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Abstract

The modern picture of the Universe resembles a detective novel with the first page and the
middle chapters removed and the ending unwritten. Observations of the cosmic microwave
background (CMB) have given cosmologists a snapshot of the Universe when it was only
a few hundred thousand years old. At the same time, large galaxy surveys, such as SDSS
and 2dF, have shed light on the distribution of matter in the local Universe. From the
combination of these two data sets, cosmological parameters can be measured to percent
accuracy. Two main frontiers remain: inflation, the domain of high-energy physics, and the
epoch of reionization, the period connecting the linear age of the CMB with that of the
present day. Added to this are the indications from supernovae of an acceleration in the
expansion rate suggesting modifications to gravity or the presence of an esoteric new form
of energy.

In this work, we investigate uses of various radiation backgrounds for probing the dif-
ferent epochs of this cosmic history. We examine (i) the use of B-mode polarization of the
CMB induced by an inflationary gravitational wave background to probe inflation, (ii) the
importance of higher Lyman series photons in pumping of the 21 cm line and the conse-
quences for the 21 cm signal from the first stars, (iii) the atomic physics of Lyman series
photon scattering in the intergalactic medium and the consequences for heating and cou-
pling of the 21 cm line, (iv) the possibility of using the 21 cm line to probe inhomogeneous
X-ray heating of the IGM by a population of early X-ray sources, and (v) the impact of
inhomogeneous reionization on galaxy formation and the consequences for our ability to use
large galaxy surveys to constrain dark energy. Together, these chapters significantly extend

our understanding of important windows into the early Universe.
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Chapter 1

Introduction

1.1 Owur current knowledge of cosmic history

One of the goals of cosmology is to develop a narrative describing the complete history of the
Universe. The advent of new observational techniques and technology within the last decade
has turned hazy creation myth into detailed story. Yet like an unfinished manuscript many
sections of the story remain unclear. Happily, unlike archaeology, cosmology benefits from
having a device for peering into the past. Exploiting cosmological redshifting, observations
at different frequencies may be used to puzzle out the full story of the Universe.

The standard picture that has emerged owes much to precise satellite observations of
the cosmic microwave background (CMB) (Mather et al., 1990; Spergel et al., 2006). The
uniformity seen in this snapshot of the Universe, at about four hundred thousand years
after the big bang, provides a motivation for inflation (Guth, 1981). This period of rapid
expansion lasts for only a fraction of a second, but provides the initial conditions for future
evolution. As yet, we have only indirect evidence for inflation and little understanding of
the underlying physical mechanism. The small CMB temperature anisotropies observed by
WMAP (Spergel et al., 2006) have provided a powerful probe, not only of the physics of
recombination, but of the global nature of the Universe.

The slight density inhomogeneities implied by CMB observations provide the initial
seeds of structure that eventually grow into the cosmic web of galaxies seen today. The
gravitational instability amplifies initially small overdensities until eventually these regions
break off from the Hubble expansion to form gravitationally bound haloes, which host
galaxies. Large galaxy surveys, such as 2dF and SDSS, provide a picture of luminous

structure today, which is in agreement with the CMB. Comparing the two indicates that
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much of the energy density of the Universe is in the form of a cosmological constant or dark
energy that drives an acceleration of the Universe’s expansion.

In combination, these two large data sets—CMB and large scale structure (LSS)—provide
a broad brush picture of the Universe’s evolution. Yet they are separated by three orders
of magnitude in redshift and much physics is expected to occur in between. At around
150 million years after the big bang, the first stars form from the collapse of cold dense
fragments of gas (Barkana & Loeb, 2001). As more stars and, eventually, galaxies form,
their radiation affects gas in the intergalactic medium (IGM). This radiation can heat
and ionize that gas affecting future galaxy formation. Eventually, expanding bubbles of
ionized gas, surrounding luminous sources of ionizing radiation, overlap leading to a phase
transition—reionization—from a neutral to an ionized IGM. Although reionization must occur,
the details of its spatial and temporal structure are currently unknown (Barkana & Loeb,
2001). Similarly, the nature of the first stars—their structure and where they form—is poorly
understood. To answer these questions, new observational techniques are required capable
of probing the period from redshift z = 6 — 1000.

The rest of this chapter summarises the contents of this thesis, which consists of five
previously published papers (Pritchard & Kamionkowski, 2005; Pritchard & Furlanetto,
2006; Furlanetto & Pritchard, 2006; Pritchard & Furlanetto, 2007; Pritchard et al., 2006)
reproduced here with permission and arranged in rough redshift order. In Chapter 2,
we summarise our theoretical knowledge of detecting inflationary gravitational waves via
polarization of the CMB. Chapters 3, 4, and 5 explore the physics of the 21 cm line of neutral
hydrogen and possibilities for using this to probe radiation from the first generations of
stars. Finally, in Chapter 6, we look at the effect of inhomogeneous reionization on galaxy
formation and consider the implications for constraining dark energy. Two appendices,
taken from the papers, contain further information about calculating the evolution of tensor

modes and Einstein A coefficients.

1.2 Cosmic microwave background fluctuations from gravi-

tational waves: an analytic approach

The inflationary paradigm has been invoked to explain the observed flatness of the Universe

and the origin of density perturbations (Guth, 1981). Alongside the production of density
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fluctuations, many models of inflation also predict the production of gravitational waves
(Abbott & Wise, 1984; Rubakov et al., 1982; Fabbri & Pollock, 1983; Starobinsky, 1985).
The detection of these inflationary tensor modes would provide vital confirmation of the
inflationary paradigm and could possibily shed light on particle physics at the highest energy
scales. Detecting these gravitational waves directly will likely require the next generation
successors to LIGO and LISA (Smith et al., 2006). In the nearer term there exists the
possibility of indirect detection of inflationary gravitational waves via polarization of the
CMB. A key feature of the polarization field is that it can be decomposed into E and
B modes (see Figure 1.1), of which B modes are produced only by gravitational waves
(Kamionkowski et al., 1997; Zaldarriaga & Seljak, 1997).

In Chapter 2, we examine the physical processes that lead to the production of a B-
mode signal in the CMB (Kamionkowski et al., 1997; Zaldarriaga & Seljak, 1997). From
this analysis, we develop analytic approximations that aid intuitive understanding of the B-
mode power spectrum. We also develop a set of scaling relationships for the power spectrum
in different regimes. The starting point for this is to consider the evolution of tensor modes
through a first radiation-, then matter-dominated Universe. It is straightforward to find
analytic solutions in the two extremes, but also useful to use a WKB approach to connect
them. In addition, we consider the effect of anisotropic stress from free-streaming neutrinos
(Weinberg, 2004). A numeric calculation shows that these damp those gravitational waves
that enter the horizon during radiation domination.

Next, we develop the perturbation theory in the tight coupling approximation to con-
nect polarization multipoles to the gravitational wave amplitude. We show that the tight
coupling approximation needs to be supplemented with an exponential damping term intro-
duced by the finite width of the surface of last scattering. This phase damping washes out
the signal on small scales. Incorporating this physics allows us to develop an analytic form
for the polarization multipoles at the surface of last scattering. To connect these multipoles
to the anisotropies seen in the CMB today, we must project functions of wavenumber onto
angular scales. These projection factors oscillate rapidly compared to the source function
and we show that useful approximations may be found by applying a result of Debye (1909)
and averaging over the oscillations. Putting all of these approximations together allows the
B-mode power spectrum to be calculated analytically with reasonable precision, indicating

that we have incorporated all of the essential physics.



Figure 1.1: CMB Polarization. Left: Thompson scattering of an anisotropic radiation
field generates polarization. Right: Polarization patterns can be decomposed into curl-free
(E-mode) and curl (B-mode) patterns.

1.3 Descending from on high: Lyman series cascades and

spin-kinetic temperature coupling in the 21 cm line

Observations of the 21 cm hyperfine transition of neutral hydrogen may open a new window
onto the properties of the first stars and the beginning of the period of “cosmic twilight”
(see Figure 1.2). Undertwo-photonstanding the results of these observations will require a
detailed understanding of the atomic physics involved in generating the 21 cm signal. As
Lya pumping (Wouthuysen, 1952; Field, 1959a) will be the dominant mechanism coupling
gas and spin temperatures, it is vital that all aspects of Lya photon production and coupling
be understood.

In Chapter 3, we discuss the contribution of higher Lyman series photons to coupling
of the spin temperature to the gas temperature. There are two ways Lyn photons might
contribute: directly, in a manner analagous to the Wouthysen-Field effect, or indirectly,
by producing Ly« photons as the result of an atomic cascade. We show that the direct
contribution is negligible, as Lyn photons scatter only a few times before undergoing an
atomic cascade, while Lya photons may scatter several million times. We then proceed to
explore atomic cascades in more detail.

When a Lyn photon is absorbed, the excited state produced may relax directly to the
ground state or to another excited state. In the latter case an atomic cascade will result,

ending in either the production of a Ly« photon or a two-photon decay from the 2S level. We
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show that around 30% of Lyn photons are converted into Ly« photons by atomic cascades.
As a typical star will produce approximately the same number of photons between the Lya
and Ly resonances as between Ly and the Lyman limit, the Lya flux generated by Lyn
photons can be significant.

Having explored the atomic physics, we place it in the context of the very first generation
of sources. We convert the Lya profile about a source into a power spectrum of 21 c¢m
fluctuations using the formalism of Barkana & Loeb (2005b). This serves to illustrate
the importance of including the correct atomic physics showing that Lyn photons make a

considerable correction to just including Ly« photons.

Dark Ages Twilight

Z~200 Z~30

Collisionally No 21 cm c,

coupled regime signal

Density

Figure 1.2: Schematic break down of contributions to 21 cm signal with redshift.

1.4 The scattering of Lyman-series photons in the intergalac-

tic medium

When Lyman series photons scatter from hydrogen in the intergalactic medium they can
heat the gas. Additionally, they can provide a mechanism for coupling the 21 cm spin
temperature to the gas temperature. The relative magnitude of these effects has significant
consequences for the observed 21 cm signal. It was initially thought (Madau et al., 1997)
that scattering of Lya photons would heat the gas above the CMB temperature before
coupling became important. This would rule out the possibility of seeing the 21 cm signal
in absorption. However, Chen & Miralda-Escudé (2004) showed that scattering of Ly«
photons altered the distribution of photon frequencies near the Lya resonance, greatly
reducing the heating rate. Ensuring a correct calculation of the physics of scattering Ly«

photons is vital for predicting the 21 cm signal. We argued in Pritchard & Furlanetto
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(2006) that higher Lyman series photons may be important for coupling, but are probably
not important for heating the gas.

In Chapter 4, we consider this question in more detail. We build upon previous work
(Rybicki, 2006; Chuzhoy & Shapiro, 2006b; Meiksin, 2006) to develop analytic approxima-
tions for the contribution to heating and coupling by Lya and Lyn photons. We show that,
while on a photon-by-photon basis Lyn photons are more effective at transfering heat to
the IGM, because they scatter only a few times before undergoing an atomic cascade, Lyn
photons do not heat the IGM significantly. A comparison between our analytic formulae

and numerical calculation illustrates the accuracy of the “wing” approximation.

1.5 21 cm fluctuations from inhomogeneous X-ray heating

before reionization

As the first stars are born and die they leave behind stellar remnants that may serve as
X-ray sources; e.g., mini-quasars, SN remnants, and X-ray binaries. The resulting X-ray
background will likely provide the dominant source of heating in the IGM before reioniza-
tion. Many authors have taken the view that, because hard X-rays have a long mean free
path (comparable to the Hubble size), this heating will be uniform. In fact, while there
may be a uniform component, most of the energy from these X-ray sources is emitted as
soft X-rays, which will be absorbed over Mpc scales (Furlanetto et al., 2006). As such, the
heating will be very inhomogeneous.

In Chapter 5, we consider the consequences of inhomogeneous X-ray heating on the
IGM, with a view to calculating the 21 cm signal from temperature fluctuations. These
fluctuations may dominate the 21 c¢m signal before reionization gets underway (see Figure
1.2). We extend the formalism of Barkana & Loeb (2005b) to calculate fluctuations in the
X-ray flux, which connect simply to fluctuations in the heating rate. To get temperature
fluctuations, we must account for the interaction between adiabatic cooling and inhomoge-
neous heating. By numerically evolving temperature fluctuations from recombination, we
show that as X-ray heating becomes significant temperature fluctuations track fluctuations
in the heating rate. This calculation shows that there is a significant difference between
inhomogeneous heating, which drives temperature fluctuations, and uniform heating, which

tends to wash them out. This should be readily apparent in observations of the power



spectrum of gas temperature.

Having provided a strong motivation for the importance of distinguishing these two
cases, we calculate the resulting 21 cm signal and show that it has a number of important
properties. Most important is the existence of a trough in the absorption signal, which
arises from competition between density and temperature fluctuations. The presence or
absence of this trough helps determine whether the gas is cooler or hotter than the CMB,
potentially allowing constraints on the gas thermal history.

The 21 cm signal contains many contributions from fluctuations in density, Lya flux,
gas temperature, and neutral fraction. If all these quantities fluctuate simultaneously then
separating them out to obtain detailed astrophysical information will be very difficult. We
use our machinery to calculate the evolution of the 21 cm power spectrum when both Ly«
flux and gas temperature fluctuations contribute on top of the density field. This allows us
to show that it is realistic to assume that the different contributions to the 21 cm signal may
separate out with redshift, but that this separation is very sensitive to the astrophysical
parameters. We consider the possibility of using the Square Kilometer Array to follow this
evolution and conclude that provided foreground removal can be achieved the forecast is

optimistic.

1.6 Galaxy surveys, inhomogeneous reionization, and dark

energy

In Chapter 6, I turn to the nearby Universe. Large-scale galaxy surveys such as 2dF and
SDSS allow us to infer the distribution of matter in the Universe. This works because it is
possible to connect the underlying dark matter distribution to the distribution of galaxies.
It is said that galaxies are a biased tracer of the density field. Provided that the bias is
independent of scale then the shape of the galaxy and dark matter power spectra will be
identical. We explore one possible mechanism that would produce a scale-dependent bias
by looking at the effect of inhomogeneous reionization on galaxy formation.

During reionization, clusters of sources generate large (Mpc scale) HII regions, which
are hotter than the average (Furlanetto et al., 2004). It is reasonable to assume that this
environmental difference may impact the ability of gas to clump, cool, and form galaxies. In

this chapter we specify a toy model linking the observed number of galaxies to the ionization
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fraction during reionization. Thus bubbles imprint their pattern on the distribution of
galaxies. This is somewhat hypothetical as the galaxies seen by surveys are formed by the
merger of the many small galaxies that would form during reionization. Connecting the
different generations of galaxies is complicated and we do not try, aiming instead to explore
the consequences of an imprint and to determine whether it might be important.

If such an imprint exists then it might allow an independent probe of reionization or
alternatively complicate attempts to use galaxy surveys to obtain cosmological parameters.
Specifically, we explore the effect of the imprint on constraining dark energy parameters.
Exploiting a Fisher matrix methodology to quantify the ability of galaxy surveys to distin-
guish between cosmology and a reionization imprint, we show that the imprint will probably
not be important for current surveys. If the imprint is large enough to significantly bias
determination of cosmological parameters then it is large enough to be seen and removed.

It may prove possible to use future galaxy surveys to probe reionization using such an
imprint. For this purpose galaxy surveys at high redshift provide a good lever arm, as
density structure has had less time to grow. If the imprint has a characteristic scale of tens
of megaparsec, not impossible given current models of reionization, then a large survey at

z 2 3 might be able to detect a signal.



Chapter 2

Cosmic microwave background
fluctuations from gravitational
waves: an analytic approach

We develop an analytic approach to calculation of the temperature and polarisation power spectra
of the cosmic microwave background due to inflationary gravitational waves. This approach comple-
ments the more precise numerical results by providing insight into the physical origins of the features
in the power spectra. We explore the use of analytic approximations for the gravitational-wave evo-
lution, making use of the WKB approach to handle the radiation-matter transition. In the process,
we describe scaling relations for the temperature and polarisation power spectra. We illustrate
the dependence of the amplitude, shape, and peak locations on the details of recombination, the
gravitational-wave power spectrum, and the cosmological parameters, and explain the origin of the
peak locations in the temperature and polarisation power spectra. The decline in power on small
scales in the polarisation power spectra is discussed in terms of phase-damping. In an appendix
we detail numerical techniques for integrating the gravitational-wave evolution in the presence of

anisotropic stress from free-streaming neutrinos.

Originally published as Pritchard and Kamionkowski, Ann. Phys., 318, 2 (2005).

2.1 Introduction

The standard hot big-bang cosmological model developed in the mid-twentieth century ex-
plained the expansion, the light-element abundances, and the cosmic microwave background
(CMB) observed at a temperature T' = 2.7 K. However, this model still left a number of
questions unanswered. For example, the horizon problem: Why did the ~ 4 x 10* causally

disconnected regions probed by the CMB have the same temperature to one part in 1057
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Where did the primordial seeds for large-scale structure (galaxies, clusters of galaxies, etc.)
come from? And why did the Universe appear to be so flat?

In the early 1980s, inflation (Guth, 1981; Linde, 1982a; Albrecht & Steinhardt, 1982;
Guth & Pi, 1982; Hawking, 1982; Linde, 1982b; Starobinsky, 1982; Bardeen et al., 1983;
Lyth & Riotto, 1999), a paradigm in which an accelerated expansion is driven well within
the first second after the big bang, was proposed as a solution to all of these problems.
A relatively simple toy model, in which the expansion is driven by the vacuum energy
associated with the displacement of some scalar field (the “inflaton”) from the minimum
of its potential V(¢), could solve the horizon problem while simultaneously producing a
flat Universe with a nearly scale-invariant spectrum of primordial density perturbations, a
spectrum close to that required to explain the origin of galaxies, clusters of galaxies, and
structure on even larger scales.

Over the past half decade, a suite of experiments (de Bernardis et al., 2000; Miller
et al., 1999; Hanany et al., 2000; Halverson et al., 2002; Mason et al., 2003; Benoit et al.,
2003; Goldstein et al., 2003; Spergel et al., 2003) have now measured the intensity of the
CMB as a function of position on the sky with a resolution of a fraction of a degree over
the entire sky and down to a few arcminutes over smaller patches. The power spectrum
of the temperature fluctuations uncovered by these experiments has thus been measured
precisely. Given a primordial spectrum of density perturbations like those predicted by
inflation, it is straightforward to calculate the expected power spectrum, and this power
spectrum exhibits a series of wiggles (“acoustic oscillations”), as a function of (angular)
wavenumber or multipole moment ! (Kamionkowski & Kosowsky, 1999). These oscillations
have been well-studied theoretically, and the detailed features (e.g., heights, locations) can
be used to determine the geometry of the Universe (Kamionkowski et al., 1994; Jungman
et al., 1996a) and the values of cosmological parameters (Jungman et al., 1996b), as well
as the spectrum of primordial perturbations. The experimental results are now conclusive:
Structure formed from a nearly scale-invariant spectrum of primordial perturbations, and
the Universe is constrained to be very close to, if not precisely, flat (de Bernardis et al.,
2000; Miller et al., 1999; Hanany et al., 2000; Halverson et al., 2002; Mason et al., 2003;
Benoit et al., 2003; Goldstein et al., 2003; Spergel et al., 2003; Kamionkowski et al., 1994;
Efstathiou et al., 2002) .

Now that inflation has passed these tests, the obvious next step is to test the predic-
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tions of inflation with higher precision, look for new tests of inflation, and perhaps try
to determine the new physics of inflation, or in other words, the identity of the inflaton.
In addition to more precise measurements of the power spectrum, there are also measure-
ments of non-Gaussian correlations in the primordial density field (Bartolo et al., 2004)
which, although expected to be small, should be nonzero. Another target for experiment
is the inflationary-gravitational-wave (IGW) background. In addition to predicting primor-
dial density perturbations and a flat Universe, inflation also predicts the existence of a
nearly scale-invariant stochastic background of gravitational waves (Abbott & Wise, 1984;
Rubakov et al., 1982; Fabbri & Pollock, 1983; Starobinsky, 1985), produced by quantum
excitation of gravitational-wave modes during the inflationary epoch. Inflation moreover
predicts that the square of the amplitude of these gravitational waves is proportional to the
energy density V(¢) during inflation.

Such IGWs will produce temperature fluctuations in the CMB, primarily at large angular
scales, with a spectrum that closely mimics the spectrum from density perturbations. It
will thus be difficult to detect IGWs from the temperature pattern. However, as discussed
further below, both density perturbations and gravitational waves produce polarisation in
the CMB (Kamionkowski et al., 1997; Kamionkowski et al., 1997; Zaldarriaga & Seljak,
1997; Seljak & Zaldarriaga, 1997). When measured as a function of position on the sky,
the Stokes parameters @ and U used to describe linear polarisation constitute components
of a 2 X 2 symmetric trace-free tensor (Kamionkowski et al., 1997; Kamionkowski et al.,
1997), or spin-2, field (Zaldarriaga & Seljak, 1997; Seljak & Zaldarriaga, 1997). Such a field
can be decomposed into a curl-free (or longitudinal) component (an “E mode”) and a curl
(or transverse) component (a “B mode”). Since primordial perturbations produce scalar
perturbations to the spacetime metric, they can produce no curl. Gravitational waves,
on the other hand, are tensor metric perturbations, and so they suffer no such restriction
and can in fact produce a curl. The amplitude of this signal depends, of course, on the
amplitude of the IGW background, and thus on the energy density during inflation. If
inflation had something to do with grand unification, as many theorists might surmise,
then the energy-density scale should be V ~ (10°716 GeV)%. If so, then the amplitude of
the curl component is detectable by the kinds of instrumental sensitivities that should be
available in forthcoming experiments (Kamionkowski & Kosowsky, 1998; Jaffe et al., 2000;
Lewis et al., 2002; Kesden et al., 2002; Knox & Song, 2002; Seljak & Hirata, 2004). Detection
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of such a curl component in the CMB polarisation would constitute a “smoking-gun” signal
for inflation, and it has thus become a highly sought target for CMB experiments (BICEP?,
QUIET?, QUAD?, POLARBEAR*) as well as an Einstein vision mission in NASA’s Beyond
Einstein roadmap?®.

Large-angle CMB temperature fluctuations from these gravitational waves (tensor met-
ric perturbations) were first considered by Abbott & Wise (1984); Rubakov et al. (1982);
Fabbri & Pollock (1983), and by Starobinsky (1985) while the polarisation was first consid-
ered by Polnarev (1985). Now, the most precise predictions for these power spectra come
from numerical calculations (Seljak & Zaldarriaga, 1996). Like the power spectra for density
perturbations (scalar metric perturbations), which exhibit wiggles due to acoustic waves in
the primordial baryon-photon fluid, the temperature and polarisation power spectra from
gravitational waves exhibit wiggles due to oscillations of tensor modes as they enter the
horizon. The wiggles in the density-perturbation power spectra were predicted originally
by Sunyaev & Zeldovich (1970) and Peebles & Yu (1970), and explained later elegantly with
a semi-analytic approach in a paper by Hu & Sugiyama (1995).

The goal of this paper is to present an analytic account of the features in the tensor
power spectra. Such an approach explains the origin of the features in the temperature and
polarisation power spectra and illustrates the dependence of these features on the tensor
power spectrum, cosmological parameters, and details of the recombination history. The
intuition provided by such an approach complements the more precise results of numeri-
cal calculations. In particular, we explain here the location of the wiggles in the tensor
temperature and polarisation power spectra, and why the bumps in the curl component of
the polarisation are smoother than those in the curl-free component. We also show how
the amplitude of the polarisation depends on the details of the recombination history. Our
approach is analogous to that for scalar modes given by Hu & Sugiyama (1995). We dis-
cuss how measurement of the locations of these peaks can provide an independent probe of
cosmological parameters.

The organisation of the paper is as follows. In Section 2.2, we write the exact equa-

tions for CMB fluctuations from tensor perturbations. The exact equations consist of the

"http://www.astro.caltech.edu/lgg/bicep/front.htm
http://cfep.uchicago.edu/peterh/polarimetry /quiet3.html
Shttp://www.stanford.edu/group/quest_telescope/
“http://bolo.berkeley.edu/polarbear/
Shttp://universe.gsfc.nasa.gov/
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evolution of the gravitational waves, the visibility function, the source function, and projec-
tion factors. Next we develop a qualitative understanding of the physics contained in these
relations in Section 2.3. The remainder of the paper then investigates individually each
ingredient in the exact calculation. Section 2.4 discusses the evolution of the gravitational-
wave perturbation. Section 2.5 discusses the effect of the recombination history on the power
spectrum. Section 2.6 discusses the projection factors, and Section 2.7 the source function.
Finally we comment on the dependence on cosmological parameters and detectability in
Section 2.8. We include two Appendices that discuss the numerical techniques required
to evolve the gravitational-wave amplitude in the presence of neutrino anisotropic stress
(Appendix A), and the application of the WKB approach to gravitational waves evolving

through the matter-radiation transition (Appendix A.2).

2.2 Exact equations

Here we present the exact equations required to evaluate the CMB power spectra from
gravitational waves (Kamionkowski et al., 1997; Zaldarriaga & Seljak, 1997; Hu & White,
1997a). For simplicity, we will restrict ourselves to the case of a flat FRW universe. Our
emphasis will be on small scale structure and so reionisation and its effects on large scales
will not be discussed (see Zaldarriaga, 1997; Ng & Ng, 1996, for more details on this topic).

To provide the framework for temperature and polarisation anisotropies, we follow the
formalism of Zaldarriaga & Seljak (1997). For two other useful introductions into the subject
see Cabella & Kamionkowski (2003) and Lin & Wandelt (2006). The CMB radiation field
is characterised by the Stokes parameters I, ), and U. The intensity is described by [
and polarisation along two axes at 45 degrees to one another by @ and U. The fourth
Stokes parameter, V', which describes circular polarisation, is not generated by Thomson
scattering, and while it can be generated after last scattering, the expected amplitudes are
small (Cooray et al., 2003) and so can be neglected.

While convenient, the Stokes parameters Q and U describing polarisation suffer from
being co-ordinate dependent. Under a right-handed rotation by an angle ¥ in the plane

perpendicular to the direction n of propagation, ) and U transform according to

Q' = Qcos 2t + U sin 21, (2.1)
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U' = —Qsin 2y + U cos 21), (2.2)

where &) = cos &1 + sinyéy and &, = —sin &, + cosé,.

We wish to decompose the polarisation field described by @ and U in a basis set ap-
propriate to the unit sphere and the above transformation properties. At first sight, it
might seem appropriate to decompose @) and U using the usual spherical harmonics as a
basis set. This would indeed be appropriate if () and U were scalar functions of position
on the unit sphere. However, a true scalar function would be invariant under rotation of
the co-ordinate axes, which is clearly not the case for @) and U. Instead, it is fruitful to
consider the combinations ) & ¢U, which transform under the above co-ordinate rotation
as (Q+iU) — (Q £iU)eT?™. In the language of spin, these are quantities with spin-2, not
the spin-0 of a scalar field. To properly represent these quantities, we follow Zaldarriaga
& Seljak (1997) and turn to spin-weighted spherical harmonics, which generalise the sym-
metry properties of the spherical harmonics to quantities with spins other than spin-0. An
alternative viewpoint is to consider ) and U as components of a second-rank tensor. This
is the starting point for the formulation in Kamionkowski et al. (1997).

Making use of the spin-0 and spin-2 spin-weighted spherical harmonics Y}, (7) and

+9Yn (1) we can decompose the temperature and polarisation fields as

T(R) = azim Yim(R), (2.3)
lm

(QEiU)(A) = atsm +2Yim(R). (2.4)

Ilm

These expressions may be inverted to obtain the spherical-harmonic expansion coefficients,
arun = [ 42V, ()T (@) (25)

(g im = / dQ Y7 (R)(Q £ iU) (7). (2.6)

Rather than work in terms of a4s,, it is advantageous to define two rotationally invariant

quantities £ and B by the relations

apim = _(a2,lm + a—2,lm)/2a (27)
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apim = (a2, im — a—21m)/2. (2.8)

These two quantities are equivalent to the curl and grad modes defined in Kamionkowski
et al. (1997). The E mode is invariant under the parity transformation, while the B mode
transforms with odd parity.

From the above ax i, we can form a series of correlation functions that characterise
the statistics of the CMB perturbations. Of the six possible combinations, the TB and EB
cross-correlations will vanish unless parity is somehow violated in the early Universe. The

power spectra are defined as the rotationally-invariant quantities,

1 *
CXX/l = m Z<aX7lmaX/7lm>. (29)

m

Given a formalism to describe the observed CMB perturbations, it is then necessary to
calculate a theoretical description of the perturbations. The starting point for this is to
solve the Boltzmann equation for the radiation transfer of photons. To proceed, we expand
the perturbations in Fourier modes of wavevector k. A full derivation of the necessary
equations is beyond the scope of this paper (for details see Zaldarriaga & Seljak, 1997;
Polnarev, 1985; Crittenden, 1993), so we will summarise the important equations below.

For gravitational waves, the perturbed FRW metric takes the form
ds® = a(1)*{—dr* + [yij + 2hij(x, 7)]|dz"dz’}, (2.10)

where 7;; is the unperturbed flat space metric, and h;; is traceless (hi, = 0) and trans-

i
verse (0;h% = 0), leaving two independent degrees of freedom corresponding to the two
gravitational-wave polarisations. We will neglect the scalar and vector perturbations con-
centrating on the tensor h;; perturbations. Note that we have written this line element in
terms of the conformal time 7 = [ Lar /a(t"). We will use this temporal co-ordinate through-
out and will denote with an overdot derivatives with respect to conformal time. The scale
factor a(7) is normalised to unity today.

With this co-ordinate choice, gravitational waves are represented by the transverse,

traceless tensor metric perturbations h;;. The evolution equations for the tensor modes
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may be derived from the Einstein equations and are (Bertschinger, 1996; Bond, 1996)
.. - ) )
hij + zahij + k“h;; = 16mGa”m;;. (2.11)

Here, 7;; is the tensor part of the anisotropic stress and k is the comoving gravitational-wave

wavenumber. For a mode travelling in the z direction, h;; can be written in the form,

At Rh* 0
hij=1|1 < —ht 0
0 0 0

This shows explicitly how the two degrees of freedom describe two polarisation states h™
and h*.

Tensor perturbations are assumed to arise, in similar fashion to scalar perturbations,
from quantum fluctuations during inflation. Although our knowledge of this epoch is spec-
ulative, we may describe the statistical properties of the perturbations by a power spectrum

Py, (k) defined by,

(BT (k)R (K)) = (B (k)h* (K)) =

th(k)é(k ~K). (2.12)

If the process generating the perturbations is Gaussian, then this power spectrum encodes
all information about the distribution. This primordial power spectrum is determined by
inflation and can be written in terms of the Hubble parameter H evaluated at the time

when CMB scales enter the horizon,

_ 32rGH?

k) = | (2.13)

In the case of slow-roll inflation, the value of H changes very little over the period when
CMB scales enter the horizon, and it is appropriate to parameterise the power spectrum
in terms of an amplitude Ar, fixed by the energy scale of inflation, and a tensor spectral
index nrp,

Py(k) = Apk™m =2, (2.14)

Slow-roll inflationary theories generically predict the tensor spectral index ny = 0, a nearly
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scale-invariant spectrum.

The temperature and polarisation anisotropies induced by an equal mixture of tensor
modes of + and X polarisation with amplitude A may be described in terms of the variables
Ax (79,1, k), where X=(T,E,B). The gravitational wave causes distortions with an angular
pattern that depends on both yu =n - l%, the angle between the direction 7 of propagation
of the photon, and the wavevector k of the tensor mode, and on the azimuthal angle ¢.
Polnarev (1985) was the first to recognise the advantage of separating out this angular
dependence by introducing new variables Ar and Ap defined by (Polnarev, 1985; Kosowsky,
1996)

AF (1 k1, d) = (1 — pi?) cos(20) AF(7, k, ), (2.15)
AG(T k1, 0) = (1+ ) cos(20) A S (7, k, ), (2.16)
AG (T k1, ) = —2psin(2¢) A S (7, k, ), (2.17)

and similar equations for the x polarisation with cos(2¢) — sin(2¢) and sin(2¢) — cos(2¢).
The ¢ dependence reflects the intrinsic angular dependence of the gravitational waves, while
the u dependence is chosen to simplify the evolution equations. For our purposes, we may
use these Polnarev variables for calculating the sources; the sources are then simply related
to the original variables (Zaldarriaga & Seljak, 1997). The derivations of these evolution
equations and relations is beyond the scope of this paper, so we simply quote the results.

The evolution of a single Fourier mode k satisfies the Boltzmann equations,

Ar + ikpAr = —h — G[Ar — 0], (2.18)
Ap +ikpAp = —i[Ap + 0], (2.19)
1 - 1- 3 - 3~ 6 ~ 3 =~
U=|—A —A — Ay — =A —Apy — —A . 2.2
TgAT0+ 2 AT2 + = Ara — S Apo+ S Apr — o Aps (2.20)

Here, we have defined the differential cross section for Thomson scattering as £ = anexeor,
where n. is the electron number density, x. is the ionisation fraction, and o7 is the Thomson
cross section. The total optical depth between a conformal time 7 and 79 is given by
integrating & to obtain x(7,70) = [ f(7)dr. The multipole moments of temperature and
of polarisation are defined by A(k,u) = >,(20 + 1)(—i)'A;(k)P,(n), where Pj(u) is the
Legendre polynomial of order I. This decomposition converts Egs. (2.18) and (2.19) into
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an infinite hierarchy of equations connecting higher moments to lower moments. These

equations have solutions (Zaldarriaga & Seljak, 1997)

A = \/ E; i_ ;;: /070 dTST(/C,T)jlaEf), (2.21)

Ay = /07'0 dTSP(k,T) |:—]l(£17) i j;/(]}) i 2];(21') + 4]2(1,‘)] , (222)
A = /O " arSp(k,7) [23';(:5) + 4”:6(”:)} , (2.23)

where j;(z) is the spherical Bessel function. In these expressions, x = k(79 — 7). Defining

the visibility function g(7) = ke™", the sources are given by

Sp(k,7) = —he ™ + g¥, (2.24)
Sp(k,7) = —g¥, (2.25)

and the power spectra by
Cxxn = (4)? / E2dk Py (k) Axi (k) Axn (k). (2.26)

It is straightforward to show that for statistically equal distributions of left and right
circularly polarised gravitational waves, the TB and EB cross-correlations vanish. If there is
a preference for either polarisation, then a non-zero TB and EB correlation will be observed
(Lue et al., 1999).

Equations for the evolution of the ionisation fraction, and hence the optical depth,
exist, but will not be dealt with here. Details of the relevant equations and useful analytic
approximations for the optical depth and ionisation fraction may be found in Jones & Wyse
(1985).

Where necessary, we assume a fiducial ACDM cosmology with € = 0.05, Qpyr = 0.25,
Qp = 0.7, and with Hubble parameter parameterised by A = 0.72. When tensor power
spectra are plotted, we have used the normalisation A7 = 2.4 x 10~ corresponding to

an inflationary energy scale V1/4 = 2 x 10'GeV, and tensor spectral index ny = 0. We
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then plot the dimensionless quantity [(I + 1)C;/2m, which gives the fractional variance per
logarithmic interval in [.
The above set of equations forms the basis for our problem. Having written expres-
sions for the power spectra, we must now exploit a mixture of physical and mathematical

approximations to bring out their implications.

2.3 A tale of tensor modes

Let us now try to obtain an intuitive understanding of how the features in the power
spectra arise. This will help motivate the approximations that follow in later sections.
Useful discussions of how polarisation is generated are given in Cabella & Kamionkowski
(2003); Dodelson (2003), and in Hu & White (1997b).

First let us discuss the temperature power spectrum. The temperature multipole mo-

ments due to an individual gravitational wave of wavenumber k observed at a conformal

Ay =4/ 8 i_ ;;: /OTO dr (—he—’i + g\I/> jll(;), (2.27)

with @ = k(70 — 7). The second of the sourcing terms is localised to the surface of last

time 7y are

scattering (SLS) by the visibility function; as a consequence of the restricted range this
term is small and may be neglected at all angular scales. Between | = 200 and [ = 800,
the contribution from the g¥ term falls off more slowly than the integrated Sachs-Wolfe
(ISW) term allowing it to become marginally relevant. At lower and higher [, the power
generated by the second term dies off rapidly and is totally negligible (Fig. 2.1). The
first term, which dominates this integral, involves an integral from the SLS to the present
day. Its form tells us that the temperature power spectrum is sensitive to the evolution of
gravitational waves from the SLS to today and not to the recombination history. This term
is a form of integrated Sachs-Wolfe (ISW) effect that describes the anisotropy generated
by changing gravitational potentials. We can understand this effect by recalling that a
gravitational wave alternately stretches and compresses space as it oscillates. A photon
travelling past the gravitational wave loses energy when its wavelength is stretched, but
gains energy when its wavelength is reduced. If the gravitational-wave amplitude evolves

over the course of the oscillation, the photon will undergo a net change in energy. Tensor
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Figure 2.1: Comparison of power generated by the two source terms for temperature
anisotropy. Plotted are the total power (solid line), ISW term only (dotted line), and
g¥ term only (dashed line). The gV term is essentially negligible at all I. For this and all
other power-spectra plots, we have used the normalisation A7 = 2.4 x 10~!!, corresponding
to an inflationary energy scale V14 = 2 x 10'6GeV, and tensor spectral index ny = 0.

modes decrease steadily in amplitude and oscillate after horizon entry. As such, a photon
travelling along the crest of a phase front will slowly gain energy as the overall amplitude
of the gravitational wave decreases. Photons travelling at an angle to the mode experience
further red and blue shifting as they propagate through different phase regions. Their energy
oscillates as a consequence. Between the SLS and today, the period-averaged amplitude of
the tensor mode decreases, and so the mean energy of the photon increases.

If we consider a late time, so that the amplitude of the tensor modes is essentially
zero, then we see that the final energy of the photon is determined by whether it started its
journey from the SLS at a trough or crest in the tensor mode. Photons starting at a crest will
have gained more energy and appear hotter than average and vice versa for those starting
at a trough. This simplistic picture is modified by the effect of power free-streaming from
one angular scale to another as the Universe expands, which tends to smooth the resultant
power spectra.

The situation is very different for the polarisation anisotropies. These are generated by
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expressions of the form
T0
Ax) = / dr (—gW) Px[k(m0 — 7)) (2.28)
0

Here, the source is very firmly localised to the SLS and so is sensitive to the thermal history
and gravitational-wave evolution at that time. This is sensible. Treating the early radiation
bath as unpolarised (as we expect from suppression of anisotropy during the tightly-coupled
regime), then polarisation is generated by Thomson scattering of an anisotropic intensity
distribution. Where does this anisotropy come from? In the rest frame of the scattering
electron, photons arrive from all directions from a mean distance determined by the mean
free path of photons at recombination. In propagating, these photons experience the ISW
effect, discussed in the case of the temperature spectrum, and so arrive at the scatterer
with altered temperatures. The resulting anisotropic temperature distribution is scattered,
generating polarisation which free-streams to the present epoch.

In this way, we can understand the power spectrum. For modes with wavelengths
much larger than the horizon size at last scattering, incident photons experience very little
ISW before the last scattering event and little polarisation is generated. Optimal ISW
and thus maximal polarisation is generated by modes that enter the horizon at the time
of penultimate scattering. The amplitude of the gravitational wave decays most rapidly
immediately on horizon entry (see Fig. 2.2) before settling into oscillation with a slowly
decreasing amplitude. Modes that enter the horizon before penultimate scattering lead to
photons whose ISW samples this slowly decaying regime. Hence, they generate significant
polarisation, but less than for the optimal case. Note that the time between penultimate
and last scattering will be about the width of the surface of last scattering.

Translating this into the form of the polarisation power spectrum, we expect a slow
increase in power at large scales peaking at the scale of the horizon at penultimate scattering.
Immediately after this, we expect a large drop in polarisation corresponding to the transition
between modes that enter the horizon between penultimate and last scattering and those
that do not. Next, we expect a steady decline in power as modes have entered the horizon
before penultimate scattering and so redshifted away before the ISW effect is generated.
This region will show a transition in slope between modes that entered the horizon in the

matter- and radiation-dominated epochs. On scales smaller than the mean free path at
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Figure 2.2: Evolution of the gravitational-wave amplitude A for wavenumber k satisfying
kTeq = 10. The plots are normalised so that h(7 = 0) = 1. Shown results are numerical
solution of Eq. (2.29) without anisotropic stress (solid curve), numerical solution of Eq.
(2.29) with anisotropic stress (dotted curve), radiation dominated (Eq. (2.31), long dashed
curve), matter dominated (Eq. (2.32), short dashed curve), and WKB (Eq. (2.36), dot-
dashed curve). The two vertical lines denote 7 = 1/k and 7.
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recombination, the power will drop sharply as phase cancellation between differing crests
and troughs becomes important.
In this discussion, it is important to realise that only three scales have entered the
problem. These are the comoving horizon at recombination, the horizon at matter-radiation
equality, and the width of the last-scattering surface. Fig. 2.3 shows how the features in

the power spectrum correspond to these scales.
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Figure 2.3: Tensor power spectra. Curves from top to bottom are C’ITT, CZEE, and CZBB.
Vertical lines indicate important angular scales, from left to right: horizon at recombination,
TR, horizon at matter-radiation equality, 7¢,, and the width of the last-scattering surface,
ATg.

2.4 Gravitational-wave evolution

Expansion of the Universe leads to damping of the tensor modes as described by the term
proportional to h” in Eq. (2.11). This is the usual redshifting of radiation. In addition,
the tensor modes may be sourced by anisotropic stress, m;;. It has been shown (Bond,

1996; Weinberg, 2004) that anisotropic stress generated by free-streaming neutrinos acts to
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provide viscosity, further damping the tensor modes. This effect is important only while
the energy density in neutrinos is a significant fraction of the total energy; i.e., during the
radiation-dominated epoch.

The tensor modes may be decomposed into two independent polarisation states, hx and
hy. With this decomposition and a source term appropriate for neutrino anisotropic stress,
we have

7)

. . 2
b + 2%7“ 4 k2R = —24f, (1) (ZETQ /0 K[k(r — 7)]hi(r')dr, (2.29)

where i = +, X, and f, = p,/p with p the unperturbed density, and K(s) is given by

sins 3coss 3sins
K(s)z—s3 — + 5 (2.30)

To a first approximation, we may neglect the effect of anisotropic stress, though it should
be included in detailed calculations. Without the source term, analytic solutions for Eq.
(2.29) in pure radiation and matter cosmologies may be expressed in terms of the spherical

Bessel function j;(x),
sin kT

kr

Braa(7) = h(0)jo(kr) = h(0) (2.31)

(2.32)

In a mixed radiation and matter dominated universe, the solution follows h,,q initially
before asymptotically becoming similar to hApae. The initial radiation dominated phase
introduces a phase shift into hp.t as now the boundary conditions do not preclude the
spherical Neumann solution to the unsourced Eq. (2.29). When calculating the power
spectra it is important to get this phase, which determines the peak positions, correct. This
point was understood but not implemented in Turner et al. (1993) and included implicitly
by others (Wang, 1996).

The behaviour of these solutions is shown in Fig. 2.2 and splits into three main regimes.
When k7 < 1, h evolves slowly and is approximately constant. Once k7 ~ 1, the amplitude
decays away rapidly before entering an oscillatory phase with slowly decreasing amplitude,
when k7 > 1. Physically, this corresponds to a mode that is frozen beyond the horizon
until its wavelength is of order the horizon size at which point it enters the horizon and

redshifts rapidly with the expansion of the Universe.
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Recombination occurs shortly after the Universe becomes matter dominated. For modes
that enter the horizon during the matter-dominated regime and so have evolved little in
the radiation-dominated epoch, we expect hyat to be a good description. For modes that
entered during radiation domination, we expect that the transition from radiation to matter
domination will affect the evolution significantly.

The matter-radiation transition can be accounted for in a variety of ways. Most simple
is to assume that the transition is instantaneous and to match the amplitude and derivative
of h on the boundary. This will be a good approximation for waves with wavelength much

longer than the time taken for the transition to take place.

Jo(kT), T < Teq,
hinstant = o (233)

(Teq/T)[AG1L(KT) + Byr(k7)], 7 > Teq,

with
3 1 :
SkTeq — 5kTe 2k 7, 2kT,
A= 2 Teq — 3 cho:gTqu>+Sm( Tq)’ (2.34)
eq
2 — 2k%72 — 2¢08(2kTeq) — kTeq Sin(2k7e
B Teq cos(2kTeq) Teq Sin( Tq). (2.35)

2k272,
Alternatively, we may consider the situation where the wavelength of the gravitational wave
is much shorter than the transition time. In this case, the gravitational wave sees the back-
ground expansion vary slowly and a WKB approach is appropriate. Ng & Speliotopoulos
(1995) first presented this approach, although they were primarily interested in late time
asymptotic limits and so neglected the behaviour near the classical turning point. Here we

generalise their result making use of the uniform Langer solution for the WKB problem

(Bender & Orszag, 1978). The result is

T(kr)"/* (3 Yo
b0 = S (55007

()"

X {QﬁCQAI

2/3
+\/7?c1131[<250<¢)> ]} (2.36)

with

(2.37)
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and

kT ds
So(T) = I'(s) —.
kT S

(2.38)
Here, 77 is the solution to I'(k7) = 0, Ai and Bi are Airy functions, and C; and Co
are constant coefficients set by the boundary conditions h(0) = 1 and 2(0) = 0. For
technical reasons, these boundary conditions must be extrapolated to small 7 via asymptotic
approximation to Eq. (2.29) and then applied. Care must be taken in evaluating the above
expressions when 7 > 7p. These details are discussed further in Appendix A.2. This WKB
expression reproduces the phase of h in both radiation and matter dominated regimes, but
underestimates the amplitude. The close agreement between the WKB and anisotropic-
stress curves in Fig. 2.2 is a numerical coincidence.

Other approaches exist to handle this transition from radiation to matter in a more
pragmatic fashion (Turner et al., 1993; Wang, 1996).

We can get the scaling of h from a simple argument. Before horizon entry, the am-
plitude h of a gravitational wave is constant. After horizon entry, the gravitational wave
redshifts with the expansion as radiation and scales as h ~ 1/a. Hence, the amplitudes of a
gravitational wave today and at horizon entry are related by hioday/fentry = Gentry/Gtoday -
Taking hentry to be independent of k, we have hioday X Gentry. Horizon entry occurs when
Gentry Hentry = k, and so from the scaling of H in the matter- and radiation-dominated
epochs we obtain aentry o k=1 when radiation dominated and Aentry OC k=2 when matter

dominated. Thus, we obtain the scalings,

1, k< 1/7’0,
hocQ k72, 1/7eq >k > 1/70, (2.39)
KL k> 17

This result agrees with both the instantaneous-transition and WKB solutions when 7 >
Teq- These scaling relations form the basis for scaling of the power spectrum. We expect

(1 +1)CIT to scale as (Starobinsky, 1985; Turner et al., 1993)

1, [ <lg,
WW+DCTT o< 174 g > 1> Ig, (2.40)
172, k> log.
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It has been claimed (Starobinsky, 1985; Atrio-Barandela & Silk, 1994) that there should
be an extra region, [ > [a, in which the width of the last-scattering surface becomes
important and due to phase-damping the scaling goes as {7% . However the dominant
source of temperature anisotropy is the ISW effect, which is insensitive to the recombination
history, and so we do not expect to see this behaviour in the temperature power spectrum.
One way to see this is to examine the kernel in Eq. (2.21). On small scales, which enter

the horizon before 7g, the finite rise time of e™*

alters the weight in the integral by a
nearly constant factor. For all other modes, it is sufficient to simply truncate the range of
the integral to between 7p and 7p, effectively imposing instantaneous recombination. On
the other hand, the polarisation anisotropy is generated near the SLS and will show phase
cancellation dependent on the width of the SLS. We will return to this point later.

In the absence of reionisation, at low [ the power spectra for the polarisation grow as

12 (Hu & White, 1997a). From this and the above scaling arguments, we would expect the

power spectrum to scale as

2, 1<lp,
172, g > 1> R,
11+ 1)OXX d f (2.41)
1, leg <1< lp,
=4 1> 1a,

with X=(E,B). The effect of phase-damping extends to much lower [ than would be indicated
by these simple dimensional arguments. Consequently, the region of constant power loq <
I < la is never visible in calculated spectra, but is lost in the transition to the phase-damping
regime.

The above expressions for the gravitational-wave amplitude are used to generate the
power spectra displayed in Fig. 2.4. The plots are normalised by taking ny = 0 and setting
A7 = 1. All of the plots show the same scaling relation at low [. This regime is dominated
by modes that have not entered the horizon at recombination and so are approximately
constant. At low [ hpat underestimates the power, while h,,q overestimates the power.
This is a consequence of the contribution of the modes that have entered the horizon that
are evolving in a mixed radiation-matter universe and so have amplitudes intermediate to

the predictions of these two approximations.
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Moving above the peak at [g, we clearly see the different scaling relations between the
matter and radiation approximations. Recall that at these high Is, we expect the main con-
tribution to come from modes that entered the horizon in the radiation-dominated epoch,
and so hraq should be a good approximation. The WKB result shows a transition between
following the matter-dominated curve to behaving more like the radiation-dominated form,
though with reduced amplitude. This reduction in amplitude is an unfortunate character-
istic of the WKB solution and is not significant to understanding the physics. The WKB
solution serves as a nice bridge between matter- and radiation-dominated epochs. The
instantaneous solution fails to be useful on scales with wavelength short compared to the
transition time-scale.

These curves display the scaling expected from Eq. (2.39), but we see that in the
numerical case, excluding anisotropic stress, we never observe the full [=* scaling for a
matter-dominated regime. The combination of recombination occurring soon after matter-
radiation equality and the Universe becoming matter dominated only slowly means that the
power spectra damp more slowly, closer to [ =3, for scales 1/7r < k < 1/ Teq- The presence of
matter also causes peak positions to shift to smaller scales over the fully radiation-dominated
case indicative of the phase shift that the transition introduces in h.

For the purposes of reproducing the exact tensor-mode power spectra, we must worry
about preserving both the amplitude and phase of the gravitational waves. The importance
of the amplitude is clear in estimating the power correctly. The phase determines the
positions of the maxima and minima in the high-/ region of the spectra. Maxima correspond
to gravitational waves whose amplitude was at a maximum or minimum at the SLS; minima
correspond to gravitational waves whose amplitude was close to zero at the SLS. Altering
the phase of the gravitational waves shifts the k values for which these maxima occur at
the SLS and so shift the features in the CMB. If we wish to understand these features in
detail, then we must understand how the phase of the gravitational waves varies with k& and

how this is mapped onto the power spectrum. This mapping is the subject of Section 2.6.

2.5 Recombination history

While the Universe is young and hot, baryons are ionised and tightly coupled to photons

via Thomson scattering. Once the temperature falls below a few eV, it becomes favourable
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Figure 2.4: T and B power spectra calculated using approximate forms for the gravitational-
wave amplitude h. Plotted are the results using h from the full numerical calculation with-
out anisotropic stress (solid curve) and from the radiation-dominated (long dashed curve),
matter-dominated (dot-short dashed curve), instantaneous-transition (dotted curve), and
the WKB (dot-long dashed curve) approximations.
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for electrons and ions to recombine to form neutral molecules. As the number of charged
particles falls, the mean free path of any given photon increases. Eventually, the mean
free path becomes comparable to the horizon size and the photon and baryon fluids are
essentially decoupled. It is at this point in the Universe’s evolution that the CMB photons
last scatter.
The visibility function describes the probability that a given CMB photon last scattered

from a particular time. In terms of the optical depth &, this visibility function is given by
g(T) = ke ™. (2.42)

Numerical calculations show that g(7) is sharply peaked during recombination. This prop-
erty suggests we approximate the visibility function by a narrow Gaussian for analytic

simplicity. For example,
- (T*TR)Q

g(r) = glrr)e **k | (2.43)

determines the visibility function in terms of the conformal time 7z of recombination, its
width A7g, and the amplitude g(7r) at recombination.

Approximating the visibility by a Gaussian leads to a simple form for the optical depth
in the region close to 7r. If we write  in the general form xk = exp[— f(7)], then consistency
with Egs. (2.42) and (2.43) requires that x ~ exp[—(7—7r)/A7r] and g(7r) ~ 1/(eATg) in
the region close to 7r. This latter result is essentially a statement about the normalisation
of the Gaussian and preserves the total weight of the visibility function for different widths.
Away from recombination, the evolution of the optical depth is a complicated function of
the thermal history and not easily approximated.

These approximations for g(7) and x are plotted in Fig. 2.5 for the fiducial cosmology
with € = 0.05, Qpy = 0.25, and 2 = 0.7. For this cosmology, we have 19 = 13515 Mpc,
Tr/T0 = 0.0203, Teq/70 = 0.0076, and Atg/79 = 0.0012. While the Gaussian form does
a reasonable job of approximating the shape of the peak, the visibility function is clearly
skewed and possesses a significant tail. The combination of these features means the Gaus-
sian approximation will underestimate the power and shift features to slightly smaller angles
than in the true power spectrum.

Fig. 2.6 shows a series of power spectra calculated using the Gaussian approximation.
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Figure 2.5: Recombination history. Plotted are the visibility function g(7) and the optical
depth x calculated numerically using CMBFAST (solid curves) and the approximations
described in Eq. (2.43) and the text (dashed curves) using Arp = 15.7.

In each, the correct thermal history is used to calculate the evolution of the source function
U with the Gaussian approximation applied when calculating the Ay from Egs. (2.24)
and (2.25). Although not strictly self-consistent, this isolates the modification of the source
due to a changed thermal history from the effect of the visibility function on generating
anisotropies. Source evolution will be considered in Section 2.7.

The temperature power spectrum shows no variation with A7 at [ < 200. Power on
these scales is generated via the integrated Sachs-Wolfe effect by modes that only evolve
significantly between 7 and 79 and so are insensitive to the thermal history. At smaller
scales, the modes of interest are evolving over recombination and so contain information
about the thermal history. Modifying the width of the visibility function affects the power
spectrum via the e " term in Eq. (2.27) which acts to cut the integral off below 7.
Widening the SLS makes this cutoff slower which, owing to the concave nature of e™", leads
to less weight in the integral. This leads to the differences observed in the top panel of
Fig. 2.6. This is not phase-damping, and does not alter the scaling of the power spectrum
significantly. In addition to this overall shift in power, larger A7Tg acts to wash out the

bumps and wiggles. For modes that oscillate rapidly over this rise time, the ISW samples
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Figure 2.6: Evaluation of using the Gaussian approximation for the visibility function on the
power spectra. Three power spectra calculated using Eq. (2.43) for the visibility function
are shown for values of A7p = 10 (long dashed curve), 15.7 (short dashed curve), and 22
(dotted curve).
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an averaged starting value of h and so is less sensitive to the presence of peaks and troughs.
Power is still generated from the net decrease in the maximum amplitude of h from 75 to
7o, so this effect does not cause a large drop in power as suggested in Starobinsky (1985)
and in Atrio-Barandela & Silk (1994).

Fig. 2.6 shows that the Gaussian approximation leads to a lower polarisation power
spectrum. This difference is a consequence of the long tail to the visibility function, which
is not reproduced in the Gaussian approximation. In these plots, varying A7rg does not
affect the overall amplitude of the power spectrum. This is an artefact of using the same ¥
for each plot. In reality, the amplitude of the polarisation power spectra depends sensitively
on Arg, as will be shown in Section 2.7. These plots show that varying A7y in the Gaussian
approximation does not affect the shape at low [, but a wider width leads to a sharper fall
off in power at high [. This is a feature of phase-damping, which will be discussed in Section
2.7.

None of the three values used precisely reproduces the decline of the true power spec-
trum, which is seen to fall off more rapidly than the approximations. This seems to be a
consequence of the tail to the visibility function. In keeping with expectation, the peaks in
the high-I region are found at slightly higher [ in the approximations than the numerical

result.

2.6 Projection factors

The power spectra that we observe today are projections of the temperature and polarisation
anisotropies at the last-scattering surface. By inspection of Egs. (2.21), (2.22), and (2.23)

we can define three projection terms,

Pri(z) = (2.44)

Poix) = —i(e) + j(x) + 282) 4 2@), (2.45)

4j5i(x

~—

Pgi(z) = 2j)(x) + (2.46)

Typically the argument of these terms is k(79 — 7), the look-back time scaled by the

wavenumber, reflecting that these are projections from the point of origin onto today’s
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sky.
The different forms of the projection factors, plotted in Fig. 2.7, help explain many of

the features seen in the power spectra (Fig. 2.8).
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Figure 2.7: Comparison of exact and approximate projection terms evaluated for [ = 50.
Plotted are the exact forms from Eqgs. (2.44), (2.45), and (2.46) (solid curves) and the
approximate forms from Egs. (2.48), (2.49), and (2.50) (dashed curves).

First consider the E projection factor as a simple example. A sharp peak occurs at
x = [. This tells us that the value of CZTT at [ = 50 is determined by the behaviour of the
source function at x = [. The polarisation source function is strongly peaked around 7 = 7y,
which implies the behaviour at last scattering of the mode with wavenumber k =~ /(19 —7R)
dominates the contribution to Cj. If the projection factor was a Dirac delta function, this
would be the whole story. However, the projection factor has a significant tail for = > [
signifying that modes with larger wavenumber also contribute power to this angular scale.

From this, we can see that the sharper the spike at = [, the sharper the features seen in
the power spectrum. A wider peak mixes in modes of different phases blurring the spectra.
Noting that the B projection factor lacks a sharp peak, we expect the B power spectra to
contain blurred features relative to the E spectra. In addition, as its maximum is at higher
x, we expect features in the source to be shifted to smaller [ than in the E spectrum. This

sort of argument has some validity with the T spectrum, but is there complicated by the
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Figure 2.8: Contribution to the power spectra due to the source term gW. The three curves
show the power spectra calculated from Egs. (2.21), (2.22), and (2.23). In the case of the
temperat