
Mi
ros
opi
 Behavior of Internet Congestion Control
Thesis byXiaoliang (David) WeiIn Partial Ful�llment of the Requirementsfor the Degree ofDo
tor of Philosophy

California Institute of Te
hnologyPasadena, California2007(Defended Feb 15, 2007)

ii

© 2007Xiaoliang (David) WeiAll Rights Reserved

iii
A
knowledgements
I would like to thank my adviser, Prof. Steven Low, for his guidan
e and support. Ihave learned a lot on how to do rigorous theoreti
 resear
h in working with Steven.Espe
ially, I appre
iate his support on my di�erent opinions in the proje
ts, even theywere sometimes naive. Su
h support has been keeping me enthusiasti
 in the work.His patien
e and so
ial gra
e with whi
h he delivers his thoughts are very impressive.Under his guidan
e, I have learned mu
h more than s
ienti�
 knowledge.Spe
ial thanks go to Prof. Pei Cao, my adviser in both Google and Stanford, forher inspiration and guidan
e in my experimental resear
h. From the
ollaborationwith Prof. Cao, I have learned how to do experimental resear
h with
onvin
ingresults. I really feel lu
ky to have got the
han
e to work with Pei and be exposed tothe many
hallenging problems in large s
ale systems in the real world.My gratitude also extends to Prof. Mani Chandy, Prof. John Doyle and Prof.Jason Hi
key for serving in my
ommittee for both the
andida
y and the �nal exam.I bene�t a lot from our dis
ussions on the resear
h progress.I thank my o�
emates Dr. Anil Hirani and Jerome White. They shared so mu
hexperien
e with me that I was lu
ky to avoid many mistakes. Dis
ussions with themalso provided me a mu
h larger view in the world beyond networking.I thank all my
olleagues and friends who shared my pain and happiness in NetLab:Dr. La
hlan Andrew, Dr. Lijun Chen, Dr. Cheng Jin, Dr. Lun Li, Dr. MortadaMehyar, Dr. Kevin Ao Tang, Dr. Jiantao Wang and Dr. Bartek Wydrowski. La
hlangave me many extremely helpful suggestions on the early drafts of this thesis. Also, Ifeel extremely fortunate to have Christine Ortega and Betta Dawson as our se
retaries.They have o�ered su
h great help that all the paperwork and
onferen
e trips be
ame

ivsimple.This thesis is based on the Latex
lass and Lyx template shared by Dr. Ling Li.Without his help, this thesis
ould not physi
ally exist.Finally, I would like to thank my parents and my girlfriend Chang Liu. Theirsupport is the endless power that en
ourages me through the di�
ulties.

v
Abstra
t
The Internet resear
h
ommunity has fo
used on the ma
ros
opi
 behavior of Trans-mission Control Proto
ol (TCP) and overlooked its mi
ros
opi
 behavior for years.This thesis studies the mi
ros
opi
 behavior of TCP and its e�e
ts on performan
e.We go into the pa
ket-level details of TCP
ontrol algorithms and explore the be-havior in short time s
ales within one round-trip time. We �nd that the burstinesse�e
ts in su
h small time s
ales have signi�
ant impa
ts on both delay-based TCPand loss-based TCP.For delay-based TCP algorithms, the mi
ro-burst leads to mu
h faster queue
on-vergen
e than what the traditional ma
ros
opi
 models predi
t. With su
h fast queue
onvergen
e, some delay-based
ongestion
ontrol algorithms are mu
h more stable inreality than in the analyti
al results from existing ma
ros
opi
 models. This observa-tion allows us to design more responsive yet stable algorithm whi
h would otherwisebe impossible.For loss-based TCP algorithms, the sub-RTT burstiness in TCP pa
ket transmis-sion pro
ess has signi�
ant impa
ts on the loss syn
hronization rate, an importantparameter whi
h a�e
ts the e�
ien
y, fairness and
onvergen
e of loss-based TCP
ongestion
ontrol algorithms.Our �ndings explain several long-standing
ontroversial problems and have in-spired new algorithms that a
hieve better TCP performan
e.

vi

vii
Contents
A
knowledgements iiiAbstra
t v1 Introdu
tion 11.1 Window-based implementation of TCP 21.1.1 Mi
ro-burst . 51.1.2 Sub-RTT burstiness . 61.2 Fluid models . 71.3 Controversial problems . 111.3.1 Stability of TCP Vegas . 111.3.2 Fairness of homogeneous MIMD
ongestion
ontrol algorithms 111.3.3 E�e
t of TCP pa
ing . 121.4 S
opes and limitations . 121.5 Summary of results . 131.6 Organization of this thesis . 142 Mi
ros
opi
 E�e
ts on Delay-based Congestion Control Algorithms 152.1 Stability of a single TCP-Vegas �ow 162.1.1 Modeling a
k-
lo
king . 162.1.1.1 Assumptions . 162.1.1.2 A pa
ket level model for a
k-
lo
king 172.1.2 Properties of a
k-
lo
king . 19

viii2.1.2.1 Relation between the number of pa
kets in �ight andthe window size . 202.1.2.2 Pa
ing of a
knowledgments 212.1.2.3 Upper bound of queue in
rement 212.1.2.4 Lower bound of queue 212.1.3 Queue
onvergen
e . 222.1.3.1 De�nition of Stable-Link state 222.1.3.2 The number of pa
kets in �ight and BDP 232.1.3.3 Persisten
e of Stable-Link state 232.1.3.4 Entran
e of Stable-Link state 232.1.3.5 Pa
ing of mi
ro-burst 242.1.4 Properties of
ongestion
ontrol in RTT times
ale 242.1.4.1 Timing of the de
ision pa
kets 252.1.4.2 Equivalen
e of the window size and the number ofpa
kets in �ight . 262.1.4.3 Link
onvergen
e upon de
ision pa
kets 262.1.5 Stability of TCP Vegas . 272.1.6 Validation . 282.2 FAST algorithm and its stability . 302.2.1 FAST algorithm . 302.2.2 Model for homogeneous �ows 342.2.3 Stability of FAST in homogeneous network 362.2.3.1 Convergen
e of the sum of windows 372.2.3.2 Convergen
e of individual �ows 373 Mi
ros
opi
 E�e
ts on Loss-based Congestion Control Algorithms 393.1 A model for loss syn
hronization rate 403.1.1 Burstiness in the pa
ket loss pro
ess 423.1.1.1 Measurement . 423.1.1.2 Possible Sour
es of sub-RTT Burstiness 47

ix3.1.2 Modeling loss syn
hronization rate 483.1.3 TCP Pa
ing and RED . 513.1.4 Validation . 533.1.5 Asymptoti
 results . 543.2 Impli
ations on Performan
e of Loss-based TCP 573.2.1 Fairness
onvergen
e . 573.2.1.1 De�nition of Fairness Convergen
e Time 573.2.1.2 Loss Syn
hronization Rate and Fairness Convergen
e 583.2.1.3 Fairness
onvergen
e with bursty TCP and DropTailRouters . 603.2.2 Convergen
e of MIMD algorithms 623.2.3 Performan
e of TCP Pa
ing 643.2.3.1 Aggregate Throughput 653.2.3.2 Fairness
onvergen
e 683.2.4 Competition between pa
ed TCP and bursty TCP 713.2.4.1 Aggregate Throughput 713.2.4.2 Fairness Convergen
e 723.3 Algorithms . 723.3.1 Persistent ECN algorithm . 753.3.2 Loss syn
hronization rate with di�erent algorithms 763.4 Performan
e in Simulation . 773.4.1 Fairness
onvergen
e and �nishing time of parallel �ows 773.4.1.1 Case studies on short-term fairness 773.4.1.2 Summaries of short-term fairness 803.4.1.3 Results on data transfer laten
y 803.4.2 Aggregate throughput with persistent ECN 833.4.3 Aggregate throughput with
o-existing bursty TCP and pa
edTCP under persistent ECN 83

x4 Resear
h Tools 874.1 A testbed with emulation router and Linux hosts 874.1.1 Introdu
tion to Dummynet . 874.1.2 Topology . 884.1.3 Measurement . 884.2 NS-2 TCP-Linux : an extensible TCP simulation module in NS-2 . . 894.2.1 An introdu
tion to TCP implementation in NS-2 894.2.2 An introdu
tion to Linux TCP 914.2.3 Design of NS-2 TCP-Linux 954.2.3.1 Interfa
e . 954.2.3.2 Code ar
hite
ture . 964.2.3.3 S
oreboard1: improving the a

ura
y by better lossre
overy . 984.2.3.4 SNOOPy Queue S
heduler: Speed up the simulationwith a better s
heduler 1004.2.4 Validation of NS-2 TCP-Linux 1024.2.4.1 Extensibility . 1034.2.4.2 A

ura
y . 1044.2.4.3 Simulation performan
e 1074.2.4.4 An example: identifying a potential bug in LinuxHighSpeed TCP implementation 1084.2.5 Usages in resear
h . 1094.3 A pa
ket level measurement tool in PlanetLab 1114.3.1 An introdu
tion to PlanetLab 1124.3.2 Design of the measurement system 1124.3.2.1 Message formats . 1134.3.2.2 Design of measurement servers 1154.3.2.3 Design of measurement
lients 1164.3.3 Deployment and data pre-pro
essing 117

xi5 Con
lusions and Future works 1215.1 Pa
ket Level Model for Delay-based Congestion Control Algorithm . 1225.2 Appli
ation of the model for loss syn
hronization rate 1225.3 Improvement of new algorithms . 1235.4 Extension to NS-2 TCP-Linux . 1246 Appendix 1256.1 Complete list of
ontrol variables and fun
tions ported by NS-2 TCP-Linux . 1256.1.1 Control variables: . 1256.1.1.1 Lo
al variables for ea
h
onne
tion: 1256.1.1.2 Global variables: . 1266.1.2 Fun
tion interfa
es: . 1266.1.2.1 Required fun
tions: 1266.1.2.2 Other optional fun
tion
alls in
lude: 1276.2 A randomized version of pa
ing . 1296.3 Proofs of theorems . 1316.3.1 Theorem 2.1.2.1 . 1316.3.2 Theorem 2.1.2.2 . 1326.3.3 Theorem 2.1.2.3 . 1336.3.4 Theorem 2.1.2.4 . 1346.3.5 Theorem 2.1.3.2 . 1356.3.6 Theorem 2.1.3.3 . 1356.3.7 Theorem 2.1.3.4 . 1366.3.8 Theorem 2.1.3.5 . 1376.3.9 Corollary 2.1.4 . 1376.3.10 Theorem 2.1.4.1: . 1386.3.11 Theorem 2.1.4.2: . 1386.3.12 Theorem 2.1.4.3: . 1416.3.13 Theorem 2.1.5 . 143

xiiBibliography 147

xiii
List of Figures
1.1 A
k-
lo
king e�e
t in TCP data transmission 31.2 Sub-RTT level burstiness . 82.1 A single TCP Vegas �ow using a path with a bottlene
k
apa
ity of800Mbps and a propagation delay of 200ms. The pa
ket size in thesimulation is 1000 bytes per pa
ket. 292.2 100 Homogeneous TCP Vegas �ows sharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket sizein the simulation is 1000 bytes per pa
ket. 312.3 100 Homogeneous TCP Vegas �owssharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket sizein the simulation is 1000 bytes per pa
ket. 322.4 100 Homogeneous TCP Vegas �owssharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket sizein the simulation is 1000 bytes per pa
ket. 333.1 Loss intervals in NS-2 measurements.Note that all the CDF �gures in this
hapter have X-axles in log-s
ale,and all the PDF �gures in this thesis have Y-axles in log-s
ale. 443.2 Loss intervals in Dummynet measurements. 453.3 Loss intervals in PlanetLab measurements. 46

xiv3.4 Congestion dete
tion within one RTT: a �ow uses its data pa
ket pro-
ess to sample the loss pro
ess. The loss syn
hronization rate is theprobability that one of the wi pa
kets from �ow i (distributed over Kpa
kets) happens to be one of the L dropped pa
kets (distributed overM pa
kets). 483.5 Syn
hronization rate:
omputational results from the model 513.6 Pa
ket loss with window-based implementations 523.7 Pa
ket loss with rate-based implementations 523.8 Sampling e�e
ts of TCP and pa
ing (simulation results) 523.9 Syn
hronization rate with
urrent TCP, TCP Pa
ing and RED 553.10 Syn
hronization rates of two �ows with di�erent window sizes, amongN �ows (N=2 to 100), with bursty TCP or pa
ed TCP (MatLab results). 563.11 Relation between fairness
onvergen
e time F and syn
hronization rate
λ (MatLab results) . 593.12 Convergen
e time of di�erent TCPs in simulations with di�erent numberof �ows and di�erent bu�er sizes (in pa
kets). 613.13 Convergen
e of S-TCP:
ongestion window traje
tories of the fastest�ow and the slowest �ow . 633.14 MIMD fairness . 643.15 Syn
hronization throughput loss of di�erent
ongestion
ontrol algo-rithm (MatLab results) (BDP = 10440 pa
kets) 663.16 Normalized Throughput Gain of isolated bursty TCP or pa
ed TCP insimulations . 673.17 Convergen
e time with TCP Pa
ing in simulations 693.18 Summary of
onvergen
e time of Reno, HS-TCP and S-TCP in simula-tions . 703.19 Normalized Throughput Gain with
o-existing pa
ing TCPs and burstyTCP in simulations . 733.20 Convergen
e time with
o-existing pa
ing TCPs and bursty TCPs insimulations . 74

xv3.21 Convergen
e time of Reno, HS-TCP and S-TCP with RED in simula-tions . 783.22 Convergen
e time of Reno, HS-TCP and S-TCP with Persistent ECNin simulations . 793.23 Summary of
onvergen
e time of Reno, HS-TCP and S-TCP in simula-tions . 813.24 Data transfer laten
y (normalized by theoreti
 lower-bound) with par-allel �ows sending a total of 64MB data Both X and Y axles are in logs
ale. 823.25 Normalized Throughput Gain with isolated pa
ing TCPs or bursty TCPin simulations . 843.26 Normalized Throughput Gain with
o-existing pa
ing TCPs and burstyTCP in simulations . 854.1 Dummynet testbed . 884.2 A very simple implementation (Reno) of the
ongestion
ontrol interfa
e 944.3 Code stru
ture of TCP-Linux . 964.4 State ma
hine of ea
h pa
ket . 994.5 SACK queue data stru
ture . 1004.6 Setup of NS-2 Simulation . 1034.7 Setup of Dummynet Experiments . 1034.8 Throughput under di�erent random loss rate (log-log s
ale) 1064.9 Simulation time of di�erent bottlene
k bandwidth (log-log s
ale) 1084.10 Simulation time of di�erent number of �ows (log-log s
ale) 1094.11 Memory usage of di�erent number of �ows (x-axle in log s
ale) 1104.12 A potential bug in Linux implementation of HighSpeed TCP 1114.13 Setup of NS-2 simulations . 1124.14 State ma
hine of a measurement server in PlanetLab 1154.15 State ma
hine of a measurement
lient in PlanetLab 117

xvi

xvii
List of Tables
3.1 Average loss syn
hronization rates of TCP with a DropTail router . . . 603.2 Average loss syn
hronization rates with di�erent improvements 774.1 Important variables in t
p_sk . 954.2 Congestion window traje
tory of di�erent
ongestion
ontrol algorithms 1044.3 Congestion window traje
tory of Reno, Highspeed TCP and Vegas . . 1054.4 StartPa
ket format . 1144.5 StopPa
ket format . 1144.6 UDPPa
ket format . 1144.7 ReportPa
ket format . 1154.8 PlanetLab sites in measurement . 118

xviii

xix
List of Algorithms

1 Pseudo-
ode of A
k-
lo
king . 52 FAST algorithm . 353 Persistent ECN . 764 Randomized Pa
ing . 129

xx

1
Chapter 1Introdu
tion
Transmission Control Proto
ol (TCP) is one of the most important proto
ols in theInternet proto
ol suites (often refereed as TCP/IP sta
k). It guarantees reliable andin-order data delivery from senders to re
eivers and is estimated to
arry 70% to95% of the Internet tra�
 in re
ent years. As the
riti
al
omponent that
ontrolsthe TCP data transmission rate, the TCP
ongestion
ontrol algorithm plays a veryimportant role in the performan
e of the Internet. There have been many studies onthe TCP
ongestion
ontrol algorithm in terms of e�
ien
y, stability, fairness, ands
alability sin
e its introdu
tion in the late 1980's. There have been dozens of newproposals in the design and implementations of TCP
ongestion
ontrol. Most ofthese studies are based on models that fo
us on the ma
ros
opi
 behavior of TCP
ongestion
ontrol algorithms. These models
apture average data transmission ratesin times
ales of multiple round-trip times (RTT). They assume that the TCP datatransmission pro
ess is a smooth and di�erentiable pro
ess. This assumption is,however, in sharp
ontrast to real TCP implementations, whi
h produ
e bursty tra�
in various times
ales.This thesis investigates the mi
ros
opi
 behavior of TCP. In parti
ular, we studythe pa
ket-level details of TCP behavior in times
ales that are within an RTT. Ourstudy �nds that the mi
ros
opi
 e�e
ts of window-based TCP implementation, (a
k-
lo
king e�e
ts), have huge impa
ts on TCP's stability, fairness, and
onvergen
e.Our �ndings
larify several long-standing mis
on
eptions in the network resear
h
ommunity. For example:

2
• Stability of TCP Vegas
• Fairness of the Multipli
ative-In
rement-Multipli
ative-De
rement (MIMD) al-gorithms
• The performan
e of TCP Pa
ing
• Friendliness between TCP and TCP Pa
ingOur �ndings provide explanations to these questions, whi
h are seemingly unrelatedunder the existing ma
ros
opi
 models. Our study also suggests new algorithms thatimprove TCP performan
e in terms of responsiveness and fairness
onvergen
e.1.1 Window-based implementation of TCPTransmission
ontrol proto
ol (TCP) is a window-based proto
ol for reliable datatransmission [1℄. The sender sends a window of pa
kets to the re
eiver and waitsfor a
knowledgments from the re
eiver. The data pa
kets are labeled with sequen
enumbers.1 When the re
eiver re
eives a pa
ket, it puts the pa
ket into its bu�erand sends ba
k to the sender an a
knowledgment pa
ket, with one integer indi
atingthe highest sequen
e number of
onse
utive pa
kets re
eived by the re
eiver. We saya data pa
ket is a
knowledged when the a
knowledgment of this data pa
ket or alater data pa
ket arrives at the sender. If no pa
ket is a
knowledged within a
ertaintime threshold2, the sender assumes the previously sent pa
kets are lost. The sender
annot send more pa
kets until it re
eives the a
knowledgments of some previouslysent pa
kets or it assumes some previously sent pa
kets are lost.In this pro
ess, the number of pa
kets that have been sent by the sender but nota
knowledged is
alled a �window�. When the window size is �xed, the transmissionof new data pa
ket is triggered by the arrival of the a
knowledgment of the previously1More a

urately, ea
h o
tet (8 bit byte) is the basi
 unit of data in TCP and ea
h o
tet has aunique sequen
e number. To simplify the dis
ussion, we take the pa
ket as the basi
 unit of data inthis thesis.2The time threshold is
alled RTO. RTO is always larger than an RTT and is usually equal toRTT plus four times of the varian
e in RTT [2℄.

3
3
 Packet 1

2
1

Ac
kn
ow
le
dg
me
nt
 f
or

 P
ac
ke
t1

 Packet 2

 Packet 3

 A
ck
no
wl
ed
gm
en
t
2

 A
ck
no
wl
ed
gm
en
t
3

 Packet 4

 Packet 5

 Packet 6

W=1
W=2
 Window Size=3

1
 2
 3

6
5
4

4

RTT measured by Packet 1

Figure 1.1: A
k-
lo
king e�e
t in TCP data transmissionsent pa
kets. This unique feature of TCP data transmission is
alled �a
k-
lo
king�.This pro
ess is illustrated in Figure 1.1.With a
k-
lo
king, the size of the window implies the average rate of the datatransmission. Sin
e there is always a window of pa
kets that are sent out but nota
knowledged, and the a
knowledgment of ea
h pa
ket takes one round-trip from thesender to the re
eiver and ba
k to the sender, only one window of pa
kets
an besent in ea
h round-trip time (RTT). Hen
e, the average rate of the data transmissionpro
ess is window sizeRTT .The TCP
ongestion
ontrol algorithm was introdu
ed to
ontrol the size of the�window� of ea
h TCP �ow so that the TCP pa
ket transmission rates do not ex
eedthe network
apa
ity.3 With the TCP
ongestion
ontrol algorithm, the �window� fora �ow (�ow i) is a fun
tion of time t. We denote it as wi (t), and it is
ontrolled inRTT time s
ale by a
ongestion
ontrol algorithm a

ording to the pa
ket delay, orloss information measured by the sender. There have been many proposals on howto design
ongestion
ontrol algorithms with delay or loss information.3This thesis fo
uses on the
ongestion in network. The
on
ept of window in this thesis alwaysmeans the
ongestion window. In real TCP, there is also a
on
ept of advertised window, whi
h isused to avoid end-host
ongestion.

4Loss-based
ongestion
ontrol s
hemes use pa
ket loss as a signal of network
on-gestion. For ea
h RTT in whi
h a TCP sour
e i does not dete
t a pa
ket loss, aloss-based
ongestion
ontrol algorithm assumes that the network is under-utilizedand gradually in
reases wi to in
rease the throughput of �ow i. For ea
h RTT inwhi
h the TCP sour
e dete
ts one or more pa
ket loss, the
ongestion
ontrol algo-rithm assumes that the network is
ongested and drasti
ally de
reases wi to relievenetwork
ongestion. To avoid under-utilizing the network, loss-based algorithms haveto periodi
ally generate loss. Most of the existing
ongestion
ontrol algorithms areloss-based [3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄. Delay-based algorithms use the
hangein RTT, measured by the delay between the pa
ket transmission time from senderand the a
knowledgment arrival time to sender, to infer the
ongestion level. WhenRTT ex
eeds a threshold, a delay-based
ongestion
ontrol algorithm assumes thatthe network is
ongested and redu
es wi; when RTT is below another threshold, thealgorithm assumes the network is under-utilized and in
reases wi. Some examples ofdelay-based
ongestion
ontrol algorithms are [13, 14, 15, 16, 17℄. Both loss-based
ongestion
ontrol algorithms and delay-based
ongestion
ontrol algorithms
ontrolthe average rate of a TCP �ow in time s
ale of RTT. This time s
ale is natural sin
ethe
ongestion
ontrol algorithm is a feed-ba
k
ontrol me
hanism with a feedba
kdelay of one RTT.Within one RTT, the underlying pa
ket transmission pro
ess is
ontrolled by thea
k-
lo
king me
hanism. A
k-
lo
king maintains a variable
alled �pa
kets-in-�ight�(p), whi
h is de�ned as the number of pa
kets that are sent, but not a
knowledged.At any time t and for ea
h �ow i, a
k-
lo
king always tries to mat
h pi (t) withthe window wi (t) spe
i�ed by the
ongestion
ontrol algorithm. The behavior of a
k-
lo
king
an be des
ribed in Algorithm 1. When pi (t) is larger than wi (t), no pa
ketis sent for the arrival of an a
knowledgment. Whenever pi (t) is smaller than wi (t),a
k-
lo
king implementation sends wi (t) − pi (t) pa
kets in a burst at the line-rateof the sender's network interfa
e
ard (NIC) to �ll the gap.4 This happens when an4Some implementations may even send this burst of pa
kets in the speed of CPU, whi
h is usuallymu
h faster than NIC speed.

5Algorithm 1 Pseudo-
ode of A
k-
lo
kingWhen an a
knowledgment that a
knowledges k pa
kets is re
eived by �ow i, or uponthe start of the �ow i:1. pi ← pi − k;2. wi ← F (wi)3. while (pi < wi)
• pi ← pi + 1

• send a pa
ket;
F (wi) is the response fun
tion of a
ongestion
ontrol algorithm. Besides wi, theresponse fun
tion of a loss-based algorithm takes pa
ket loss information as an input;the response fun
tion of a delay-based algorithm takes pa
ket delay information asan input.a
knowledgment arrives (pi is de
reased) or the
ongestion window wi (t) is in
reasedby the
ongestion
ontrol algorithm. This burst of pa
kets introdu
es two levels ofburstiness: mi
ro-burst and sub-RTT burstiness.1.1.1 Mi
ro-burstWhenever wi (t)−pi (t) > 1, multiple pa
kets are sent into the network ba
k-to-ba
k.Su
h a burst,
alled mi
ro-burst [18℄, has a peak rate higher than the bottlene
k
apa
ity and introdu
es an additional queueing delay to the router. If the bottlene
kbu�er size is smaller than the size of the mi
ro-burst, some pa
kets in the mi
ro-burstare dropped. Otherwise, the mi
ro-burst enters the bottlene
k bu�er and generatesan additional queueing delay equal to the length of the burst.There are two situations wherein mi
ro-burst is formed:The �rst is a sudden in
rement of the
ongestion window wi (t). In the start-upphase of a �ow, TCP uses slow-start [4℄ to probe the bottlene
k's available bandwidth.Slow-start doubles the
ongestion window every round-trip. This qui
k in
rement inthe
ongestion window leads to a gap between wi (t) and pi (t) and results in mi
ro-burst.

6The se
ond is a sudden de
rement in the number of pa
kets in �ight pi (t). A
-knowledgments are not reliably transmitted in the network; they
an be delayedor dropped in their return paths, due to
ongestion. When a
knowledgments aredropped in the reverse path of the network, the TCP sender
annot send any newpa
kets. On
e a later a
knowledgment arrives, the sender re
ognizes that severalpa
kets have arrived at the re
eiver (sin
e ea
h a
knowledgment a
knowledges all thein-sequen
e pa
kets that are re
eived by the re
eiver) and drasti
ally drops pi (t).5The gap between wi (t) and pi (t) results in mi
ro-bursts.Mi
ro-burst is transient and
an be mitigated by various methods, su
h as pa
ing[20, 21℄, burstiness
ontrol [22℄, or other me
hanisms [18℄. Sin
e the TCP
an onlysend, at most, a window of pa
kets into the network, the size of a mi
ro-burst, interm of number of pa
kets, will never ex
eed the window size. Hen
e, the e�e
t ofmi
ro-burst on pa
ket loss
an be eliminated by in
reasing bu�er size. It has beensuggested that the bu�er size in the router should hold at least half of the maximum
ongestion window so that the the mi
ro-burst triggered by slow-start, whi
h is halfof the
ongestion window,
an be fully absorbed by the router's bu�er without pa
ketloss [4℄.1.1.2 Sub-RTT burstinessAfter being bu�ered in the bottlene
k router, the ba
k-to-ba
k pa
kets within a mi
ro-burst are pro
essed by the router at rate c (pa
ket/se
ond), the router's
apa
ity.After one round-trip, the a
knowledgments of these data pa
kets return to the senderat rate c. The sender then sends the next window of pa
kets at rate c and waits forthe rest of the RTT until new a
knowledgments
ome ba
k. Hen
e, in sub-RTT times
ales, the sending rate xi (t)
an be approximated by an on-o� pro
ess. In the onperiod, pa
kets are transmitted at rate c pa
kets per se
ond, whi
h is usually mu
hhigher than the average rate of wi

RTT
. We
all this burstiness sub-RTT level burstiness.Sub-RTT level burstiness does not introdu
e ex
essive pa
ket loss or additional5This situation is
alled a
k-
ompression in [19℄.

7queueing delay (sin
e its peak rate is no greater than the bottlene
k
apa
ity c). How-ever, sub-RTT level burstiness a�e
ts the pa
ket arrival pattern of individual �ows.The on-o� pattern has signi�
ant impa
t on the fairness of loss-based
ongestion
ontrol algorithms, as we will explain in Chapter 3.On
e sub-RTT level burstiness is formed, the burstiness is maintained by a
k-
lo
king and its e�e
t
annot be eliminated by a large bu�er size or high multiplexinglevel. It has been shown that sub-RTT level burstiness persists in s
enarios witha single TCP �ow as well as in daily Internet tra�
 (from router tra
e) where thenumber of �ows is very large [23℄. Figure 1.2 illustrates su
h an example. In thisexample, 16 TCP �ows share a 100Mbps bottlene
k with a delay of 10ms and abu�er size of 250 pa
kets in NS-2 simulation. We re
ord the data pa
ket pro
ess ofea
h �ow at the bottlene
k link. The data presented in the �gure is
olle
ted 1300RTTs after the �ows start, when the �ows have been in the
ongestion avoidan
ephase for a long time. A green dot (t, i) , i = 1 · · ·16 in the �gure represents a pa
ketfrom �ow i going through the bottlene
k at time t. The green dots would evenlydistribute on a horizontal line if the data pro
ess was smooth. This �gure intuitivelyshows that:1. Within ea
h RTT, almost all �ows have data pa
ket pro
esses that are on-o�;2. This on-o� pattern within a RTT (sub-RTT burstiness) is maintained through-out the life of
onne
tions.Later on in this thesis, we use bursty TCP (or
urrent TCP) to denote a normalTCP (with a
k-
lo
king) and di�erentiate it from other spe
ial TCP implementationswhi
h eliminate a
k-
lo
king e�e
ts by me
hanisms su
h as TCP pa
ing (or pa
edTCP)[20℄.1.2 Fluid modelsThe TCP resear
h
ommunity has been developing several ma
ros
opi
 models tounderstand the TCP behavior.

8

1300 1305 1310 1315 1320 1325 1330

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

time (RTT)

flo
w

 #

Figure 1.2: Sub-RTT level burstiness

9A ma
ros
opi
 model for average TCP throughput was proposed in [24℄. Thema
ros
opi
 model
aptures the relation between pa
ket loss rate and average TCPthroughput over a loss epo
h. A series of work in late 1990s [25, 26℄ re�ned thema
ros
opi
 model and established a �uid model to study the ma
ros
opi
 behaviorof TCP Reno. Fluid model assumes that the data transmission rate of a �ow i (xi (t))is di�erentiable and equal to the average throughput in a round trip (window sizeRTT).Based on the �uid models, the TCP
ongestion
ontrol problems were mapped to thetraditional
ontrol problems [26, 27℄. This approa
h allows the resear
h
ommunityto explore the dynami
 properties of TCP/AQM in a rigorous manner. Results basedon this mapping appear in
urrent literature [27, 28, 29, 30℄.We give a brief introdu
tion of this model in the
ontext of homogeneous �ows.Given a network with N �ows {s1, s2, · · · , sN} and a single bottlene
k link. De�nethe link's ba
klog at time t as b (t) and its
apa
ity as c. The path has a propagationdelay of τ = τF + τB, where τF is the forward propagation delay and τB is theba
kward propagation delay. The round trip time (RTT) of the path at time t isdenoted by D (t).Assume the sending rate of �ow i is determined by its window wi (t) and the roundtrip delay D (t) as
xi (t) =

wi (t)

D (t)
(1.1)where

D (t) = τ +
b (t)

c
(1.2)the aggregate input rate for the link is x (t) =

∑

i xi

(

t− τF
). Then, the ba
klogpro
ess
an be modeled by

ḃ (t) =







∑

i xi

(

t− τF
)

− c if b (t) > 0

max
{

0,
∑

i xi

(

t− τF
)

− c
} if b (t) = 0

(1.3)
The
ongestion window wi (t) of sour
e i is determined by the
ongestion
ontrol

10fun
tion based on the feedba
k with the assumption that wi (t) is di�erentiable:6
ẇi (t) = F

(

wi (t) , q
(

t− τB
i

)) (1.4)where
q (t) =

b (t)

c
(1.5)is the feedba
k from the router. It
an be either queueing delay or pa
ket loss rate.7(1.1), (1.2), (1.3), (1.4) and (1.5) form an ordinary di�erential equation (ODE) sys-tem. Traditional
ontrol theory
an be applied to this system to analyze the dynami
properties of TCP. This �uid model has greatly inspired the network
ommunity andthe
ontrol
ommunity. Hundreds of papers have been published to analyze the sta-bility of di�erent TCP systems in di�erent s
enarios. Based on this model, the resultsalways show that there is a stability region for a TCP
ongestion
ontrol algorithm.The region depends on several parameters: the number of �ows (N), the round tripdelay (D), the bottlene
k
apa
ity (c), and some algorithm spe
i�
 parameters. Thesystems usually be
ome unstable when N is small, D is large, or c is large.However, we are
autious of this approa
h as the �uid models only
apture thema
ros
opi
 behavior of TCP. The �uid models assume that the TCP data trans-mission pro
ess xi (t) is smooth and di�erentiable. This is not true in reality. Asintrodu
ed in Se
tion 1.1, burstiness is very
ommon in real TCP systems. Mi
ro-burst
orresponds to a pulse fun
tion in xi (t) and sub-RTT burstiness
orrespondsto a step fun
tion in xi (t). The stability of a system
an be
ompletely di�erent if apulse fun
tion or a step fun
tion is in
luded. Furthermore, the predi
tions of the �uidmodels
ontradi
t with experimental results in some s
enarios, as shown in Se
tion1.3. We have to go into the details of mi
ros
opi
 TCP behavior and understandthese
ontradi
tions.6Here the feedba
k delay of q (t) is assumed to be the
onstant τB

i
. This is not true sin
e thefeedba
k will be further delayed by the queueing delay. However, all the models used in [27, 28, 29℄have the same assumption.7If the feedba
k is pa
ket loss rate, the linear relation between q (t) and b (t) only holds whenRandom Early Dropping (RED) [31℄ is applied.

111.3 Controversial problemsThere have been
ontradi
tions between the predi
tion of the �uid models and otherheuristi
 understandings and experimental results. We list some of them below.1.3.1 Stability of TCP VegasStability of delayed-based algorithms (e.g. TCP-Vegas) is a
ontroversial topi
. Withan approximate �uid model, it has been shown that TCP-Vegas has a small stabilityregion and an algorithm
alled Stabilized Vegas was suggested to stabilize TCP-Vegasin [29℄. However, another analyti
al result based on an extended �uid model showedthat neither TCP-Vegas nor Stabilized Vegas is stable [30℄. Both results showed thatTCP-Vegas is stable only small
apa
ity and small delay. They imply that TCP-Vegaswill be unstable with large enough
apa
ity or large delay. The
laims are supportedby NS-2 simulation in [29℄ and by ODE-based MatLab
al
ulation in [30℄. However,in our NS-2 TCP-Linux simulation and real experiments, TCP-Vegas rarely os
illates.Even when it os
illates in NS-2 simulations, the os
illation in the
ongestion windowis always very small, whi
h
an be the integer trun
ation e�e
t and other e�e
tsin NS-2 TCP-Vegas implementation. Therefore, it is not
lear how to interpret thestability results in the �uid model analysis to the real performan
e of TCP-Vegas.1.3.2 Fairness of homogeneous MIMD
ongestion
ontrol al-gorithmsMultipli
ative-In
rement-Multipli
ative-De
rement (MIMD) algorithms are a
lass of
ontrol algorithms whi
h in
rease and de
rease the
ongestion window multipli
ative.When MIMD algorithms do not observe
ongestion, they in
rease the
ongestionwindow by a small per
entage. When MIMD algorithms observe
ongestion, theyde
rease the
ongestion window by a large per
entage. It has been proved with astati
 model that two MIMD �ows with di�erent window sizes
annot
onverge toa fairness point even when they share the same network path [32℄. However, the

12analysis based on the �uid model proves that S
alable-TCP, an MIMD algorithm,
an
onverge to fairness [33℄ . In many experiments, it is observed that S
alable-TCP
annot
onverge to fairness [34, 17℄, so, it is not
lear if MIMD algorithms are fair ornot.1.3.3 E�e
t of TCP pa
ingTCP pa
ing is proposed in [20℄ for high speed long distan
e network. TCP pa
ing usesa rate
ontrol me
hanism to repla
e a
k-
lo
king and eliminates both mi
ro-burstsand sub-RTT burstiness as we des
ribed in Se
tion 1.1. Sin
e its introdu
tion, therehas been a long debate on the e�e
t of TCP pa
ing. Simulation results [20℄ show thatTCP pa
ing
an signi�
antly improve the throughput of TCP �ows in networks withlarge
apa
ity, long delay, and small bu�er. Simulations results [21℄ also show thatTCP pa
ing does improve TCP performan
e in both e�
ien
y and fairness. It is alsoshown, however, that TCP pa
ing might a
tually have lower average throughput inmany
ases [35℄. Even worse, TCP pa
ing loses to normal TCP when the two
o-exist.On the other hand, the network industry, espe
ially the network interfa
e
ard designindustry, has in
reasingly adopted the TCP pa
ing te
hnology into their produ
ts.Therefore, it is not
lear what exa
tly are TCP pa
ing's e�e
ts on performan
e.1.4 S
opes and limitationsWe explore the mi
ros
opi
 behavior of TCP and �nd new answers to these questions.We fo
us on the performan
e of homogeneous TCP �ows. Similar to Se
tion 1.2, thes
enario in our study has N homogeneous TCP �ows sharing a dumb-bell topologywith the following parameters:
• N : the number of �ows;
• τ : the propagation delay of the path;
• c: the
apa
ity of the bottlene
k (in pa
kets per se
ond);

13
• B: the bu�er size of the bottlene
k;
• b (t): the bottlene
k queue size;
• q (t): the queueing delay or loss rate of the path;
• D (t): the round trip time of the path;
• wi (t): the window size of �ow i at time t;
• xi(t): the pa
ket transmission rate of �ow i at time t.This study is the �rst step to exploring the mi
ros
opi
 behavior of TCP; further stud-ies that
over more general
ases with heterogeneous �ows and multiple bottlene
ksets are expe
ted in the future.1.5 Summary of resultsTo summarize, our investigations in mi
ros
opi
 behavior of TCP
ongestion
ontrolhas found that the a
k-
lo
king has signi�
ant impa
ts on TCP performan
e.For delay-based
ongestion
ontrol algorithms, mi
ro-burst makes the queue
on-verge mu
h faster than the �uid model predi
ts. This fast queue
onvergen
e leadsto better stability of delay-based
ongestion
ontrol algorithms. With a pa
ket-levelmodel, we
an prove that a single TCP Vegas �ow is always stable with any delayand any
apa
ity. This is in sharp
ontrast to the predi
tion of �uid models, whi
himplies that TCP Vegas will be unstable with small number of �ows, long delay andlarge
apa
ity. The new understandings also allow us to design more aggressive newalgorithms whi
h are both stable and responsive. Inspired by the fast queue
onver-gen
e, we design a new delay-based
ongestion
ontrol algorithm, FAST, to a
hieveresponsive
onvergen
e and stable queueing delay. We show that homogeneous FAST�ows are stable with any delay and any
apa
ity.For loss-based
ongestion
ontrol algorithms, the
ombination of burstiness inpa
ket loss pro
ess and sub-RTT burstiness in TCP data pa
ket pro
ess lowers loss

14syn
hronization rates among TCP �ows. Intuitively, this means that only a smallfra
tion of the TCP �ows dete
t pa
ket loss during a
ongestion event and mostother TCP �ows do not dete
t the
ongestion. A low syn
hronization rate has severalimpli
ations in the performan
e of TCP. First, with a low syn
hronization, the linkutilization TCP Reno �ows is higher sin
e fewer �ows slow down in ea
h
ongestionevent. Hen
e, the aggregate rate of bursty TCP
an be higher than the aggregate rateof pa
ed TCP. Se
ond, a low syn
hronization rate implies poor short-term fairness.Hen
e, the pa
ed TCP is fairer than bursty TCP. Third, when TCP and pa
ed TCP
o-exist, pa
ed TCP �ows lose to TCP �ows sin
e the pa
ed TCP �ows do not havesub-RTT burstiness in their data pa
ket pro
esses and have higher probability todete
t pa
ket loss in ea
h
ongestion event. Finally, with sub-RTT burstiness, a largenumber of TCP �ows with di�erent window sizes tend to have similar probabilityto dete
t a loss in
ongestion event. This similarity validates the syn
hronizationassumptions in [32℄ and leads to the unfairness of MIMD algorithms. Based onthese understandings, we propose to use TCP pa
ing to improve the fairness of TCP,espe
ially MIMD algorithms.We also propose a new link algorithm whi
h provides
onsistent ECN signals to in
rease the loss syn
hronization rate over all the burstyor pa
ed �ows.1.6 Organization of this thesisChapter 2 details the e�e
ts of mi
ro-burst on the stability of delay-based
ongestion
ontrol algorithms. Chapter 3 explores the sub-RTT level burstiness and its e�e
tson loss-based
ongestion
ontrol algorithms. We explain the methodologies used inour resear
h in Chapter 4. We summarize our
on
lusions and plans for future workin Chapter 5.

15
Chapter 2Mi
ros
opi
 E�e
ts on Delay-basedCongestion Control Algorithms
We fo
us on the e�e
ts of mi
ro-bursts on delay-based algorithms. As explainedin Se
tion 1.1.2, sub-RTT burstiness does not introdu
e additional delay, and wehave not found any sub-RTT burstiness e�e
t on delay-based
ongestion
ontrol algo-rithms. Mi
ro-bursts, however, have signi�
ant e�e
ts on the stability of delay-based
ongestion
ontrol algorithms. We found that mi
ro-bursts allow the queueing delayin the network system
onverge in a very short time and help to stabilize the systemin the presen
e of feedba
k delay.Stability of delay-based
ongestion
ontrol algorithms (e.g. TCP-Vegas [16℄) hasbeen a
ontroversial topi
 in the past years. One approximate �uid model showsthat TCP-Vegas has a small stability region and suggests an algorithm, StabilizedVegas, to stabilize TCP-Vegas [29℄. However, an extended �uid model
onsideringRTT variation shows that both TCP-Vegas and Stabilized Vegas are not stable [30℄.In both studies, �uid model analysis shows that TCP-Vegas is not stable with largeenough
apa
ity and delay. However, in all of our simulations and experiments, TCP-Vegas rarely os
illates. Even when it os
illates in simulations, the os
illation in the
ongestion window size is always smaller than ±2 pa
kets, whi
h
an be well explainedby the integer quantization e�e
t in implementation. Hen
e, there is no
onvin
ingexperimental eviden
e to verify whether TCP Vegas is stable or not. On the otherhand, there is no theory to prove the stability of TCP Vegas either.

16This
hapter provides a new answer that takes into
onsideration of mi
ro-burste�e
ts. With a pa
ket level model, we prove that a single TCP-Vegas �ow is al-ways stable, regardless of the round trip delay and the bottlene
k
apa
ity. Thisresult, whi
h agrees with our observations in simulations and experiments, is in sharp
ontrast from the �uid model results.The pro
ess of the proof reveals many properties of a
k-
lo
king and
onvergen
eof queue. The new understandings allow us to design new delay-based
ongestion
ontrol algorithms that are mu
h more responsive yet stable, whi
h would be impos-sible a

ording to the analysis of the �uid models. In parti
ular, we design a newdelay-based
ongestion
ontrol algorithm, FAST, to a
hieve mu
h faster
onvergen
ethan TCP Vegas while maintaining good stability. We prove that FAST is stablewith homogeneous sour
es in a network with any
apa
ity and any delay.2.1 Stability of a single TCP-Vegas �owWe propose a detailed pa
ket-level model for a single TCP �ow
ontrolled by a delay-based
ongestion
ontrol algorithm. This model reveals several interesting propertiesof a
k-
lo
king in a single bottlene
k link. It leads to a stability proof of a singleTCP-Vegas �ow.2.1.1 Modeling a
k-
lo
kingWe model a
k-
lo
king at pa
ket level. With the s
enario of a single �ow, we are ableto
apture the timing of ea
h individual pa
ket in the model and to understand thedetails of the a
k-
lo
king e�e
t.2.1.1.1 AssumptionsWe make the following three assumptions:1. The bottlene
k router has a deterministi

apa
ity of c and an in�nite bu�er;

172. The links on the path have no pa
ket loss and produ
e
onsistent round trippropagation delay of d se
; this round trip propagation delay in
ludes therouter's pa
ket pro
essing time 1
c
, and hen
e, d ≥ 1

c
;3. The sour
e
an send a mi
ro-burst of pa
kets instantaneously when the
onges-tion window is larger than the number of pa
kets in �ight; after a mi
ro-burstof pa
kets are sent, the number of pa
kets in �ight is equal to the
ongestionwindow.The �rst two assumptions are very
ommon in models for delay-based proto
ols.These two assumptions also appear in �uid model analysis su
h as [29℄. The thirdassumption is the key point of our pa
ket level model. Our model allows a mi
ro-burstto be sent instantaneously. In �uid model, the third assumption is repla
ed by the�uid assumption that the sending rate xi (t) is a di�erentiable pro
ess.The window size of a �ow w (t) is a given pro
ess in the model.2.1.1.2 A pa
ket level model for a
k-
lo
kingWe label the pa
kets sent in the life of a
onne
tion with
onsequent integer numbers.The pa
ket numbers form a sequen
e {j |j ∈ Z and j ≥ 0}.For ea
h pa
ket j:

s (j) is the sending time of the pa
ket. By the de�nition of pa
ket label j, we have
∀j : s (j) ≤ s (j + 1) (2.1)

p (j) is the number of pa
kets in �ight after pa
ket j is sent. It is an integer number.By de�nition of pa
ket label j, p (j)
an in
rease by at most one per pa
ket:1
1 ≤ p (j) ≤ p (j − 1) + 1 (2.2)

a (j) is the arrival time of the a
knowledgment of pa
ket j. For simpli
ity, we
all1Sin
e p (i) is de�ned on pa
ket and more than one pa
kets
an be sent at the same time, this
onstraint still allows the
ongestion window to in
rease by more than one at the same time.

18�the arrival of the a
knowledgment of pa
ket j� as �the arrival of pa
ket j� in the restof this
hapter. This refers to the time a (j).
b (j) is the ba
klog experien
ed by pa
ket j; hen
e, b(j)

c
is the queueing delayexperien
ed by pa
ket j.In this model, w (t) is a given pro
ess that satis�es: w (t) ≥ 1.Initially, we have a (0) = 0, p (1) = 1, and b (1) = 0.Given the initial
ondition and w (t) sequen
e, we
an uniquely determine p (j),

s (j), b (j) and a (j) from the following four equations:
p (j) = max

0≤k≤p(j−1)
{p (j − 1)− k + 1 |p (j − 1)− k + 1 ≤ w (a (j − 1− p (j − 1) + k))}(2.3)

s (j) = a (j − p (j)) (2.4)
b (j) = max {b (j − 1) + 1− [s (j)− s (j − 1)] c, 0} (2.5)

a (j) = s (j) + d +
b (j)

c
(2.6)Note:

• (2.3) is based on the a
k-
lo
king algorithm des
ribed in Algorithm 1. k is thenumber of a
knowledgments that the sender re
eives between s (j − 1) and s (j).
a (j − 1− p (j − 1)) = s (j − 1) is the sending time of the (j − 1)-st pa
ket.Hen
e, a (j − 1− p (j − 1) + k) is the arrival time of the k-th a
knowledgmentafter s (j − 1) and w (a (j − 1 + k − p (j − 1))) is the window size at that time.
w (a (j − 1− p (j − 1) + k)) upper-bounds p (j) if pa
ket j is to be sent at thistime. p (j − 1) − k is the number of pa
kets in �ight after the sender re
eives
k a
knowledgments. p (j)
annot be higher than p (j − 1)− k + 1 sin
e sendingpa
ket j
an only in
rease the number of pa
kets in �ight by 1. A qui
k
orollary

19from (2.3) is
p (j) = max

0≤k≤p(j−1)
{p (j − 1)− k + 1 |p (j − 1)− k + 1 ≤ w (s (j))} (2.7)sin
e s (j) = a (j − p (j)).

• (2.4) states that pa
ket j should be sent at the arrival of the a
knowledgment ofa pa
ket that were sent one RTT ago. Sin
e p (j) pa
kets are sent in one RTT,
j − p (j) is the pa
ket that is sent one RTT ago. A qui
k
orollary of (2.4) is

p (j) = |{k : s (k) ≤ s (j) < a (k)}| (2.8)This
onforms to the de�nition of p (j) whi
h is the number of pa
kets thatare sent but not a
knowledged right after pa
ket j is sent. Also note that when
p (j) = p (j − 1)+1, we have s (j − 1) = s (j). This
orresponds to the
ase withtwo pa
kets in the same mi
ro-burst sent out instantaneously by Assumption3. The
ombination of (2.3) and (2.4) guarantees that s (j − 1) ≤ s (j).
• (2.5) is a dis
rete version of the ba
klog pro
ess in network
al
ulus [36℄:

b (t) = max
s≤t

∫ t

s

[x (u)− c] du (2.9)During the time s (j − 1) to s (j) , at most [s (j)− s (j − 1)] c pa
kets are pro
essedby the bottlene
k and leave the queue. One more pa
ket enters the queue.
• (2.6) is based on the de�nition of round trip time, whi
h equals to the roundtrip propagation delay (d) plus the queueing delay (b(j)

c
).22.1.2 Properties of a
k-
lo
kingFrom the pa
ket level model, we have three properties of a
k-
lo
king :2We assume that ea
h data pa
ket will results in one a
knowledgment. There is no a
knowledg-ment
ompression or delayed a
knowledgment.

20
• Whenever a pa
ket is sent, the number of pa
kets in �ight is always equal tothe window size after the whole mi
ro-burst is sent.
• The a
knowledgments are always pa
ed out by the bottlene
k, even the
orre-sponding data pa
kets have entered the bottlene
k in bursts.
• The queueing delay experien
ed by a pa
ket is dire
tly bounded by the numberof pa
kets in �ight.These properties are important for us to understand the mi
ros
opi
 behavior of TCP.2.1.2.1 Relation between the number of pa
kets in �ight and the windowsizeTheorem 2.1.2.1:At any time s (j) in whi
h a pa
ket is sent into the network,

p (j) ≤ w (s (j)) (2.10)And there always exists a pa
ket j∗ ::= j∗ (j) whi
h is sent at the same time (s (j) =

s (j∗)), and
p (j∗) = w (s (j∗)) (2.11)Furthermore, if w (s (j∗)) ≥ w (s (j∗ + 1)),

p (j∗ + 1) = w (s (j∗ + 1)) (2.12)(All proofs are in Appendix 6.3.)This theorem re�e
ts the assumption that the sending TCP sends all pa
kets ina mi
ro-burst at the same time.First, (2.10) shows that a
k-
lo
king guarantees that the number of pa
kets in�ight is always no greater than the
ongestion window size, at any time when apa
ket is sent;

21Se
ond, j∗ is the last pa
ket in the mi
ro-burst. (2.11) says that the a
k-
lo
kingalgorithm syn
hronizes the number of pa
kets in �ight with the window size at anytime some pa
ket is sent;Third, (2.12) shows that the size of the mi
ro-burst will be one pa
ket if the
ongestion window does not in
rease.2.1.2.2 Pa
ing of a
knowledgmentsTheorem 2.1.2.2:
∀j : a (j)− a (j − 1) ≥

1

c
(2.13)The equality holds if, and only if, s (j) ≤ s (j − 1) + b(j−1)+1

c
.This theorem implies that the a
knowledgment pa
kets are always pa
ed out bythe bottlene
k router, no matter how fast the
orresponding data pa
kets have arrivedat the bottlene
k.Corollary 2.1.2.2:

j1 > j2 ⇔ a (j1) > a (j2) (2.14)2.1.2.3 Upper bound of queue in
rementTheorem 2.1.2.3:For ∀1 ≤ j′ < j, If p (j′) ,p (j′ + 1) , · · ·p (j) are non-de
reasing,
b (j) ≤ b (j′) + p (j)− p (j′)This theorem upper bounds the in
rement of queue length. It says the in
rementof queue length is no greater than the in
rement of the number of pa
kets in �ight.2.1.2.4 Lower bound of queueTheorem 2.1.2.4:

22
d +

b (j)

c
≥

p (j)

c
(2.15)The equality holds if, and only if, ∀k that satis�es j − p (j) + 1 < k ≤ j : a (k)−

a (k − 1) = 1
c
.This theorem says that the delay experien
ed by a pa
ket is always lower-boundedby the number of pa
kets in �ight.Notes:

• Sin
e p (j∗) = w (s (j∗)), Theorem 2.1.2.3 and 2.1.2.4 show that the
ongestionwindow has a dire
t e�e
t on queueing delay. When the window size is large,the queueing delay experien
ed by the last pa
kets in the mi
ro-burst will belower-bounded by w(s(j∗))
c

;
• If pa
ket j is not the �rst pa
ket in the mi
ro-burst, it might experien
e higherdelay than p(j)

c
due to the extra queueing delay introdu
ed by mi
ro-burst,unless the system is in some spe
ial state. The next subse
tion will detail thisstate.2.1.3 Queue
onvergen
eSin
e the window size w (t) dire
tly a�e
ts the queueing delay, the queue
onvergesat a mu
h faster speed than that predi
ted by �uid model. With a single �ow, thequeue
onverges to a stable state in one RTT if the
ongestion window remains largerthan bandwidth propagation delay produ
t in one round trip.2.1.3.1 De�nition of Stable-Link stateDe�nition 2.1.3.1:We say the system is in a stable-link state upon the arrival of pa
ket j if thesystem satis�es

∀k that satis�es j − p (j) < k ≤ j : a (k)− a (k − 1) =
1

c

23The stable-link state is an indi
ation that all the bottlene
k links on the path issaturated. It has several properties.First, in the stable-link state, the number of pa
kets in �ight is equal to bandwidthdelay produ
t (BDP);Se
ond, the stable-link state persists as long as the number of pa
kets in �ight islarger than or equal to bandwidth propagation delay produ
t ;Third, the single �ow system enters stable-link state when the number of pa
ketsin �ight is higher than or equal to bandwidth propagation delay produ
t for at leastone RTT.2.1.3.2 The number of pa
kets in �ight and BDPTheorem 2.1.3.2:The system is in stable-link state upon the arrival of pa
ket j ⇐⇒ p (j) = cd + b (j)(2.16)This is the equality
ase of Theorem 2.1.2.4.Note that b (t) = w (t)− cd is the equilibrium state of the link in �uid models. In�uid models, it takes many round-trips for the links to
onverge to this equilibriumstate. This theorem says that this equilibrium state holds at any time when a pa
ketis sent, on
e the system is in stable-link state.2.1.3.3 Persisten
e of Stable-Link stateTheorem 2.1.3.3:If the system is in stable link state upon the arrival of pa
ket j and p (j + 1) ≥ cd,then the system is in stable link state upon the arrival of pa
ket j + 1.This theorem says that as long as the number of pa
kets in �ight is larger than orequal to bandwidth propagation delay produ
t, the stable-link state persists.2.1.3.4 Entran
e of Stable-Link stateTheorem 2.1.3.4:

24If ∀k : j − p (j) < k ≤ j : p (k) > cd; the system enters stable-link state upon thearrival of j.3This theorem provides a su�
ient
ondition for a system to enter stable-link state.It says as long as the number of pa
kets in �ight is larger than bandwidth propagationdelay produ
t for one RTT, the system will be in stable-link state.This theorem implies that the queue dynami

onverges within one round-triptime, whi
h is a sharp di�eren
e from the predi
tion of �uid models.2.1.3.5 Pa
ing of mi
ro-burstTheorem 2.1.3.5:If ∀k : j − p (j) < k ≤ j : p (k − 1) ≥ p (k) and p (j) ≤ cd, the system has b (j) = 0.This theorem says that mi
ro-burst
an be smoothed by the bottlene
k within oneRTT, if the number of pa
kets in �ight does not in
rease.2.1.4 Properties of
ongestion
ontrol in RTT times
aleIn general, a delayed-based
ongestion
ontrol algorithm
an be modeled as follows:the sour
e makes a de
ision on new value of the
ongestion window at the arrival timeof some pa
kets, whose sequen
e numbers form a sub-sequen
e {τk |k ∈ Z and τk < τk+1}of the pa
ket number sequen
e {j}. We
all these pa
kets de
ision pa
kets. Initially,
τ0 = w (0).4Whenever a de
ision pa
ket τk arrives (at time a (τk)), the
ongestion window
ontrol algorithm makes the window update de
ision based on the window size when
τk is sent (w (s (τk))) and ba
klog experien
ed by τk (b (τk)):53A more general version of this theorem whi
h repla
es the
ondition p (k) > cd by p (k) ≥ cdalso holds .4A
omplete TCP
ongestion
ontrol algorithm usually in
ludes three phases: slow-start,
ongestion-avoidan
e, and loss-re
overy. In the
ontext of delay-based
ongestion
ontrol algorithms,the model assumes an in�nite bottlene
k bu�er size and hen
e no pa
ket loss o

ur. The loss-re
overyphase is not
onsidered. The slow-start phase is an initial and transient phase for delay-based
on-gestion
ontrol algorithms. The system will stay in
ongestion-avoidan
e phase after running for along enough time. Hen
e, we only model the
ongestion avoidan
e phase in the study. The initialtime in this model
an be regarded as the starting time of the
ongestion-avoidan
e phase.5Here we use α = β, as in [29℄. The proof
an be extended to the
ases with α < β.

25
∆w (τk) = R (w (s (τk)) , b (τk)) (2.17)

R is
alled the response fun
tion. It depends on the history of the window size andthe measured delaythe window size is then
hanged to:
w (a (τk)) = w (s (τk)) + ∆w (τk) (2.18)and the next de
ision pa
ket τk+1 is de�ned as : 6

τk+1 = τk + w (s (τk)) + max {∆w (τk) , 0} (2.19)For any time other than the arrival of a de
ision pa
ket, the window size does not
hange:
w (t) = w (a (τk)) if a (τk) < t < a (τk+1) (2.20)Hen
e, the
ongestion
ontrol algorithm
hanges the window size on a times
ale ofRTT. This
ontrol times
ale is general for all existing
ongestion
ontrol algorithms.Corollary 2.1.4:From (2.19),

τk+1 ≥ τk + w (s (τk+1))2.1.4.1 Timing of the de
ision pa
ketsTheorem 2.1.4.1:
a (τk) ≤ s (τk+1) < a (τk+1)6This de�nition is based on those implementations whi
h use a spe
ial pa
ket to indi
ate the endof one RTT. Some implementations have a di�erent value of τk+1. For example, Linux with delayeda
k will have τk+1 = τk +2w (s (τk)). We ignore these variants but note that the proof holds as longas τk+1 ≥ τk + w (s (τk)) + max {0, ∆w (τk)}.

26This theorem says that in RTT-times
ale window
ontrol, a de
ision pa
ket is sentout only when the last de
ision pa
ket has arrived. By (2.20), we have:
w (s (τk)) = w (a (τk−1)) (2.21)2.1.4.2 Equivalen
e of the window size and the number of pa
kets in �ightTheorem 2.1.4.2:
∀τk : w (s (τk)) = p (τk)This theorem says that ea
h de
ision pa
ket τk is the last pa
ket sent in themi
ro-burst. And the window
ontrol formula (2.17)
an be rewritten as a fun
tionof p (τk):

∆w (τk) = R (p (τk) , b (τk)) (2.22)2.1.4.3 Link
onvergen
e upon de
ision pa
ketsTheorem 2.1.4.3:
b (τk) ≤ ∆w (τk) or the system is in the stable-link state upon the arrival of τk.This theorem says that either b (τk) ≤ ∆w (τk) or b (τk) = p (τk) − cd, a

ordingto the properties of the stable-link state.A

ording to Theorem 2.1.4.2, we have:

b (τk) = w (s (τk))− cdor
b (τk) ≤ ∆w (τk)The theorem establishes a very di�erent understanding on the e�e
t of feedba
kdelay in TCP system. In the traditional �uid models, the queueing delay has slowdynami
s and
onverges asymptoti
ally to a new equilibrium when the
ongestionwindow
hanges. Due to this slow dynami
, there is a di�eren
e between queueing

27delay observed by a sour
e and the queueing delay at the bottlene
k. Hen
e, the
ongestion
ontrol algorithm might os
illate its
ongestion window due to overa
tingupon the observed queueing delay. Even worse, the longer the propagation delay, theslower the queue
onverges, and the easier the
ongestion
ontrol algorithm os
illates.The feedba
k delay plays an important role in this system.However, by
apturing the mi
ro-burst whi
h leads to fast queue dynami
, The-orem 2.1.4.3 assures that as long as the queueing delay is higher than the
hange ofthe
ongestion window, the observed queueing delay equals the queueing delay at thebottlene
k. Hen
e the pro
ess of the fast queue
onvergen
e pro
ess within in oneround-trip is negligible and the queue size
an be modeled by a stati
 fun
tion in theform of b = w − cd instead of a di�erential equation.This understanding holds for all delay-based
ongestion
ontrol algorithms. Wealso believe that it
an be extended to loss-based
ongestion
ontrol algorithms.2.1.5 Stability of TCP VegasTCP Vegas ([16℄) is a parti
ular delay-based
ongestion
ontrol algorithm. Its re-sponse fun
tion is
R (w (s (τk)) , b (τk)) =



















1 if w(s(τk))
d
− w(s(τk))

D(τk)
< α

−1 if w(s(τk))
d
− w(s(τk))

D(τk)
> α and w (a (τk)) > 1

0 Otherwise 















where
D (τk) = d +

b (τk)

c
(2.23)With this response fun
tion, ∆w (τk) ≤ 1. Hen
e, the size of mi
ro burst intro-du
ed by the
hange of
ongestion window will be always smaller than one pa
ket.Intuitively, on
e the system enters into a state in whi
h b (t) > 1, the bottlene
kqueue size
an be modeled by a stati
 fun
tion and the stability of TCP Vegas doesnot depend on feedba
k delay. Theorem 2.1.5
on�rms this intuition and shows that

28a single TCP Vegas �ow is always stable.Theorem 2.1.5:Given the a
k-
lo
king model des
ribed in (2.3)(2.4)(2.5)(2.6) and the TCP Vegas
ongestion
ontrol algorithm des
ribed in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP�ow
onverges to equilibrium regardless of
apa
ity c, propagation delay d and initialstate. That is:If αd > 1, given any initial state, we have
∃J : ∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1 and αd− 1 < b (j) < αd + 1Parti
ularly, if (cd + αd) ∈ Z, then ∀j > J : w (s (j)) = cd + αd and b (j) = αd.2.1.6 ValidationWe run simulations with TCP Vegas implementation from Linux kernel and validateour results. To eliminate the e�e
t of ina

urate base RTT estimation, we hard
odethe base RTT to be the propagation delay. With a single �ow, TCP Vegas is stablewith very long delay and high bottlene
k
apa
ity, as shown in Figure 2.1. Althoughthe �uid model analysis predi
ts that the long delay and high
apa
ity in the s
enarioleads to instability of TCP Vegas [29℄, the
ongestion window of the single TCP Vegas�ow
onverges to equilibrium and remains stable in the region of [19067, 19068] aspredi
ted in Theory 2.1.5.We repeat simulations with multiple homogeneous TCP Vegas �ows and
on�rmthat TCP Vegas is stable with di�erent delay. We �rst repeat the simulations by Choeand Low in [29℄, with the more realisti
 TCP Vegas implementation from Linux kernel.Figure 2.2 shows the average
ongestion window traje
tory for 100 TCP Vegas �owsand the queue traje
tory. From the full tra
es, we
an see that both the
ongestionwindow and the queue
onverge. In fa
t, we inspe
t the
ongestion window of ea
hindividual �ow and
on�rm that the
ongestion window of ea
h individual �ow also
onverges. In the enlarged versions, we inspe
t the os
illation at the pa
ket level.

29
Congestion Window Traje
tory Queue Traje
tory

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 60.00 sec)
Max (over 60.00 sec)
Min (over 60.00 sec)

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

time (sec)
Q

ue
ue

 L
en

gt
h

(p
kt

)

Average (over 60.00 sec)
Max (over 60.00 sec)
Min (over 60.00 sec)

Large queue due to Slow Start

Queue builds up steadily

Full tra
e Full tra
e
5940 5950 5960 5970 5980 5990 6000

1.9066

1.9067

1.9068

1.9069
x 10

4

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.60 sec)
Max (over 0.60 sec)
Min (over 0.60 sec)

5940 5950 5960 5970 5980 5990 6000
15

16

17

18

19

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.60 sec)
Max (over 0.60 sec)
Min (over 0.60 sec)

Enlarged EnlargedFigure 2.1: A single TCP Vegas �ow using a path with a bottlene
k
apa
ity of800Mbps and a propagation delay of 200ms. The pa
ket size in the simulation is 1000bytes per pa
ket.

30The os
illation is between 114.6 and 115.6. This is be
ause the Linux uses an integervariable to store the
ongestion window size. When cd is not an integer, the
ongestionwindow has one pa
ket of os
illation. In the enlarged version of queue traje
tory, weobserved that the queue length os
illates between 1935 pa
kets and 2035 pa
kets.This 100 pa
ket worth of os
illations are due to the one pa
ket worth of os
illation ofea
h
ongestion window of ea
h of the 100 �ows.To further
on�rm that our observed os
illations are due to integer e�e
ts only,we run two other sets of simulations, in whi
h we double the round trip propagationdelay. A

ording to the predi
tion of �uid model, we expe
t a more severe os
illation.However, the simulation results show that the queue length only os
illates in the sameregion and the average
ongestion window os
illates within one pa
kets, as shown inFigure 2.3 and Figure 2.4.2.2 FAST algorithm and its stabilityThe pa
ket level model for single sour
e TCP-Vegas gives many new understandingsof the queue dynami
s. Intuitively, a
hange in the
ongestion window
an resultin a very qui
k
hange in the queue and
ontrolling the
ongestion window dire
tly
ontrols the queue. This is di�erent from the intuition from the �uid model in whi
h
ontrolling window only indire
tly
ontrols the queue via the rate pro
ess. This newunderstanding has inspired the design of a new algorithm, FAST.2.2.1 FAST algorithmFAST algorithm
an be viewed as a high speed version of TCP Vegas. It has thesame equilibrium state as TCP-Vegas. However, it
onverges mu
h faster, and hen
e,is able to fully utilize the bottlene
k
apa
ity. The design of the FAST algorithm hasbeen inspired by the
on
ept of qui
k queue
onvergen
e.The FAST algorithm
an be summarized in the following equation where wi (t) isadjusted on
e every two round trips:

31
Congestion Window Traje
tory Queue Traje
tory

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full tra
e Full tra
e
2980 2985 2990 2995 3000

114

115

116

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

2980 2985 2990 2995 3000
1920

1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.2: 100 Homogeneous TCP Vegas �ows sharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket size in thesimulation is 1000 bytes per pa
ket.

32
Congestion Window Traje
tory Queue Traje
tory

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full tra
e Full tra
e
2980 2985 2990 2995 3000

209

210

211

212

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

2980 2985 2990 2995 3000
1920

1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.3: 100 Homogeneous TCP Vegas �owssharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket size in thesimulation is 1000 bytes per pa
ket.

33
Congestion Window Traje
tory Queue Traje
tory

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full tra
e Full tra
e
2980 2985 2990 2995 3000

400

401

402

403

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.28 sec)
Max (over 0.28 sec)
Min (over 0.28 sec)

2980 2985 2990 2995 3000
1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.4: 100 Homogeneous TCP Vegas �owssharing a path with a bottlene
k
apa
ity of 800Mbps and a propagation delay of 200ms. The pa
ket size in thesimulation is 1000 bytes per pa
ket.

34
∆wi = γ

[

wi (t−Di (t))

di + qi (t)
di + αi − wi (t)

] (2.24)where wi is the
ongestion window of sour
e i;
di is the round-trip propagation delay of sour
e i;7
qi is the queueing delay observed by sour
e i at time t;
Di (t) = di + qi (t) equals the round-trip time;
γ is the parameter for
onvergen
e speed, whi
h is re
ommended to be 1

2
;

αi is the parameter for fairness. It spe
i�es the number of pa
kets that ea
h sour
etries to maintain in the bottlene
k queue.The details of the algorithm
an be found in Algorithm 2.The algorithm assumes the throughput a
hieved in the last round trip (wi(j)
Di(j)

) tobe the available bandwidth, and add αi pa
kets to the bandwidth propagation delayprodu
t.As extensively evaluated in [37, 17℄, FAST has a
hieved mu
h better responsive-ness and maintained the same stability as TCP Vegas.We extend the pa
ket level model to a dis
rete model for homogeneous �ows andanalyze its stability in this
ontext.2.2.2 Model for homogeneous �owsAs observed in Theorem 2.1.3.4, the queue
an qui
kly
onverge to an equilibrium dueto mi
ro-burst. We extend this observation to a more general assumption that thequeue
onverges within one RTT so that the stability analysis of
ongestion window
ontrol algorithms
an ignore the
onvergen
e time of the queue and assume that thequeue
onverges to an equilibrium instantly. This equilibrium
an be des
ribed as
q (t) = max

{∑

i wi (t)− cd

c
, 0

} (2.25)7We use the minimum observed round-trip time as an approximation of di. The dis
ussion onthe noise of measurement
an be found in [37℄.

35
Algorithm 2 FAST algorithmFor ea
h sour
e i:1. Initialization:(a) counti = wi;(b) fastOni = 12. On the transmission of ea
h data pa
ket j:(a) wi (j) = wi;(b) si (j) = T . (T is the system time.)3. On the arrival of ea
h a
knowledgment (that a
knowledges pa
ket j):(a) If fastOni == 1:i. Cal
ulate RTT Di (j) = T − si (j);ii. Cal
ulate ∆wi = γ

[

wi(j)
Di(j)

di + αi − wi

]iii. If ∆wi ≥ 1: wi = wi + 1iv. If ∆wi ≤ −1: wi = wi − 1(b) counti = counti − 1(
) If counti ≤ 0: (One RTT is �nished)i. fastOni = 1− fastOniii. counti = wi

fastOni indi
ates whether wi (t) needs to be adjusted in the
urrent RTT ;
counti is the
ounter to dete
t the end of an RTT.

36Based on this assumption, we propose a dis
rete time model to analyze the stabilityof homogeneous FAST �ows. For the sour
es, we use a model that assumes that everysour
e makes its de
ision on dis
rete time points τ1, τ2, · · · , we have:
wi (τk+1) = F (wi (τk) , q (τk)) (2.26)In the
ase with homogeneous FAST �ows, τi
orresponds to the number of RTTsthe �ows have been in the system. Based on (2.25) and (2.26), we
an analyze the
onvergen
e of a system.2.2.3 Stability of FAST in homogeneous networkWe prove that the
ongestion window of ea
h sour
e exponentially
onverges to theequilibrium regardless of
apa
ity, delay and number of �ows. In the proof, we only
onsider the situation when the link is fully utilized. If the link is not fully utilized,queueing delay equals zero. FAST algorithm will always in
rease the
ongestionwindow until the link is fully utilized. Let q (t) denote the queueing delay at thebottlene
k router. We
an prove that ∃T > 0, q (T) > 0 ⇒ ∀t ≥ T : q (t) > 0, if thenetwork
on�guration does not
hange.By (2.24), the window update fun
tion is

wi (t) = γ

(

wi (t− 1)

q (t− 1) + d
d + αi

)

+ (1− γ) wi (t− 1) (2.27)Sin
e the bottlene
k is fully utilized, by (2.25), we have ∑i

wi(t)
q(t)+d

= c. Hen
e,
q (t) =

∑

i wi (t)

c
− d (2.28)De�ne W (t) to be the sum of windows over all the sour
es:

W (t) =
∑

i

wi (t) (2.29)

372.2.3.1 Convergen
e of the sum of windowsTheorem 2.2.3.1:By (2.27), (2.28) and (2.29), if γ ∈ (0, 1), W (t) is globally stable, and the equilibriumis α + cd.Proofs for all the theorems
an be found in Appendix Se
tion of Wei[37℄.Theorem 2.2.3.1 shows that W (t)
onverges to ∑i αi + cd exponentially.2.2.3.2 Convergen
e of individual �owsTheorem 2.2.3.2:
∀η > 0, ∃T0: ∀t > T0, ∣∣wi (t)−

αi

α
(α + cd)

∣

∣ < η.Theorem 2.2.3.2 shows that the window size of ea
h individual FAST �ow
on-verges to the equilibrium αi

α
(α + cd).Hen
e, FAST is globally stable in the
ase with a single bottlene
k link and ho-mogeneous sour
es.

38

39
Chapter 3Mi
ros
opi
 E�e
ts on Loss-basedCongestion Control Algorithms
Both mi
ro-burst and sub-RTT burstiness a�e
t the performan
e of loss-based
on-gestion
ontrol algorithms. This
hapter fo
uses on the e�e
t of sub-RTT burstiness,whi
h is not well understood.The e�e
t of mi
ro-burst on loss-based
ongestion
ontrol algorithms has beenwell understood [21, 20, 18℄. When the bottlene
k bu�er size is too small to absorball the pa
kets in a mi
ro-burst, the bottlene
k has to drop some of the pa
kets, evenwhen the average input rate is lower than its
apa
ity. This situation happens inslow-start phase of a loss-based
ongestion
ontrol algorithm. During slow-start, theTCP sour
es generate mi
ro-bursts of sizes up to half of the maximum window size. Ifthe bottlene
k bu�er size is not large enough to hold these pa
kets, the TCP sour
esexit slow start prematurely and take a long time to rea
h equilibrium. As explained inSe
tion 1.1.1, mi
ro-burst e�e
t is transient and
an be eliminated by large bu�ers.For network with small bottlene
k bu�ers, several algorithms have been proposedto eliminate the mi
ro-bursts. Some examples are TCP Pa
ing [20, 21℄, burstinessredu
tion [18℄, and burstiness
ontrol [22℄.The e�e
t of sub-RTT burstiness, however, is less
lear. This
hapter fo
uses onthe e�e
t of sub-RTT burstiness on loss-based
ongestion
ontrol algorithms. Ourstudy �nds that the sub-RTT burstiness has dire
t impa
t on loss syn
hronizationrate, an important parameter that a�e
ts the fairness
onvergen
e, friendliness and

40link utilization of the loss-based
ongestion
ontrol algorithms. As explained in Se
-tion 1.1.2, the e�e
t of sub-RTT burstiness is persistent and
annot be eliminated bylarge bu�ers.We proposed a model to understand the relation of sub-RTT level burstiness andloss syn
hronization rate. The model takes a signal sampling perspe
tive. The keyidea is to view a loss-based
ongestion
ontrol's
ongestion dete
tion as a samplingpro
ess: a TCP �ow dete
ts a
ongestion signal through the loss of its own datapa
kets. Hen
e, the bursty pattern in the TCP data pro
ess dire
tly a�e
ts theprobability that a TCP �ow dete
ts a pa
ket loss in a
ongestion event. With sub-RTT level burstiness, it is very likely that some of the TCP �ows do not observe anypa
ket loss in a
ongestion event. These �ows will be more aggressive than those�ows that dete
t the pa
ket loss.This understanding explains several interesting problems, su
h as the
onvergen
eof loss-based MIMD algorithms, friendliness between bursty TCP and pa
ed TCP, et
.It has also inspired the design of a new link algorithm whi
h signi�
antly in
reasesthe loss syn
hronization rate.3.1 A model for loss syn
hronization rateMost modern loss-based TCP algorithms rea
t to loss events, instead of individualpa
ket losses.1 A loss event observed by a TCP �ow is de�ned as a round trip timein whi
h at least one pa
ket loss is dete
ted by the TCP sour
e. The TCP sour
eredu
es its
ongestion window only on
e for ea
h observed loss event, even if thereare multiple pa
ket losses in this round trip time. With this pro
ess, it is the lossevent rate observed by a TCP �ow, instead of per-pa
ket loss rate, that a�e
ts theperforman
e of a loss-based TCP. Loss syn
hronization rate is introdu
ed to
apturethe probability that a TCP �ow observes a loss event when
ongestion happens inthe router.1These modern TCPs in
lude TCP NewReno [6℄, FACK TCP [7℄, HighSpeed TCP [8℄, S
alableTCP [33℄, BIC TCP [38℄, H-TCP [11℄, CUBIC [10℄and et
. The only known TCPs that rea
t toindividual pa
ket losses are TCP-Tahoe [4℄ and TCP-Reno [5℄.

41We fo
us our study in s
enarios with homogeneous �ows sharing the same pathwith a
ommon RTT. In this
ontext, we
an de�ne a loss syn
hronization rate.We de�ne loss syn
hronization rate as the probability that a �ow dete
ts at leastone loss signal in a loss event. A loss event is de�ned as an RTT in whi
h at leastone pa
ket is dropped by the bottlene
k router due to
ongestion (bu�er over�ow).Di�erent �ows may have di�erent loss syn
hronization rates (λi). We use λ = 1
N

∑

λito denote the average loss syn
hronization rate among N �ows.The
on
ept of loss syn
hronization rate was �rst introdu
ed to model the aggre-gate throughput and instantaneous fairness (varian
e of instantaneous rate) in [39℄.Many TCP performan
e analysis have been based on the
on
ept of loss syn
hroniza-tion rate. For example, Ba
elli and Hong point out that the short term fairness ofTCP �ows highly depends on the loss syn
hronization rate among all TCP �ows [39℄.Leith and Shorten experimentally demonstrate that loss-based high speed TCPs havevery di�erent fairness properties with di�erent syn
hronization rates [40℄.However, there is no
lear understanding on the loss syn
hronization rate itself.Previous studies use di�erent assumptions to model λ. For example, λ is an outsideinput to the model in [40℄. On the other hand, λi is modeled as a fun
tion of windowsize wi in [39℄ with the assumption that all the pa
kets have the same per-pa
ket lossprobability. This assumption is equivalent to the �uid assumption. It is importantto have a
lear understand on the loss syn
hronization rate, given the many resultsbased on this
on
ept.We model the loss syn
hronization rate with the
onsideration of sub-RTT bursti-ness. Our model has two major assumptions:1. The data pa
ket arrival pro
ess (xi (t)) of ea
h TCP �ow i is bursty in sub-RTTtimes
ale and xi (t)
an be modeled by an on-o� pro
ess in ea
h RTT.2. The pa
ket loss pro
ess (l (t)) is bursty in sub-RTT times
ale and l (t)
an bemodeled by another on-o� pro
ess in ea
h RTT.Sub-RTT burstiness in TCP pa
ket arrival pro
esses is well do
umented. One exam-ple of these observations is presented by Jiang and Dovrolis [23℄.

42General burstiness in the pa
ket loss pro
esses is also well-do
umented [31, 41, 42℄.However, in our assumption, we further
laim that the loss pro
ess is bursty in sub-RTT times
ale. We support this assumption with eviden
e from our measurementsin NS-2 simulation, Dummynet emulation, and PlanetLab.Based on these two assumptions, we model the loss syn
hronization rate as thedete
tion probability using one on-o� pro
ess (TCP data pa
kets) to sample anotheron-o� pro
ess (pa
ket loss pro
ess).Our model predi
ts that the
ombination of bursty TCP �ows and a drop-tailrouter (bursty loss pro
ess) yields very low and uniform syn
hronization rates amongTCP �ows with di�erent
ongestion window sizes and leads to poor fairness
onver-gen
e. Our model also suggests that the use of pa
ing at the TCP sour
es and/orthe use of random dropping algorithms in the link (e.g. RED [31℄)
an in
reasesyn
hronization rate.3.1.1 Burstiness in the pa
ket loss pro
essWe studied sub-RTT level burstiness in the pa
ket loss pro
esses in three di�erentenvironments: a simulation network (via NS-2 [43℄), an emulation network (via Dum-mynet [44℄), and the Internet (via PlanetLab [45℄).From all these three measurement sour
es, we found signi�
ant burstiness in sub-RTT time s
ales.3.1.1.1 MeasurementWe measured the timing of ea
h pa
ket loss in three di�erent environments: simula-tion network (NS-2), emulation network (Dummynet), and the Internet (PlanetLab).The NS-2 simulation simulates a single ideal bottlene
k shared by heterogeneoussour
es. The Dummynet system emulates a single bottlene
k link shared by hetero-geneous sour
es.2 The PlanetLab experiments measure the realisti
 situations in theInternet. For ea
h loss tra
e, we
al
ulated the time interval between two
onse
utive2The bottlene
k link emulated by Dummynet pro
esses pa
kets in burst of 1ms.

43lost pa
kets,
alled the loss interval, and analyzed the loss pro
esses by plotting the
umulative distribution fun
tion (CDF) and the probability density fun
tion (PDF)of the loss intervals. We
ompared the PDF of the pa
ket loss pro
esses to the
orre-sponding Poisson pro
esses with the same average event arrival rates. We observedthat the pa
ket loss pro
esses are mu
h burstier than the Poisson pro
esses.The measurements from NS-2, Dummynet, and the Internet all suggest that thesub-RTT pa
ket loss pro
ess is very bursty.Results in NS-2 Simulation Figure 3.1 shows the CDF of the loss interval inNS-2 simulations. The RTTs of the �ows in simulation are random between 2ms to200ms. From the �gure, we observed that 80% of the pa
ket losses
luster withinshort time periods smaller than 1% of the RTT.We also plotted the PDF of the loss interval and
ompared it with the PDF of aPoisson pro
ess with the same arrival rate, as shown in Figure 3.1 (B) .Figure 3.1 (C) zooms in to a small time s
ale of 0 to 2 RTT and uses log-s
alein the Y-axle so that the Poisson pro
ess has a straight line in its PDF. Comparedto the Poisson pro
ess, the loss pro
ess is mu
h burstier � more than 10 times thepa
ket losses o

urred in the very small time interval.Results in Emulation Network Figure 3.2 is the CDF of the loss interval inDummynet emulations. The RTTs of the �ows are �xed to 4
lasses: 2ms, 10ms,50ms, and 200ms. The loss interval CDF shows a similar pattern to the NS-2 results,ex
ept that the CDF starts from 0.1% of RTT due to the limited time resolution ofour measurements in the Dummynet router.Figure 3.2 (B) and (C) show the PDF of the loss interval. Again, the loss pro
essis mu
h burstier than the
orresponding Poisson pro
ess.Results in the Internet Figure 3.3 is the CDF with the Internet measurement.The Internet measurement shows less burstiness in loss pro
esses than we observedin simulation and emulation. This is due to the heterogeneity of the Internet, in terms

44

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) PDF Enlarged (Bin size 0.02 RTT)Figure 3.1: Loss intervals in NS-2 measurements.Note that all the CDF �gures in this
hapter have X-axles in log-s
ale, and all thePDF �gures in this thesis have Y-axles in log-s
ale.

45

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) PDF Enlarged (Bin size 0.02 RTT)Figure 3.2: Loss intervals in Dummynet measurements.

46

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) Loss intervals in PlanetLab measurements (Bin size 0.02 RTT)Figure 3.3: Loss intervals in PlanetLab measurements.

47of appli
ation types, tra�
 patterns, and queuing delay. In su
h an extremely hetero-geneous environment, we observed that 60% of the pa
ket losses
luster within shorttime periods of 1 RTT, and 40% of the pa
ket losses
luster within time periods of 1%of RTT. This eviden
e is still very strong for sub-RTT burstiness in loss pro
esses.We plotted the PDF in Figure 3.3 (B)(C) and
ompared the Internet loss pro
essagainst a Poisson pro
ess with the same arrival rate. We observed similar burstinessas in NS-2 and Dummynet. In the smallest interval region (left side), the measuredloss pro
ess is far burstier than the Poisson pro
ess.3.1.1.2 Possible Sour
es of sub-RTT BurstinessAs shown by the results of the NS-2 simulations, Dummynet emulations and theInternet measurements, pa
ket loss is highly bursty in sub-RTT times
ale. There areseveral possible sour
es that lead to su
h burstiness.DropTail routers are
onsidered the major sour
e of pa
ket loss burstiness [31℄. ADropTail router serves as a FIFO queue, a

epting in
oming pa
kets until the bu�eris full. Working with DropTail routers, loss-based
ongestion
ontrol algorithms keepin
reasing the data rate when the router's bu�er is not full. When the router's bu�eris full and pa
kets are dropped, the aggregate data rate is higher than the router's
apa
ity and pa
ket loss persists until the loss-based
ongestion
ontrol algorithmsdete
t the loss of pa
kets and redu
e the data rate, usually one half of an RTTlater. In between the �rst pa
ket loss and the redu
tion of data rate, there is apeak of pa
ket losses in the DropTail router. Some resear
hers propose introdu
ingrandomness in the router. For example, Floyd and Ja
obson proposed to randomlydrop the pa
kets earlier before the bu�er is over�owed [31℄. However, these proposalssu�er from di�
ult parameter settings problems.Slow start of TCP �ows is another sour
e of pa
ket loss burstiness. A TCP �owstarts with a very small rate in burst (sending two pa
kets ba
k-to-ba
k every roundtrip), and doubles its data rate if no loss is observed. This pro
ess
an qui
klyin
rease the queue size in the bottlene
k bu�er in just a few round trips and produ
ea large number of
ontinuous pa
ket losses in the router. Some new
ongestion
ontrol

48
burst
period of Flow i

burst period of loss signal

randomly drop from M

incoming packets

Legend:

a dropped

packet

a packet

from flow i

i
i
i
 i
i
i
i
 i
i
 i
i

S incoming packets during the RTT of loss event

i

a packet

(from any flow)

spanning over K incoming packets

Figure 3.4: Congestion dete
tion within one RTT: a �ow uses its data pa
ket pro
essto sample the loss pro
ess. The loss syn
hronization rate is the probability that oneof the wi pa
kets from �ow i (distributed over K pa
kets) happens to be one of the Ldropped pa
kets (distributed over M pa
kets).algorithms, su
h as Qui
kStart [46℄ and RCP [47℄ have been proposed to avoid su
haggressive dete
tion. These algorithms require
hanges in data pa
ket formats, whi
hare expensive for the existing infrastru
ture.Hen
e, the sour
es of sub-RTT burstiness in pa
ket loss pro
esses will exist in theforeseeable future.3.1.2 Modeling loss syn
hronization rateAssuming that the loss pro
ess l (t) only depends on the aggregation of transmissionrates from all �ows and is independent of the pa
ket transmission pro
ess from anindividual �ow i in sub-RTT time s
ales, the signal sampling perspe
tive leads to asimple model for sub-RTT time s
ale behavior, as shown in Figure 3.4.The �gure illustrates all pa
kets going through the bottlene
k router in the RTTof a
ongestion event. S is the number of these pa
kets. These pa
kets in
lude pa
ketsthat are a

epted by the bottlene
k and pa
kets that are dropped by the bottlene
k.All the pa
kets from an individual �ow (�ow i) are distributed in �ow i's burstperiod, whi
h spans over K in
oming pa
kets. Ea
h of these K pa
kets has a proba-bility of wi

K
to be from �ow i and the total number of pa
kets from �ow i in this RTTis wi on average.3 Sin
e i
an be any of the N �ows, we assume that the position of3For both pa
ket transmission pro
ess and loss pro
ess, we use Poisson arrival assumption to

49the burst period of �ow i is randomly distributed in the RTT. That is, the startingposition of the burst period
an be any of the S pa
kets. If the burst period startsat the end of S, wrap-around is allowed.We model the loss signal pro
ess as another on-o� pro
ess, with the burst periodspanning over M in
oming pa
kets, dropping L pa
kets on average, with a droppingprobability of L
M
. If at least one of the wi pa
kets from �ow i happens to be oneof these L dropped pa
kets, �ow i dete
ts the loss event and ba
k o� its
ongestionwindow. Otherwise, �ow i is not aware of the loss event and
ontinues to grow its
ongestion window.From this perspe
tive, the syn
hronization rate of �ow i (λi) is the probabilitythat one of the wi pa
kets happens to be one of the L dropped pa
kets, as the positionof �ow i's burst period is randomly distributed in the RTT; that is λi = P (hiti) wherehiti is the event that �ow i dete
ts the loss signal.Let the loss signal burst (M pa
kets) and pa
ket transmission pro
ess burst (Kpa
kets) interse
t over k in
oming pa
kets (max {0, M + K − S} ≤ k ≤ min {M, K}).Conditioning on k, we have the probability of a pa
ket from �ow i getting dropped,given k pa
kets are in the interse
tion:

P (hiti|k) = 1−

(

1−
L

M

wi

K

)k (3.1)and sin
e the position of pa
ket transmission pro
ess burst (K) is randomly dis-
simplify the des
riptions. With Poisson arrival, the number of data pa
kets is not always wi. Amore
ompli
ated
omputational model
an be obtained with the assumption that the wi and Lpa
kets are uniformly distributed over K and M in
oming pa
ket slots. We use Poisson model inour
omputations due to its simpli
ity and reasonable a

ura
y. However, we note that the modelis not a

urate if wi or L is very small.

50tributed in the RTT with modulo S, we have
P (k) =











































0 if k > k̄ or k < k

2
S

if k < k < k̄

max{M,K}−k̄+1
S

if k = k̄ and k < k̄

1− max{M,K}+k̄−2k−1
S

if k = k and k < k̄

1 if k = k = k̄











































(3.2)
where k = max {0, M + K − S} is the lower-bound of k and k̄ = min {M, K} is theupper-bound of k.Hen
e,

λi = P (hiti) =
k̄
∑

k=k

P (hiti|k)P (k) (3.3)There is no simple
lose form for the above formula. However, the formula reveal agood property of the loss syn
hronization rate: the dependen
y of loss syn
hronizationrate on M and K are symmetri
. Hen
e,
hanging the M and K have similar e�e
tson loss syn
hronization rate.We used MatLab to
ompute the values of λ based on (3.1), (3.2) and (3.3). Sin
ethe pa
ket loss is due to
ongestion, the DropTail router's bu�er must have been full.Hen
e, the number of pa
kets going through the router in this RTT is approximately
S = cd + B + L (pa
kets in �ight in the path + pa
kets in the bu�er + pa
ketsthat are dropped by the bottlene
k). With N Reno �ows in
ongestion avoidan
estate, at most N additional pa
kets are transmitted in this RTT in
omparison to thelast RTT, in whi
h no loss happens. Hen
e, at most N pa
kets are dropped by theDropTail router. That is 1 ≤ L ≤ N .4Figure 3.5 shows the
omputational results of the model, with parameters L =

N = 32, cd + B + L = 2000 and wi = 2000
32

. This is roughly equivalent to the s
enarioof 32 Reno �ows sharing a path of 200ms delay and a bottlene
k with a
apa
ity of100Mbps and a bu�er size of 400 pa
kets.4If the �ows are not
ontrolled by Reno, the number of loss pa
kets may be larger. A generalAIMD algorithm with additive parameter of α [48℄ will have 1 ≤ L ≤ αN .

51

0
200

400
600

800
1000

0
200

400
600

800
1000
0

0.2

0.4

0.6

M: loss signal span

λ

K: packet
transmission
process span

B: Pacing

A: Current

C: RED

Figure 3.5: Syn
hronization rate:
omputational results from the modelIn Figure 3.5, the syn
hronization rate hits its lowest point (A) when M and Kare small,
orresponding to the
ase in whi
h both loss signal and data pro
ess arebursty in sub-RTT level. This is the
urrent situation: we have TCP senders andDropTail routers, whi
h send and drop pa
kets in bursty patterns.3.1.3 TCP Pa
ing and REDAs K in
reases in Figure 3.5, the loss syn
hronization rate in
reases. Its value hits ahigh point (B) when K = cd + B + L (upper-left point in Figure 3.5),
orrespondingto the
ase in whi
h the data pa
kets of ea
h �ow spread out over the whole RTT.This is the situations with improvements in TCP sender, su
h as pa
ing [20, 21, 49℄.Figures 3.6 and 3.7 intuitively illustrate the
hange in syn
hronization rates frompoint A to point B in the loss sampling perspe
tive.Figure 3.8 presents details of the loss signal pro
ess and the data pa
ket pro
essesin a simulation, with TCP and with a pa
ing improvement. In the simulation, weused a randomized version of pa
ing algorithm to redu
e phase e�e
ts. The detailedalgorithm
an be found in Appendix 6.2.A green dot (t, i) , i = 1 · · ·16 in the �gure represents a pa
ket from �ow i going

52
burst
period of one flow: K packets

burst period of loss signal

M incoming packets

Legend:

a dropped

packet

a packet

from flow i

i
i
 i
i
i
i
i
 i
i

incoming packets during the RTT of loss event from all flows

i

a packet

(from any flow)
Figure 3.6: Pa
ket loss with window-based implementations
i

K packets evenly distributed

burst period of loss signal

M incoming packets

Legend:

a dropped

packet

a packet

from flow i

i
i
 i
 i
i
i
i
i

incoming packets during the RTT of loss event from all flows

i

a packet

(from any flow)
Figure 3.7: Pa
ket loss with rate-based implementations

1300 1305 1310 1315 1320 1325 1330

0

2

4

6

8

10

12

14

16

time (RTT)

flo
w

 #

1300 1305 1310 1315 1320 1325 1330

0

2

4

6

8

10

12

14

16

time (RTT)

flo
w

 #

(a) TCP (b) TCP improved by pa
ingFigure 3.8: Sampling e�e
ts of TCP and pa
ing (simulation results)

53through the bottlene
k at time t; a bla
k star (t, i) , i = 1 · · · 16 represents a pa
ketof �ow i dropped at time t; a blue
ross (t, 0) at the bottom of the �gures representsa pa
ket (of any �ow) dropped by the bottlene
k. We
olle
ted 30 RTTs of the dataafter the �ows ran for more than 1000 RTTs, so the �ows were in
ongestion avoidan
ephase for a long time. In both
ases, the bottlene
k link was fully utilized and theaggregate throughputs in both
ases were similar. Hen
e, when we
ompare theseresults, we see that the e�e
t of sub-RTT level burstiness is still very signi�
ant.In Figure 3.8(a), the pa
kets are sent by TCP. The transmission pro
esses of most�ows
learly show a bursty on-o� pattern. When some pa
kets are lost in a burst,only a few �ows (30% in this
ase), whose burst periods happen to
over the lossburst, dete
t the
ongestion signal.In Figure 3.8(b), the pa
kets are pa
ed out equally so that they are evenly dis-tributed throughout the whole RTT. When some pa
kets are lost in a burst, most ofthe �ows (70% in this
ase) experien
e the loss and thus dete
t the
ongestion signal.5Symmetri
ally, as M in
reases, the loss syn
hronization rate in
reases, too. Itsvalue hits a high point (C) when M = cd + B + L,
orresponding to the
ase inwhi
h pa
ket losses are spread out over the whole RTT. This is the situation withlink algorithm improvements su
h as Random Early Dete
tion (RED) [31℄. Oursimulation and tra
e analysis
on�rm that RED in
reases the loss syn
hronizationrate among Reno �ows to 0.5 to 0.6.3.1.4 ValidationWe measure the syn
hronization rate from our simulations and
ompare the resultsto the
omputation results based on equation (3.1), (3.2) and (3.3). The simulationshave a setup with a bottlene
k of 100Mbps and a round trip propagation delay of200ms. The bottlene
k bu�er size is 1680 pa
kets. Hen
e, cd+B+L ≈ 3340. We varythe number of �ows N from 2 to 32. In the
omputation, we assume wi = cd+B+L
N5Consequently, the length of loss-epo
hs is shorter in Figure 3.8(a) sin
e less �ows redu
e their
ongestion windows in a loss event. This is
onsistent to the analysis in studies by Ba

elli, et al[39℄.

54and L = N . In the measurement, we take the �rst pa
ket loss that is not part ofany previous loss events as the beginning of a new loss event and
onsider all thesubsequent pa
ket losses within one round-trip time as in the same loss event. Weaverage the loss syn
hronization rates of all �ows and present the average values.Figure 3.9
ompares the
omputational results and the measurement from NS-2simulations. Figure 3.9 (A)~(C)
orrespond to the three points in Figure 3.5.6 Thisshows that our model
an qualitatively estimate the loss syn
hronization rates.3.1.5 Asymptoti
 resultsAlthough the general formula (3.1), (3.2) and (3.3) are
ompli
ated, simple and in-teresting asymptoti
 results
an be obtained for two spe
ial
ases (point A and pointB in Figure 3.5) with the additional assumption that the number of �ows is large.If TCP pa
ket pro
ess is bursty and N is large, wi

cd+B+L
is very small and L >> wisin
e L ∼ N . (3.1) and (3.2)
an be simpli�ed into:

P (k) =































0 if k > wi

2
cd+B+L

if 0 < k < wi

L−wi+1
cd+B+L

if k = wi

1− L+wi−1
cd+B+L

if k = 0





























and
λi =

2

cd + B + L
(wi − 1) +

L− wi + 1

cd + B + L

≈
L− 1

cd + B + L
(3.4)In this
ase, �ows with di�erent
ongestion windows see similar syn
hronizationrates sin
e λi is almost independent of wi.When pa
ing is applied with DropTail routers, we have K ≈ cd + B + L and6In Figure 3.5(C), the theoreti
 loss syn
hronization rate with RED is almost �at. We note thatthere is ina

ura
y in the
al
ulation of loss syn
hronization rate for the
ase where N=2. In this
ase, L=N=2 is very small and the Poisson assumption is ina

urate, as explained in Footnote 3.

55

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

current

Model
Measured

(A) Current TCP + DropTail

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

pacing

Model
Measured

(B) TCP Pa
ing + DropTail

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

RED

Model
Measured

(C) Current TCP + REDFigure 3.9: Syn
hronization rate with
urrent TCP, TCP Pa
ing and RED

56

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

flow number

λ
Paced TCP: w

1
=2*fairshare

Paced TCP: w
2
=0.5*fairshare

Bursty TCP: w
1
=2*fairshare

Bursty TCP w
2
=0.5*fairshare

Figure 3.10: Syn
hronization rates of two �ows with di�erent window sizes, amongN �ows (N=2 to 100), with bursty TCP or pa
ed TCP (MatLab results).
M ≈ L. Hen
e,

P (k) =







1 if k = L

0 else 



and
λi =

(

1−

(

1−
wi

cd + B + L

)L
) (3.5)If N is large, wi

cd+B
will be very small and we have

λi ≈
wiL

cd + B + L
(3.6)That is, the �ows with larger
ongestion windows see higher syn
hronization rates.Figure 3.10 shows the syn
hronization rates of two �ows (among N �ows) withdi�erent
ongestion window sizes (w1 and w2). w1 = 2 cd+B

N
is double the fair sharewindow size and w2 = cd+B

2N
is half of the fair share window size. All other parameters,ex
ept �ow number and window sizes of �ow 1 and �ow 2, are the same as in Figure3.5. With bursty TCPs, �ow 1 and �ow 2 have similar loss syn
hronization rates,and hen
e, see similar loss event rates, as the number of �ows in
reases. With pa
edTCPs, �ow 1 always sees higher loss event rates than �ow 2. As we will show inSe
tion 3.2.2, this asymptoti
 result has very interesting impli
ation on the fairnessof MIMD (Multipli
ative-In
rement-Multipli
ative-De
rement) algorithms.

573.2 Impli
ations on Performan
e of Loss-based TCPOur model points out three important impli
ations for loss-based TCP �ows with aDropTail router:1. The
urrent implementation has a low syn
hronization rate due to the sub-RTTburstiness introdu
ed by a
k-
lo
king ;2. Asymptoti
ally, the loss syn
hronization rates of �ows with di�erent
ongestionwindows tend to be the same, due to the sub-RTT burstiness introdu
ed bya
k-
lo
king ;3. TCP pa
ing will see a higher syn
hronization rate sin
e its data pa
ket arrivalpro
ess is smooth and is able to dete
t loss more e�
iently.These predi
tions have realisti
 impa
ts in the system performan
e.3.2.1 Fairness
onvergen
eFairness
onvergen
e is a metri
 that is of interest to the
luster
omputation industry.In
luster
omputation, the data transfer time s
ale is usually measured in se
onds.In these s
enarios, rate �u
tuations in one or two RTT are a

eptable, and hen
e,the traditional short-term fairness de�nition is not suitable in this
ase. In this times
ale, we are more interested in how fast the TCP �ows
an share the bottlene
k,both e�
iently and fairly, in term of average rates over the
onvergen
e period.3.2.1.1 De�nition of Fairness Convergen
e TimeTo quantify the fairness
onvergen
e, we introdu
e the notion of fairness
onvergen
etime. Fairness
onvergen
e time measures how fast the TCP �ows
onverge to theirfair shares from start up. We give our formal de�nition of fairness
onvergen
e timeas the time taken by the slowest �ow to rea
h the fairshare rate as
F = min

{

t
∣

∣

∣
∀τ > t, min

i
{x̄i (τ)} > 0.8x∗

i

} (3.7)

58where x∗
i = c

N
in our homogeneous setup is the fairshare rate for �ow i and x̄i(τ) isthe average throughput for �ow i during the �rst τ se
onds, de�ned as

x̄i (τ) =
1

τ

∫ τ

0

xi (u) duin whi
h τ is the averaging interval.7This metri
 measures how long a user has to parti
ipate in the data transfer untilhe or she
an enjoy a sense of fairness (by getting 80% of his/her fair share bandwidth).The metri
 has a small value only if all �ows qui
kly
onverge to, and maintain, thedesired equilibrium in whi
h they share the bottlene
k both e�
iently and fairly.The metri
 has a large value if the bottlene
k is not e�
iently used (underutilized),or if the �ows are sharing the bottlene
k unfairly, or if the �ows fail to maintain thedesired equilibrium in long run.The fairness
onvergen
e time also provides an upper bound for the data transferlaten
y of parallel �ows in
luster appli
ations. If ea
h of the parallel �ows needs totransfer a data
hunk of D bits, the
ompletion time of all �ows as a whole will be atmost F + D
0.8 c

N

, sin
e the de�nition guarantees that ea
h TCP �ow a
hieves 80% ofthe fair share bandwidth on average at or after time F .3.2.1.2 Loss Syn
hronization Rate and Fairness Convergen
eBa

elli and Hong point out that the short term fairness highly depends on the losssyn
hronization rate among all TCP �ows [39℄. With similar derivation, a lowerbound of fairness
onvergen
e time for TCP Reno is
F ≥ max







0,
log 0.2− log

(

1− 1
(2−λ)

)

log
(

1− λ
2

)

λ (cd + B)

2N







(3.8)assuming that the syn
hronization rate is the same for all �ows.The detailed derivation of (3.8)
an be found in Wei, et al [50℄. The lower bound7If τ is in�nitely large, x̄i (∞) is the asymptoti
 average rate, whi
h is proved to be x∗

i
in long-termfairness for most TCPs.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

900

1000

λ

co
nv

er
ge

 ti
m

e
to

 fa
irn

es
s

(R
T

T
)

Figure 3.11: Relation between fairness
onvergen
e time F and syn
hronization rate
λ (MatLab results)for TCP-Reno in (3.8)
an also be extended to general AIMD TCP algorithms [48℄,HS-TCP [8℄, and S-TCP [9℄. The derivation is based on the AIMD model used byBa

elli and Hong in [39℄. Similar
on
lusions
an be rea
hed with an extended modelproposed by Shorten, et al [51℄. Note that cd+B

N
is a TCP �ow's average window sizeupon a loss event, whi
h depends on the network
ondition and user pattern whi
hare
ontrolled by TCP. Loss syn
hronization rate λ is the parameter that we
an
ontrol.To intuitively illustrate the relation between fairness
onvergen
e time and losssyn
hronization rate, Figure 3.11 shows the
omputational results of F as a fun
tionof λ, a

ording to (3.8) with cd+B

N
= 1000 pa
kets.Figure 3.11
learly shows that the loss syn
hronization rate has a signi�
ant impa
ton the fairness
onvergen
e. As we dis
ussed in Se
tion 3.1, loss syn
hronization rate
an be
ontrolled by sub-RTT level TCP behavior in the sour
e and by the pa
ketdropping behavior on the link. One
an
ontrol and in
rease the loss syn
hronizationrate to a
hieve better short-term fairness.

60Reno HS-TCP S-TCP0.2042152591 0.2496234482 0.2331014195Table 3.1: Average loss syn
hronization rates of TCP with a DropTail router3.2.1.3 Fairness
onvergen
e with bursty TCP and DropTail RoutersUsing the de�nition of fairness
onvergen
e time, we examined the fairness
onver-gen
e time of TCP-Reno (Reno), HighSpeed-TCP (HS-TCP [8℄) and S
alable-TCP(S-TCP [33℄).A

ording to the analysis in Se
tion 3.1, bursty TCP have low loss syn
hronizationrates when they share a DropTail router. Hen
e, we expe
t that the fairness
onver-gen
e time under TCP and DropTail routers/swit
hes is very long. Our simulationresults
on�rmed our expe
tation, as shown in Figure 3.12.Figure 3.12 presents the fairness
onvergen
e times with parallel Reno, HS-TCP, orS-TCP �ows sharing a 200ms path with a bottlene
k
apa
ity of 100Mbps. The resultsare from NS-2 simulations. All the
onvergen
e time measurements are presentedin the unit of RTTs. Figure 3.12(a) shows that Reno takes more than 1500 RTTsto
onverge to its fair share. More interestingly, su
h slow
onvergen
e is neitherimproved by in
reasing bottlene
k bu�er size, nor by in
reasing the number of parallel�ows.Figures 3.12(b) and (
) further show that the fairness
onvergen
e is not improvedby the re
ent new loss-based TCP proposals su
h as HS-TCP and S-TCP.8In the simulation, we measured the loss syn
hronization rate. Table 3.1 shows themeasurements with Reno, HS-TCP and S-TCP �ows, averaged over all loss eventsin the simulations. The measurement results
on�rm the
orrelation between longfairness
onvergen
e time and low loss syn
hronization rate.8With HS-TCP or S-TCP, the fairness
onvergen
e is a
tually worse, due to their
ongestion
ontrol dynami
s. We only use Reno, HS-TCP and S-TCP as examples throughout this paper astheir
ontrol stru
tures are
leaner for understandings. Li, et al also show that many other highspeed TCP proposals experien
e long
onvergen
e time [34℄.As explained in Se
tion 4.2.5, the noise in our simulations in previous se
tions are heavy-tail on-o�tra�
 with a �xed sending rate in on period. Usually, the on period lasts for more than one RTT.Hen
e, the noise serves as some pa
ed �ows that
uts the bursty S
alable-TCP into smaller burst.This helps S
alable-TCP to
onverge with the
ases in our previous se
tions.

61

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)
buffer=420

buffer=840

buffer=1680(A) Reno

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420

buffer=840

buffer=1680(B) HighSpeed TCP

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420

buffer=840

buffer=1680(C) S
alable TCPFigure 3.12: Convergen
e time of di�erent TCPs in simulations with di�erent numberof �ows and di�erent bu�er sizes (in pa
kets).

62The average loss syn
hronization rates of these TCP �ows are around 0.2 to 0.25.Su
h low loss rates
an substantially a�e
t the short-term fairness of TCP, as depi
tedin Figure 3.11. The low loss syn
hronization rate also shows that there are opportu-nities to improve TCP short-term fairness. If we
an move the syn
hronization rate
λ from 0.2
loser to 1, we
an signi�
antly redu
e the
onvergen
e time and improvethe TCP fairness experien
ed by the real appli
ations.3.2.2 Convergen
e of MIMD algorithmsMultipli
ative-In
rement-Multipli
ative-De
rement (MIMD) algorithms are a
lass of
ontrol algorithms whi
h in
rease and de
rease the
ongestion window by ratio. WhenMIMD algorithm do not observe
ongestion, they in
rease the
ongestion window bya small per
entage. When MIMD algorithms observe
ongestion, they de
rease the
ongestion window by a large per
entage.Chiu and Jain prove, with a stati
 model, that two MIMD �ows with di�erentwindow sizes
annot
onverge to a fairness point [32℄. This stati
 model assumes thatall MIMD �ows observe the same
ongestion event. This assumption is equivalent to
λi = λ in whi
h λ is a
onstant independent of window size wi of the �ow.However, Kelly proves with the �uid model that S
alable-TCP, an MIMD algo-rithm,
an
onverge to fairness [33℄ . The assumption is equivalent to λi ∝ wi.Our asymptoti
 results in Se
tion 3.1.5 explain the di�erent
on
lusions from[32, 9℄. As shown in equation (3.4) and illustrated in Figure 3.10, with bursty TCP,
λi is proportional to window size wi only when the number of �ows N are very small.As N in
reases, λi among �ows with di�erent window sizes qui
kly
onverges to avery similar value. Hen
e, the �uid model predi
tion by Kelly [33℄ is more a

uratewhen N is very small, and the stati
 model in [32℄ is more a

urate when N is large.This result has an interesting impli
ation in the fairness
onvergen
e of S
alableTCP [9℄, an MIMD algorithm. Two �ows usually
annot
onverge to fairness withbursty TCP, as pointed out by Leith and Shorten [40℄. This e�e
t is parti
ularlysigni�
ant when there is no
ross tra�
 to pa
e out the TCP bursts.

63

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

bursty Scalable−TCP flows

Fastest flows
Slowest flows

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

paced Scalable−TCP flows

Fastest flows
Slowest flows

(a) Bursty S-TCP (b) Pa
ed S-TCPFigure 3.13: Convergen
e of S-TCP:
ongestion window traje
tories of the fastest�ow and the slowest �owOn the other hand, the asymptoti
 result in equation (3.6) suggests that thesyn
hronization rate is always proportional to the window size if pa
ing is deployed.In this
ase, S
alable-TCP
an
onverge.Figure 3.13 shows the
ongestion window traje
tories of the fastest and slowest�ows in a
ase study. In this
ase, 8 S
alable-TCP �ows share a 100Mbps bottlene
klink, without noise tra�
. Ea
h point of the
ongestion window size is an averagevalue over 10 se
onds. Clearly, S
alable-TCP does not
onverge in Figure 3.13(a),as reported by several literatures [52, 53℄. With pa
ing, S
alable-TCP
onverges.S
enarios with di�erent number of �ows show similar e�e
ts.Figure 3.14 is a summary of S
alable TCP fairness with di�erent number of �ows.We run N S
alable-TCP �ows for 600 se
onds and
al
ulate, in ea
h
ase, the ratiobetween the throughput of the smallest �ow and the fair share throughput c
N
. Thelarger the ratio, the better fairness among the �ows. As predi
ted by the model,bursty S
alable TCP �ows are fair only when the number of �ows is small. As Nin
reases, the fairness qui
kly degrades. With pa
ing, S
alable TCP's fairness is mu
himproved.

64

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

T
hr

ou
gh

pu
t o

f m
in

 fl
ow

 (
%

 o
f f

ai
r

sh
ar

e)
MIMD fairness

Current
Pacing

Figure 3.14: MIMD fairness
3.2.3 Performan
e of TCP Pa
ing
The performan
e of TCP pa
ing has been a
ontroversial topi
 sin
e the introdu
tionof TCP pa
ing in late 1990s. On one hand, simulation results presented by Kulik, etal show that TCP pa
ing
an signi�
antly improve the throughput of TCP �ows innetworks with large
apa
ity, long delay and small bu�er [20℄. Simulations by Hongshow that TCP pa
ing does improve TCP performan
e in both e�
ien
y and fairness[21℄. On the other hand, Aggarwal, et al show that TCP pa
ing might a
tually havelower average throughput in many
ases [35℄.Our model shows that TCP pa
ing eliminate the sub-RTT burstiness and in
reasesthe loss syn
hronization rate. As shown in [39℄, this in
rement in the loss syn
hro-nization rate has two-sided e�e
ts on TCP performan
e. On one hand, the in
reasedloss syn
hronization rate improves fairness; on the other hand, the in
reased loss syn-
hronization rate de
reases the aggregate throughput of TCP Reno. These two-sidede�e
ts explain the di�erent
on
lusions in the past dis
ussions.

653.2.3.1 Aggregate ThroughputA very important observation presented in other literature is that the aggregatethroughput of pa
ed TCP may be lower than the bursty TCP even in isolated s
e-narios, due to syn
hronization e�e
ts[35℄. This is espe
ially true with large numbersof Reno �ows when working with small bu�ers.Ba

elli and Hong give an explanation with syn
hronization rate [39℄. A dire
tappli
ation of equation (7) in [39℄ shows that Reno's throughput in the worst
ase(fully syn
hronized �ows sharing a bottlene
k with an in�nitely small bu�er) is 75%of the
apa
ity.9 Hen
e, the throughput loss due to syn
hronization
an be up to25%.However, su
h throughput degradation is largely alleviated by the new
ongestion
ontrol algorithms. We
an
al
ulate an upper bound of throughput loss due tosyn
hronization with di�erent loss-based
ongestion
ontrol algorithms similar to thework by Ba

elli, et al [39℄.Assume that bu�er size B is in�nitely small and all N �ows are fully syn
hronized.In this worst
ase, ea
h �ow's behavior is exa
tly the same, equivalent to a single TCP�ow using a bottlene
k with a
apa
ity of c
N
and a bu�er size of B

N
. Hen
e, we
anestimate the aggregate throughput of N syn
hronized �ows by the throughput of asingle TCP �ow. Also, sin
e TCP os
illates in every loss epo
h with the same pattern,we only need to
al
ulate the aggregate throughput loss in one loss epo
h.HS-TCP
an be approximated by a general AIMD around the equilibrium. The
ongestion window at the end of a loss epo
h is w̄ = cd+B

N
for the single �ow. The
ongestion window in the beginning of the loss epo
h is w =

[

1− β
(

cd+B
N

)]

cd+B
Nwhere β

(

cd+B
N

) is the multipli
ative de
rement parameter for a window size of cd+B
N

.Assuming the additive parameter α is a
onstant in the loss epo
h, the average ratein the loss epo
h is approximately w̄+w

2d
=

(2−β(cd+B

N))
2

c+ B

d

N
. Assuming B → 0, theaverage rate in the loss epo
h is 2−β(cd+B

N)
2

c
N
. Comparing to the full utilization of c

N
,the loss of aggregate throughput is 2−β(cd+B

N)
2

.9Let p = 1 in (7) of [39℄, we have E
(

X(i)
)

= C

2N
. This is the throughput after rate halving.Hen
e, the average throughput over the whole
ongestion epo
h is E(X

(i))+ C

N

2 = 3
4

C

N
.

66

0 2 4 6 8 10

x 10
4

0

5

10

15

20

25

30

window size (packets)

lo
ss

 o
f a

gg
re

ga
te

 th
ro

ug
hp

ut
 (

pe
rc

en
ta

ge
)

Reno
HS−TCP
S−TCP

Figure 3.15: Syn
hronization throughput loss of di�erent
ongestion
ontrol algorithm(MatLab results) (BDP = 10440 pa
kets)S-TCP is an MIMD algorithm. Similar to HS-TCP, the
ongestion window at theend of a loss epo
h is w̄ = cd+B
N

and the
ongestion window at the beginning of the lossepo
h is w = (1− βS) cd+B
N

where βS = 1
8
is the multipli
ative de
rement parameterin S-TCP. S-TCP multiplies its
ongestion window by (1 + αS) every RTT where

αS = 0.01. Hen
e, the number of RTTs in the
ongestion epo
h is TS = − log(1−βS)
log(1+αS)

.The average throughput in one loss epo
h is
∑Ts−1

i=0 w (1 + αS)i

Tsd
=

(1− βS) c

TsN

[

(1 + αs)
Ts − 1

αs

]

and the loss of aggregate throughput due to syn
hronization is a
onstant whi
hequals 1−
(1−βS)[(1+αs)Ts−1]

αSTs
.Figure 3.15 is the
al
ulation results for these
ongestion
ontrol algorithms, withdi�erent bu�er sizes, under a 1Gbps link with 120ms round trip propagation delayand the standard pa
ket size (MTU=1500). We
an see that all the new
ongestion
ontrol algorithms have mu
h smaller throughput loss when the loss signals are syn-
hronized. Our simulation results
on�rmed the expe
tation. Figure 3.16 present thestatisti
 results of aggregate throughputs for pa
ed TCP and bursty TCP. In the �g-ure, we present the Normalized Throughput Gain for ea
h experiment to illustrate the

67

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=−0.020964)
Pacing+DropTail (avg=−0.030367)

(A) Reno

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=−0.022836)
Pacing+DropTail (avg=−0.023746)

(B) HighSpeed TCP

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.047853)
Pacing+DropTail (avg=−0.019625)

(C) S
alable TCPFigure 3.16: Normalized Throughput Gain of isolated bursty TCP or pa
ed TCP insimulations

68di�eren
e between a
hieved throughput and fairshare throughput. The NormalizedThroughput Gain is de�ned as the di�eren
e between the a
hieved throughput andthe fairshare throughput, normalized by the fairshare throughput:Normalized Throughput Gain =
A
hieved Throughput− Fairshare ThroughputFairshare ThroughputThe a
hieved throughput is the measured throughput averaged over all the parti
-ipant �ows. The fairshare throughput is the theoreti
 throughput that a �ow shouldbe able to re
eive if all �ows share the bottlene
k
apa
ity equally. If the a
hievedthroughput is the same as the fairshare, the Normalized Throughput Gain will be zero.If the a
hieved throughput is lower than the fairshare, the Normalized ThroughputGain will be a negative number. From Figure 3.16 (a)-(
), we observe that there isloss of throughput for Pa
ed TCP Reno, due to the syn
hronization. However, theloss of throughput is signi�
antly redu
ed with HS-TCP and be
omes unnoti
eablewith S-TCP, as we predi
ted. 10

3.2.3.2 Fairness
onvergen
eAs TCP pa
ing in
reases loss syn
hronization rate, a

ording to equation (3.8) andFigure 3.11, it improves the fairness
onvergen
e.We repeat the same simulations in Figure 3.12 with a pa
ing extension (the de-tailed pa
ing algorithm
an be found in Appendix 6.2) and present the results inFigure 3.17.Comparing Figure 3.12 and Figure 3.17, the pa
ed TCP �ows have mu
h faster
onvergen
e to fairness.We summarize the fairness
onvergen
e time over all NS-2 simulations in Figure3.18 . Overall, pa
ing redu
e the fairness
onvergen
e time by 2.4 times.10In Figure 3.16 (
), a few
ases with bursty S
alable TCP have average throughputs mu
h smallerthan fair share. This
an be explained be
ause they do not
onverge to fairness at all.

69

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(A) Reno
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

highspeed−droptail

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

scalable−droptail

buffer=420
buffer=840
buffer=1680

(C) S
alable TCPFigure 3.17: Convergen
e time with TCP Pa
ing in simulations

70

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=2412.127143)
Pacing (avg=972.750000)

(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=2318.424286)
Pacing (avg=804.517143)

(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=4377.905714)
Pacing (avg=1116.192857)

(C) S
alable TCPFigure 3.18: Summary of
onvergen
e time of Reno, HS-TCP and S-TCP in simula-tions

713.2.4 Competition between pa
ed TCP and bursty TCPAggarwal, et al also report that pa
ed TCP tends to lose to bursty TCP in terms ofaverage throughput, in
o-existing
ases [35℄.The behavior of
o-existing pa
ed TCPs and bursty TCPs is very
ompli
atedsin
e the bursty TCPs' data pro
esses are
ut into smaller bursts by the pa
ed TCPs'data pro
esses, and the pa
ed TCPs' data pro
esses are �squeezed� into small burstsby the bursty TCPs' data pro
esses.Qualitatively, we
an expe
t that the loss syn
hronization rates of the burstyTCP will be in
reased and the loss syn
hronization rates of the pa
ed TCP will bede
reased, though in terms of absolute values, pa
ed TCP �ows still see higher losssyn
hronization rates than bursty TCP �ows. This leads to the two e�e
ts:1. The aggregate throughput a
hieved by the pa
ed TCP �ows will be smaller thanthe bursty TCP �ows, due to the fa
t that pa
ed TCPs have higher probabilityto dete
t a pa
ket loss event and redu
e their
ongestion windows.2. The fairness
onvergen
e of the bursty TCP will be improved and the
onver-gen
e of the pa
ed TCP will be degraded,
ompared to isolated
ases.3.2.4.1 Aggregate ThroughputA pa
ed TCP evenly distributes its data pa
kets in one RTT and is more likely todete
t a pa
ket loss in a
ongestion event than the bursty TCP, whi
h
lusters itsdata pa
kets within a short period. This makes the pa
ed TCP �ows lose to burstyTCP �ows in
o-existing s
enarios. Fundamentally, this is
aused by the burstinessof loss signal pro
ess, and
annot be
orre
ted unless there are additional link-levelme
hanisms.In general, if two
lasses of �ows with di�erent syn
hronization rates
o-exist, the
lass with the higher syn
hronization rate will have smaller aggregate throughput.However, also from the model, we
an see that pa
ed TCP loses to bursty TCP onlywhen the loss signal is bursty in sub-RTT level. In the next se
tion, we propose a

72link algorithm, persistent ECN, whi
h
an ensure that both pa
ed TCP and burstyTCP will dete
t the same loss signal and get similar throughput.Figure 3.19 presents the statisti
 results of aggregate throughputs, with the samenetwork s
enarios as in Figure 3.16. Instead of running the simulations with isolatedpa
ed �ows or isolated bursty �ows , we mixed them in one simulation, with halfof the �ows pa
ed and the other half bursty. In su
h
o-existing
ases, most of thebursty TCP Reno �ows get more than their fairshare bandwidth (with a positiveNormalized Throughput Gain) and most of the pa
ed TCP Reno �ows get less thantheir fairshare bandwidth.3.2.4.2 Fairness Convergen
eWe repeated the same simulations in Figure 3.18, but with half of the �ows usingpa
ed TCP and the other half using bursty TCP in ea
h s
enario. The results arepresented in Figure 3.20 . The results are
onsistent with our expe
tations on fairness
onvergen
e time. Pa
ed TCP in mixed environments has a larger
onvergen
e timethan in isolated environments; bursty TCP in mixed environments has a smaller
onvergen
e time than in the isolated environments.3.3 AlgorithmsOur model shows that we
an
ontrol the loss syn
hronization rate by
ontrolling thepattern of data pro
ess and the pattern of loss pro
ess. This understand suggeststhat the use of TCP pa
ing or RED
an in
rease the loss syn
hronization rates andimprove the fairness of loss-based
ongestion
ontrol algorithms.However, both pa
ing and RED have drawba
ks. For TCP pa
ing, as we dis
ussedin Se
tion 3.2.4, �ows with TCP pa
ing loses to �ows without TCP pa
ing when they
ompete for bottlene
k bandwidth. For RED, it is di�
ult to tune the parameters toa
hieve both stability and e�
ien
y.Figure 3.5 also shows that the highest a
hievable syn
hronization rate is still farless than 1 (0.65 in this parti
ular
ase) with TCP pa
ing or RED. This is be
ause

73

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=0.028878)
Pacing+DropTail (avg=−0.081280)

(A) Reno

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=0.019715)
Pacing+DropTail (avg=−0.064434)

(B) HighSpeed TCP

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.102783)
Pacing+DropTail (avg=0.053527)

(C) S
alable TCPFigure 3.19: Normalized Throughput Gain with
o-existing pa
ing TCPs and burstyTCP in simulations

74

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=622.431429)
Pacing (avg=1989.961429)

(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=857.717143)
Pacing (avg=1899.747143)

(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=1810.040000)
Pacing (avg=1514.885714)

(C) S
alable TCPFigure 3.20: Convergen
e time with
o-existing pa
ing TCPs and bursty TCPs insimulations

75the number of
ongestion signals (a.k.a. number of lost pa
kets) in ea
h loss eventis too small to let ea
h �ow observe at least one signal. To further in
rease the losssyn
hronization rate, we need to maintain the
ongestion signal persistently for awhole RTT so that every �ow is able to dete
t the
ongestion signal.3.3.1 Persistent ECN algorithmThe above observations lead to a new algorithm: Persistent ECN. The goal of thisalgorithm is to provide a persistent
ongestion signal to the sour
es in ea
h
ongestionevent and a
hieve a very high loss syn
hronization rate (
lose to 1). There are two
hallenges to a
hieve this goal.The �rst
hallenge is how to provide persistent
ongestion signal. Dropping pa
k-ets persistently for the whole RTT of loss event
an a
hieve su
h a goal. However,if pa
kets in one RTT are all dropped, TCP senders will be for
ed to timeout andthe link utilization will be signi�
antly low. We used ECN to provide a persistent
ongestion signal. As TCP senders treat all ECN signals re
eived in one RTT as thesame
ongestion signal, the senders only redu
e their
ongestion windows on
e forea
h loss event.The se
ond
hallenge is how to dete
t the end of a
ongestion event. We used theredu
tion of queue length in the router as an indi
ation of the end of a
ongestionevent. If the queue length is redu
ed signi�
antly, we assume that the TCP sendershave responded to the
ongestion event and the
ongestion event ends.The detailed algorithm is des
ribed in Algorithm 3. The algorithm keeps twothresholds for the queue length, upper-watermark and lower-watermark. Lower-watermark is half of the value of upper-watermark. The algorithm monitors thequeue length and enters marking state when the queue length is above the upper-watermark. In marking state, the algorithm marks the
ongestion bit in every pa
ket.The algorithm exits marking state when the queue length de
reases below the lower-watermark. Sin
e the lower-watermark is half of the upper-watermark, the algorithmexits marking state only when the queue length has been de
reased, as a result of the

76Algorithm 3 Persistent ECNA link (router) keeps two state variables:Marking swit
h: o ∈ {0, 1}, where o = 0 (initially) means the link is not
ongestedand o = 1 means a
ongestion event has happened re
ently;Queue length: q (t).The link also has two
onstant parameters: upper water mark Q̄ and lower watermark Q. By default, Q = 1
2
Q̄ and Q̄ = B, where B is the bu�er size.For ea
h pa
ket p that arrives at the link:1. if q (t) ≥ Q̄: o← 12. if o = 1: mark the pa
ket with
ongestion signalFor ea
h pa
ket p that leaves the link:1. if q (t) ≤ Q: o← 0senders' response to the
ongestion signal. This algorithm
an be viewed as an exten-sion to the DropTail algorithm, as DropTail is a spe
ial
ase with upper-watermarkand lower-watermark both equal to the bu�er size. We implement this algorithm inNS-2 by modifying the DropTail queue. In the implementation, the upper-watermarkis equal to the full bu�er size. As this algorithm introdu
es a more deterministi
behavior into the network, we use it with randomized pa
ing algorithm to eliminatephase e�e
ts.3.3.2 Loss syn
hronization rate with di�erent algorithmsWe ran simulations with the same s
enarios in Table 3.1 under a randomized pa
ingalgorithm, the adaptive RED algorithm, and Persistent ECN algorithm. Table 3.2shows the measured loss syn
hronization rates with these improvements in simula-tions. For readers'
onvenien
e, we also present the same results from Table 3.1 (with-out improvement) for
omparison. With pa
ing and RED, TCP-Reno
an a
hieve aloss syn
hronization rate of 0.5 to 0.6, more than two times the loss syn
hronizationrate without these improvements. Pa
ing also helps HS-TCP and S-TCP to a
hievea loss syn
hronization rate of 0.5. The loss syn
hronization rates of S-TCP and HS-

77Reno HS-TCP S-TCPNo improvement 0.2042152591 0.2496234482 0.2331014195Pa
ing 0.5011622009 0.5011320266 0.5665284797RED 0.6022723651 0.3971728460 0.3032633715Persistent ECN 0.9663141265 0.8071350395 0.8064983921Table 3.2: Average loss syn
hronization rates with di�erent improvementsTCP with RED are also in
reased, but by a smaller margin. The detailed reasonsfor this di�eren
e are under investigation. Currently, we suspe
t this is due to thedi�erent dynami
s when S-TCP and HS-TCP intera
t with RED. With PersistentECN, the loss syn
hronization rate is as high as 0.8 to 0.9. As predi
ted in Se
tion3.2.1.2, su
h high syn
hronization rates
an lead to a very fast fairness
onvergen
e.3.4 Performan
e in SimulationSin
e Se
tion 3.2.1.2 predi
ts that a high loss syn
hronization rate
an improve TCPfairness
onvergen
e, and Se
tion 3.1 shows that loss syn
hronization rates
an bein
reased by pa
ing, RED and Persistent ECN algorithms, we now apply these algo-rithms to parallel �ow appli
ations and evaluate fairness
onvergen
e time with theseimprovement solutions.3.4.1 Fairness
onvergen
e and �nishing time of parallel �owsA total of 350 simulation s
enarios were run. Ea
h s
enario ran for at least 100 lossepo
hs and was repeated for at least 10 times with di�erent random seeds. In theindividual
ase analysis, we presented both average values and standard deviations.In the general evaluations of all s
enarios, we presented CDF as summaries.3.4.1.1 Case studies on short-term fairnessWe repeated the same simulations in Figure 3.12 (bursty TCP) and Figure 3.17(pa
ed TCP) with RED and Persistent ECN. The results are shown in Figure 3.21and Figure 3.22, respe
tively. Comparing Figure 3.12 to Figure 3.17, 3.21 and

78

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(A) Reno
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(C) S
alable TCPFigure 3.21: Convergen
e time of Reno, HS-TCP and S-TCP with RED in simulations

79

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows
C

on
ve

rg
en

ce
 ti

m
e

(R
T

T
)

buffer=420
buffer=840
buffer=1680

(A) Reno

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

highspeed−ecn

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

scalable−ecn

buffer=420
buffer=840
buffer=1680

(C) S
alable TCPFigure 3.22: Convergen
e time of Reno, HS-TCP and S-TCP with Persistent ECN insimulations

803.22, one
an see that both pa
ing and RED improve the TCP fairness
onvergen
e.Additionally, pa
ing has better
onvergen
e with HS-TCP and S-TCP, while REDhas lower syn
hronization rates with these two TCP algorithms. With PersistentECN, the
onvergen
e time is further signi�
antly redu
ed. These results agree withthe observations of loss syn
hronization rates in Table 3.2. With the same TCPalgorithm, the higher the loss syn
hronization rate, the faster the
onvergen
e.3.4.1.2 Summaries of short-term fairnessTo have a global image of the parallel �ow performan
e with di�erent improvementalgorithms, we summarized all the 350 s
enarios with di�erent improvements intoCDF graphs. Figure 3.23 presents the CDF summary of the
onvergen
e time of theoriginal TCP performan
es and three improvements. Note that the X-axle is in logs
ale. A
onstant gap represents a
onstant ratio of di�eren
e.On average, pa
ing redu
es the Reno
onvergen
e time by 2.4 times, RED re-du
es the Reno
onvergen
e time by 1.25 times and Persistent ECN redu
es the Reno
onvergen
e time by 30 times. It is interesting to note that about 40% of the REDs
enarios
annot
onverge in 1000 RTTs. In most of these
ases, we found that RED
ould not fully utilize the bottlene
k
apa
ity. We suspe
t that the under-utilizationis due to window os
illations with RED. We still need to investigate the details inthese
ases.Similar observations
an be found in (b) and (
) with HS-TCP and S-TCP.3.4.1.3 Results on data transfer laten
yWe ran simulations with parallel FTP �ows that transferred a �xed amount of data.The s
enario is very similar to the appli
ations of Grid-FTP[54℄, GFS[55℄ and et
.The simulated appli
ation sends a total of 64MB of data in the same topology shownin Figure 4.13, with a di�erent numbers of �ows, di�erent RTTs and di�erent bu�ersizes. We measured the
ompletion time of the whole data transfer. In the 100Mbpsnetwork, the theoreti
 lower-bound of
ompletion time of a 64MB transfer is 5.39se
onds. The bound is tight if the network is fully utilized in all time. We
ompared

81

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=2412.127143)
Pacing (avg=972.750000)
RED (avg=1926.250667)
Persistent ECN (avg=40.959952)(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=2318.424286)
Pacing (avg=804.517143)
RED (avg=2111.119048)
Persistent ECN (avg=579.007598)(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=4377.905714)
Pacing (avg=1116.192857)
RED (avg=1462.632524)
Persistent ECN (avg=583.350429)(C) S
alable TCPFigure 3.23: Summary of
onvergen
e time of Reno, HS-TCP and S-TCP in simula-tions

82

2 4 8 16 32
10

0

10
1

number of flows

A
pp

lic
at

io
n

la
te

nc
y

(s
ec

on
ds

)
RTT=2ms
RTT=10ms
RTT=50ms
RTT=200ms

2 4 8 16 32
10

0

10
1

number of flows

A
pp

lic
at

io
n

la
te

nc
y

(s
ec

on
ds

)

RTT=2ms
RTT=10ms
RTT=50ms
RTT=200ms

(a) No improvement (b) Persistent ECNFigure 3.24: Data transfer laten
y (normalized by theoreti
 lower-bound) with parallel�ows sending a total of 64MB data Both X and Y axles are in log s
ale.Note that the error bar with 4 �ows in (a) is too large and
annot be displayed in the�gure
the
ompletion time of TCP and the
ompletion time of Persistent ECN, as in Figure3.24. Due to spa
e limit, only results on Reno TCP are presented. The results arenormalized by theoreti
 lower-bound.In the region of small laten
ies (2ms and 10ms), even though TCP's fairness
onvergen
e is long in the unit of RTT, the real time spent in the
onvergen
e is notlong sin
e the RTT is small. So, TCP still works well. When the laten
y is large,TCP's performan
e be
omes unpredi
table. With 200ms, TCP spend up to 10 timesof the theoreti

ompletion time.On the other hand, Persistent ECN s
ales well with laten
y. The worst-observedlaten
y is within 2 times of the theoreti
 one. This worst
ase happens with largedelay (200ms) and a small number of �ows (2 �ows). In this
ase, slow-start takes along time even though Persistent ECN solves the fairness problem.These results show that Persistent ECN is a promising me
hanism to improvefairness
onvergen
e of TCP �ows and shorten appli
ation laten
y.

833.4.2 Aggregate throughput with persistent ECNAs dis
ussed in Se
tion 3.2.3, high syn
hronization rates might lead to low through-puts with TCP Reno when the bu�er size in the bottlene
k router is not as large asthe bandwidth delay produ
t (BDP), even though the throughput loss is bounded.With persistent ECN, we observe the same e�e
t.Figure 3.25 present the statisti
 results of aggregate throughputs for pa
ed TCPand bursty TCP, with persistent ECN. Indeed,
omparing to Figure 3.16, the aggre-gate throughput of Reno �ows is even lower with persistent ECN. The CDF exhibitsthree steps. These steps
orrespond to the three di�erent bu�er sizes we used in thesimulations (1/4 BDP, 1/2 BDP and BDP worth of bu�er size). In most of the
ases,the loss of average throughput is within 15%. 11With the new
ongestion
ontrol algorithms, the syn
hronization e�e
t on aggre-gate throughput will be mu
h less signi�
ant. On the other hand, as we have shownin the previous se
tions, the syn
hronization rate's e�e
t on fairness is mu
h moresigni�
ant. Hen
e, we argue that the balan
e of the trade-o� should move towardin
reasing syn
hronization rate.3.4.3 Aggregate throughput with
o-existing bursty TCP andpa
ed TCP under persistent ECNSe
tion 3.2.4 shows that the pa
ed TCP �ows lose to bursty TCP �ows with a Drop-Tail router, in terms of aggregate throughput.However, with persistent ECN, su
h unfriendliness disappears. This is be
ausethat the persistent ECN algorithm eliminates the sub-RTT burstiness in loss signal.When the loss signal is persistent throughout the
ongestion event, both pa
ed TCPand bursty TCP will see the same loss signal and get similar throughput.Figure 3.26 presents the statisti
 results of aggregate throughputs under persistentECN, with the same simulation s
enarios as in Figure 3.19.11For the few bursty S
alable Cases where the average throughput is far smaller than fair share,that is be
ause they do not
onverge to fairness at all.

84

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=−0.020964)
Pacing+DropTail (avg=−0.030367)
Burst+ECN (avg=−0.059046)
Pacing+ECN (avg=−0.051298)

(A) Reno

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=−0.022836)
Pacing+DropTail (avg=−0.023746)
Burst+ECN (avg=−0.040417)
Pacing+ECN (avg=−0.030404)

(B) HighSpeed TCP

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.047853)
Pacing+DropTail (avg=−0.019625)
Burst+ECN (avg=−0.053190)
Pacing+ECN (avg=−0.019214)

(C) S
alable TCPFigure 3.25: Normalized Throughput Gain with isolated pa
ing TCPs or bursty TCPin simulations

85

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=0.028878)
Pacing+DropTail (avg=−0.081280)
Burst+ECN (avg=−0.065023)
Pacing+ECN (avg=−0.042113)(A) Reno

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=0.019715)
Pacing+DropTail (avg=−0.064434)
Burst+ECN (avg=−0.067901)
Pacing+ECN (avg=0.001016)(B) HighSpeed TCP

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.102783)
Pacing+DropTail (avg=0.053527)
Burst+ECN (avg=−0.190713)
Pacing+ECN (avg=0.147077)(C) S
alable TCPFigure 3.26: Normalized Throughput Gain with
o-existing pa
ing TCPs and burstyTCP in simulations

86With persistent ECN, pa
ed TCPs have higher aggregate throughput than burstyTCPs in all
ases; due to two reasons: �rst, pa
ed TCPs and bursty TCPs see thesame
ongestion loss signals; se
ond, bursty TCPs may generate additional burstyloss in sub-RTT times
ale.Hen
e, the persistent ECN algorithm
an also be used as a link algorithm thaten
ourages the deployment of TCP pa
ing.

87
Chapter 4Resear
h Tools
Our resear
h fo
uses on the mi
ros
opi
 behavior of TCP. This fo
us required exper-imental tools more realisti
 and more a

urate than those that existed. Hen
e, wedeveloped two new tools for our resear
h: one is a simulation module able to importthe Linux sour
e
ode and run real TCP
ongestion
ontrol implementations on thenetwork simulator NS-2 [43℄. The other is a loss measurement system that runs onPlanetLab [45℄ and measures loss pattern in the Internet. In addition, we also use anin-house testbed with a Dummynet emulation router [44℄ and Linux hosts to validateour simulation and measurement results.4.1 A testbed with emulation router and Linux hostsWe use an in-house testbed with an emulation router and Linux hosts to validate ourresults in simulations and measurements.4.1.1 Introdu
tion to DummynetDummynet is an emulation tool built in the FreeBSD system [44℄. It
an emulate arouter, with pipes of di�erent bu�er size, di�erent propagation delay, and di�erentbandwidth. The testbed in our study is based on Dummynet of FreeBSD 5.2. Wemodi�ed the maximum bu�er size to 3000 and system
lo
k resolution to 1 ms in theFreeBSD kernel to enhan
e its performan
e as a router emulator.

88
Dummynet

FreeBSD

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SX*2

Receiver

Linux 2.4.18-3

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SX

Sender

Linux 2.4.18-3

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SX
Figure 4.1: Dummynet testbed4.1.2 TopologyThe Dummynet testbed in
ludes three ma
hines: one sender, one re
eiver and oneDummynet router that emulates a WAN, as shown in Figure 4.1. The ma
hines areequipped with Intel E1000 Gigabit Ethernet
ards. The bottlene
k bu�er size ofthe Dummynet router is set to be 2000 pa
kets. The default
apa
ity is set to be100Mbps. The Dummynet router pro
esses pa
kets with a time resolution of 1ms.Hen
e, the per-pa
ket pro
essing delay has a random �u
tuation of 1ms. Four pipeswith di�erent delays (2ms, 10ms, 50ms, and 200ms) and zero random loss rate are setup on the Dummynet router for di�erent destination ports. We use TCP �ows fromthe single sender to di�erent ports in the single re
eiver to emulate multiple �owstraveling di�erent paths with di�erent delay and sharing the same bottlene
k. TheLinux sender and re
eiver are
on�gured with send bu�er size and re
eive bu�er sizeequal to two times of bandwidth-delay-produ
t to ensure that the send bu�er andre
eive bu�er are not the bottlene
k. Iperf is used to generate TCP tra�
.4.1.3 MeasurementTo
olle
t the timing of ea
h pa
ket loss, we instrument the Dummynet router tore
ord the time when ea
h pa
ket is dropped. The timestamp resolution of the Dum-mynet re
ords is 1ms. At the Linux ma
hines, we periodi
ally re
ord the
ongestionwindow and slow-start threshold of ea
h
onne
tion from /pro
/net/t
p �le. In the/pro
/net/t
p �le, ea
h line des
ribes the information of one TCP
onne
tion. The
ongestion window size is the se
ond last (16-th)
olumn in ea
h line. The slow start

89threshold is the last (17-th)
olumn in ea
h line. A slow start threshold equal to -1means the slow start threshold has not been
hanged and has an in�nitely large value.The re
ord frequen
y is 0.5 se
ond.4.2 NS-2 TCP-Linux : an extensible TCP simula-tion module in NS-2To provide realisti
 TCP performan
e results, we developed a new module for TCPsimulation in NS-2,
alled NS-2 TCP-Linux. NS-2 TCP-Linux is a new NS-2 TCPimplementation whi
h embeds the sour
e
odes of TCP
ongestion
ontrol modulesin the Linux kernel. In
omparison to the existing NS-2 TCP implementations, NS-2 TCP-Linux predi
ts the TCP performan
e more a

urately with similar, or evenfaster, simulation speed and better extensibility to emerging new TCP
ongestion
ontrol algorithms in the future. NS-2 TCP-Linux was the major tool used in ourresear
h. In addition to helping us in performan
e analysis, NS-2 TCP-Linux hasalso helped the Linux kernel
ommunity to debug and test new
ongestion
ontrolalgorithms.4.2.1 An introdu
tion to TCP implementation in NS-2NS-2 is an open-sour
e pa
ket level network simulator widely used in network per-forman
e analysis [43℄. It provides fairly a

urate results for simple devi
es (e.g.DropTail link). The NS-2 simulations are fully
ontrollable and repeatable. TheTCP modules in NS-2 were originated from sour
e
odes of BSD kernel. Over theyears, NS-2 TCP modules have
ontributed tremendously to the understanding andanalysis of TCP behaviors, and led to the development of several new
ongestion
ontrol algorithms. The TCP implementation in NS-2
urrently in
lude TCP-Reno[5℄, NewReno [6℄, Sa
k [56℄, Fa
k [7℄, HighSpeed TCP [8℄, et
. However, as the majoroperating systems evolved gradually over the years, the TCP modules in NS2 have de-viated signi�
antly from mainstream operating systems su
h as FreeBSD and Linux.

90The use of NS-2 has be
ome less popular in the
ongestion
ontrol
ommunity, dueto di�
ulties in the following three aspe
ts:
• Extensibility: As NS-2's
ode stru
ture deviates from mainstream operatingsystems, it be
omes harder and harder to implement the NS-2
orrespondent of aLinux algorithm. For new algorithm designers, it is a huge burden to implementthe same
ongestion
ontrol algorithm in both NS-2 and a real system su
h asLinux.
• Validity of NS-2 results: As more improvements are implemented in Linux,the performan
e predi
ted by NS-2 simulation deviates more from the Linuxperforman
e and FreeBSD performan
e. As reported in re
ent literature as[57℄, the di�eren
e in performan
e
an be signi�
ant in some s
enarios.
• Simulation speeds: NS-2 users often su�er from long simulation time when theysimulate s
enarios with high-speed long-distan
e networks. In some examples,the simulator might take up to 20 hours to �nish a 200-se
ond simulation [58℄.This is parti
ularly troublesome to network simulations sin
e many runs of thea s
enario with di�erent random seeds are usually required to eliminate artifa
tsof deterministi
 behaviors, su
h as phase e�e
ts.Indeed, there is a trend that designers of new
ongestion
ontrol algorithms are lessin
lined to use NS-2 to evaluate their algorithms. For example, the TCP
ongestion
ontrol
ommunity has sparked many new
ongestion
ontrol algorithms for high-speed long-distan
e networks, but many of them [52, 10, 11℄ are �rst implemented inLinux and evaluated in emulation testbeds su
h as the Dummynet testbed des
ribedin Se
tion 4.1. This new approa
h allows new algorithms to be evaluated in a realoperating system and easily deployed with Linux releases. However, due to limitationsof the emulation router, these evaluations are usually limited to very simple topologiesand very small s
ale in terms of numbers of �ows, delays, and bottlene
k
apa
ities.This approa
h is also riskier as the new algorithms
an be deployed without thoroughtests in
ompli
ated s
enarios. For example, re
ent resear
h [59, 60℄ points out some

91interesting observations on TCP behaviors that only exist in s
enarios with multiplebottlene
k links, whi
h are hard to reprodu
e by Dummynet testbeds with dumb-bell topologies. Hen
e, we believe that NS-2 is a
riti
al
omponent in the spe
trumof tools to evaluate proto
ol performan
e with its �exibility in topology and s
ale.NS-2 TCP-Linux is designed to serve this purpose by improving the
urrent NS-2implementations.Corresponding to the di�
ulties, NS-2 TCP-Linux has three design goals:
• Enhan
e extensibility by allowing users to import
ongestion
ontrol algorithmsdire
tly from Linux sour
e
odes;
• Provide simulation results that are
lose to the performan
e of Linux;
• Maintain the simulation speed at least as fast as the
urrent TCP modules.To improve the a

ura
y of the simulation result, we redesigned the loss re
overymodule (S
oreBoard). We also improved the s
heduler to speed up the simulation. 1Our e�orts and results show that these three goals
an be a
hieved at the sametime, when the NS-2 TCP module is
arefully redesigned.4.2.2 An introdu
tion to Linux TCPBoth NS-2 TCP and Linux TCP [61, 62, 63℄ implementations follow the relevantRFCs. However, there are a few major di�eren
es between the existing NS-2 imple-mentation and Linux implementation. Some of them are listed below:1. SACK [56℄ pro
essing:
urrent NS-2 TCP (Sa
k1 and Fa
k) times out when aretransmitted pa
ket is lost again. Linux SACK pro
essing may still re
over ifa retransmitted pa
ket is lost;2. Rate halving [64℄: Linux has a
ompli
ated rate halving pro
ess whi
h graduallyredu
es the
ongestion window to half of the slow start threshold, and then1Note that these two improvements
an be used in a more general
ontext. S
oreboard1
an beused in other TCP implementations and the improved s
heduler
an be used in any NS2 simulation.

92returns to the slow start threshold after re
overy; NS-2 has a simpli�ed rate-halving algorithm;3. Delayed A
k: the Linux re
eiver disables delayed a
k in the �rst few pa
kets toavoid delaying slow start;24. Dupli
ated SACK (D-Sa
k [65℄):
urrent NS-2 TCP does not use D-SACKinformation to infer the degree of pa
ket reordering in the path; Linux has apro
ess to dete
t D-SACK and adjust dupli
ated ACK threshold.All these di�erent issues in implementation lead to di�eren
es in throughput predi
tedby NS-2 and throughput a
hieved by Linux. More importantly, the
ode stru
tureof NS-2 is very di�erent from the
ode stru
ture in Linux. It is a burden to portan algorithm between Linux and NS-2. From version 2.6.13, the Linux kernel hasintrodu
ed the
on
ept of
ongestion
ontrol modules [61℄. A
ommon interfa
e isde�ned for
ongestion
ontrol algorithms, and algorithm designers
an implementtheir own
ongestion
ontrol algorithms as Linux modules easily.With this interfa
e, all the state variables for a TCP
onne
tion are stored in astru
ture
alled t
p_sk. The interfa
e also de�nes a
ongestion window operationstru
ture
alled i
sk_
a_ops, for third party to write new
ongestion
ontrol algo-rithm as a kernel module in Linux. The i
sk_
a_ops stru
ture is a set of fun
tionpointers. The stru
ture has three required fun
tion
all pointers:
•
ong_avoid fun
tion: This fun
tion is
alled when an a
k is re
eived. Theimplementation of this fun
tion is expe
ted to
hange the
ongestion windowin this fun
tion during the normal situation (without loss re
overy). In TCPReno, this means slow start and
ongestion avoidan
e.
• ssthresh fun
tion: This fun
tion is
alled when a loss event o

urs. It is expe
tedto return the slow start threshold after a loss event. The returned value shallbe half of snd_
wnd in TCP Reno.2This is not RFC-
onforming but follows Nagle's advi
e.

93
• min_
wnd fun
tion: This fun
tion is
alled when a fast retransmission o

urs,after ssthresh fun
tion. It is expe
ted to return the value of the
ongestionwindow after a loss event. In Reno, the returned value shall be snd_ssthresh.Linux kernel performs tasks of a
knowledgment pro
essing, SACK pro
essing, lossdete
tion and retransmission. It
alls the
ongestion
ontrol module when the
on-gestion window or the slow start threshold needs to be
hanged (e.g. upon the arrivalof a new a
knowledgment or a loss is dete
ted). In these
ases, Linux kernel
alls the
orresponding fun
tion pointers in i
sk_
a_ops stru
ture. The address of t
p_sk ispassed to the
ongestion
ontrol module as a parameter so that the
ongestion
ontrolmodule has its �exibility to read or
hange other TCP states as well.A
ongestion
ontrol module are required to implement the above three fun
tionsand
ontrol the
ongestion window and the slow start threshold. A very simplealgorithm (TCP Reno) is shown in Figure 4.2 as an example of an implementationfor this interfa
e.More sophisti
ate
ongestion
ontrol s
hemes require more operations su
h asobtaining high resolution RTT samples [66℄. These advan
ed fun
tions are introdu
edin Appendix 6.1.Until the version of 2.6.16-3 appeared, Linux in
orporated nine
ongestion
ontrolalgorithms in the o�
ial release version. At least three new implementations areanti
ipated in the
ommunity. We believe that NS-2 will bene�t from a new TCPmodule whi
h
onforms to the Linux
ongestion
ontrol module interfa
e. The bene�tsare two-fold: First, the resear
h
ommunity
an use NS-2 to analyze Linux algorithmswithout implementing the NS-2 version of a Linux algorithm. This leads to improvedprodu
tivity and a

ura
y. Se
ond, NS-2 is a tool the Linux
ommunity
an use todebug and test their new
ongestion
ontrol algorithms. This leads to more reliableand better-understood implementations. Hen
e, we designed TCP-Linux in the spiritof bridging the gap between the implementation
ommunity developing the Linuxsystem and the analysis
ommunity using the NS-2 as a tool.

94
/* This function increases

 * congestion window for

 * each acknowledgment

 */

void nr_cong_avoid

 (struct tcp_sk *tp, ...)

{

 if (tp->snd_cwnd <

 tp->snd_ssthresh)

 {

//slow star
t

 tp->snd_cwnd++;

 } else {

//congestion avoidance

 if (tp->snd_cwnd_cnt <

 tp->snd_cwnd)

 {

// not enough for 1 pkt,

// we increase the fraction.

 tp->snd_cwnd_cnt++;

 } else {

// we can increase cwnd

// by 1 pkt now.

tp->snd_cwnd++;

 tp->snd_cwnd_cnt = 0;

 }

 }

}

/* Create a constant record

* for this congestion control

* algorithm for the interface */

struct tcp_congestion_ops

 simple_reno = {

.name
 = "simple_reno",

.ssthresh
 = nr_ssthresh,

.cong_avoid
 = nr_cong_avoid,

.min_cwnd
= nr_min_cwnd

};

/* This function returns the

 * slow-start threshold after

 * a loss.

 */

u32 nr_ssthresh(struct tcp_sk *tp)

{

 return max(
tp->snd_cwnd/2
,2);

}

/* This function returns the

 * congestion window after a

 * loss -- it is called AFTER

 * the function ssthresh (above)

 */

u32 nr_min_cwnd(struct tcp_sk *tp)

{

 return
 tp->snd_ssthresh
;

}

Figure 4.2: A very simple implementation (Reno) of the
ongestion
ontrol interfa
e

95Name Meanings Equivalen
e in NS-2TCPAgentsnd_ssthresh the slow start threshold ssthresh_snd_
wnd integer part of the
ongestionwindow ⌊
wnd_⌋snd_
wnd_
nt fra
tion of the
ongestionwindow ⌊
wnd_ ∗
wnd_⌋%⌊
wnd_⌋i
sk_
a_priv a 512-bit array to holdper-�ow states for a
ongestion
ontrol algorithm n/ai
sk_
a_ops a pointer to the
ongestion
ontrol algorithm interfa
e n/aTable 4.1: Important variables in t
p_sk4.2.3 Design of NS-2 TCP-LinuxThe design of NS-2 TCP-Linux shares the same
ongestion
ontrol interfa
e withLinux. It allows users to easily port the sour
e
ode from a
ongestion
ontrol imple-mentation from Linux to NS-2.4.2.3.1 Interfa
eNS-2 TCP-Linux follows the same interfa
e of
ongestion
ontrol module in Linux2.6. It uses the same
ongestion
ontrol module stru
ture as Linux 2.6 (stru
tt
p_
ongestion_ops) . 3However, the simulation module only supports a subset of �elds in the t
p_skstru
ture and syn
hronizes these �elds with the variables in NS-2 TCP; the mostimportant �elds and their
orresponding variables in NS-2 are listed in Table 4.1.Appendix 6.1 provides details of all Linux parameters supported by NS-2 TCP-Linux.By sharing the same interfa
e as
ongestion
ontrol module in Linux 2.6, NS-2TCP-Linux is able to use the sour
e
ode of
ongestion
ontrol modules from Linuxkernel with minor
hanges, ensuring the extensibility of NS-2 TCP-Linux.3The meaning of min_
wnd fun
tion in TCP-Linux is, however, slightly di�erent from Linux.Linux has a
ompli
ated rate-halving pro
ess and min_
wnd is used as the lower bound of the
ongestion window in a rate-halving pro
ess after a loss event. In NS-2, TCP-Linux has a simpli�edversion of rate-halving, and the
ongestion window
an be set to min_
wnd dire
tly.

96
NS-2 Code

Linux Source Codes

LinuxTcpAgent

A class for TCP-Linux

TcpAgent

The original NS-2 TCP

ScoreBoard1

SACK processing

ns-linux-util.h / .cc

Interface between NS-2 and Linux

ns-linux-c.h

Shortcuts for irrelevant Linux system calls

tcp_cong.c

Reno

tcp_highspeed.c

HighSpeed TCP

tcp_vegas.c

TCP-Vegas

tcp_bic.c

BIC-TCP

Class Inherit

References

Legend

Figure 4.3: Code stru
ture of TCP-LinuxThe boxes in the shaded areas are
omponents from existing sour
e
odes in NS-2 orin Linux kernel. The four white boxes outside the shaded areas four
omponents inTCP-Linux implementation.4.2.3.2 Code ar
hite
tureTCP-Linux implements a simpli�ed version of the Linux kernel pa
ket pro
essingtasks and
onforms to the
ongestion
ontrol module interfa
e. The
ode stru
turehas four major
omponents, as presented in Figure 4.3:
• LinuxTCPAgent: The NS-2 module for TCP-Linux (t
p-linux.h and .

)
• S
oreboard1: The s
oreboard design (s
oreboard1.h and .

) whi
h managesloss dete
tion and pa
ket retransmission
• The interfa
e between C++
odes in NS-2 and C
odes in Linux (ns-linux-util.hand .

)
• Short
uts for Linux system
alls (ns-linux-
.h and .
)

97The interfa
e between C++ and C is a set of data stru
ture de
larations. Theshort
uts for Linux system
alls is a set of ma
ros that rede�ne many Linux system
alls not relevant to
ongestion
ontrol. These two
omponents serve as a highly sim-pli�ed environment for the embedded Linux sour
e
odes. A simpli�ed TCP
ontrolblo
k (t
p_so
k stru
ture in Linux) serves as the data stru
ture for
ommuni
ationbetween Linux
ongestion
ontrol modules and LinuxTCPAgent in NS-2.With the interfa
e and short
uts, users of TCP-Linux
an easily in
lude new
ongestion
ontrol algorithms from the Linux sour
e
odes [67℄.LinuxTCPAgent is the main NS-2
omponent of TCP-Linux. It has two majorfun
tions:1. Simulate Linux a
knowledgment pa
ket pro
essing;2. Provide user interfa
e, tra
e and measurement support for NS-2.Di�erent from other TCP modules in NS-2, LinuxTCPAgent loosely follows the de-sign of the Linux a
knowledgment pro
essing pro
ess (t
p_a
k fun
tion in Linux),in
luding RTT sampling routine, SACK pro
essing routine, fast retransmission rou-tine and transmission timeout routine. We made the following simpli�
ations to tailorthe Linux implementation to NS-2:
• Eliminate the di�eren
e between fast path and slow path: NS-2 simulation doesnot pro
ess a
tual data pa
kets. There is no di�eren
e in fast path and slowpath in NS-2. However, the Linux
ongestion
ontrol module interfa
e allowsa
ongestion
ontrol algorithm to use fast path and slow path as a hint for
ongestion level; we use a very simple algorithm to simulate this hint.
• The rate halving pro
ess is greatly simpli�ed: In Linux, the
ongestion windowis not redu
ed immediately when the sender observes a pa
ket loss. Instead,the
ongestion window is redu
ed by half a pa
ket every round trip time duringthe FastRetransmission state, until it hits the minimum
ongestion windowthreshold (usually, the threshold equals the slow start threshold or half of the

98slow start threshold). If the sender re
overs from FastRetransmission statebefore the
ongestion window hits the minimum threshold, the sender has to�rst
omplete the window redu
tion and then return to normal state. In NS-2TCP-Linux, the implementation does rate halving more expli
itly. The senderhalves the
ongestion window immediately after a loss. However, it keeps tra
kof the number of pa
kets in �ight, and allows at most one pa
ket to be sentout for ea
h a
k, as long as the number of pa
kets in �ight keeps redu
ing. Wedid not noti
e any major di�eren
e in the results when
omparing the resultsof TCP-Linux simulation and Linux experiments.
• The loss re
overy does not have an �undo� fun
tion: In Linux, when a falseretransmission is dete
ted (e.g. due to D-SACK), Linux
an undo the
onges-tion window redu
tion due to the false retransmission. This fun
tion is notimplemented in TCP-Linux. There might be an impa
t to the simulation re-sults when the s
enario in
ludes a network devi
e whi
h reorders data pa
kets.We do not have s
enarios with pa
ket reordering devi
e. For general purposeusages, we need to investigate this impa
t further .The LinuxTCPAgent updates the NS-2 tra
ed variables at the end of ea
h a
k pro-
essing routine and support
ongestion
ontrol algorithm sele
tion as a
ommand lineoption, making it very easy to use NS-2 TCP-Linux. For any existing TCP simulations
ripts, users only need to add one
ommand to use NS-2 TCP-Linux [67℄.4.2.3.3 S
oreboard1: improving the a

ura
y by better loss re
overyS
oreboard1 is a new s
oreboard implementation that
ombines the advantage ofS
oreboard-RQ in NS2 and the Linux SACK pro
essing routine (sa
ktag_write_queue).Similar to Linux SACK pro
essing, ea
h pa
ket in the retransmission queue is in oneof the four possible states: InFlight, Lost, Retrans or SACKed. The state transitiondiagram is shown in Figure 4.4.A pa
ket that is sent for the �rst time, but not a
knowledged and not
onsideredlost, is in InFlight state. It enters SACKed state if it is sele
tively a
knowledged

99
In

Flight

SACKed

Lost

Retrans

SACKed

Ti
me
ou
t

or
 F
AC
K

Retransmit

Timeout

or FACK

SA
CK
ed

Figure 4.4: State ma
hine of ea
h pa
ketby a SACK, or enters Lost state if a retransmission timeout o

urs, or the furthestSACKed pa
ket is more than 3 pa
kets ahead of it.A pa
ket in Lost state will be retransmitted and enter Retrans state.When a pa
ket is retransmitted, it is assigned with a sequen
e number snd_nxt(similar to S
oreboard in NS-2 Fa
k) whi
h re
ords the pa
ket sequen
e number ofthe next data pa
ket that is going to be sent. Additionally, it is also assigned witha retrx_id whi
h re
ords the number of pa
kets that is retransmitted in this lossre
overy phase, as shown in the �rst two nodes in Figure 4.5. The (snd_nxt, retrx_id)pair helps dete
t if a retransmitted pa
ket is lost. The retransmitted pa
ket
an be
onsidered lost if: 41. Another pa
ket is sele
tively or a

umulatively a
knowledged (SACKed or ACKed),and the a
knowledged pa
ket's sequen
e number is higher than snd_nxt+3; or2. Another retransmitted pa
ket is sele
tively or a

umulatively a
knowledged,and the a
knowledged pa
ket's retrx_id is higher than retrx_id+3.With the de�nition of per-pa
ket state, S
oreboard1
an keep an expli
it
ounter forthe number of pa
kets in �ight (whi
h equals to the sum of number of pa
kets in4Stri
tly speaking, the Linux implementation also in
ludes the third
ase: when a pa
ket is a
-knowledged, and its transmission timestamp is higher than an una
knowledged pa
ket's transmissiontimestamp plus RTO, the una
knowledged pa
ket is
onsidered to be lost. This is
alled head time-out. This
ase is not in
luded in the
urrent implementation of TCP-Linux and it might a�e
t theLinux performan
e when the pa
kets in �ight is smaller than 3.

100InFlight state and the number of pa
kets in Retrans state).To improve the speed of SACK pro
essing, S
oreboard1 in
orporates the one-pass traversing s
heme from S
oreboard-RQ. S
oreboard1 organizes all the pa
ketsin a linked list, as shown in Figure 4.5. Ea
h node of the linked list
an be either
Retrans

seq: 1

retrx id:1

snd_nxt:20

Retrans

seq: 2

retrx id:2

snd_nxt:20

next block
next block

Lost

first seq: 3

last seq: 5

next block

SACKed

first seq: 6

last seq: 8

next block

In Flight

first seq: 9

last seq: 10

next block

SACKed

first seq:11

last seq: 11

next block
Figure 4.5: SACK queue data stru
turea single pa
ket in retransmitted state, or a blo
k of pa
kets in other states. Thislinked list allows S
oreBoard1 to traverse the retransmission queue only on
e everya
knowledgment, regardless of the number of SACK blo
ks in the a
knowledgment.The retransmission queue update pro
ess is a simpli�ed version of t
p_
lean_rtx_queueand t
p_sa
ktag_write_queue in Linux, without D-SACK pro
essing and timestamppro
essing.4.2.3.4 SNOOPy Queue S
heduler: Speed up the simulation with a betters
hedulerThe
urrent NS-2 (Version 2.29) s
heduler uses a
alendar queue [68℄ to store simu-lation events. A
alendar queue is similar to a hash table with dynami
 bu
ket sizeand uses the time of the event as the key. Intuitively, a bu
ket in a
alendar queue
orresponds to a "day" in a real
alendar. Ea
h bu
ket has a linked list to storemultiple events, just like multiple notes
an be written in ea
h day on a real
alendar.

101The whole bu
ket array
orresponds to a "year". Events in the same "day" but indi�erent "years" share the same bu
ket in in
reasing order. When a new event isinserted, the event's destination bu
ket
an be
al
ulated in O(1) by the hash key,and the event is inserted into the in-order position of the destination bu
ket via alinear sear
h along the linked list. To de-queue the next event, the
alendar queuetraverses the bu
ket array to �nd the bu
ket with the earliest event. The size of thearray may be doubled if the number of events grows larger, or halved if the numberof events grows smaller, to keep the average length of all the linked lists within a
onstant range. On average, the
alender queue
an insert an event and de-queue anevent in O(1).The e�
ien
y of the
alendar queue depends on the width of ea
h bu
ket. Ifthe width of a bu
ket is too large (�a long day�), many events may be put into onebu
ket and the
alendar queue degrades into a single linked list whi
h requires a linearsear
h when a new event is inserted. If the width of a bu
ket is too small (�a shortyear�), most of the events in the bu
kets are of di�erent years and repeated linearsear
hes over the bu
ket array are ne
essary to de-queue the next event. Dynami
Calendar Queue [69℄ suggests that the bu
ket size should be dynami
ally set to theaverage interval in the fullest bu
ket. The NS-2
alendar queue takes the suggestionin setting the bu
ket width.5However, this suggestion on bu
ket width works perfe
tly only if the events areevenly distributed in the
alendar queue. If events that span over many �years"happen to be in the fullest bu
ket, while most of the events in the whole
alendarqueue are
lustered within several "se
onds", NS-2 will set the bu
ket width to bevery large, on the order of "year". In this
ase, most of the events (
lustered withinse
onds) will go into a few bu
kets. The
alendar queue hen
e degrades into a fewlinked lists and long linear sear
hes o

ur in event insertions.Unfortunately, su
h uneven event distribution is very
ommon in NS-2 simulation.Users usually set an �end time� before the simulation start. This end time
orresponds5Di�erent from [69℄, NS-2 does not adapt the bu
ket width until the number of events is toolarge or too small. This di�eren
e further degrades performan
e when the bu
ket width is set to anine�
ient value.

102to an event far in the future in the
alendar queue. If this �end time� event happensto be in the fullest bu
ket when NS-2 sets its bu
ket width, the simulation speedslows down signi�
antly.To
orre
t this problem, we added an average interval estimation into the
alendarqueue s
heduler. We used the average interval of ea
h pair of de-queued events,averaged over a whole queue size of de-queued events, as an estimation of the bu
ketwidth. If the event departure interval is similar over time, this width results in theO(1) in both de-queue and en-queue operation.To address the possible
hange of event departure patterns, we also implementedSNOOPy Calendar Queue [70℄, whi
h dynami
ally adjusts the bu
ket width by bal-an
ing the linear sear
h
ost in the event insertion operations and the event de-queueing operation.With these two improvements, the s
heduler performed
onsistently in terms ofsimulation speed.4.2.4 Validation of NS-2 TCP-LinuxWe examined simulation results with TCP-Linux a

ording to our three goals: ex-tensibility, a

ura
y and performan
e. To validate the a

ura
y of the simulationresults of TCP-Linux, we
ompare them with Linux results from Dummynet testbed.To evaluate the performan
e, we
ompare the simulation time and memory usageof TCP-Linux and TCP-Sa
k1, the best TCP implementation in NS-2.6 We alsopresent a real example of how TCP-Linux
an help the Linux
ommunity debug andtest
ongestion
ontrol implementations.The setup of our NS-2 s
enario is shown in Figure 4.6. There is one FTP �owrunning from the sender to the re
eiver for 900 se
onds. We re
orded the
ongestionwindow every 0.5 se
ond.The setup of our Dummynet experiment is shown in Figure 4.7. In the experi-6We also tried other existing implementation in NS-2. Reno and NewReno have mu
h moretimeout than Sa
k1, leading to even poorer a

ura
y. Fa
k and Sa
k-RH run mu
h more slowly dueto the ine�
ient implementation in S
oreboard.

103
S
R

100Mbps, 64ms oneway

220pkt buffer

1Gbps

0ms

1Gbps

0ms

TcpSink/

Sack1/

DelAck

Tcp/

Linux
Figure 4.6: Setup of NS-2 Simulationments, the appli
ation is Iperf with a large enough bu�er. We read the /pro
/net/t
p�le every 0.5 se
ond to get the
ongestion window value of the Iperf �ow and
omparethe
ongestion window traje
tories with the simulation results.
FreeBSD 5.2.1

Dummynet

100Mbps, 64ms, 220pkt buffer

Linux

2.6.16.3

Sender

Linux

2.6.16.1

Receiver
 100Mbps, 64ms, 220pkt buffer

Hardware:

SuperMicro 1U servers with 2G memory and PCI Express bus

CPU: Intel Xeon 2.80Hz * 2 (with hyperthreading)

NIC: Intel e1000 Copper GE cards * 2
Figure 4.7: Setup of Dummynet Experiments4.2.4.1 ExtensibilityWe in
orporated all the nine di�erent
ongestion
ontrol algorithms in Linux 2.6.16-3into NS-2 TCP-Linux. Six of them are not in the
urrent NS-2 release (2.29). Table4.2shows the results with these six di�erent
ongestion
ontrol algorithms. To makethe �gures readable, we re-s
aled the time axles in the �gures to in
lude only six
ongestion epo
hs in ea
h �gure.From Table 4.2, we
an see that the
ongestion window traje
tories predi
tedby NS-2 TCP-Linux are very similar to the results from Dummynet testbed. Thetwo
ases whi
h have the most signi�
ant di�eren
es are TCP-Hybla, and TCP-Cubi
. TCP-Hybla measures the round trip delay to set its additive in
rement (AI)

104
0 5 10 15 20

0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

scalable

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

bictcp

TCP−Linux in NS2
Linux

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

cubic

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

htcp

TCP−Linux in NS2
Linux

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

westwood

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

hybla

TCP−Linux in NS2
LinuxTable 4.2: Congestion window traje
tory of di�erent
ongestion
ontrol algorithmsparameters. Due to noise, the Linux host measures higher delay in the Dummynettestbed than in the NS-2 simulation. The higher delay leads to higher AI parameterand shorter length of
ongestion epo
h in the Linux result. Also, TCP-Hybla setsa large
ongestion window in the start-up phase of a �ow. The high
ongestionwindow leads to pa
ket loss, but Linux qui
kly gets a timeout and TCP-Linux predi
tsmultiple fast-re
overies before timeout. This results in the di�eren
e of the
ongestionwindow sizes at the start-up phase (though the rates predi
ted by NS-2 TCP-Linuxare very similar to the Linux results). For TCP-Cubi
, there are some di�eren
e inboth the
ongestion widow traje
tory and the length of
ongestion epo
h. We havenot understood this
ase yet. Further investigation is ne
essary.74.2.4.2 A

ura
yTo
ompare the a

ura
y of NS-2 TCP-Linux and existing TCP implementationsin NS-2, we
ompared the results by Dummynet testbed, the simulation results byTCP-Linux, and the simulation results by NS-2 TCP-Sa
k1 or NS-2 TCP-Vegas, asshown in Table 4.3 .In general, simulation results with TCP-Linux were mu
h
loser to the Linux7As reported by the group that designs TCP-Cubi
, the di�eren
e in TCP-Cubi
 was due to abug in the Linux sour
e
ode and a bug in NS-2 TCP-Linux at the time we ran these experiments.

105
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

reno

TCP−Linux in NS2
Linux
TCP−Sack1 in NS2

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

highspeed

TCP−Linux in NS2
Linux
TCP−Sack1 in NS2

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

vegas

TCP−Linux in NS2
Linux
TCP−Vegas in NS2Table 4.3: Congestion window traje
tory of Reno, Highspeed TCP and Vegasresults, espe
ially for Reno and Vegas. In the
ase of Reno, the huge di�eren
ebetween TCP-Sa
k1 and Linux is mainly due to the appropriate byte
ounting [71℄in Linux Reno. The Vegas
ase is even more interesting. Both TCP-Linux and Linuxresults have smaller
ongestion windows than the TCP-Vegas results. After
arefulinvestigation, the
ombination of delayed ACK and integer operation is found to bethe sour
e of the problem. With delayed ACK, two pa
kets are sent into the networkin a mi
ro-burst. The se
ond data pa
ket is bu�ered until the �rst pa
ket is pro
essedby the bottlene
k router. Hen
e, the se
ond pa
ket is delayed for one pa
ket worthof time even without
ongestion. Unfortunately, the Vegas sender
an only get thea
knowledgment of the se
ond pa
ket, due to delayed ACK. This se
ond pa
ket's RTTin
ludes most of the queueing delay introdu
ed by the �rst pa
ket in the mi
ro-burst.8Su
h a queueing delay is equivalent to almost one pa
ket in the queue. With integeroperation in Linux implementation, Vegas sees one pa
ket in the queue. Sin
e Vegassets its α parameter to be 1, it stops in
reasing its
ongestion window when it seesthis one pa
ket worth of delay and results in low throughput. However, TCP/Vegasin NS-2 uses high-resolution �oat numbers to
al
ulate the available and expe
tedbandwidths and
onverts the results to integers only at the last step of
omparison,avoiding this problem.9We also ran simulations with di�erent per-pa
ket loss rates in the bottlene
k and
ompared the throughput with the Linux throughput in Dummynet experiments.8There is still a small gap between the two pa
kets in a burst. The gap depends on the edge link
apa
ity, whi
h is 10 times of the bottlene
k link in our simulations and experiments.9This problem has been a

epted by the Linux networking group and the default value for α hasbeen
hanged to 2 in the new releases of Linux.

106Figure 4.8 shows the throughput of a single TCP Reno �ow (ran for 600 se
ond)under di�erent per-pa
ket loss rates. Ea
h experiment or simulation is repeated 10times and we present the average and error-bar in the �gure.

−6 −5 −4 −3 −2 −1

10
2

10
3

10
4

10−based logarithm of per packet loss rate

th
ro

ug
hp

ut
 (

K
bp

s)

throughput vs random packet loss rate

TCP−Linux
Linux
TCP−Sack

Figure 4.8: Throughput under di�erent random loss rate (log-log s
ale)As shown in Figure 4.8, the results with TCP-Sa
k1 in NS-2 have a
onstantgap from the Linux performan
e. This gap, in log s
ale, implies a
onstant ratio inthroughputs. This is mainly due to two problems. First, TCP-Sa
k1 uses S
oreboard-RQ to pro
ess SACK. This module
annot dete
t the loss of retransmitted pa
kets,and for
es the TCP �ow to time out when a retransmitted pa
ket is lost. This leadsto poor performan
e when pa
ket loss is heavy. Se
ond, Linux has in
orporatedappropriate byte
ounting [71℄, but TCP/Sa
k1 has not implemented this feature,leading to slower growth in the
ongestion window when pa
ket loss is light.The simulation results of TCP-Linux are very similar to the experiment results ofLinux, ex
ept in the
ase when the per pa
ket loss rate is 10%. In this
ase, the Linux

107re
eiver almost disabled delayed a
knowledgment, whi
h leads to better performan
ethan the simulation, where the delayed a
knowledgment fun
tion in TCPSink in NS-2is not adaptive.4.2.4.3 Simulation performan
eWe run simulations with Reno and HighSpeed TCP with di�erent numbers of �ows(from 2 to 128), di�erent round trip propagation delays (from 4ms to 256ms) anddi�erent
apa
ities (from 1Mbps to 1Gbps) to test the speed and memory usage.We also
ompared the simulation performan
e of TCP-Linux with the performan
eof TCP-Sa
k1 in NS-2. Ea
h
ase simulates the s
enario for 200 se
onds. All thesimulations were run on a 1U server, with two Intel Xeon 2.66GHz CPUs, a
a
he sizeof 512KB, though only one of the CPUs
an be used for ea
h simulation. We makesure that only one simulation was run at a time, without any other appli
ation. Wepresent here two of our dozens of �gures. Figure 4.9 shows the simulation times ofHighSpeed TCP with di�erent bottlene
k
apa
ities. Figure 4.10 shows the simulationtimes of HighSpeed TCP with di�erent numbers of �ows.Both �gures show that the speed of TCP-Linux is very similar to the speed ofTCP-Sa
k1 module in most s
enarios. However, TCP-Sa
k1 does not perform
onsis-tently well and might have a mu
h longer simulation time when the
apa
ity is high,or the number of �ows is large. NS-2 TCP-Linux has a very
onsistent simulationspeed with its improved event s
heduler.10To measure the memory usage of the simulation, we measured the simulator'smemory usage in the middle point of the simulation period. The memory usage ofTCP-Linux was almost the same as TCP-Sa
k1 in most s
enarios. The only di�eren
ewe observed was the
ase with Reno and with two �ows, as shown in Figure 4.11 . Inthis
ase, TCP-Linux used about 1MByte more than TCP-Sa
k1.Based on these simulation results, we believe that TCP-Linux
an be a goodalternative, or even a repla
ement, for the existing NS-2 TCP modules, given its10We also ran NS-2 TCP-Sa
k1 with our improved s
heduler. With the improved s
heduler,TCP-Sa
k1 performed exa
tly the same as TCP-Linux.

108

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

bandwidth (Mbps)

tim
e

(s
ec

)
simulation time for highspeed, (RTT=64ms, # of flow=128)

TCP−Linux
TCP−Sack1

Figure 4.9: Simulation time of di�erent bottlene
k bandwidth (log-log s
ale)similar performan
e in terms of speed and memory usage, and its advantages interms of adaptability and a

ura
y.
4.2.4.4 An example: identifying a potential bug in Linux HighSpeed TCPimplementationFigure 4.12 shows an example of how TCP-Linux
an help the Linux
ommunitytest and debug the implementation of new
ongestion
ontrol algorithms.This �gureillustrates a potential bug in HighSpeed TCP implementation in Linux 2.6.16-3. Inthe rare situation when snd_
wnd_
nt_==snd_
wnd_, snd_
wnd_ is in
reased byone, before snd_
wnd_
nt_ is de
reased by snd_
wnd_. This leads to a value of-1 for snd_
wnd_
nt_. Sin
e snd_
wnd_
nt_ is an unsigned variable, the negative

109

10
1

10
2

10
2

10
3

10
4

10
5

Number of flows

tim
e

(s
ec

)

simulation time for highspeed, (RTT=64ms, Bandwidth=1000Mbps)

TCP−Linux
TCP−Sack1

Figure 4.10: Simulation time of di�erent number of �ows (log-log s
ale)value
auses over�ow, results in an in�nitely large snd_
wnd_
nt_.11Motivated by this example, we strongly believe that TCP-Linux
an help theimplementation
ommunity debug, test, and understand the new
ongestion
ontrolalgorithms and
lose the gap between the implementation and analysis
ommunities.4.2.5 Usages in resear
hIn our resear
h, NS-2 TCP-Linux is used to simulate di�erent TCP variants (TCP-Reno, HighSpeed TCP and S
alable TCP) and study their performan
e under di�er-ent pa
ket loss patterns.We used a dumb-bell topology with a set of senders and a set of re
eivers sharinga bottlene
k, as shown in Figure 4.13.11The Linux networking group has a

epted this bug report and the bug hass been
orre
ted inthe newer Linux releases.

110

10
1

10
2

26

28

30

32

34

36

38

40

42

44

46

Number of flows

to
ta

l m
em

or
y

(M
B

)

simulation memory for reno, (RTT=64ms, Bandwidth=1000Mbps)

TCP−Linux
TCP−Sack1

Figure 4.11: Memory usage of di�erent number of �ows (x-axle in log s
ale)The bottlene
k is a 100Mbps link. We ran simulations with di�erent RTT (2ms to200ms in di�erent s
enarios) and di�erent bu�er sizes (1/8 bandwidth-delay-produ
tto 2 bandwidth-delay-produ
t in di�erent s
enarios). Di�erent link algorithms, Drop-Tail, RED and Persistent ECN, are run in the simulations. For s
enarios with RED,the RED parameters are set to be self-adaptive. The bottlene
k is shared by a setof parallel TCP �ows and 50 UDP noise �ows, generating exponential on-o� tra�
with the aggregate rate of 10% of the bottlene
k
apa
ity. The number of �ows variesfrom 2 to 32 �ows in di�erent s
enarios.The TCP implementations in NS-2 TCP-Linux
ome with SACK [56℄, FACK [7℄and rate halving [64℄. Reno implementation also in
ludes ABC [71℄.In ea
h simulation, we repeat the s
enario for at least 10 times with di�erentrandom seeds and present both the average values and the error-bars.

111

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

time (sec)

co
ng

es
tio

n
w

in
do

w
 (

pa
ck

et
)

A potential bug in Linux implementation of High Speed TCP

After the fix
Before the fix

Figure 4.12: A potential bug in Linux implementation of HighSpeed TCP4.3 A pa
ket level measurement tool in PlanetLabTo measure the Internet behavior, we have designed a distributed measurement sys-tem to periodi
ally measure loss and delay pattern between sites in PlanetLab.Thismeasurement system is di�erent from existing loss measurement te
hniques.The most frequently used te
hnique for loss measurement is to analyze tra
es ofTCP �ows and dete
t pa
ket retransmissions in TCP. Ea
h pa
ket retransmission
anbe treated as the inferen
e of a lost pa
ket in the network. This approa
h is widelyused be
ause it has the advantage of requiring measurement at one end only [41℄.However, there are a few disadvantages. First, a pa
ket retransmission only infers apossible pa
ket loss. Whether there is really a pa
ket loss in the network depends onthe a

ura
y of the TCP retransmission algorithm. If TCP times out prematurely,this approa
h overestimates the pa
ket loss rate. Se
ond, and more importantly, thisapproa
h measures the pa
ket loss rate observed by TCP �ows. As we will see in

112
S
R

c=100Mbps

1ms~100ms oneway delay

1/8 ~ 2 BDP of buffer

TcpSink

/Sack1

Tcp/

Linux

TcpSink

/Sack1

Tcp/

Linux

UDP
 UDP

UDP
UDP

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

 Noise: 50 flows, avg rate: 10% of c

 Two way exponential on-off traffic

 TCP: 2~32 flows

 Reno, Highspeed or Scalable
Figure 4.13: Setup of NS-2 simulationsChapter 4, the pa
ket loss rate observed by TCP �ows is not ne
essarily the same asthe pa
ket loss rate in the path, due to TCP burstiness.In our tool, we used UDP pa
kets to probe the network and measure the lossinformation at the other end. We designed our tool in a way that the UDP pa
kettransmission pattern is tunable. We used di�erent transmission patterns to simulatebursty pa
ket sequen
es (e.g. generated by TCP) or smooth pa
ket sequen
es (e.g.generated by TFRC [72℄, pa
ed TCP) .4.3.1 An introdu
tion to PlanetLabPlanetLab [45℄ is an open platform for developing, deploying and a

essing planetary-s
ale servi
e. It is an overlay network with more than 600 nodes geographi
allydistributed around the world. PlanetLab users
an run servi
es on a set of nodeswith full
ontrol on the end hosts, making it possible to measure pa
ket loss at twoend hosts.4.3.2 Design of the measurement systemThe system has a server and a
lient at ea
h site in the experiments. There is alsoa light-weight
entral monitor running on one site (in our experiments, the
entralmonitor is run on WAN-in-Lab at Calte
h). The
entral monitor periodi
ally performs

113maintenan
e tasks of the experiments. These tasks in
lude: installing and upgradingsoftware at ea
h remote site, monitoring the health of ea
h remote site, and
olle
tingmeasurement data from all the sites into a
entralized database. Ea
h remote siteruns a server, whi
h a

epts new measurement requests and UDP pa
ket sequen
es.Ea
h remote site periodi
ally starts a
lient, whi
h randomly pi
ks a site and initiatesnew measurement request. The
lient is the sender of UDP pa
ket sequen
es and there
order of the experiment results.In ea
h measurement, server and
lient use a TCP
onne
tion to ex
hange
ontrolmessages and measurement results. After a simple handshake, the
lient sends UDPpa
kets to the server in a spe
i�
 pattern. The server measures loss information andperiodi
ally returns statisti
s to the
lient via TCP. The server keeps a window of128 pa
kets so that pa
ket reordering within 128 pa
kets
an be dete
ted. Thesereordered pa
kets will not be
onsidered lost pa
kets.124.3.2.1 Message formatsThere are four di�erent pa
kets in the system. We
arefully designed the pa
ketformats so that we
ould �lter unreliable results that were probably due to abnormalnetwork behavior, for example, pa
ket
orruption. Ea
h pa
ket starts with an 8-byteidenti�er, �lled with 8 English
hara
ters. This identi�er indi
ates the pa
ket type.The servers and
lients verify the identi�er and the validity of the
ontents. For UDPpa
kets, the servers and
lients also use
he
ksum to dete
t possible pa
ket
orruption.StartPa
ket StartPa
ket is the �rst pa
ket the server sends to the
lient to
on�rmthe a

eptan
e of the measurement request. Before sending this pa
ket, the serverassigns a unique measurement request ID and the StartPa
ket
arries this request IDba
k to the
lient. This request ID will be in all UDP pa
kets sent from the
lient tothe server. Table 4.4 illustrates the format of StartPa
ket.12This is mu
h more robust than the normal TCP, whi
h
an only dete
t pa
ket reordering within3 pa
kets.

114STARTUDP <request id>8 bytes 8 bytes Table 4.4: StartPa
ket formatSTOP_UDP <error
ode>8 bytes 8 bytes Table 4.5: StopPa
ket formatStopPa
ket StopPa
ket is the pa
ket that the server or the
lient sends to indi
atethe termination of the experiments. Whenever an error is dete
ted, either server or
lient will send a stop pa
ket, with an error
ode to inform the other side of thereason of the termination. A error
ode of zero indi
ates normal termination. Table4.5 illustrates the format of StopPa
ket.UDPPa
ket UDPPa
kets are the pa
kets sent from the
lient to the server, whi
hmeasures the delay and loss in the forward path. As illustrated in Table 4.6, ea
hUDP pa
ket
arries a request ID for the measurement, a unique sequen
e number,the timestamp of sending event, and variable length of random bytes that �lls thepa
ket to a spe
i�
 length. A UDPPa
ket also
omes with a
he
ksum that
oversthe whole pa
ket.ReportPa
ket A ReportPa
ket is the pa
ket sent from the server to the
lient toreport the statisti
s of pa
ket loss and measure round-trip time (RTT). As illustratedin Table 4.7, a ReportPa
ket
arries the timestamp of the UDPPa
ket upon whosearrival the ReportPa
ket is sent. When the
lient re
eives this ReportPa
ket, it
anestimate the round-trip time by the di�eren
e of the re
eiving time and the value inUDP_TEST <request id> <seq #>8 bytes 8 bytes 8 bytes<timestamp> <
he
ksum> <random bytes>16 bytes 8 bytes variableTable 4.6: UDPPa
ket format

115L_REPORT <timestamp> <a
k seq #>8 bytes 16 bytes 8 bytes<# of loss in this report> <loss seq numbers>8 bytes 8*<# of loss> bytesTable 4.7: ReportPa
ket format
LISTEN
 RUNNING

Incoming Request

Send StartPacket

Normal

STOP
 Recv StopPacket

Report Statistics

Abnormal

STOP

Er
ro
r
/
Ti
me
ou
t

E
r
r
o
r

S
e
n
d

3

S
T
O
P

p
a
c
k
e
t
s

Connection

Timeout: 10 sec

Report

Erro
r

Received Pkt > threhsold

Send Report

Report threshold:

10

Succe
ss

Clear
 Stat

istic
s

Figure 4.14: State ma
hine of a measurement server in PlanetLab<timestamp> �eld.13A ReportPa
ket also
arries the highest sequen
e number of the UDPPa
ket itre
eives. This serves as a positive a
knowledgment. Finally, a ReportPa
ket
arriesthe number of observed loss pa
kets, followed by the list of sequen
e numbers of theselost pa
kets. The
lient will re
ord these lost pa
kets and their sending times toestimate the loss pattern in the path.4.3.2.2 Design of measurement serversThe server listens to a stati
 port and a

epts, at most, 10 in
oming measurementrequests. The design of the server is shown in the state ma
hine in Figure 4.14. Forea
h request, the server assigns a unique ID and returns the ID in a StartPa
ket. The13As ReportPa
kets are transported by TCP, the RTT
al
ulation is not very a

urate if theReportPa
ket is lost. We only use this RTT information to get a rough estimation of the RTT andwe use the minimum observed RTT as our estimate. This estimation ignores the queueing delay inthe path and underestimates the RTT. Hen
e, it underestimates the sub-RTT burstiness.

116server then enters the RUNNING state. In the RUNNING state, it listens to the portfor any UDP pa
kets that mat
h the ID for the request. When the server re
eivesmore than 10 pa
kets, or it dete
ts more than 128 pa
ket loss, it sends a report pa
ketto the
lient via TCP
onne
tion. The server stays in the RUNNING state until itre
eives a StopPa
ket from the
lient. When the server re
eives a StopPa
ket, it sendsthe last report and waits for a normal TCP exit. At any time if there is abnormalbehavior, the server enters the AbnormalStop state, sends a StopPa
ket to the
lient,and
loses the
onne
tion.Abnormal behavior is de�ned as one of the following symptoms:
• A read or write error in TCP so
ket;
• A
orrupted UDP pa
ket;
• The measurement has been idle for more than 10 se
onds.For these abnormal behaviors, the
lient will re
eive a StopPa
ket with an errormessage, and the result in this measurement will be dis
arded.4.3.2.3 Design of measurement
lientsThe design of the
lient is shown in Figure 4.15.It sends a measurement request to a server whi
h is randomly
hosen from a list,and waits for the StartPa
ket. On
e the StartPa
ket arrives, it enters the Operationstate, in whi
h it sends UDP pa
kets in a spe
i�
 pattern. Upon the re
eipt ofa ReportPa
ket, it
al
ulates the RTT estimation and re
ords the delay and lossinformation into a �le. When the measurement period is over, the
lient exits theOperation state by issuing a StopPa
ket with error
ode zero and waits for the lastreport. The
lient stops upon timeout or the arrival of the report.Ea
h site runs the
lient randomly every 30 minutes. Ea
h measurement periodlasts 5 minutes. The
lient sends UDP at a rate less than 1 pa
ket per ms. Ea
h UDPpa
ket is no greater than 400 bytes .14 Hen
e, the average throughput over the mea-14The maximum pa
ket size of 400 bytes is to guarantee that the pa
ket will not be fragmentedby a router with a small MTU of 500.

117
CLOSE

Operation

Start

Send Request

Normal

STOP

Recv StopPacket

ST
OP
_T
im
eO
ut

Du
mp
 D
at
a

Abnormal

STOP

Er
ro
r

Ready
 Recv StartPacket

Recv wrong packets

Send StopPacket

Report

r
e
c
v

R
e
p
o
r
t
P
a
c
k
e
t

R
e
c
o
r
d

l
o
s
s

i
n
f
o

Experiment Timeout

Send StopPacket

Send UDP

recv ReportPacket

Record loss info

STOP_Timeout: 5sec
Figure 4.15: State ma
hine of a measurement
lient in PlanetLabsurement period is no greater than 3.2Mbps (with 400 bytes per pa
ket). The averagethroughput is only 384Kbps with 48-byte pa
kets. We usually ran experiments withpa
ket sizes of 48 bytes or 400 bytes and
ompared the results to make sure that ourmeasurement tra�
 did not inje
t additional
ongestion. Before ea
h measurement,we ran ping and tra
eroute to re
ord the RTT and the routing paths. The RTTreported by ping will be used to
ompare the delay measurement and validate theresults. The routing path information
an be used to dete
t route
hanges and pathinterse
tions. Currently, we only use it to
al
ulate hop
ount of a path.4.3.3 Deployment and data pre-pro
essingWe deploy this measurement system in 26 sites in the PlanetLab . In ea
h measure-ment, the
lient in a site randomly pi
ks a server. Hen
e, 650 dire
tional paths aremeasured. As listed in Table 4.8, our sites are geographi
ally lo
ated on di�erent
ontinents. Among them, 6 are in California, 11 are in other parts of United States,3 are in Canada and the rest are in Asia, Europe, and South Ameri
a. The RTTs ofthese paths have a range from 2ms to more than 200ms.15Our system uses a
entral monitor to maintain the sites in the experiments. The15The highest measured RTT is more than 300ms, depending on the time of the day.

118
Node Lo
ationplanetlab2.
s.u
la.edu Los Angeles, CAplanetlab2.postel.org Marina Del Rey, CAplanet2.
s.u
sb.edu Santa Barbara, CAplanetlab11.millennium.berkeley.edu Berkeley, CAplanetlab1.ny
m.internet2.planet-lab.org Marina del Rey,CAplanetlab2.ks
y.internet2.planet-lab.org Marina del Rey,CAplanetlab3.
s.uoregon.edu Eugene, ORplanetlab1.
s.ub
.
a Van
ouver, Canadakupl1.itt
.ku.edu Lawren
e, KSplanetlab2.
s.uiu
.edu Urbana, ILplanetlab2.tamu.edu College Station, TXplanet.

.gt.atl.ga.us Atlanta, GAplanetlab2.u
.edu Cin
innati, Ohioplanetlab-2.ee
s.
wru.edu Cleveland, OHplanetlab1.
s.duke.edu Durham, NCplanetlab-10.
s.prin
eton.edu Prin
eton, NJplanetlab1.
s.
ornell.edu Itha
a, NYplanetlab2.isi.jhu.edu Baltimore, MD
rt3.planetlab.umontreal.
a Montereal, Canadaplanet2.toronto.
anet4.nodes.planet-lab.org Toronto, Canadaplanet1.
s.huji.a
.il Jerusalem, Israelthu1.6planetlab.edu.
n Beijing, Chinalzu1.6planetlab.edu.
n Lanzhou, Chinaplanetlab2.iis.sini
a.edu.tw Taipei, Chinaplanetlab1.
esnet.
z Cze
h Republi
planetlab1.lar
.usp.br BrazilTable 4.8: PlanetLab sites in measurement

119monitor ensures that the
lient and server at ea
h site run normally. It performs taskssu
h as upgrade, data
olle
tion, and
leanup.From O
tober 2006 to De
ember 2006, we periodi
ally initiated
onstant bit rate(CBR) �ows between two randomly sele
ted sites. For ea
h experiment, two runsof measurements were
ondu
ted: one with a pa
ket size of 48 bytes and the otherwith a pa
ket size of 400 bytes. We
ompared these two results and validated themeasurement only if the two tra
es exhibited similar loss patterns. Hen
e, the e�e
t oftra�
 load from our own measurement CBR �ows was negligible in our measurementresults. Ea
h run lasted for 5 minutes. In analysis, we normalized the loss intervalby the RTT of the path.

120

121
Chapter 5Con
lusions and Future works
This thesis studies the mi
ros
opi
 behavior of TCP
ongestion
ontrol. We �nd thatthe burstiness at the mi
ros
opi
 level has huge impa
ts on the stability, e�
ien
y,fairness, and
onvergen
e of
ongestion
ontrol algorithms.We
ategorize burstiness into two types: mi
ro-burst and sub-RTT burstiness.Mi
ro-burst leads to qui
k
onvergen
e of queueing delay. This e�e
t makes delay-based
ongestion
ontrol algorithms mu
h more stable than the �uid model predi
ts.In parti
ular, homogeneous TCP-Vegas �ows or FAST �ows are globally stable regard-less of
apa
ity and delay. This new predi
tion agrees with the experimental resultsand are in sharp
ontrast to the �uid model predi
tion. With this observation, we
an design new algorithms that a
hieve both responsiveness and stability.Sub-RTT level burstiness leads to on-o� patterns in the data pa
ket transmissionpro
ess. With DropTail routers produ
ing bursty loss pro
esses in sub-RTT times
ale,sub-RTT level burstiness dire
tly a�e
ts the loss syn
hronization rate, the probabilitythat one �ow sees a pa
ket loss during a
ongestion event. Loss syn
hronizationrate a�e
ts the e�
ien
y, fairness, and
onvergen
e of loss-based
ongestion
ontrolalgorithms. With all these understandings, we
an explain
ontroversial problemssu
h as MIMD fairness,
ompetition between pa
ed TCP and bursty TCP, and slow
onvergen
e of TCP.We developed two new tools in the resear
h pro
ess. The NS-2 TCP-Linux isa simulation module that runs Linux sour
e
odes dire
tly. It is extensible for new
ongestion
ontrol implementations, runs faster, and produ
es more a

urate results.

122Sin
e its introdu
tion, NS-2 TCP-Linux has helped the Linux
ommunity identifyseveral implementation defe
ts and parameter tuning problems. We expe
t that thistool will be a bridge between the Internet engineering
ommunity and resear
h
om-munity. The PlanetLab-based Internet loss measurement system uses UDP pa
kets tomeasure pa
ket loss rates along di�erent paths, with di�erent pa
ket arrival patternsand di�erent pa
ket sizes. Di�erent from the traditional TCP-based loss monitortools, the measurement results from this system are not a�e
ted by the bursty sam-pling pro
ess of TCP.The work in this thesis is the beginning, rather than the
on
lusion, of many newquestions. Future work is moving in several dire
tions:5.1 Pa
ket Level Model for Delay-based CongestionControl AlgorithmThe pa
ket level model used in this thesis has new predi
tions sharply di�erent thanresults from the
ommonly-used models. These new predi
tions agree with the ex-perimental results. However, the pa
ket level model is only a

urate in a single �ows
enario and
an only be extended to multiple homogeneous �ows. We are still insear
h of a good way to extend the model to
ases with heterogeneous �ows. Onepossible dire
tion is to use a two-level on-o� pro
esses, instead of one-level on-o�pro
ess, to model the pa
ket level dynami
s.5.2 Appli
ation of the model for loss syn
hronizationrateWe have applied our understanding to explain several interesting and long-standingproblems. There are many other problems whi
h we believe our �ndings
an resolve.These problems in
lude:
• Friendliness between TFRC and TCP. TFRC
laims to be friendly to TCP, but

123however, experimental results show that TFRC is too friendly and usually losesto TCP, although the design of TFRC follows the TCP response fun
tion asa

urately as possible at the ma
ros
opi
 level. We expe
t that the main reasonfor the loss of TFRC is due to the di�eren
e at the mi
ros
opi
 level. Spe
i�
ally,the data pa
ket transmission pattern of TFRC is similar to the pattern of pa
edTCP, whi
h leads to a higher loss syn
hronization rate than the one observedby TCP sharing the same bottlene
k. This di�erent syn
hronization rate leadsto lower throughput for TFRC, when
ompeting to TCP.
• E�e
ts and extensions of RED. A

ording to our model, RED is supposed tohelp the fairness
onvergen
e of MIMD proto
ols. We will study this e�e
t totest our predi
tions. We also expe
t to use our resear
h to help the parametertunings in RED.
• Loss measurement methodology. Most existing loss measurement tools useTCP-based probing �ows. This approa
h is easy to deploy (
ontrol is onlyrequired on one side) but prone to the e�e
t of burstiness in TCP. We needto study further the impli
ation of the loss measurement results from theseTCP-based tools and
ompare the a

ura
y against our UDP-based tools.

5.3 Improvement of new algorithmsThe Persistent ECN algorithm is deterministi
 and subje
t to phase e�e
ts. We planto investigate the performan
e of the algorithm under a variety of appli
ation loadsand patterns, and investigate the possibility of randomizing the algorithm. The futurealgorithm we expe
t will be a hybrid of persistent ECN and RED, whi
h will providea persistent random signal in a
ongestion event.

1245.4 Extension to NS-2 TCP-LinuxThe
urrent status of this NS-2 module has its limitation. It might not be able tosimulate the Linux performan
e well in the
ase where the pa
ket reordering in thepath is severe, or pa
ket loss rate is extremely high. In future work, we plan toin
lude D-SACK [65℄ pro
essing and the
ongestion window redu
tion undo fun
tionfrom Linux. We are also
onsidering developing a Delayed A
k module for NS-2 thatperforms similar to Linux. Finally, we need to in
orporate the ECN and F-RTOfun
tions in Linux to NS-2.Furthermore, TCP-Linux provides a very good platform for testing di�erent TCP
ongestion
ontrol proto
ols with the �exible s
enarios in NS-2. This
an be a goodfoundation towards a ben
hmark suite implementation for TCP
ongestion
ontrolalgorithms. We do plan to enhan
e our ben
hmark suites and summarize a set ofNS-2 s
enarios for the ben
hmark.Finally, we plan to extend our simulation framework to in
lude a more detailedmodel for distributed appli
ations. Currently, we only use parallel �ows as the ap-pli
ation. We plan to simulate more
ompli
ated s
enarios su
h as a
omplete graphtopology in MapRedu
e [73℄.

125
Chapter 6Appendix
6.1 Complete list of
ontrol variables and fun
tionsported by NS-2 TCP-Linux6.1.1 Control variables:6.1.1.1 Lo
al variables for ea
h
onne
tion:snd_nxt: The next sequen
e that the �ow is going to send.snd_una: The next sequen
e that the �ow is waiting for a
knowledgmentmss_
a
he: The size of a pa
ketsrtt: 8 times of the smooth RTTrx_opt.r
v_tse
r: The timestamp e
hoed by the a
knowledgmentrx_opt.saw_tstamp: Whether there is a timestamp in the a
knowledgmentsnd_ssthresh: the slow start thresholdsnd_
wnd: the
ongestion windowsnd_
wnd_
nt: the
ongestion window
ounter, sin
e
ongesition window is inunit of pa
ket, when the
ongestion window in
rement is smaller than one, snd_
wnd_
ntis in
reased instead. Whenever snd_
wnd_
nt is larger or equal to snd_
wnd, thesnd_
wnd_
nt shall be de
reased by snd_
wnd and snd_
wnd shall be in
reased by1. snd_
wnd_
lamp: the upperbound of the
ongestion window

126snd_
wnd_stamp: the last time that the
ongestion window is
hangedbytes_a
ked: the number of bytes that are a
knowledged in this a
knowledgmenti
sk_
a_state: the state of
ongestion
ontrol: Normal (OPEN), Loss Re
overy,or time out.i
sk_priv: a sixteen 32bit integer array for private data of
ongestion
ontrolalgorithm6.1.1.2 Global variables:Besides the t
p_sk stru
ture, there are several global variables whi
h are importantfor
ongestion
ontrol algorithms:t
p_time_stamp: the
urrent time in mssys_
tl_ab
: whether and how the
ongestion
ontrol algorithm shall do Appro-priate byte Counting.t
p_max_burst: the maximum ba
k-to-ba
k burst that a TCP �ow
an send intothe network.6.1.2 Fun
tion interfa
es:6.1.2.1 Required fun
tions:
•
ong_avoid fun
tion: This fun
tion is
alled when an a
k is re
eived. Theimplementation of this fun
tion is e
pe
ted to
hange the
ongestion windowin this fun
tion during normal situation (without loss re
overy). In Reno, thismeans slow start and
ongestion avoidan
e.
• ssthresh fun
tion: This fun
tion is
alled when a loss event happens. It isexpe
ted to return the slow start threshold after a loss event. The returnedvalue shall be half of snd_
wnd in Reno.
• min_
wnd fun
tion: This fun
tion is
alled when a fast retransmission happens,after ssthresh fun
tion. It is expe
ted to return the value of the
ongestionwindow after a loss event. In Reno, the returned value shall be snd_ssthresh.

1276.1.2.2 Other optional fun
tion
alls in
lude:RTT sample fun
tion (rtt_sample):
alled when a RTT sample is dete
ted, a
on-gestion
ontrol algorithm shall implement this fun
tion if it has spe
ial requirementon RTT sampling;State
hange fun
tion (set_state):
alled when the
ongestion
ontrol state is
hanged (among Open (normal state) state, Loss Re
overy state, and Loss (timeout)state).Congestion event fun
tion (
wnd_event):
alled when there is a spe
ial eventthat might be interesting for a
ongestion
ontrol algorithm. The possible
onges-tion events in
lude: TX_START, CWND_RESTART, COMPLETE_CWR, FRTO,LOSS, FAST_ACK and SLOW_ACK.The
ongestion window after loss (undo_
wnd):
alled when the �ow exists lossre
overy.Pa
ket A
ked fun
tion (pkts_a
ked):
alled when a pa
ket is a
knowledged.Initialization fun
tion (init):
alled when the
ongestion
ontrol algorithm isloaded. Any private data in i
sk_priv shall be intialized here;Destroy fun
tion (release):
alled when the
ongestion
ontrol algorithm is re-moved, private data shall be deleted here.

128

129Algorithm 4 Randomized Pa
ingFor ea
h �ow i, given wi (t) from
ongestion
ontrol algorithm; t is the
urrent systemtime.
w

′

i(t) = max {wi (t) + α, min {2wi (t) , ssthresh(t)}} is the predi
ted value of the
on-gestion window in the next RTT.
vi(k) is the time when the k-th pa
ket of �ow i is supposed to be sent a

ording topa
ing algorithm, vi(0)← 0.For ea
h pa
ket to be transmitted (allowed by the
ongestion window and re
eiverwindow
onstraints):1. vi(k)← vi(k − 1) + RTT

w
′

i
(t)2. s← vi(k) + random [− RTT

2w
′

i
(t)

, RTT

2w
′

i
(t)

]3. send k-th pa
ket at time min {s, t}6.2 A randomized version of pa
ingThere have been many proposals of di�erent pa
ing algorithms [20, 21℄. The pa
ingalgorithm suggested in these literatures is a deterministi
 algorithm whi
h stri
tlypa
e out pa
kets evenly in an RTT. We observed that this approa
h is very likely tointrodu
e phase e�e
t in our simulations.Our algorithm randomizes the pa
ed TCP by perturbing the pa
ed pa
ket trans-mission time with a zero-sum uniform random o�set. The advantage of a randomizedpa
ing algorithm over a deterministi
 pa
ing algorithm is that it
an eliminate phasee�e
t. In this sense, it is similar to the randomized TCP algorithm proposed byChandrayana, et al [49℄. In
ontrast to this resear
h, we randomize a pa
ing algo-rithm instead of a bursty TCP to make the pa
ket distribution more spread-out.Algorithm 4 des
ribes the detailed steps.1 For ea
h �ow i, the
ongestion
ontrolalgorithm spe
i�es a sending window wi (t) and the pa
ing algorithm predi
ts thewindow in the next round-trip w
′

i. The pa
ing algorithm repla
es the a
k-
lo
kingand
ontrols the exa
t time that a pa
ket is transmitted in sub-RTT time s
ales. The1This algorithm des
ription is simpli�ed with an assumption that the network is always thebottlene
k. Modi�
ation is ne
essary in real deployment where some �ows may be appli
ation-limited.

130algorithm keeps a virtual sending time vi, whi
h is the sending time of ea
h pa
ket ifa standard pa
ing were enfor
ed. The a
tual pa
ket transmission time is uniformlydistributed over the interval of [vi −
RTT

2w
′

i

, vi + RTT

2w
′

i

], so there is always one pa
ket inevery RTT/w interval while the phase e�e
t is eliminated by randomizing the orderof pa
kets from di�erent �ows. If the loss signal is persistent for RTT/w or longer,the randomized pa
ing
an ensure that all �ows dete
t the same loss event with highprobability.

1316.3 Proofs of theorems6.3.1 Theorem 2.1.2.1For any time s (j) in whi
h a pa
ket is sent into the network,
p (j) ≤ w (s (j))And there always exists a pa
ket j∗ whi
h is sent at the same time (s (j) = s (j∗)),and

p (j∗) = w (s (j∗))Furthermore, if w (s (j∗)) ≥ w (s (j∗ + 1)), p (j∗ + 1) = w (s (j∗ + 1)).Proof:First, we prove that p (j) ≤ w (s (j)) for any pa
ket j.Assume k∗ is the parameter that a
hieve p (j) = p (j − 1)− k∗ +1 and p (j − 1)−

k∗ + 1 ≤ w (a (j − 1− p (j − 1) + k∗)). We have:
j − p (j) = j − 1− p (j − 1) + k∗We have s (j) = a (j − p (j)) = a (j − 1− p (j − 1) + k∗) and w (s (j)) = w (a (j − 1− p (j − 1) + .Hen
e, p (j) ≤ w (s (j)).Se
ond, we prove that p (j) = w (s (j)) for all jsu
h that p (j) ≥ p (j + 1).If p (j) ≥ p (j + 1), we have: p (j)+1 > w (s (j)). (Otherwise, p (j)+1 ≤ w (s (j))leads to p (j + 1) = p (j) + 1.)We have p (j) ≥ w (s (j)) sin
e p (j) an w (s (j)) are both integers. Be
ause

p (j) ≤ w (s (j)), we have p (j) = w (s (j)).Finally, we prove that there is always a pa
ket j∗ whi
h satis�es s (j∗) = s (j) and
p (j∗) = w (s (j)).If p (j) ≥ p (j + 1), j = j∗.Otherwise, assume j∗ does not exist.

132Then for ∀j′ > j, we have p (j′) < p (j′ + 1), s (j) = s (j′) = s (j′ + 1) and
p (j′ + 1) = w (s (j)).Hen
e, p (j′) is unbounded and w (s (j)) is unbounded.This
annot happen sin
e w (s (j)) is a �nite number. Hen
e, su
h j∗ always exist.A

ording to (2.7),

p (j∗ + 1) = max
0≤k≤p(j∗)

{p (j∗)− k + 1|p (j∗)− k + 1 ≤ w (s (j∗ + 1))}Let k∗ = w (s (j∗))− w (s (j∗ + 1)) + 1, we have
p (j∗)− k∗ + 1 = w (s (j∗))− [w (s (j∗))− w (s (j∗ + 1)) + 1] + 1

= w (s (j∗ + 1))Hen
e, p (j∗ + 1) ≥ w (s (j∗ + 1)).We have p (j∗ + 1) = w (s (j∗) + 1).6.3.2 Theorem 2.1.2.2
∀j : a (j)− a (j − 1) ≥

1

cThe equality holds if, and only if, s (j) ≤ s (j − 1) + b(J−1)+1
c

.Proof:
a (j)− a (j − 1) =

[

s (j) + d +
b (j)

c

]

−

[

s (j − 1) + d +
b (j − 1)

c

]

= s (j)− s (j − 1) +
b (j)

c
−

b (j − 1)

c

= s (j)− s (j − 1) +
max {b (j − 1) + 1− [s (j)− s (j − 1)] c, 0}

c
−

b (j − 1)

c

≥ s (j)− s (j − 1) +
b (j − 1) + 1− [s (j)− s (j − 1)] c

c
−

b (j − 1)

c

=
1

cThe �rst step is by (2.6) ; the third step is by (2.5); and the �fth step is by (2.1).

133The equality in the forth step holds if, and only if, b (j − 1)+1−[s (j)− s (j − 1)] c ≥

0, whi
h is equivalent to s (j) ≤ s (j − 1) + b(j−1)+1
c

.Hen
e, the theorem is proved.6.3.3 Theorem 2.1.2.3For ∀1 ≤ j′ < j, If p (j′) ,p (j′ + 1) , · · ·p (j) are non-de
reasing,
b (j) ≤ b (j′) + p (j)− p (j′)Proof:Sin
e p (j′) · · · p (j) are non-de
reasing, we have ∀j′ ≤ k < j :.

s (k + 1)− s (k) = a (k + 1− p (k + 1))− a (k − p (k))

≥
[k + 1− p (k + 1)]− [k − p (k)]

c

=
1− [p (k + 1)− p (k)]

cHen
e,
b (k) + 1− [s (k + 1)− s (k)] c ≤ b (k) + p (k + 1)− p (k) (6.1)Sin
e p (k + 1) ≥ p (k), we have

0 ≤ b (k) + p (k + 1)− p (k) (6.2)Combine (6.1) and (6.2) into (2.5) , we have
b (k + 1) ≤ b (k) + p (k + 1)− p (k) (6.3)

134Summing up (6.3) for j′ ≤ k < j, we have:
j−1
∑

k=j′

b (k + 1)− b (k) ≤

j−1
∑

k=j′

p (k + 1)− p (k)That is
b (j)− b (j′) ≤ p (j)− p (j′)The theorem is proved.6.3.4 Theorem 2.1.2.4

d +
b (j)

c
≥

p (j)

cThe equality holds if, and only if, ∀k that satis�es j − p (j) + 1 ≤ k ≤ j : a (k)−

a (k − 1) = 1
c
.Proof:

a (j) = s (j) + d +
b (j)

c

= a (j − p (j)) + d +
b (j)

cThe �rst step is by (2.6) and the se
ond step is by (2.4).Hen
e,
b (j)

c
+ d = a (j)− a (j − p (j))

=

j
∑

k=j−p(j)+1

[a (k)− a (k − 1)]

≥

j
∑

k=j−p(j)+1

1

c

=
p (j)

cThe third step is by (2.13) of Theorem 2.1.2.2.

135Hen
e, the inequality holds.The equality in the third step holds if, and only if, ∀k that satis�es j−p (j)+1 ≤

k ≤ j : a (k)− a (k − 1) = 1
c
.6.3.5 Theorem 2.1.3.2The system is in stable-link state upon the arrival of pa
ket j ⇐⇒ p (j) = cd + b (j)Proof:This is a the spe
ial
ase of Theorem 2.1.2.4 when ∀k that satis�es j − p (j) < k ≤

j : a (k)− a (k − 1) = 1
c
.6.3.6 Theorem 2.1.3.3If the system is in stable link state upon the arrival of pa
ket j and p (j + 1) ≥ cd,then the system is in stable link state upon the arrival of pa
ket j + 1.Proof:Sin
e the system is in stable-link state upon the arrival of pa
ket j, we have

∀k that satis�es j − p (j) < k ≤ j : a (k)− a (k − 1) =
1

c
(6.4)by De�nition 2.1.3.1.By (2.2), p (j + 1) ≤ p (j) + 1. That is j + 1− p (j + 1) ≥ j − p (j).For any k that satis�es j + 1− p (j + 1) < k < j + 1, k satis�es j − p (j) < k ≤ j.By (6.4), a (k)− a (k − 1) = 1

c
.

136For pa
ket j +1, sin
e p (j + 1) ≥ cd, we have p (j + 1) ≥ p (j)− b (j) by Theorem2.1.3.2. Hen
e,
s (j + 1)− s (j) = a (j + 1− p (j + 1))− a (j − p (j))

=

j+1−p(j+1)
∑

k=j−p(j)+1

a (k)− a (k − 1)

≤

j+1−cd
∑

k=j−p(j)+1

a (k)− a (k − 1)

=

j+1−cd
∑

k=j−p(j)+1

1

c

=
p (j)− cd + 1

c

=
b (j) + 1

cThe �rst step is from (2.4); the third step is from Thereom 2.1.2.2 and the fa
tthat p (j + 1) ≥ cd; the forth step is from the de�nition of stable-link state and thefa
t that j − p (j) < j − p (j) + 1 ≤ j + 1 − cd ≤ j; the sixth step is from Thereom2.1.3.2.Sin
e s (j + 1)− s (j) ≤ b(j)+1
c

, Thereom 2.1.2.2 shows a (j + 1)− a (j) = 1
c
.Hen
e, ∀k : j + 1 − p (j + 1) < k ≤ j + 1, we have a (k) − a (k − 1) = 1

c
. Thesystem is in stable state upon the arrival of pa
ket j + 1.The theorem is proved.6.3.7 Theorem 2.1.3.4If ∀k : j − p (j) < k ≤ j : p (k) > cd; the system enters stable-link state upon thearrival of j.Proof:By Theorem 2.1.2.4, p (k) > cd⇒ b (k) > 0.Hen
e, b (k − 1) + 1− [s (k)− s (k − 1)] c > 0.

137By Theorem 2.1.2.2, a (k)− a (k − 1) = 1
c
.We have ∀k : j − p (j) < k ≤ j : a (k) − a (k − 1) = 1

c
. By De�nition 2.1.3, thesystem is in stable-link state upon the arrival of pa
ket j.6.3.8 Theorem 2.1.3.5If ∀k : j − p (j) < k ≤ j : p (k − 1) ≥ p (k) and p (j) ≤ cd, the system has b (j) = 0.Proof:Assume b (j) > 0.Sin
e p (k − 1) ≥ p (k), we have s (k)− s (k − 1) ≥ 1

c
and b (k) ≤ b (k − 1).Hen
e, b (k) ≥ b (j) > 0 for ∀k : j − p (j) < k ≤ j.That is: a (k)− a (k − 1) = 1

c
.By De�nition 2.1.3, the system is in stable-link state upon the arrival of pa
ket j.By Theorem 2.1.3.2, we have p (j) = cd + b (j) > cd.This
ontradi
ts the
ondition that cd ≥ p (j).Hen
e, the assumption
annot be true.6.3.9 Corollary 2.1.4

τk+1 ≥ τk + w (s (τk+1))Proof:A

ording to (2.19), we have
τk+1 − τk = w (s (τk)) + max {∆w (τk) , 0}

= max {w (s (τk)) + ∆w (τk) , w (s (τk))}

= max {w (s (τk+1)) , w (s (τk))}The third equation is based on (2.18).Hen
e, τk+1 ≥ τk + w (s (τk+1)).

1386.3.10 Theorem 2.1.4.1:
a (τk) ≤ s (τk+1) < a (τk+1)Proof:

s (τk+1) < a (τk+1)
omes dire
tly from the a
k-
lo
king model (2.6) as d > 0.We prove a (τk) ≤ s (τk+1) by
ontradi
tion.Assume a (τk) > s (τk+1).We have:
a (τk) > s (τk+1)

= a (τk+1 − p (τk+1))The equality
omes from (2.4).A

ording to Corollary 2.1.2.2,
τk > τk+1 − p (τk+1)That is:

τk+1 − τk < p (τk+1)

≤ w (s (τk+1))The se
ond inequality
omes from Theorem 2.1.2.1.A

ording to Corollary (2.1.4), τk+1 − τk ≥ w (s (τk+1)).We rea
h a
ontradi
tion.Hen
e, a (τk) ≤ s (τk+1).The theorem is proved.6.3.11 Theorem 2.1.4.2:
∀τk : w (s (τk)) = p (τk)

139Proof:Let the last pa
ket that is sent before a (τk−1) to be j′. That is:
j′ = max {j : s (j) < a (τk−1)}We have w (s (j′)) = p (j′) Sin
e j′ ≥ j, ∀j : s (j) = s (j′).Be
ause s (τk−1) < a (τk−1) ≤ s (τk), we have τk−1 ≤ j′ < τk. Hen
e, w (s (j′)) =

w (s (τk−1)).We prove the theorem with two
ases.When ∆w (τk−1) ≤ 0:For all j su
h that j′ ≤ j ≤ τk − 1, we have w (s (j)) ≥ w (s (j + 1)) be
ause
a (τk−2) ≤ s (τk−1) ≤ j ≤ s (τk) < a (τk).Sin
e p (j′) = w (s (j′)), we have p (j) = w (s (j)) for all j : j′ < j ≤ τk, a

ordingto Theorem 2.1.2.1.Hen
e, p (τk) = w (s (τk)).When ∆w (τk−1) > 0:We show that pa
ket j′ + 1 is sent at the time of a (τk−1). By de�nition of j′, wehave s (j′ + 1) ≥ a (τk−1). Hen
e,

w (s (j′ + 1)) = w (a (τk−1))

= w (s (τk−1)) + ∆w (τk−1)

= w (s (j′)) + ∆w (τk−1)We have p (j′ + 1) = max0≤k≤p(j′) {p (j′)− k + 1|p (j′)− k + 1 ≤ w (a (j′ + 1− p (j′) + k))}.Let k = τk−1 − j′ + p (j′), we have:
k ≤ p (j′)be
ause
τk−1 ≤ j′

140and
k ≥ 0be
ause

a (τk−1) > s (j′)⇒ τk−1 > j′ − p (j′)

⇒ τk−1 − j′ + p (j′) > 0We also have
p (j′)− [τk−1 − j′ + p (j′)] + 1 ≤ j′ − τk−1 + 1

< p (j′)

= w (s (j′))

= w (s (τk−1))

< w (a (τk−1))

= w (a (j′ − p (j′) + τk−1 − j′ + p (j′)))Hen
e,
p (j′ + 1) ≥ p (j′)− [τk−1 − j′ + p (j′)] + 1

= j′ − τk−1 + 1and
s (j′ + 1) = a (j′ + 1− p (j′ + 1))

≤ a (j′ + 1− j′ + τk−1 − 1)

= a (τk−1)

141Hen
e, s (j′ + 1) ≤ a (τk−1). But de�nition of j′, we have s (j′ + 1) ≥ a (τk−1).Hen
e, s (j′ + 1) = a (τk−1).Be
ause there is a pa
ket j′ + 1 sent at the time a (τk−1), a

ording to Theorem2.1.2.1, there exists a pa
ket j∗ in whi
h s (j∗) = s (j′ + 1) and p (j∗) = w (s (j∗)) =

w (a (τk−1)). Hen
e, s (j∗) = a (j∗ − p (j∗)) = a (τk−1).That is
j∗ = τk−1 + p (j∗)

= τk−1 + w (s (j∗))

= τk−1 + w (a (τk−1))

= τkHen
e, τk = j∗ and p (τk) = w (τk).6.3.12 Theorem 2.1.4.3:
b (τk) ≤ ∆w (τk) or the system is in stable-link state upon the arrival of τk.Proof:Let j′ = min {j : s (j) ≥ a (τk−1)} to be the �rst pa
ket that is sent after the arrivalof last de
ision pa
ket.By de�nition of j′, we have s (j′ − 1) < a (τk−1) ≤ s (j′).Hen
e, p (j′) ≤ p (j′ − 1) (Otherwise, s (j′ − 1) = s (j′).)Sin
e s (j′) ≥ a (τk−1), a (j′ − p (j′)) ≥ a (τk−1) and j′ ≥ τk−1 + p (j′).A

ording to (2.20), for all j su
h that τk−1 ≤ j′ − p (j′) ≤ j < j′, w (j) =

w (s (τk−1)).Sin
e p (τk−1) = w (s (τk−1)), a

ording to Theorem (2.1.2.1), we have p (j) =

w (s (j)) for all j su
h that τk−1 ≤ j < j′.Hen
e, for all j su
h that j′ − p (j′) ≤ j < j′, we have
p (j) = w (s (τk−1))

142and be
ause p (j′) ≤ p (j′ − 1), we have: ∀j : j′− p (j′) < j ≤ j′, p (j) ≤ p (j − 1).If p (j′) > cd, we have p (j) > cd for all j : j′ − p (j′) < j ≤ j′. In this
ase, thesystem is in link stable state upon the arrival of pa
ket j′.If p (j′) ≤ cd, we have b (j′) = 0 a

ording to Theorem 2.1.3.5.Now we divide the problem into three situations.Case 1: ∆w (τk−1) ≤ 0.
p (j′) = w (s (j′)) = w (a (τk−1)) a

ording to Theorem 2.1.2.1.Hen
e, the p (j) sequen
e is non-in
reasing from j′ to τk, as the sequen
e from

j′ − p (j′) to j′. Hen
e, we have b (τk) = 0 or the system is in link stable state uponthe arrival of pa
ket τk.Case 2: ∆w (τk−1) > 0 and p (j′) ≤ cd.By p (j′) ≤ cd, we have b (j′) = 0.By ∆w (τk−1) > 0, we have p (j′) = p (j′ − 1) = w (s (τk−1))And sin
e ∆w (τk−1) > 0, the p (j) sequen
e is non-de
reasing from j′ to τk.A

ording to Theorem 2.1.2.3, we have
b (τk) ≤ b (j′) + p (τk)− p (j′)

≤ w (s (τk))− w (s (τk−1))

= ∆w (τk−1)Hen
e, b (τk) ≤ ∆w (τk−1).Case 3: ∆w (τk−1) > 0 and p (j′) > cd.By ∆w (τk−1) > 0, we have p (j) sequen
e is non-de
reasing from j′ to τk. Hen
e,
p (τk) ≥ p (j′) > cd.Hen
e, the p (j) > cd for all j su
h that j′ − p (j′) < j ≤ τk. Hen
e, the system isin link stable state upon the arrival of pa
ket τk a

ording to Theorem 2.1.3.4.

1436.3.13 Theorem 2.1.5Given the a
k-
lo
king model des
ribed in (2.3)(2.4)(2.5)(2.6) and the TCP Vegas
ongestion
ontrol algorithm des
ribed in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP�ow
onverges to equilibirum regardless of
apa
ity c, propagation delay d and initialstate.If αd > 1, given any initial state, we have
∃J : ∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1 and αd− 1 < b (j) < αd + 1Proof:First, we prove that ∃K1 : ∀k > K1 : w (a (τk)) > cd + αd− 1.Given any intial state w (s (τk)), if w (s (τk)) ≤ cd + αd − 1, we have: p (τk) =

w (s (τk)) ≤ cd + αd− 1.A

ording to Theorem 2.1.4.3, we have that either b (τk) ≤ ∆ (τk−1) ≤ 1 or thesystem is in link stable state upon the arrival of τk.For the �rst
ase, sin
e b (τk) ≤ 1, we have p (τk) ≤ cd+ b (τk) by Theorem 2.1.2.4.We have
p (τk)

d
−

p (τk)

D (τk)
=

p (τk)

d
−

p (τk)

d + b(τk)
c

=
b (τk) p (τk)

d (cd + b (τk))

≤
b (τk) (cd + b (τk))

d (cd + b (τk))

≤
b (τk)

d

≤
1

d

<
1

αIn this
ase, ∆w (τk) = 1.For the se
ond
ase, sin
e the system is in link stable state, we have p (τk) =

144
cd + b (τk). We have

p (τk)

d
−

p (τk)

D (τk)
=

p (τk)

d
−

p (τk)

d + b(τk)
c

=
b (τk) [cd + b (τk)]

d (cd + b (τk))

=
b (τk)

d

=
p (τk)− cd

d

≤
cd + αd− 1− cd

d

<
1

αHen
e, ∆w (τk) = 1 as long as w (s (τk)) ≤ cd+αd− 1. Sin
e cd+αd− 1 is �nite,there exists an K1 whi
h satis�es w (s (τK1
)) > cd + αd− 1.Se
ond we prove that ∀k ≥ K1, w (s (τk)) > cd + αd− 1.Assume the window size will be smaller than or equal to cd + αd − 1 for some

k ≥ K1. Let the smallest of su
h k to be k′. That is:w (s (τk′)) ≤ cd + αd − 1 and
∀k : K1 ≤ k < k′ : w (s (τk)) > cd + αd− 1.By this assumption, we have: ∆w (τk′−1) = −1 and w (s (τk′−1)) ≤ cd + αd.But sin
e cd + αd− 1 < w (s (τk′−1)) ≤ cd + αd, we have: p (τk′−1) = cd + b (τk′−1)and

p (τk′−1)

d
−

p (τk′−1)

D (τk′−1)
=

p (τk′−1)

d
−

p (τk′−1)

d +
b(τ

k′−1)
c

=
b (τk′−1) p (τk′−1)

d (cd + b (τk′−1))

=
b (τk′−1)

d

=
p (τk′−1)− cd

d

≤
cd + αd− cd

d

≤
1

α

145Hen
e, ∆w (τk′−1) ≥ 0. This
ontradi
ts our assumption that ∆w (τk′−1) = −1.Hen
e, k′ does not exist.Se
ond, we
an prove that ∃K2 > K1 : ∀k > K2 : w (a (τk)) < cd + αd + 1. Theproof is very similar to the �rst step and is ignored here.2Finally, let K = max {K1, K2}, we have ∀k > K : cd + αd − 1 < w (a (τk)) <

cd + αd + 1.Let J = τK , a

ording to Theorem 2.20, we have
∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1

2In fa
t, it is easier be
ause the link-stable state is always satis�ed for all k : k > K1

146

147
Bibliography
[1℄ Jon Postel, �Rf
 793 - transmission
ontrol proto
ol,� Sep 1981.[2℄ Phil Karn and Craig Partridge, �Improving round-trip time estimates in reliabletransport proto
ols,� ACM Transa
tions on Computer Systems, vol. 9, no. 4,pp. 364�373, 1991.[3℄ R. Jain, �A timeout-based
ongestion
ontrol s
heme for window �ow-
ontrollednetworks,� IEEE J. Sele
ted Areas in Commun., vol. 4, no. 7, O
t 1986.[4℄ V. Ja
obson, �Congestion Avoidan
e and Control,� ACM SIGCOMM '88, pp.314�329, Aug. 1988.[5℄ M. Allman, V. Paxson, and W. Stevens, �RFC 2581: TCP Congestion Control,�April 1999.[6℄ S. Floyd and T. Henderson, �RFC 2582: The New Reno Modi�
ation to TCP'sFast Re
overy Algorithm,� April 1999.[7℄ Matthew Mathis and Jamshid Mahdavi, �Forward a
knowledgement: re�ningTCP
ongestion
ontrol,� in Conferen
e pro
eedings on Appli
ations, te
hnolo-gies, ar
hite
tures, and proto
ols for
omputer
ommuni
ations. 1996, pp. 281�291, ACM Press.[8℄ S. Floyd, �Highspeed t
p for large
ongestion windows,� 2002.[9℄ T. Kelly, �S
alable TCP: Improving Performan
e in HighSpeed Wide Area Net-works,� 2003.

148[10℄ Lisong Xu, Khaled Harfoush, and Injong Rhee, �Binary In
rease CongestionControl for Fast Long-Distan
e Networks,� in INFOCOM, 2004.[11℄ Douglas Leith and Robert N. Shorten, �H-TCP: TCP for high-speed and long-distan
e networks,� in Pro
eedings of PFLDnet 2004, 2004.[12℄ Carlo Caini and Rosario Firrin
ieli, �TCP Hybla: a TCP enhan
ement for het-erogeneous networks,� INTERNATIONAL JOURNAL OF SATELLITE COM-MUNICATIONS AND NETWORKING, vol. 22, pp. 547�566, 2004.[13℄ R. Jain, �A delay based approa
h for
ongestion avoidan
e in inter
onne
tedheterogeneous
omputer networks,� Computer Communi
ations Review, ACMSIGCOMM, pp. 56�71, 1989.[14℄ Z. Wang and J. Crow
roft, �A new
ongestion
ontrol s
heme: Slow start andsear
h (tri-S),� ACM Computer Communi
ation Review, SIGCOMM, vol. 21,no. 1, pp. 32�43, 1991.[15℄ Z. Wang and J. Crow
roft, �Eliminating periodi
 pa
ket losses in the 4.3-TahoeBSD TCP
ongestion
ontrol algorithm,� ACM Computer Communi
ations Re-view, April 1992.[16℄ Lawren
e S. Brakmo and Larry L. Peterson, �TCP Vegas: End to End Con-gestion Avoidan
e on a Global Internet,� IEEE Journal on Sele
ted Areas inCommuni
ations, vol. 13, no. 8, pp. 1465�1480, 1995.[17℄ David X Wei, Cheng Jin, Steven H Low, and Sanjay Hedge, �FAST TCP:Motivation, Ar
hite
ture, Algorithms, Performan
e,� IEEE/ACM Transa
tionson Networking, to appear, 2007.[18℄ Mark Allman and Ethan Blanton, �Notes on burst mitigation for transportproto
ols,� SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 53�60, 2005.[19℄ Lixia Zhang, S
ott Shenker, and David D. Clark, �Observations on the Dynami
sof a Congestion Control Algorithm: The E�e
ts of Two-Way Tra�
,� in Pro
eed-

149ings of the ACM SIGCOMM 1991 Conferen
e on Communi
ationsAr
hite
turesand Proto
ols, 1991, pp. 133�147.[20℄ J. Kulik, R. Coutler, D. Ro
kwell, and C. Partridge, �A simulation study of pa
edTCP,� Te
h. Rep. BBN Te
hni
al Memorandum No. 1218, BBN Te
hnologies,1999.[21℄ D. Hong, �FTCP Fluid Congestion Control,� 2000.[22℄ David Wei, Sanjay Hedge, and Steven Low, �A burstiness
ontrol for TCP,� inPro
eedings of PFLDNet 2005, 2005.[23℄ Hao Jiang and Constantinos Dovrolis, �Why is the internet tra�
 bursty inshort time s
ales?,� in SIGMETRICS '05: Pro
eedings of the 2005 ACM SIG-METRICS international
onferen
e on Measurement and modeling of
omputersystems, New York, NY, USA, 2005, pp. 241�252, ACM Press.[24℄ Matthew Mathis, Je�rey Semke, and Jamshid Mahdavi, �The ma
ros
opi
 be-havior of the TCP
ongestion avoidan
e algorithm,� SIGCOMM Comput. Com-mun. Rev., vol. 27, no. 3, pp. 67�82, 1997.[25℄ Jitendra Padhye, Vi
tor Firoiu, Don Towsley, and Jim Kurose, �Modeling TCPthroughput: a simple model and its empiri
al validation,� in Pro
eedings of theACM SIGCOMM '98
onferen
e on Appli
ations, te
hnologies, ar
hite
tures, andproto
ols for
omputer
ommuni
ation. 1998, pp. 303�314, ACM Press.[26℄ Vishal Misra, Wei-Bo Gong, and Don Towsley, �Fluid-based analysis of a networkof aqm routers supporting t
p �ows with an appli
ation to red,� in Pro
eedingsof the
onferen
e on Appli
ations, Te
hnologies, Ar
hite
tures, and Proto
ols forComputer Communi
ation. 2000, pp. 151�160, ACM Press.[27℄ C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong, �A
ontroltheoreti
 analysis of RED,� in INFOCOM, 2001, pp. 1510�1519.

150[28℄ Steven H. Low, Fernando Paganini, Jiantao Wang, Sa
hin Adlakha, and John C.Doyle, �Dynami
s of t
p/red and a s
alable
ontrol,� in Pro
eedings of IEEEInfo
om, Mar
h 2002.[29℄ Hyojeong Choe and Steven Low, �Stabilized Vegas,� in Pro
eedings of IEEEInfo
om, Mar
h 2003.[30℄ Shao Liu, Tamer Basar, and R. Srikant, �Pitfalls in the �uid modeling of rtt vari-ations in window-based
ongestion
ontrol,� in Pro
eedings of IEEE INFOCOM,Miami, FL, Mar
h 2005, 2005.[31℄ S. Floyd and V. Ja
obson, �Random early dete
tion gateways for
ongestionavoidan
e,� IEEE/ACM Transa
tions on Networking, vol. 1, no. 4, pp. 397�413,1993.[32℄ D. Chiu and R. Jain, �Analysis of the in
rease and de
rease algorithms for
ongestion avoidan
e in
omputer networks,� Computer Networks, vol. 17, pp.1�14, 1989.[33℄ T. Kelly, �S
alable TCP: Improving Performan
e in HighSpeed Wide Area Net-works,� 2003.[34℄ Yee-Ting Li, Douglas Leith, and Robert N. Shorten, �Experi-mental Evaluation of TCP Proto
ols for High-Speed Networks,�http://hamilton.ie/net/eval/HI2005.htm.[35℄ A. Aggarwal, S. Savage, and T. Anderson, �Understanding the performan
e ofTCP pa
ing,� in Pro
eedings on INFOCOM 2000, 2000, pp. 1157�1165.[36℄ R.L. Cruz, �A
al
ulus for network delay. I. Network elements in isolation,� IEEETransa
tions on Information Theory, vol. 37, pp. 114�131, Jan 1991.[37℄ David X. Wei, �Congestion
ontrol algorithms for high speed long distan
e t
p
onne
tions,� Te
h. Rep., California Institute of Te
hnology, Jun 2004.

151[38℄ Injong Rhee and Lisong Xu, �CUBIC: A New TCP-Friendly High-Speed TCPVariant,� in Pro
eedings of PFLDNet 2005, 2005.[39℄ F. Ba

elli and D. Hong, �AIMD, fairness and fra
tal s
aling of TCP tra�
,� inPro
eedings on IEEE Info
om 2002, 2002.[40℄ Doug J Leith and R. Shorten, �Impa
t of Drop Syn
hronisation on TCP Fairnessin High Bandwidth-Delay Produ
t Networks,� in PFLDNet, 2006.[41℄ Vern Paxson, �End-to-end Internet pa
ket dynami
s,� in Pro
eedings of theACM SIGCOMM '97
onferen
e on Appli
ations, Te
hnologies, Ar
hite
tures,and Proto
ols for Computer Communi
ation, Cannes, Fran
e, September 1997,vol. 27,4 of Computer Communi
ation Review, pp. 139�154, ACM Press.[42℄ M. Borella, D. Swider, S. Uludag, and G. Brewster, �Internet Pa
ket Loss:Measurement and Impli
ations for End-to-End QoS,� 1998.[43℄ �The Network Simulator - NS-2,� URL: http://www.isi.edu/nsnam/ns/index.html.[44℄ L. Rizzo, �Dummynet: a simple approa
h to the evaluation of network proto
ols,�ACM Computer Communi
ation Review, vol. 27, no. 1, pp. 31�41, 1997.[45℄ �PlanetLab: An open platform for developing, deploying, and a

essingplanetary-s
ale servi
es,� URL:http://www.planet-lab.org.[46℄ Sally Floyd, Mark Allman, Amit Jain, and Pasi Sarolahti, �Internet draft: Qui
k-start for t
p and ip,� O
t 2006.[47℄ Nandita Dukkipati and Ni
k M
Keown, �Why �ow-
ompletion time is the rightmetri
 for
ongestion
ontrol,� SIGCOMM Comput. Commun. Rev., vol. 36, no.1, pp. 59�62, 2006.[48℄ Y. Yang and S. Lam, �General aimd
ongestion
ontrol,� 2000.[49℄ Kartikeya Chandrayana, Sthanunathan Ramakrishnan, Biplab K. Sikdar, andShivkumar Kalyanaraman, �On randomizing the sending times in t
p and other

152window based algorithms.,� Computer Networks, vol. 50, no. 3, pp. 422�447,2006.[50℄ David X. Wei, Pei Cao, and Steven H. Low, �Fairness Convergen
e of Loss-basedTCP,� URL: http://www.
s.
alte
h.edu/~weixl/pa
ing/syn
.pdf.[51℄ Robert Shorten, Fabian Wirth, and Douglas Leith, �A positive systems modelof TCP-like
ongestion
ontrol: asymptoti
 results,� IEEE/ACM Trans. Netw.,vol. 14, no. 3, pp. 616�629, 2006.[52℄ Cheng Jin, David X. Wei, and Steven H. Low, �TCP FAST: motivation, ar
hi-te
ture, algorithms, performan
e,� in Info
om 2004, Mar 2004.[53℄ R. Shorten, D. Leith, J. Foy, and R. Kildu�, �Analysis and design of
ongestion
ontrol in syn
hronised
ommuni
ation networks,� in Pro
eed-ings on 12th Yale Workshop on Adaptive and Learning Systems, may 2003,http://ww.hamilton.ie/doug_leith.htm.[54℄ �GridFTP,� URL: http://www.globus.org/toolkit/do
s/4.0/data/gridftp/.[55℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung, �The google �le sys-tem,� in SOSP '03: Pro
eedings of the nineteenth ACM symposium on Operatingsystems prin
iples, New York, NY, USA, 2003, pp. 29�43, ACM Press.[56℄ M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, �RFC 2018: TCP Sele
tiveA
knowledgement Options,� O
t 1996.[57℄ S. Jansen and A. M
Gregor, �Simulation with Real World Network Sta
ks,� inPro
eedings of Winter Simulation Conferen
e, De
 2005, pp. 2454� 2463.[58℄ �Speeding up NS-2 s
heduler,� URL: http://www.
s.
alte
h.edu/~weixl/ns2.html.[59℄ A. Tang, J. Wang, and S. Low, �Counter-intuitive behaviors in networks underend-to-end
ontrol,� IEEE/ACM Transa
tions on Networking (TON), vol. 14,no. 2, 2006.

153[60℄ A. Tang, J. Wang, S. Low, , and M. Chiang, �Network equilibrium of hetero-geneous
ongestion
ontrol proto
ols,� in Pro
eedings of IEEE Info
om, Mar
h2005.[61℄ �Linux Kernel Do
uments: TCP proto
ol,� linux-2.6.16.13/Do
umentation/networking/t
p.txt.[62℄ Stephen Hemminger, �Network Emulation with NetEm,� in Pro
eedings of LinuxConferen
e AU, April 2005.[63℄ P. Sarolahti and A. Kuznetsov, �Congestion Control in Linux TCP,� USENIXAnnual Te
hni
al Conferen
e, pp. 49�62, 2002.[64℄ Matt Mathis, Je� Semke, J. Mahdavi, and Kevin Lahey, �Rate Halving Algo-rithm for TCP Congestion Control,� Jun 1999.[65℄ S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, �RFC 2883: An Extensionto the Sele
tive A
knowledgement (SACK) Option for TCP,� Jul 2000.[66℄ �A mini-tutorial for NS-2 TCP-Linux,� URL:http://www.
s.
alte
h.edu/~weixl/ns2.html.[67℄ �A Linux TCP implementation for NS-2,� URL:http://www.
s.
alte
h.edu/~weixl/ns2.html.[68℄ Randy Brown, �Calendar Queues: A Fast O(1) Priority Queue Implementationfor the Simulation Event Set Problem,� Communi
ations of the ACM, vol. 31,no. 10, pp. 1220�1227, 1988.[69℄ JongSuk Ahn and SeungHyun Oh, �Dynami
 Calendar Queue,� Thirty-Se
ond,vol. 00, pp. 20, 1999.[70℄ Kah Leong Tan and Li-Jin Thng, �SNOOPy Calendar Queue,� in Pro
eedings ofthe 32nd Winter Simulation Conferen
e, Orlando, Florida, 2000, pp. 487�495.

154[71℄ M. Allman, �RFC 3465 - TCP Congestion Control with Appropriate Byte Count-ing (ABC),� Feb 2003.[72℄ S. Floyd, M. Handley, and J. Padhye, �A
omparison of equation-based and aimd
ongestion
ontrol,� 2000.[73℄ Je�rey Dean and Sanjay Ghemawat, �MapRedu
e: Simpli�ed Data Pro
essingon Large Clusters,� in OSDI'04: Sixth Symposium on Operating System Designand Implementation, De
ember 2004.

