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Abstract

This work examines two major aspects of martensitic phase boundaries. The first part studies

numerically the deformation of thin films of shape memory alloys by using subdivision surfaces

for discretization. These films have gained interest for their possible use as actuators in micro-

scale electro-mechanical systems, specifically in a pyramid-shaped configuration. The study of such

configurations requires adequate resolution of the regions of high strain gradient that emerge from

the interplay of the multi-well strain energy and the penalization of the strain gradient through

a surface energy term. This surface energy term also requires the spatial numerical discretization

to be of higher regularity, i.e., it needs to be continuously differentiable. This excludes the use

of a piecewise linear approximation. It is shown in this thesis that subdivision surfaces provide an

attractive tool for the numerical examination of thin phase transforming structures. We also provide

insight in the properties of such tent-like structures.

The second part of this thesis examines the question of how the rate-independent hysteresis that

is observed in martensitic phase transformations can be reconciled with the linear kinetic relation

linking the evolution of domains with the thermodynamic driving force on a microscopic scale. A

sharp interface model for the evolution of martensitic phase boundaries, including full elasticity,

is proposed. The existence of a solution for this coupled problem of a free discontinuity evolution

to an elliptic equation is proved. Numerical studies using this model show the pinning of a phase

boundary by precipitates of non-transforming material. This pinning is the first step in a stick-slip

behavior and therefore a rate-independent hysteresis.

In an approximate model, the existence of a critical pinning force as well as the existence of

solutions traveling with an average velocity are proved rigorously. For this shallow phase boundary

approximation, the depinning behavior is studied numerically. We find a universal power-law linking

the driving force to the average velocity of the interface. For a smooth local force due to an

inhomogeneous but periodic environment we find a critical exponent of 1/2.



vi

Contents

Acknowledgements iv

Abstract v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 The shape memory effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Application of the shape memory effect for actuation . . . . . . . . . . . . . . . . . . 5

1.3 Hysteresis and pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Models for shape memory alloys and martensitic phase transformations . . . . . . . 9

2.2 Computational analysis of the martensitic phase transformation . . . . . . . . . . . . 11

2.3 Hysteresis, pinning, and depinning behavior . . . . . . . . . . . . . . . . . . . . . . . 11

3 Modeling and numerical analysis of thin films of martensitic materials 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The model of thin films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Loop subdivision basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Regular tent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.3 Physical size of the domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.4 Crystallographic orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.5 Rectangular domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 The regular tent revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



vii

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 A sharp interface model for the evolution of martensitic phase boundaries 37

4.1 Introduction to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Statement and analysis of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Local estimates on the elastic energy . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 The implicit time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 Compactness of the time-discrete solution . . . . . . . . . . . . . . . . . . . . 46

4.2.5 Approximation of the original free discontinuity problem in the uniformly

smooth case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Numerical estimate of the critical depinning force . . . . . . . . . . . . . . . . . . . . 54

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Evolution in the shallow phase boundary approximation 57

5.1 Derivation of the approximate model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Stick-slip behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Numerical examination of the depinning transition . . . . . . . . . . . . . . . . . . . 67

5.3.1 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Final remarks and future directions 73

A Derivation of the thin film model 75

B Notational conventions 77

B.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.3 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79



viii

List of Figures

1.1 Illustration of the shape memory effect . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Change in lattice parameter in the martensitic phase transformation . . . . . . . . . . 2

1.3 Transformation from cubic to tetragonal crystal structure . . . . . . . . . . . . . . . . 3

1.4 Crystallographic background of the shape memory effect . . . . . . . . . . . . . . . . . 4

1.5 Transformation of an indented tent shape to a flat configuration . . . . . . . . . . . . 5

1.6 Schematic of a micro-scale pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Rate-independent hysteresis loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Depinning behavior, as calculated from the one-dimensional model in [13] . . . . . . . 7

3.1 Deformation of a reference configuration Ω at a certain time t . . . . . . . . . . . . . . 15

3.2 Contour plot of the energy landscape in the C11-C22 plane . . . . . . . . . . . . . . . 16

3.3 Mapping of unit triangle to deformed and undeformed configuration . . . . . . . . . . 19

3.4 Piecewise linear basis function and smooth spline basis function . . . . . . . . . . . . 22

3.5 A triangulation with the support of the basis functions . . . . . . . . . . . . . . . . . 22

3.6 The base mesh with 4096 triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Time dependency of the energy in the system . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Shape of the fully relaxed regular tent . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Energy and strain variables of the regular tent . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Cross section of tents formed with different numbers of elements in the base mesh . . 28

3.11 Influence of the physical size of the domain . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 Tents with rotated crystallographic axis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.13 Detailed view of the 15 degree rotated tent . . . . . . . . . . . . . . . . . . . . . . . . 31

3.14 Tent shapes formed on a rectangular domain . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Domain occupied by a phase transforming elastic body . . . . . . . . . . . . . . . . . 41

4.2 Density estimate illustration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Density estimate illustration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Illustration of Lemma 4.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Initial configuration of the transformation strain . . . . . . . . . . . . . . . . . . . . . 54



ix

4.6 Evolution of the average height of the interfaces for different external loads . . . . . . 55

4.7 The stuck phase boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Phase boundary on a strip domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Experiment 1, the general depinning behavior . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The local pinning forces used in Experiment 2 . . . . . . . . . . . . . . . . . . . . . . 70

5.4 The depinning behavior for different sizes of pinning sites . . . . . . . . . . . . . . . . 71

5.5 Experiment 3, varying the stiffness of the interface . . . . . . . . . . . . . . . . . . . . 71



x

List of Tables

3.1 Comparison of base meshes of different resolution . . . . . . . . . . . . . . . . . . . . 29

3.2 Average energy density comparison for different domain sizes . . . . . . . . . . . . . . 29

3.3 Comparison of the energies of the tents with various amounts of rotation . . . . . . . 31

5.1 Parameters used for the numerical examination of the depinning transition . . . . . . 67

5.2 Dependence of the critical applied force on the size of the pinning sites . . . . . . . . 68



1

Chapter 1

Introduction

1.1 The shape memory effect

The shape memory effect that occurs in some metallic alloys has been studied extensively by engi-

neers, physicists, and mathematicians since its discovery in the 1960s. After undergoing an appar-

ently plastic deformation at low temperature, these alloys return to their original shape when heated

above a certain critical temperature, as illustrated in Figure 1.1. Thus, they seem to ‘remember’

their previous configuration. Another interesting phenomenon that occurs in such materials is su-

perelasticity, where reversible deformations up to about six per cent can be achieved. Additionally,

the stress there remains nearly constant over large portions of the deformation. The most commonly

used shape memory alloy is Nitinol, which consists of an almost one-to-one atomic mixture of nickel

and titanium. Other metallic alloys that exhibit the shape memory effect include copper-aluminum-

nickel and copper-zinc-aluminum. Detailed descriptions of the phenomena and their applications

may be found in [36, 60].

The peculiar behavior that these materials exhibit stems from an underlying phase transition—

the martensitic phase transformation—in the metallic alloy. This phase transformation is charac-

terized by a diffusionless transition from a solid high-temperature phase to a solid low-temperature

phase. The high-temperature phase is called ‘austenite,’ the low-temperature phase is called ‘marten-

site.’

The change in lattice parameter when crossing the critical temperature is abrupt, however, the

transition temperature from martensite to austenite is higher than the transition temperature from

austenite to martensite. This phenomenon of hysteresis is depicted in Figure 1.2. Even though the

difference in lattice parameters are quite high—approximately ten per cent in Nitinol—this first-

order phase transformation is not diffusive, i.e., all atoms remain in the same position with respect

to the lattice surrounding them.

There is a reduction in symmetry during the transformation and the crystallographic point

group of the low-temperature phase is a strict subgroup of that of the high-temperature phase.
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Deform Heat

Figure 1.1: The shape memory effect. A piece of wire is deformed at low temperature and remains
in that state until heating above a certain critical temperature when it returns to the original shape.
Subsequent cooling does not alter the macroscopic shape further and the cycle can begin anew.
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Figure 1.2: Change in lattice parameter in the martensitic phase transformation
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Tetragonal variant 2

Cubic crystal
Tetragonal variant 1

Tetragonal variant 3

Figure 1.3: Transformation from cubic to tetragonal crystal structure. Since it is impossible to
distinguish the cubic crystallographic axis, i.e., the crystal is invariant under the respective rotations
that map one onto the other, the three shown tetragonal variants must be energetically equivalent.
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Cool

Deform
Heat

Figure 1.4: Crystallographic background of the shape memory effect. The stress-induced defor-
mation effects a change in volume fraction of the martensite variants, so that heating reverses the
macroscopic shape change. Subsequent cooling results again in a self-accomodating microstructure
of martensite variants. (Crystallographic illustration courtesy of K. Bhattacharya [14], used with
permission.)
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Fig. 2. (a) The tent deformation of Cu–Al(wt%)13:95-Ni(wt%)3:93 at 10◦C on a !lm of thickness 40 !m
with surface normal [1 0 0] and edge [0; 4:331; 1]: The size of the tent is 0:4× 0:4× 0:188 in. (b) and (c)
The tent at 70◦C and 90◦C during the heating phase. Courtesy of J. Cui and R. James.

conclusive close to the lower edges of the tent as di"erent variants of martensite were
detected.
After obtaining the tent, the temperature of the water bath surrounding the !lm

was slowly increased to 95◦C, which caused the tent to start to gradually shrink and
collapse (Fig. 2). Until the tent had shrunk to about two-thirds of its original size, the
shape of the tent was almost identical to the original shape. Then the shape started to
change—all the edges became rounded. This process continued until most of the !lm
transformed back to its original #at shape. The very tip of the tent, where perhaps
some plastic deformation occurred, took about 30 min to #atten out. The indenting
and heating procedures were repeated four times and the tent deformation and the #at
shape were completely recovered each time; however, after the !fth cycle a little bulge
remained visible on the surface of the !lm even after 2 h of heating. This was viewed
as a result of permanent plastic deformation.

3. Thin !lm models

We assume that the energy density !(F; ") is a continuous function ! :R3×3 ×
("0; "1) → R representing the energy per unit reference volume of the material as a
function of the deformation gradient F ∈R3×3 and the temperature "∈ ("0; "1) where
"0¡ "c ¡ "1 for the transformation temperature "c at which the austenitic and marten-
sitic phases have the same free energy density. We can assume that the energy density
! satis!es the growth condition

c1|F |p − c26!(F; ")6 c3(|F |p + 1) for all F ∈R3×3 and "∈ ("0; "1); (3.1)

where c1, c2, and c3 are !xed positive constants. This growth condition controls the
behavior of !(F; ") as |F | tends to in!nity; however, in all of our simulations the
deformation gradient remains near the bottom of the energy wells and hence we do
not worry about the growth of ! at in!nity.
In our computations, we have used the total-variation thin !lm energy rigorously

derived by the authors in B$el%&k and Luskin (2002) following earlier work on a strain
gradient model by Bhattacharya and James (1999). Discussions of the modeling and
scaling of surface energy can be found in Ball and James (1987) and Kohn and
M'uller (1992). Our model gives a !nite surface energy to sharp austenite–martensite

Figure 1.5: Transformation of an indented tent shape to a flat configuration. (a) 10◦C, (b) 70◦, (c)
90◦. (Picture courtesy of J. Cui and R. D. James [26], used with permission.)

Assume, for simplicity, that the austenite is cubic and the low-temperature phase is of tetragonal

symmetry, as depicted in Figure 1.3. The cubic crystal is invariant under rotations that map one

crystallographic axis onto another. Since these rotations, if executed before the transition to the

tetragonal symmetry takes place, lead to three differently aligned tetragonal variants of the crystal,

these variants necessarily have to be energetically equivalent. For Nitinol, the high-temperature

phase is cubic and the low-temperature phase is monoclinic, which leads to 12 variants.

The mechanism through which this phase transformation causes the macroscopic shape memory

effect is illustrated in Figure 1.4, again with the cubic-tetragonal example. At first, consider the

crystal at high temperature in the cubic phase in an undeformed reference configuration. Cooling the

alloy below the critical temperature makes it energetically favorable to change the crystal symmetry

to one of the martensite variants. It is by no means necessary that the whole crystal changes to

one single variant. Quite the opposite is true. The crystal forms a microstructure (a fine-scale

mixture) of layered martensite variants in order to retain its the macroscopic shape. This is called

self-accomodation. Applying an external force on the crystal in this state does not effect a real plastic

deformation. Instead the deformation can be accommodated by changing the volume fraction of the

different variants by propagating the variant boundaries between them. This is energetically much

easier than reversible elastic deformation (since no additional elastic energy needs to be stored—the

different variants have the same energy) or plastic deformation. Now, however, if the material is

heated, it returns to its original macroscopic shape, since the cubic crystal structure is uniformly

restored, independent of the microstructure of martensite variants. Subsequent cooling leads again

to the self-accomodating microstructure.

1.2 Application of the shape memory effect for actuation

A particularly intriguing way to exploit the shape memory effect is to use it for the purpose of

mechanical actuation on a micro-scale. The direct coupling of macroscopic deformation and crystal

structure leads to the fact that shape memory alloys exhibit by far the greatest work output of all

systems that can be used as actuators on such a small size [50]. It is therefore an active area of
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Shape memory material
Shape memory material

Figure 1.6: Example of a possible application of shape memory materials: Schematic of a micro-scale
pump

research to replace the common electrostatic actuators on micro electro-mechanical systems (MEMS)

with such phase transforming materials. MEMS integrate sensors, electronic circuits, and actuation

on a single chip, usually silicon based.

One could imagine growing a shape memory material single crystal on top of a silicon substrate

and subsequently etching away a square portion of the substrate underneath, leaving a free-standing

film of martensitic alloy that is attached on all four sides. If the etching is properly lattice matched,

the thin film of phase transforming material should transition between a stable tent-like shape and a

flat configuration [15]. The transformation of a thin film of copper-aluminum-nickel from an indented

tent shape to the flat configuration induced through heating has been achieved [26], as shown in

Figure 1.5. Such a device could, for example, be used to build a micro-scale pump (see Figure 1.6)

or valve.

Chapter 3 of this thesis examines numerically and analytically the possible phase boundaries

that can lead to such tent shapes. Particular care has been taken to accurately resolve the sharp

changes in gradients that occur in the Ginzburg-Landau model to describe the martensitic phase

transformation. It was also necessary to use a discretization that makes no a priori assumptions on

the resulting tent-shape, since the effects of non-exact lattice matching and different aspect ratios

of the free-standing part of the film were examined.

1.3 Hysteresis and pinning

There is a significant hysteresis in the martensitic phase transformation (see, for example [62]).

As already noted, the transformation temperature depends on the direction of the transformation.

This is not the only occurrence of hysteresis. One also observes hysteresis in superelasticity: The

transformation begins at higher stress than the reverse transformation. Figure 1.7 shows another

instance from the work of Abeyaratne, Chu, and James [1]. They apply a biaxial dead load on a

single crystal CuAlNi specimen at fixed temperature below the critical transformation temperature.
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Figure 1.7: Rate-independent hysteresis loops in the plasticity-like regime of the shape memory
effect. Shown is the volume fraction of one certain variant of martensite under time-dependent
loading. Renormalizing time, the image shows clearly that the size of the hysteresis loop does not
depend on the rate. (Image courtesy of Abeyaratne, Chu, and James [1], used with permission.)
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External forceF ∗

Figure 1.8: Depinning behavior as calculated from the one-dimensional model in [13]. The interface
is stuck up to a critical force F ∗, above which it breaks free and scales with a certain critical behavior.
For large F , the average velocity is linear in the applied force.



8

The loading is performed in such a way that at any time at most two of the possible martensite

variants were present in the specimen. The evolution of the microstructure formed by these two

variants was carefully observed during the loading process. As displayed in Figure 1.7 from there,

the shape memory alloy exhibits a clear stress versus volume fraction hysteresis loop.

Notice that this behavior is rate-independent, i.e., the area under the hysteresis loop does not

depend on the rate of loading and does not vanish even if the experiment is performed very slowly.

Specifically, the transformation begins only when the applied stress exceeds a critical value and goes

to completion without requiring any increased stress. In other words, the rate of transformation

is essentially independent of the applied stress as long as it is above a critical value. Commonly,

hysteresis is included in the modeling assumptions for shape memory alloys [7, 59, 16, 21].

This observed behavior is different from the suggestion of microscopic theory. These theories yield

that the rate of transformation is linear in the applied stress [63, 3]. But why is the phase boundary

then stuck for small applied forces? A one-dimensional calculation, as found in [1, 13] illustrates

how a local wiggly potential can pin a phase boundary and lead from a linear kinetic relation to

a stick-slip behavior. Assume a bar with a 1-periodic local driving force ϕ(x) (smooth and with

non-degenerate global maximum and minimum), and assume that the velocity of the interface is

given as v = ϕ+F , where F is the constant external applied force. The amount of time it takes for

the interface to travel one period can now easily be calculated to be

T =
∫ 1

0

dg
F + ϕ

, (1.1)

if F > −minϕ or F < −maxϕ. Otherwise (i.e., if −minϕ < F < −maxϕ), the time will be

infinite. The average velocity v̄ = 1
T of the interface now exhibits a behavior of the form seen in

Figure 1.8. In Chapters 4 and 5, this thesis examines how such behavior translates to models in higher

space-dimensions, both in the fully nonlinear nonlocal case of elasticity and in an approximation for

shallow phase boundaries.
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Chapter 2

Background

2.1 Models for shape memory alloys and martensitic phase

transformations

A survey of mathematical models for shape memory alloys can be found in [73] or [67], structured

by the length scale that the model examines. Macro-scale thermodynamic models, in which the vari-

ables are the volume fraction of the martensite and austenite phases, include early one-dimensional

approaches [6]. A recent multi-dimensional approach to thermodynamic modeling of the martensitic

phase transformation, taking into account some of the features of the microstructure of martensite,

can be found in [68]. These models are useful in predicting macroscopic properties of shape memory

alloys in numerical simulations. However, detailed mathematical analysis in the sense of existence

or uniqueness of solutions is largely unavailable for these models.

Models describing the microstructure in a probabilistic sense resolve the problem on an interme-

diate scale. The non-convex energies used to model phase transformations lead—without additional

regularization—to non-attainment of solution in a classical or even the weak sense. Probability

measures, especially Young measures as limits to minimizing sequences of solutions, are used, for

example, in [44, 56] to relax the notion of a solution further and make the problem mathematically

accessible. These (Gradient-)Young measures contain information about the probability of finding a

certain deformation(-gradient) at each point. A recent proof of existence for Young measure valued

solutions for a simplified thermo-elastic model for shape memory alloys in multiple space dimensions

without any regularization can be found in [65].

Landau-Ginzburg models for phase transforming materials combine multi-well strain energies

with a regularizing strain gradient term. Such a Landau-Ginzburg potential, depending on the first

and second derivatives of the displacement u and of the temperature θ, can, for example, be of the

form

Φ(ux, uxx, θ) = Φ0(θ) + αθΦ1(ux) + Φ2(ux) +
γ

2
u2
xx. (2.1)
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defining the stress σ as

σ(ux, θ) =
∂Φ(ux, uxx, θ)

∂ux
, (2.2)

leading to an equation of motion of the form

ρutt = (σ(ux, θ))x − γuxxxx + f, (2.3)

−θΦ′′0(θ)θt = κθxx + θσθ(ux)uxt + g, (2.4)

with material constants κ, ρ, γ, and α. These models go back to the work of Falk [35] for shape

memory alloys and are based on the ideas by Ginzburg and Landau to describe superconductivity.

For a one-dimensional model of such kind, existence and uniqueness have been shown in [69].

The same kind of multi-well energy functionals can be used without the regularizing strain-

gradient term (i.e., γ = 0), but with the introduction of a dissipation term instead. Using the

material parameter β for the viscosity, such a system of equations can have the form

ρutt = (σ(ux, θ) + βuxt)x + f, (2.5)

−θΦ′′0(θ)θt = κθxx + θσθ(ux)uxt + βu2
xt + g. (2.6)

Existence and uniqueness for this system have been studied, for example, in [20, 27]. In [42], a

system with surface energy and dissipation is studied.

The two- and three-dimensional generalization of Falk-type models is non-trivial. Even the

construction of suitable multi-dimensional energy landscapes for the involved phase transformations

is a matter of current research [30, 75, 72, 34] due to the complex symmetry constraints imposed by

the point group of the high temperature phase. A two- or three-dimensional system without surface

energy but with dissipation is examined in [74], where existence of a solution is shown. In [29],

existence of a solution is shown for an isothermal system with surface energy using semi-group

methods. An existence and uniqueness proof for a system with both dissipation and surface energy

can be found in [61].

Sharp interface models comprise another approach to describing the martensitic phase transfor-

mation. Here, similar to the well-known Stefan problem of solidification, a free boundary describes

the evolution of a phase boundary between martensite and austenite or between martensite variants.

The monograph by Abeyaratne and Knowles [5] provides an overview of this aspect of the shape

memory effect. The present thesis presents a proof of existence for such a free boundary problem in

the presence of both a nonlocal stress field and a surface energy term.
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2.2 Computational analysis of the martensitic phase trans-

formation

One-dimensional numerical examinations of the systems of differential equations for Landau and

Landau-Ginzburg models are presented, for example, in [19]. A simulation in the anti-plane shear

setting (displacement u : Ω ⊂ R2 → R) showing formation of microstructure can be found in [71].

There, a finite-difference scheme is used to compute the dynamics of a system with viscosity but

without surface energy. A finite difference scheme with viscosity and surface energy is implemented

in [64] for the multi-dimensional deformation setting (u : Ω ⊂ Rn → Rn). They use a polynomial

three-well energy for a system in two space-dimensions. The time development of the formed mi-

crostructure is also evaluated. A computational approach using special gradient Young measure

solutions is presented in [51], where a rate-independent law is used to model the evolution of mi-

crostructure in CuAlNi.

The most common approach for computations in elasticity is the use of finite elements [54].

In [46], this method is used to study a fully three-dimensional system with the Erickson-James en-

ergy density [31]. There, viscosity is used to dissipate energy from the system, but no surface energy

is considered. This is changed in a later work [47]. In [45], the same approach is applied, but a tem-

perature field is introduced and coupled to the system via a temperature-dependent elastic energy.

A problem common to the described finite element simulations is that the regularity of the dis-

cretization is not sufficient to fully resolve the surface energy, i.e., the functions used to approximate

the elastic displacement are not in the Sobolev space H2. This can lead to convergence problems. A

simulation using conforming elements, which are finite elements that exhibit the regularity required

by the partial differential equation, can be found, for example, in [29]. In Chapter 3 of this thesis, a

different approach to finite elements is presented. Here, subdivision surfaces, which can be regarded

as generalizations of splines, are used to achieve a conforming finite element discretization. This

approach was introduced originally in [23] for the computational analysis of thin shells, where the

bending energy term causes similarly elevated requirements on the smoothness of the discretization.

The work there has been further extended to nonlinear elasticity [22].

2.3 Hysteresis, pinning, and depinning behavior

The pinning and depinning effects in the non-equilibrium dynamics of phase boundaries and related

phenomena have been extensively studied by physicists. An overview in the context of charge-

density-waves, interfaces and contact lines can be found in [43]. Generally, one uses an equation of

the type

gt(x) = Kg(x) + ϕ(x, g(x)) + F (2.7)
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to describe the phenomena. Here, K is a possibly nonlocal operator that penalizes fluctuations in

the height of the interface g(x), the local fluctuations in the driving force are modeled by ϕ, and F

is the external driving force. It is well known that the depinning behavior depends sensitively on

the specific nature of both K and ϕ. Often, renormalization group approaches are used to calculate

the critical exponents of depinning [57, 58]; generally, however, they lack mathematical rigor.

For the example of a parabolic equation in a periodic environment,

gt = 4g + ϕ+ F, (2.8)

where ϕ(x, g) is 1-periodic in both variables and smooth, it can be shown [28] that the depinning

transition exhibits a power-law behavior with a critical exponent of 1/2. The proof there assumes

that there are only a finite number of possible pinned states in each period when the external force is

exactly critical. This leads to the effect that for a small additional force the interface spends virtually

all its time close to those critical states. Together with the smoothness of the local force this leads

to the square root power-law behavior. For the one-dimensional model discussed in [13], the same

power law arises through an integral expansion in the case of smooth forcing with distinct maxima

and minima. The main difference in behavior from the models commonly analyzed in physics seems

to be that their models have an infinite number of critical states at the depinning transition, and

therefore lack the clear distinction between regions of high velocity and almost-stuck states that lead

to the power law proved in [28].

In [24, 25], the effects of a pinning potential on the evolution of a phase boundary are considered

with and without surface energy using homogenization techniques for Hamilton-Jacobi Equations.

For both regimes an effective behavior can be derived, explicitly in the case of zero surface energy

and for the limit of large surface energy.

The homogenization of a gradient flow of the volume fraction of a certain martensite variant in

the presence of a wiggly energy is derived in [1]. The resulting stick-slip behavior is then compared

to experiments on single crystals of CuAlNi.

In the present work first a sharp interface model for the evolution of a phase boundary in the

presence of precipitates is developed in Chapter 4. The existence of a solution is proved. This

model includes the full elastic nonlocal effects and is used to estimate the critical depinning force

numerically. In Chapter 5, a linearization of the full model is used to study the depinning behavior

both analytically and numerically.
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Chapter 3

Modeling and numerical analysis of
thin films of martensitic materials

This chapter studies numerically the deformation of thin films made of materials undergoing marten-

sitic phase transformations by using subdivision surfaces. These thin films have received interest as

potential microactuators, and specifically a tent-like configuration has recently been proposed. In

order to model martensitic materials we use a multi-well strain energy combined with an interfacial

energy penalizing strain gradients. The study of such configurations requires adequate resolution of

inhomogeneous in-plane stretch, out-of-plane deformation, and transition regions across which the

deformation gradient changes sharply. This chapter demonstrates that subdivision surfaces provide

an attractive tool in the numerical study of such configurations, and also provides insights into the

tent-like deformations.

The chapter is organized as follows. The introduction provides some background on the use of

active materials as actuators in micro-scale systems, as well as the difficulties involved in numerically

studying thin films of shape memory alloys. In Section 3.2, the continuum model and the relevant

energy terms are introduced. The details of the finite element simulation are described in Section 3.3,

followed by a short review in Section 3.4 of the subdivision surface method proposed in [23]. Sec-

tion 3.5 contains the simulation results. Section 3.6 verifies our computational results with some

analytical calculations. Some discussion of these results and an outlook to further improvements on

this method are given in Section 3.7.

3.1 Introduction

Thin films of shape memory alloys have received attention as potential microactuators since the

recognition that they possess the largest work per unit volume among possible actuator systems [50].

This is because the martensitic phase transformation, a solid-to-solid phase transformation respon-

sible for the shape memory effect, provides a direct link between the macroscopic deformation and
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microscopic changes in the crystalline unit cell. This advantage is maximized by using single-crystal

thin films where the geometry of the structure is carefully chosen to be consistent with the inherent

crystallography of the material. This, however, requires careful analysis of the deformation and this

in turn requires a numerical method that is capable of resolving inhomogeneous in-plane stretch, out-

of-plane deformation, and transition regions across which the deformation gradient changes sharply.

Such an analysis is the goal of the paper.

The martensitic phase transformation is a diffusionless process where, at a certain tempera-

ture θc, the preferred crystallographic configuration of the material changes. Typically, the high-

temperature phase, the austenite, has greater symmetry than the low-temperature phase, the

martensite, and therefore the martensite has a number of symmetry-related variants. Consequently,

the energy density of the material has a multi-well structure, with each well associated with a different

phase/variant. The different phases may co-exist in a configuration, and one also has an interfacial

energy which is often modeled as a quadratic penalization of the strain gradient, as mentioned in

Section 2.1.

This raises the numerical difficulty, common to many other structural and materials problems,

of accurately evaluating energies which depend on the first as well as second derivatives of the

deformation. Numerical evaluation of such energies requires a discretization which is continuous

in the deformation as well as in its first derivative. Consequently one can not use simple linear

elements, and higher-order polynomials bring their own problems. Cirak and Ortiz [22] addressed

this by adapting subdivision surfaces, which were introduced and widely used in computer graphics

(see for example, [76]), as elements to study finite deformation of thin-shells. We further develop

this approach, and demonstrate how subdivision surfaces can be used for the study of martensitic

thin films. While the idea remains mostly the same, our approach differs in that the multi-well

nature of the energy requires great care in order to resolve structures like the tip or the edges of

the tent. Also, in our model, the bending energy term does not play a role, however, a somewhat

similar interfacial energy term is introduced.

Our starting point is the theory of martensitic thin films proposed by Bhattacharya and James [15].

We use our computational method to explore in detail a tent-like deformation that has potential

application as an actuator. The idea is to deposit a single crystal thin film of a martensitic material

on a (silicon) substrate in such a manner that it is approximately lattice-matched to the austenite.

Then, a small square region of the film is released by back-etching to give a free-standing membrane

which is bonded on all sides. The free-standing region is in the austenite state when hot but trans-

forms to the martensite on cooling. Further, if the crystallography of the material satisfies some

special conditions, and if the orientation of the released region matches specific crystallographic di-

rections of the material, then the films pop up like a tent in the martensitic state. Therefore we have

a configuration that switches between a flat and a tent-like shape when subjected to temperature
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Figure 3.1: Deformation of a reference configuration Ω at a certain time t

cycling.

A detailed understanding of the exact nature of the deformation is the first motivation of our

study. While the overall shape and structure conforms to the simplified analysis of Bhattacharya

and James [15], we find an unexpected breaking of the symmetry at the tip. Studying the effects

of misalignment is the second aim of our work, since it is difficult in practice to align the released

region exactly with the crystallography of the material. We find that the overall structure remains

stable for small deviations but it begins to deviate substantially beyond 10 degrees of misalignment.

Finally, since the released area may not be a square, we study a rectangular region as an example.

Belik and Luskin [12] also studied tent-like deformation using a finite element method. How-

ever, their model of interfacial energy replaces higher-order derivatives with a term that lives on

the element edges. Consequently, their energy depends critically on the triangulation and they

arranged their triangulation in a way such that the expected phase/variant boundaries lie on such

edges. Unfortunately such an approach requires an accurate a priori knowledge of the phase/variant

boundaries and this is not possible in situations like those described above.

3.2 The model of thin films

Our model is an adaptation of a model of thin films proposed by Bhattacharya and James [15]. We

provide further details of this model and our adaptation in Appendix A.

Consider a thin film occupying a flat reference configuration Ω ⊂ R2 and undergoing a time-

dependent deformation y : Ω × R+ → R3 as depicted in Figure 3.1. We assume that y(x, t) is

injective and orientation preserving in the plane for all times. Furthermore, assume that y(x, t) is

sufficiently smooth to compute the deformation gradient F (t) = ∇y(t) and the second derivatives

almost everywhere.

The dynamics of the film are governed by an energy consisting of the kinetic energy Ekin, a

multi-well strain energy Estrain, and the interfacial or exchange energy Einterfacial, modeled using a

higher (or strain) gradient. In non-dimensional quantities, these energies can be written as follows.
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Figure 3.2: Contour plot of the energy landscape in the C11-C22 plane. The parameters are the
same as for the simulations, except for a, which is set to 0.01 to enable easy viewing.

Kinetic energy. The kinetic energy is given by

Ekin =
∫

Ω

1
2
|yt|2 dx. (3.1)

Strain energy. The strain energy of the crystal is given as the integral of the strain energy density

W ,

Estrain =
∫

Ω

W (F (x)) dx. (3.2)

To model the phase transition of the shape-memory material, one can use a strain energy density

with multiple minima at the preferred positions in the strain space. Frame indifference requires the

energy to be a function of the right Cauchy-Green strain tensor C = FTF alone. In our case, we

consider a cubic-tetragonal phase transition and thus assume W to be of the form

W (F ) = W (Cij) = a ·
(
C11 + C22 − 2− ξ2

)2
+

b · Φ(C11 − C22)
(

(C11 − C22)2 − ξ4
)2

+ c · C2
12 (3.3)

with positive coefficients a, b, and c. This is a Landau-type energy density.

The function Φ augments the energy barrier in the nonconvex term of the strain energy and is

given by

Φ(q) = 1 + η · e
−q2

κξ2 , (3.4)
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with two parameters η and κ. The energy density has its minima on the set

O(2, 3)U1 ∪O(2, 3)U2 (3.5)

where

U1 =

 √
1 + ξ2 0

0 1

 and U2 =

 1 0

0
√

1 + ξ2

 (3.6)

are the transformation stretches of the two variants of martensite, and O(2, 3) = {A ∈ Mat(3, 2) :

ATA = Id2×2}. Notice that one variant represents stretching in the x1-direction while the other

represents stretching in the x2-direction. The contour plot of the energy is shown in Figure 3.2. For a

detailed discussion on the problematic of constructing strain energy functions for martensitic phase

transformations and the possible necessity of augmenting energy barriers of polynomial energies

see [30].

For later use, we also consider the following. We will be interested in situations where the

crystallographic axes do not coincide with the coordinate axes. In such situations, we will take the

energy density to be of the form

W (RTC(x)R) (3.7)

where R ∈ SO(2) is the rotation matrix that takes the crystallographic axes to the coordinate axes.

Interfacial Energy. The interfacial energy penalizes changes in the gradient and introduces an

inherent length scale in the system. The interfacial energy used is given by

Einterfacial =
∫

Ω

1
2
|4y|2 dx. (3.8)

Two comments are in order. First, this energy is apparently different from the commonly used form

∫
Ω

1
2

∣∣∇2y
∣∣2 dx (3.9)

where ∇2y denotes the third order tensor of second derivatives of y. However, these two terms differ

only by a null-Lagrangian (i.e., terms which can be written exclusively in terms of boundary values).

Therefore both energies yield the same governing equation. Further, since we use only the clamped

boundary condition, the boundary term is in fact zero so that both forms agree. Second, observe

that this energy also penalizes bending. In fact, |4y3|2 = |y3,11 +y3,22|2 is the energy of bending for

small deflections. However, in this paper, we shall think of this energy as arising due to interfacial

energy.

Using these energies, we derive the non-dimensionalized dynamic equations using the principle
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of stationary action:

δS = 0 (3.10)

where S is the action integral given by

S =
∫ t1

t0

L dt (3.11)

with Lagrangian

L = Ekin − Estrain − Einterfacial. (3.12)

Substituting the expressions for the energy into the action integral yields

0 = δS

= δ

∫ t1

t0

∫
Ω

1
2
|yt(x, t)|2 −W (F (x, t))− 1

2
|4y(x, t)|2 dxdt

=
∫ t1

t0

∫
Ω

ytt(x, t) · δy(x, t)− ∂W (x, t)
∂F

· ∇δy(x, t) dxdt

−
∫ t1

t0

∫
Ω

ytt(x, t)4y(x, t) · 4δy(x, t) dxdt . (3.13)

Since none of the energy terms are explicitly time-dependent, and the variations of y can be chosen

arbitrarily in time, equation (3.13) is equivalent to

0 =
∫

Ω

ytt(x, t) · δy(x)− σ · ∇δy(x)−4y(x, t) · 4δy(x) dx (3.14)

where

σ(x, t) =
∂W (x, t)
∂F

(3.15)

is the Piola-Kirchhoff stress.

In this paper, we are interested in the equilibrium states. To obtain them from the dynamic

equations above, we introduce dissipation in the system.

Dissipation. We introduce linear dissipation by augmenting (3.14) with the following term on

the right-hand side:

−
∫

Ω

βFt · ∇δy(x) dx. (3.16)

It is easy to show that

d

dt
(Ekin + Estrain + Einterfacial) = β

∫
Ω

|Ft|2 dx. (3.17)
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ū(V )

1
1

θ1

θ2

ū

Parameter space

Reference

Figure 3.3: Mapping of unit triangle to deformed and undeformed configuration

The viscosity parameter β is of the order of 0.1, but it is increased when the simulation gets closer to

the equilibrium configuration, in order to accelerate the loss of energy. Without this term, due to the

fact that the governing equations as well as the numerical scheme are otherwise energy preserving,

the system would oscillate indefinitely.

In summary, our model of thin films is given in weak form by

0 =
∫

Ω

ytt(x, t) · δy(x)− σ · ∇δy(x)−4y(x, t) · 4δy(x)− βFt · ∇δy(x) dx (3.18)

for all δy(x) : Ω→ R3 consistent with boundary conditions at each time t.

3.3 Numerical method

We seek to use the finite-element method to solve (3.18). This however requires care since this

equation contains second derivatives of the displacement. In particular, our basis should have con-

tinuous first derivatives and we can not use the standard piecewise affine basis. We use subdivision

surfaces following [22]. A discussion of the details is deferred till Section 3.4 after we describe the

formulation.

We describe the reference and deformed configuration using a parametrization as shown in Fig-

ure 3.3. In other words, consider a smooth local one-to-one mapping from a set V ⊂ R2

ū : V → Ω,

ū : θ 7→ x = ū(θ), (3.19)
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which will later be induced by a triangulation of Ω, and a mapping

u : V × R+ → R3,

u : (θ, t) 7→ y = u(θ, t), (3.20)

such that

y(x, t) = (u(·, t) ◦ ū−1(·))(x). (3.21)

It follows that F = ∇y = ∇u · (∇ū)−1. The second derivatives of y can be computed in a similar

fashion by noting that

0 =
∂

∂xi
Id =

∂

∂xi
∇ū∇ū−1 = ∇ūxi∇ū−1 +∇ū∇ū−1

xi (3.22)

and using the chain rule. Further, the variation in y is related to the variation in u by

δy(x) = δu ◦ ū−1. (3.23)

In the following we often continue to write 4y and 4δy since the full expressions using u and ū

are somewhat lengthy, but assume that they are written in terms of u and ū.

Now, assuming we have a non-overlapping set {Vq}mq=1 (where m will turn out to be the number

of triangles in the base mesh) such that we have mappings u and ū as above on all Vq and

m⋃
q=1

ū(Vq) = Ω, (3.24)

equation (3.18) yields

0 =
m∑
q=1

[ ∫
ū(Vq)

(utt(·, t) ◦ (ū(·))−1)(x) · (δu(·) ◦ (ū(·))−1)(x) dx

−
∫
ū(Vq)

σ(∇u · (∇ū)−1) · ∇δu · (∇ū)−1 dx

−
∫
ū(Vq)

4y · 4δy dx

−
∫
ū(Vq)

β∇ut · (∇ū)−1 · ∇δu · (∇ū)−1 dx
]
, (3.25)

where all the functions u and ū and their derivatives are evaluated at ū−1(x), as it is explicitly

written in the first term. Now one can pull the integration back onto the parameter space so that
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one has

0 =
m∑
q=1

[ ∫
Vq

utt · δu |∇ū|dθ

−
∫
Vq

σ(∇u · (∇ū)−1) · ∇δu · (∇ū)−1 |∇ū|dθ

−
∫
Vq

4y · 4δy |∇ū|dθ

−
∫
Vq

β∇ut · (∇ū)−1 · ∇δu · (∇ū)−1 |∇ū|dθ
]
. (3.26)

We discretize u, ū using the Loop subdivision surface basis functions {ϕi}ni=1 (in our case, since

the basis functions are centered on triangle vertices, n is the number of vertices in the base mesh)

so that,

ū(θ) =
n∑
i=1

ūiϕi(θ) (3.27)

and

u(θ, t) =
n∑
i=1

ui(t)ϕi(θ) (3.28)

with coefficients ui, ūi. With this discretization, we follow the usual finite element approach and

enforce equation (3.26) for the test function δu in the span of {ϕj}nj=1. In our formulation, we treat

the ūi associated with the reference configuration as fixed coefficients and the ui associated with the

deformed configurations as variables which we solve for. This yields an equation of the form

M ü = f(u, u̇) (3.29)

with the mass matrix Mij =
∑m
q=1

∫
Vq
ϕiϕj |∇ū|dθ. We compute all integrals using a simple one-

point approximation. We then lump the mass matrix in a row-sum manner and advance the re-

maining second-order ordinary differential equation in time using a second-order accurate explicit

Newmark scheme.

3.4 Loop subdivision basis functions

In order to provide a meaningful discretization of the continuous model in equation (3.18), we have

already noted that the approximating functions need to be in H2. A continuously differentiable

discretization will provide such a setting.

We begin in one space dimension. Consider the discretization1 shown in Figure 3.4. A simple

linear finite element basis function associated with node 0 is shown as a dashed line. It is continuous
1The discretization is shown to be regular, but that is not necessary.
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but not continuously differentiable. Therefore, we would like to replace it with a C1 (or smoother)

basis function, as shown by the solid line, while retaining two properties: first, it has to have finite

support, and second, it has to have one degree of freedom centered at the node. A cubic B-spline has

exactly these properties, and the support is confined to four adjoining ‘elements’ centered around the

middle node. In other words, we replace the dashed polygonal curve with the solid approximating

spline curve using the same nodes.

To be precise, consider the two-dimensional polygonal curve connecting the n points x0
i = (θi, φi).

We can generate an approximating spline as follows (see for example, [76]). Generate a new set of

2n− 1 points by subdivision:

x1
2i =

1
2

(x0
i + x0

i+1) (3.30)

and

x1
2i−1 =

1
8

(x0
i−1 + 6x0

i + x0
i+1) (3.31)

and connect them with a polygonal curve. The process is illustrated in Figure 3.4. Repeating this

process leads, in the limit, to a C2 cubic spline curve. The linearity of the process ensures that

the limiting curve can be written as a linear combination of basis functions with the original vertex

positions as weights. Starting with the polygonal curve generated by the linear basis functions gives

us a new basis function with the properties described above. This algorithm has to be modified for

boundary nodes, but this is easily accomplished in one dimension.

We now extend this idea to two space dimensions. We start with a given triangulation, as shown

in Figure 3.5. As in one dimension, we seek to replace the piecewise linear basis functions with a C1

basis function that is compactly supported and has one degree of freedom. The Loop subdivision

basis functions [52] do so by replacing the polyhedral surface generated by the linear basis function

with a C1 surface. The basic idea is the quadrisection of triangles with a particular choice of weights

for the new nodes. We refer the reader to Zorin and Schröder [76] for details. In our finite element

context, the support of the chosen subdivision basis functions is the 2-ring of triangles around a given

vertex, as shown in Figure 3.5. The particular basis functions depend on the topology (connectivity)

of the triangulation.

Care has to be taken in fixing the boundary conditions, because of the extended support of the

basis functions. One can either change the subdivision rules near the boundary to prescribe position

and normal vectors to the surface at the boundary [17], or add a layer of “ghost” vertices around

the domain as suggested in [23], which is the approach chosen here.

Our simulation uses the routine described in [70] to efficiently evaluate the basis functions for a

given triangle patch.

In order to achieve the setting in Section 3.3, we start with a triangulation of the computational

domain. The mapping ū uses the vertex positions of that triangulation as coefficients. The deformed
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Figure 3.6: The base mesh with 4096 triangles

configuration then has variable coefficients in R3, which comprise the degrees of freedom in our

computation.

3.5 Simulations

In this section we present the results of various numerical experiments motivated by the tent-like

deformations described in the introduction. All simulations use the energy parameters

a = 5.0, b = 5.0, c = 5.0, ξ = 0.1, η = 3.0, κ = 1.0 (3.32)

unless otherwise noted. The triangular base mesh used in the simulations is shown in Figure 3.6. It

was created by repeated subdivision according to the Loop subdivision scheme of a mesh consisting

of the four triangles formed by cutting the square along the diagonals. In figures displaying the

surfaces, the color indicates which energy well can be attributed to the respective position. All

simulations use clamped boundary conditions, i.e.:

y =


x1

x2

0

 , (∇y)n =


n1

n2

0

 on ∂Ω. (3.33)
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Figure 3.7: Time dependency of the energy in the system

We start the simulations with an initial condition corresponding to a flat surface subjected to a

small push in the vertical dimension, and wait till it bounces around and evolves into a tent-shaped

structure. A typical plot of how the various energies involved behave over time is shown in Figure 3.7.

3.5.1 Regular tent

Figures 3.8 and 3.9 show the shape and the details of the fully relaxed tent formed on a domain of

size 50 × 50 domain non-dimensionalized units calculated using 16384 elements. Figure 3.8 shows

a nice pyramidal shape with almost flat surfaces and rounded edges. Regions with deformation

gradient close to the first well are colored blue, those close to the second are colored orange and the

rest grey. The different variants are also labeled in Figure 3.8. Clearly the flat faces correspond to

almost constant deformation gradient close to the wells. This is confirmed in Figure 3.9(a) which

shows that the strain energy is concentrated at the boundary, ridges, and tip. This is also consistent

with the fact that C11 + C22, C11 − C22, and C12 stay close to the values at the bottoms of the

energy well except in these regions.

It is clear from Figures 3.9(b)–3.9(d) that the deformation is quite complex, involving the various

components of the Cauchy-Green tensor. In particular, the deformation can not be described as a

simple out-of-plan deformation (anti-plane shear) since this would force the Cauchy-Green tensor to

be of the form

C =

 1 + α2 αβ

αβ 1 + β2

 . (3.34)

It is also evident from Figures 3.9(b)–3.9(d) that the C11−C22 component of the Cauchy-Green
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Figure 3.8: Shape of the fully relaxed regular tent. The numbering of the variants corresponds to
Figure 3.2.

tensor transitions from ξ2 to −ξ2 across the ridges whereas the C11 + C22 and C12 components

remain essentially uniform. In other words, the Cauchy-Green tensor effectively traverses the energy

surface along the straight line as it transitions from one well to another along a ridge. This is not

surprising given that the energy grows quickly (quadratically) in the convex directions, C11 + C22

and C12. We shall elaborate on this with some analytic considerations in Section 3.6.

Figure 3.9(b) also reveals that the computed tent is not exactly symmetric despite the fact the

energy and geometry are. Instead, the tip where the four ridges meet appears to split into two

creating a narrow strip of one contiguous variant. This asymmetry was observed in a simulation

with a carefully constructed symmetric mesh and a symmetric initial condition. We also find that

the mirror image of the solution shown in Figure 3.9(b) is equally stable. The tip of this steady

state solution shows features similar to the tents with a slightly rotated strain energy density like in

Section 3.5.4. However, a symmetric initial condition generated by symmetrizing this solution—in

order to create a symmetric initial condition with very low energy—leads to a relaxed state that is

symmetric. This symmetric state has slightly lower total energy than the asymmetrical one (11.01488

non-dimensionalized units, versus 11.01512 for the asymmetric tent).

We consider this breaking of symmetry real and not an artifact of numerical discretization, and

believe that it constitutes a local minimum of the energy that has a significant domain of attraction.

Finally, observe from Figure 3.9(a) that the energy density is highest near the boundary, es-

pecially at the corners, and significantly higher that that at the ridges and the tip. Our clamped

boundary conditions force the deformation gradient to be identity and thus C11 + C22 to take

the value 2 at the corners (as also seen in Figure 3.9(c)). This value is different from the value

C11 + C22 = 2 + ξ2 at the bottom of the wells and the energy grows quadratically in this direction.
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(a) Strain energy density (b) C11 − C22

(c) C11 + C22 (d) C12

Figure 3.9: Energy and strain variables of the regular tent
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Figure 3.10: Cross section at x2 = 0 of tents formed with different numbers of elements in the base
mesh

3.5.2 Convergence

A comparison of the tents formed in a region of size 50 by 50 (non-dimensionalized units) with four

different base meshes consisting of 256, 1025, 4096, and 16384 triangles is shown in Figure 3.10.

Various quantitative details including L2 norm of the height and energies are given in Table 3.1. We

conclude that the 4096 element mesh provides a sufficient resolution for the following simulations

and requires only a moderate amount of time to fully relax.

3.5.3 Physical size of the domain

Figures 3.11(a)–3.11(c) show the shapes of fully relaxed tents formed on domains with size 12× 12,

25× 25 and 50× 50 non-dimensionalized units. The same number of elements (4096) were used in

each computation. Figure 3.11(d) shows the cross sections of the various surfaces at y = 0 for direct

comparison.

When the domain size is extremely small, the interfacial energy dominates and the tent is very

rounded (Figure 3.11(a)). Further, no area can be clearly identified as belonging to any variant.

However, as the domain size increases, the tent becomes more pyramidal as the sides become flatter

with the deformation gradient taking values in the energy wells. The size of the boundary layer in

between areas of constant strain does not vary significantly with the domain size; instead the areas

of constant strain close to one of the two minima in strain space become larger. Table 3.2 shows the

declining average energy densities for different domain sizes.
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Table 3.1: Comparison of base meshes of different resolution

Number of elements 256 1024 4096 16384
Absolute L2 norm of surface height 30.0 35.1 37.3 38.1
L2 norm of difference to next higher resolution 3.6 2.7 0.7
Interfacial energy 3.8 4.7 5.2 5.6
Strain energy 28.4 15.1 8.6 5.4

(a) 12× 12 (b) 25× 25

(c) 50× 50
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(d) Comparison of the cross sections

Figure 3.11: Influence of the physical size of the domain. (Color coding as in Figure 3.8)

Table 3.2: Average energy density comparison for different domain sizes

Domain size 12 × 12 25 × 25 50 × 50
Interfacial energy per domain area 1.4 · 10−2 5.1 · 10−3 2.1 · 10−3

Strain energy per domain area 9.0 · 10−3 3.5 · 10−3 3.4 · 10−3
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(a) 5 degrees (b) 10 degrees

(c) 15 degrees
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0 deg, x2=0

5 deg, x2 =0

10 deg, x2=0

15 deg, x2=0

0 deg, x2=12.5

5 deg, x2=12.5

10 deg, x2=12.5

15 deg, x2=12.5

(d) Comparison of the cross sections at x2 = 0 and x2 = 12.5

Figure 3.12: Shapes formed using a crystallographic axis which is rotated with respect to the physical
domain. Shown are top views; colors indicate variants as in Figure 3.8.

3.5.4 Crystallographic orientation

The strain energy density (3.3), and in particular the position of the energy wells, embed information

about the crystallography. In the examples above, the crystallography and the physical geometry

of the domain were aligned in such a manner so as to form a nice tent. Specifically the domain

was a square and the preferred interface (ridge) directions coincided with the diagonals of the

domain. In practice, it may prove difficult to provide such an alignment and this section examines

the consequences of any misalignment. We keep the orientation of the domain unchanged, but use

the rotated energy density (3.7). The initial conditions and boundary conditions are as before; the

domain size is 50× 50 non-dimensionalized units discretized using 4096 elements.

Figure 3.12 shows the equilibriated tents for misalignments of 5◦, 10◦, and 15◦. Figure 3.12(d)
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Table 3.3: Comparison of the energies of the tents with various amounts of rotation of the crystal-
lographic axes with respect to the domain

Rotation 0 degrees 5 degrees 10 degrees 15 degrees
Interfacial energy 5.2 5.2 5.4 5.8
Strain energy 8.6 8.7 8.9 9.3

(a) 3D view (b) C11 − C22

(c) Strain energy density (d) Surface energy density

Figure 3.13: Detailed view of the tent formed with the crystallographic axis rotated 15 degrees with
respect to the domain boundaries
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shows the sections at x2 = 0 and x2 = 12.5 for various misalignments for comparison. A more

detailed analysis of the tent shape formed with the 15 degree misalignment is shown in Figure 3.13.

It is clear that the shape significantly changes as the misalignment increases. Indeed, the shape

becomes less of a square pyramid and more of an elongated mesa with a flat top. Further the height

decreases dramatically: the height at the center falls 6%, 14%, and 22% with a misalignment of 5◦,

10◦, and 15◦, respectively, relative to a perfectly oriented one. Indeed at 15◦ the center dips down.

In all these cases, one still has the four sectors of alternating variants. The four ridges that

separate the variants follow closely the preferred crystallographic orientation. These, however, are

no longer aligned with the squares of the square domain and consequently do not meet at the center

of the domain. Instead, the four ridges create a square in the center whose size increases with

misalignment. This square is subject to complex deformation as it tries to lie close to one of the

energy wells. Table 3.3 confirms this showing increasing energy with misalignment.

These results indicate that for the parameters chosen here, a mismatch of less than 10 degrees

in crystallographic orientation and physical domain orientation will somewhat, but not significantly

affect the deformed shape. However, at 15 degrees, the outcome is quite different.

3.5.5 Rectangular domain

Figures 3.14(a) and 3.14(b) show the equilibriated tent formed on rectangular domains of aspect ratio

0.8 and 0.5, respectively. The crystallographic axis is aligned with the domain. The ridges separating

the variants continue to follow their preferred orientation: so the resulting shape is an elongated

roof-top. However, the ridge on top is rounded, with the curvature decreasing with increasing aspect

ratio. This shape is determined by the competition between interfacial energy along the top ridge

and the triple points where the top-ridge meets the two inter-variant ridges. The former scales as

aspect ratio and the latter is independent of it. Therefore the interfacial energy dominates for longer

domains, giving a rounded top, while the ‘triple-point energy’ dominates the more square domains,

giving a less-rounded top.

3.6 The regular tent revisited

Let us return to the situation described in Section 3.5.1, and further examine the ridge and the tip.

In order to do so, it is convenient to make a coordinate transform that rotates the coordinates by

π/4 so that the ridge forms parallel to the coordinate axes. The energy is transformed accordingly

and the energy wells are now located at

C =

 1 + 1
2ξ

2 ± 1
2ξ

2

± 1
2ξ

2 1 + 1
2ξ

2

 (3.35)
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(a) Aspect ratio 0.8 (b) Aspect ratio 0.5

(c) Strain energy density (aspect ratio 0.5) (d) Interfacial energy density (aspect ratio 0.5)

Figure 3.14: Tent shapes formed on a rectangular domain



34

with C12 the non-convex direction. We do not consider any boundary conditions.

Consider a ridge running along x2 = constant. We anticipate that the deformation gradient to

depend only on x1. So we look for a solution of the form

FRidge =


α(x1) 0

β(x1) 1

γ(x1) 1√
2
ξ

 . (3.36)

It is easy to verify that this satisfies the compatibility equation

curlFRidge = 0, or (FRidge)iα,β = (FRidge)iβ,α where i = 1...3 and α, β = 1...2, (3.37)

which ensures that this is indeed a gradient. Plugging this into the equilibrium equation

42y + Divσ = 0, (3.38)

noting that everything is independent of x2, and integrating once with respect to x1 leads to second-

order ordinary differential equations for α, β, and γ. These equations are

α′′ = (4a+ c)
(
α2 + β2 + γ2 − 1− ξ2

2

)
α, (3.39)

β′′ = (4a+ c)
(
α2 + β2 + γ2 − 1− ξ2

2

)
β

+2bΦ′
(

2β +
√

2ξ γ
)(

4
(
β +

ξ√
2
γ

)2

− ξ4

)2

+16bΦ
(

2β +
√

2ξ γ
)(

4
(
β +

ξ√
2
γ

)2

− ξ4

)(
β +

ξ√
2
γ

)
, (3.40)

γ′′ = (4a+ c)
(
α2 + β2 + γ2 − 1− ξ2

2

)
γ

+bξ
√

2 Φ′
(

2β +
√

2ξ γ
)(

4
(
β +

ξ√
2
γ

)2

− ξ4

)2

+8
√

2bξΦ
(

2β +
√

2ξ γ
)(

4
(
β +

ξ√
2
γ

)2

− ξ4

)(
β +

ξ√
2
γ

)
, (3.41)

where the prime denotes differentiation with respect to x1. If (4a+ c) is large, then we may replace

the first equation with the constraint

α2 + β2 + γ2 = 1 +
1
2
ξ2. (3.42)
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This in turn implies that

C11 = C22 = 1 +
1
2
ξ2 (3.43)

so that C traverses along the low-energy C12 direction across the ridge.

With the change of variables,

x = β −
√

2
ξ
γ, y = β +

ξ√
2
γ, (3.44)

these equations simplify to

x′′ = 0 (3.45)

y′′ = b
(
2 + ξ2

)
Φ′(2y)

(
(2 y)2 − ξ4

)2

+ 8b
(
2 + ξ2

)
Φ(2y)

(
(2 y)2 − ξ4

)
y

= b

(
1 +

ξ2

2

)
∂

∂y

(
Φ(2y)

(
(2 y)2 − ξ4

)2
)
. (3.46)

Now assume for the moment that Φ = 1. Recall that we introduced this function to increase the

energy barrier between the wells. Then, the second of the equations above reduces to

y′′ = b

(
1 +

ξ2

2

)
∂

∂y

((
(2 y)2 − ξ4

)2
)

(3.47)

which has a solution

y =
ξ2

2
tanh

(
−2ξ2

√
b (2 + ξ2)x1

)
(3.48)

that smoothly transitions from −ξ2/2 to ξ2/2 over a length-scale of
(

2ξ2
√
b (2 + ξ2)

)−1

. Thus, we

have constructed a solution for which FRidge transitions between


1 0

0 1
1√
2
ξ 1√

2
ξ

 and


1 0

0 1

− 1√
2
ξ 1√

2
ξ

 . (3.49)

while satisfying the constraint (3.43). Indeed, a simple calculation shows that C12 = y, so that C12

changes as a hyperbolic tangent as we go across the ridge according to (3.48). This shows that the

width of a typical ridge is of the order
(

2ξ2
√
b (2 + ξ2)

)−1

. Finally, note that the x corresponds to

a rotation, and thus its details depend on the exact boundary conditions.

If Φ 6= 1, we are unable to find the profile explicitly, though the above results hold qualitatively.

Further, as the barrier increases, the transition region is smaller.

In summary, these calculations show that one can traverse the ridge using the low-energy direction

as suggested by our computations.

We now turn to the tip, and examine whether it can be formed by two crossing ridges. We look
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for a solution where the deformation gradient is of the form

FTip =


α1(x1) α2(x2)

β1(x1) β2(x2)

γ1(x1) γ2(x2)

 . (3.50)

It is easy to verify that while it satisfies the compatibility equation, it can not satisfy the equilibrium

equation (3.38). In other words, the deformation at the tip has to be more complicated than two

crossing ridges.

3.7 Conclusions

The results demonstrate the feasibility of using subdivision surfaces to computationally study thin

films undergoing martensitic phase transformations. Specifically, they provide a discretization which

is able to naturally and accurately resolve the higher-order derivatives, especially in situations in-

volving non-convex (multi-well) energies. Previously, subdivision surfaces have been used only in

the context of thin shell structures that do not undergo phase transformations.

The work presented here also provides insights into tent-like deformations which are potentially

of interest for microactuation. The computations demonstrate that this deformation can be quite

complex even in the case where the crystallographic axis is perfectly aligned with the physical

domain. In particular, the deformation involves inhomogeneous in-plane stretches in addition to

out-of-plane motions and thus can not be described as an antiplane shear motion. The results also

show an unexpected breaking of the symmetry at the tip. We provide analytic studies that confirm

the computational results. Second, the numerical calculations show that the overall structure of the

tent remains stable for small deviations but begins to deviate substantially beyond 10 degrees of

misalignment. Thus we infer that manufacturing of actuators accurate to about 10 angular degrees

should be sufficient to still achieve suitable results. Finally, we show how the shape changes when

the released region is a rectangle instead of a square.

In this paper we studied the equilibrium states for tent-like structures in martensitic thin films.

To examine the reverse transformation of the tent to the flat state, one has to introduce a temperature

field and a temperature dependent energy, which is not trivial in view of the geometry of the deformed

state. This is a matter for further investigation.

An interesting extension to the current simulation would be to allow for adaptive refinement

of the discretization. This is especially beneficial in the current situation involving phase trans-

forming materials since we have small regions of large gradients separating large regions of small

gradients, and this partitioning is a priori unknown. As demonstrated in [39], subdivision surfaces

lend themselves to a natural method for adaptive refinement.



37

Chapter 4

A sharp interface model for the
evolution of martensitic phase
boundaries

In this chapter, a model for the quasistatic evolution of a martensitic phase boundary is presented.

We show the existence of solutions to this model in the sense of sets of finite perimeter. In the

first section, a brief and somewhat heuristic introduction to the model and its difficulties is pro-

vided. The second section shows the mathematical results. In the third section, a pinned state

of the phase boundary is examined numerically using the sharp interface model. The goal is to

examine the pinning effects of inhomogeneities on the evolution of a martensitic phase boundary.

Macroscopically, these phase transitions are commonly modeled using a rate-independent evolution

law, which naturally includes a stick-slip behavior and thus leads to rate-independent hysteresis.

Microscopically, however, one usually assumes that the evolution is governed by a linear relation

between the thermodynamic driving force and the velocity of the phase boundary. The goal of this

chapter and the following one is to provide some insight into the bridging between these two scales.

The model is introduced in a somewhat heuristic manner in the first section of this chapter. The

exact model is then presented in Section 4.2, where the existence of a solution is proved. Section 4.3

then provides a numerical estimate for the pinning force that can arise from the elastic effects

described by the sharp interface model.

4.1 Introduction to the model

The model we are using to describe the evolution of a martensitic phase boundary will consist

of three basic assumptions. These are the nonconvex elastic energy density, a surface energy to

penalize phase boundaries, and a kinetic relation between the thermodynamic driving force and the

normal velocity of the phase boundary. In order to formulate the problem consistently, a finite time

discretization scheme is then introduced, the convergence of which is proved in Section 4.2. In the
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following, we will restrict ourselves to the case of two phases in an anti-plane shear model, to simplify

the notation. The generalizations should be straightforward.

The elastic energy density. As described before, shape memory alloys are commonly modeled by

a multiwell energy approach. Considering a material with two distinct phases, one can assume that

the equilibrium configuration is given by the minimizer of an elastic energy, where for each material

point the phase, and thus the transformation strain, can be individually chosen [48]. Assuming a

linearly elastic material in anti-plane shear, this leads to an energy of the form

min
E

min
u

∫
Ω

1
2
|∇u(x)− ξE(x)|2 dx (4.1)

with the deformation u : Ω→ R defined on the domain of the body Ω ⊂ Rn, and the transformation

strain ξE(x). The transformation strain is assumed to admit discrete values, a different one for

x ∈ E and x ∈ Ω \ E. The set E is the subdomain of Ω occupied by the first of the two phases.

The results generalize in a straightforward manner to the linearly elastic case, but the notation is

somewhat simplified in anti-plane shear. Additionally to the transformation strain stemming from

the phase boundary, there can be regions in the body that do not transform, and exhibit an energy

minimum at a third, different strain. Such precipitates are modeled by forcing ξE(x) to be a specific

value in certain fixed subdomains Ai independently of E. An example of such a domain is depicted

in Figure 4.1.

As discussed, for example in [11], minimizers for nonconvex energies of this kind are not generally

attained. One can however relax the notion of a minimizer to include objects like (gradient) Young

measures as limits of minimizing sequences describing phase mixtures and microstructure. We are

going to take a slightly different route, since it is the goal to study the evolution of phase boundaries.

Our approach will lead to a gradient flow of the phase boundary with respect to the energy in the

system.

Let us, for a moment, therefore, fix the phase distribution. Given such a phase distribution,

and thus given the set occupied by phase one, denoted by E, one can write an elastic energy as an

integral over the elastic energy density W as

Felastic(E) = min
u

∫
Ω

W (∇u,E) dx := min
u

∫
Ω

1
2
|∇u(x)− ξE(x)|2 dx. (4.2)

The minimization naturally has to be carried out in a suitable function space endowed with appro-

priate boundary conditions. Assuming now smoothness of the phase boundary Γ = ∂E, one can

compute the change of elastic energy in the system upon the evolution of Γ with any given normal
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velocity vn [2, 41], which yields

d
dt
Felastic =

d
dt

∫
Ω

W (∇u,E) dx (4.3)

=
∫

Ω

Ẇ (∇u,E) dx+
∫

Γ

[[W (∇u,E)]] vn dxΓ (4.4)

=
∫

Ω

∂W (∇u,E)
∂∇u

∇u̇dx+
∫

Γ

[[W ]] vn dxΓ (4.5)

= −
∫
E

div σ u̇dx−
∫

Ω\E
div σ u̇dx (4.6)

−
∫

Γ

[[σu̇]] · ndxΓ −
∫

Γ

[[W ]] vn dxΓ (4.7)

=
∫

Γ

〈σ〉 [[∇u]] vn dxΓ −
∫

Γ

[[W ]] vn dxΓ (4.8)

= −
∫

Γ

([[W ]]− 〈σ〉 [[∇u]]) vn dxΓ (4.9)

=: −
∫

Γ

fvn dxΓ. (4.10)

Here we have used the identities

∂W (∇u,E)
∂∇u

= σ (4.11)

[[σu̇]] · n = (1/2)(〈u̇〉 [[σ]] + [[u̇]] 〈σ〉) (4.12)

[[u̇]] = − [[∇u]] vn (4.13)

div σ = 0 within E and Ω \ E (4.14)

[[σ · n]] = 0 on the phase boundary. (4.15)

Further details can be found in [2]. This gives us a relation between the change in elastic energy in

the system and the normal velocity of the phase boundary.

The surface energy. In a similar manner as seen in Chapter 3, one can add a surface term to

the total energy of a sharp interface model. In this case we will simply penalize the total length of

the phase boundary by a term

Fsurface = γ

∫
Ω

|∇χE | dx (4.16)

with a coefficient γ. This is to be understood in the sense of sets of finite perimeter or functions

of bounded variation [9, 33]. The term can be seen as an abbreviation of sup||φ||<1

∫
Ω
χE div φ

among all continuously differentiable test functions φ. Physically this term is commonly interpreted

as an approximation of the energy due to a localized, atomistic mismatch at the surfaces of strain

discontinuity. Mathematically it leads to a regularization of the problem, and in case it is finite for

some given set E, it is equal to the length of the perimeter of E within the domain Ω. A set E for



40

which this term is finite is called a set of finite perimeter.

This surface energy leads, again upon evolution of the phase boundary Γ with a normal velocity

vn, to the well-known [40] curvature term

d
dt
Fsurface = −

∫
Γ

γκvn. (4.17)

The kinetic relation and the free discontinuity problem. Bringing together (4.3) and (4.17),

one can see that the change in total energy upon the evolution of the phase boundary can be written

as
d
dt
F = −

∫
Γ

f vn, (4.18)

where f is the thermodynamic driving force (also called the chemical potential) in the system,

consisting of a nonlocal term stemming from the elastic energy in the system and the curvature

term, i.e. f = [[W ]] − 〈σ〉 [[∇u]] − γκvn. In order to consider this as an evolution equation one

has to make a kinetic assumption that relates the normal velocity of the phase boundary to the

driving force. We regard our shape memory alloy as a dissipation-governed system and thus assume

proportionality between f and vn [4]. This leads us to the free discontinuity problem

f = vn, (4.19)

where we have, for simplicity, taken the proportionality constant—the mobility of the phase boundary—

to be equal to one.

The mathematical difficulty of this problem lies in the fact that it is a free discontinuity evolution

that is coupled to an elliptic partial differential equation. Similar difficulties arise in gradient flows

in metric spaces [10], as well as in rate-independent processes [55]. There, one usually introduces

an implicit time discretization scheme to approximate a solution to the problem. We will make

a similar approach, even though we are neither dealing with a metric space nor is our problem

rate-independent. The assumption of linear evolution leads here to an additional difficulty.

The finite time discretization scheme. For a fixed time-step h, and a set of finite perimeter

E0, consider the following minimization problem. Find a set E, minimizing the energy

F(E) = Felastic(E) + Fsurface(E) +
∫
EME0

dist(x, ∂E0) dx. (4.20)

After proving that such a minimizer always exists, one can iteratively apply the minimization scheme

and define an approximate solution as an in-time piecewise constant interpolation between the

minimizers for each time step. The ‘distance’ term (an integral over the symmetric set difference

of E and E0, denoted here by E M E0) in the energy is chosen such that its variation, for small h,
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Figure 4.1: Domain occupied by a phase transforming elastic body

is approximately the normal velocity of the phase boundary. This is the approach taken in [8, 53]

for the related problem of a curvature flow. The second task is then to show convergence of the

approximate solutions, as h→ 0, to a suitable solution of the original problem.

Since the sequence of piecewise constant approximate solutions is a sequence of characteristic

functions on the space-time domain Ω× [0, T ], it naturally converges weakly* in L∞. It is however

necessary to establish strong convergence here so that the resulting limit is again a characteristic

function and one can view the problem as a set evolution. In order to do this, it is necessary to

bound the total variation of the sequence of solutions uniformly both in space and in time. The

uniform bound in space will be obtained directly from the uniform bound on the perimeter of the

solutions. In order to derive the uniform bound in time, a density estimate on minimizing sets of

the time-step problem is used in [53]. This estimate requires the forcing on the phase boundary

to be uniformly bounded in L∞. Stress concentrations in the elasticity case, however, prevent its

direct use. In order to overcome this difficulty, we regularize the elastic energy density by mollifying

the transformation strain. The size ε of the mollifier can then vanish in the right relation with the

time-step h and one can still establish strong convergence of the solution. This is detailed in the

following section, where we use many similar ideas as [53].

4.2 Statement and analysis of the model

4.2.1 The model

In this model for the evolution of a phase boundary, we consider an elastic body occupying a

domain Ω ⊂ Rn open, bounded, with C2 boundary, as depicted in Figure 4.1. The material exhibits

two phases, occupying E, and Ω \ E, respectively. It is assumed to be linearly elastic in both

regions, however with a different transformation strain. There can also be a non-transforming
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region A =
⋃
iAi in the body. The piecewise constant transformation strain is thus given as

ξE(x) =


ξ+ for x ∈ Ω \ (E ∪A)

ξ− for x ∈ E \A

ξA for x ∈ A.

(4.21)

For an anti-plane shear displacement u : Ω→ R, we consider, as discussed before, the elastic energy

Felastic =
∫

Ω

W :=
∫

Ω

1
2
|∇u− ξE |2 . (4.22)

Additionally we add a surface energy, proportional to the length of the phase boundary Γ,

Fsurface = γ

∫
Ω

|∇χE | . (4.23)

The goal is to prove the existence of a solution, in the form of an evolving set E(t), according to

the kinetic law

vn = f, (4.24)

for the nonlocal thermodynamic driving force f , wherever Γ is smooth enough.

To this end, one first has to prove some estimates on the involved energies and the deformation

gradient.

4.2.2 Local estimates on the elastic energy

As mentioned in Section 4.1, the piecewise constant transformation strain can lead to stress concen-

trations for certain configurations of the phase boundary. In order to prove compactness of the time

discrete solutions later, such stress concentrations must only occur in a very controlled manner. To

this end, we regularize the transformation strain and will let the regularization tend to zero together

with the time step in an appropriate way.

We first therefore define the mollified transformation strain

ξεE(x) = (ηε ∗ ξE)(x) =
∫

Ω

ηε(x− y)ξE(y)dy. (4.25)

Also, set H = {u ∈ H1(Ω), together with boundary conditions} and denote its dual space by H ′.

The possible boundary conditions include part Dirichlet, part Neumann boundary data, as well as

natural Neumann boundary conditions, together with a condition on the average of u in order to

make the elliptic problem well-posed. The dual space to H is not identified with H, instead it is

seen as the space pivoted around the space L2 by the inclusion H ⊂ L2 ⊂ H ′. This construction
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can, for example, be found in [32, 18]. Consider now the elastic energy

Felastic(E) = min
u∈H

∫
Ω

1
2
|∇u− ξE |2 (4.26)

and also the mollified elastic energy

Fεelastic(E) = min
uε∈H

∫
Ω

1
2
|∇uε − ξεE |

2
. (4.27)

It is clear from the theory of elliptic equations that such a minimizer always exists, since the trans-

formation strain is a function in L2. One can then derive the following a priori bounds.

Lemma 4.2.1. There is a constant M independent of E and ε such that the following hold.

i. 0 < Felastic(E) < M and 0 < Fεelastic(E) < M .

ii. For u, uε attaining the minimum in Felastic(E) and Fεelastic(E), respectively, we find ||∇u||L2 < M

and ||∇uε||L2 < M .

iii. ||∇uε||L∞ < M
εn .

Proof. i. Consider the test function u = 0 on Ω. Then
∫

Ω
|ξE |2 < m(Ω) max (ξ±)2. The same holds

for Fεelastic.

ii. Since ∇ · ξE ∈ H ′, we know that u solves the equation

∫
Ω

∇u · ∇u =
∫

Ω

ξE · ∇u. (4.28)

From there we deduce that

||∇u||2L2 ≤ ||ξ||L∞ ||∇u||L1 ≤
√

m(Ω) ||ξ||L∞ ||∇u||L2 (4.29)

and the same holds for uε.

iii. Note that uε, as a minimizer of the energy
∫

Ω
|∇uε − ξεE |

2 is the unique solution of the equation

4uε = ∇ · ξεE , u ∈ H. (4.30)

We can therefore, by the representation theorem, write u as the convolution of the transformation

strain with the Green’s function for the problem, so that

uε = G ∗ ξεE

= G ∗ (ηε ∗ ξE)

= ηε ∗ (G ∗ ξE)

= ηε ∗ u, (4.31)
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where u is the minimizer in the unmollified elastic energy. From there one can calculate

|∇uε(x)| = |∇(ηε ∗ u)(x)|

=
∣∣∣∣∫

Ω

∇xηε(x− y)u(y)dy
∣∣∣∣

≤ ||∇ηε||L∞ ||u||L1

≤ ||∇ηε||L∞ ||u||L2

√
m(Ω) ≤ M

εn
, (4.32)

which proves the statement1.

Next, we will prove an estimate of the change in mollified elastic energy if an area of a certain

size changes from one transformation strain to the other. Such a proposition will make it possible

to use the aforementioned density lemma for balls of small enough radius.

Proposition 4.2.2. There exists a uniform constant M such that given two sets of finite perimeter

E1 and E2, we have

|Fεelastic(E1)−Fεelastic(E2)| ≤ M

εn
·m(E1 M E2). (4.33)

Proof. Assume that Fεelastic(E1) ≤ Fεelastic(E2). Let A = E1 M E2 and ξA, supported on A, such

that ξεE2
= ξεE1

+ ξA. Consider the minimizer uε1 of the energy

∫
Ω

∣∣∇uε1 − ξεE1

∣∣2 (4.34)

and use it as a test function for the larger energy. This yields

Fεelastic(E2) = min
u

∫
Ω

1
2

∣∣∇u− ξεE2

∣∣2
≤

∫
Ω

1
2

∣∣∇uε1 − ξεE1
− ξA

∣∣2
=

∫
Ω

1
2

∣∣∇uε1 − ξεE1

∣∣2 +
∫

Ω

1
2
|ξA|2 +

∫
Ω

2ξE1 · ξA −
∫

Ω

2∇u1 · ξA

≤ Fεelastic(E1) +
1
2

m(A)
(∣∣∣∣|ξA|2∣∣∣∣L∞ + 2 ||ξE1 ||L∞ ||ξA||L∞

)
+m(A) ||ξA||L∞ ||∇u

ε
1||L∞

≤ Fεelastic(E1) +
M

εn
m(A). (4.35)

1In order for the Green’s function to be regular enough to perform this calculation, the boundary of Ω has to be
smooth. One can also refer to the theorems about higher regularity of solutions to elliptic equations, for example
in [32], which require a C2 boundary.
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4.2.3 The implicit time discretization

We discretize equation (4.24) using an implicit finite time-step scheme. For h > 0, ε > 0, consider

the energy function

Fh,ε(E,E0) = min
uε∈H

∫
Ω

|∇uε − ξεE |
2 +

∫
Ω

|∇χE |+
1
h

∫
EME0

dist(·, ∂E0). (4.36)

We will call the first term the elastic term, the second term is the perimeter term and the third term

is the distance term.

Theorem 4.2.3. For a given set of finite perimeter E0, the set function Fh,ε(·, E0) admits a min-

imizer E. Furthermore, E has finite perimeter.

Proof. The energy Fh,ε is non-negative, and thus is uniformly bounded from below. Consider

therefore a minimizing sequence of sets {Ek}∞k=1 for the energy Fh,ε. The elastic energy term in

Fh,ε is uniformly bounded according to Lemma 4.2.1. The third term, the distance term, is—for a

fixed h—also uniformly bounded from both above and below. Therefore, one can find a (renumbered)

subsequence such that
∫

Ω
|∇χEk |, the perimeter of Ek is bounded uniformly in k. Thus, by Theorem

4.7 and 4.8 in [9] (SBV closedness and compactness), there exists a (renumbered) subsequence, and

a set of bounded perimeter E, such that

χEk → χE in L1. (4.37)

It remains to be shown that Fh,ε is lower semicontinuous with respect to this convergence. First, by

Theorem 4.7 in [9], the perimeter term of Fh,ε is lower semicontinuous. The strong convergence in

L1 also immediately implies the continuity of the distance term. For the elastic term, note that the

solution operator for the minimization problem of uε is continuous with respect to ξεE in H ′. It is

therefore clear that the minimizers and minima uεi of
∫

Ω
|∇uεk − ξεEk |

2 converge to a minimizer and

minimum of
∫

Ω
|∇uεk − ξεE |2. This establishes the lower semicontinuity of Fh,ε.

Given an initial value E(0) = E0, and setting h = T
N , N ∈ N we can now iteratively, up to

k = N , define the time-discrete solution to be

Eh,ε(t) =

 argmin F(·, Eh,ε(t− h)) if t = kh

Eh,ε((k − 1)h) for t ∈ ((k − 1)h, kh).
(4.38)

This is the piecewise constant interpolation between the iterated minimizers of the time-step mini-

mization problem. Furthermore, we define for a sequence {hi}∞i=1 such that h→ 0, the sequence of

time-discrete solutions {Ehi,ε(t)}∞i=1.
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4.2.4 Compactness of the time-discrete solution

We now show that the sequence of time-discrete solutions is strongly equicontinuous in h. This

enables us to use the Arzela-Ascoli theorem to establish strong convergence of a subsequence.

For the rest of this section we will assume the scaling ε = h1/n and write Fh(E,E0) :=

Fh,h1/n
(E,E0), as well as Eh(t) := Eh,h

1/n
(t). The constant C is independent of h, but may

depend on n, Ω, T , and E0, and possibly change from line to line.

Compactness in space. The compactness in the spatial variables follows directly from the uni-

form bound on the perimeter of the transformed set E, which we presently prove.

Lemma 4.2.4. Let Eh(t) be the piecewise constant solution constructed above. Then

∫
Ω

∣∣∇χEh(t)

∣∣ < C. (4.39)

Proof. Let C = supε>0 Fεelastic(E0) +
∫

Ω
|∇χE0 | < ∞ by Lemma 4.2.1. Assume, by contradiction,

that for some t < T , we have
∫

Ω

∣∣∇χEh(t)

∣∣ > C. That means that there must exist a k ≤ N , such

that

sup
ε>0
Fεelastic(Eh(kh)) +

∫
Ω

∣∣∇χEh(kh)

∣∣ > sup
ε>0
Fεelastic(Eh((k − 1)h)) +

∫
Ω

∣∣∇χEh((k−1)h)

∣∣ . (4.40)

This means, however, that Eh(kh) can not be a minimizer of the finite time-step problem.

Proposition 4.2.5 (Compactness in space). The time-discrete solution Eh(t) satisfies

∫ T

0

∫
Ω

∣∣χEh(t)(x+ se)− χEh(t)(x)
∣∣dxdt −→ 0 (4.41)

as s→ 0, uniformly in h for each unit vector e ∈ Rn.

Proof. Approximating χEh by smooth functions, we establish

∫
Ω

∣∣χEh(t)(x+ se)− χEh(t)(x)
∣∣ dx ≤ s∫

Ω

|∇χEh | . (4.42)

Integration in time together with Lemma 4.2.4 gives the assertion.

Compactness in time. We now seek to establish a uniform bound on the total variation of the

transformed set E(t) in time. The major difficulty here is the inability of the distance term in the

energy Fh to yield such a bound by itself. If one were to assume, for example, a rate-independent

evolution model, the distance term would be replaced by a penalization of the area E0 M E via a
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term of the form

m(E0 M E). (4.43)

Such an evolution law therefore automatically yields a uniform bound on the total variation of E(t),

which then leads to the necessary strong compactness.

In our case, however, since one can find a dense set Ebad in Ω with arbitrarily low elastic and

surface energy, the situation is more complicated. For E0 = Ebad, no matter what the set in the

next time-step looks like, the distance term vanishes. This way, one can generate a sequence of

faster and faster oscillating phases on a large part of the domain. Such a sequence will certainly not

converge strongly. It is the goal now to exclude such bad sets a priori through some assertions on

the geometric properties of sets that minimize the time-step energy Fh.

Lemma 4.2.6 (L n-density of minimizing sets). Let f ∈ L∞(Ω) and assume E minimizes the

functional

F(E) = Fεelastic(E) +
∫

Ω

fχE +
∫

Ω

|∇χE | (4.44)

among all measurable subsets of Ω. Then the density estimate,

θ ≤ −
∫
Bρ(x)

χE ≤ 1− θ, (4.45)

holds for all x ∈ ∂E and for all 0 < ρ < γn

2(||f ||L∞+ M
εn )ω1/n

n

:= ρ0 such that Bρ(x) ⊂ Ω. The constant

M is the constant from Proposition 4.2.2 and θ is given by θ =
(

1
4

)n.

The constant ωn is the L 1 measure of the unit sphere in Rn; the constant γn is given by

γn = nω
1/n
n .

Proof. We only show the lower density bound; the upper bound can be proved by considering the

set Ec. First we show that for ρ < ρ0 and x as above the set E ∩ Bρ(x) contains a part of the

boundary of Bρ(x), i.e., ∫
∂Bρ(x)

χE dHn−1 > 0. (4.46)

The excluded situation as well as the possible behavior are illustrated in Figure 4.2. If that does not

hold for some r ∈ (0, ρ), we conclude from the isoperimetric inequality
∫

Rn |∇χE | ≥ γn
(∫

Rn χE
)n−1

n

that

γn

∣∣∣∣∣
∫
Br(x)

χE

∣∣∣∣∣
n−1
n

≤
∫
Br(x)

|∇χE | . (4.47)

Further, the minimality of the set E requires

∫
Br(x)

|∇χE | ≤
(
||f ||L∞ +

M

εn

)∫
Br(x)

χE =
(
||f ||L∞ +

M

εn

)
m(χE ∩Br(x)) (4.48)
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Impossible Possible

x0

ρ < ρ0

E

x0

Eρ < ρ0

Figure 4.2: For a ball centered on the boundary of the set E with small enough radius, the set E
actually has to intersect the boundary of the ball. The situation on the left is therefore excluded, a
possible minimizing set is shown on the right for comparison.

by comparing the energies of the sets E and the set E \Br(x). Therefore

ωnρ
n ≥

∫
Br(x)

χE ≥

(
γn

||f ||L∞ + M
εn

)n
, (4.49)

which contradicts the upper bound for ρ given above.

In the second step we define, for a fixed σ ∈ (0, ρ2 ), the comparison set

E′ = E \
(
B ρ

2 +σ(x) \B ρ
2−σ(x)

)
, (4.50)

as shown in Figure 4.3. For the volume V (σ) := m(E ∩
(
B ρ

2 +σ(x) \B ρ
2−σ(x)

)
, using again the

isoperimetric inequality and the minimality of E, we find

γnV (σ)
n−1
n −A+(

ρ

2
− σ)−A−(

ρ

2
+ σ) (4.51)

≤ A−(
ρ

2
− σ) +A+(

ρ

2
+ σ) +

(
||f ||L∞ +

M

εn

)
V (σ). (4.52)

Here A+(r), A−(r) denote the sectional surfaces of E with the sphere ∂Br(x), defined by the outer

and inner trace of χE on ∂Br(x), respectively. Taking the derivative of the volume of the set in the

sense of measures shows that, for almost all σ,

d
dσ
V (σ) = A+(

ρ

2
− σ) +A−(

ρ

2
+ σ) = A−(

ρ

2
− σ) +A+(

ρ

2
+ σ). (4.53)
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A+

Ω \ E E

x

A−

Figure 4.3: Illustration of the construction of the comparison set

Therefore we get the differential inequality,

d
dσ
V (σ) ≥ γn

4
V (σ)

n−1
n , (4.54)

where we used that due to the bound on ρ,

V (σ) ≤

(
γn

2
(
||f ||L∞ + M

εn

))n . (4.55)

Integration of this equation yields

∫
Bρ(x)

χE ≥
(γn

4n

)n
ρn, (4.56)

which is the assertion with θ = 1
ωn

(
γn
4n

)n = 1/4n.

Lemma 4.2.7 (Bound on the variation in time of χhE(t)). There is a constant C ∈ R, independent

of h, such that the sets Ehk = Eh(kh), for k ≤ N satisfy

N∑
k=1

∫
Ω

∣∣χEk − χEk−1

∣∣ < C. (4.57)
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Γk

2ch

Dfar ch

Dnear
Γk−1

Figure 4.4: Illustration of Lemma 4.2.7

Proof. We will prove this relation for Ek \ Ek−1, the estimate for Ek−1 \ Ek follows by a similar

procedure. The proof is illustrated in Figure 4.4.

First, we split the set

Ek \ Ek−1 ⊂ {x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) > ch}

∪ {x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) ≤ ch} (4.58)

=: Dfar ∪Dnear. (4.59)

The constant c is chosen such that

c <
γn

2ω1/n
n

1
diam(Ω) +M

, (4.60)

which means that the energy Fh(E,E0) satisfies the conditions of the density estimate for balls of

radius 2ch.

For the first term in (4.59), we use the distance term in F to obtain

|{x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) > ch}| < 1
ch

∫
EkMEk−1

dist(x, ∂Ek−1)dx (4.61)

≤ 1
c

(∫
Ω

∣∣∇χEk−1

∣∣− ∫
Ω

|∇χEk |+ Fε
1/n

elastic(Ek−1)−Fε
1/n

elastic(Ek)
)
. (4.62)

The second set is estimated by means of the density lemma. We can cover it, up to a distance

of 4ch to the boundary of Ω, with a family of balls B ∈ B with radius ρ = 2ch, all completely

contained in Ω, with center x ∈ ∂Ek−1, such that the maximum number of balls containing one

point is bounded by a constant D(n). Employing the density lemma and an isoperimetric inequality
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in the interior of a ball, we obtain

∫
B

χEk\Ek−1 ≤ ωnρ
n ≤ cρ

∫
B

∣∣∇χEk−1

∣∣ (4.63)

for each B. Summation over all B ∈ B and adding the boundary term yields

|{x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) ≤ ch}| ≤ D(n)Cch
∫

Ω

∣∣∇χEk−1

∣∣+ Ch. (4.64)

From (4.62) and (4.64) we get

N∑
k=1

m(Ek \ Ek−1) ≤
N∑
k=1

1
c

(∫
Ω

∣∣∇χEk−1

∣∣− ∫
Ω

|∇χEk |+ Fε
1/n

elastic(Ek−1)−Fε
1/n

elastic(Ek)
)

+
N∑
k=2

D(n)Cch
∫

Ω

∣∣∇χEk−1

∣∣+ C + m(Ω)

< C. (4.65)

Proposition 4.2.8 (Compactness in time). There exists c > 0, such that the discrete solution Eh(t)

satisfies ∫ T−τ

0

∫
Ω

∣∣χEh(t+τ)(x)− χEh(t)(x)
∣∣ dxdt < cτ. (4.66)

Proof. The left-hand side in the statement yields, in the total variation sense,

∫ T−τ

0

∫
Ω

∣∣χEh(t+τ)(x)− χEh(t)(x)
∣∣ dxdt ≤

∫ T−τ

0

∫
Ω

∫ τ

0

∣∣∂tχEh(t+s)

∣∣dsdxdt

≤
∫

Ω

∫ τ

0

N∑
k=1

∣∣χEk − χEk−1

∣∣ ds
≤ Cτ. (4.67)

Convergence of the discrete solution The previous compactness considerations lead to the

following:

Theorem 4.2.9 (Convergence). The sequence χE(t) contains a converging subsequence with a limit

function in

L1(Ω× [0, T ]; {0, 1}). (4.68)

Proof. Proposition 4.2.5 and Proposition 4.2.8 yield uniform equicontinuity in L1 of the sequence.

An application of the Arzela-Ascoli theorem yields strong convergence in L1, which proves the
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result.

4.2.5 Approximation of the original free discontinuity problem in the

uniformly smooth case

For notational convenience we write the energy Fh,ε in this section as a function of the phase

boundary Γ instead of the set E. The assumptions on regularity made below assert that the two

can be used interchangeably. Consider again the minimizer for the energy in one step in the finite

time discretization scheme

Fh,ε(Γ) = min
uε∈H

∫
Ω

1
2
|∇uε − ξεE |

2 +
∫

Ω

|∇χE |+
1
h

∫
EME0

dist(·, ∂E0), (4.69)

where we assume the phase boundary Γ = ∂E to be uniformly C2. In order to be a minimizer,

it is necessary that the variation of this term with respect to a smooth perturbation of the phase

boundary in the normal direction vanishes, i.e.

variationΓFh,ε(Γ) = 0. (4.70)

We will now calculate the change of the three terms in the energy with respect to a small perturbation

of Γ separately. To do this, we parametrize Γ as a curve Γ = {x ⊂ Rn, x = γ(t), t ∈ [0, 1]}. This

curve is perturbed in the normal direction ν by a smooth function γ̃, such that the perturbed phase

boundary Γ̃ is given by

Γ̃ = γ(t) + sγ̃(t)ν, t ∈ [0, 1] (4.71)

with magnitude of perturbation s. Now one can write the variation of Fh,ε in the direction of γ̃ as

variationΓFh,ε(Γ) =
d
ds
Fh,ε(γ + sγ̃ν)

∣∣∣∣
s=0

. (4.72)

We will treat the three terms in the energy Fh,ε separately.

Elastic energy. First, consider the change of transformation strain under the perturbation de-

scribed above. For the the new transformation strain we write ξ̃εE(s). We then can compute

d
ds
ξ̃εE(s)

∣∣∣∣
s=0

= ηε ∗ [[ξ]] γ̃δΓ, (4.73)

which can be verified by multiplying with a smooth test function and integrating.

Since the inhomogeneity (the mollified transformation strain) in the elastic energy is smooth,
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one can simply calculate its variation by partial differentiation. This yields

d
ds

∫
Ω

1
2

∣∣∣∇uε − ξ̃εE(s)

∣∣∣2∣∣∣∣
s=0

=
∫

Ω

1
2

∂

∂∇u

(∣∣∣∇uε − ξεE(s)

∣∣∣2) · ∂∇u
∂ξεE(s)

dξ̃εE(s)

ds

∣∣∣∣∣
s=0

(4.74)

+
∫

Ω

1
2

∂

∂ξεE(s)

(∣∣∣∇uε − ξεE(s)

∣∣∣2) · dξ̃εE(s)

ds

∣∣∣∣∣
s=0

. (4.75)

The first term vanishes, because u is assumed to minimize the energy for a given ξεE , therefore the

variation with respect the ∇u is zero. For the second term we obtain

variationΓFεelastic =
∫

Ω

(∇u− ξ̃εE) · (ηε ∗ [[ξ]] γ̃δΓ). (4.76)

Surface energy. The variation of the surface energy with respect to the perturbation of the phase

boundary yields the well-known surface energy term [40]

variationΓ

∫
Ω

|∇χE | =
∫

Γ

κγ̃. (4.77)

Dissipation term. Since both the phase boundary Γ0 of the previous time-step and the current

phase boundary are assumed to be uniformly smooth, one can easily see that the variation of

‘distance’ term in the energy converges to the normal velocity, since

d
ds

1
h

∫
E0ME(s)

dist(·, ∂E0)

∣∣∣∣∣
s=0

=
1
h

∫
Γ

dist(·, ∂E0)γ̃ =:
∫

Γ

vhγ̃. (4.78)

The approximate normal velocity vh converges, for uniformly smooth phase boundaries, to the

normal velocity of the phase boundary, as h → 0, since the distance to the set approximates the

distance in the normal direction.

Convergence. Now, putting the three terms together, one can see that the minimizing set in one

time-step satisfies ∫
Ω

(∇u− ξ̃εE) · (ηε ∗ [[ξ]] γ̃δΓ) +
∫

Γ

(κ+ vh)γ̃ = 0. (4.79)

Letting both ε and h go to zero, this yields (for smooth phase boundaries, and therefore piecewise

smooth deformation), the original equation vn = f , since

∫
Ω

(∇u− ξ̃εE) · (ηε ∗ [[ξ]] γ̃δΓ)→
∫

Γ

〈∇u− ξE〉 · [[ξ]] = −
∫

Γ

([[W ]]− 〈σ〉 [[∇u]])γ̃ (4.80)

as ε→ 0.
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Figure 4.5: Initial configuration of the transformation strain

4.3 Numerical estimate of the critical depinning force

The particular choice of transformation strain ξE(x) in Section 4.2, as illustrated in Figure 4.1,

suggests that the interface should get pinned when traversing a domain that has inclusions of non-

transforming material. Such precipitates of different structure do indeed exist in shape-memory

alloys, however, the questions of whether they pose an obstacle to a propagating phase boundary

and how strong such a pinning force would be are not trivial.

In an attempt to answer these questions a two-dimensional numerical simulation of the interface

evolution in the model derived in this chapter has been developed in MATLAB. We choose the

transformation strain to be ξ± = ±(0, 0.05)T and ξA = 0. On the domain Ω, one-periodic in both

x1 and x2, we place two inclusions at x1 = 0 and x2 = ±0.25. The inclusions occupy approximately

three per cent of the area. For symmetry reasons it is clear that the situation depicted in Figure 4.5,

where phase 1 is occupying the region −0.25 ≥ x2 > 0.25 is a stationary state if there is no force

applied. Starting at this initial state, we evolve the interface according to a gradient flow with

respect to the energy, under varying external applied forces, until either a steady state is reached or

the interfaces escape from the inclusions.

The two phase boundaries in the simulation are described by cubic periodic B-splines, in the

present case with 32 knots. According to the position of the phase boundary, the transformation

strain ξE(x) is generated on a 256 × 265 grid. As one can see in Figure 4.5, the phase boundary

and also the boundaries of the inclusions are smoothed out slightly. A purely piecewise constant

transformation strain would lead to artificial pinning of the interface. For each time-step, each of

the nodes of the phase boundary-spline is varied slightly both up and down in the x2 direction and
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Figure 4.6: Evolution of the average height of the interfaces for different external loads. Shown is the
evolution of the upper interface, starting at x2 = 0.25; the other one, however, propagates exactly
symmetrically. The amount the inclusion extends in the graph is illustrated by the black bar on the
x2 axis.
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Figure 4.7: The stuck phase boundary
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the energy change is recorded. The energies are calculated by solving the equilibrium equation for

the displacement using Fourier transform. From there, one can calculate the driving force to be

ϕ =
1

2∆x2
(Edown − Eup), (4.81)

where ∆x2 is the amount the particular node has been varied and Eup/down are the recorded energies,

respectively. This generates a force for each node of the spline. To this force, we add a constant

applied load F and evolve the nodes of the spline by a first-order explicit step in time. The part

of the phase boundary that is inside the inclusions gets interpolated linearly, since no force acts

on it. For this simulation, we do not consider the surface energy of the model, since we were only

interested in the possibility of pinning through the configuration of the elastic material.

Figure 4.6 shows the evolution of the average height of phase boundaries for different applied

loads. For F = 1.5 and F = 0.75 (non-dimensionalized units), the interface only gets slowed down

slightly. For F = 0.3, we notice that the interface gets indeed stuck. For comparison, the evolution

of the interface at F = 0.3 without any inclusions in the domain is also shown. The interface gets

stuck in the configuration shown in Figure 4.7. The shape of the interface corresponds well with the

driving force one would expect for an interface of such a shape. By starting the simulation with the

two interfaces slightly displaced, it has also been verified that there is indeed an effect that pulls the

interface back to the stuck state.

In order to give an estimate of the driving force necessary to release an interface from such

an inclusion, one has to re-introduce physical units to the calculation. In this elastic case this

is not hard. By merit of the scale invariance of linear elasticity the only relevant quantities are

the volume fraction of the inclusions and the elastic modulus. If we assume an elastic modulus of

100 GPa, (in relation to the elastic modulus of the simulation, which was normalized to 1 · 2562

non-dimensional units, due to the discretization) this leads to a critical pinning stress between 0.5

and 1 MPa. Compare to Figure 1.7.

4.4 Conclusions

In this chapter, a sharp interface model for the evolution of martensitic phase boundaries was

presented. The existence of a solution that satisfies the kinetic relation vn = f in the smooth

case was proved. This is, to our knowledge, the first dynamic sharp interface model for shape

memory alloys, with full linearly elastic energy and a linear kinetic relation, that was shown to

admit a solution. Furthermore, for a particular choice of inhomogeneity, the pinning of a martensite

interface was demonstrated numerically. Despite the simplifying assumptions, the estimated critical

stress is of the order of magnitude one would expect for such phase boundaries.
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Chapter 5

Evolution in the shallow phase
boundary approximation

In this chapter we consider the sharp interface model for the quasistatic evolution of a martensitic

phase boundary under a series of simplifying assumptions. The phase boundary is treated as the

graph of an evolving function, the elastic self energy stemming from the local misalignment of

the phase boundary with respect to the stress-free flat configuration is linearized and the effect of

precipitates is lumped together in a nonlinear local forcing term. The approximate model is derived

in the first section. The second section shows results about the pinned and evolving states of the

phase boundary. Some numerical results about the depinning transition are presented in Section 5.3.

5.1 Derivation of the approximate model

We study the model on a ‘strip,’ i.e., an n− 1 dimensional torus times the real line, Ω = Tn−1 × R

(see Figure 5.1). Consider again the elastic energy (4.2)

Felastic =
∫

Ω

1
2
|∇u− ξE |2 dx (5.1)

for an anti-plane shear deformation u defined on the strip as described above. The transformation

strain ξE is again defined to be piecewise constant, and further assumed to have the following values

ξE(x) =


(0, 0, ...,+1/2)T for x ∈ Ω \ (E ∪A)

(0, 0, ...,−1/2)T for x ∈ E \A

(0, 0, ..., 0)T for x ∈ A.

(5.2)

This specific choice of transformation strain has a jump discontinuity in the xn direction. A different

alignment is of course possible, however, the notation is greatly simplified if the normal of the

discontinuity is aligned with a coordinate axis. Due to the linearity of the minimization problem for
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R

T n−1

Figure 5.1: Phase boundary on a strip domain, with periodic boundary conditions in all dimensions
except for one

u, one can decompose the deformation such that

u = u1 + u2, (5.3)

solving respectively the equations

4u1 = div ξ1, ∇u1 → ξ1 as xn → ±∞ (5.4)

4u2 = div ξ2, u2 bounded as xn → ±∞ (5.5)

(5.6)

for

ξ1(x) =

 (0, 0, ...,+1/2)T for x ∈ Ω \ E

(0, 0, ...,−1/2)T for x ∈ E
(5.7)

and

ξ2(x) =

 −ξ1(x) for x ∈ A

(0, 0, ..., 0)T for x ∈ Ω \A.
(5.8)

The elastic energy (4.2) can now be decomposed into the self energy of the interface Γ and the

interaction of Γ with the stress field generated by the inclusions and the stress boundary conditions.
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One obtains

Felastic =
∫

Ω

1
2
|∇u1 +∇u2 − ξ1 − ξ2|2 dx (5.9)

=
∫

Ω

1
2
|∇u1 − ξ1|2 dx (5.10)

+
∫

Ω

(∇u1 − ξ1,∇u2 − ξ2) dx (5.11)

+
∫

Ω

1
2
|∇u2 − ξ2|2 dx. (5.12)

The first integral (5.10) corresponds to the self energy of the martensitic phase boundary due to a

possible misalignment of the normal of the phase boundary with respect to the jump in ξ1. This term

vanishes for a flat phase boundary with normal (0, 0, ..., 1)T. The second and third term describe

the interaction of the phase boundary with the inclusions. We will treat those two terms separately.

Approximation of the self-energy. We seek an approximation under the assumption that the

phase boundary makes small deviations from a flat one with normal (0, 0, ..., 1)T. To this end, we

will first assume that the phase boundary is the graph of a function g, i.e.,

Γ = {(x1, x2, ..., xn) such that xn = g(x1, ..., xn−1)} . (5.13)

As described in [66], one can now write the solution to equation (5.4) as the convolution integral

along the phase boundary of the Green’s function and the inner product of the phase boundary

normal and the jump in transformation strain, so that

u = G ∗ [[ξE ]] · ν dyΓ. (5.14)

The phase boundary normal ν is given by

ν =


−g,1
−g,2

...

1

 ·
1√

g2
,1 + g2

,2 + · · ·+ 1
, (5.15)

the surface element of the integration however is

dyΓ =
√
g2
,1 + g2

,2 + · · ·+ 1 . (5.16)
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Therefore, one obtains

u1 =
∫
Tn
G


x1 − y1

x2 − y2

...

xn − g(y1, y2, . . . )

 (ξ2 − ξ1) ·


−g,1
−g,2

...

1

 dy. (5.17)

We now make the assumption that the phase boundary is shallow, i.e,

g(x′) = g0 + g1(x′) (5.18)

where g1 is a small deviation from the average, and that one can expand the integral in equa-

tion (5.17). This yields

u1(x) =
∫

Tn
G


x1 − y1

x2 − y2

...

xn − g0

 dy (5.19)

+
∫
Tn
g1(y1, ..., yn−1)Gxn


x1 − y1

x2 − y2

...

xn − g0

 dy (5.20)

+ higher order terms. (5.21)

The first term (5.19) just produces the deformation induced by a correctly aligned, perfectly flat

phase boundary. This has zero elastic energy. The second term, however, is the elastic deformation

of a dislocation line of magnitude g [49]. It is well known that the elastic energy of such a dislocation

line is exactly the H1/2 norm of the magnitude of the dislocation [37].

F =
1
4

[g]2H1/2 =
∞∑
k=1

kĝ(k). (5.22)

This will be the elastic “self-energy” of the phase boundary for our model.

The interaction energy. We also simplify the driving force that originates from the interaction

energy of the phase boundary with the inclusions. While this force in fact depends nonlocally on

the function g describing the phase boundary, we will assume for simplicity that it can be modeled
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by a function

ϕ : Ω→ R, (5.23)

such that ϕ(x1, x2, ...xn) = ϕ(x1, x2, xn+1) and also
∫
Tn×[0,1]

ϕ = 0. This means that there is a local

periodic force distribution with vanishing average depending on the location of the phase boundary.

Furthermore, we add a constant force F , from the application of a stress boundary condition, so

that

f = ϕ+ F. (5.24)

Summary of the approximate model. Combining equations (5.22) and (5.24), and assuming a

gradient flow in the L2 norm of g with respect to the energy, we end up with the evolution equation

for the phase boundary (after absorbing a factor of 1/2 into the forcing f and renormalizing the

mobility of the interface)

gt = δg
1
2

[g]2H1/2 + f(x1, ..., xn−1, g(x1, ..., xn−1)). (5.25)

This equation may be compactly written by its Fourier transform,

ĝt(k) = −kĝ + f̂ , (5.26)

since the operator stemming from the H1/2 norm term then becomes local. Note that the equation

is still nonlinear, since the driving force f depends on g. In the next section we will study the

stick-slip behavior of equation (5.26).

5.2 Stick-slip behavior

The main assertions in this section are similar to [28]. We extend their results from the line-tension

energy to a nonlocal energy modeling elastic interaction.

Denote by x′ the vector (x1, ..., xn−1)T. We make, from now on, the following assumptions on

the force distribution ϕ:

1. Definition: ϕ : Tn−1 × R→ R,

2. Periodicity: ϕ(x′, y) = ϕ(x′, y + 1),

3. Vanishing average:
∫
Tn−1×[0,1)

ϕ(x′, y) = 0,

4. Smoothness: ϕ ∈ C1(Tn−1 × R),

and write ϕg(x′) for ϕ(x′, g(x′)) as well as fg(x′) for the term ϕ(x′, g(x′)) + F .

First we assert the existence of a stationary solution for zero external driving force.
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Proposition 5.2.1. The equation

0 = kĝ(k) + ϕ̂g (5.27)

admits a solution.

Proof. Consider the sequence {ĝj(k)}∞j=1, so that ĝj(0) = c for some constant c ∈ R and all j ≥ 1.

The other Fourier coefficients in the sequence are determined by the iterative scheme

ĝj+1(k) =
ϕ̂g(k)
k

, (5.28)

anchored by ĝ1(k) = 0. By the boundedness of ϕg independent of g, we have

||gj ||2H1 =
∞∑
k=0

k2 |ĝj(k)|2 (5.29)

= c+
∞∑
k=1

k2

∣∣∣φ̂g(k)
∣∣∣2

k2
(5.30)

= c+
∞∑
k=1

|ϕ̂g(k)|2 ≤ c+ max(ϕ)2. (5.31)

The sequence is thus bounded in H1, and one can extract a weakly converging subsequence. Denote

the limit, depending on c, by gc. For k ≥ 1, gc satisfies

kĝc(k) = ϕ̂gc(k). (5.32)

Now, continuing as in [28], Proposition 4, denote by

G(c) :=
1
2

[gc]2H1/2 −
∫
Tn−1

∫ gc(x
′)

0

ϕ(x′, g) dgdx′ (5.33)

the energy depending on the fixed average c. Since f has zero average, we have G(c + 1) = G(c),

furthermore, G is a Lipschitz function. Therefore, G admits a minimum for some c0 ∈ R. The

function gc0 solves

0 =
∂

∂c0
G(c0) = ϕ̂gc0 (0). (5.34)

This shows that gc0 is a solution to 5.27.

The following theorem asserts the existence of a threshold force, up to which—but not above

which—a stationary solution exists.

Theorem 5.2.2 (Existence of a threshold force). There exists an F ∗ ≥ 0 such that the equation

0 = kĝ(k) + ϕ̂g(k) + F = kĝ(k) + f̂g(k) (5.35)
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has a soluton for all F ≤ F ∗, while it has no solution for F > F ∗.

Proof. Consider Φ = {F ≥ 0 such that (5.35) has a solution}. Clearly, because of Proposition 5.2.1,

Φ 6= ∅. Also, if F > supϕ, then (5.35) has no solution. Define, therefore, F ∗ = sup{Φ} < ∞. Two

things remain to be shown in order to establish the result:

i) F ∗ ∈ Φ.

ii) There is a solution to (5.35) for all F < F ∗.

Proof of i): Consider a sequence Fn → F ∗ where corresponding solutions gn to (5.35) exist. There

has to be such a sequence, otherwise F ∗ could not be the supremum of Φ. Since {Fn} is uniformly

bounded, Proposition 5.2.1 asserts weak compactness of {gn} in H1. Therefore, there is a weakly

converging subsequence whose limit satisfies

0 = kĝ(k) + ϕ̂g(k) + F ∗. (5.36)

Proof of ii): Consider 0 < F < F ∗, and the solutions g∗ and g0 to the stationary equation with

external driving force F ∗ and 0, respectively. By the periodicity of ϕ, and the continuity of the

solutions we can assume g∗ > g0. These solutions are also super- and subsolutions to (5.35),

respectively. Therefore, there exists a solution to (5.35).

The next proposition shows the existence of a solution to the quasistatic evolution problem and

asserts its regularity.

Proposition 5.2.3 (Existence and regularity). Given T > 0 and an initial condition g0 ∈ L2(Tn−1),

there exists a unique solution g(t) to the problem

ĝt(t, k) = −kĝ(t, k) + f̂g(t) on Tn−1 × [0, T ] (5.37)

fg = ϕg + F, (5.38)

ĝ(0, k) = ĝ0(k). (5.39)

Furthermore, there exists a constant C depending only on c and f , such that

[g(t)]H1 < C1e
−t ||g0||L2 + C2 for t ∈ [c, T ], (5.40)

i.e., the H1 semi-norm, which is the H1 norm of g −−
∫
g is uniformly bounded.

Proof. The existence follows directly from the fact that the linear operator in the equation generates

a unique semigroup, since it is dissipative (it is, in fact the variation of an energy), and that the

nonlinear forcing is Lipschitz.
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To show the regularity of the g(t), first note that the solution to (5.37) satisfies

ĝ(t, k) = e−ktg0 +
∫ t

0

e−k(t−s)f̂g(s,k)(k) ds. (5.41)

Assume now that t > 1. We have

[g(t, k)]2H1/2 =
∞∑
k=1

k |ĝ(t, k)|2 (5.42)

=
∞∑
k=1

k

∣∣∣∣e−ktĝ0(k) +
∫ t

0

e−k(t−s)f̂g(s,k)(k) ds
∣∣∣∣2 (5.43)

≤
∞∑
k=1

k
∣∣e−ktĝ0(k)

∣∣2 +
∞∑
k=1

k

∣∣∣∣∫ t−1

0

e−k(t−s)f̂g(s,k)(k) ds
∣∣∣∣2 (5.44)

+
∞∑
k=1

k

∣∣∣∣∫ t

t−1

e−k(t−s)f̂g(s,k)(k) ds
∣∣∣∣2 (5.45)

≤ C1e
−t ||g0||L2 + C (5.46)

+
∞∑
k=1

k

∣∣∣∣∣
√∫ t

t−1

e−2k(t−s) ds

√∫ t

t−1

∣∣∣f̂g(s,k)(k)
∣∣∣2 ds

∣∣∣∣∣
2

(5.47)

≤ C1e
−t ||g0||L2 + C (5.48)

+C ′
∞∑
k=1

∫ t

t−1

∣∣∣f̂g(s,k)(k)
∣∣∣2 ds (5.49)

≤ C1e
−t ||g0||L2 + C2. (5.50)

Here, we have used Hölder’s inequality in the fifth line and the fact that
∫ t
t−1

e−k(t−s) ds = 1−e−k
k

thereafter. Therefore, [g(τ)]H1/2 is uniformly bounded in the sense of Proposition 5.2.3 for 1 + (t−

1)/2 < τ < t. To gain higher regularity, first note that for τ as before, one has that
∣∣∣∣fg(τ)

∣∣∣∣
H1/2 is

also bounded uniformly, due to the smoothness of f as a function of g. This, however, means that

√
k
∣∣∣f̂g(τ)

∣∣∣ < C. (5.51)

For simplicity, we will drop the dependence of g0 and t in the notation. Now, one can redo the
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calculation as above, however with a different use of Hölder’s inequality. This yields

[g(t, k)]2H(1+α)/2 =
∞∑
k=1

k1+α |ĝ(t, k)|2 (5.52)

≤ C1e
−t ||g0||L2 + C (5.53)

+
∞∑
k=1

k1+α

∣∣∣∣∣
(∫ t

t−1

e−
4
3k(t−s) ds

)3/4(∫ t

t−1

∣∣∣f̂g(s,k)(k)
∣∣∣4 ds

)1/4
∣∣∣∣∣
2

(5.54)

≤ C1e
−t ||g0||L2 + C (5.55)

+
∞∑
k=1

k1+αk−1−1/2k−1

∣∣∣∣∣
(∫ t

t−1

∣∣∣√kf̂g(s,k)(k)
∣∣∣4 ds

)1/4
∣∣∣∣∣
2

(5.56)

≤ C1e
−t ||g0||L2 + C (5.57)

+
∞∑
k=1

k1+αk−1−1/2k−1

∣∣∣∣∣
(∫ t

t−1

C4 ds
)1/4

∣∣∣∣∣
2

. (5.58)

This converges, for example, for α = 1/4, and we have

[g(t, k)]H5/8 ≤ C. (5.59)

This process can be iterated, since now one has k5/8
∣∣∣f̂g(τ)

∣∣∣ < C, until one reaches the desired

regularity. If t < 1, then one can simply leave out the term with integration bounds 0 and t− 1 and

obtain the same result.

The next theorem proves the existence of a space-time periodic solution to (5.37) above the

critical force.

Theorem 5.2.4 (Existence of a space-time periodic solution). For each F > F ∗, there exists

0 < T (F ) <∞ and a funtion gF (x, t) satisfying (5.37)such that

g(x, t+ T ) = g(x, t) + 1. (5.60)

Proof. Proposition 5.2.3 proves global existence of a solution. We will split the solution up into the

evolution of the average and the evolution of the deviation of the average and use Schauder’s fix

point theorem to prove the existence of a solution satisfying (5.60).

Consider g(x, t), the solution from Proposition 5.2.3, and define p(t) = −
∫
g(x, t) dx and ξ(x, t) =

g(x, t)− p(t). The functions p and ξ then satisfy

ṗ = −
∫
fg(x, t) dx, (5.61)

ξ̂t(k) = −kĝ(k) + f̂g(k) for k ≥ 1. (5.62)
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Consider the initial condition ξ(x, 0) = ξ0(x) ∈ L2, and p(0) = 0. Since F > F ∗, no stationary

solution exists. Therefore, there is T (ξ0) > 0, such that p(T (ξ0)) = p(0) + 1, and a constant τ ,

independent of ξ0, such that T (ξ0) > τ . This follows from the fact that |ṗ| ≤ ||f ||L∞ . We also have

T (ξ0) <∞, since otherwise one could find a stationary solution to the problem.

Now consider the nonlinear operator that advances the solution ξ in time, such that

T (ξ0) = ξ(·, T (ξ0)), (5.63)

and we have

ξ̂(T, k) = e−kT ξ0(k) +
∫ T

0

e−k(t−s)f̂g(s)(k) ds k ≥ 1. (5.64)

A simple calculation shows that ||ξ(T )||L2 < e−τ ||ξ0||L2 + C, therefore, for A = C/(1 − e−τ ), this

operator maps the set ||ξ0||L2 < A onto itself. The regularity estimate shows that ξ(T ) is bounded

in H1 independent of ξ0. The operator T is thus compact and an application of Schauder’s fix point

theorem yields the existence of a time-space periodic solution.

This space-time periodic solution is in fact unique, as shown by the following proposition.

Proposition 5.2.5 (Uniqueness of the space-time periodic solution). The time-period T for solution

to (5.37) satisfying

g(x, t+ T ) = g(x, t) + 1 (5.65)

is unique. Also, the solution itself is unique up to a time-shift so that, given two solutions g1 and g2

there exists t0 such that g1(x, t) = g2(x, t+ t0).

Proof. First, note that continuous solutions to equation (5.37) satisfy a comparison principle, i.e.,

if g1(·, t0) ≤ g2(·, t0) for some t0, then this relation has to hold for all times. To see this, note that

if for some time t1, the relation would have to be violated, the two solutions would first have to

touch at some point x0. At this point, the nonlinear forcing satisfies fg1(x0) = fg2(x0). The linear

non-local terms, however, in real space read

∫
Rn−1

g1,2(x0)
|x0 − y|2

dy, (5.66)

where the functions g1,2 are periodically extended from Tn−1. Since, at this point in time, however,

we still have g1(·, t0) ≤ g2(·, t0), it is clear that this relation also holds for the total force. The

two solutions therefore can never cross each other. A strict version of the comparison principle also

applies.

Assume now that there exist two space-time periodic solutions g1 and g2, with time constants

0 < T2 < T1 <∞. Since the solutions are continuous and invariant under translations by an integer,
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Number of Fourier coefficients 1024
Length over which the interface velocity is averaged 4

Initial upper bound for F ∗ in bisection 0.5
Initial lower bound for F ∗ in bisection 0

Threshold for accuracy of F ∗ 2 · 10−9

Coefficient of elastic force 0.1
Time step 1 · 10−3

Threshold for stuck interface 1 · 10−14

Table 5.1: Parameters used for the numerical examination of the depinning transition

one can find N ∈ N such that, for some time t0, one has g1(·, t0) ≤ g2(·, t0) +N . But since T2 < T1

there exists a time T after which the two solutions would have passed each other, contradicting the

comparison principle.

Now, consider a solution G1 with the initial condition g1(·, t0) and a solution G2 with initial

condition g2(·, t0). There have to exist a time T , an integer N , and a point x0 such that we have

G1(x0, T ) = G2(x0, 0) +N and G1(·, T ) ≤ G2(·, 0) +N, (5.67)

i.e., the solutions have to touch at some time. Evolving both solutions in time from there on, one can

see that they touch again after one time period. This, however, again contradicts the comparison

principle, unless G1(·, T + t) = G2(·, t).

5.3 Numerical examination of the depinning transition

In [28] it is proved that the depinning transition of a parabolic system exhibits a power law behavior

in the sense that, close to the critical driving force, the average velocity v̄ = 1/T of the unique

space-time periodic solution is given by

v̄ ≈ C ·
√
F − F ∗, (5.68)

where C depends on the local forcing ϕ. In order to study this behavior in our nonlocal elasticity

setting, a series of numerical simulations were conducted on a 2d periodic domain to examine the

depinning behavior. The results show good agreement with a square-root power law behavior. It is

important to note that the depinning behavior depends very sensitively on the discretization of the

pinning force. In [28], the power law behavior is only proved if ϕ ∈ C2. In fact, for a piecewise linear

or piecewise constant approximation of the local pinning force, we do not see the same behavior.
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Size of pinning sites Critical applied force F ∗

1/8 0.0204
1/16 0.0307
1/32 0.0150
1/64 0.0143
1/128 0.0119

Table 5.2: Dependence of the critical applied force on the size of the pinning sites

5.3.1 The numerical method

Starting with an initial configuration g(0) = 0 and a fixed applied load F , we numerically integrate

equation (5.37) using an explicit first-order Euler scheme. The elastic force is calculated using Fourier

transforms. The local pinning force is constructed using a cubic B-spline. Once the interface has

traveled a certain length on average (and never got stuck on the way), the final time is recorded. This

way, a relation between the average velocity v̄ and F is obtained. The interface is considered stuck

if the L2 norm of the driving force f drops below a certain threshold. This ‘inner loop’ is repeated

with F chosen each time through a bisection algorithm, thus giving new upper and lower bounds

for the critical F ∗ at each run. The program terminates after a certain accuracy for determining F ∗

has been reached. In Table 5.1 the standard parameters for the simulation can be found.

5.3.2 Simulations

Experiment 1: General depinning behavior. As a standard example, we use a local driving

force ϕ(x1, x2) = ∂
∂x2

Φ(x1, x2), where Φ is a potential that has smooth dips of a fixed depth and

radius at random points. We approximate ϕ by a cubic C2 spline curve. The exact force used

in this simulation is depicted in Figure 5.2(a). The constants used for this simulation are shown

in Table 5.1. The evolution of the interface through one period is shown in Figure 5.2(b), where

one can see that the interface spends most of its time near the critical stuck state depicted

in Figure 5.2(c). In Figure 5.2(d), the relation between the average velocity, compared to a

square-root power law is shown. The fit over almost three decades is excellent and at the very

high end of the applied force one can see that the velocity turns toward a linear dependence

on the applied force, as expected. The slight deviation from the power-law at the very low end

of the applied force that can be seen in this experiment as well as in the others stems from the

fact that the accuracy to which the critical force is determined is not significantly above the

additional applied force there.

Experiment 2: Comparison of the depinning behavior for different sizes of pinning sites

For this experiment, we use five different sizes pinning sites, yielding the force distribution as

depicted in Figure 5.3. All other parameters are kept as in Experiment 1. The dependence

of the critical external force F ∗ is shown in Table 5.2. The depinning behavior is shown in
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(a) Force distribution used to examine the
general depinning behavior. The ‘up then
down’ bumps model the x2 derivative of an
attractive potential well. This is to approx-
imate the behavior shown in the simulation
in Section 4.3.
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(b) The evolution of the interface through
one period for F = 0.04. Snapshots were
taken at equal time intervals, so one can
see that the interface spends most of its
time near the critical pinned state (see Fig-
ure 5.2(c))
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(c) Interface stuck at the inclusions for
F = 0.03
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(d) Power law of the depinning transition

Figure 5.2: Experiment 1, the general depinning behavior
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(a) 1/8 (b) 1/32

(c) 1/64 (d) 1/128

Figure 5.3: The local pinning forces used in Experiment 2. The maximum and minimum force are
the same for all simulations, the grid on which the spline is discretized, however, is of the indicated
size. Pinning sites are then distributed randomly with constant probability of occurrence. The
pinning force for discretization size can be found in Figure 5.2(a), where also a relation between the
color and the magnitude of the force is given.
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Figure 5.4: The depinning behavior for different sizes of pinning sites. One can see that the onset
square root power law behavior is pushed towards lower applied forces for smaller (and therefore
sharper) pinning sites.
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Figure 5.5: Experiment 3
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Figure 5.4. For the simulations with smaller inclusion sizes, the depinning behavior seems

to deviate slightly from a square-root power law. This is due to the fact that these smaller

inclusions have sharper gradients so that the discretization error is larger.

Experiment 3: Comparison of F ∗ for interfaces of varying stiffness. The simulation was

conducted with the same potential as in Figure 5.2(a), but the constant c of attenuation is

varied. The other parameters are the same as in Experiment 1, except for the time step ∆t,

which had to be reduced to 2 · 10−4 at c = 10 in order to keep the explicit time integration

stable. Figure 5.5(a) shows the dependence of the critical driving force F ∗ on the stiffness of

the interface for the given potential. In any case, the transition still follows the same power

law, as seen in Figure 5.5(b).

5.4 Conclusions

We have studied a shallow phase boundary approximation of the model developed in Chapter 4.

The existence of a threshold force and a time-space periodic solution evolving with an average

velocity have been shown for this approximation. Furthermore, we see a clear square-root power-law

depinning behavior in numerical experiments. This strongly suggests the conjecture that such a

depinning behavior is in fact universal for a smooth local driving force in a periodic domain in the

elastic case.
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Chapter 6

Final remarks and future directions

Two main aspects of martensitic phase boundaries were studied in the present thesis. First, in a

computational analysis, the details of thin films of shape memory alloys as they deform into tent-like

structures were examined. We used subdivision surfaces, previously suggested for the study of shell

structures, to accurately resolve the regions of high deformation gradient. It was shown that it

is feasible to use such a generalized spline in order to build a conforming discretization for phase

transformation models including higher-order gradient terms. The tent-like structures that were

modeled in this simulation are of potential interest for use as actuators for micro electro-mechanical

systems (MEMS). With some analytical calculations, we confirmed results of the complexity of

the phase boundary structure at the tip of such tents. Further examinations include the effects of a

misalignment of the crystal directions with the prescribed boundary conditions as well as non-square

domains.

The results make it clear that a local adaptive refinement of the discretization would be an

interesting extension of the work. Using the method of CHARMS as developed in [38], adaptive

refinement becomes feasible for H2 discretizations necessary for models including strain gradient

terms.

The second aspect examined in this thesis is the evolution of martensitic phase boundaries in

heterogeneous media and the emergence of rate-independent hystereses therefrom. First, a sharp

interface model for phase boundary evolution was developed. The model included a full non-local

elasticity term as well as a surface energy penalizing the length of the phase boundary. A proof of

existence of a solution for such a model was presented. To our knowledge, this is the first sharp

interface evolution model for martensitic phase transformations that takes the full nonlocal elastic

forces into account for which the existence of a solution could be proved. In order to study the

emergence of a stick-slip behavior by homogenizing a linear kinetic relation for the evolution of a

phase boundary in the presence of non-transforming precipitates, a numerical simulation using the

sharp interface model was developed. The results show the existence of a critical stress below which

the interface remains pinned by an inclusion. Above the critical stress, the phase boundary is almost
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unhampered by the precipitate.

The most natural extension of the existence result for the full sharp interface model is to the

case of no surface energy. This regularizing term, however, is critical in our analysis, which uses

many results from the theory of functions of bounded variation. Relying on the elastic forces alone

for regularization would require lower bounds on the elastic energy depending on the shape of the

interface. These lower bounds are unfortunately difficult to obtain, since there are many highly

irregular interfaces with very small elastic energy. Of course, proving the existence of a stick-slip

behavior is another point that remains to be examined. In order to do this, one would first need

to show existence of solutions on an infinite, strip-like domain. Then, sharpened bounds on the

perimeter could lead to the necessary compactness for the existence of time-space periodic solutions.

For an approximate model assuming an almost flat phase boundary, the existence of such a critical

stress was proved rigorously in the present thesis. In this approximation, numerical simulations show

a power law depinning behavior with a critical exponent of 1/2. A proof for such a behavior is still

missing, but could possibly be within reach through similar methods as in [28]. The extension of

such methods to non-periodic random settings more commonly investigated by physicists is also an

interesting direction.
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Appendix A

Derivation of the thin film model

Our starting point is a one-director Cosserat model of thin films which was shown by Bhattacharya

and James [15] to be the rigorous asymptotic (Γ) limit of a three-dimensional theory of martensitic

phase transformation. Consider film with lateral extent Ω ⊂ R2 and thickness h in the reference

configuration. Let y : Ω → R3 describe the deformation of the mid-surface and b : Ω → R3 be the

director that describes the deformation of the thickness. The energy (per unit thickness) of the film

is given by ∫
Ω

{
κ
(
|∇2y|2 + 2|∇b|2

)
+ ϕ(∇y|b)

}
dx (A.1)

where the first term (with co-efficient κ) describes the interfacial or exchange energy while the second

is the stored energy. ϕ is the bulk or three-dimensional stored energy density and it is evaluated at

the 3 × 3 matrix constructed as follows: the first two columns are the partial derivatives of y with

respect to the planar co-ordinates while the third is the vector b.

If we impose natural boundary conditions on b, then it is minimized at uniform/constant fields.

Thus, the problem above becomes one of minimizing

∫
Ω

{
κ|∇2y|2 +W (∇y)

}
dx (A.2)

over all y subject to appropriate boundary conditions where

W (F ) = min
b
ϕ(F |b) . (A.3)

If W0 is some characteristic scale of energy density, then

λ =
√

κ

W0
(A.4)

is a characteristic length-scale. Indeed, if we choose W0 to be the barrier-height between the wells

normalized by the transformation strain, then λ determines the length-scale on which the equilibrium
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solutions transition from one well to another. Therefore it is natural to write the problem in non-

dimensional quantities using λ and W0:

x 7→ λx, y 7→ λy, Ω 7→ λΩ, W 7→W0W . (A.5)

We obtain the form of the interfacial and strain energy used in Section 3.2.
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Appendix B

Notational conventions

B.1 Basics

The set of natural numbers is denoted by N, the set of real numbers by R. The characteristic

function of a set E is χE . The open ball around a point x with radius ρ is called B(x, ρ). The

distance function of a point to a set is denoted by dist(x,E), which is defined as infy∈E d(x, y),

where d(·, ·) is the underlying metric of the space; in our case this is always the Euclidean metric.

In the sense of sets of finite perimeter we work with equivalence classes of sets, such that, for a set

E within the domain Ω ⊂ Rn, we have E = {x ∈ Ω such that ρ−nm(E ∩B(x, ρ)) > 0 for all ρ > 0}.

This ensures that the distance term is always well defined.

B.2 Functional analysis

If a function is called “integrable” it is assumed to be Lebesgue-integrable; the Lebesgue-measure

of a set A is denoted by m(A). The average integral of a function f is denoted by −
∫
A
f(x) dx =

1
m(A)

∫
f(x) dx. Sobolev spaces are denoted, as usual, by W k,p, and the Hilbert space Hk = W k,2.

The dual space of a Banach space B is B′. Except for spaces for functions after Fourier transforms,

these are assumed to be real function spaces. In the case of a Hilbert space, the scalar product of

two vectors f and g is denoted by (f, g), or, in the case of finite dimensional vector spaces, by f · g.

The Fourier transform of a function f is denoted by f̂ .

Partial derivatives of functions are often denoted by subscripts, i.e., fx1 = ∂f
∂x1

. For a one-

dimensional function f , its derivative is denoted by f ′.

We use the common notation fi → f for strong convergence and fi ⇀ f for weak convergence.

Weak-star convergence is denoted by fi
∗
⇀ f . The relevant vector space for the convergence is given

in the text.
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B.3 Elasticity

We commonly work on a crystallographic reference configuration Ω ⊂ Rn, where n ∈ {2, 3}. This

reference configuration is mapped to a deformed, or current, configuration by the deformation y.

In the full elasticity case, y(x) ∈ Rn, for anti-plane shear we have y(x) ∈ R. In full elasticity, the

displacement u is given as u = y − Id, i.e., the difference between y and the identity mapping. In

anti-plane shear, y and u are identical. The deformation gradient is ∇y. For an elastic energy

density W (∇y), the stress tensor is given as σij = ∂W (∇y)
∂(∇y)ij

. Sometimes these quantities are written

in terms of the displacement gradient ∇u, which differs from the deformation gradient only by an

identity matrix (again, in anti-plane shear, they are identical). The commonly seen divergence of

the stress tensor, div σ, is assumed to be taken row-wise in the full elasticity case.

In the sharp interface models, we have Ω = E ∪ (Ω \ E) ∪ Γ. The phase boundary Γ = ∂E \ ∂Ω

separates the two phases occupied by E and its complement. Given a quantity f , continuous on

E and Ω \ E, we denote its jump across the phase boundary, for a point x ∈ Γ, by [[f ]] (x) =

limy→x
y∈E

f(y)− lim z→x
z∈Ω\E

f(z). The average of the same quantity on the phase boundary is given by

〈f〉 (x) = 1
2

(
limy→x

y∈E
f(y) + lim z→x

z∈Ω\E
f(z)

)
.
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