .. ...
2.1.1.1  Assumptions . . . . .. ...

2.1.1.2 A packet level model for ack-clocking . . . . .. ..

2.1.2  Properties of ack-clocking . . . . . . ... ... ... ... ..

16



viil

2.1.2.1  Relation between the number of packets in flight and

the window size . . . . . . . . ... o L. 20

2.1.2.2 Pacing of acknowledgments . . . . . .. .. ... .. 21

2.1.2.3  Upper bound of queue increment . . . . ... .. .. 21

2.1.2.4  Lower bound of queue . . . . . . ... ... .. ... 21

2.1.3  Queue CONVETZENCe . . . . . . o v vt 22
2.1.3.1  Definition of Stable-Link state . . . . . . . . . .. .. 22

2.1.3.2  The number of packets in flight and BDP . . . . .. 23

2.1.3.3 Persistence of Stable-Link state . . . . . . . ... .. 23
2.1.3.4  Entrance of Stable-Link state . . . . . ... ... .. 23

2.1.3.5 Pacing of micro-burst . . . .. ... ..o 24

2.1.4 Properties of congestion control in RTT timescale . . . . . . . 24
2.1.4.1 Timing of the decision packets. . . . . . .. ... .. 25

2.1.4.2 Equivalence of the window size and the number of

packets in flight . . . . .. ... ..o 26

2.1.4.3  Link convergence upon decision packets . . . . . .. 26

2.1.5 Stability of TCP Vegas . . . . . . ... ... ... ... .... 27
2.1.6  Validation . . . . . ... ..o 28

2.2 FAST algorithm and its stability . . . . ... ... ... ... .... 30
2.2.1 FAST algorithm . . . . . ... .. .. ... ... ... ... 30
2.2.2  Model for homogeneous flows . . . . .. ... ... ... ... 34
2.2.3 Stability of FAST in homogeneous network . . . . . . . . . .. 36
2.2.3.1 Convergence of the sum of windows . . . . . . . . .. 37

2.2.3.2 Convergence of individual flows . . . . . . . ... .. 37

3 Microscopic Effects on Loss-based Congestion Control Algorithms 39

3.1 A model for loss synchronization rate . . . . . . . . .. ... .. ... 40
3.1.1 Burstiness in the packet loss process . . . . . . ... ... .. 42
3.1.1.1  Measurement . . . . . . . ... ... 42

3.1.1.2 Possible Sources of sub-RTT Burstiness . . . . . .. 47



3.2

3.3

3.4

X

3.1.2  Modeling loss synchronization rate . . . . . .. ... ... .. 48
3.1.3 TCP Pacingand RED . . ... ... ... ... ........ 51
3.1.4 Validation . . . . . . ... oo 593
3.1.5  Asymptotic results . . . .. ..o o4
Implications on Performance of Loss-based TCP . . . . . . . . . . .. o7
3.2.1 Fairness convergence . . . . . . . .. ... ... a7

3.2.1.1 Definition of Fairness Convergence Time . . . . . . . 57

3.2.1.2  Loss Synchronization Rate and Fairness Convergence 58

3.2.1.3  Fairness convergence with bursty TCP and DropTail

Routers . . . . . . . .. ... 60

3.2.2  Convergence of MIMD algorithms . . . . . .. ... ... ... 62
3.2.3 Performance of TCP Pacing . . . . . ... ... ... ..... 64
3.2.3.1 Aggregate Throughput . . . . . ... ... ... ... 65

3.2.3.2 Fairness convergence . . . . . . . ... ... ... .. 68

3.2.4 Competition between paced TCP and bursty TCP . . . . . . . 71
3.2.4.1 Aggregate Throughput . . . . . ... ... ... ... 71

3.2.4.2 Fairness Convergence . . . . . . . . . .. ... .... 72
Algorithms . . . . . . .. . 72
3.3.1 Persistent ECN algorithm . . . .. ... ... ... ...... 75
3.3.2  Loss synchronization rate with different algorithms . . . . . . 76
Performance in Simulation . . . . . . ... ... 000000 7
3.4.1 Fairness convergence and finishing time of parallel flows . . . . 77
3.4.1.1 Case studies on short-term fairness . . . . . .. . .. 77

3.4.1.2 Summaries of short-term fairness . . . . . ... . .. 80

3.4.1.3 Results on data transfer latency . . . . . . . ... .. 80

3.4.2  Aggregate throughput with persistent ECN . . . . ... ... 83

3.4.3 Aggregate throughput with co-existing bursty TCP and paced
TCP under persistent ECN . . . ... .. ... ........ 83



4 Research Tools 87
4.1 A testbed with emulation router and Linux hosts . . . . . ... ... 87
4.1.1 Introduction to Dummynet . . . . . . . .. ... ... ... .. 87
4.1.2 Topology . . . . . . . . 88
4.1.3 Measurement . . . . ... Lo 88

4.2 NS-2 TCP-Linuz: an extensible TCP simulation module in NS-2 . . 89
4.2.1 An introduction to TCP implementation in NS-2 . . . . . .. 89
4.2.2  An introduction to Linux TCP . . . . .. ... ... ... .. 91
4.2.3 Design of NS-2 TCP-Linuz . . . . . . . . ... ... ..... 95
4.2.3.1 Interface . . . . . . . ... oL 95

4.2.3.2 Code architecture . . . . . . ... ... ... L. 96

4.3

4.2.3.3 Scoreboardl: improving the accuracy by better loss
TECOVELY . v v v v v v e e e e e e e 98

4.2.3.4 SNOOPy Queue Scheduler: Speed up the simulation

with a better scheduler . . . . . .. ... .. ... .. 100

4.2.4 Validation of NS-2 TCP-Linux . . . . . . . . . . . ... ... 102

4.2.4.1 Extensibility . . .. .. ... 00000 103

4.2.4.2 Accuracy ... ..o 104

4.2.4.3 Simulation performance . . . . . ... ... ... 107
4.2.4.4 An example: identifying a potential bug in Linux

HighSpeed TCP implementation . . . . ... .. .. 108

4.2.5 Usagesinresearch . . . . .. ... ... ... L. 109

A packet level measurement tool in PlanetLab . . . . . . .. ... .. 111

4.3.1 An introduction to PlanetLab . . . . . .. ... .. ... ... 112

4.3.2 Design of the measurement system . . . . . ... .. ... .. 112

4.3.2.1 Message formats . . .. .. ... 113

4.3.2.2  Design of measurement servers . . . . ... ... .. 115

4.3.2.3 Design of measurement clients . . . . . . .. ... .. 116

4.3.3 Deployment and data pre-processing . . . . . ... ... ... 117



X1
5 Conclusions and Future works 121

5.1 Packet Level Model for Delay-based Congestion Control Algorithm . 122

5.2 Application of the model for loss synchronization rate . . . . . . . . . 122
5.3 Improvement of new algorithms . . . . . . . ... ... ... .. ... 123
5.4 Extension to NS-2 TCP-Linux . . . . . . . . . . ... . ... ..... 124
6 Appendix 125

6.1 Complete list of control variables and functions ported by NS-2 TCP-

Linux . . . . . 125
6.1.1 Control variables: . . . . . ... .. ... ... 0. 125
6.1.1.1  Local variables for each connection: . . . . . . . . .. 125

6.1.1.2  Global variables: . . . .. ... ... ... ... ... 126

6.1.2 Function interfaces: . . . . . . .. ... 0oL 126
6.1.2.1 Required functions: . . . . . . . ... ... ... ... 126

6.1.2.2  Other optional function calls include: . . . . . . . .. 127

6.2 A randomized version of pacing . . . ... ... 129
6.3 Proofs of theorems . . . . . . ... ... 131
6.3.1 Theorem 2.1.2.1 . . . . . . . . ..o 131
6.3.2 Theorem 2.1.2.2 . . . . . . . ..o 132
6.3.3 Theorem 2.1.2.3 . . . . . . . . ..o 133
6.3.4 Theorem 2.1.2.4 . . . . . . . ..o 134
6.3.50 Theorem 2.1.3.2 . . . . . . .. ... 135
6.3.6 Theorem 2.1.3.3 . . . . . . . . ... 135
6.3.7 Theorem 2.1.3.4 . . . . . . . ... 136
6.3.8 Theorem 2.1.3.5 . . . . . . . . ..o 137
6.3.9 Corollary 2.1.4 . . . . . . ..o 137
6.3.10 Theorem 2.1.4.1: . . . . . . . .. .. ... 138
6.3.11 Theorem 2.1.4.2: . . . . . . . . . ... 138
6.3.12 Theorem 2.1.4.3: . . . . . . . .. ... 141

6.3.13 Theorem 2.1.5 . . . . . . . . .. 143



xii

Bibliography 147



xiil

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2

3.3

Ack-clocking effect in TCP data transmission . . . . . .. .. ... .. 3

Sub-RTT level burstiness . . . . . . . . . . . . . ... 8

A single TCP Vegas flow using a path with a bottleneck capacity of
800Mbps and a propagation delay of 200ms. The packet size in the
simulation is 1000 bytes per packet. . . . . . . . . . ... ... .. ... 29

100 Homogeneous TCP Vegas flows sharing a path with a bottleneck
capacity of 800Mbps and a propagation delay of 200ms. The packet size
in the simulation is 1000 bytes per packet. . . . . . . . ... ... ... 31

100 Homogeneous TCP Vegas flowssharing a path with a bottleneck
capacity of 800Mbps and a propagation delay of 200ms. The packet size
in the simulation is 1000 bytes per packet. . . . . . . .. ... ... .. 32

100 Homogeneous TCP Vegas flowssharing a path with a bottleneck
capacity of 800Mbps and a propagation delay of 200ms. The packet size
in the simulation is 1000 bytes per packet. . . . . . . .. ... ... .. 33

Loss intervals in NS-2 measurements.

Note that all the CDF figures in this chapter have X-axles in log-scale,

and all the PDF figures in this thesis have Y-axles in log-scale.. . . . . 44
Loss intervals in Dummynet measurements. . . . . . .. ... .. ... 45
Loss intervals in PlanetLab measurements. . . . . . . .. ... ... .. 46



3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15

3.16

3.17
3.18

3.19

3.20

xiv
Congestion detection within one RTT: a flow uses its data packet pro-
cess to sample the loss process. The loss synchronization rate is the
probability that one of the w; packets from flow i (distributed over K

packets) happens to be one of the L. dropped packets (distributed over

M packets). . . . . . 48
Synchronization rate: computational results from the model . . . . . . o1
Packet loss with window-based implementations . . . . . . . . . .. .. 52
Packet loss with rate-based implementations . . . . . . ... ... ... 02
Sampling effects of TCP and pacing (simulation results) . . . . .. .. 52
Synchronization rate with current TCP, TCP Pacing and RED . . .. 55

Synchronization rates of two flows with different window sizes, among
N flows (N=2 to 100), with bursty TCP or paced TCP (MatLab results). 56
Relation between fairness convergence time F' and synchronization rate
A (MatLab results) . . . . ... .. Lo 59
Convergence time of different TCPs in simulations with different number
of flows and different buffer sizes (in packets). . . . . . .. .. ... .. 61
Convergence of S-TCP: congestion window trajectories of the fastest
flow and the slowest flow . . . . .. . ... o000 63
MIMD fairness . . . . . . . . . L 64

Synchronization throughput loss of different congestion control algo-

rithm (MatLab results) (BDP = 10440 packets) . . . . ... ... .. 66
Normalized Throughput Gain of isolated bursty TCP or paced TCP in

simulations . . . . ..o 67
Convergence time with TCP Pacing in simulations . . . . . . ... .. 69

Summary of convergence time of Reno, HS-TCP and S-TCP in simula-
tlons . . . L L 70
Normalized Throughput Gain with co-existing pacing TCPs and bursty
TCP in simulations . . . . . . .. ... L Lo 73
Convergence time with co-existing pacing TCPs and bursty TCPs in

simulations . . . . . ..., 74



3.21

3.22

3.23

3.24

3.25

3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

XV
Convergence time of Reno, HS-TCP and S-TCP with RED in simula-
tONS . L L e 78
Convergence time of Reno, HS-TCP and S-TCP with Persistent ECN
in simulations . . . ... ..o 79
Summary of convergence time of Reno, HS-TCP and S-TCP in simula-
oS . L L e 81
Data transfer latency (normalized by theoretic lower-bound) with par-
allel flows sending a total of 64MB data Both X and Y axles are in log
scale. oL 82
Normalized Throughput Gain with isolated pacing TCPs or bursty TCP
in simulations . . . .. ..o 84
Normalized Throughput Gain with co-existing pacing TCPs and bursty
TCP in simulations . . . . . . .. .. L L 85

Dummynet testbed . . . . .. ..o 88

A very simple implementation (Reno) of the congestion control interface 94

Code structure of TCP-Linuzx . . . . . . . . . . . .. ... ... .... 96
State machine of each packet . . . . . . .. ... ... L. 99
SACK queue data structure . . . . . . . . . ... ... ... ... 100
Setup of NS-2 Simulation . . . . . ... .. ... .. ... 103
Setup of Dummynet Experiments . . . . . . . . ... ... ... .. .. 103
Throughput under different random loss rate (log-log scale) . . . . . . 106
Simulation time of different bottleneck bandwidth (log-log scale) . . . . 108
Simulation time of different number of flows (log-log scale) . . . . . . . 109
Memory usage of different number of flows (x-axle in log scale) . . .. 110
A potential bug in Linux implementation of HighSpeed TCP . . . . . . 111
Setup of NS-2 simulations . . . . . . . .. . ... ... ... 112
State machine of a measurement server in PlanetLab . . . . . . . . .. 115

State machine of a measurement client in PlanetLab . . . . . . . . .. 117



xXvi



xvii

List of Tables

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Average loss synchronization rates of TCP with a DropTail router . . . 60
Average loss synchronization rates with different improvements . . . . 77
Important variablesin tcp sk . . . . . . ... ... oL, 95

Congestion window trajectory of different congestion control algorithms 104

Congestion window trajectory of Reno, Highspeed TCP and Vegas . . 105
StartPacket format . . . . . . .. ... oo oL 114
StopPacket format . . . . . . . ... oo 114
UDPPacket format . . . . . . . . . ... 114
ReportPacket format . . . . . . . . .. ... ... oL 115

PlanetLab sites in measurement . . . . . . . . . . . . . .. .. .. ... 118



Xviii



XiX

List of Algorithms

1 Pseudo-code of Ack-clocking . . . . . . . .. ... ... 5t
2 FAST algorithm . . . . . . . . . ... ... 35
3 Persistent ECN . . . . . . . .. o 76
4 Randomized Pacing . . . . . . . .. ... o 129



XX



Chapter 1

Introduction

Transmission Control Protocol (TCP) is one of the most important protocols in the
Internet protocol suites (often refereed as TCP/IP stack). It guarantees reliable and
in-order data delivery from senders to receivers and is estimated to carry 70% to
95% of the Internet traffic in recent years. As the critical component that controls
the TCP data transmission rate, the TCP congestion control algorithm plays a very
important role in the performance of the Internet. There have been many studies on
the TCP congestion control algorithm in terms of efficiency, stability, fairness, and
scalability since its introduction in the late 1980’s. There have been dozens of new
proposals in the design and implementations of TCP congestion control. Most of
these studies are based on models that focus on the macroscopic behavior of TCP
congestion control algorithms. These models capture average data transmission rates
in timescales of multiple round-trip times (RTT). They assume that the TCP data
transmission process is a smooth and differentiable process. This assumption is,
however, in sharp contrast to real TCP implementations, which produce bursty traffic
in various timescales.

This thesis investigates the microscopic behavior of TCP. In particular, we study
the packet-level details of TCP behavior in timescales that are within an RTT. Our
study finds that the microscopic effects of window-based TCP implementation, (ack-
clocking effects), have huge impacts on TCP’s stability, fairness, and convergence.
Our findings clarify several long-standing misconceptions in the network research

community. For example:



Stability of TCP Vegas

Fairness of the Multiplicative-Increment-Multiplicative-Decrement (MIMD) al-

gorithms

The performance of TCP Pacing

Friendliness between TCP and TCP Pacing

Our findings provide explanations to these questions, which are seemingly unrelated
under the existing macroscopic models. Our study also suggests new algorithms that

improve TCP performance in terms of responsiveness and fairness convergence.

1.1 Window-based implementation of TCP

Transmission control protocol (TCP) is a window-based protocol for reliable data
transmission [1]. The sender sends a window of packets to the receiver and waits
for acknowledgments from the receiver. The data packets are labeled with sequence
numbers.! When the receiver receives a packet, it puts the packet into its buffer
and sends back to the sender an acknowledgment packet, with one integer indicating
the highest sequence number of consecutive packets received by the receiver. We say
a data packet is acknowledged when the acknowledgment of this data packet or a
later data packet arrives at the sender. If no packet is acknowledged within a certain
time threshold?, the sender assumes the previously sent packets are lost. The sender
cannot send more packets until it receives the acknowledgments of some previously
sent packets or it assumes some previously sent packets are lost.

In this process, the number of packets that have been sent by the sender but not
acknowledged is called a “window”. When the window size is fixed, the transmission

of new data packet is triggered by the arrival of the acknowledgment of the previously

'More accurately, each octet (8 bit byte) is the basic unit of data in TCP and each octet has a
unique sequence number. To simplify the discussion, we take the packet as the basic unit of data in
this thesis.

2The time threshold is called RTO. RTO is always larger than an RTT and is usually equal to
RTT plus four times of the variance in RTT |[2].
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Figure 1.1: Ack-clocking effect in TCP data transmission

sent packets. This unique feature of TCP data transmission is called “ack-clocking”.

This process is illustrated in Figure 1.1.

With ack-clocking, the size of the window implies the average rate of the data
transmission. Since there is always a window of packets that are sent out but not
acknowledged, and the acknowledgment of each packet takes one round-trip from the
sender to the receiver and back to the sender, only one window of packets can be

sent in each round-trip time (RTT). Hence, the average rate of the data transmission

. window size
rocess is s e 2T
p RTT

The TCP congestion control algorithm was introduced to control the size of the
“window” of each TCP flow so that the TCP packet transmission rates do not exceed
the network capacity.> With the TCP congestion control algorithm, the “window” for
a flow (flow 7) is a function of time t. We denote it as w; (f), and it is controlled in
RTT time scale by a congestion control algorithm according to the packet delay, or
loss information measured by the sender. There have been many proposals on how

to design congestion control algorithms with delay or loss information.

3This thesis focuses on the congestion in network. The concept of window in this thesis always
means the congestion window. In real TCP, there is also a concept of advertised window, which is
used to avoid end-host congestion.
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Loss-based congestion control schemes use packet loss as a signal of network con-
gestion. For each RTT in which a TCP source i does not detect a packet loss, a
loss-based congestion control algorithm assumes that the network is under-utilized
and gradually increases w; to increase the throughput of flow . For each RTT in
which the TCP source detects one or more packet loss, the congestion control algo-
rithm assumes that the network is congested and drastically decreases w; to relieve
network congestion. To avoid under-utilizing the network, loss-based algorithms have
to periodically generate loss. Most of the existing congestion control algorithms are
loss-based (3, 4, 5, 6, 7, 8, 9, 10, 11, 12|. Delay-based algorithms use the change
in RTT, measured by the delay between the packet transmission time from sender
and the acknowledgment arrival time to sender, to infer the congestion level. When
RTT exceeds a threshold, a delay-based congestion control algorithm assumes that
the network is congested and reduces w;; when RTT is below another threshold, the
algorithm assumes the network is under-utilized and increases w;. Some examples of
delay-based congestion control algorithms are [13, 14, 15, 16, 17]. Both loss-based
congestion control algorithms and delay-based congestion control algorithms control
the average rate of a TCP flow in time scale of RTT. This time scale is natural since
the congestion control algorithm is a feed-back control mechanism with a feedback

delay of one RTT.

Within one RTT, the underlying packet transmission process is controlled by the
ack-clocking mechanism. Ack-clocking maintains a variable called “packets-in-flight”
(p), which is defined as the number of packets that are sent, but not acknowledged.
At any time ¢ and for each flow i, ack-clocking always tries to match p; (¢) with
the window wj (t) specified by the congestion control algorithm. The behavior of ack-
clocking can be described in Algorithm 1. When p; () is larger than w; (¢), no packet
is sent for the arrival of an acknowledgment. Whenever p; (¢) is smaller than w; (¢),
ack-clocking implementation sends w; (t) — p; (t) packets in a burst at the line-rate

of the sender’s network interface card (NIC) to fill the gap.* This happens when an

4Some implementations may even send this burst of packets in the speed of CPU, which is usually
much faster than NIC speed.
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Algorithm 1 Pseudo-code of Ack-clocking
When an acknowledgment that acknowledges k packets is received by flow ¢, or upon
the start of the flow i:

L. pi—pi — k;
2. w; — F (w;)
3. while (p; < w;)
® pi—pi+1
e send a packet;

F (w;) is the response function of a congestion control algorithm. Besides w;, the
response function of a loss-based algorithm takes packet loss information as an input;
the response function of a delay-based algorithm takes packet delay information as
an input.

acknowledgment arrives (p; is decreased) or the congestion window w; (t) is increased
by the congestion control algorithm. This burst of packets introduces two levels of

burstiness: micro-burst and sub-RTT burstiness.

1.1.1 Micro-burst

Whenever w; (t) —p; (t) > 1, multiple packets are sent into the network back-to-back.
Such a burst, called micro-burst [18|, has a peak rate higher than the bottleneck
capacity and introduces an additional queueing delay to the router. If the bottleneck
buffer size is smaller than the size of the micro-burst, some packets in the micro-burst
are dropped. Otherwise, the micro-burst enters the bottleneck buffer and generates
an additional queueing delay equal to the length of the burst.

There are two situations wherein micro-burst is formed:

The first is a sudden increment of the congestion window wj (¢). In the start-up
phase of a flow, TCP uses slow-start |4] to probe the bottleneck’s available bandwidth.
Slow-start doubles the congestion window every round-trip. This quick increment in
the congestion window leads to a gap between w; (t) and p; (¢) and results in micro-

burst.
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The second is a sudden decrement in the number of packets in flight p; (¢). Ac-
knowledgments are not reliably transmitted in the network; they can be delayed
or dropped in their return paths, due to congestion. When acknowledgments are
dropped in the reverse path of the network, the TCP sender cannot send any new
packets. Once a later acknowledgment arrives, the sender recognizes that several
packets have arrived at the receiver (since each acknowledgment acknowledges all the
in-sequence packets that are received by the receiver) and drastically drops p; (t).°
The gap between w; (t) and p; (t) results in micro-bursts.

Micro-burst is transient and can be mitigated by various methods, such as pacing
[20, 21], burstiness control [22], or other mechanisms [18|. Since the TCP can only
send, at most, a window of packets into the network, the size of a micro-burst, in
term of number of packets, will never exceed the window size. Hence, the effect of
micro-burst on packet loss can be eliminated by increasing buffer size. It has been
suggested that the buffer size in the router should hold at least half of the maximum
congestion window so that the the micro-burst triggered by slow-start, which is half
of the congestion window, can be fully absorbed by the router’s buffer without packet

loss [4].

1.1.2 Sub-RTT burstiness

After being buffered in the bottleneck router, the back-to-back packets within a micro-
burst are processed by the router at rate ¢ (packet/second), the router’s capacity.
After one round-trip, the acknowledgments of these data packets return to the sender
at rate c. The sender then sends the next window of packets at rate ¢ and waits for
the rest of the RTT until new acknowledgments come back. Hence, in sub-RTT time
scales, the sending rate z; (¢) can be approximated by an on-off process. In the on

period, packets are transmitted at rate ¢ packets per second, which is usually much

higher than the average rate of z7x. We call this burstiness sub-RTT level burstiness.

Sub-RTT level burstiness does not introduce excessive packet loss or additional

This situation is called ack-compression in [19].



7

queueing delay (since its peak rate is no greater than the bottleneck capacity ¢). How-
ever, sub-RTT level burstiness affects the packet arrival pattern of individual flows.
The on-off pattern has significant impact on the fairness of loss-based congestion
control algorithms, as we will explain in Chapter 3.

Once sub-RTT level burstiness is formed, the burstiness is maintained by ack-
clocking and its effect cannot be eliminated by a large buffer size or high multiplexing
level. It has been shown that sub-RTT level burstiness persists in scenarios with
a single TCP flow as well as in daily Internet traffic (from router trace) where the
number of flows is very large [23]. Figure 1.2 illustrates such an example. In this
example, 16 TCP flows share a 100Mbps bottleneck with a delay of 10ms and a
buffer size of 250 packets in NS-2 simulation. We record the data packet process of
each flow at the bottleneck link. The data presented in the figure is collected 1300
RTTs after the flows start, when the flows have been in the congestion avoidance
phase for a long time. A green dot (¢,7),7 = 1---16 in the figure represents a packet
from flow ¢ going through the bottleneck at time ¢. The green dots would evenly
distribute on a horizontal line if the data process was smooth. This figure intuitively

shows that:
1. Within each RTT, almost all flows have data packet processes that are on-off;

2. This on-off pattern within a RTT (sub-RTT burstiness) is maintained through-

out the life of connections.

Later on in this thesis, we use bursty TCP (or current TCP) to denote a normal
TCP (with ack-clocking) and differentiate it from other special TCP implementations
which eliminate ack-clocking effects by mechanisms such as TCP pacing (or paced

TCP)[20].

1.2 Fluid models

The TCP research community has been developing several macroscopic models to

understand the TCP behavior.
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A macroscopic model for average TCP throughput was proposed in [24|. The
macroscopic model captures the relation between packet loss rate and average TCP
throughput over a loss epoch. A series of work in late 1990s [25, 26| refined the
macroscopic model and established a fluid model to study the macroscopic behavior
of TCP Reno. Fluid model assumes that the data transmission rate of a flow ¢ (z; (¢))
is differentiable and equal to the average throughput in a round trip (%)
Based on the fluid models, the TCP congestion control problems were mapped to the
traditional control problems [26, 27]. This approach allows the research community

to explore the dynamic properties of TCP/AQM in a rigorous manner. Results based

on this mapping appear in current literature |27, 28, 29, 30].

We give a brief introduction of this model in the context of homogeneous flows.
Given a network with N flows {s1,ss,---, sy} and a single bottleneck link. Define
the link’s backlog at time ¢ as b (¢) and its capacity as c. The path has a propagation

Fis the forward propagation delay and 7% is the

delay of 7 = 75 + 78, where 7
backward propagation delay. The round trip time (RTT) of the path at time ¢ is

denoted by D (t).

Assume the sending rate of flow i is determined by its window w; (t) and the round

trip delay D (t) as

z () = 5 o (1.1)
where
D(t):r+@ (1.2)

the aggregate input rate for the link is 2 (£) = >, z; (t — 7¥). Then, the backlog

process can be modeled by

br) = Sz (t—71") —¢ if b(t) >0 (1.3)
max {0, z; (t —7F) — ¢} ifb(t)=0

The congestion window w; (t) of source i is determined by the congestion control
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function based on the feedback with the assumption that w; (¢) is differentiable:®

w; (t) = F (w; (t),q (t —77)) (1.4)
where
gty =" (15)

is the feedback from the router. It can be either queueing delay or packet loss rate.”

(1.1), (1.2), (1.3), (1.4) and (1.5) form an ordinary differential equation (ODE) sys-
tem. Traditional control theory can be applied to this system to analyze the dynamic
properties of TCP. This fluid model has greatly inspired the network community and
the control community. Hundreds of papers have been published to analyze the sta-
bility of different TCP systems in different scenarios. Based on this model, the results
always show that there is a stability region for a TCP congestion control algorithm.
The region depends on several parameters: the number of flows (V), the round trip
delay (D), the bottleneck capacity (c), and some algorithm specific parameters. The

systems usually become unstable when NV is small, D is large, or c is large.

However, we are cautious of this approach as the fluid models only capture the
macroscopic behavior of TCP. The fluid models assume that the TCP data trans-
mission process x; () is smooth and differentiable. This is not true in reality. As
introduced in Section 1.1, burstiness is very common in real TCP systems. Micro-
burst corresponds to a pulse function in x; (¢) and sub-RTT burstiness corresponds
to a step function in x; (t). The stability of a system can be completely different if a
pulse function or a step function is included. Furthermore, the predictions of the fluid
models contradict with experimental results in some scenarios, as shown in Section
1.3. We have to go into the details of microscopic TCP behavior and understand

these contradictions.

SHere the feedback delay of ¢ (t) is assumed to be the constant 7. This is not true since the
feedback will be further delayed by the queueing delay. However, all the models used in [27, 28, 29|
have the same assumption.

TIf the feedback is packet loss rate, the linear relation between ¢ (t) and b (t) only holds when
Random Early Dropping (RED) [31] is applied.
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1.3 Controversial problems

There have been contradictions between the prediction of the fluid models and other

heuristic understandings and experimental results. We list some of them below.

1.3.1 Stability of TCP Vegas

Stability of delayed-based algorithms (e.g. TCP-Vegas) is a controversial topic. With
an approximate fluid model, it has been shown that TCP-Vegas has a small stability
region and an algorithm called Stabilized Vegas was suggested to stabilize TCP-Vegas
in [29]. However, another analytical result based on an extended fluid model showed
that neither TCP-Vegas nor Stabilized Vegas is stable [30]. Both results showed that
TCP-Vegas is stable only small capacity and small delay. They imply that TCP-Vegas
will be unstable with large enough capacity or large delay. The claims are supported
by NS-2 simulation in [29] and by ODE-based MatLab calculation in |30]|. However,
in our NS-2 TCP-Linux simulation and real experiments, TCP-Vegas rarely oscillates.
Even when it oscillates in NS-2 simulations, the oscillation in the congestion window
is always very small, which can be the integer truncation effect and other effects
in NS-2 TCP-Vegas implementation. Therefore, it is not clear how to interpret the

stability results in the fluid model analysis to the real performance of TCP-Vegas.

1.3.2 Fairness of homogeneous MIMD congestion control al-

gorithms

Multiplicative-Increment-Multiplicative-Decrement (MIMD) algorithms are a class of
control algorithms which increase and decrease the congestion window multiplicative.
When MIMD algorithms do not observe congestion, they increase the congestion
window by a small percentage. When MIMD algorithms observe congestion, they
decrease the congestion window by a large percentage. It has been proved with a
static model that two MIMD flows with different window sizes cannot converge to

a fairness point even when they share the same network path [32]. However, the
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analysis based on the fluid model proves that Scalable-TCP, an MIMD algorithm,
can converge to fairness [33| . In many experiments, it is observed that Scalable-TCP
cannot converge to fairness [34, 17|, so, it is not clear if MIMD algorithms are fair or

not.

1.3.3 Effect of TCP pacing

TCP pacing is proposed in [20] for high speed long distance network. TCP pacing uses
a rate control mechanism to replace ack-clocking and eliminates both micro-bursts
and sub-RT'T burstiness as we described in Section 1.1. Since its introduction, there
has been a long debate on the effect of TCP pacing. Simulation results [20] show that
TCP pacing can significantly improve the throughput of TCP flows in networks with
large capacity, long delay, and small buffer. Simulations results |21| also show that
TCP pacing does improve TCP performance in both efficiency and fairness. It is also
shown, however, that TCP pacing might actually have lower average throughput in
many cases [35]. Even worse, TCP pacing loses to normal TCP when the two co-exist.
On the other hand, the network industry, especially the network interface card design
industry, has increasingly adopted the TCP pacing technology into their products.

Therefore, it is not clear what exactly are TCP pacing’s effects on performance.

1.4 Scopes and limitations

We explore the microscopic behavior of TCP and find new answers to these questions.
We focus on the performance of homogeneous TCP flows. Similar to Section 1.2, the
scenario in our study has N homogeneous TCP flows sharing a dumb-bell topology

with the following parameters:

e N: the number of flows;
e 7: the propagation delay of the path;

e c: the capacity of the bottleneck (in packets per second);
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B: the buffer size of the bottleneck;
e b (t): the bottleneck queue size;

e ¢(t): the queueing delay or loss rate of the path;

D (t): the round trip time of the path;

e w; (t): the window size of flow ¢ at time ¢;

x;(t): the packet transmission rate of flow ¢ at time ¢.

This study is the first step to exploring the microscopic behavior of TCP; further stud-
ies that cover more general cases with heterogeneous flows and multiple bottleneck

sets are expected in the future.

1.5 Summary of results

To summarize, our investigations in microscopic behavior of TCP congestion control
has found that the ack-clocking has significant impacts on TCP performance.

For delay-based congestion control algorithms, micro-burst makes the queue con-
verge much faster than the fluid model predicts. This fast queue convergence leads
to better stability of delay-based congestion control algorithms. With a packet-level
model, we can prove that a single TCP Vegas flow is always stable with any delay
and any capacity. This is in sharp contrast to the prediction of fluid models, which
implies that TCP Vegas will be unstable with small number of flows, long delay and
large capacity. The new understandings also allow us to design more aggressive new
algorithms which are both stable and responsive. Inspired by the fast queue conver-
gence, we design a new delay-based congestion control algorithm, FAST, to achieve
responsive convergence and stable queueing delay. We show that homogeneous FAST
flows are stable with any delay and any capacity.

For loss-based congestion control algorithms, the combination of burstiness in

packet loss process and sub-RTT burstiness in TCP data packet process lowers loss
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synchronization rates among TCP flows. Intuitively, this means that only a small
fraction of the TCP flows detect packet loss during a congestion event and most
other TCP flows do not detect the congestion. A low synchronization rate has several
implications in the performance of TCP. First, with a low synchronization, the link
utilization TCP Reno flows is higher since fewer flows slow down in each congestion
event. Hence, the aggregate rate of bursty TCP can be higher than the aggregate rate
of paced TCP. Second, a low synchronization rate implies poor short-term fairness.
Hence, the paced TCP is fairer than bursty TCP. Third, when TCP and paced TCP
co-exist, paced TCP flows lose to TCP flows since the paced TCP flows do not have
sub-RTT burstiness in their data packet processes and have higher probability to
detect packet loss in each congestion event. Finally, with sub-RT'T burstiness, a large
number of TCP flows with different window sizes tend to have similar probability
to detect a loss in congestion event. This similarity validates the synchronization
assumptions in [32| and leads to the unfairness of MIMD algorithms. Based on
these understandings, we propose to use TCP pacing to improve the fairness of TCP,
especially MIMD algorithms.We also propose a new link algorithm which provides
consistent ECN signals to increase the loss synchronization rate over all the bursty

or paced flows.

1.6 Organization of this thesis

Chapter 2 details the effects of micro-burst on the stability of delay-based congestion
control algorithms. Chapter 3 explores the sub-RT'T level burstiness and its effects
on loss-based congestion control algorithms. We explain the methodologies used in
our research in Chapter 4. We summarize our conclusions and plans for future work

in Chapter 5.
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Chapter 2

Microscopic Effects on Delay-based
Congestion Control Algorithms

We focus on the effects of micro-bursts on delay-based algorithms. As explained
in Section 1.1.2, sub-RT'T burstiness does not introduce additional delay, and we
have not found any sub-RTT burstiness effect on delay-based congestion control algo-
rithms. Micro-bursts, however, have significant effects on the stability of delay-based
congestion control algorithms. We found that micro-bursts allow the queueing delay
in the network system converge in a very short time and help to stabilize the system

in the presence of feedback delay.

Stability of delay-based congestion control algorithms (e.g. TCP-Vegas [16]) has
been a controversial topic in the past years. One approximate fluid model shows
that TCP-Vegas has a small stability region and suggests an algorithm, Stabilized
Vegas, to stabilize TCP-Vegas [29]. However, an extended fluid model considering
RTT variation shows that both TCP-Vegas and Stabilized Vegas are not stable |30].
In both studies, fluid model analysis shows that TCP-Vegas is not stable with large
enough capacity and delay. However, in all of our simulations and experiments, TCP-
Vegas rarely oscillates. Even when it oscillates in simulations, the oscillation in the
congestion window size is always smaller than £2 packets, which can be well explained
by the integer quantization effect in implementation. Hence, there is no convincing
experimental evidence to verify whether TCP Vegas is stable or not. On the other

hand, there is no theory to prove the stability of TCP Vegas either.
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This chapter provides a new answer that takes into consideration of micro-burst
effects. With a packet level model, we prove that a single TCP-Vegas flow is al-
ways stable, regardless of the round trip delay and the bottleneck capacity. This
result, which agrees with our observations in simulations and experiments, is in sharp
contrast from the fluid model results.

The process of the proof reveals many properties of ack-clocking and convergence
of queue. The new understandings allow us to design new delay-based congestion
control algorithms that are much more responsive yet stable, which would be impos-
sible according to the analysis of the fluid models. In particular, we design a new
delay-based congestion control algorithm, FAST, to achieve much faster convergence
than TCP Vegas while maintaining good stability. We prove that FAST is stable

with homogeneous sources in a network with any capacity and any delay.

2.1 Stability of a single TCP-Vegas flow

We propose a detailed packet-level model for a single TCP flow controlled by a delay-
based congestion control algorithm. This model reveals several interesting properties
of ack-clocking in a single bottleneck link. It leads to a stability proof of a single

TCP-Vegas flow.

2.1.1 Modeling ack-clocking

We model ack-clocking at packet level. With the scenario of a single flow, we are able
to capture the timing of each individual packet in the model and to understand the

details of the ack-clocking effect.

2.1.1.1 Assumptions

We make the following three assumptions:

1. The bottleneck router has a deterministic capacity of ¢ and an infinite buffer;
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2. The links on the path have no packet loss and produce consistent round trip
propagation delay of d sec; this round trip propagation delay includes the

router’s packet processing time %, and hence, d > %;

3. The source can send a micro-burst of packets instantaneously when the conges-
tion window is larger than the number of packets in flight; after a micro-burst
of packets are sent, the number of packets in flight is equal to the congestion

window.

The first two assumptions are very common in models for delay-based protocols.
These two assumptions also appear in fluid model analysis such as [29|. The third
assumption is the key point of our packet level model. Our model allows a micro-burst
to be sent instantaneously. In fluid model, the third assumption is replaced by the
fluid assumption that the sending rate x; (¢) is a differentiable process.

The window size of a flow w (t) is a given process in the model.

2.1.1.2 A packet level model for ack-clocking

We label the packets sent in the life of a connection with consequent integer numbers.
The packet numbers form a sequence {j|j € Z and j > 0}.

For each packet j:

s (7) is the sending time of the packet. By the definition of packet label j, we have

vi:s(G) <s(+1) (2.1)

p () is the number of packets in flight after packet j is sent. It is an integer number.

By definition of packet label j, p (j) can increase by at most one per packet:!

1<p()<p(i-1)+1 (2.2)

a (7) is the arrival time of the acknowledgment of packet j. For simplicity, we call

1Since p (i) is defined on packet and more than one packets can be sent at the same time, this
constraint still allows the congestion window to increase by more than one at the same time.



18
“the arrival of the acknowledgment of packet ;7 as “the arrival of packet 7”7 in the rest
of this chapter. This refers to the time a (7).
b(j) is the backlog experienced by packet j; hence, @ is the queueing delay
experienced by packet j.
In this model, w (t) is a given process that satisfies: w (t) > 1.
Initially, we have a (0) =0, p(1) =1, and b(1) = 0.

Given the initial condition and w (t) sequence, we can uniquely determine p (j),

s(j), b(j) and a (j) from the following four equations:

p() = max Ap(G-1D=k+1lp(-1)-k+tl<wleG-1-p(-1)+k)}

e (2.3)
s() = ali - p () 2.4)

(i) = max (b~ 1)+ 1~ [s (j) — s (G — D] .0} (25)

a(j) = s()+d+ " 26)

Note:

e (2.3) is based on the ack-clocking algorithm described in Algorithm 1. & is the
number of acknowledgments that the sender receives between s (j — 1) and s (j).
a(j—1—=p(—1)) = s(j—1) is the sending time of the (j — 1)-st packet.
Hence, a(j —1—p(j — 1) + k) is the arrival time of the k-th acknowledgment
after s(j —1) and w(a(j —14+k—p(j —1))) is the window size at that time.
w(a(j—1—p(j—1)+k)) upper-bounds p (j) if packet j is to be sent at this
time. p(j — 1) — k is the number of packets in flight after the sender receives
k acknowledgments. p (j) cannot be higher than p (j — 1) — k + 1 since sending

packet j can only increase the number of packets in flight by 1. A quick corollary
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from (2.3) is

p()= max {p(G-D-k+1llpG-1)-k+tl<wlsG)} 27

0<k<p(j—1
since s (j) = a (j —p(4))-

e (2.4) states that packet j should be sent at the arrival of the acknowledgment of
a packet that were sent one RTT ago. Since p (j) packets are sent in one RTT,
Jj —p(j) is the packet that is sent one RTT ago. A quick corollary of (2.4) is

p() =Hk:s(k) <s(j) <a(k)} (2.8)

This conforms to the definition of p(j) which is the number of packets that
are sent but not acknowledged right after packet j is sent. Also note that when
p(j) =p(j—1)+1, we have s (j — 1) = s(j). This corresponds to the case with
two packets in the same micro-burst sent out instantaneously by Assumption

3. The combination of (2.3) and (2.4) guarantees that s(j — 1) < s (j).

e (2.5) is a discrete version of the backlog process in network calculus [36]:

b(t) = max/ [z (u) — ] du (2.9)

s<t

During the time s (j — 1) to s(j), at most [s(j) — s (j — 1)] ¢ packets are processed

by the bottleneck and leave the queue. One more packet enters the queue.

e (2.6) is based on the definition of round trip time, which equals to the round

trip propagation delay (d) plus the queueing delay (@)2

2.1.2 Properties of ack-clocking

From the packet level model, we have three properties of ack-clocking:

2We assume that each data packet will results in one acknowledgment. There is no acknowledg-
ment compression or delayed acknowledgment.
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e Whenever a packet is sent, the number of packets in flight is always equal to

the window size after the whole micro-burst is sent.

e The acknowledgments are always paced out by the bottleneck, even the corre-

sponding data packets have entered the bottleneck in bursts.

e The queueing delay experienced by a packet is directly bounded by the number
of packets in flight.

These properties are important for us to understand the microscopic behavior of TCP.

2.1.2.1 Relation between the number of packets in flight and the window

size

Theorem 2.1.2.1:

At any time s (j) in which a packet is sent into the network,

p () Sw(s(j)) (2.10)

;&

And there always exists a packet j* 1= j
s(j*)), and

(7) which is sent at the same time (s (j) =

p(7) =w(s()) (2.11)

Furthermore, if w (s (j*)) > w (s (j* + 1)),

pUTHD) =w(s(G"+1)) (2.12)

(All proofs are in Appendix 6.3.)

This theorem reflects the assumption that the sending TCP sends all packets in
a micro-burst at the same time.

First, (2.10) shows that ack-clocking guarantees that the number of packets in
flight is always no greater than the congestion window size, at any time when a

packet is sent;
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Second, j* is the last packet in the micro-burst. (2.11) says that the ack-clocking
algorithm synchronizes the number of packets in flight with the window size at any
time some packet is sent;
Third, (2.12) shows that the size of the micro-burst will be one packet if the

congestion window does not increase.

2.1.2.2 Pacing of acknowledgments

Theorem 2.1.2.2:

vita(j)—a(i=1)= (2.13)

[

b(j—1)+1
.

The equality holds if, and only if, s (j) < s(j — 1) +
This theorem implies that the acknowledgment packets are always paced out by
the bottleneck router, no matter how fast the corresponding data packets have arrived

at the bottleneck.

Corollary 2.1.2.2:
J1>J2 e a(i) > a(j) (2.14)

2.1.2.3 Upper bound of queue increment

Theorem 2.1.2.3:

ForV1<j <y, Iftp(5),p(y/+ 1), ---p(j) are non-decreasing,

b(j) <b(J) +p () —p ()

This theorem upper bounds the increment of queue length. It says the increment

of queue length is no greater than the increment of the number of packets in flight.

2.1.2.4 Lower bound of queue

Theorem 2.1.2.4:
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d+&c‘j) > @ (2.15)

The equality holds if, and only if, Vk that satisfies j —p(j)+1 <k <j:a(k)—
a(k—1)=1.

This theorem says that the delay experienced by a packet is always lower-bounded
by the number of packets in flight.

Notes:

e Since p(5*) = w (s (j*)), Theorem 2.1.2.3 and 2.1.2.4 show that the congestion
window has a direct effect on queueing delay. When the window size is large,
the queueing delay experienced by the last packets in the micro-burst will be
lower-bounded by M;

[

e If packet j is not the first packet in the micro-burst, it might experience higher
delay than %j) due to the extra queueing delay introduced by micro-burst,

unless the system is in some special state. The next subsection will detail this

state.

2.1.3 Queue convergence

Since the window size w (t) directly affects the queueing delay, the queue converges
at a much faster speed than that predicted by fluid model. With a single flow, the
queue converges to a stable state in one RTT if the congestion window remains larger

than bandwidth propagation delay product in one round trip.

2.1.3.1 Definition of Stable-Link state

Definition 2.1.3.1:

We say the system is in a stable-link state upon the arrival of packet j if the

system satisfies

1
VE that satisfies j — p (j) <l{:§j:a(l€)—a(l{;—1)zz
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The stable-link state is an indication that all the bottleneck links on the path is
saturated. It has several properties.

First, in the stable-link state, the number of packets in flight is equal to bandwidth
delay product (BDP);

Second, the stable-link state persists as long as the number of packets in flight is
larger than or equal to bandwidth propagation delay product ;

Third, the single flow system enters stable-link state when the number of packets
in flight is higher than or equal to bandwidth propagation delay product for at least
one RTT.

2.1.3.2 The number of packets in flight and BDP

Theorem 2.1.3.2:

The system is in stable-link state upon the arrival of packet j <= p(j) = cd + b (j)
(2.16)

This is the equality case of Theorem 2.1.2.4.
Note that b (t) = w (t) — cd is the equilibrium state of the link in fluid models. In
fluid models, it takes many round-trips for the links to converge to this equilibrium
state. This theorem says that this equilibrium state holds at any time when a packet

is sent, once the system is in stable-link state.

2.1.3.3 Persistence of Stable-Link state

Theorem 2.1.3.3:

If the system is in stable link state upon the arrival of packet j and p(j 4+ 1) > «d,
then the system is in stable link state upon the arrival of packet j + 1.
This theorem says that as long as the number of packets in flight is larger than or

equal to bandwidth propagation delay product, the stable-link state persists.

2.1.3.4 Entrance of Stable-Link state

Theorem 2.1.3.4:



24
IfVEk:j—p(j) <k <j:p(k)> cd; the system enters stable-link state upon the
arrival of ;.3
This theorem provides a sufficient condition for a system to enter stable-link state.
It says as long as the number of packets in flight is larger than bandwidth propagation
delay product for one RTT, the system will be in stable-link state.
This theorem implies that the queue dynamic converges within one round-trip

time, which is a sharp difference from the prediction of fluid models.

2.1.3.5 Pacing of micro-burst

Theorem 2.1.3.5:

IfVEk:j—p(j)<k<j:p(k—1)>p(k)and p(j) < cd, the system has b(j) = 0.
This theorem says that micro-burst can be smoothed by the bottleneck within one

RTT, if the number of packets in flight does not increase.

2.1.4 Properties of congestion control in RTT timescale

In general, a delayed-based congestion control algorithm can be modeled as follows:
the source makes a decision on new value of the congestion window at the arrival time
of some packets, whose sequence numbers form a sub-sequence {7 |k € Z and 7, < 711 }
of the packet number sequence {j}. We call these packets decision packets. Initially,
70 =w (0).4

Whenever a decision packet T, arrives (at time a (7)), the congestion window
control algorithm makes the window update decision based on the window size when

7 is sent (w (s (73,))) and backlog experienced by 74 (b (7%)):"

3A more general version of this theorem which replaces the condition p (k) > ed by p (k) > cd
also holds .

4A complete TCP congestion control algorithm usually includes three phases: slow-start,
congestion-avoidance, and loss-recovery. In the context of delay-based congestion control algorithms,
the model assumes an infinite bottleneck buffer size and hence no packet loss occur. The loss-recovery
phase is not considered. The slow-start phase is an initial and transient phase for delay-based con-
gestion control algorithms. The system will stay in congestion-avoidance phase after running for a
long enough time. Hence, we only model the congestion avoidance phase in the study. The initial
time in this model can be regarded as the starting time of the congestion-avoidance phase.

"Here we use o = (3, as in [29]. The proof can be extended to the cases with o < f3.
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Aw (1) = R(w (s (1)) ,b (%)) (2.17)

R is called the response function. It depends on the history of the window size and
the measured delay

the window size is then changed to:

w(a(m)) =w(s(m)) + Aw (1) (2.18)

and the next decision packet 754 is defined as : °

Tet1 = T +w (s (7)) + max {Aw (73) ,0} (2.19)

For any time other than the arrival of a decision packet, the window size does not
change:

w(t) =w(a(m))if a(m) <t <a(Tpy1) (2.20)

Hence, the congestion control algorithm changes the window size on a timescale of

RTT. This control timescale is general for all existing congestion control algorithms.
Corollary 2.1.4:

From (2.19),

Tht1 > Tk + W (S (Tht1))

2.1.4.1 Timing of the decision packets

Theorem 2.1.4.1:

a () < 8(Thg1) < a(Trg1)

6This definition is based on those implementations which use a special packet to indicate the end
of one RTT. Some implementations have a different value of 741. For example, Linux with delayed
ack will have 7,41 = 73 + 2w (s (1)). We ignore these variants but note that the proof holds as long
as Trp+1 > Tk + w (s (1)) + max {0, Aw (73) }.
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This theorem says that in RT'T-timescale window control, a decision packet is sent

out only when the last decision packet has arrived. By (2.20), we have:

w (s (1)) =w(a(mk_1)) (2.21)

2.1.4.2 Equivalence of the window size and the number of packets in flight

Theorem 2.1.4.2:

V7t w (s (1)) = p (k)

This theorem says that each decision packet 7, is the last packet sent in the
micro-burst. And the window control formula (2.17) can be rewritten as a function
of p(73):

Aw (15) = R(p (1) , b (%)) (2.22)

2.1.4.3 Link convergence upon decision packets

Theorem 2.1.4.3:

b(mx) < Aw (1) or the system is in the stable-link state upon the arrival of 7.
This theorem says that either b (1) < Aw (73) or b(7%) = p(7x) — cd, according
to the properties of the stable-link state.

According to Theorem 2.1.4.2, we have:

b(mk) =w(s(m)) —cd

or

b(Tk) S Aw (Tk)

The theorem establishes a very different understanding on the effect of feedback
delay in TCP system. In the traditional fluid models, the queueing delay has slow
dynamics and converges asymptotically to a new equilibrium when the congestion

window changes. Due to this slow dynamic, there is a difference between queueing
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delay observed by a source and the queueing delay at the bottleneck. Hence, the
congestion control algorithm might oscillate its congestion window due to overacting
upon the observed queueing delay. Even worse, the longer the propagation delay, the
slower the queue converges, and the easier the congestion control algorithm oscillates.
The feedback delay plays an important role in this system.

However, by capturing the micro-burst which leads to fast queue dynamic, The-
orem 2.1.4.3 assures that as long as the queueing delay is higher than the change of
the congestion window, the observed queueing delay equals the queueing delay at the
bottleneck. Hence the process of the fast queue convergence process within in one
round-trip is negligible and the queue size can be modeled by a static function in the
form of b = w — cd instead of a differential equation.

This understanding holds for all delay-based congestion control algorithms. We

also believe that it can be extended to loss-based congestion control algorithms.

2.1.5 Stability of TCP Vegas

TCP Vegas ([16]) is a particular delay-based congestion control algorithm. Its re-

sponse function is

e wis(me)) _ w(s(re))
1 if == — D(T:) <«
R(w(s(mx)),b(m)) =4 —1 if w(sfﬁ)) — wg((%)) > a and w (a (1)) > 1
0 Otherwise
where
b
D(m) =d+ () (2.23)
c

With this response function, Aw (1) < 1. Hence, the size of micro burst intro-
duced by the change of congestion window will be always smaller than one packet.
Intuitively, once the system enters into a state in which b(¢) > 1, the bottleneck
queue size can be modeled by a static function and the stability of TCP Vegas does

not depend on feedback delay. Theorem 2.1.5 confirms this intuition and shows that
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a single TCP Vegas flow is always stable.
Theorem 2.1.5:

Given the ack-clocking model described in (2.3)(2.4)(2.5)(2.6) and the TCP Vegas
congestion control algorithm described in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP
flow converges to equilibrium regardless of capacity ¢, propagation delay d and initial
state. That is:

If ad > 1, given any initial state, we have

AJ:Vji>J:icd+ad—1<w(s(j) <cd+ad+1land ad—1<b(j) <ad+1

Particularly, if (cd + ad) € Z, then Vj > J : w (s (j)) = cd + ad and b (j) = ad.

2.1.6 Validation

We run simulations with TCP Vegas implementation from Linux kernel and validate
our results. To eliminate the effect of inaccurate base RTT estimation, we hard code
the base RTT to be the propagation delay. With a single flow, TCP Vegas is stable
with very long delay and high bottleneck capacity, as shown in Figure 2.1. Although
the fluid model analysis predicts that the long delay and high capacity in the scenario
leads to instability of TCP Vegas [29], the congestion window of the single TCP Vegas
flow converges to equilibrium and remains stable in the region of [19067, 19068] as
predicted in Theory 2.1.5.

We repeat simulations with multiple homogeneous TCP Vegas flows and confirm
that TCP Vegas is stable with different delay. We first repeat the simulations by Choe
and Low in [29], with the more realistic TCP Vegas implementation from Linux kernel.
Figure 2.2 shows the average congestion window trajectory for 100 TCP Vegas flows
and the queue trajectory. From the full traces, we can see that both the congestion
window and the queue converge. In fact, we inspect the congestion window of each
individual low and confirm that the congestion window of each individual flow also

converges. In the enlarged versions, we inspect the oscillation at the packet level.
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Figure 2.1: A single TCP Vegas flow using a path with a bottleneck capacity of
800Mbps and a propagation delay of 200ms. The packet size in the simulation is 1000
bytes per packet.
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The oscillation is between 114.6 and 115.6. This is because the Linux uses an integer
variable to store the congestion window size. When cd is not an integer, the congestion
window has one packet of oscillation. In the enlarged version of queue trajectory, we
observed that the queue length oscillates between 1935 packets and 2035 packets.
This 100 packet worth of oscillations are due to the one packet worth of oscillation of
each congestion window of each of the 100 flows.

To further confirm that our observed oscillations are due to integer effects only,
we run two other sets of simulations, in which we double the round trip propagation
delay. According to the prediction of fluid model, we expect a more severe oscillation.
However, the simulation results show that the queue length only oscillates in the same
region and the average congestion window oscillates within one packets, as shown in

Figure 2.3 and Figure 2.4.

2.2 FAST algorithm and its stability

The packet level model for single source TCP-Vegas gives many new understandings
of the queue dynamics. Intuitively, a change in the congestion window can result
in a very quick change in the queue and controlling the congestion window directly
controls the queue. This is different from the intuition from the fluid model in which
controlling window only indirectly controls the queue via the rate process. This new

understanding has inspired the design of a new algorithm, FAST.

2.2.1 FAST algorithm

FAST algorithm can be viewed as a high speed version of TCP Vegas. It has the
same equilibrium state as TCP-Vegas. However, it converges much faster, and hence,
is able to fully utilize the bottleneck capacity. The design of the FAST algorithm has
been inspired by the concept of quick queue convergence.

The FAST algorithm can be summarized in the following equation where w; (t) is

adjusted once every two round trips:
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w; (t— D; (1))

A . =
b P A

di + o — w; (t) (2.24)

where w; is the congestion window of source i;

d; is the round-trip propagation delay of source ;’

¢; s the queueing delay observed by source ¢ at time t;

D; (t) = d; + ¢; (t) equals the round-trip time;

v is the parameter for convergence speed, which is recommended to be %;

«; is the parameter for fairness. It specifies the number of packets that each source

tries to maintain in the bottleneck queue.

The details of the algorithm can be found in Algorithm 2.

The algorithm assumes the throughput achieved in the last round trip (l“)“((;)) to

be the available bandwidth, and add «; packets to the bandwidth propagation delay

~

product.

As extensively evaluated in [37, 17|, FAST has achieved much better responsive-
ness and maintained the same stability as TCP Vegas.

We extend the packet level model to a discrete model for homogeneous flows and

analyze its stability in this context.

2.2.2 Model for homogeneous flows

As observed in Theorem 2.1.3.4, the queue can quickly converge to an equilibrium due
to micro-burst. We extend this observation to a more general assumption that the
queue converges within one RTT so that the stability analysis of congestion window
control algorithms can ignore the convergence time of the queue and assume that the

queue converges to an equilibrium instantly. This equilibrium can be described as

. (2.25)

q@):max{w,o}

"We use the minimum observed round-trip time as an approximation of d;. The discussion on
the noise of measurement can be found in [37].
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Algorithm 2 FAST algorithm

For each source :
1. Initialization:

(a) count; = wy;
(b) fastOn; =1

2. On the transmission of each data packet j:

(a) wi (j) = ws;
(b) s;(j) =T. (T is the system time.)

3. On the arrival of each acknowledgment (that acknowledges packet j):

(a) If fastOn; == 1:
i. Calculate RTT D; (j) =T — s; (j);
ii. Calculate Aw; = v TLJZ((;)) d; + a; — wi]
i, If Aw; > 1: w; = w; + 1
iv. If Aw; < -1 w; =w; — 1

(b) count; = count; — 1
(c) If count; < 0: (One RTT is finished)
i. fastOn; =1 — fastOn;

ii. count; = w;

fastOn; indicates whether w; () needs to be adjusted in the current RTT ;
count; is the counter to detect the end of an RTT.
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Based on this assumption, we propose a discrete time model to analyze the stability
of homogeneous FAST flows. For the sources, we use a model that assumes that every

source makes its decision on discrete time points 7y, 7o, - - -, we have:

wi (Tht1) = F (wi (%) , ¢ (%)) (2.26)

In the case with homogeneous FAST flows, 7; corresponds to the number of RTTs
the flows have been in the system. Based on (2.25) and (2.26), we can analyze the

convergence of a system.

2.2.3 Stability of FAST in homogeneous network

We prove that the congestion window of each source exponentially converges to the
equilibrium regardless of capacity, delay and number of flows. In the proof, we only
consider the situation when the link is fully utilized. If the link is not fully utilized,
queueing delay equals zero. FAST algorithm will always increase the congestion
window until the link is fully utilized. Let ¢ (¢) denote the queueing delay at the
bottleneck router. We can prove that 37" > 0,¢(T) > 0=Vt > T : q(t) > 0, if the

network configuration does not change.

By (2.24), the window update function is
i (t—1
w; (t) =~ <qw(—)d+ai) (1= wit—1) (2.27)

Since the bottleneck is fully utilized, by (2.25), we have >,

qléi)(i)d = c. Hence,

2wt (2.28)

q(t)= .

Define W (t) to be the sum of windows over all the sources:

W (t) = Z w; (t) (2.29)
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2.2.3.1 Convergence of the sum of windows

Theorem 2.2.3.1:

By (2.27), (2.28) and (2.29), if v € (0,1), W (¢) is globally stable, and the equilibrium
is o + ed.

Proofs for all the theorems can be found in Appendix Section of Wei|37].
Theorem 2.2.3.1 shows that W (¢) converges to > . ; + cd exponentially.

2.2.3.2 Convergence of individual flows

Theorem 2.2.3.2:

Vn > 0, 31y Vt > T,
Theorem 2.2.3.2 shows that the window size of each individual FAST flow con-

w; (1) — % (a+cd)| < 7.

verges to the equilibrium % (o 4+ cd).
Hence, FAST is globally stable in the case with a single bottleneck link and ho-

mogeneous sources.
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Chapter 3

Microscopic Effects on Loss-based
Congestion Control Algorithms

Both micro-burst and sub-RTT burstiness affect the performance of loss-based con-
gestion control algorithms. This chapter focuses on the effect of sub-RTT burstiness,

which is not well understood.

The effect of micro-burst on loss-based congestion control algorithms has been
well understood |21, 20, 18]. When the bottleneck buffer size is too small to absorb
all the packets in a micro-burst, the bottleneck has to drop some of the packets, even
when the average input rate is lower than its capacity. This situation happens in
slow-start phase of a loss-based congestion control algorithm. During slow-start, the
TCP sources generate micro-bursts of sizes up to half of the maximum window size. If
the bottleneck buffer size is not large enough to hold these packets, the TCP sources
exit slow start prematurely and take a long time to reach equilibrium. As explained in
Section 1.1.1, micro-burst effect is transient and can be eliminated by large buffers.
For network with small bottleneck buffers, several algorithms have been proposed
to eliminate the micro-bursts. Some examples are TCP Pacing |20, 21|, burstiness

reduction [18], and burstiness control [22].

The effect of sub-RTT burstiness, however, is less clear. This chapter focuses on
the effect of sub-RTT burstiness on loss-based congestion control algorithms. Our
study finds that the sub-RTT burstiness has direct impact on loss synchronization

rate, an important parameter that affects the fairness convergence, friendliness and
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link utilization of the loss-based congestion control algorithms. As explained in Sec-
tion 1.1.2, the effect of sub-RTT burstiness is persistent and cannot be eliminated by
large buffers.

We proposed a model to understand the relation of sub-RTT level burstiness and
loss synchronization rate. The model takes a signal sampling perspective. The key
idea is to view a loss-based congestion control’s congestion detection as a sampling
process: a TCP flow detects a congestion signal through the loss of its own data
packets. Hence, the bursty pattern in the TCP data process directly affects the
probability that a TCP flow detects a packet loss in a congestion event. With sub-
RTT level burstiness, it is very likely that some of the TCP flows do not observe any
packet loss in a congestion event. These flows will be more aggressive than those
flows that detect the packet loss.

This understanding explains several interesting problems, such as the convergence
of loss-based MIMD algorithms, friendliness between bursty TCP and paced TCP, etc.
It has also inspired the design of a new link algorithm which significantly increases

the loss synchronization rate.

3.1 A model for loss synchronization rate

Most modern loss-based TCP algorithms react to [oss events, instead of individual
packet losses.! A loss event observed by a TCP flow is defined as a round trip time
in which at least one packet loss is detected by the TCP source. The TCP source
reduces its congestion window only once for each observed loss event, even if there
are multiple packet losses in this round trip time. With this process, it is the loss
event rate observed by a TCP flow, instead of per-packet loss rate, that affects the
performance of a loss-based TCP. Loss synchronization rate is introduced to capture
the probability that a TCP flow observes a loss event when congestion happens in

the router.

!These modern TCPs include TCP NewReno [6], FACK TCP |7]|, HighSpeed TCP [8], Scalable
TCP [33], BIC TCP [38], H-TCP [11], CUBIC [10]and etc. The only known TCPs that react to
individual packet losses are TCP-Tahoe [4] and TCP-Reno [5].
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We focus our study in scenarios with homogeneous flows sharing the same path
with a common RTT. In this context, we can define a loss synchronization rate.

We define loss synchronization rate as the probability that a flow detects at least
one loss signal in a loss event. A loss event is defined as an RTT in which at least
one packet is dropped by the bottleneck router due to congestion (buffer overflow).
Different flows may have different loss synchronization rates (\;). We use A = % PPY
to denote the average loss synchronization rate among N flows.

The concept of loss synchronization rate was first introduced to model the aggre-
gate throughput and instantaneous fairness (variance of instantaneous rate) in [39].
Many TCP performance analysis have been based on the concept of loss synchroniza-
tion rate. For example, Bacelli and Hong point out that the short term fairness of
TCP flows highly depends on the loss synchronization rate among all TCP flows |39].
Leith and Shorten experimentally demonstrate that loss-based high speed TCPs have
very different fairness properties with different synchronization rates [40].

However, there is no clear understanding on the loss synchronization rate itself.
Previous studies use different assumptions to model A. For example, A is an outside
input to the model in [40]. On the other hand, ); is modeled as a function of window
size w; in [39] with the assumption that all the packets have the same per-packet loss
probability. This assumption is equivalent to the fluid assumption. It is important
to have a clear understand on the loss synchronization rate, given the many results
based on this concept.

We model the loss synchronization rate with the consideration of sub-RTT bursti-

ness. Our model has two major assumptions:

1. The data packet arrival process (z; (t)) of each TCP flow ¢ is bursty in sub-RTT

timescale and z; (f) can be modeled by an on-off process in each RTT.

2. The packet loss process (I (t)) is bursty in sub-RTT timescale and [ (¢) can be

modeled by another on-off process in each RTT.

Sub-RTT burstiness in TCP packet arrival processes is well documented. One exam-

ple of these observations is presented by Jiang and Dovrolis |23].
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General burstiness in the packet loss processes is also well-documented [31, 41, 42].
However, in our assumption, we further claim that the loss process is bursty in sub-
RTT timescale. We support this assumption with evidence from our measurements
in NS-2 simulation, Dummynet emulation, and PlanetLab.

Based on these two assumptions, we model the loss synchronization rate as the
detection probability using one on-off process (TCP data packets) to sample another
on-off process (packet loss process).

Our model predicts that the combination of bursty TCP flows and a drop-tail
router (bursty loss process) yields very low and uniform synchronization rates among
TCP flows with different congestion window sizes and leads to poor fairness conver-
gence. Our model also suggests that the use of pacing at the TCP sources and/or
the use of random dropping algorithms in the link (e.g. RED [31]) can increase

synchronization rate.

3.1.1 Burstiness in the packet loss process

We studied sub-RTT level burstiness in the packet loss processes in three different
environments: a simulation network (via NS-2 [43]), an emulation network (via Dum-
mynet [44]), and the Internet (via PlanetLab [45]).

From all these three measurement sources, we found significant burstiness in sub-

RTT time scales.

3.1.1.1 Measurement

We measured the timing of each packet loss in three different environments: simula-
tion network (NS-2), emulation network (Dummynet), and the Internet (PlanetLab).
The NS-2 simulation simulates a single ideal bottleneck shared by heterogeneous
sources. The Dummynet system emulates a single bottleneck link shared by hetero-
geneous sources.” The PlanetLab experiments measure the realistic situations in the

Internet. For each loss trace, we calculated the time interval between two consecutive

2The bottleneck link emulated by Dummynet processes packets in burst of 1ms.
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lost packets, called the loss interval, and analyzed the loss processes by plotting the
cumulative distribution function (CDF) and the probability density function (PDF)
of the loss intervals. We compared the PDF of the packet loss processes to the corre-
sponding Poisson processes with the same average event arrival rates. We observed
that the packet loss processes are much burstier than the Poisson processes.
The measurements from NS-2, Dummynet, and the Internet all suggest that the

sub-RTT packet loss process is very bursty.

Results in NS-2 Simulation Figure 3.1 shows the CDF of the loss interval in
NS-2 simulations. The RTTs of the flows in simulation are random between 2ms to
200ms. From the figure, we observed that 80% of the packet losses cluster within
short time periods smaller than 1% of the RTT.

We also plotted the PDF of the loss interval and compared it with the PDF of a
Poisson process with the same arrival rate, as shown in Figure 3.1 (B) .

Figure 3.1 (C) zooms in to a small time scale of 0 to 2 RTT and uses log-scale
in the Y-axle so that the Poisson process has a straight line in its PDF. Compared
to the Poisson process, the loss process is much burstier more than 10 times the

packet losses occurred in the very small time interval.

Results in Emulation Network Figure 3.2 is the CDF of the loss interval in
Dummynet emulations. The RTTs of the flows are fixed to 4 classes: 2ms, 10ms,
50ms, and 200ms. The loss interval CDF shows a similar pattern to the NS-2 results,
except that the CDF starts from 0.1% of RTT due to the limited time resolution of
our measurements in the Dummynet router.

Figure 3.2 (B) and (C) show the PDF of the loss interval. Again, the loss process

is much burstier than the corresponding Poisson process.

Results in the Internet Figure 3.3 is the CDF with the Internet measurement.
The Internet measurement shows less burstiness in loss processes than we observed

in simulation and emulation. This is due to the heterogeneity of the Internet, in terms
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Note that all the CDF figures in this chapter have X-axles in log-scale, and all the
PDF figures in this thesis have Y-axles in log-scale.
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of application types, traffic patterns, and queuing delay. In such an extremely hetero-
geneous environment, we observed that 60% of the packet losses cluster within short
time periods of 1 RTT, and 40% of the packet losses cluster within time periods of 1%
of RTT. This evidence is still very strong for sub-RTT burstiness in loss processes.

We plotted the PDF in Figure 3.3 (B)(C) and compared the Internet loss process
against a Poisson process with the same arrival rate. We observed similar burstiness
as in NS-2 and Dummynet. In the smallest interval region (left side), the measured

loss process is far burstier than the Poisson process.

3.1.1.2 Possible Sources of sub-RTT Burstiness

As shown by the results of the NS-2 simulations, Dummynet emulations and the
Internet measurements, packet loss is highly bursty in sub-RTT timescale. There are
several possible sources that lead to such burstiness.

DropTail routers are considered the major source of packet loss burstiness [31]. A
DropTail router serves as a FIFO queue, accepting incoming packets until the buffer
is full. Working with DropTail routers, loss-based congestion control algorithms keep
increasing the data rate when the router’s buffer is not full. When the router’s buffer
is full and packets are dropped, the aggregate data rate is higher than the router’s
capacity and packet loss persists until the loss-based congestion control algorithms
detect the loss of packets and reduce the data rate, usually one half of an RTT
later. In between the first packet loss and the reduction of data rate, there is a
peak of packet losses in the DropTail router. Some researchers propose introducing
randomness in the router. For example, Floyd and Jacobson proposed to randomly
drop the packets earlier before the buffer is overflowed [31]. However, these proposals
suffer from difficult parameter settings problems.

Slow start of TCP flows is another source of packet loss burstiness. A TCP flow
starts with a very small rate in burst (sending two packets back-to-back every round
trip), and doubles its data rate if no loss is observed. This process can quickly
increase the queue size in the bottleneck buffer in just a few round trips and produce

a large number of continuous packet losses in the router. Some new congestion control
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to sample the loss process. The loss synchronization rate is the probability that one
of the w; packets from flow ¢ (distributed over K packets) happens to be one of the L
dropped packets (distributed over M packets).

algorithms, such as QuickStart [46] and RCP [47] have been proposed to avoid such
aggressive detection. These algorithms require changes in data packet formats, which
are expensive for the existing infrastructure.

Hence, the sources of sub-RTT burstiness in packet loss processes will exist in the

foreseeable future.

3.1.2 Modeling loss synchronization rate

Assuming that the loss process [ (t) only depends on the aggregation of transmission
rates from all flows and is independent of the packet transmission process from an
individual flow 7 in sub-RTT time scales, the signal sampling perspective leads to a
simple model for sub-RTT time scale behavior, as shown in Figure 3.4.

The figure illustrates all packets going through the bottleneck router in the RTT
of a congestion event. S is the number of these packets. These packets include packets
that are accepted by the bottleneck and packets that are dropped by the bottleneck.

All the packets from an individual flow (flow i) are distributed in flow i’s burst
period, which spans over K incoming packets. Each of these K packets has a proba-
bility of % to be from flow i and the total number of packets from flow ¢ in this RTT

is w; on average.® Since i can be any of the N flows, we assume that the position of

3For both packet transmission process and loss process, we use Poisson arrival assumption to
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the burst period of flow ¢ is randomly distributed in the RTT. That is, the starting
position of the burst period can be any of the S packets. If the burst period starts

at the end of S, wrap-around is allowed.

We model the loss signal process as another on-off process, with the burst period
spanning over M incoming packets, dropping L packets on average, with a dropping
probability of ﬁ If at least one of the w; packets from flow ¢ happens to be one
of these L dropped packets, flow ¢ detects the loss event and back off its congestion
window. Otherwise, flow ¢ is not aware of the loss event and continues to grow its

congestion window.

From this perspective, the synchronization rate of flow i (\;) is the probability
that one of the w; packets happens to be one of the L dropped packets, as the position
of flow ¢’s burst period is randomly distributed in the RTT; that is \; = P(hit;) where

hit; is the event that flow ¢ detects the loss signal.

Let the loss signal burst (M packets) and packet transmission process burst (K
packets) intersect over k incoming packets (max {0, M + K — S} < k < min{M, K}).
Conditioning on k, we have the probability of a packet from flow ¢ getting dropped,

given k packets are in the intersection:

P (hit;|k) =1 — (1 . £ﬁ)k (3.1)

and since the position of packet transmission process burst (K) is randomly dis-

simplify the descriptions. With Poisson arrival, the number of data packets is not always w;. A
more complicated computational model can be obtained with the assumption that the w; and L
packets are uniformly distributed over K and M incoming packet slots. We use Poisson model in
our computations due to its simplicity and reasonable accuracy. However, we note that the model
is not accurate if w; or L is very small.
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tributed in the RTT with modulo S, we have

p

0 ifk>kork<k
2 itk <k<k
P (k) = %K}_EH if k=kand k <k (3.2)
] mIRER2hlf | — s and k < k
\ 1 ifk=k==k

where k = max {0, M + K — S} is the lower-bound of k and k = min {M, K} is the
upper-bound of k.
Hence,

Ai = P (hit;) = > P (hit;|k) P (k) (3.3)

k=k
There is no simple close form for the above formula. However, the formula reveal a
good property of the loss synchronization rate: the dependency of loss synchronization
rate on M and K are symmetric. Hence, changing the M and K have similar effects
on loss synchronization rate.

We used MatLab to compute the values of A based on (3.1), (3.2) and (3.3). Since
the packet loss is due to congestion, the DropTail router’s buffer must have been full.
Hence, the number of packets going through the router in this RTT is approximately
S = cd + B + L (packets in flight in the path + packets in the buffer + packets
that are dropped by the bottleneck). With N Reno flows in congestion avoidance
state, at most N additional packets are transmitted in this RT'T in comparison to the
last RTT, in which no loss happens. Hence, at most N packets are dropped by the
DropTail router. Thatis 1 < L < N.4

Figure 3.5 shows the computational results of the model, with parameters L =
N =32, ecd+ B+ L = 2000 and w; = %. This is roughly equivalent to the scenario
of 32 Reno flows sharing a path of 200ms delay and a bottleneck with a capacity of
100Mbps and a buffer size of 400 packets.

4If the flows are not controlled by Reno, the number of loss packets may be larger. A general
AIMD algorithm with additive parameter of « [48] will have 1 < L < aN.
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In Figure 3.5, the synchronization rate hits its lowest point (A) when M and K
are small, corresponding to the case in which both loss signal and data process are
bursty in sub-RTT level. This is the current situation: we have TCP senders and

DropTail routers, which send and drop packets in bursty patterns.

3.1.3 TCP Pacing and RED

As K increases in Figure 3.5, the loss synchronization rate increases. Its value hits a
high point (B) when K = c¢d + B + L (upper-left point in Figure 3.5), corresponding
to the case in which the data packets of each flow spread out over the whole RTT.
This is the situations with improvements in TCP sender, such as pacing |20, 21, 49].

Figures 3.6 and 3.7 intuitively illustrate the change in synchronization rates from
point A to point B in the loss sampling perspective.

Figure 3.8 presents details of the loss signal process and the data packet processes
in a simulation, with TCP and with a pacing improvement. In the simulation, we
used a randomized version of pacing algorithm to reduce phase effects. The detailed
algorithm can be found in Appendix 6.2.

A green dot (t,7),i = 1---16 in the figure represents a packet from flow i going
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through the bottleneck at time ¢; a black star (¢,7),7 = 1---16 represents a packet
of flow i dropped at time ¢; a blue cross (¢,0) at the bottom of the figures represents
a packet (of any flow) dropped by the bottleneck. We collected 30 RTTs of the data
after the flows ran for more than 1000 RTTs, so the flows were in congestion avoidance
phase for a long time. In both cases, the bottleneck link was fully utilized and the
aggregate throughputs in both cases were similar. Hence, when we compare these
results, we see that the effect of sub-RTT level burstiness is still very significant.

In Figure 3.8(a), the packets are sent by TCP. The transmission processes of most
flows clearly show a bursty on-off pattern. When some packets are lost in a burst,
only a few flows (30% in this case), whose burst periods happen to cover the loss
burst, detect the congestion signal.

In Figure 3.8(b), the packets are paced out equally so that they are evenly dis-
tributed throughout the whole RTT. When some packets are lost in a burst, most of
the flows (70% in this case) experience the loss and thus detect the congestion signal.”

Symmetrically, as M increases, the loss synchronization rate increases, too. Its
value hits a high point (C) when M = c¢d + B + L, corresponding to the case in
which packet losses are spread out over the whole RTT. This is the situation with
link algorithm improvements such as Random Early Detection (RED) [31]. Our
simulation and trace analysis confirm that RED increases the loss synchronization

rate among Reno flows to 0.5 to 0.6.

3.1.4 Validation

We measure the synchronization rate from our simulations and compare the results
to the computation results based on equation (3.1), (3.2) and (3.3). The simulations
have a setup with a bottleneck of 100Mbps and a round trip propagation delay of
200ms. The bottleneck buffer size is 1680 packets. Hence, cd+ B+ L ~ 3340. We vary

the number of flows N from 2 to 32. In the computation, we assume w; = W’L%

®Consequently, the length of loss-epochs is shorter in Figure 3.8(a) since less flows reduce their
congestion windows in a loss event. This is consistent to the analysis in studies by Baccelli, et al
[39].
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and L = N. In the measurement, we take the first packet loss that is not part of
any previous loss events as the beginning of a new loss event and consider all the
subsequent packet losses within one round-trip time as in the same loss event. We
average the loss synchronization rates of all flows and present the average values.
Figure 3.9 compares the computational results and the measurement from NS-2
simulations. Figure 3.9 (A)7(C) correspond to the three points in Figure 3.5.° This

shows that our model can qualitatively estimate the loss synchronization rates.

3.1.5 Asymptotic results

Although the general formula (3.1), (3.2) and (3.3) are complicated, simple and in-

teresting asymptotic results can be obtained for two special cases (point A and point

B in Figure 3.5) with the additional assumption that the number of flows is large.
If TCP packet process is bursty and N is large, 7= is very small and L >> w;

since L ~ N. (3.1) and (3.2) can be simplified into:

4 3\
L—w;+1 : _
cd—l—B——i-i_L it k= w;
L+w;—1 : .
L 1_cd—:-B+L ifk=0
and
ANi = ————(w;—1 —
iy oy A ULy o sy - oy
L—1
e — 3.4
cd+ B+ L (3:4)

In this case, flows with different congestion windows see similar synchronization
rates since \; is almost independent of w;.

When pacing is applied with DropTail routers, we have K ~ c¢d + B + L and

6In Figure 3.5(C), the theoretic loss synchronization rate with RED is almost flat. We note that
there is inaccuracy in the calculation of loss synchronization rate for the case where N=2. In this
case, L=N—=2 is very small and the Poisson assumption is inaccurate, as explained in Footnote 3.
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M =~ L. Hence,

and

A = (1 - (1 - cher;}L)j (3.5)

If N is large, will be very small and we have

w;
cd+B

PN 3.6
cd+ B+ L (3.6)

That is, the flows with larger congestion windows see higher synchronization rates.

Figure 3.10 shows the synchronization rates of two flows (among N flows) with
different congestion window sizes (w; and wsy). wy = 2% is double the fair share
window size and wy = CZLNB is half of the fair share window size. All other parameters,
except flow number and window sizes of flow 1 and flow 2, are the same as in Figure
3.5. With bursty TCPs, flow 1 and flow 2 have similar loss synchronization rates,
and hence, see similar loss event rates, as the number of flows increases. With paced
TCPs, flow 1 always sees higher loss event rates than flow 2. As we will show in

Section 3.2.2, this asymptotic result has very interesting implication on the fairness

of MIMD (Multiplicative-Increment-Multiplicative-Decrement) algorithms.
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3.2 Implications on Performance of Loss-based TCP

Our model points out three important implications for loss-based TCP flows with a

DropTail router:

1. The current implementation has a low synchronization rate due to the sub-RTT

burstiness introduced by ack-clocking:;

2. Asymptotically, the loss synchronization rates of flows with different congestion
windows tend to be the same, due to the sub-RTT burstiness introduced by

ack-clocking;

3. TCP pacing will see a higher synchronization rate since its data packet arrival

process is smooth and is able to detect loss more efficiently.

These predictions have realistic impacts in the system performance.

3.2.1 Fairness convergence

Fairness convergence is a metric that is of interest to the cluster computation industry.
In cluster computation, the data transfer time scale is usually measured in seconds.
In these scenarios, rate fluctuations in one or two RTT are acceptable, and hence,
the traditional short-term fairness definition is not suitable in this case. In this time
scale, we are more interested in how fast the TCP flows can share the bottleneck,

both efficiently and fairly, in term of average rates over the convergence period.

3.2.1.1 Definition of Fairness Convergence Time

To quantify the fairness convergence, we introduce the notion of fairness convergence
time. Fairness convergence time measures how fast the TCP flows converge to their
fair shares from start up. We give our formal definition of fairness convergence time

as the time taken by the slowest flow to reach the fairshare rate as

F = min {t ‘vr >t min {7 (1)} > 0.8:5;*} (3.7)



28

where z7 = & in our homogeneous setup is the fairshare rate for flow i and z;(7) is

the average throughput for flow ¢ during the first 7 seconds, defined as

in which 7 is the averaging interval.”

This metric measures how long a user has to participate in the data transfer until
he or she can enjoy a sense of fairness (by getting 80% of his/her fair share bandwidth).
The metric has a small value only if all flows quickly converge to, and maintain, the
desired equilibrium in which they share the bottleneck both efficiently and fairly.
The metric has a large value if the bottleneck is not efficiently used (underutilized),
or if the flows are sharing the bottleneck unfairly, or if the flows fail to maintain the
desired equilibrium in long run.

The fairness convergence time also provides an upper bound for the data transfer
latency of parallel flows in cluster applications. If each of the parallel flows needs to
transfer a data chunk of D bits, the completion time of all flows as a whole will be at
most F' + 2 since the definition guarantees that each TCP flow achieves 80% of

085"

the fair share bandwidth on average at or after time F'.

3.2.1.2 Loss Synchronization Rate and Fairness Convergence

Baccelli and Hong point out that the short term fairness highly depends on the loss
synchronization rate among all TCP flows [39]. With similar derivation, a lower

bound of fairness convergence time for TCP Reno is

log 0.2 — log (1 - ﬁ) A(cd + B)
log (1 — %) 2N

F > max ¢ 0, (3.8)

assuming that the synchronization rate is the same for all flows.

The detailed derivation of (3.8) can be found in Wei, et al [50|. The lower bound

TIf 7 is infinitely large, Z; (oc) is the asymptotic average rate, which is proved to be z} in long-term
fairness for most TCPs.
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for TCP-Reno in (3.8) can also be extended to general AIMD TCP algorithms [48],
HS-TCP 8], and S-TCP |9]. The derivation is based on the AIMD model used by
Baccelli and Hong in [39]. Similar conclusions can be reached with an extended model
proposed by Shorten, et al |51|. Note that # is a TCP flow’s average window size
upon a loss event, which depends on the network condition and user pattern which
are controlled by TCP. Loss synchronization rate A is the parameter that we can

control.

To intuitively illustrate the relation between fairness convergence time and loss
synchronization rate, Figure 3.11 shows the computational results of F' as a function

of A, according to (3.8) with “4t2 = 1000 packets.

Figure 3.11 clearly shows that the loss synchronization rate has a significant impact
on the fairness convergence. As we discussed in Section 3.1, loss synchronization rate
can be controlled by sub-RTT level TCP behavior in the source and by the packet
dropping behavior on the link. One can control and increase the loss synchronization

rate to achieve better short-term fairness.
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Reno HS-TCP S-TCP
0.2042152591 0.2496234482 0.2331014195

Table 3.1: Average loss synchronization rates of TCP with a DropTail router

3.2.1.3 Fairness convergence with bursty TCP and DropTail Routers

Using the definition of fairness convergence time, we examined the fairness conver-
gence time of TCP-Reno (Reno), HighSpeed-TCP (HS-TCP [8]) and Scalable-TCP
(S-TCP [33]).

According to the analysis in Section 3.1, bursty TCP have low loss synchronization
rates when they share a DropTail router. Hence, we expect that the fairness conver-
gence time under TCP and DropTail routers/switches is very long. Our simulation
results confirmed our expectation, as shown in Figure 3.12.

Figure 3.12 presents the fairness convergence times with parallel Reno, HS-TCP, or
S-TCP flows sharing a 200ms path with a bottleneck capacity of 100Mbps. The results
are from NS-2 simulations. All the convergence time measurements are presented
in the unit of RTTs. Figure 3.12(a) shows that Reno takes more than 1500 RTTs
to converge to its fair share. More interestingly, such slow convergence is neither
improved by increasing bottleneck buffer size, nor by increasing the number of parallel
flows.

Figures 3.12(b) and (c) further show that the fairness convergence is not improved
by the recent new loss-based TCP proposals such as HS-TCP and S-TCP.®

In the simulation, we measured the loss synchronization rate. Table 3.1 shows the
measurements with Reno, HS-TCP and S-TCP flows, averaged over all loss events
in the simulations. The measurement results confirm the correlation between long

fairness convergence time and low loss synchronization rate.

8With HS-TCP or S-TCP, the fairness convergence is actually worse, due to their congestion
control dynamics. We only use Reno, HS-TCP and S-TCP as examples throughout this paper as
their control structures are cleaner for understandings. Li, et al also show that many other high
speed TCP proposals experience long convergence time [34].

As explained in Section 4.2.5, the noise in our simulations in previous sections are heavy-tail on-off
traffic with a fixed sending rate in on period. Usually, the on period lasts for more than one RTT.
Hence, the noise serves as some paced flows that cuts the bursty Scalable-TCP into smaller burst.
This helps Scalable-TCP to converge with the cases in our previous sections.
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The average loss synchronization rates of these TCP flows are around 0.2 to 0.25.
Such low loss rates can substantially affect the short-term fairness of TCP, as depicted
in Figure 3.11. The low loss synchronization rate also shows that there are opportu-
nities to improve TCP short-term fairness. If we can move the synchronization rate
A from 0.2 closer to 1, we can significantly reduce the convergence time and improve

the TCP fairness experienced by the real applications.

3.2.2 Convergence of MIMD algorithms

Multiplicative-Increment-Multiplicative-Decrement (MIMD) algorithms are a class of
control algorithms which increase and decrease the congestion window by ratio. When
MIMD algorithm do not observe congestion, they increase the congestion window by
a small percentage. When MIMD algorithms observe congestion, they decrease the
congestion window by a large percentage.

Chiu and Jain prove, with a static model, that two MIMD flows with different
window sizes cannot converge to a fairness point [32]. This static model assumes that
all MIMD flows observe the same congestion event. This assumption is equivalent to
A; = A in which A is a constant independent of window size w; of the flow.

However, Kelly proves with the fluid model that Scalable-TCP, an MIMD algo-
rithm, can converge to fairness [33] . The assumption is equivalent to A; o< w;.

Our asymptotic results in Section 3.1.5 explain the different conclusions from
[32, 9]. As shown in equation (3.4) and illustrated in Figure 3.10, with bursty TCP,
A; is proportional to window size w; only when the number of flows N are very small.
As N increases, \; among flows with different window sizes quickly converges to a
very similar value. Hence, the fluid model prediction by Kelly [33| is more accurate
when N is very small, and the static model in [32] is more accurate when N is large.

This result has an interesting implication in the fairness convergence of Scalable
TCP [9], an MIMD algorithm. Two flows usually cannot converge to fairness with
bursty TCP, as pointed out by Leith and Shorten [40]. This effect is particularly

significant when there is no cross traffic to pace out the TCP bursts.
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Figure 3.13: Convergence of S-TCP: congestion window trajectories of the fastest
flow and the slowest flow

On the other hand, the asymptotic result in equation (3.6) suggests that the
synchronization rate is always proportional to the window size if pacing is deployed.

In this case, Scalable-TCP can converge.

Figure 3.13 shows the congestion window trajectories of the fastest and slowest
flows in a case study. In this case, 8 Scalable-TCP flows share a 100Mbps bottleneck
link, without noise traffic. Each point of the congestion window size is an average
value over 10 seconds. Clearly, Scalable-TCP does not converge in Figure 3.13(a),
as reported by several literatures |52, 53|. With pacing, Scalable-TCP converges.

Scenarios with different number of flows show similar effects.

Figure 3.14 is a summary of Scalable TCP fairness with different number of flows.
We run N Scalable-TCP flows for 600 seconds and calculate, in each case, the ratio
between the throughput of the smallest flow and the fair share throughput . The
larger the ratio, the better fairness among the flows. As predicted by the model,
bursty Scalable TCP flows are fair only when the number of flows is small. As N
increases, the fairness quickly degrades. With pacing, Scalable TCP’s fairness is much

improved.
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3.2.3 Performance of TCP Pacing

The performance of TCP pacing has been a controversial topic since the introduction
of TCP pacing in late 1990s. On one hand, simulation results presented by Kulik, et
al show that TCP pacing can significantly improve the throughput of TCP flows in
networks with large capacity, long delay and small buffer |20|. Simulations by Hong
show that TCP pacing does improve TCP performance in both efficiency and fairness
[21]. On the other hand, Aggarwal, et al show that TCP pacing might actually have

lower average throughput in many cases [35].

Our model shows that TCP pacing eliminate the sub-RTT burstiness and increases
the loss synchronization rate. As shown in [39], this increment in the loss synchro-
nization rate has two-sided effects on TCP performance. On one hand, the increased
loss synchronization rate improves fairness; on the other hand, the increased loss syn-
chronization rate decreases the aggregate throughput of TCP Reno. These two-sided

effects explain the different conclusions in the past discussions.
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3.2.3.1 Aggregate Throughput

A very important observation presented in other literature is that the aggregate
throughput of paced TCP may be lower than the bursty TCP even in isolated sce-
narios, due to synchronization effects|35]. This is especially true with large numbers
of Reno flows when working with small buffers.

Baccelli and Hong give an explanation with synchronization rate [39]. A direct
application of equation (7) in [39] shows that Reno’s throughput in the worst case
(fully synchronized flows sharing a bottleneck with an infinitely small buffer) is 75%
of the capacity.” Hence, the throughput loss due to synchronization can be up to
25%.

However, such throughput degradation is largely alleviated by the new congestion
control algorithms. We can calculate an upper bound of throughput loss due to
synchronization with different loss-based congestion control algorithms similar to the
work by Baccelli, et al [39].

Assume that buffer size B is infinitely small and all N flows are fully synchronized.
In this worst case, each flow’s behavior is exactly the same, equivalent to a single TCP
flow using a bottleneck with a capacity of £ and a buffer size of %. Hence, we can
estimate the aggregate throughput of N synchronized flows by the throughput of a
single TCP flow. Also, since TCP oscillates in every loss epoch with the same pattern,
we only need to calculate the aggregate throughput loss in one loss epoch.

HS-TCP can be approximated by a general AIMD around the equilibrium. The

cd+B

~— for the single flow. The

congestion window at the end of a loss epoch is w =
cd+B)} cd+B
N N

cd+B
N -

congestion window in the beginning of the loss epoch is w = [1 — ﬁ(

where (3 (#) is the multiplicative decrement parameter for a window size of

Assuming the additive parameter « is a constant in the loss epoch, the average rate

: : : 7 2-p(“LE B :
in the loss epoch is approximately w;;lw = ( ﬁ(2N ) CJ]rvd. Assuming B — 0, the
. . 2Bt . e
average rate in the loss epoch is M% Comparing to the full utilization of £,
2 B(Cd;\l;B)

the loss of aggregate throughput is —

9Let p = 1 in (7) of [39], we have E (X(i)) = % This is the throughput after rate halving.
EXY)+F _sc
5 =

Hence, the average throughput over the whole congestion epoch is IN-
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S-TCP is an MIMD algorithm. Similar to HS-TCP, the congestion window at the

end of a loss epoch is w = # and the congestion window at the beginning of the loss

epoch is w = (1 — () Cd%B where (Gg = % is the multiplicative decrement parameter

in S-TCP. S-TCP multiplies its congestion window by (14 ag) every RTT where

log(1-fs)

ags = 0.01. Hence, the number of RTTs in the congestion epoch is Ty = ~Toa(iTas)

The average throughput in one loss epoch is

Siyw(l+as)  (1-0s)c

T.d ~ T.N

(1+a)™ =1
A

and the loss of aggregate throughput due to synchronization is a constant which

(1-B3)[(14as)" —1]
agTs

equals 1 —

Figure 3.15 is the calculation results for these congestion control algorithms, with
different buffer sizes, under a 1Gbps link with 120ms round trip propagation delay
and the standard packet size (MTU-—1500). We can see that all the new congestion
control algorithms have much smaller throughput loss when the loss signals are syn-
chronized. Our simulation results confirmed the expectation. Figure 3.16 present the
statistic results of aggregate throughputs for paced TCP and bursty TCP. In the fig-

ure, we present the Normalized Throughput Gain for each experiment to illustrate the
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difference between achieved throughput and fairshare throughput. The Normalized
Throughput Gain is defined as the difference between the achieved throughput and

the fairshare throughput, normalized by the fairshare throughput:

Achieved Throughput — Fairshare Throughput

Normalized Throughput Gain = Fairshare Throughput
The achieved throughput is the measured throughput averaged over all the partic-
ipant flows. The fairshare throughput is the theoretic throughput that a flow should
be able to receive if all flows share the bottleneck capacity equally. If the achieved
throughput is the same as the fairshare, the Normalized Throughput Gain will be zero.
If the achieved throughput is lower than the fairshare, the Normalized Throughput
Gain will be a negative number. From Figure 3.16 (a)-(c), we observe that there is
loss of throughput for Paced TCP Reno, due to the synchronization. However, the
loss of throughput is significantly reduced with HS-TCP and becomes unnoticeable
with S-TCP, as we predicted. '°

3.2.3.2 Fairness convergence

As TCP pacing increases loss synchronization rate, according to equation (3.8) and

Figure 3.11, it improves the fairness convergence.

We repeat the same simulations in Figure 3.12 with a pacing extension (the de-
tailed pacing algorithm can be found in Appendix 6.2) and present the results in

Figure 3.17.

Comparing Figure 3.12 and Figure 3.17, the paced TCP flows have much faster

convergence to fairness.

We summarize the fairness convergence time over all NS-2 simulations in Figure

3.18 . Overall, pacing reduce the fairness convergence time by 2.4 times.

10Tn Figure 3.16 (c), a few cases with bursty Scalable TCP have average throughputs much smaller
than fair share. This can be explained because they do not converge to fairness at all.
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3.2.4 Competition between paced TCP and bursty TCP

Aggarwal, et al also report that paced TCP tends to lose to bursty TCP in terms of
average throughput, in co-existing cases [35].

The behavior of co-existing paced TCPs and bursty TCPs is very complicated
since the bursty TCPs’ data processes are cut into smaller bursts by the paced TCPs’
data processes, and the paced TCPs’ data processes are “squeezed” into small bursts
by the bursty TCPs’ data processes.

Qualitatively, we can expect that the loss synchronization rates of the bursty
TCP will be increased and the loss synchronization rates of the paced TCP will be
decreased, though in terms of absolute values, paced TCP flows still see higher loss

synchronization rates than bursty TCP flows. This leads to the two effects:

1. The aggregate throughput achieved by the paced TCP flows will be smaller than
the bursty TCP flows, due to the fact that paced TCPs have higher probability

to detect a packet loss event and reduce their congestion windows.

2. The fairness convergence of the bursty TCP will be improved and the conver-

gence of the paced TCP will be degraded, compared to isolated cases.

3.2.4.1 Aggregate Throughput

A paced TCP evenly distributes its data packets in one RTT and is more likely to
detect a packet loss in a congestion event than the bursty TCP, which clusters its
data packets within a short period. This makes the paced TCP flows lose to bursty
TCP flows in co-existing scenarios. Fundamentally, this is caused by the burstiness
of loss signal process, and cannot be corrected unless there are additional link-level
mechanisms.

In general, if two classes of flows with different synchronization rates co-exist, the
class with the higher synchronization rate will have smaller aggregate throughput.
However, also from the model, we can see that paced TCP loses to bursty TCP only

when the loss signal is bursty in sub-RTT level. In the next section, we propose a
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link algorithm, persistent ECN, which can ensure that both paced TCP and bursty
TCP will detect the same loss signal and get similar throughput.

Figure 3.19 presents the statistic results of aggregate throughputs, with the same
network scenarios as in Figure 3.16. Instead of running the simulations with isolated
paced flows or isolated bursty flows , we mixed them in one simulation, with half
of the flows paced and the other half bursty. In such co-existing cases, most of the
bursty TCP Reno flows get more than their fairshare bandwidth (with a positive
Normalized Throughput Gain) and most of the paced TCP Reno flows get less than
their fairshare bandwidth.

3.2.4.2 Fairness Convergence

We repeated the same simulations in Figure 3.18, but with half of the flows using
paced TCP and the other half using bursty TCP in each scenario. The results are
presented in Figure 3.20 . The results are consistent with our expectations on fairness
convergence time. Paced TCP in mixed environments has a larger convergence time
than in isolated environments; bursty TCP in mixed environments has a smaller

convergence time than in the isolated environments.

3.3 Algorithms

Our model shows that we can control the loss synchronization rate by controlling the
pattern of data process and the pattern of loss process. This understand suggests
that the use of TCP pacing or RED can increase the loss synchronization rates and
improve the fairness of loss-based congestion control algorithms.

However, both pacing and RED have drawbacks. For TCP pacing, as we discussed
in Section 3.2.4, flows with TCP pacing loses to flows without TCP pacing when they
compete for bottleneck bandwidth. For RED, it is difficult to tune the parameters to
achieve both stability and efficiency.

Figure 3.5 also shows that the highest achievable synchronization rate is still far

less than 1 (0.65 in this particular case) with TCP pacing or RED. This is because
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the number of congestion signals (a.k.a. number of lost packets) in each loss event
is too small to let each flow observe at least one signal. To further increase the loss
synchronization rate, we need to maintain the congestion signal persistently for a

whole RTT so that every flow is able to detect the congestion signal.

3.3.1 Persistent ECN algorithm

The above observations lead to a new algorithm: Persistent ECN. The goal of this
algorithm is to provide a persistent congestion signal to the sources in each congestion
event and achieve a very high loss synchronization rate (close to 1). There are two
challenges to achieve this goal.

The first challenge is how to provide persistent congestion signal. Dropping pack-
ets persistently for the whole RTT of loss event can achieve such a goal. However,
if packets in one RTT are all dropped, TCP senders will be forced to timeout and
the link utilization will be significantly low. We used ECN to provide a persistent
congestion signal. As TCP senders treat all ECN signals received in one RTT as the
same congestion signal, the senders only reduce their congestion windows once for
each loss event.

The second challenge is how to detect the end of a congestion event. We used the
reduction of queue length in the router as an indication of the end of a congestion
event. If the queue length is reduced significantly, we assume that the TCP senders
have responded to the congestion event and the congestion event ends.

The detailed algorithm is described in Algorithm 3. The algorithm keeps two
thresholds for the queue length, upper-watermark and lower-watermark. Lower-
watermark is half of the value of upper-watermark. The algorithm monitors the
queue length and enters marking state when the queue length is above the upper-
watermark. In marking state, the algorithm marks the congestion bit in every packet.
The algorithm exits marking state when the queue length decreases below the lower-
watermark. Since the lower-watermark is half of the upper-watermark, the algorithm

exits marking state only when the queue length has been decreased, as a result of the
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Algorithm 3 Persistent ECN

A link (router) keeps two state variables:

Marking switch: o € {0,1}, where o = 0 (initially) means the link is not congested
and o = 1 means a congestion event has happened recently;

Queue length: ¢ (1).

The link also has two constant parameters: upper water mark @ and lower water
mark Q. By default, @ = %Q and Q = B, where B is the buffer size.

For each packet p that arrives at the link:

1ifqg(t) >Q: 01
2. if o = 1: mark the packet with congestion signal

For each packet p that leaves the link:

1ifg(t) <Q: 00

senders’ response to the congestion signal. This algorithm can be viewed as an exten-
sion to the DropTail algorithm, as DropTail is a special case with upper-watermark
and lower-watermark both equal to the buffer size. We implement this algorithm in
NS-2 by modifying the DropTail queue. In the implementation, the upper-watermark
is equal to the full buffer size. As this algorithm introduces a more deterministic
behavior into the network, we use it with randomized pacing algorithm to eliminate

phase effects.

3.3.2 Loss synchronization rate with different algorithms

We ran simulations with the same scenarios in Table 3.1 under a randomized pacing
algorithm, the adaptive RED algorithm, and Persistent ECN algorithm. Table 3.2
shows the measured loss synchronization rates with these improvements in simula-
tions. For readers’ convenience, we also present the same results from Table 3.1 (with-
out improvement) for comparison. With pacing and RED, TCP-Reno can achieve a
loss synchronization rate of 0.5 to 0.6, more than two times the loss synchronization
rate without these improvements. Pacing also helps HS-TCP and S-TCP to achieve

a loss synchronization rate of 0.5. The loss synchronization rates of S-TCP and HS-
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Reno

HS-TCP

S-TCP

No improvement

0.2042152591

0.2496234482

0.2331014195

Pacing

0.5011622009

0.5011320266

0.5665284797

RED

0.6022723651

0.3971728460

0.3032633715

Persistent ECN

0.9663141265

0.8071350395

0.8064983921

Table 3.2: Average loss synchronization rates with different improvements

TCP with RED are also increased, but by a smaller margin. The detailed reasons
for this difference are under investigation. Currently, we suspect this is due to the
different dynamics when S-TCP and HS-TCP interact with RED. With Persistent
ECN, the loss synchronization rate is as high as 0.8 to 0.9. As predicted in Section

3.2.1.2, such high synchronization rates can lead to a very fast fairness convergence.

3.4 Performance in Simulation

Since Section 3.2.1.2 predicts that a high loss synchronization rate can improve TCP
fairness convergence, and Section 3.1 shows that loss synchronization rates can be
increased by pacing, RED and Persistent ECN algorithms, we now apply these algo-
rithms to parallel flow applications and evaluate fairness convergence time with these

improvement solutions.

3.4.1 Fairness convergence and finishing time of parallel flows

A total of 350 simulation scenarios were run. Each scenario ran for at least 100 loss
epochs and was repeated for at least 10 times with different random seeds. In the
individual case analysis, we presented both average values and standard deviations.

In the general evaluations of all scenarios, we presented CDF as summaries.

3.4.1.1 Case studies on short-term fairness

We repeated the same simulations in Figure 3.12 (bursty TCP) and Figure 3.17
(paced TCP) with RED and Persistent ECN. The results are shown in Figure 3.21

and Figure 3.22, respectively. Comparing Figure 3.12 to Figure 3.17, 3.21 and
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3.22, one can see that both pacing and RED improve the TCP fairness convergence.
Additionally, pacing has better convergence with HS-TCP and S-TCP, while RED
has lower synchronization rates with these two TCP algorithms. With Persistent
ECN, the convergence time is further significantly reduced. These results agree with
the observations of loss synchronization rates in Table 3.2. With the same TCP

algorithm, the higher the loss synchronization rate, the faster the convergence.

3.4.1.2 Summaries of short-term fairness

To have a global image of the parallel flow performance with different improvement
algorithms, we summarized all the 350 scenarios with different improvements into
CDF graphs. Figure 3.23 presents the CDF summary of the convergence time of the
original TCP performances and three improvements. Note that the X-axle is in log
scale. A constant gap represents a constant ratio of difference.

On average, pacing reduces the Reno convergence time by 2.4 times, RED re-
duces the Reno convergence time by 1.25 times and Persistent ECN reduces the Reno
convergence time by 30 times. It is interesting to note that about 40% of the RED
scenarios cannot converge in 1000 RTTs. In most of these cases, we found that RED
could not fully utilize the bottleneck capacity. We suspect that the under-utilization
is due to window oscillations with RED. We still need to investigate the details in
these cases.

Similar observations can be found in (b) and (¢) with HS-TCP and S-TCP.

3.4.1.3 Results on data transfer latency

We ran simulations with parallel FTP flows that transferred a fixed amount of data.
The scenario is very similar to the applications of Grid-FTP[54|, GFS|[55] and etc.
The simulated application sends a total of 64MB of data in the same topology shown
in Figure 4.13, with a different numbers of flows, different RTTs and different buffer
sizes. We measured the completion time of the whole data transfer. In the 100Mbps
network, the theoretic lower-bound of completion time of a 64MB transfer is 5.39

seconds. The bound is tight if the network is fully utilized in all time. We compared
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tions
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Note that the error bar with 4 flows in (a) is too large and cannot be displayed in the
figure

the completion time of TCP and the completion time of Persistent ECN, as in Figure
3.24. Due to space limit, only results on Reno TCP are presented. The results are

normalized by theoretic lower-bound.

In the region of small latencies (2ms and 10ms), even though TCP’s fairness
convergence is long in the unit of RTT, the real time spent in the convergence is not
long since the RTT is small. So, TCP still works well. When the latency is large,
TCP’s performance becomes unpredictable. With 200ms, TCP spend up to 10 times

of the theoretic completion time.

On the other hand, Persistent ECN scales well with latency. The worst-observed
latency is within 2 times of the theoretic one. This worst case happens with large
delay (200ms) and a small number of flows (2 flows). In this case, slow-start takes a

long time even though Persistent ECN solves the fairness problem.

These results show that Persistent ECN is a promising mechanism to improve

fairness convergence of TCP flows and shorten application latency.
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3.4.2 Aggregate throughput with persistent ECN

As discussed in Section 3.2.3, high synchronization rates might lead to low through-
puts with TCP Reno when the buffer size in the bottleneck router is not as large as
the bandwidth delay product (BDP), even though the throughput loss is bounded.
With persistent ECN, we observe the same effect.

Figure 3.25 present the statistic results of aggregate throughputs for paced TCP
and bursty TCP, with persistent ECN. Indeed, comparing to Figure 3.16, the aggre-
gate throughput of Reno flows is even lower with persistent ECN. The CDF exhibits
three steps. These steps correspond to the three different buffer sizes we used in the
simulations (1/4 BDP, 1/2 BDP and BDP worth of buffer size). In most of the cases,
the loss of average throughput is within 15%. !

With the new congestion control algorithms, the synchronization effect on aggre-
gate throughput will be much less significant. On the other hand, as we have shown
in the previous sections, the synchronization rate’s effect on fairness is much more
significant. Hence, we argue that the balance of the trade-off should move toward

increasing synchronization rate.

3.4.3 Aggregate throughput with co-existing bursty TCP and
paced TCP under persistent ECN

Section 3.2.4 shows that the paced TCP flows lose to bursty TCP flows with a Drop-
Tail router, in terms of aggregate throughput.

However, with persistent ECN, such unfriendliness disappears. This is because
that the persistent ECN algorithm eliminates the sub-RTT burstiness in loss signal.
When the loss signal is persistent throughout the congestion event, both paced TCP
and bursty TCP will see the same loss signal and get similar throughput.

Figure 3.26 presents the statistic results of aggregate throughputs under persistent

ECN, with the same simulation scenarios as in Figure 3.19.

For the few bursty Scalable Cases where the average throughput is far smaller than fair share,
that is because they do not converge to fairness at all.
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Figure 3.25: Normalized Throughput Gain with isolated pacing TCPs or bursty TCP
in simulations
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TCP in simulations
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With persistent ECN, paced TCPs have higher aggregate throughput than bursty
TCPs in all cases; due to two reasons: first, paced TCPs and bursty TCPs see the
same congestion loss signals; second, bursty TCPs may generate additional bursty
loss in sub-RTT timescale.
Hence, the persistent ECN algorithm can also be used as a link algorithm that

encourages the deployment of TCP pacing.
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Chapter 4

Research Tools

Our research focuses on the microscopic behavior of TCP. This focus required exper-
imental tools more realistic and more accurate than those that existed. Hence, we
developed two new tools for our research: one is a simulation module able to import
the Linux source code and run real TCP congestion control implementations on the
network simulator NS-2 [43]|. The other is a loss measurement system that runs on
PlanetLab [45] and measures loss pattern in the Internet. In addition, we also use an
in-house testbed with a Dummynet emulation router |[44| and Linux hosts to validate

our simulation and measurement results.

4.1 A testbed with emulation router and Linux hosts

We use an in-house testbed with an emulation router and Linux hosts to validate our

results in simulations and measurements.

4.1.1 Introduction to Dummynet

Dummynet is an emulation tool built in the FreeBSD system [44]. It can emulate a
router, with pipes of different buffer size, different propagation delay, and different
bandwidth. The testbed in our study is based on Dummynet of FreeBSD 5.2. We
modified the maximum buffer size to 3000 and system clock resolution to 1 ms in the

FreeBSD kernel to enhance its performance as a router emulator.
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Receiver Dummynet Sender
Linux 2.4.18-3 FreeBSD Linux 2.4.18-3
Dual Xeon 2.4GHz|/ — Dual Xeon 2.4GHz A Dual Xeon 2.4GHz

SuperMicro R SuperMicro R SuperMicro
SysKonnect9843S5X SysKonnect9843S5X*2 SysKonnect98435X

Figure 4.1: Dummynet testbed

4.1.2 Topology

The Dummynet testbed includes three machines: one sender, one receiver and one
Dummynet router that emulates a WAN, as shown in Figure 4.1. The machines are
equipped with Intel E1000 Gigabit Ethernet cards. The bottleneck buffer size of
the Dummynet router is set to be 2000 packets. The default capacity is set to be
100Mbps. The Dummynet router processes packets with a time resolution of lms.
Hence, the per-packet processing delay has a random fluctuation of 1ms. Four pipes
with different delays (2ms, 10ms, 50ms, and 200ms) and zero random loss rate are set
up on the Dummynet router for different destination ports. We use TCP flows from
the single sender to different ports in the single receiver to emulate multiple flows
traveling different paths with different delay and sharing the same bottleneck. The
Linux sender and receiver are configured with send buffer size and receive buffer size
equal to two times of bandwidth-delay-product to ensure that the send buffer and

receive buffer are not the bottleneck. Iperf is used to generate TCP traffic.

4.1.3 Measurement

To collect the timing of each packet loss, we instrument the Dummynet router to
record the time when each packet is dropped. The timestamp resolution of the Dum-
mynet records is 1ms. At the Linux machines, we periodically record the congestion
window and slow-start threshold of each connection from /proc/net/tcp file. In the
/proc/net/tcp file, each line describes the information of one TCP connection. The

congestion window size is the second last (16-th) column in each line. The slow start
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threshold is the last (17-th) column in each line. A slow start threshold equal to -1
means the slow start threshold has not been changed and has an infinitely large value.

The record frequency is 0.5 second.

4.2 NS-2 TCP-Linux: an extensible TCP simula-
tion module in NS-2

To provide realistic TCP performance results, we developed a new module for TCP
simulation in NS-2, called NS-2 TCP-Linux. NS-2 TCP-Linux is a new NS-2 TCP
implementation which embeds the source codes of TCP congestion control modules
in the Linux kernel. In comparison to the existing NS-2 TCP implementations, NS-
2 TCP-Linuz predicts the TCP performance more accurately with similar, or even
faster, simulation speed and better extensibility to emerging new TCP congestion
control algorithms in the future. NS-2 TCP-Linuz was the major tool used in our
research. In addition to helping us in performance analysis, NS-2 TCP-Linuz has
also helped the Linux kernel community to debug and test new congestion control

algorithms.

4.2.1 An introduction to TCP implementation in NS-2

NS-2 is an open-source packet level network simulator widely used in network per-
formance analysis [43]. It provides fairly accurate results for simple devices (e.g.
DropTail link). The NS-2 simulations are fully controllable and repeatable. The
TCP modules in NS-2 were originated from source codes of BSD kernel. Over the
years, NS-2 TCP modules have contributed tremendously to the understanding and
analysis of TCP behaviors, and led to the development of several new congestion
control algorithms. The TCP implementation in NS-2 currently include TCP-Reno
[5], NewReno [6], Sack |56|, Fack |7|, HighSpeed TCP [8], etc. However, as the major
operating systems evolved gradually over the years, the TCP modules in NS2 have de-

viated significantly from mainstream operating systems such as FreeBSD and Linux.
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The use of NS-2 has become less popular in the congestion control community, due

to difficulties in the following three aspects:

e Extensibility: As NS-2’s code structure deviates from mainstream operating
systems, it becomes harder and harder to implement the NS-2 correspondent of a
Linux algorithm. For new algorithm designers, it is a huge burden to implement
the same congestion control algorithm in both NS-2 and a real system such as

Linux.

e Validity of NS-2 results: As more improvements are implemented in Linux,
the performance predicted by NS-2 simulation deviates more from the Linux
performance and FreeBSD performance. As reported in recent literature as

[57|, the difference in performance can be significant in some scenarios.

e Simulation speeds: NS-2 users often suffer from long simulation time when they
simulate scenarios with high-speed long-distance networks. In some examples,
the simulator might take up to 20 hours to finish a 200-second simulation |58].
This is particularly troublesome to network simulations since many runs of the
a scenario with different random seeds are usually required to eliminate artifacts

of deterministic behaviors, such as phase effects.

Indeed, there is a trend that designers of new congestion control algorithms are less
inclined to use NS-2 to evaluate their algorithms. For example, the TCP congestion
control community has sparked many new congestion control algorithms for high-
speed long-distance networks, but many of them |52, 10, 11] are first implemented in
Linux and evaluated in emulation testbeds such as the Dummynet testbed described
in Section 4.1. This new approach allows new algorithms to be evaluated in a real
operating system and easily deployed with Linux releases. However, due to limitations
of the emulation router, these evaluations are usually limited to very simple topologies
and very small scale in terms of numbers of flows, delays, and bottleneck capacities.
This approach is also riskier as the new algorithms can be deployed without thorough

tests in complicated scenarios. For example, recent research |59, 60| points out some
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interesting observations on TCP behaviors that only exist in scenarios with multiple
bottleneck links, which are hard to reproduce by Dummynet testbeds with dumb-
bell topologies. Hence, we believe that NS-2 is a critical component in the spectrum
of tools to evaluate protocol performance with its flexibility in topology and scale.
NS-2 TCP-Linuz is designed to serve this purpose by improving the current NS-2
implementations.

Corresponding to the difficulties, NS-2 T'CP-Linuz has three design goals:

e Enhance extensibility by allowing users to import congestion control algorithms

directly from Linux source codes;
e Provide simulation results that are close to the performance of Linux;

e Maintain the simulation speed at least as fast as the current TCP modules.

To improve the accuracy of the simulation result, we redesigned the loss recovery
module (ScoreBoard). We also improved the scheduler to speed up the simulation. '
Our efforts and results show that these three goals can be achieved at the same

time, when the NS-2 TCP module is carefully redesigned.

4.2.2 An introduction to Linux TCP

Both NS-2 TCP and Linux TCP [61, 62, 63| implementations follow the relevant
RFCs. However, there are a few major differences between the existing NS-2 imple-

mentation and Linux implementation. Some of them are listed below:

1. SACK [56] processing: current NS-2 TCP (Sack! and Fack) times out when a
retransmitted packet is lost again. Linux SACK processing may still recover if

a retransmitted packet is lost;

2. Rate halving [64]: Linux has a complicated rate halving process which gradually

reduces the congestion window to half of the slow start threshold, and then

!'Note that these two improvements can be used in a more general context. Scoreboardl can be
used in other TCP implementations and the improved scheduler can be used in any NS2 simulation.



92
returns to the slow start threshold after recovery; NS-2 has a simplified rate-

halving algorithm;

3. Delayed Ack: the Linux receiver disables delayed ack in the first few packets to

avoid delaying slow start;?

4. Duplicated SACK (D-Sack |65]): current NS-2 TCP does not use D-SACK
information to infer the degree of packet reordering in the path; Linux has a

process to detect D-SACK and adjust duplicated ACK threshold.

All these different issues in implementation lead to differences in throughput predicted
by NS-2 and throughput achieved by Linux. More importantly, the code structure
of NS-2 is very different from the code structure in Linux. It is a burden to port
an algorithm between Linux and NS-2. From version 2.6.13, the Linux kernel has
introduced the concept of congestion control modules [61]. A common interface is
defined for congestion control algorithms, and algorithm designers can implement
their own congestion control algorithms as Linux modules easily.

With this interface, all the state variables for a TCP connection are stored in a
structure called tep sk. The interface also defines a congestion window operation
structure called icsk ca_ ops, for third party to write new congestion control algo-
rithm as a kernel module in Linux. The icsk ca ops structure is a set of function

pointers. The structure has three required function call pointers:

e cong avoid function: This function is called when an ack is received. The
implementation of this function is expected to change the congestion window
in this function during the normal situation (without loss recovery). In TCP

Reno, this means slow start and congestion avoidance.

e ssthresh function: This function is called when a loss event occurs. It is expected
to return the slow start threshold after a loss event. The returned value shall

be half of snd_cwnd in TCP Reno.

2This is not RFC-conforming but follows Nagle’s advice.
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e min_ cwnd function: This function is called when a fast retransmission occurs,
after ssthresh function. It is expected to return the value of the congestion

window after a loss event. In Reno, the returned value shall be snd_ ssthresh.

Linux kernel performs tasks of acknowledgment processing, SACK processing, loss
detection and retransmission. It calls the congestion control module when the con-
gestion window or the slow start threshold needs to be changed (e.g. upon the arrival
of a new acknowledgment or a loss is detected). In these cases, Linux kernel calls the
corresponding function pointers in icsk ca ops structure. The address of tep sk is
passed to the congestion control module as a parameter so that the congestion control

module has its flexibility to read or change other TCP states as well.

A congestion control module are required to implement the above three functions
and control the congestion window and the slow start threshold. A very simple
algorithm (TCP Reno) is shown in Figure 4.2 as an example of an implementation

for this interface.

More sophisticate congestion control schemes require more operations such as
obtaining high resolution RTT samples [66]. These advanced functions are introduced

in Appendix 6.1.

Until the version of 2.6.16-3 appeared, Linux incorporated nine congestion control
algorithms in the official release version. At least three new implementations are
anticipated in the community. We believe that NS-2 will benefit from a new TCP
module which conforms to the Linux congestion control module interface. The benefits
are two-fold: First, the research community can use NS-2 to analyze Linux algorithms
without implementing the NS-2 version of a Linux algorithm. This leads to improved
productivity and accuracy. Second, NS-2 is a tool the Linux community can use to
debug and test their new congestion control algorithms. This leads to more reliable
and better-understood implementations. Hence, we designed T'CP-Linuz in the spirit
of bridging the gap between the implementation community developing the Linux

system and the analysis community using the NS-2 as a tool.



/* Create a constant record

* for this congestion control

* algorithm for the interface */

struct tcp_congestion_ops
simple_reno = {

.name "simple_reno",

.ssthresh nr_ssthresh,

.cong_avoid= nr_cong_avoid,

.min_cwnd nr_min_cwnd

b

/* This function returns the

* slow—-start threshold after

* a loss.

*/
u32 nr_ssthresh(struct tcp_sk *tp)
{

return max(tp->snd_cwnd/2,2);

This function returns the
congestion window after a
loss it is called AFTER
the function ssthresh (above)

*/
u32 nr_min_cwnd(struct tcp_sk *tp)
{

return tp->snd_ssthresh;

94

/* This function increases
* congestion window for
* each acknowledgment
*/
void nr_cong_avoid
(struct tcp_sk *tp, ...)
{
if (tp->snd_cwnd <
tp->snd_ssthresh)
{
//slow star
tp->snd_cwnd++;
} else {

//congestion avoidance
if (tp->snd_cwnd_cnt <
tp->snd_cwnd)
{
// not enough for 1 pkt,
// we increase the fraction.
tp->snd_cwnd_cnt++;
} else {
// we can increase cwnd
// by 1 pkt now.
tp->snd_cwnd++;
tp->snd_cwnd_cnt

0;

Figure 4.2: A very simple implementation (Reno) of the congestion control interface
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Name Meanings Equivalence in NS-2
TCPAgent
snd _ssthresh | the slow start threshold ssthresh
snd_cwnd integer part of the congestion lewnd |
window
snd _cwnd_cnt| fraction of the congestion lcwnd _ xcwnd_ |%[cwnd |
window
icsk _ca_priv | a 512-bit array to hold n/a
per-flow states for a congestion
control algorithm
icsk ca ops a pointer to the congestion n/a
control algorithm interface

Table 4.1: Important variables in tcp sk

4.2.3 Design of NS-2 TCP-Linux

The design of NS-2 TCP-Linur shares the same congestion control interface with
Linux. It allows users to easily port the source code from a congestion control imple-

mentation from Linux to NS-2.

4.2.3.1 Interface

NS-2 TCP-Linuz follows the same interface of congestion control module in Linux
2.6. It uses the same congestion control module structure as Linux 2.6 (struct
tep  congestion_ ops) . 3

However, the simulation module only supports a subset of fields in the tep sk
structure and synchronizes these fields with the variables in NS-2 TCP; the most
important fields and their corresponding variables in NS-2 are listed in Table 4.1.
Appendix 6.1 provides details of all Linux parameters supported by NS-2 TCP-Linuz.

By sharing the same interface as congestion control module in Linux 2.6, NS-2

TCP-Linuzx is able to use the source code of congestion control modules from Linux

kernel with minor changes, ensuring the extensibility of NS-2 TCP-Linuz.

3The meaning of min_ cwnd function in TCP-Linuz is, however, slightly different from Linux.
Linux has a complicated rate-halving process and min_cwnd is used as the lower bound of the
congestion window in a rate-halving process after a loss event. In NS-2, TCP-Linuz has a simplified
version of rate-halving, and the congestion window can be set to min_ cwnd directly.
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NS-2 Code Legend
TcpAgent [i>>Class Inherit
The original NS-2 TCP
<£)7 —» References
LinuxTcpAgent
A class for TCP-Linux
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ScoreBoardl ns—linux-util.h / .cc
SACK processing Interface between NS-2 and Linux
-— - x —
tcp_cong.c| |tcp_highspeed.c| | tcp_vegas.c| tcp_bic.c
Reno HighSpeed TCP TCP-Vegas BIC-TCP
Linux ;;;;;g\Eaaés\\j:::::?\\\\ ? ////////7
\//
ns—-linux-c.h
Shortcuts for irrelevant Linux system calls

Figure 4.3: Code structure of TCP-Linux
The boxes in the shaded areas are components from existing source codes in NS-2 or
in Linux kernel. The four white boxes outside the shaded areas four components in
TCP-Linux implementation.

4.2.3.2 Code architecture

TCP-Linux implements a simplified version of the Linux kernel packet processing
tasks and conforms to the congestion control module interface. The code structure

has four major components, as presented in Figure 4.3:

LinuxTCPAgent: The NS-2 module for TCP-Linuz (tcp-linux.h and .cc)

Scoreboardl: The scoreboard design (scoreboardl.h and .cc) which manages

loss detection and packet retransmission

The interface between C++ codes in NS-2 and C codes in Linux (ns-linux-util.h

and .cc)

Shortcuts for Linux system calls (ns-linux-c.h and .c)
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The interface between C+-+ and C is a set of data structure declarations. The
shortcuts for Linux system calls is a set of macros that redefine many Linux system
calls not relevant to congestion control. These two components serve as a highly sim-
plified environment for the embedded Linux source codes. A simplified TCP control
block (tep sock structure in Linux) serves as the data structure for communication
between Linux congestion control modules and LinuxTCPAgent in NS-2.

With the interface and shortcuts, users of T'CP-Linux can easily include new
congestion control algorithms from the Linux source codes [67].

LinuxTCPAgent is the main NS-2 component of TCP-Linuz. It has two major

functions:

1. Simulate Linux acknowledgment packet processing;

2. Provide user interface, trace and measurement support for NS-2.

Different from other TCP modules in NS-2, LinuxTCPAgent loosely follows the de-
sign of the Linux acknowledgment processing process (tcp ack function in Linux),
including RTT sampling routine, SACK processing routine, fast retransmission rou-
tine and transmission timeout routine. We made the following simplifications to tailor

the Linux implementation to NS-2:

e Eliminate the difference between fast path and slow path: NS-2 simulation does
not process actual data packets. There is no difference in fast path and slow
path in NS-2. However, the Linux congestion control module interface allows
a congestion control algorithm to use fast path and slow path as a hint for

congestion level; we use a very simple algorithm to simulate this hint.

e The rate halving process is greatly simplified: In Linux, the congestion window
is not reduced immediately when the sender observes a packet loss. Instead,
the congestion window is reduced by half a packet every round trip time during
the FastRetransmission state, until it hits the minimum congestion window

threshold (usually, the threshold equals the slow start threshold or half of the
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slow start threshold). If the sender recovers from FastRetransmission state
before the congestion window hits the minimum threshold, the sender has to
first complete the window reduction and then return to normal state. In NS-2
TCP-Linuzx, the implementation does rate halving more explicitly. The sender
halves the congestion window immediately after a loss. However, it keeps track
of the number of packets in flight, and allows at most one packet to be sent
out for each ack, as long as the number of packets in flight keeps reducing. We
did not notice any major difference in the results when comparing the results

of TCP-Linuz simulation and Linux experiments.

e The loss recovery does not have an “undo” function: In Linux, when a false
retransmission is detected (e.g. due to D-SACK), Linux can undo the conges-
tion window reduction due to the false retransmission. This function is not
implemented in T'CP-Linuz. There might be an impact to the simulation re-
sults when the scenario includes a network device which reorders data packets.
We do not have scenarios with packet reordering device. For general purpose

usages, we need to investigate this impact further .

The LinuxTCPAgent updates the NS-2 traced variables at the end of each ack pro-
cessing routine and support congestion control algorithm selection as a command line
option, making it very easy to use NS-2 T'CP-Linuz. For any existing TCP simulation
scripts, users only need to add one command to use NS-2 TCP-Linuz [67].

4.2.3.3 Scoreboardl: improving the accuracy by better loss recovery

Scoreboardl is a new scoreboard implementation that combines the advantage of
Scoreboard-RQ in NS2 and the Linux SACK processing routine (sacktag _write queue).
Similar to Linux SACK processing, each packet in the retransmission queue is in one
of the four possible states: InFlight, Lost, Retrans or SACKed. The state transition
diagram is shown in Figure 4.4.

A packet that is sent for the first time, but not acknowledged and not considered

lost, is in InFlight state. It enters SACKed state if it is selectively acknowledged
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Figure 4.4: State machine of each packet

by a SACK, or enters Lost state if a retransmission timeout occurs, or the furthest
SACKed packet is more than 3 packets ahead of it.

A packet in Lost state will be retransmitted and enter Retrans state.

When a packet is retransmitted, it is assigned with a sequence number snd_ nat
(similar to Scoreboard in NS-2 Fack) which records the packet sequence number of
the next data packet that is going to be sent. Additionally, it is also assigned with
a retrr 4d which records the number of packets that is retransmitted in this loss
recovery phase, as shown in the first two nodes in Figure 4.5. The (snd_ nat, retrz_id)
pair helps detect if a retransmitted packet is lost. The retransmitted packet can be

considered lost if: 4

1. Another packet is selectively or accumulatively acknowledged (SACKed or ACKed),

and the acknowledged packet’s sequence number is higher than snd nxt+3; or

2. Another retransmitted packet is selectively or accumulatively acknowledged,

and the acknowledged packet’s retrx id is higher than retrz id-+3.

With the definition of per-packet state, Scoreboardl can keep an explicit counter for

the number of packets in flight (which equals to the sum of number of packets in

4Strictly speaking, the Linux implementation also includes the third case: when a packet is ac-
knowledged, and its transmission timestamp is higher than an unacknowledged packet’s transmission
timestamp plus RTO, the unacknowledged packet is considered to be lost. This is called head time-
out. This case is not included in the current implementation of TCP-Linuz and it might affect the
Linux performance when the packets in flight is smaller than 3.
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InFlight state and the number of packets in Retrans state).
To improve the speed of SACK processing, Scoreboardl incorporates the one-
pass traversing scheme from Scoreboard-RQ. Scoreboardl organizes all the packets

in a linked list, as shown in Figure 4.5. Each node of the linked list can be either

Retrans Retrans

seq: 1 seq: 2 Lost

retrx id:1 retrx id:2 first seqg: 3
snd_nxt:20 snd_nxt:20 last seq: 5

next block next block next block

SACKed In Flight SACKed

first seq: 6 first seqg: 9 first seqg:11
last seg: 8 last seqg: 10 last seqg: 11
next block next block next block —>

Figure 4.5: SACK queue data structure

a single packet in retransmitted state, or a block of packets in other states. This
linked list allows ScoreBoardl to traverse the retransmission queue only once every
acknowledgment, regardless of the number of SACK blocks in the acknowledgment.

The retransmission queue update process is a simplified version of tcp__clean rtx _queue
and tcp sacktag write queue in Linux, without D-SACK processing and timestamp

processing.

4.2.3.4 SNOOPy Queue Scheduler: Speed up the simulation with a better

scheduler

The current NS-2 (Version 2.29) scheduler uses a calendar queue [68| to store simu-
lation events. A calendar queue is similar to a hash table with dynamic bucket size
and uses the time of the event as the key. Intuitively, a bucket in a calendar queue
corresponds to a "day" in a real calendar. Each bucket has a linked list to store

multiple events, just like multiple notes can be written in each day on a real calendar.
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The whole bucket array corresponds to a "year". Events in the same "day" but in
different "years" share the same bucket in increasing order. When a new event is
inserted, the event’s destination bucket can be calculated in O(1) by the hash key,
and the event is inserted into the in-order position of the destination bucket via a
linear search along the linked list. To de-queue the next event, the calendar queue
traverses the bucket array to find the bucket with the earliest event. The size of the
array may be doubled if the number of events grows larger, or halved if the number
of events grows smaller, to keep the average length of all the linked lists within a
constant range. On average, the calender queue can insert an event and de-queue an
event in O(1).

The efficiency of the calendar queue depends on the width of each bucket. If
the width of a bucket is too large (“a long day”), many events may be put into one
bucket and the calendar queue degrades into a single linked list which requires a linear
search when a new event is inserted. If the width of a bucket is too small (“a short
year”), most of the events in the buckets are of different years and repeated linear
searches over the bucket array are necessary to de-queue the next event. Dynamic
Calendar Queue [69] suggests that the bucket size should be dynamically set to the
average interval in the fullest bucket. The NS-2 calendar queue takes the suggestion
in setting the bucket width.5

However, this suggestion on bucket width works perfectly only if the events are
evenly distributed in the calendar queue. If events that span over many “years"
happen to be in the fullest bucket, while most of the events in the whole calendar
queue are clustered within several "seconds", NS-2 will set the bucket width to be
very large, on the order of "year". In this case, most of the events (clustered within
seconds) will go into a few buckets. The calendar queue hence degrades into a few
linked lists and long linear searches occur in event insertions.

Unfortunately, such uneven event distribution is very common in NS-2 simulation.

Users usually set an “end time” before the simulation start. This end time corresponds

SDifferent from [69], NS-2 does not adapt the bucket width until the number of events is too
large or too small. This difference further degrades performance when the bucket width is set to an
inefficient value.
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to an event far in the future in the calendar queue. If this “end time” event happens
to be in the fullest bucket when NS-2 sets its bucket width, the simulation speed
slows down significantly.

To correct this problem, we added an average interval estimation into the calendar
queue scheduler. We used the average interval of each pair of de-queued events,
averaged over a whole queue size of de-queued events, as an estimation of the bucket
width. If the event departure interval is similar over time, this width results in the
O(1) in both de-queue and en-queue operation.

To address the possible change of event departure patterns, we also implemented
SNOOPy Calendar Queue [70], which dynamically adjusts the bucket width by bal-
ancing the linear search cost in the event insertion operations and the event de-
queueing operation.

With these two improvements, the scheduler performed consistently in terms of

simulation speed.

4.2.4 Validation of NS-2 TCP-Linuzx

We examined simulation results with T'CP-Linux according to our three goals: ex-
tensibility, accuracy and performance. To validate the accuracy of the simulation
results of T'CP-Linuz, we compare them with Linux results from Dummynet testbed.
To evaluate the performance, we compare the simulation time and memory usage
of TCP-Linuz and TCP-Sackl, the best TCP implementation in NS-2.5 We also
present a real example of how T'CP-Linuz can help the Linux community debug and
test congestion control implementations.

The setup of our NS-2 scenario is shown in Figure 4.6. There is one FTP flow
running from the sender to the receiver for 900 seconds. We recorded the congestion
window every (.5 second.

The setup of our Dummynet experiment is shown in Figure 4.7. In the experi-

6We also tried other existing implementation in NS-2. Reno and NewReno have much more
timeout than Sackl, leading to even poorer accuracy. Fack and Sack-RH run much more slowly due
to the inefficient implementation in Scoreboard.
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Oms 220pkt buffer Oms Linux
DelAck

Figure 4.6: Setup of NS-2 Simulation

ments, the application is Iperf with a large enough buffer. We read the /proc/net/tcp
file every 0.5 second to get the congestion window value of the Iperf low and compare

the congestion window trajectories with the simulation results.

} FreeBSD 5.2.1 ,
Linux Linux
2.0.16.1 100Mbps, 64ms, 220pkt buffer| 2.6.16.3
Dummynet
Receiver 100Mbps, 64ms, 220pkt buffer Sender

Hardware:

SuperMicro 1U servers with 2G memory and PCI Express bus
CPU: Intel Xeon 2.80Hz * 2 (with hyperthreading)
NIC: Intel el000 Copper GE cards * 2

Figure 4.7: Setup of Dummynet Experiments

4.2.4.1 Extensibility

We incorporated all the nine different congestion control algorithms in Linux 2.6.16-3
into NS-2 TCP-Linuz. Six of them are not in the current NS-2 release (2.29). Table
4.2shows the results with these six different congestion control algorithms. To make
the figures readable, we re-scaled the time axles in the figures to include only six
congestion epochs in each figure.

From Table 4.2, we can see that the congestion window trajectories predicted
by NS-2 TCP-Linux are very similar to the results from Dummynet testbed. The
two cases which have the most significant differences are TCP-Hybla, and TCP-
Cubic. TCP-Hybla measures the round trip delay to set its additive increment (AI)
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Table 4.2: Congestion window trajectory of different congestion control algorithms

parameters. Due to noise, the Linux host measures higher delay in the Dummynet
testbed than in the NS-2 simulation. The higher delay leads to higher Al parameter
and shorter length of congestion epoch in the Linux result. Also, TCP-Hybla sets
a large congestion window in the start-up phase of a flow. The high congestion
window leads to packet loss, but Linux quickly gets a timeout and T'CP-Linux predicts
multiple fast-recoveries before timeout. This results in the difference of the congestion
window sizes at the start-up phase (though the rates predicted by NS-2 TCP-Linuz
are very similar to the Linux results). For TCP-Cubic, there are some difference in
both the congestion widow trajectory and the length of congestion epoch. We have

not understood this case yet. Further investigation is necessary.’

4.2.4.2 Accuracy

To compare the accuracy of NS-2 TCP-Linux and existing TCP implementations
in NS-2, we compared the results by Dummynet testbed, the simulation results by
TCP-Linuz, and the simulation results by NS-2 TCP-Sackl or NS-2 TCP-Vegas, as
shown in Table 4.3 .

In general, simulation results with TCP-Linux were much closer to the Linux

"As reported by the group that designs TCP-Cubic, the difference in TCP-Cubic was due to a
bug in the Linux source code and a bug in NS-2 TCP-Linuxz at the time we ran these experiments.
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Table 4.3: Congestion window trajectory of Reno, Highspeed TCP and Vegas

results, especially for Reno and Vegas. In the case of Reno, the huge difference
between T'CP-Sackl and Linux is mainly due to the appropriate byte counting [71]
in Linux Reno. The Vegas case is even more interesting. Both T'CP-Linuz and Linux
results have smaller congestion windows than the TCP-Vegas results. After careful
investigation, the combination of delayed ACK and integer operation is found to be
the source of the problem. With delayed ACK, two packets are sent into the network
in a micro-burst. The second data packet is buffered until the first packet is processed
by the bottleneck router. Hence, the second packet is delayed for one packet worth
of time even without congestion. Unfortunately, the Vegas sender can only get the
acknowledgment of the second packet, due to delayed ACK. This second packet’s RTT
includes most of the queueing delay introduced by the first packet in the micro-burst.®
Such a queueing delay is equivalent to almost one packet in the queue. With integer
operation in Linux implementation, Vegas sees one packet in the queue. Since Vegas
sets its a parameter to be 1, it stops increasing its congestion window when it sees
this one packet worth of delay and results in low throughput. However, TCP/Vegas
in NS-2 uses high-resolution float numbers to calculate the available and expected
bandwidths and converts the results to integers only at the last step of comparison,

avoiding this problem.?

We also ran simulations with different per-packet loss rates in the bottleneck and

compared the throughput with the Linux throughput in Dummynet experiments.

8There is still a small gap between the two packets in a burst. The gap depends on the edge link
capacity, which is 10 times of the bottleneck link in our simulations and experiments.

9This problem has been accepted by the Linux networking group and the default value for o has
been changed to 2 in the new releases of Linux.
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Figure 4.8 shows the throughput of a single TCP Reno flow (ran for 600 second)
under different per-packet loss rates. Each experiment or simulation is repeated 10

times and we present the average and error-bar in the figure.

throughput vs random packet loss rate
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Figure 4.8: Throughput under different random loss rate (log-log scale)

As shown in Figure 4.8, the results with TCP-Sackl in NS-2 have a constant
gap from the Linux performance. This gap, in log scale, implies a constant ratio in
throughputs. This is mainly due to two problems. First, TCP-Sackl uses Scoreboard-
RQ to process SACK. This module cannot detect the loss of retransmitted packets,
and forces the TCP flow to time out when a retransmitted packet is lost. This leads
to poor performance when packet loss is heavy. Second, Linux has incorporated
appropriate byte counting |71|, but TCP/Sackl has not implemented this feature,
leading to slower growth in the congestion window when packet loss is light.

The simulation results of TCP-Linuz are very similar to the experiment results of

Linux, except in the case when the per packet loss rate is 10%. In this case, the Linux
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receiver almost disabled delayed acknowledgment, which leads to better performance
than the simulation, where the delayed acknowledgment function in TCPSink in NS-2

is not adaptive.

4.2.4.3 Simulation performance

We run simulations with Reno and HighSpeed TCP with different numbers of flows
(from 2 to 128), different round trip propagation delays (from 4ms to 256ms) and
different capacities (from 1Mbps to 1Gbps) to test the speed and memory usage.
We also compared the simulation performance of T'CP-Linuz with the performance
of TCP-Sackl in NS-2. Each case simulates the scenario for 200 seconds. All the
simulations were run on a 1U server, with two Intel Xeon 2.66GHz CPUs, a cache size
of 512KB, though only one of the CPUs can be used for each simulation. We make
sure that only one simulation was run at a time, without any other application. We
present here two of our dozens of figures. Figure 4.9 shows the simulation times of
HighSpeed TCP with different bottleneck capacities. Figure 4.10 shows the simulation
times of HighSpeed TCP with different numbers of flows.

Both figures show that the speed of T'CP-Linuz is very similar to the speed of
TCP-Sackl module in most scenarios. However, TCP-Sackl does not perform consis-
tently well and might have a much longer simulation time when the capacity is high,
or the number of flows is large. NS-2 TCP-Linux has a very consistent simulation
speed with its improved event scheduler.!®

To measure the memory usage of the simulation, we measured the simulator’s
memory usage in the middle point of the simulation period. The memory usage of
TCP-Linux was almost the same as TCP-Sack1 in most scenarios. The only difference
we observed was the case with Reno and with two flows, as shown in Figure 4.11 . In
this case, T'CP-Linuxz used about 1MByte more than TCP-Sackl.

Based on these simulation results, we believe that TCP-Linuz can be a good

alternative, or even a replacement, for the existing NS-2 TCP modules, given its

10We also ran NS-2 TCP-Sackl with our improved scheduler. With the improved scheduler,
TCP-Sackl performed exactly the same as TCP-Linux.
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Figure 4.9: Simulation time of different bottleneck bandwidth (log-log scale)

similar performance in terms of speed and memory usage, and its advantages in

terms of adaptability and accuracy.

4.2.4.4 An example: identifying a potential bug in Linux HighSpeed TCP

implementation

Figure 4.12 shows an example of how TCP-Linux can help the Linux community
test and debug the implementation of new congestion control algorithms.This figure
illustrates a potential bug in HighSpeed TCP implementation in Linux 2.6.16-3. In
the rare situation when snd cwnd ecnt ==snd cwnd , snd cwnd is increased by
one, before snd_ cwnd_cnt_ is decreased by snd cwnd . This leads to a value of

-1 for snd_cwnd_cnt . Since snd_cwnd_ent  is an unsigned variable, the negative
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Figure 4.10: Simulation time of different number of flows (log-log scale)

value causes overflow, results in an infinitely large snd cwnd cnt !

Motivated by this example, we strongly believe that T'CP-Linuxz can help the
implementation community debug, test, and understand the new congestion control

algorithms and close the gap between the implementation and analysis communities.

4.2.5 Usages in research

In our research, NS-2 TCP-Linuz is used to simulate different TCP variants (TCP-
Reno, HighSpeed TCP and Scalable TCP) and study their performance under differ-
ent packet loss patterns.

We used a dumb-bell topology with a set of senders and a set of receivers sharing

a bottleneck, as shown in Figure 4.13.

1The Linux networking group has accepted this bug report and the bug hass been corrected in
the newer Linux releases.
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Figure 4.11: Memory usage of different number of flows (x-axle in log scale)

The bottleneck is a 100Mbps link. We ran simulations with different RTT (2ms to
200ms in different scenarios) and different buffer sizes (1/8 bandwidth-delay-product
to 2 bandwidth-delay-product in different scenarios). Different link algorithms, Drop-
Tail, RED and Persistent ECN, are run in the simulations. For scenarios with RED,
the RED parameters are set to be self-adaptive. The bottleneck is shared by a set
of parallel TCP flows and 50 UDP noise flows, generating exponential on-off traffic
with the aggregate rate of 10% of the bottleneck capacity. The number of flows varies

from 2 to 32 flows in different scenarios.

The TCP implementations in NS-2 TCP-Linuz come with SACK [56], FACK [7]

and rate halving [64]. Reno implementation also includes ABC [71].

In each simulation, we repeat the scenario for at least 10 times with different

random seeds and present both the average values and the error-bars.
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Figure 4.12: A potential bug in Linux implementation of HighSpeed TCP
4.3 A packet level measurement tool in PlanetLab

To measure the Internet behavior, we have designed a distributed measurement sys-
tem to periodically measure loss and delay pattern between sites in PlanetLab.This
measurement system is different from existing loss measurement techniques.

The most frequently used technique for loss measurement is to analyze traces of
TCP flows and detect packet retransmissions in TCP. Each packet retransmission can
be treated as the inference of a lost packet in the network. This approach is widely
used because it has the advantage of requiring measurement at one end only [41].
However, there are a few disadvantages. First, a packet retransmission only infers a
possible packet loss. Whether there is really a packet loss in the network depends on
the accuracy of the TCP retransmission algorithm. If TCP times out prematurely,
this approach overestimates the packet loss rate. Second, and more importantly, this

approach measures the packet loss rate observed by TCP flows. As we will see in
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Figure 4.13: Setup of NS-2 simulations

Chapter 4, the packet loss rate observed by TCP flows is not necessarily the same as
the packet loss rate in the path, due to TCP burstiness.

In our tool, we used UDP packets to probe the network and measure the loss
information at the other end. We designed our tool in a way that the UDP packet
transmission pattern is tunable. We used different transmission patterns to simulate
bursty packet sequences (e.g. generated by TCP) or smooth packet sequences (e.g.
generated by TFRC |72|, paced TCP) .

4.3.1 An introduction to PlanetLab

PlanetLab [45] is an open platform for developing, deploying and accessing planetary-
scale service. It is an overlay network with more than 600 nodes geographically
distributed around the world. PlanetlLab users can run services on a set of nodes
with full control on the end hosts, making it possible to measure packet loss at two

end hosts.

4.3.2 Design of the measurement system

The system has a server and a client at each site in the experiments. There is also
a light-weight central monitor running on one site (in our experiments, the central

monitor is run on WAN-in-Lab at Caltech). The central monitor periodically performs
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maintenance tasks of the experiments. These tasks include: installing and upgrading
software at each remote site, monitoring the health of each remote site, and collecting
measurement data from all the sites into a centralized database. Each remote site
runs a server, which accepts new measurement requests and UDP packet sequences.
Each remote site periodically starts a client, which randomly picks a site and initiates
new measurement request. The client is the sender of UDP packet sequences and the

recorder of the experiment results.

In each measurement, server and client use a TCP connection to exchange control
messages and measurement results. After a simple handshake, the client sends UDP
packets to the server in a specific pattern. The server measures loss information and
periodically returns statistics to the client via TCP. The server keeps a window of
128 packets so that packet reordering within 128 packets can be detected. These

reordered packets will not be considered lost packets.!?

4.3.2.1 Message formats

There are four different packets in the system. We carefully designed the packet
formats so that we could filter unreliable results that were probably due to abnormal
network behavior, for example, packet corruption. Each packet starts with an 8-byte
identifier, filled with 8 English characters. This identifier indicates the packet type.
The servers and clients verify the identifier and the validity of the contents. For UDP

packets, the servers and clients also use checksum to detect possible packet corruption.

StartPacket StartPacket is the first packet the server sends to the client to confirm
the acceptance of the measurement request. Before sending this packet, the server
assigns a unique measurement request ID and the StartPacket carries this request 1D
back to the client. This request ID will be in all UDP packets sent from the client to
the server. Table 4.4 illustrates the format of StartPacket.

12This is much more robust than the normal TCP, which can only detect packet reordering within
3 packets.
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STARTUDP | <request id>
8 bytes 8 bytes
Table 4.4: StartPacket format
STOP UDP | <error code>
8 bytes 8 bytes

Table 4.5: StopPacket format

StopPacket StopPacket is the packet that the server or the client sends to indicate
the termination of the experiments. Whenever an error is detected, either server or
client will send a stop packet, with an error code to inform the other side of the
reason of the termination. A error code of zero indicates normal termination. Table

4.5 illustrates the format of StopPacket.

UDPPacket UDPPackets are the packets sent from the client to the server, which
measures the delay and loss in the forward path. As illustrated in Table 4.6, each
UDP packet carries a request ID for the measurement, a unique sequence number,
the timestamp of sending event, and variable length of random bytes that fills the
packet to a specific length. A UDPPacket also comes with a checksum that covers

the whole packet.

ReportPacket A ReportPacket is the packet sent from the server to the client to
report the statistics of packet loss and measure round-trip time (RTT). As illustrated
in Table 4.7, a ReportPacket carries the timestamp of the UDPPacket upon whose
arrival the ReportPacket is sent. When the client receives this ReportPacket, it can

estimate the round-trip time by the difference of the receiving time and the value in

UDP_TEST | <request id> <seq #>
8 bytes 8 bytes 8 bytes
<timestamp> | <checksum> | <random bytes>
16 bytes 8 bytes variable

Table 4.6: UDPPacket format
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L. REPORT <timestamp> <ack seq #>
8 bytes 16 bytes 8 bytes
<+# of loss in this report> | <loss seq numbers>
8 bytes 8*<# of loss> bytes

Table 4.7: ReportPacket format

Received Pkt > threhsold
Send Report

-

Incoming Request
Send StartPacket

LISTEN

Report

guccess
clear statist

ics

Abnormal
STOP

Report threshold:
10

Connection
Timeout: 10 sec

Figure 4.14: State machine of a measurement server in PlanetLab

<timestamp> field.!?

A ReportPacket also carries the highest sequence number of the UDPPacket it
receives. This serves as a positive acknowledgment. Finally, a ReportPacket carries
the number of observed loss packets, followed by the list of sequence numbers of these
lost packets. The client will record these lost packets and their sending times to

estimate the loss pattern in the path.

4.3.2.2 Design of measurement servers

The server listens to a static port and accepts, at most, 10 incoming measurement
requests. The design of the server is shown in the state machine in Figure 4.14. For

each request, the server assigns a unique ID and returns the ID in a StartPacket. The

13As ReportPackets are transported by TCP, the RTT calculation is not very accurate if the
ReportPacket is lost. We only use this RTT information to get a rough estimation of the RTT and
we use the minimum observed RTT as our estimate. This estimation ignores the queueing delay in
the path and underestimates the RTT. Hence, it underestimates the sub-RTT burstiness.
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server then enters the RUNNING state. In the RUNNING state, it listens to the port
for any UDP packets that match the ID for the request. When the server receives
more than 10 packets, or it detects more than 128 packet loss, it sends a report packet
to the client via TCP connection. The server stays in the RUNNING state until it
receives a StopPacket from the client. When the server receives a StopPacket, it sends
the last report and waits for a normal TCP exit. At any time if there is abnormal
behavior, the server enters the AbnormalStop state, sends a StopPacket to the client,
and closes the connection.

Abnormal behavior is defined as one of the following symptoms:
e A read or write error in TCP socket;

e A corrupted UDP packet;

e The measurement has been idle for more than 10 seconds.

For these abnormal behaviors, the client will receive a StopPacket with an error

message, and the result in this measurement will be discarded.

4.3.2.3 Design of measurement clients

The design of the client is shown in Figure 4.15.

It sends a measurement request to a server which is randomly chosen from a list,
and waits for the StartPacket. Once the StartPacket arrives, it enters the Operation
state, in which it sends UDP packets in a specific pattern. Upon the receipt of
a ReportPacket, it calculates the RT'T estimation and records the delay and loss
information into a file. When the measurement period is over, the client exits the
Operation state by issuing a StopPacket with error code zero and waits for the last
report. The client stops upon timeout or the arrival of the report.

Each site runs the client randomly every 30 minutes. Each measurement period
lasts 5 minutes. The client sends UDP at a rate less than 1 packet per ms. Each UDP

packet is no greater than 400 bytes .!* Hence, the average throughput over the mea-

14The maximum packet size of 400 bytes is to guarantee that the packet will not be fragmented
by a router with a small MTU of 500.
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STOP_Timeout: 5sec
Figure 4.15: State machine of a measurement client in PlanetLab

surement period is no greater than 3.2Mbps (with 400 bytes per packet). The average
throughput is only 384Kbps with 48-byte packets. We usually ran experiments with
packet sizes of 48 bytes or 400 bytes and compared the results to make sure that our
measurement traffic did not inject additional congestion. Before each measurement,
we ran ping and traceroute to record the RTT and the routing paths. The RTT
reported by ping will be used to compare the delay measurement and validate the
results. The routing path information can be used to detect route changes and path

intersections. Currently, we only use it to calculate hop count of a path.

4.3.3 Deployment and data pre-processing

We deploy this measurement system in 26 sites in the PlanetLab . In each measure-
ment, the client in a site randomly picks a server. Hence, 650 directional paths are
measured. As listed in Table 4.8, our sites are geographically located on different
continents. Among them, 6 are in California, 11 are in other parts of United States,
3 are in Canada and the rest are in Asia, Europe, and South America. The RTTs of
these paths have a range from 2ms to more than 200ms.'?

Our system uses a central monitor to maintain the sites in the experiments. The

15The highest measured RTT is more than 300ms, depending on the time of the day.
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Node

Location

planetlab2.cs.ucla.edu

Los Angeles, CA

planetlab2.postel.org

Marina Del Rey, CA

planet2.cs.ucsb.edu

Santa Barbara, CA

planetlabl1.millennium.berkeley.edu

Berkeley, CA

planetlabl.nycm.internet2.planet-lab.org

Marina del Rey,CA

planetlab2.kscy.internet2.planet-lab.org

Marina del Rey,CA

planetlab3.cs.uoregon.edu

Eugene, OR

planetlabl.cs.ubc.ca

Vancouver, Canada

kupll.ittc.ku.edu

Lawrence, KS

planetlab2.cs.uiuc.edu Urbana, 1L
planetlab2.tamu.edu College Station, TX
planet.cc.gt.atl.ga.us Atlanta, GA

planetlab2.uc.edu

Cincinnati, Ohio

planetlab-2.eecs.cwru.edu

Cleveland, OH

planetlabl.cs.duke.edu Durham, NC
planetlab-10.cs.princeton.edu Princeton, NJ
planetlabl.cs.cornell.edu Ithaca, NY

planetlab2.isi.jhu.edu

Baltimore, MD

crt3.planetlab.umontreal.ca

Montereal, Canada

planet2.toronto.canet4.nodes.planet-
lab.org

Toronto, Canada

planet1.cs.huji.ac.il

Jerusalem, Israel

thul.6planetlab.edu.cn

Beijing, China

lzul.6planetlab.edu.cn

Lanzhou, China

planetlab2.iis.sinica.edu.tw

Taipei, China

planetlabl.cesnet.cz

Czech Republic

planetlabl.larc.usp.br

Brazil

Table 4.8: PlanetLab sites in measurement
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monitor ensures that the client and server at each site run normally. It performs tasks
such as upgrade, data collection, and cleanup.

From October 2006 to December 2006, we periodically initiated constant bit rate
(CBR) flows between two randomly selected sites. For each experiment, two runs
of measurements were conducted: one with a packet size of 48 bytes and the other
with a packet size of 400 bytes. We compared these two results and validated the
measurement only if the two traces exhibited similar loss patterns. Hence, the effect of
traffic load from our own measurement CBR flows was negligible in our measurement
results. Each run lasted for 5 minutes. In analysis, we normalized the loss interval

by the RTT of the path.
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Chapter 5

Conclusions and Future works

This thesis studies the microscopic behavior of TCP congestion control. We find that
the burstiness at the microscopic level has huge impacts on the stability, efficiency,
fairness, and convergence of congestion control algorithms.

We categorize burstiness into two types: micro-burst and sub-RTT burstiness.

Micro-burst leads to quick convergence of queueing delay. This effect makes delay-
based congestion control algorithms much more stable than the fluid model predicts.
In particular, homogeneous TCP-Vegas flows or FAST flows are globally stable regard-
less of capacity and delay. This new prediction agrees with the experimental results
and are in sharp contrast to the fluid model prediction. With this observation, we
can design new algorithms that achieve both responsiveness and stability.

Sub-RTT level burstiness leads to on-off patterns in the data packet transmission
process. With DropTail routers producing bursty loss processes in sub-RT'T timescale,
sub-RTT level burstiness directly affects the loss synchronization rate, the probability
that one flow sees a packet loss during a congestion event. Loss synchronization
rate affects the efficiency, fairness, and convergence of loss-based congestion control
algorithms. With all these understandings, we can explain controversial problems
such as MIMD fairness, competition between paced TCP and bursty TCP, and slow
convergence of TCP.

We developed two new tools in the research process. The NS-2 TCP-Linuz is
a simulation module that runs Linux source codes directly. It is extensible for new

congestion control implementations, runs faster, and produces more accurate results.
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Since its introduction, NS-2 TCP-Linux has helped the Linux community identify
several implementation defects and parameter tuning problems. We expect that this
tool will be a bridge between the Internet engineering community and research com-
munity. The PlanetLab-based Internet loss measurement system uses UDP packets to
measure packet loss rates along different paths, with different packet arrival patterns
and different packet sizes. Different from the traditional TCP-based loss monitor
tools, the measurement results from this system are not affected by the bursty sam-
pling process of TCP.

The work in this thesis is the beginning, rather than the conclusion, of many new

questions. Future work is moving in several directions:

5.1 Packet Level Model for Delay-based Congestion
Control Algorithm

The packet level model used in this thesis has new predictions sharply different than
results from the commonly-used models. These new predictions agree with the ex-
perimental results. However, the packet level model is only accurate in a single flow
scenario and can only be extended to multiple homogeneous flows. We are still in
search of a good way to extend the model to cases with heterogeneous flows. One
possible direction is to use a two-level on-off processes, instead of one-level on-off

process, to model the packet level dynamics.

5.2 Application of the model for loss synchronization
rate

We have applied our understanding to explain several interesting and long-standing
problems. There are many other problems which we believe our findings can resolve.

These problems include:

e Friendliness between TFRC and TCP. TFRC claims to be friendly to TCP, but
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however, experimental results show that TFRC is too friendly and usually loses
to TCP, although the design of TFRC follows the TCP response function as
accurately as possible at the macroscopic level. We expect that the main reason
for the loss of TFRC is due to the difference at the microscopic level. Specifically,
the data packet transmission pattern of TFRC is similar to the pattern of paced
TCP, which leads to a higher loss synchronization rate than the one observed
by TCP sharing the same bottleneck. This different synchronization rate leads
to lower throughput for TFRC, when competing to TCP.

e Effects and extensions of RED. According to our model, RED is supposed to
help the fairness convergence of MIMD protocols. We will study this effect to
test our predictions. We also expect to use our research to help the parameter

tunings in RED.

e Loss measurement methodology. Most existing loss measurement tools use
TCP-based probing flows. This approach is easy to deploy (control is only
required on one side) but prone to the effect of burstiness in TCP. We need
to study further the implication of the loss measurement results from these

TCP-based tools and compare the accuracy against our UDP-based tools.

5.3 Improvement of new algorithms

The Persistent ECN algorithm is deterministic and subject to phase effects. We plan
to investigate the performance of the algorithm under a variety of application loads
and patterns, and investigate the possibility of randomizing the algorithm. The future
algorithm we expect will be a hybrid of persistent ECN and RED, which will provide

a persistent random signal in a congestion event.
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5.4 Extension to NS-2 TCP-Linux

The current status of this NS-2 module has its limitation. It might not be able to
simulate the Linux performance well in the case where the packet reordering in the
path is severe, or packet loss rate is extremely high. In future work, we plan to
include D-SACK [65] processing and the congestion window reduction undo function
from Linux. We are also considering developing a Delayed Ack module for NS-2 that
performs similar to Linux. Finally, we need to incorporate the ECN and F-RTO
functions in Linux to NS-2.

Furthermore, TCP-Linux provides a very good platform for testing different TCP
congestion control protocols with the flexible scenarios in NS-2. This can be a good
foundation towards a benchmark suite implementation for TCP congestion control
algorithms. We do plan to enhance our benchmark suites and summarize a set of
NS-2 scenarios for the benchmark.

Finally, we plan to extend our simulation framework to include a more detailed
model for distributed applications. Currently, we only use parallel flows as the ap-
plication. We plan to simulate more complicated scenarios such as a complete graph

topology in MapReduce [73].
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Chapter 6

Appendix

6.1 Complete list of control variables and functions

ported by NS-2 TCP-Linux

6.1.1 Control variables:
6.1.1.1 Local variables for each connection:

snd nxt: The next sequence that the flow is going to send.

snd una: The next sequence that the flow is waiting for acknowledgment

mss__cache: The size of a packet

srtt: 8 times of the smooth RTT

rx_opt.rev_tsecr: The timestamp echoed by the acknowledgment

rx opt.saw tstamp: Whether there is a timestamp in the acknowledgment

snd _ssthresh: the slow start threshold

snd _cwnd: the congestion window

snd cwnd cnt: the congestion window counter, since congesition window is in
unit of packet, when the congestion window increment is smaller than one, snd _cwnd _cnt
is increased instead. Whenever snd cwnd cnt is larger or equal to snd cwnd, the
snd cwnd cnt shall be decreased by snd cwnd and snd cwnd shall be increased by
1.

snd cwnd clamp: the upperbound of the congestion window
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snd cwnd_stamp: the last time that the congestion window is changed
bytes acked: the number of bytes that are acknowledged in this acknowledgment
icsk ca state: the state of congestion control: Normal (OPEN), Loss Recovery,
or time out.
icsk_priv: a sixteen 32bit integer array for private data of congestion control

algorithm

6.1.1.2 Global variables:

Besides the tcp sk structure, there are several global variables which are important
for congestion control algorithms:

tcp__time stamp: the current time in ms

sys_ctl _abc: whether and how the congestion control algorithm shall do Appro-
priate byte Counting.

tcp _max_burst: the maximum back-to-back burst that a TCP flow can send into

the network.

6.1.2 Function interfaces:
6.1.2.1 Required functions:

e cong avoid function: This function is called when an ack is received. The
implementation of this function is ecpected to change the congestion window
in this function during normal situation (without loss recovery). In Reno, this

means slow start and congestion avoidance.

e ssthresh function: This function is called when a loss event happens. It is
expected to return the slow start threshold after a loss event. The returned

value shall be half of snd_cwnd in Reno.

e min_ cwnd function: This function is called when a fast retransmission happens,
after ssthresh function. It is expected to return the value of the congestion

window after a loss event. In Reno, the returned value shall be snd_ ssthresh.
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6.1.2.2 Other optional function calls include:

RTT sample function (rtt sample): called when a RTT sample is detected, a con-
gestion control algorithm shall implement this function if it has special requirement
on RTT sampling;

State change function (set state): called when the congestion control state is
changed (among Open (normal state) state, Loss Recovery state, and Loss (timeout)
state).

Congestion event function (cwnd event): called when there is a special event
that might be interesting for a congestion control algorithm. The possible conges-
tion events include: TX START, CWND_ RESTART, COMPLETE CWR, FRTO,
LOSS, FAST ACK and SLOW _ACK.

The congestion window after loss (undo cwnd): called when the flow exists loss
recovery.

Packet Acked function (pkts acked): called when a packet is acknowledged.

Initialization function (init): called when the congestion control algorithm is
loaded. Any private data in icsk priv shall be intialized here;

Destroy function (release): called when the congestion control algorithm is re-

moved, private data shall be deleted here.
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Algorithm 4 Randomized Pacing
For each flow i, given w; (t) from congestion control algorithm; ¢ is the current system

time.

w;(t) = max {w; (t) + o, min {2w; (t) , ssthresh(t)}} is the predicted value of the con-
gestion window in the next RTT.

v;(k) is the time when the k-th packet of flow 7 is supposed to be sent according to
pacing algorithm, v;(0) « 0.

For each packet to be transmitted (allowed by the congestion window and receiver
window constraints):

1. Uz(k) — Uz(k - 1) + RTT

w;(t)

RTT RTT
2. s < v;(k) + random [— 2l () 2w£(t)]

3. send k-th packet at time min {s, ¢}

6.2 A randomized version of pacing

There have been many proposals of different pacing algorithms [20, 21]. The pacing
algorithm suggested in these literatures is a deterministic algorithm which strictly
pace out packets evenly in an RTT. We observed that this approach is very likely to
introduce phase effect in our simulations.

Our algorithm randomizes the paced TCP by perturbing the paced packet trans-
mission time with a zero-sum uniform random offset. The advantage of a randomized
pacing algorithm over a deterministic pacing algorithm is that it can eliminate phase
effect. In this sense, it is similar to the randomized TCP algorithm proposed by
Chandrayana, et al [49]. In contrast to this research, we randomize a pacing algo-
rithm instead of a bursty TCP to make the packet distribution more spread-out.

Algorithm 4 describes the detailed steps.! For each flow 4, the congestion control
algorithm specifies a sending window w; (t) and the pacing algorithm predicts the
window in the next round-trip w;. The pacing algorithm replaces the ack-clocking

and controls the exact time that a packet is transmitted in sub-RTT time scales. The

!This algorithm description is simplified with an assumption that the network is always the
bottleneck. Modification is necessary in real deployment where some flows may be application-
limited.
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algorithm keeps a virtual sending time v;, which is the sending time of each packet if

a standard pacing were enforced. The actual packet transmission time is uniformly

distributed over the interval of [vi — };T;F, v; + };T;F , so there is always one packet in
’Ll),L- w.

i

every RTT /w interval while the phase effect is eliminated by randomizing the order
of packets from different flows. If the loss signal is persistent for RTT/w or longer,

the randomized pacing can ensure that all flows detect the same loss event with high

probability.
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6.3 Proofs of theorems

6.3.1 Theorem 2.1.2.1
For any time s (j) in which a packet is sent into the network,

p () <w(s(j))

And there always exists a packet j* which is sent at the same time (s (j) = s (j*)),

and

Furthermore, if w (s (j*)) > w (s (7 + 1)), p(j*+ 1) =w (s (j* + 1)).
Proof:

First, we prove that p(j) < w (s (j)) for any packet j.
Assume k* is the parameter that achieve p (j) =p(j —1)—k*+1land p(j — 1) —
F+1<w(a(j—1-—p(—1)+k")). We have:

j—p()=i—-1-p(G—-1+Fk

Wehave s (j) =a(j—p()) =a(f—-1-p@G -1 +k)andw(s(j) =w(a(j-1-p(G - 1)

Hence, p (j) < w (s (j))-

Second, we prove that p(j) = w (s (7)) for all jsuch that p(j) > p(j +1).

£9(j) 2 p (j + 1), we have: p(j)+1 > w(s (7). (Otherwise, p(j)+1 < w (s (7))
leadstop(j+1)=p(j)+1.)

We have p(j) > w(s(j)) since p(j) an w(s(j)) are both integers. Because
p(j) < w (5 (7)), we have p(j) = w (s ().

Finally, we prove that there is always a packet j* which satisfies s (j*) = s(j) and
p(*) = w (s ().

Ifp(G)=pl+1),5=7"

Otherwise, assume j* does not exist.
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Then for Vj" > j, we have p(j') < p(j’+1), s(j) = s(j') = s(j/+1) and
P +1) =w(s(j))

-/

Hence, p (j') is unbounded and w (s (j)) is unbounded.
This cannot happen since w (s (7)) is a finite number. Hence, such j* always exist.

According to (2.7),

p(j"+1)= max {p(j")—k+1p(") —k+1<w(s("+1))}
0<k<p(i*)

Let k* =w (s (5%)) —w (s (j*+ 1)) + 1, we have

pU) =k +1=w(s(") —[w(s(7)) —w(s (G +1)) +1]+1

=w(s(j"+1))

Hence, p (j* +1) > w (s (j* + 1)),
We have p (j*+ 1) = w (s (5%) + 1).

6.3.2 Theorem 2.1.2.2

, , ‘ 1
Vita(j)—a(j—1)=-
The equality holds if, and only if, s (j) < s(j — 1) + LCI)H
Proof:
b(j b(j —
at)=ati-1) = [st)+d+ D] [sgosar U=
b(G) bG-1)

The first step is by (2.6) ; the third step is by (2.5); and the fifth step is by (2.1).
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The equality in the forth step holds if, and only if, b (j — 1)+1—[s(j) —s(j — 1)] ¢ >

b(j—1)+1
.

0, which is equivalent to s (j) < s(j — 1) +

Hence, the theorem is proved.

6.3.3 Theorem 2.1.2.3

ForV1<j <j,Ifp(j),p(j/+1), - p(j) are non-decreasing,

b(j) <b(G)+p () —p()

Proof:

Since p(j')---p(j) are non-decreasing, we have Vj' < k < j :.

s(k+1)—s(k)=ak+1—p(k+1))—a(k—p(k))
k+1-pk+ 1] = [k—p(F)

1-[p(k+1) —p (k)]

Hence,

b(k)+1—[s(k+1)—s(kK)]c<bk)+pk+1)—pk) (6.1)

Since p (k+ 1) > p(k), we have

0<b(k)+p(k+1)—p(k) (6.2)

Combine (6.1) and (6.2) into (2.5) , we have

b(k+1) <b(k)+p(k+1)—p(k) (6.3)
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Summing up (6.3) for j' < k < j, we have:

S b1 b0 < 3 p (k1) —p ()

That is
b(j) —b(") <p(j) —p()

The theorem is proved.

6.3.4 Theorem 2.1.2.4

The equality holds if, and only if, Vk that satisfies j —p(j) +1 <k <j:a(k)—
a(k—1)="1.

Proof:

o) = s +d+ "

— ali—pl) +a+ Y

The first step is by (2.6) and the second step is by (2.4).

Hence,

&Cjud = a()—ali—p{))

v
M-
o=

The third step is by (2.13) of Theorem 2.1.2.2.
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Hence, the inequality holds.

The equality in the third step holds if, and only if, V& that satisfies j —p (j)+1 <
k<j:a(k)—a(k—1)=<¢

6.3.5 Theorem 2.1.3.2

The system is in stable-link state upon the arrival of packet j <= p(j) = ed + b (j)
Proof:

This is a the special case of Theorem 2.1.2.4 when VEk that satisfies j — p (j) < k <
jra(k)—a(k—1)=1

6.3.6 Theorem 2.1.3.3

If the system is in stable link state upon the arrival of packet j and p(j 4+ 1) > «d,

then the system is in stable link state upon the arrival of packet j + 1.
Proof:

Since the system is in stable-link state upon the arrival of packet j, we have

1
VEk that satisfies j —p(j) <k <j:a(k)—a(k—1) = . (6.4)

by Definition 2.1.3.1.

By (22), p(j+1)<p(j)+1 Thatis j+1—-p(G+1) =5 —p(Q)

For any k that satisfies j+1—p(j+1) <k < j+1, k satisfies j —p (j) < k < J.
By (6.4), a(k) —a(k—1) =21
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For packet j+1, since p (j + 1) > ed, we have p(j +1) > p(j) —b(j) by Theorem
2.1.3.2. Hence,

s+ —s(@)=a(G+1-pG+1)—a(i—p(Q))
J+1-p(j+1)
= Y ak)-a(k-1)
k=j—p(j)+1

> alk)—a(k-1)

k=j—p(j)+1

IA

The first step is from (2.4); the third step is from Thereom 2.1.2.2 and the fact
that p(j + 1) > cd; the forth step is from the definition of stable-link state and the
fact that 7 —p(j) <j—p(j) +1 < j+1—cd < j; the sixth step is from Thereom
2.1.3.2.

Since s(j+1) —s(j) < Mcﬂ, Thereom 2.1.2.2 shows a (j +1) —a (j) =

Ql— Ol

Hence, Vk : j+1—p(j+1) <k < j+1, we have a(k) —a(k—1) = The

system is in stable state upon the arrival of packet j 4 1.

The theorem is proved.

6.3.7 Theorem 2.1.3.4

IfVEk:j—p(j) <k <j:p(k)> cd; the system enters stable-link state upon the

arrival of j.
Proof:

By Theorem 2.1.2.4, p (k) > cd = b(k) > 0.
Hence, b(k—1)+1—[s(k) —s(k—1)]c>0.
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By Theorem 2.1.2.2, a (k) —a(k—1)=1.
We have Vk : j —p(j) <k <j:a(k)—a(k—1) =1 By Definition 2.1.3, the

system is in stable-link state upon the arrival of packet j.

6.3.8 Theorem 2.1.3.5
fVE:j—p(j)<k<j:p(k—1)>p(k)and p(j) < cd, the system has b(j) = 0.
Proof:

Assume b (j) > 0.
Since p (k — 1) > p(k), we have s (k) —s(k—1) > 2 and b(k) < b(k—1).
Hence, b(k) > b(j) >0forVk:j—p(j) <k < 7.
That is: a (k) —a(k—1) = 1.
By Definition 2.1.3, the system is in stable-link state upon the arrival of packet j.
By Theorem 2.1.3.2, we have p(j) = cd +b(j) > cd.
This contradicts the condition that cd > p (j).

Hence, the assumption cannot be true.

6.3.9 Corollary 2.1.4
Tht1 = T + W (5 (Thg1))
Proof:

According to (2.19), we have

Tit1 — Tk = W (s (7)) + max {Aw (73,) ,0}
= max {w (s (7)) + Aw (13,) ,w (s (7%)) }

= max {w (s (Trt1)) , w (5 (1))}

The third equation is based on (2.18).

Hence, 7341 > 7 + w (8 (Tpe1)).
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6.3.10 Theorem 2.1.4.1:

a(ti) < 5 (Tht1) < a(Trgr)
Proof:

$(Tk+1) < a(7g41) comes directly from the ack-clocking model (2.6) as d > 0.
We prove a (1) < s (7r41) by contradiction.
Assume a (1) > S (Tgy1)-

We have:

a(7k) > s (Tk1)

= a(Thp1 — P (Tht1))

The equality comes from (2.4).
According to Corollary 2.1.2.2,

T > Tht1 — P (Tht1)

That is:

Tht1 — Ti < P (Tht1)

< w (s (Ther))

The second inequality comes from Theorem 2.1.2.1.
According to Corollary (2.1.4), 741 — 7, > w (S (Tkt1))-
We reach a contradiction.

Hence, a (1) < s (Tg41)-

The theorem is proved.

6.3.11 Theorem 2.1.4.2:

V1w (s (1)) = p (k)
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Proof:

Let the last packet that is sent before a (7,_1) to be j'. That is:

' =max{j:s(j) <a(m-)}

We have w (s (j)) = p(j') Since j" > j,Vj: s (j) = s (j')-

Because s (7,-1) < a(mk—1) < s(7%), we have 7,1 < j' < 7. Hence, w(s(j')) =
w (s (Tk—1))-

We prove the theorem with two cases.

When Aw (13,-1) < 0:

For all j such that j/ < j < 7, — 1, we have w(s(j)) > w(s(j+ 1)) because
a(Th-g) < s(m1) <j < s(m) < alm).

Since p (j') = w (s (j')), we have p(j) = w (s (j)) for all j: j/ < j < 7, according
to Theorem 2.1.2.1.

Hence, p (1) = w (s (1%)).

When Aw (14_1) > 0:

We show that packet j' + 1 is sent at the time of a (74_1). By definition of j/, we

have s (j' +1) > a(74—1). Hence,

w(s (' +1))

w (@ (7k-1))

w (s (Tk-1)) + Aw (74_1)

=w(s(j) + Aw (1)

We have p (j' + 1) = maxocr<p) {p (7) =k + 1p (') =k +1 <w(a (G +1-p() +k)}

Let k=71 —j 4+ p(j'), we have:

k<p(j)

because

Tho1 < J'
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and

because

a(t-1) >s(j) =>4 —p ()

=71 —7 +p() >0

We also have

p(J) =1 —J7 +p()]+1<) —ma+1

a(i'=p()+m1— 7 +p("))

Hence,

p(G'+1) 2p([) =l =i +p ()] +1

:j/—Tk_l—Fl

and

s(+)=a(f+1-p(@'+1))

<a(j+1—-j+m1-1)

=a (Tk—l)
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Hence, s(j'+ 1) < a(7,_1). But definition of j', we have s(j'+ 1) > a(7%_1).
Hence, s (5’ + 1) = a (74-1).
Because there is a packet 7/ + 1 sent at the time a (74—1), according to Theorem
2.1.2.1, there exists a packet j* in which s(5*) = s(j'+ 1) and p (j*) = w (s (j*)) =

w (a(74-1)). Hence, s (5°) = a (" —p(j7)) = a (Tu-1).
That is

I =m1+p(")
= Th1 T w (s (57))
= Tp_1 +w (CL (Tk_l))

Hence, 7, = 5% and p (1) = w (7%).

6.3.12 Theorem 2.1.4.3:

b(m:) < Aw (1) or the system is in stable-link state upon the arrival of 7.
Proof:

Let 7/ =min{j : s(j) > a(7k—1)} to be the first packet that is sent after the arrival
of last decision packet.

By definition of j', we have s (j' — 1) < a (7,-1) < s (j).

Hence, p(j') < p (5’ — 1) (Otherwise, s(j' — 1) = s (j').)

Since s (j') 2 a(mh-1), a (4" = p(j)) = a (k1) and j' = 71 + p (7).

According to (2.20), for all j such that 7,y < 7' —p(j') < j < j, w(j) =
w (s (Tk—1))-

Since p(1x—1) = w(s(7k_1)), according to Theorem (2.1.2.1), we have p(j) =
w (s (j)) for all j such that 7,_; < j < 7.

Hence, for all j such that ;' —p(j') < j < j’, we have

p(j) = w (s (7))
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and because p (7)) < p (' — 1), wehave: Vj: ' —p (1) < <7, p(j) <p(—1).
If p(5) > ed, we have p(j) > cd for all j: ' —p(j') < j < 7. In this case, the
system is in link stable state upon the arrival of packet j'.
If p(j') < cd, we have b(j") = 0 according to Theorem 2.1.3.5.

Now we divide the problem into three situations.

Case 1: Aw (14-1) <0

S
Ve
<
—
I
g
—
»
Ve
<
—
~—
I

w (a (1,—1)) according to Theorem 2.1.2.1.

Hence, the p(j) sequence is non-increasing from j’ to 7, as the sequence from
j' ' —p(jy') to j'. Hence, we have b (1) = 0 or the system is in link stable state upon

the arrival of packet 7.
Case 2: Aw (1,—1) > 0 and p (j') < cd.
By p(j') < cd, we have b (') = 0.
By Aw (74_1) > 0, we have p(j') =p(j' = 1) = w (s (7%-1))

And since Aw (7,—1) > 0, the p(j) sequence is non-decreasing from j’ to 7.

According to Theorem 2.1.2.3, we have

b(re) <b(5") +p(m) —p (i)
<w (s (1) —w(s(Th-1))

= Aw (Tk—l)

Hence, b (1) < Aw (74-1)-
Case 3: Aw (1,-1) > 0 and p(j') > cd.

By Aw (7,_1) > 0, we have p (j) sequence is non-decreasing from j’ to 7. Hence,
p(r) = p (i) > cd.

Hence, the p (j) > cd for all j such that j' — p (j') < j < 7. Hence, the system is

in link stable state upon the arrival of packet 7, according to Theorem 2.1.3.4.
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6.3.13 Theorem 2.1.5

Given the ack-clocking model described in (2.3)(2.4)(2.5)(2.6) and the TCP Vegas
congestion control algorithm described in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP
flow converges to equilibirum regardless of capacity ¢, propagation delay d and initial

state.

If ad > 1, given any initial state, we have

AJ:Vji>J:icd+ad—1<w(s(j) <cd+ad+1land ad—1<b(j) <ad+1

Proof:

First, we prove that 3K, : Vk > Ky : w(a (1)) > cd + ad — 1.

Given any intial state w (s (7)), if w(s (7)) < ed + ad — 1, we have: p(7,) =
w (s (1)) < ed+ ad—1.

According to Theorem 2.1.4.3, we have that either b () < A(7,—1) < 1 or the
system is in link stable state upon the arrival of 7.

For the first case, since b (1) < 1, we have p (1) < cd+b (1) by Theorem 2.1.2.4.
We have

In this case, Aw (1) = 1.

For the second case, since the system is in link stable state, we have p (1) =
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cd + b (). We have
p(Tk) B P(Tk) . p(Tk) p(Tk)

d  D(n) d 4+
_b(m) [Cd+b(m)]

d(cd+b())
_b(m)
- d

p(m) —cd

d

cd+ad—1—cd
- d
<_

o

Hence, Aw (1) = 1 as long as w (s (7)) < ed + ad — 1. Since cd + ad — 1 is finite,

there exists an K3 which satisfies w (s (7x,)) > c¢d + ad — 1.
Second we prove that Vk > Ky, w (s (7)) > cd + ad — 1.

Assume the window size will be smaller than or equal to c¢d + ad — 1 for some
k > K;. Let the smallest of such k to be k’. That is:w (s (7)) < ¢d + ad — 1 and
Vi : K <k<kK:w(s(m))>cd+ad—1.

By this assumption, we have: Aw (7p—1) = —1 and w (s (1—1)) < ed + ad.

But since cd+ad —1 < w (s (7p—-1)) < ed + ad, we have: p (1p—1) = cd+ b (Tp-1)

and

plw-1) plw—1) plw-)  plw-1)

d D(Tk/_l) a d d‘l‘ (Tk’ )
_ b(mw—1)p(Tw-1)
d(Cd‘Fb(T]y ))

_ b(mwa)
d
_ p(Tk/_l) —cd
d
<cd+ad—cd
- d

IA

1
e}
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Hence, Aw (74—1) > 0. This contradicts our assumption that Aw (1_1) = —1.
Hence, k" does not exist.
Second, we can prove that 3Ky > Ky : Vk > Ky : w(a (1)) < cd+ ad + 1. The
proof is very similar to the first step and is ignored here.?
Finally, let K = max{K;, K}, we have Vk > K :ecd+ad — 1 < w(a(m)) <
cd+ad+ 1.

Let J = 71g, according to Theorem 2.20, we have

Vi>J:icd+ad—1<w(s(j)) <cd+ad+1

2In fact, it is easier because the link-stable state is always satisfied for all k : k > K,
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