Chapter 1
Introduction: CREB Regulation of Eukaryotic Gene Expression

The control of gene expression has evolved to respond to the environmental and
intracellular cues that influence cell growth and survival. Key to this control is the ability
of cells to affect the activity of transcription factors. Levels of control brought to bear on
transcription factors include DNA-binding specificity, post-translational modifications,
cis/trans DNA-binding elements and interaction with co-repressors, co-activators and
other transcription factors (Fig. 1-1). These modes of regulation provide cells with the
capacity to respond with exquisite speed and accuracy to differentiate between the myriad
environmental, intercellular and intracellular cues in a context-dependent manner. In
multicellular organisms, transactivation of the transcription factor CREB is required for
cell survival in neurons and pancreatic -cells [1-5], the development of cell-type specific
functions such as control of glucose and lipid metabolism in hepatic cells [6, 7] and the
consolidation of long-term memory [1, 8, 9]. The diverse array of stimuli and
accompanying kinase cascades that lead to CREB activation made it an ideal subject for
investigation as a target for O-GlcNAc glycosylation, a unique form of intracellular and
dynamic form of glycosylation. Given its placement at the epicenter of many signaling
pathways, we posited it likely that additional layers of control, such as undiscovered post-

translational modifications, might exist to regulate CREB activity.
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Figure 1-1. A number of modes of transactivation have evolved in eukaryotic cells to
allow for acute regulation of gene expression. Examples include: (A) the cooperation of
multiple transcription factors to recruit RNA polymerase I, as in the case of the
regulation of the c-Fos gene; (B) regulated nuclear localization of transcription factors
like the receptor Notch or the transcription factor NF-xB; (C, D) activation or inhibition

by the interaction of transcription factors; (E, F) activation or inhibition by the post-
translational modification of transcription factors.

ATF/CREB Family of bZIP Transcription Factors. Transcription factors of the
basic leucine zipper (bZIP) super family are conserved from S. cerevisiae to mammals. A
number of bZIP transcription factors are critical to cellular function, including c-Fos, c-
Jun (which together are known as AP-1), C/EBPf and CREB. Distinguished by the
conserved DNA-binding motif, a key representative of the bZIP transcription factors is

the Activating Transcription Factor (ATF)/CREB family.



Domain
1 Function
Qi Necessary for
Domain complete
transactivation
98
] Site of activating
Klna_se phosphorylation
Inducible | (3¢r133) and CBP
Domain | \inging.
160
Necessary to
Q2 recruit RNA pol. Il
Bomain initiation complex
via interactions
with hTAF,130.
284
DNA Binding | Binds CRE (TGACGTCA)
305
Leucine Required for
Zipper Dimerization
341

Figure 1- 2. cAMP Response Element
Binding Protein (CREB) domains and
functionality. CREB is commonly divided into
five distinct domains based on primary
sequence characteristics and homology with
related transcription factor. The Q1 domain,
aa1-98, has no particular function assigned
to it, but is required for complete wild-type
transactivation. The Kinase Inducible Domain
(KID, aa99-165) contains Ser133, a site of
phosphorylation for multiple kinases that is
required for CREB transactivation in cells.
The Q2 domain (aa166-284) is required for
transactivation through direct interactions
with the RNA polymerase Il initiation
complex. The DNA binding domain (aa285-
305) associates with the CRE palindrome
(TGACGTCA,) through a unique Mg?2*-
dependent mechanism. The leucine zipper
(@aa306-341) is required for dimerization of
CREB.

Functional Domains of CREB.
Intensive study has shown that CREB
function can be separated into a number of
distinct domains that affect CREB activity
through specific constitutive and inducible
protein interactions [10]. These domains
include a basic DNA binding domain, a
leucine zipper dimerization domain and
three transactivation domains: the
glutamine-rich domain 1 (Q1 domain),
kinase inducible domain (KID) and
glutamine-rich domain 2 (Q2 domain)

(Fig. 1-2).

Leucine Zipper. The leucine zipper
domain (aa305-341) is nearly completely
conserved across the three major members
of the ATF/CREB family: ATF-1, CREB
and CREM. This distinct homology is

reflected in the ability of CREB to

dimerize with both ATF-1 and CREM, as well as other bZIP family members, including

c-Jun and C/EBP [11-13]. While the majority of CREB within the cell is believed to

bind DNA as a homodimer, dimerization flexibility may confer an additional level of



regulation. More recently, the leucine zipper of the CREB has been shown to anchor
binding of the CREB cofactor transducer of regulated CREB (TORC), which can
facilitate and enhance CREB activity, lending credence to the possibility that

heterodimerization may contribute to regulation of CREB [14].

Basic DNA Binding Domain. The basic DNA binding domain (aa284-305) of the
CREB/ATF family members binds to the cAMP-response element (CRE), TGACGTCA,
with a Kp of 1 nM. Few of the identified CREB-dependent genes contain a full-CRE
within their promoter. The half-CRE, CGTCA, which CREB binds with 5 nM affinity, is
more prevalent. Interestingly, the binding of CREB to full-CRE sites is Mg’ -dependent,
based on a central DNA contact that is mediated by a Lys304-Mg*'-DNA contact.
However, to date no regulatory function has been ascribed to this Mg** dependence.
Recent studies have shown by deletion analysis that DNA binding, originally thought to
be constitutive, is sensitive to deletion of specific regions of the Q2 domain [15]. The
basis for the relationship between the DNA binding and Q2 domain identified by Mayr,
Guzman and Montminy, and whether it contributes to regulation of CREB activity are

still unknown [15].

Glutamine-Rich Domain 2/Constitutive Activity Domain (Q2 Domain). The Q2
domain (aal60-283), neighboring the DNA binding domain of CREB, was first
identified as a domain required for recruitment of the RNA polymerase II initiation
complex by CREB [2]. The Q2 domain alone is sufficient to facilitate transcription in

vitro as a result of direct contacts between the Q2 domain and the TFIID component



TATA Binding Protein-Associated Factor 130 II (TAF;130) [16-20]. However, Asahara
and coworkers subsequently found that while the Q2 domain is sufficient for transcription
of “naked” DNA, transcription of chromatin DNA requires the histone acetyltransferase
activity of CREB-binding protein (CBP), which itself is recruited by the kinase inducible

domain [21].

Kinase Inducible Domain (KID). The KID domain (aa98-159), couched between the
two glutamine-rich domains, undergoes a conformational change that, when
phosphorylated at Ser133 (pS133), results in the recruitment of CBP [22, 23]. Two gain-
of-function mutants of CREB confirmed the role of the KID domain in the sequestration
of CBP. Tyr134Phe mutation results in prolonged pS133 and concomitant extended
association with CBP [24]. A more extensive conversion of '’RRPSYR'* to the CBP-
binding motif of the sterol-responsive element binding protein (SREBP), DIEDML,

resulted in a constitutively active CREB mutant [25].

Glutamine-Rich Domain 1 (Q1 Domain). The Q1 domain (aal-97) of CREB, while
necessary to elicit maximal transactivation by CREB, has no identified role in the
recruitment of either coactivators such as CBP or the RNA polymerase II intitiation

complex [2].

Role of CREB in Cellular Processes. Since identification of CREB as a kinase-

inducible transcription factor, CREB activity has been linked to a number of cellular



processes, with most efforts focusing on the role of CREB in the brain [26]. T will

highlight its role in three biological processes.

Learning and Memory. One of the first links made between CREB activity and cell-
specific function was in the development of learning and memory. Seminal work done
by Kandel and coworkers in the sea slug, Aplysia, found that primitive forms of motor
neuron memory were dependent on CREB activity [27]. CREB mediates the development
of memories by initiating transcription events required for the strengthening of synaptic
connections between neurons known as either long-term facilitation (LTF) or long-term
potentiation [28, 29]. Later studies showed that similar processes were involved in the
function of the mammalian brain. Disruption of CREB activity in specific regions of the
brain (amygdala, hippocampus, cortex and suprachiasmatic nucleus) through expression
of dominant negative inhibitors or inducible deletion of CREB using the Cre-
recombinase system, led to deficits in various forms of learning and memory [8, 30-34].
Over-expression of CREB in the amygdala enhanced fear conditioned memory
consolidation [34]. In a complementary study, suppression of inducible Ser133Ala-
mutant CREB within the hippocampus, cortex and amygdala of mice led to a loss of a
conditioned fear response [32]. In the forebrain, disruption of CREB activity in the
hippocampus and barrel cortex resulted in a loss of protein expression-dependent LTP
[30, 31], that was complemented by a loss of spatial memory [8]. The effects of these
animal studies are complicated by the fact that CREB not only regulates synaptic
plasticity but is integral to cell survival, and abnormal cell death may contribute to

cognitive losses [1, 35].



Stimuli that lead to Associated Cell Growth/Survival. CREB activity
CREB Phosphorylation pS133 Kinases
Growth Factors has been linked with both cell growth
EGF PKA and MAPK
FGF MAPK o1
GIP DKA and survival in both neurons and
IGF-1 PKA and ERK1/2 ‘
Steroid Hormone Signaling endocrine (-cells of the pancreas [36-
Estrogens PKA, MAPK and PI3K
Peptide Signaling 44]. Transgenic mice over-expressing
GLP-1 PKA, ERK1/2
Insulin ERK, p38, PIBK . . .
Thyrold-Siimulafing Hombns DKA dominant negative forms of CREB in
Neurosignaling .
Dopamine receptor PKA, MAPK, PKC, CaMK [B-cells exhibit increased levels of
GABA, receptor PKA and MAPK
Neurotrophins PKC, ERK, PI3K, CaMKIV .
apoptosis and reduced [-cell mass
Cytokines
Interleukins PKA, ERK, p38, PKC, RTK
TGF-b [43]. Similarly, brain-specific deletion
Oxidative Stress
0. MAPK of CREB or both CREB and CREM
Enviromental Stress Factors
Fasting/refeeding PKA
Pain PKA genes leads to increased apoptotic cell
Stress MAPK
lon channel/ . .
Intracellular Signaling death of cortical, striatal and
L-type Ca™
channel activator CaMK hi 1 1l
KATP channel blockers Ippocampal neurons, as well as
Membrane Depolarization PKA, ERK1/2, CaMK
2 2 . .
High Ca ” concentration neurons of the dorsal root ganglia [36,
Table 1-1. A summary of the general classes of
stimuli that lead to CREB phosphorylation at 39, 44]. In both neurons and B-cells
Ser133. Representative stimuli for each class were
taken from a list compiled in Johannessen, CREB activity can be induced by

Delghandi and Moens [47].
insulin-like growth factor-1 (IGF-1) and glucagon-like peptide-1 (GLP-1), as well as

neurotrophins (NGF and BDNF) and NMDA (N-methyl-D-aspartate) in neurons (Table 1-
1) [40, 43, 45-47].

A number of insults that led to ischemia also activate CREB in neurons (Table 1-
1) [1, 47-49]. These stimuli led to the activation of PKA, PI3K/Akt, MEK/ERK and

CaMKII/IV pathways and induce expression of genes that directly antagonize apoptotic



pathways, such as Bcl-2 family proteins, and genes supporting pro-survival signaling,

such as insulin receptor substrate 2 (IRS2) [43, 48, 50].

Metabolism. The maintenance of proper glucose and free-fatty acid (FFA) levels are
critical to cell survival in multicellular organisms and CREB plays an important role in
their regulation [7, 51]. Both glucose and FFA are produced in the liver by activation of
gluconeogenic and lipogenic gene programs.

CREB contributes to the control of gluconeogenesis by activating the expression
of the transcriptional coactivator PGC-1. PGC-1, in concert with CREB, activates
transcription of genes in the gluconeogenic program, such as the rate-limiting enzyme
phosphenolpyruvate carboxykinase (PEPCK) [7]. The role of CREB in regulating
gluconeogenesis suggested that dysfunction in CREB signaling may contribute to the
development of hyperglycemia via excess gluconeogenesis in diabetes.

Mice expressing a dominant negative form of CREB produced high levels of
triglycerides, indicating that CREB may negatively regulate the gluconeogenic program.
CREB was found to prevent lipogenic gene expression by inhibiting expression of the
nuclear hormone receptor PPAR-y, itself a transcription factor. This inhibition was
achieved indirectly through activation of the corepressor Hairy Enhancer of Split (HES-
1) [6]. Similar to the failure of CREB to correctly regulate gluconeogenesis, a failure of
CREB to maintain homeostatic lipogenesis could contribute to diabetes by potentiating

hepatic and pancreatic 3-cell death via increased levels of circulating FFAs.



Activation of CREB. The CBP:pS133 paradigm developed over the past 20 years for
the activation of CREB-dependent gene expression is depicted by the two-state model
shown in Figure 1-3. CREB is thought to bind constitutively to CRE sites. Upon
stimulation of Ser133 phosphorylation, CBP is recruited. CBP histone-acetyl transferase
activity relaxes the local chromatin, allowing the latent affinity of the Q2 domain for
TAF;1130 to stimulate the deposition of the RNA polymerase II initiation complex and
start transcription [2, 26]. A number of kinase signaling cascades converge on Ser133;
these include PKA, PKB, PKC, the mitogen-activated protein kinases (MAPKSs): p38,
ERK 1/2 and Rsk, and Ca2+/calmodulin—dependent kinases II and IV (CamKII/IV) (Table
1-1) [47]. Differences in kinase kinetics can result in unique patterns of gene expression.
For example, PKA induction can result in a brief, but large, increase in CREB
phosphorylation while MAPKs produce a sustained and gradual increase in CREB
phosphorylation [2, 52-54]. Expression of the inducible cAMP early repressor (ICER)
form of the ATF/CREB family member CREM, as a result of specific kinase-induced

CREB activity, has been identified as one potential means of differentiating stimuli [53].

Ser133
Phosphorylation ON

phosphoSer133
CREB

Figure 1- 3. The CBP/p300:phosphoSer133-CREB paradigm of CREB interaction.
Phosphorylation of Ser133 leads to recruitment of the histone acetyltransferase CREB-Binding
Protein (CBP) or its paralog p300. The HAT in turn relaxes the local chromatin and assists in the
deposition of RNA polymerase Il initiation complex.
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Proteins that interact with CREB In vivo phosphorylation of Ser133 is
Protein CREB Domain
C/EBPB necessary for CREB-dependent gene expression,
HDAC1 Q1
TFIA but in a number of instances phosphorylation of
CBP
p300 KID Ser133 alone is insufficient to mediate CREB
FHL/ACT
Tip60 activation [52, 55, 56]. For instance, different
v-Abl Q2
hTAg.;:(;h g expression patterns of the CREB-dependent
BRCA1 .
CRENVIEER genes c-fos, BDNF and tyrosine hydroylase have
DNA Topoisomerase 1 . .
HNED been observed in neurons suggesting that there
Jun Family members bZIP . ) .
pX is more to CREB regulation than simply pS133
P53
Tax [1, 57, 58]. These results led to the hypothesis
TORC
YY-1 that the CBP:pS133 paradigm was only a
ZPK

Table 1-2. CREB-Interacting Proteins general mechanism that is elaborated by
A number of proteins have been shown

to interact with CREB. Adapted from additional mechanisms to connect stimuli and
Johannessen, Delghandi and Moens
[47]. CREB activation to the desired CREB-

dependent gene expression.

Elaborating the Regulation of CREB Transactivation. A growing list of CREB-
associated proteins and CREB-PTMs have added to the evident complexity of CREB
regulation (Tables 1-2 and 1-3) [47]. These interactions and modifications can both
enhance and inhibit activation of CREB (Fig. 1-4).

Transducers of regulated CREB make up a new family of CREB-specific
coactivators that associate with the bZIP domain of CREB [14]. TORCs enhance CREB

activity through constitutive recruitment of RNA polymerase II. TORCs themselves are
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Figure 1-4. Cell-specific regulation of CREB transactivation,
additions to the CBP/p300 paradigm. A number of alternative
mechanisms for the regulation of CREB have been identified
recently. These include: phosphorylation of Ser142, which
disrupts recruitment of CBP; phosphorylation of Ser436 of CBP,
which inhibits its activity and phosphorylation of Ser301 of CBP,
which enhances its activity; glycosylation (detailed in this thesis)
of the Q2 domain, which disrupts interaction with hTAF, 130;
acetylation of the Q1 and KID domains that inhibits
dephosphorylation of Ser133 to potentiation transactivation;
heterodimerization of CREB with the co-repressor forms of the
cAMP-Response Element Modulator (CREM and ICER) or other
bZIP transcription factors; interaction the CREB dimer with the
coactivator TORC.

regulated by a phosphorylation-dependent interaction with 14-3-3 scaffolding proteins,
which sequester TORCs to the cytosol. Ca**-dependent dephosphorylation releases
TORCs from the 14-3-3 complexes to translocate to the nucleus and support CREB
activity. Ca**-dependent regulation of TORCs provides a mechanism for cells to
distinguish between cAMP and Ca®" signaling [59, 60]. The addition of TORC regulation

to the basic pS133:CBP paradigm has been implicated in hepatic gluconeogenesis and

possibly in pancreatic $-cells [60-62].
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Regulation of CBP by dynamic post-translational modifications has also been
implicated as an additional means of modifying the pS133:CBP paradigm. CaMKIV
phosphorylation of Ser301 enhances CBP activity in vitro and in neurons, independent of
its association with CREB [63]. Ser301 phosphorylation allows a range of pS133-CREB-
dependent activity similar to the effect of the TORCs by acting as a pS133 plus Ca**

coincidence detector. Additionally, PI3K phosphorylation of Ser436 (pS436) was

identified in the HepG2
CREB Post-Translational Modifications (PTMs) hepatic cell line [64].

PTM Site/Domain Function _
Acetylation Lys91 Sustains pSer133 pS436 was required for
Acetylation Lys96 Sustains pSer133

Phosphorylation Ser133 Activation CBP binding to the
Acetylation Lys136 Sustains pSer133
Phosphorylation Ser142 Repression transcription factors Pit-1
~13x0 -GIcNAc Q1/Q2 Repression
Thr259 Repression and AP-1 [65]. Conversely,
2x0 -GIcNAc Ser260 Repression
Thr261 Repression pS436 inhibited
SUMO-ylation Lys285 NLS
SUMO-ylation Lys304 NLS CREB:CBP activity in
COIREIGEPTIS hepatic cells. Transgenic
CREB Binding Protein (CBP) P : &

PTM Site/Domain Function . . i
Phosphorylation Ser301 Activation Mice expressing a liver-
Phosphorylation Ser436 Repression .

O -GlcNAc No Data No Data specific S436A-CBP

Methylation Arg714, 742, 768 ) )
SUMO-ylation Lys999 Repression mutant displayed increased
SUMO-ylation Lys1034 Repression '
SUMO-ylation Lys1057 Repression gluconeogenesis,

Transducers of Regulated CREB (TORC) suggesting that, along with

PTM Site/Domain Function
Phosphorylation Ser171 Occlusion of NLS regulation by pS133 and

Table 1-3. Post-Translational Modifications of CREB. The past .
years have seen a large expansion in the number of identified ~ 1 ORCs, phosphorylation of
PTMs that modifiy CREB and its associated cofactors, TORC

and CREB-binding protein (CBP). CBP also regulates CREB-
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dependent gene expression [66].

Other post-translational modifications of CREB have also been implicated in the
modification of pS133:CBP paradigm (Table 1-3). The first CREB modification other
than pS133 identified was Ser142 phosphorylation (pS142). Dual phosphorylation of
Ser133 and Ser142 by CamKII blocks transactivation through inhibition of CBP
association [67]. This modification is involved in the regulation of mammalian circadian
rhythms in the suprachiasmatic nucleus, in which pS142 is induced by light to attenuate
CREB activity during the day [68, 69]. More recently, CBP was found to acetylate
CREB. Acetylation had the effect of inhibiting dephosphorylation of CREB, and as a
result, is expected to prolong CREB activity [70].

These discoveries, taken together, are beginning to reveal a model of CREB
regulation in which a combination of protein interactions and modifications act in concert
to distinguish the multiple stimuli that act on CREB activity. To this model we add the
unique modification of CREB with O-GlcNAc glycosylation. This modification acts on
CREB, independent of pS133, to inhibit CREB:hTAF;130 interaction and inhibit CREB
activity in pancreatic -cells. The effect of this modification is to moderate CREB
activity. The nature of O-GlcNAc glycosylation, identification, characterization and the

functional implications of CREB glycosylation will be addressed in this thesis.
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