
HOLA: a High-Order Lie Advection of Discrete Differential Forms

With Applications in Fluid Dynamics

Thesis by

Alexander McKenzie

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2007

(Submitted May 25, 2007)

ii

c© 2007

Alexander McKenzie

All Rights Reserved

iii

Acknowledgements

My sincerest thanks to Mathieu Desbrun. Special thanks to research collaborators Yiying Tong,

Dmitry Pavlov, Patrick Mullen, Eva Kanso and Jerrold E. Marsden. Additional thanks for inter-

esting classes by Michael Ortiz and Tim Colonius. My gratitude to Peter Schröder for generous

provision of lab space and computing resources, and deepest appreciation to support staff Maria

Lopez, Patrick Cahalan, Kathryn Moran and Diane Goodfellow. Thank you all very much.

This work was supported by National Science Foundation (CAREER CCR-0133983, and ITR

DMS-0453145), Department of Energy (DE-FG02-04ER25657), and Pixar Animation Studios.

iv

Abstract

The Lie derivative, and Exterior Calculus in general, is ubiquitous in the elegant geometric in-

terpretation of many dynamical systems. We extend recent trends towards a Discrete Exterior

Calculus by introducing a discrete framework for the Lie derivative defined on differential forms,

including a WENO based numerical scheme for its implementation. The usefulness of this oper-

ator is demonstrated through the advection of scalar and vector valued fields (arbitrary discrete

k-forms) in a desirable intrinsic and metric independent fashion. Examples include Lie advec-

tion of fluid flow vorticity, and we conclude with a significant discussion on the conservative

Lie advection of fluid mass density for robust free surface flows in computer graphics.

v

Contents

Acknowledgements iii

Abstract iv

1 High-Order Lie Advection 1

1.1 Introduction . 1

1.1.1 Background on Lie Derivative . 2

1.1.2 Emergence of Structure-Preserving Computations 3

1.1.3 Contributions . 4

1.2 Mathematical Tools . 5

1.2.1 Discrete Setup . 5

1.2.2 Calculus of Discrete Forms . 6

1.2.3 Principles of WENO . 8

1.3 Discrete Interior Product and Discrete Lie Derivative 9

1.3.1 Towards a Dynamic Definition of Lie Derivative 9

1.3.2 High-order Discrete Interior Product . 12

1.3.3 High-order Lie Advection . 14

1.4 Applications and Results . 14

1.4.1 Interface Advection . 14

1.4.2 Fluid Simulation through Vorticity Advection. 15

1.5 Conclusions . 18

1.6 Third Order Stencils . 19

2 Mass-Conserving Fluid Flows 22

2.1 Background Literature . 23

2.2 Mass Density based Fluid Representation . 25

vi

2.2.1 Miscible Fluids . 28

2.3 Navier-Stokes Equations . 30

2.3.1 Domain Discretization . 30

2.3.2 Spatial Derivatives through Finite Differencing 32

2.4 Updating the Velocity Field . 33

2.4.1 Solving for Self-Advection and Body Forces 33

2.4.2 Pressure Projection through Helmholtz-Hodge Decomposition 35

2.4.3 Solving a Linear System via Preconditioned Conjugate Gradient 36

2.4.4 PCG Pseudo Code . 39

2.4.5 Implicit Solution to Viscosity . 40

2.5 Computational Cycle . 41

2.5.1 Selecting a Time Step ∆t . 41

2.5.2 Enforcing Physical Domain Boundaries . 42

2.5.3 Velocity Extrapolation . 43

2.6 Conclusions . 43

Bibliography 44

1

Chapter 1

High-Order Lie Advection

1.1 Introduction

Simulation and scientific computing is an increasingly crucial component of research in vari-

ous disciplines. However, deeply-rooted assumptions about smoothness and differentiability of

most continuous laws of physics often clash with the inherently discrete nature of computing

on modern architectures. Consequently, a number of computational techniques have been pro-

posed to discretize differential equations, and numerical analysis—an important underpinning

of computational science—is used to prove properties of the resulting schemes, such as stability,

accuracy, and convergence. Over the past few years, the value of geometrically-derived tech-

niques has often been shown superior to traditional, purely numerical-analytic approaches in a

number of applications such as electromagnetism [7], discrete mechanics [43], and fluids [23].

As the essence of a mechanical system is characterized (and thus, modeled) by its symmetries

and invariants (e.g., momenta), preserving these geometric notions in the computational realm

is of paramount importance [33]. In particular, symplectic integrators deriving from a discrete

Hamilton’s principle are noteworthy in their ability to properly capture the underlying continu-

ous motion, often independently of the order of accuracy used in the computations.

In this thesis we follow such a geometric point of view to introduce a high-order numerical

scheme for the Lie advection equation,

∂ω

∂ t
+LXω= 0, (1.1)

where ω is an arbitrary discrete differential k-form [4, 20] defined on a discrete manifoldM ,

2

and X a discrete vector field living on this manifold. The spatial Lie derivative LX , ubiquitous

in most advection phenomena, is approximated through the use of a combinatorial exterior

derivative and a high-order WENO-based definition of the interior product (or contraction).

We will show that our high-order scheme can be seen as a generalization of the traditional

Finite-Volume WENO schemes.

1.1.1 Background on Lie Derivative

The notion of Lie derivative LX in Elie Cartan’s Exterior Calculus extends the usual concept of

derivative of a function along a vector field X. Although a formal definition of this operator can

be made purely algebraically (Chap. 5.3, [1]), its nature is better elucidated from a dynamical

perspective (Chap. 5.4, [1]). Consequently, the spatial Lie derivative (along with its closely

related time-dependent version) is an underlying element in all areas of mechanics: e.g., the

rate of strain tensor in elasticity and the vorticity advection equation in fluid dynamics are both

nicely described using Lie derivatives.

Lie Advection of Scalar Fields. A particularly simple context where a Lie derivative describes

a physical evolution is in the advection of scalar fields. For instance, given a scalar field ρ, the

conventional conservation-of-mass equation can be written as

∂ ρ

∂ t
+Lvρ = 0.

The case of divergence-free vector fields v (i.e., ∇ · v = 0) has been the subject of extensive

investigation over the past several decades, leading to several numerical schemes for solving

these types of hyperbolic conservation laws. So-called “upwind” methods of advection were

presented in [24] to approximate the conservation form of the advection equation. This initial

work quickly gave rise to more sophisticated upwind schemes, first through the use of higher-

order “least”-oscillatory local polynomial reconstruction (ENO [56]), and later refined through

a weighted combination of ENO polynomials to further improve accuracy (WENO [40]). WENO

schemes were derived in a finite-volume context (where they yield cell average preserving ap-

proximations to the unknowns rather than point value interpolations [54, 60]) as well as in a

finite-difference context. Both types of schemes have been widely used in applications such as

large-eddy simulations in the presence of strong shocks [35]. This line of research in WENO

3

schemes also turned out to be crucial in the recent developments of accurate level set meth-

ods [50], where the Hamilton-Jacobi equation is solved in order to advect the zero contour of

a signed distance function [52].

While these schemes have been successfully used for now over a decade, they seem to have

been almost solely used to treat scalar fields, whether functions (as in LSM), or densities (as

in FVM). To the authors’ knowledge, Lie advection of non-scalar entities such as vorticity for

fluids has yet to benefit from these advances.

1.1.2 Emergence of Structure-Preserving Computations

Concurrent to the development of high-order methods for scalar advection, new computa-

tional methods have emerged that faithfully respect the underlying geometric structures, gain-

ing acceptance among engineers as well as mathematicians [3]. Computational electromag-

netism [7], mimetic (or natural) discretizations [49, 6], and more recently Discrete Exterior

Calculus (DEC, [36, 20]) and Finite Element Exterior Calculus (FEEC, [4]) have all proposed

similar discrete structures that mimic (discretely preserve) vector calculus identities in order

to offer improved numerics. In particular, the relevance of exterior calculus (Cartan’s calculus

of differential forms [15]) and algebraic topology (see, e.g., Munkres 1984 [47]) for use in

numerical simulations has come to light.

Differential Forms as Computational Building Blocks. Exterior calculus is a concise for-

malism to express differential and integral equations on smooth and curved spaces in a con-

sistent manner, while revealing the geometrical invariants at play. At its root is the notion

of differential forms, denoting antisymmetric tensors of arbitrary order. As integration of dif-

ferential forms is an abstraction of the measurement process, this calculus of forms provides

an intrinsic, coordinate-free approach to the concise description a multitude of physical mod-

els [11, 1, 42, 27, 45, 14, 30]. One of the key insights from the theory of differential forms

is rather simple and intuitive: one needs to recognize that different physical quantities have

different properties. Fluid mechanics or electromagnetism, for instance, make heavy use of line

integrals, as well as surface and volume integrals. Similarly, even physical measurements are

performed as specific local integrations or averages (think flux for magnetic field, or current

for electricity) over some small surface of the measuring instrument. Pointwise values for such

4

quantities do not have physical meaning; instead, one should manipulate those quantities only

as geometrically-meaningful entities integrable over appropriate submanifolds—these entities

are the so-called differential forms. Note also that integral values are generally speaking more

robust to noise in measurement than pointwise evaluations from a numerical standpoint, mak-

ing them particularly suitable for computations. Algebraic topology, specifically the notion of

chains and cochains (see e.g., [65, 47]), can then be used to emulate exterior calculus on fi-

nite grids, offering a natural discrete analog to differential forms: a set of values on vertices,

edges, faces, and cells are proper discrete versions of pointwise functions, line integrals, surface

integrals, and volume integrals respectively. Notice that this point of view is entirely compat-

ible with the treatment of volume integrals in Finite Volume methods, or scalar functions in

Finite Element methods; but it also involves the “edge elements” and “facet elements” as in-

troduced in E&M as special Hdiv and Hcurl bases elements [48]. Equipped with such discrete

forms of arbitrary degree, Stokes’ theorem (which connects differentiation and integration) is

automatically enforced if one thinks of differentiation as the dual of the boundary operator—a

particularly simple operator on meshes. With these basic building blocks, important structures

and invariants of the continuous setting directly carry over to the discrete world, culminating in

a discrete Hodge theory. As a consequence, the emerging notion of a discrete exterior calculus

has proven useful in many areas such as electromagnetism [7], fluid simulation [23], surface

parameterization [32], and remeshing [62] to mention a few.

Unfortunately, the contraction and Lie derivative of arbitrary discrete forms—two important

operators in exterior calculus—have received very little attention, with the exception of the

discrete contraction of Bossavit in [8]. The general idea behind his approach (that is reviewed

in upcoming Section 1.3.1) was to notice that extrusion and contraction are dual operators,

resulting in an integral definition of the interior product that fits the existing foundations. While

a discrete contraction was derived using linear “Whitney” elements, no notion of high-order

ENO-like treatment was proposed. Furthermore, the Lie derivative was not discussed.

1.1.3 Contributions

In this thesis, we introduce the first WENO-based upwind discretizations of contraction and

Lie advection of an arbitrary discrete form. Our contribution therefore extends the DEC ma-

chinery to include a high-order accurate interior product and Lie derivative, and also extends

5

conventional high-order WENO schemes to allow for the advection of forms and vector fields.

In particular, our scheme in 3D is a generalization of finite-volume WENO techniques, where

not only cell-averages are used, but also face- and edge-averages, in addition to vertex values.

1.2 Mathematical Tools

Before introducing our contribution, we briefly review the existing mathematical tools we will

need in order to derive a high-order Lie advection: after discussing our setup, we describe the

necessary operators of Discrete Exterior Calculus, before reviewing the foundations of WENO

methods for high-order advection.

1.2.1 Discrete Setup

Space Discretization. Throughout the exposition of our approach, we assume regular Carte-

sian grid discretization of space1. This grid forms an orientable and manifold cell complex

K = (V, E, F, C) with vertex set V = {vi}, edge set E = {ei j}, as well as face set F and cell set C .

Each cell, face and edge is assigned an arbitrary yet fixed intrinsic orientation, while vertices

and cells always have a positive orientation. By convention, if a particular edge ei j is positively

oriented then e ji refers to the same edge with negative orientation, and similar rules apply for

higher dimensional mesh elements given even vs. odd permutations of their vertex indexing.

Boundary Operators. If we now assume all mesh elements in K are enumerated with an

arbitrary (but fixed) indexing, the incidence matrices of K now define the boundary operators.

For example, we let ∂ 1 denote the |V | × |E| matrix with (∂ 1)ve = 1 (resp., −1) if vertex v

is incident to edge e and the edge orientation points towards (resp., away from) v, and zero

otherwise. Similarly, ∂ 2 denotes the |E|× |F | incidence matrix of edges to faces with (∂ 1)e f = 1

(resp., −1) if edge e is incident to face f and their orientations agree (resp., disagree), and zero

otherwise. The incidence matrix of faces to cells ∂ 3 is defined in a similar way. See [47] for

details.
1A discussion on how to extend HOLA to arbitrary simplicial complexes will be briefly discussed in Section 1.5.

6

1.2.2 Calculus of Discrete Forms

Guided by Cartan’s exterior calculus of differential forms on smooth manifolds, DEC offers a

calculus on discrete manifolds that maintains the covariant nature of the quantities involved.

Chains and Cochains At the core of this computational tool is the notion of chains, defined

as a linear combination of mesh elements; a 0-chain is a weighted sum of vertices, a 1-chain is

a weighted sum of edges, etc. Since each k-dim cell has a well-defined notion of boundary (in

fact its boundary is a chain itself; the boundary of a face, for example, is the signed sum of its

edges), the boundary operator naturally extends to chains by linearity. A discrete form is now

simply defined as the dual of a chain, or cochain, that is to say, a linear mapping that assigns

each chain a real number. Thus, a 0-cochain (that we will abusively call a 0-form sometimes)

amounts to one value per 0-dim cell, such that any 0-chain can naturally pair with this form.

More generally, k-chains are defined by one value per k-cell, and they naturally pair with k-

chains. The resulting pairing of a k-cochain αk and a k-chain σk is the discrete equivalent of

the integration of a continuous k-form αk over a k-dimensional submanifold σk:

∫

σk

α
k ≡ 〈αk,σk〉.

The chain and cochain representations are not only attractive from a computational perspec-

tive due to their conceptual simplicity and elegance; they are deeply rooted in a theoretical

framework defined by [65], who introduced the Whitney and deRham maps that establish an

isomorphism between simplicial cochains and Lipschitz differential forms. With these theoreti-

cal foundations, chains and cochains are used as basic building blocks for direct discretizations

of important geometric structures such as the deRham complex through the introduction of two

simple operators.

Discrete Exterior Derivative. The differential d (called exterior derivative) is the only exist-

ing DEC operator that we will need in our construction of a Lie derivative. This discrete exterior

derivative d is constructed to satisfy Stokes’ theorem, which elucidates the duality between the

exterior derivative and the boundary operator. In the continuous sense, it is written

∫

σ

dα=

∫

∂ σ

α. (1.2)

7

Consequently, if α is a discrete differential k-form, then the (k+1)-form dα is defined on any

(k+1)-chain σ by

〈dα,σ〉 = 〈α,∂ σ〉 , (1.3)

where ∂ σ is the (k-chain) boundary of σ, as defined in Section 1.2.1. Thus, the discrete dif-

ferential d, mapping k-forms to (k+1)-forms, is given by the co-boundary operator, i.e., the

transpose of the signed incidence matrices of the complex K: d0 = (∂
1)T maps 0-forms to

1-forms, while d1 = (∂
2)T maps 1-forms to 2-forms. More generally in nD, dk = (∂

k+1)T . In

relation to standard 3D vector calculus, d0 ≡ ∇, d1 ≡ ∇×, and d2 ≡ ∇·. The fact that the

boundary of a boundary is empty results in dd = 0, which corresponds to the vector calculus

identities of ∇×∇ = ∇ ·∇× = 0. Notice that this operator is defined purely combinatorially,

and thus does not need a high-order definition, unlike the operators we will introduce later.

Finally, we must point out that the notion of mesh duality (in the sense of Voronoi duality)

can be used to introduce a discrete Hodge star that defines a natural correspondence between

primal k-forms and dual (n-k)-forms, i.e., forms living on dual (n-k) cells [20]. This operator

is indispensable to define a discrete Hodge decomposition of forms; however, we will not need

this operator in the remainder of our derivation of the discrete contraction and Lie derivative

operators.

Figure 1.1: In the discrete setting, a vector field can be represented as a (n-1)-form in space,
which intutively represents the flux induced by this vector field through hyperfaces (edge in 2D,
face in 3D).

A Note about Vector Fields. Vector fields are often defined through their coordinates at

mesh nodes, requiring the choice of a coordinate system. Discrete forms can, however, be ad-

vantageously used as proxies of vector fields, removing the need for coordinates. Indeed, in

the continuous world and assuming that space is equipped with a volume form Vol, one can

convert a vector field X into a (n-1)-form through the contraction iX Vol of the volume form

along X . This form can be seen as the “flux” induced by the vector field X . In computations, a

8

vector field can thus be represented as a (n-1)-form, i.e., one (flux) value per (n-1)-face of the

primal mesh. This flux-based point of view is actually behind the routinely used Marker-And-

Cell (MAC) “staggered” grids [34].

1.2.3 Principles of WENO

A last mathematical, numerical tool we will need is Weighted Essentially Non-Oscilloatory

(WENO) shock-capturing schemes, first introduced in [40]. While we will provide a brief

overview of these schemes, we refer the reader to [57] and [50] for further details and ap-

plications. The purpose of WENO schemes is to advect a function u(x) by a velocity field v(x)

using a reconstruct, evolve, and average (REA) approach. In one dimension, we can define the

cell average of a function u(x) over cell Ci with width ∆x as

ūi =
1

∆x

∫

Ci

u(x) d x i = 1,2, . . . , N .

Given k adjacent cell averages, there is a unique polynomial p(x) of degree at most k− 1 such

that the average of p(x) in each of the k cells is equal to the average of u(x) in those cells. For

such a reconstruction, we can define a smoothness function, generally based on the magnitude

of the derivatives, to evaluate how oscillatory the reconstruction is (see [10] in addition to

above references for examples).

For a given cell boundary, there are k different choices of k adjacent cells that include the adja-

cent upwind cell (see Figure 1.7). Note that inclusion of the upwind cell (the cell from which

the boundary flux comes) follows the physical intuition that we should include the information

from the cell containing the source of the flux. Comparing the smoothness of these reconstruc-

tions and choosing the least oscillatory results in an Essentially Non-Oscillatory (ENO) scheme.

WENO schemes, however, are based on the realization that all ENO reconstructions are good

in smooth regions, and they can be further combined to result in a higher-order essentially

non-oscillatory approximation; in regions of sharp changes, one must instead stick to the least

oscillatory lower-order approximation provided by ENO. Once a WENO reconstruction is cho-

sen, the flux across the boundary can be computed by integrating the reconstruction over the

upwind region that will be transferred across the boundary (see Figure 1.4).

9

1.3 Discrete Interior Product and Discrete Lie Derivative

In keeping with the spirit of Discrete Exterior Calculus, we present the continuous interior prod-

uct and Lie derivative operators in their “integral” form, i.e., we present continuous definitions

of iXω and LXω integrated over some small submanifold, precisely the objects we will have

discretized on the cells of a discrete mesh by the end of this section.

1.3.1 Towards a Dynamic Definition of Lie Derivative

Interior Product through Extrusion. As pointed out by [8], the extrusion of objects under

the flow of a vector field can be used to give an intuitive dynamic definition of the interior

product. If M is an n-dim smooth manifold and X ∈ X(M) a smooth (tangent) vector field

on the manifold, let S be a k-dimensional submanifold on M with k < n. The flow ϕ of

the vector field X is simply a function ϕ: M × R → M consistent with the one-parameter

(time) group structure, that is, such that ϕ(ϕ(S , t), s) = ϕ(S , s+ t) with ϕ(S , 0) = S for all

s, t ∈ R. Now imagine that S is carried by this flow of X for a time t; we denote the resultant

“flowed out” submanifold S (t), which is equivalent to the image of S under the mapping ϕ,

i.e., S (t) ≡ ϕ(S , t). The extrusion EX (S , t) is then the (k+1)-dim submanifold formed by the

advection of S over the time t to its final position S (t); it is the “extruded” (or “swept out”)

submanifold. This can be expressed formally as a union of flowed out manifolds,

EX (S , t) =
⋃

τ∈[0,t]

S (τ).

These geometric notions are visualized in Figure 1.2, where the submanifold S is presented as

a 1-dim curve, flowed out to form S (t), or alternatively, extruded to form EX (S , t).

Using this setup, the interior product iX of a time-independent formω evaluated on S can now

be defined as the instantaneous change of ω evaluated on EX (S , t), or more formally

∫

S
iXω=

d

d t

�

�

�

�

t=0

∫

EX (S ,t)

ω. (1.4)

While this equation is coherent with the discrete spatial picture, we also wish to integrate iXω

over a small time interval as well, in order to get a continuous expression consistent with the

10

integral form we will represent discretely. Hence, by taking the integral of both sides of Eqn. 1.4

over the interval [0,∆t], the first fundamental theorem of calculus gives us

∫ ∆t

0





∫

S (t)
iXω



 d t =

∫

EX (S ,∆t)

ω, (1.5)

which, as we will see, is a suitable candidate for discretization of the interior product.

EX (∂S , t)
X

∂S
EX (S , t)S

S (t)

Figure 1.2: Geometric interpretation of the Lie derivative LXω of a differential form ω in the
direction of vector field X .

Algebraic and Flowed Out Lie Derivative. Using a similar setup, we can formulate a def-

inition of Lie derivative based on the flowed out submanifold S (t). Remember that the Lie

derivative is a generalization of the directional derivative to tensors, intuitively describing the

change of ω in the direction of X . In fact, the Lie derivative LXω evaluated on S is equivalent

to the instantaneous change of ω evaluated on S (t), formally expressed by

∫

S
LXω=

d

d t

�

�

�

�

t=0

∫

S (t)
ω, (1.6)

as a direct consequence of the Lie derivative theorem (Theorem 6.4.1, [1]). As before, we can

integrate Eqn. 1.6 over a small time interval [0,∆t], applying the Newton-Leibnitz formula to

find
∫ ∆t

0





∫

S (t)
LXω



 d t =

∫

S (∆t)

ω−
∫

S
ω. (1.7)

Note that the formulation above, discretized through a semi-Lagrangian method, has been used

by [23] to advect fluid vorticity; in that case the rhs of Eqn. 1.7 was evaluated by looking at the

circulation through the boundary of the “backtracked” manifold. Rather than following their

approach, we revert to discretizing the dynamic definition of the interior product in Eqn. 1.5

instead, and later constructing the Lie derivative algebraically. The primary motivation behind

11

this modification is one of effective numerical implementation: we can apply a dimension-by-

dimension WENO approximation scheme to obtain arbitrarily high order accuracy of the interior

product, while the alternative—accurately computing integrals of ω over S (t) as required by

Eqn. 1.7—is comparatively cumbersome and requires a computationally intensive multidimen-

sional polynomial reconstruction to evaluate the required integrals to high accuracy.

Using Figure 1.2 as a reference, we now show how the Lie derivative and the interior prod-

uct are linked through a simple algebraic relation known as Cartan’s homotopy formula. In

particular, this derivation requires repeated application of Stokes’ theorem from Eqn. 1.2.

lim
∆t→0

1

∆t

∫ ∆t

0





∫

S (t)
LXω



 d t = lim
∆t→0

1

∆t





∫

S (∆t)

ω−
∫

S
ω



 (1.8)

= lim
∆t→0

1

∆t





∫

EX (S ,∆t)

dω+

∫

EX (∂S ,∆t)

ω



 (1.9)

=

∫

S
iX dω+

∫

∂S
iXω (1.10)

=

∫

S
iX dω+

∫

S
diXω. (1.11)

The submanifolds S and S (∆t) form a portion of the boundary of EX (S ,∆t). Therefore, by

Stokes’ theorem, we can evaluate dω on the extrusion and subtract off the other portions of

∂ EX (S ,∆t) to obtain the desired quantity. This is how we proceed from line 1.8 to line 1.9 of

the proof. The following line, Eqn. 1.10, is obtained by applying the dynamic definition of the

interior product given in Eqn. 1.5 to each of two terms, leading us to our final result in line 1.11

through one final application of Stokes’ theorem. What we have obtained is the Lie derivative

expressed algebraically in terms of the exterior derivative and interior product. Notice that

Eqn. 1.11 is the integral form of the celebrated identity called Cartan’s homotopy (or magic)

formula, most frequently written as

LXω = iX dω+ diXω. (1.12)

By defining our discrete Lie derivative through this relation, we ensure the algebraic definition

holds true in the discrete sense by construction. It also implies that the Lie derivative can be

directly defined through interior product and exterior derivative, without the need for its own

12

discrete definition.

As mentioned, schemes discretizing the Lie derivative directly through Eqn. 1.7, have been

proposed. In [23], the use of a backtracked flow intuitively corresponds to the vorticity being

pulled forward from an earlier time, while higher-order approximations can be derived by

mixing backwards and forward tracking [21]. Related Lagrangian advection techniques for

conservative density advection can be found in, e.g., [37, 22].

1.3.2 High-order Discrete Interior Product

The discrete interior product is computed by exploiting the principles of Eqn. 1.5, using the

WENO machinery to achieve high-order accuracy. Given a discrete k-form α and a discrete

vector field X , the interior product is approximated by extruding backwards in time every (k-

1)-dim cell σ of the computational domain to form a new k-dim cell EX (σ,∆t). Evaluating

the integral of α over the extrusion and pairing the resulting value with the original cell σ

yields the mapping

iXα,σ
�

integrated over a time step ∆t. This procedure, once applied to

all (k-1)-dim cells, assigns a value to every σ, hence giving the desired discrete (k-1)-form iXα.

(a) (b) z

x

y

Figure 1.3: In the discrete setting, the extrusion of a 0-dim manifold (left), 1-dim manifold
(right), or k-dim manifold is approximated by projecting the Lagrangian advection of the mani-
fold into n number of 1-dim components.

Approximating the Extrusion. Instead of a Lagrangian advection of the cell σ to determine

EX (σ,∆t), we have recourse to a fully Eulerian approach by projecting the advection to axis-

aligned motions, allowing for a dimension-by-dimension WENO reconstruction. Consider the

simple example illustrated in Figure 1.3(a) where a 0-dim cell is advected through the flow of

X , creating a 1-dim extrusion between initial and final positions of the particle as indicated by

the arrow. Rather than evaluating the integral of α over this geometrically non-trivial manifold,

13

we project the extrusion into x - and y-components (seen in bold), evaluate
∫

α on each com-

ponent independently, finally taking the sum of these terms as an approximation to the integral

over the true extrusion. Note that this approximation corresponds to a straightline approxima-

tion of the extrusion as indicated with a dashed line in the figure. Similarly, the interior product

of a higher dimensional form is displayed in Figure 1.3(b), showing how the extrusion of a

1-dim cell is approximated; note how the y-component projects to a line, hence one term of the

integral approximation is automatically zero. The advantage of this dimension-wise decomposi-

tion, as hinted at earlier, is that it allows us to apply a high-order accurate 1-dim WENO stencil

to each of the axis-aligned components of the extrusion that requires numerical integration of

α, without resorting to a more expensive multidimensional WENO scheme—although such a

treatment could also be attempted.

Note that the actual position of this dimension-wise advection of σ is computed through back-

tacking. The cell σ is flowed backwards in the velocity field for one discrete time step. The

extrusion formed by this flow is precisely the manifold that will pass through σ during the next

time step. In computations, we apply the velocity field defined at σ and perform a forward

Euler time discretization for one negative time step. This is an extremely simple time update

rule, and leads to an undesirable CFL style condition on the maximum time step∆t that can be

used while maintaining a well behaved solution. If the velocity field required by the Euler step

is not conveniently located with respect to appropriate k-cells, we interpolate the field (through

linear interpolation, more accurate approximations could be employed). This entire bracktrack-

ing concept is highlighted in Figure 1.4, where an edge is advected backwards in time to find

the extrusion on which we integrate.

Figure 1.4: Upwind 1-dim polynomial reconstruction of ω used to compute iXω by integrating
ω over the backtracked extrusion EX (σ, t).

14

Upwind Approximation. The benefits of upwinding (i.e., biasing computations in the direc-

tion determined by the local direction of the velocity) to discretize hyperbolic PDEs are well

known: the method of characteristics suggests the use of information upstream from the area

of evaluation, in an attempt to limit diffusion near discontinuities. We therefore use the up-

wind WENO approximation based on the sign of the velocity at the mesh element currently

dealt with, as reviewed in Section 1.2.3. Specifically, this implies using more stencils in the up-

wind direction during the WENO reconstruction to compute the integral over the backtracked

extrusion. Due to our dimension-wise decomposition of the extrustion, all WENO evaluates are

essentially 1-dimensional in nature, even when integrating over arbitrary k-forms.

1.3.3 High-order Lie Advection

We now have all the ingredients to introduce a discrete Lie advection. Given a k-form αk,

we compute the (k+ 1)-form dkα
k by applying the transpose of the incidence matrix ∂ k+1 as

detailed in Section 1.2.2. We then compute the k-form iX (dα
k), and the (k-1)-form iXα

k. By

applying d(k−1) to the latter form and summing the resulting k-form with the other interior

product, we finally get a high-order approximation of Cartan’s homotopy formula of the Lie

derivative.

1.4 Applications and Results

We now present a few direct applications of this discrete Lie advection scheme, both for illus-

trative and comparative purposes.

1.4.1 Interface Advection

Applying the HOLA approach to a standard finite volume scalar field discretization results in

already well known advection schemes. Such schemes were used recently in [46] as the basis

for advection and generalized gradient flows for density-based Eulerian surfaces. When only

the interface is of concern, algorithms were presented to limit the computation of the Lie ad-

vection to a narrow band of cells nearby the surface to increase computational efficiency. This

method can be used for a range of applications from geometry processing of foliations to mass-

preserving fluid simulation (see Figure 2.2). In the latter case, the conservative nature of the

15

scheme avoids the volume loss which plagues conventional level set methods. An in depth dis-

cussion of the Navier-Stokes fluid update, coupled with free surface, is presented in Chapter 2.

Standard CFL time step restrictions can also be avoided to increase efficiency at the cost of a

decreased order of accuracy as pointed out in [31].

1.4.2 Fluid Simulation through Vorticity Advection.

Consider an incompressible, homogeneous fluid on a manifold D. The Euler equations for the

velocity field v of the fluid, assuming a unit density (ρ = 1), are given by

∂ v

∂ t
+ (v · ∇)v= −∇p (1.13)

with the constraint that ∇ · v = 0 and that v is tangential to the boundary ∂D. The equation

above can be expressed in the language of exterior calculus, in terms of the Lie derivative and

the (n-1)-form v = ivVol (i.e., the flux induced by the velocity), as

∂ v

∂ t
+Lvv = d(1

2
|v|2− p). (1.14)

We define vorticity as ω = d ⋆ v, and apply the exterior derivative to both sides of Eqn. 1.14.

Since d and Lv commute, this reduces to the well known Lie advection equation

∂ω

∂ t
+Lvω= 0. (1.15)

This simply states that vorticity is advected along the flow, and using the machinery described in

the previous section, we can design an algorithm to simulate exactly that. Notice that working

directly with vorticity avoids the numerical diffusion induced by projection on divergence-free

fields [16]. We begin by discretizing our space D through a typical axis-aligned cartesian gird,

and now consider the velocity form v as being the flux of our fluid (i.e., a coordinate-free

representation of the velocity). With this spatial approximation in place, we use a fractional

step time integration of Eqn. 1.15 that proceeds as follows: (1) at each time step we advect

the discrete form ω along the current velocity v using a forward Euler HOLA scheme, and (2)

from the updated ω determine the new stream function, a (n-2)-form φ, through the Poisson

equation ∆φ = ω; the linear solver used here is the one detailed in [23]). The new velocity

form can now be deduced via the relation dφ = v, and the procedure can be started anew. Note

16

that the no-flux condition through ∂D leads to Dirichlet boundary conditions on the Poisson

equation that gives the correct number of constraints. Also note that vorticity is an exact form

sinceω= d ⋆v, therefore dω= 0 and hence the first term of the Lie derivative, defined through

the magic formula, Eqn. 1.12, drops out.

Figure 1.5: Vorticity advection. A 2D domain is initialized with two Taylor vortex distributions
of same sign, visualized in false colors (Left); a 1D slice of vorticity is also presented (Right).

Numerical experiments are presented for comparison purposes—we solve the vorticity formu-

lation of the Euler equations using a pseudospectral method with 3/2 dealiasing for the non-

linear product [12], the circulation preserving scheme of [23], and using the HOLA scheme

with two different types of stencils: a piecewise constant stencil (data from one collocation

point required; HOLA-1), and a WENO piecewise cubic stencil (four stencils, seven collocation

points total; HOLA-7). A 2D square domain with x ∈ [−π,π] and y ∈ [−π,π] and periodic

boundary conditions is initialized with two Taylor vortices, the vorticity distribution of which is

given by

ω(x , y) =
U

a

�

2− r2

a2

�

exp

�

1

2

�

1− r2

a2

��

, (1.16)

where r is the distance from (x , y) to the center of the vortex, and a is the core size of the

vortex, and U is the maximum tangential velocity. We can specify multiple Taylor vortices by

taking the sum of the contributions of ω from each vortex. Note that the distribution above

ensures the integral of vorticity over the computational domain is zero, a necessary condition

to allow comparison with Fourier based methods. In all the numerical tests presented, the

spatial resolution of the grid is 128× 128, with parameters U = 1 and a = 0.3 for two Taylor

vortices separated by a distance of 0.8. These parameters yield vortices sufficiently small that

their evolution is minimally influenced by their periodic mirrors. It is noted that such a twin

Taylor vortex initialization exhibits a bifurcation in the dynamics as the separation distance

increases from zero; the vortices merge for small separations but eventually diverge for larger

17

Elcott et al. 2007

Pseudospectral

HOLA-1

HOLA-7

t = 31
3

t = 62
3

t = 20

Figure 1.6: The vorticity distribution of Figure 1.5 is evolved in time using several vorticity
advection schemes.

18

separations. In these numerical tests, the separation distance 0.8 is purposely very close to this

critical bifurcation threshold.

Using the WENO advection scheme,
∫

Dω is properly conserved, as vorticity is simply exchanged

between dual faces on the mesh, i.e. only one term of Cartan’s formula is employed. HOLA-7

results in a vastly decreased numerical diffusion of vorticity compared to low-order schemes.

However, numerical diffusion remains unavoidable over time, and manifests itself in the de-

crease of the total energy
∫

D
1
2
|v|2. Observe also, in Figure 1.6, how the order of accuracy

influences the dynamics of the vortices; the low order diffusive methods result in the vortices

artificially merging.

1.5 Conclusions

In this thesis, we have introduced an extension of the classical WENO techniques to handle ar-

bitrary discrete forms. The first WENO-based upwind discretization of both contraction and Lie

derivative was presented, extending Discrete Exterior Calculus to include high-order accurate

approximations to these operators. The advection of forms and vector fields are applicable in

a multitude of problems, including conservative interface advection and conservative vorticity

evolution.

Although WENO interpolation offers high-order accuracy at a relatively low computational cost,

numerical diffusion is still present and can accumulate over time. In particular, the scheme is

not variational in nature, i.e., it is not derived from a variational principle, as we have seen.

In the future, we expect that extensions can be made to handle simplicial meshes, although

this would require us to define a WENO based integration on irregular meshes. While some

works already exist in this area, e.g., [67, 39], the implementation is delicate with unavoidable

increases in memory and computational expense.

19

1.6 Third Order Stencils

For completeness, we provide the conservative WENO weights. We give the stencils and weights

used for a WENO advection scheme in our framework. Third order stencils are used, requiring

4 values per stencil. The 4 stencils can be combined using the weights w0 =
1

35
, w1 =

12
35

,

w2 =
18
35

, and w3 =
4

35
to obtain a 6th order approximation at a point in smooth regions. The

following qi (see Figure 1.7) compute the integral of the reconstructed ρ from the boundary

between ρx and ρx+1 to the boundary minus h for each stencil (generally v · d t), where ∆x is

the width of each grid cell.

q0

q1

q2

q3

ρx−3 ρx−2 ρx−1 ρx ρx+1 ρx+2 ρx+3

Figure 1.7: WENO Stencils: each stencil uses a different group of adjacent cells to compute the
integral of a polynomial reconstruction over the orange region. Note all stencils used include
the upwind (bold) cell ρx .

20

q0 =
h4

24∆x3
(ρx−3 − 3ρx−2 + 3ρx−1 −ρx) +

h3

12∆x2
(−3ρx−3 + 11ρx−2 − 13ρx−1 + 5ρx) +

h2

24∆x
(11ρx−3 − 45ρx−2 + 69ρx−1 − 35ρx) +

h

12
(−3ρx−3 + 13ρx−2 − 23ρx−1 + 25ρx)

q1 =
h4

24∆x3 (ρx−2 − 3ρx−1 + 3ρx −ρx+1) − h3

12∆x2 (ρx−2− 5ρx−1+ 7ρx − 3ρx+1)−
h2

24∆x
(ρx−2 − 3ρx−1 − 9ρx + 11ρx+1) +

h

12
(ρx−2 − 5ρx−1 + 13ρx + 3ρx+1)

q2 =
h4

24∆x3 (ρx−1 − 3ρx + 3ρx+1 −ρx+2) +
h3

12∆x2 (ρx−1− ρx −ρx+1+ρx+2) +

h2

24∆x
(−ρx−1 + 15ρx − 15ρx+1 +ρx+2) − h

12
(ρx−1 − 7ρx − 7ρx+1 +ρx+2)

q3 =
h4

24∆x3
(ρx − 3ρx+1 + 3ρx+2 −ρx+3) +

h3

12∆x2
(3ρx − 7ρx+1 + 5ρx+2 −ρx+3) +

h2

24∆x
(11ρx − 9ρx+1 − 3ρx+2 +ρx+3) +

h

12
(3ρx + 13ρx+1 − 5ρx+2 +ρx+3)

The smoothness function we used is the sum of the integral squared of each derivative of the

reconstructed polynomial over the region of the reconstruction Ω, i.e.

S(ρ(x)) =

3
∑

k=1

∫

Ω

(
∂ k

∂ x k
ρ(x))2 d x . (1.17)

For the cubic polynomial constructed from ρ0, ρ1, ρ2, and ρ3 this evaluates to

S(ρ0,ρ1,ρ2,ρ3) =
1

60
(867ρ2

0 + 6083ρ2
1 − 11606ρ1ρ2+

6083ρ2
2 + 3802ρ1ρ3− 4362ρ2ρ3+ 867ρ2

3 −
2ρ0(2181ρ1− 1901ρ2+ 587ρ3))

We also tried several other smoothness functions, including weighting the derivatives based on

their order and varying the range of integration, but found little to no qualitative differences in

the results. The above equations are all used in standard WENO fashion to compute the final

flux through the face between ρx and ρx+1 (assuming h= v · d t is positive) as

1

α

3
∑

i=0

wiqi

S(ρx+i−3,ρx+i−2,ρx+i−1,ρx+i) + ε
(1.18)

21

where

α=

3
∑

i=0

wi

S(ρx+i−3,ρx+i−2,ρx+i−1,ρx+i) + ε
(1.19)

is a normalization factor, and ε is a small number to avoid division by 0 (taken as 1× 10−6 in

our experiments).

22

Chapter 2

Mass-Conserving Fluid Flows

The governing equations of inviscid incompressible fluid motion are called the Euler Equations,

and are also known, with an additional dissipative viscous term, as the Navier-Stokes Equations.

There is an extensive history of solving Navier-Stokes (NS) in the field of computational fluid

dynamics (CFD), yet the recent push towards realistic animation of fluids for computer graphics

has led to renewed interest and new breakthroughs in this exciting and rich area of research. In

graphics, the motivation is obvious: fluids, with their intricate and complex behavior, have long

been viewed as the pinnacle aspiration of physically-based animation, due to this relative com-

plexity. It is a drudging and laborious process for an artist to painstakingly model the motion of

a liquid explicitly, in a frame by frame manner. Moreover, the results are often lackluster due to

the complicated dynamics of even a relatively simple flow. The problem is also made difficult

by the high expectations of a sophisticated audience who interact with fluids on a regular basis.

In this chapter, we continue to develop and improve upon physically-based animation and sim-

ulation methods by proposing and enforcing a discrete mass-conservation law; a computational

counterpart analogous (for homogeneous flows) to the mass conservation constraint implic-

itly inherent to the Navier-Stokes Equations. In addition, we thoroughly describe all the back-

ground necessary for the reader to devise and create their own fluid solver with mass preserving

properties. This chapter is an account of one implementation; specifically the marker-and-cell

(MAC) method from Welch et al. [64] with Chorin’s L2 pressure projection step [17] on to

the divergence free manifold. This style of fractional step integration has proven itself worth-

while for visual accuracy, simple implementation, and relatively fast computations (although

real-time performance is still unpractical in the general case, even with GPGPU based imple-

mentations such as [19]). We shall begin with a brief introduction into state-of-the-art fluid

23

techniques in graphics, and continue by introducing the Navier-Stokes Equations and then de-

tail the specific finite difference discretizations of appropriate operators that allows us to solve

for fluid motion on our discrete computational domain, and the numerical methods we employ

to solve the partial differential equations of motion.

2.1 Background Literature

Computational Fluid Dynamics. Fluid mechanics has been studied for centuries in the scien-

tific community, first analytically, and later (over the last fifty years) numerically as well. Com-

putational fluid dynamics aims to discretize the governing equations, Navier-Stokes, through

various techniques such as Finite Volume (FV), Volume of Fluid (VOF), Finite Element, Finite

Differences (FD), and in very specific cases, Pseudo Spectral methods as well. While we will not

overview all of these methods here, a comprehensive discussion of computational approaches

can be found, for instance, in Langtangen et al. [38]. It is important to note, and generally ac-

knowledged, that no one scheme is found to be ideal over the vast range of fluid flow problems

encountered, e.g., from inviscid to viscous, or from stable flows to turbulent flows. Practitioners

in computer graphics have selected methods based on their suitability (i.e., computational cost),

robustness, and appealing visual behavior.

Computer Animation. Today’s modern techniques are used for photorealism [51], or control-

ling liquid-like characters [66, 44, 55]. These advanced simulation systems are all derived from

the basic setup of Foster and Metaxas [29]; they adopted the NS Equations for incompressible

fluids as their primary physical model, and attempted to solve these equations in three dimen-

sional domains. They advocated the use of a particle Marker-And-Cell (MAC) grid discretization

of the computational domain, a concept earlier introduced by [64] in the CFD community, and

now used for graphics. The type of immiscible fluid behavior being modeled, e.g., pouring

water into a glass, or perhaps an ocean wave breaking onto a sea shore, are example of two

phase flows. Since the relative density of a typical liquid such as water to air is approximately

a thousand to one, Foster and Metaxas were able to induce huge computational savings by

opting to model the dense liquid volume only, with minor to negligible implications for the

visual behavior in most cases. Assuming vacuum on the other side of the immiscible interface

is commonly referred to as a free surface fluid simulation. Foster and Metaxas discuss the first

24

steps in dealing with the free surface boundary conditions required by the discontinuous state

variables near the interface, pressure and velocity in particular. The staggered, rectilinear grid

of cells they use, allows for finite difference stencils to be applied in an attempt to appropriate

discretize and solve the non-linearity of the NS PDE’s in a computational tractable way. A spatial

central differencing scheme was employed to account for the fluid convection (aka advection)

and viscosity terms, and the entire system was integrated over time though a forward Euler step

time discretization. Such explicit schemes proved to have significant drawbacks. Even for rela-

tively inviscid substances, numerical stability is a problem due to the Courant-Fredreichs-Lewy

(CFL) condition, which dictates that the largest stable time step ∆t is proportional to the size

of the grid cell, i.e., that ∆t ∼ h where h is the length of a cell. As the grid is refined for spatial

accuracy, the impact of the CFL condition is to inflate the number of iterations required to main-

tain a well behaved solution. This restriction quickly becomes computationally prohibitive for

graphics and animation. Jos Stam [58] published what has become a highly celebrated break-

through, in which he advocated implicit integration as a way to circumvent the (sometimes

unconditional) instabilities of alternative methods. His approach (aka “Stable Fluids”) illus-

trated the use of a semi-Lagrangian method of characteristics that was first proposed in [18],

and previously used in the meteorological community [59] for large time stepping. In addition,

Stam documented an implicit approach to solving the dissipative viscous term (although at the

cost of an additional linear system to solve), hence achieving a guaranteed unconditional sta-

bility at the cost of some numerical dissipation in the solution that is induced by these implicit

schemes. Generally speaking, the unnatural dissipation has been an acceptable price to pay

for arbitrarily large time steps, although several recent contributions such as [23] and [26]

specifically try to address this problem—the vorticity preserving scheme of Elcott et al. [23] is

preferable in this case, as the vorticity confinement approach [26] achieves this added visual

complexity by reintroducing an unstable and uncontrollable term to the solver.

Augmenting the basic solver approach proposed by Foster and Metaxas [29], further advance

was made in Foster and Fedkiw [28], allowing the first practical simulation of liquids (i.e. free

surfaces) for use in offline applications, particularly in films. In addition to incorporating the

Stable Fluids technique, [28] introduced a novel hybrid particle / level set representation of

the immiscible interface as a mechanism to elegantly handle the dynamically changing topol-

ogy of the interface as it is stretching and splashing. The fundamental philosophy behind the

25

approach was to exploit the advantages of both an Eulerian representation of the interface and

a Lagrangian representation of the fluid volume itself. Particles provide a smooth integration of

the fluid’s velocity field, and are used to maintain accuracy of the fluid position, since they are

not bounded to the course resolution of the underlying grid. Conversely, the level set function is

used primarily to implicitly capture the topology of the fluid / vacuum interface. Furthermore,

while Foster and Metaxas [29] applied a slow linear solver, a Successive Over Relation (SOR)

iteration to enforce fluid incompressibility via Chorin’s pressure projection [17], this numerical

method was replaced by a more effective (i.e., efficient) Preconditioned Conjugate Gradient

(PCG) algorithm to solve the sparse linear system in order to determine the pressure. Increases

in speed, accuracy and ultimately, in the quality of the results, made this an important contribu-

tion, especially as a systems oriented approach suitable for commercial application. Perhaps the

final significant improvement to the core fluid simulator was the paper of Enright et al. [25],

which saw a general shift in emphasis away from modeling the liquid volume, to modeling the

liquid interface. By using information gained from the level set function, valid velocity val-

ues are grown (extrapolated) out from the fluid volume into the open vacuum region (using

the fast marching method proposed by Adalsteinsson and Sethian [2]), creating an upwind,

“method of characteristics” style velocity field extrapolated at the interface. The particle / level

set approach could then be symmetrized for interface advection and capture, by now adding

particles to the vacuum side of the immiscible interface and allowing them to be advected by

this extrapolated velocity field (usually the velocity is only determined inside the fluid). This

final “Particle Level Set Method” (PLSM) as it is known, is currently the defacto standard for

high quality tracking of dynamically evolving interfaces.

2.2 Mass Density based Fluid Representation

Departing from the hybrid Eulerian / Lagrangian schemes developed by Enright et al. [25] and

others, we opt for a cell-centered Finite-Volume setup, where a single value per cell is stored.

This setup falls in the category of interface capturing methods, as it defines the interface as a

region of steep gradient of a characteristic-like function (as opposed to LSM-like interface track-

ing methods which treat the interface as a sharp discontinuity moving through a grid). This

setup has an obvious physical interpretation: acknowledging the fact that explicitly maintain-

ing a perfect Heaviside function of the fluid is very difficult in the discrete Eulerian setting, we

26

Figure 2.1: Volumetric Rendering Of Fluid. A bunny-shaped fluid is dropped into a box,
preserving the total mass even after gravity is inverted arbitrarily, causing extreme deformation.
Notice how the volumetric rendering reveals intricate details captured by all the isosurfaces
throughout the animation, despite a very coarse grid resolution of only 643.

do not encode the exact surface, but instead store an approximate (blurred, in a sense) mass

density of the fluid inside each cell. Thus, a cell with a value of 0 will be considered completely

outside the fluid, a cell at 1 will be considered as completely inside, and the rest of the cells

(with densities varying from 0 to 1) represent a smeared interface of the fluid, or alternately

the proportion of fluid inside the cell (note that we will use the terms density and mass density

interchangeably as our explanations will always use densities restricted to [0,1]). Unlike VOF

or PFM, we do not restrict the profile of our density function, avoiding the computational over-

head incurred when a special profile needs to be maintained, as well as allowing the treatment

of multiple isosurfaces with varying shape. This density-based setup will facilitate the use of

this Eulerian representation in fluid simulation.

This mass density can be seen, in the context of HOLA, as a discrete differential n-form ρ which

we use in 2- and 3-dimensions to represent the mass density of a fluid. This is used in the

context of free surface flows, where we must explicitly keep track of where the fluid is and

how it occupies the computational domain D. The immiscible interface between the fluid and

27

vacuum is encoded at the 1/2 isovalue, and shortly we will see how the fluid equations of

motion are coupled to this interface, for example with boundary conditions that the pressure

p = 0 at the ρ = 1/2 isovalue. The discrete form ρ is a characteristic function that is initialized

to one inside the fluid, and zero outside the fluid. This mass density evolves in time through

Lie advection, i.e., it adheres to the time evolution

∂ ρ

∂ t
+L~u ρ = 0, (2.1)

where the velocity field has been derived from the Navier-Stokes Equations, as discussed later

in this chapter. Our mass density representation accommodates incompressible free surface

fluid flows seamlessly. Contrary to the level set approach, mass preservation is easily achieved

through our advection scheme guaranteeing that mass is only exchanged through faces, and

hence conserved, via the HOLA scheme, as seen in Chapter 1. For the mass density ρ, in order

to integrate the advection, we must compute the Lie derivative via

L~uρ = di~u ρ+ i~ud ρ (2.2)

= di~u ρ. (2.3)

Note that the second term of Cartan’s formula drops out in this special setting; it is automatically

zero because we take the discrete differential d of the n-form ρ, yielding a n+1-form living on a

n-dimensional discrete manifold, which is thus always zero. The intuition behind the remaining

term is to compute the flux through the face, as described by i~uρ, and then take the sum of

these terms adjacent to each cell, i.e., the discrete differential d, to obtain the net change of

mass density. Preserving
∫

D ρ through time helps to avoid the visual artifacts of volume loss

traditionally present in particle-free surface capturing schemes—and without the memory and

computational overhead associated with particles. A simple forward Euler time discretization

is used to update ρ from a time step n to step n+ 1,

ρn+1 = ρn+∆t L~uρn. (2.4)

Having a mass density provides us with more intricate visualizations than the traditional single

level-set visualization: Figure 2.1 depicts volume renderings of a long simulation run, showing

the complexity of the details captured in the density function even on a coarse grid—and mass

28

Figure 2.2: Incompressible Fluid Simulation. The feline flows into a thin layer of liquid, show-
ing plenty of small-scale motion while preserving mass - all in the absence of any Lagrangian
artifice. Grid Size: 1283 for density, 643 for fluid solver.

is preserved throughout. Notice in Figure 2.2 that our density-based Eulerian formulation

brings robustness to the simulation as even thin layers of fluid are treated appropriately. In

the continuous setting, mass conservation and true volume preservation are synonymous under

divergence freeness. While this is difficult to achieve in the discrete world, we can apply a

sharpening procedure (as in [46]) which goes far to alleviate artifacts of spatial mass diffusion,

but without the visual artifacts often seen with VOF methods. Note that our physically based

interpretation of ρ as a mass density could also be amenable to high-speed compressible fluid

models, while again maintaining mass conservation exactly.

2.2.1 Miscible Fluids

Miscible fluids can be simulated effortlessly as well, as multiple fluid densities are admissible

in our representation. The total fluid mass density per cell is directly derived as the sum of

these fluid densities. To demonstrate the mixing between liquids, we use a blending of colors

to indicate the types of fluid (see Figure 2.3). In this particular case we initialize a ρr (red

29

Figure 2.3: Miscible Fluids. Multiple fluid densities can be simulated in our density-based
representation. Displayed are slices of two miscible fluids to demonstrate that mixing is easily
achieved even on a very coarse grid size of 643.

fluid) and ρw (white fluid) individually, and evolve each in time by applying the Lie advection

procedure to each mass density independently. In other words, we solve Equation 2.1 twice,

once for ρr and once for ρw, to evolve the densities forward in time. Finally we take the union

of the two densities, simply by summing the two ρ = ρr + ρw. This final ρ is then fed to

the fluid solver in order to determine the velocity field for the next time step. If we wish to

render the fluids, as in Figure 2.3, we extract the 1/2 isosurface through a Marching Cubes

procedure [41], as is common for levelset contouring. For each vertex with position ~x in the

extracted mesh, we evaluate the texture coordinate ζ,

ζ(~x) =
ρr(~x)

ρr(~x) +ρw(~x)
, (2.5)

as the proportion of the total fluid that is red at that location, whereby the ρ’s are sampled

using a simple trilinear interpolation over the cartesian grid. An appropriate one-dimensional

texture map is then applied to the resulting triangle mesh surface during the rendering stage,

in order to obtain the desired mixing effect in the final image.

30

2.3 Navier-Stokes Equations

In our attempts to numerically simulate the physical behavior of liquids, it is critical to have

a thorough understanding of the dynamical system and underlying invariants and symmetries.

The governing equations of incompressible fluid motion we consider here are the velocity for-

mulation of the Navier-Stokes equations. A fluid of roughly constant density and temperature

can be described as a velocity field ~u and a pressure field p. Assuming these quantities are

known at some initial time t = 0, the evolution of these fields over time are described by a

nonlinear set of PDE’s, commonly written in condensed form as

∇ · ~u = 0, ~u|∂D = 0, (2.6)

∂ ~u

∂ t
= −(~u · ∇)~u− 1

ρ
∇p+ ν∇2~u+ ~g, (2.7)

where ν is the dissipative kinematic viscosity (i.e., the “thickness”), ρ is the density and ~g de-

fines external forces acting on the fluid (most commonly—gravity). In solving Equation 2.7, it is

typical to label the terms by their physical interpretation, namely the self-advection term ~u(∇·~u),
the pressure term 1

ρ
∇p and the diffusion term ν∇2~u. An important characteristic of liquids is

conservation of mass; under the continuous model of Equations 2.6 and 2.7 this conservation

law is synonymous with incompressibility under the divergence free constraint of Equation 2.6.

In reality, liquids can vary in volume, especially in high-speed scenarios, but for practical pur-

poses of the low-speed fluid scenarios we wish to model, this effect can be safely ignored. We

will see in Section 2.4.2 that the incompressibility assumption accommodates a convenient so-

lution of the pressure term in Equation 2.7. Meanwhile, the second part of Equation 2.6 simply

states that the fluid should respect spatial boundary conditions of its enclosing domain D; the

perpendicular component of ~u at the boundary of the fluid domain ∂D is zero, and hence im-

plies that no fluid will be advected through the solid boundaries of the computational domain,

but can only run tangent to ∂D. For a complete derivation of the Navier-Stokes Equations you

are referred to the excellent fluid mechanics reference by Chorin and Marsden [17].

2.3.1 Domain Discretization

The Equations 2.6 and 2.7 lead to solutions in a continuous domain that are true in the point-

wise sense. Clearly this is inconceivable for computational purposes, therefore it becomes nec-

31

z

x

y

p

h

u

v

w

Figure 2.4: MAC Grid. For a given cell i, j, k, velocities are stored at the appropriate cell faces
in a staggered grid formation, while pressure is stored at cell centers.

essary to choose a discrete domain on which to sample these continuous functions. The Marker-

And-Cell grid stems from the simulating of fluids with free surfaces in CFD [64] and is perfect

for our use with finite differencing spatial derivatives. Figure 2.4 shows a MAC cell of spacing

h with the proper locations of pressure variables at the center, and a velocity vector whose x ,

y and z components (u, v, w, respectively) lie at the center of their respective cell face. These

vector components are stored in what is known as a staggered grid formation, whereby the x -

component is stored on the left face, the y-component on the bottom face and the z-component

on the back face, and where each component can be thought of as a net flux of mass traveling

through the representative face. The computational grid has dimensions I×J×K , indexed from

zero. The scale of the solver is given by a length in meters for which h =length/min |I , J , K |.
As a general rule of thumb, all physical parameters are stored in SI units for simplicity and

consistency.

Frequently velocity values will be required at locations that are not explicitly represented by

our grid. In these situations, we apply piecewise linear basis functions to obtain a trilinear

interpolation on all three velocity components to obtain an acceptable approximation of velocity

at the desired location. One must be careful in implementing this, remembering to note that

each component of the velocity is stored at a different location frame of reference (i.e., all x−,

y−, z−variables live on a different regular lattice). For instance, to find the velocity at the

32

center of cell (i, j, k) we must evaluate

~u(ih, jh, kh) =
1

2













ui, j,k + ui+1, j,k

vi, j,k + vi, j+1,k

wi, j,k +wi, j,k+1













, (2.8)

which is obviously not the same as the velocity stored in the MAC grid indexed by (i, j, k) which

instead is ~ui, j,k = (ui, j,k, vi, j,k, wi, j,k). For ~ui, j,k the x -component is stored at (ih− h/2, jh, kh),

the y-component at (ih, jh− h/2, kh) and the z-component at (ih, jh, kh− h/2).

2.3.2 Spatial Derivatives through Finite Differencing

Finite differences are used to give approximations to spatial derivatives on a discrete lattice.

Several derivatives will be required for solving Navier-Stokes, so we provide a brief overview

of the discrete operators we employ. We begin with the continuous gradient operator ∇, for

which a FD counterpart is defined. The discrete finite difference approximation of the gradient,

for the pressure at cell (i, j, k), is the vector

(∇p)i, j,k =
1

h













pi, j,k − pi−1, j,k

pi, j,k − pi, j−1,k

pi, j,k − pi, j,k−1













, (2.9)

where each component of the vector is defined at the appropriate face of the cell (i, j, k). This

approximation is a first-order centered difference operator, i.e., errors grow with O (h2) mea-

sured in the number of terms the Taylor series expands to. Next, the finite difference approx-

imation of the divergence operator ∇· is defined by taking the net flux of the velocity values

adjacent to the cell (i, j, k), or in other words

(∇ · ~u)i, j,k =
1

h

�

ui+1, j,k − ui, j,k + vi, j+1,k − vi, j,k +wi, j,k+1 −wi, j,k

�

, (2.10)

and is stored at the center of the cell. Finally, we require a discretization of the Laplacian

operator ∇2. A second-order approximation of the Laplacian operator, applied to a velocity

33

component ui, j,k, is given by

∇2ui, j,k =
1

h2

�

ui−1, j,k + ui, j−1,k + ui, j,k−1− 6ui, j,k + ui+1, j,k + ui, j+1,k + ui, j,k+1

�

. (2.11)

In the upcoming Section 2.4.2, the Laplace operator is needed in the context of a Poisson

equation we must solve to determine the pressure field of the fluid at a given time step, in

addition to an implicit formulation of the viscosity term.

2.4 Updating the Velocity Field

We update the velocity field using Equations 2.6 and 2.7 at all grid cells that are full of fluid. We

determine if a cell is included in the Navier-Stokes solve (if it is ‘full’ of fluid) by evaluating the

mass density ρ, specifically if ρi > 1− ε, the cell i is included in the NS update, thus allowing

pressure projection to a divergence-free velocity field to be computed in the usual fashion.

Earlier, it was hinted at that the NS Equations are solved in a term-by-term fashion, temporarily

relaxing the divergence free constraint in between time steps. The operator splitting technique

used by Stam [58] is applied to solve Equation 2.7 in a fractional step integration, from step n

to n+1 via a forward Euler time discretization

~u1 = ~un −∆t[(~un · ∇)~un− ~g], (2.12)

~u2 = ~u1 +∆t ν∇2~u1, (2.13)

~un+1 = ~u2 −
∆t

ρ
∇p. (2.14)

In the following subsections we will discuss how to evaluate both the viscosity term ν∇2~u and

the advection term (~u ·∇)~u) through an unconditional stable approach. In section 2.4.3 we will

see how our volumetric representation of the fluid, as it moves through the domain D, interacts

with the solution of the NS Equations through Dirichlet boundary conditions on the pressure.

2.4.1 Solving for Self-Advection and Body Forces

Self-advection is the phenomenon whereby disturbances in a vector field are propagated through

the field over time. Alternatively, you can think of this as infinitesimally small pockets of fluid

pushing and pulling on other pockets of fluids. A river, for example, is a flow dominated by

34

self-advection (and gravity, obviously). To solve the self-advection term, we invoke the semi-

Lagrangian method of characteristics employed by Stam in [58]. It is highly desirable to use

a time integration method that is Total Variation Diminishing (TVD), in other words a scheme

which does not produce any spurious oscillations. We will apply a fourth-order TVD Runge-

Kutta routine for update of velocity. For a particle at ~xn, its position is updated from step n to

n+ 1 via the equations

k1 =∆t ~u(~xn), (2.15)

k2 =∆t ~u(~xn+
k1

2
), (2.16)

k3 =∆t ~u(~xn+
k2

2
), (2.17)

k4 =∆t ~u(~xn+ k3), (2.18)

~xn+1 = ~xn+
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O (∆t5). (2.19)

The setup above give the fourth-order Runge-Kutta scheme applied to the ordinary differenatial

equation

d~x

dt
= ~u(~x), (2.20)

which governs the motion of a particle in a velocity field. We treat each of the velocity compo-

nents ui, j,k, vi, j,k, and wi, j,k at step n as particles originating at their respective face on the cell

(i, j, k). We then ask the question “where was this particle at time step n-1?”. Once we have

computed the solution to this question through the Runge-Kutta technique, we now know the

position of the particle at step n that will be exactly on the face at step n+1. So for a particle

positioned at ui, j,k we follow its movement back through time, evaluate the velocity at that

location, and update ui, j,k with this freshly evaluated velocity. This Runge-Kutta scheme results

in an implicit and unconditionally stable update through backtracking, as discussed previously.

We are now free to add in body forces. In recent history, inclusion of complex body forces have

allowed for key-frame animation of fluid [63], while here it is simply included to account for

35

the force of gravity. We specify g = −9.81ms−2 and apply the formula

vi, j,k = vi, j,k +∆t g (2.21)

for all v components in the velocity that should be updated. In particular, we add gravity to

every y-component of velocity vi, j,k if and only if the adjacent cell above the face on which vi, j,k

lives, i.e., the cell (i, j, k), has some relevant amount of fluid that should feel the force of gravity.

We measure this amount of fluid by looking at the mass density function ρ. For each vi, j,k we

add gravity iff ρi, j,k > ε, where ε is a tiny numerical cutoff threshold (e.g., ε = 10−12).

This completes the computation of the first step in the operator splitting (Equation 2.12), leav-

ing us with the resultant intermediary velocity field ~u1 which is a best guess velocity to the

final solution. Now, let us adjust this field to account for pressure forces, a crucially important

procedure in producing a visually believable liquid simulation. Note that in doing so, we skip

the viscosity update in Equation 2.13. Due to numerical diffusion inherent with the implicit

methods presented here, omitting the viscosity term is very common in practice. In the next

section, we denote ~utemp the intermediate velocity field ~u1 or the field ~u2 if viscosity is desired.

We will discuss the viscosity update in Section 2.4.5, after presenting the pressure term, as our

implicit viscosity formulation builds upon machinery (solving linear systems) that is discussed

in the context of the pressure update. The pressure projection will yield the final velocity field

~un+1 for step n+ 1.

2.4.2 Pressure Projection through Helmholtz-Hodge Decomposition

Following Chorin and Marsden’s treatment of the subject in [17], we introduce for the purpose

of pressure projection, a well known mathematical result called the Helmholtz-Hodge decom-

position. The Hodge decomposition states that any vector field ~w with appropriate boundary

constraints can be uniquely decomposed into the following useful components,

~w =∇× ~a+∇φ +~b (2.22)

where ~a is a vector valued potential field, φ a scalar potential field and ~b is a “harmonic” vector

field. Note that the divergence of ∇× ~a is zero (∇ · (∇× ~a) = 0), the rotational of ∇φ is zero

36

(∇× (∇φ) = 0) and that the harmonic field ~b is both divergence-free (∇ ·~b = 0) and curl-free

(∇× ~b = 0). It is simple to see how our fluid equations fit this form; the vector field ∇× a

is a divergence-free, mass-conserving vector field with the same properties we wish to enforce

on ~u at the end of each time step. We hence set ~w to our best guess velocity field ~utemp and φ

to be our pressure field p, and see that a divergence-free field ~u can be created by subtracting

from ~utemp the gradient of the pressure field, ∇p. But how do we know what is the pressure p?

We solve for a pressure such that the L2 norm is minimized, i.e., we search for a pressure such

that subtracting its gradient causes minimum distortion between the initial velocity ~utemp and

the final velocity ~u, while still ensuring that ∇ · ~u = 0. In order to achieve this, Equation 2.6 is

applied to both sides of Equation 2.14, giving us

∇ · ~un+1 =∇ · ~utemp −
∆t

ρ
∇ · (∇p) = 0. (2.23)

By rearranging Equation 2.23 we obtain a somewhat disguised Poisson equation,

∆t∇2p = ρ∇ · ~utemp, (2.24)

which can be solved for the pressure field p. Once we have obtained the field p, it can be

substituted back into Equation 2.14 to provide the final velocity ~un+1. Let us analyze the form of

Equation 2.24; the right hand side is known and can easily be computed explicitly, while the left

hand side contains a Laplacian operator (refer in this case to the finite difference approximation

in 2.11). Indeed, we are presented with one linear equation and one unknown variable for each

of the N number of fluid cells, forming what is known as a linear system that must be solved for

p. Linear systems are very frequently derived in applied mathematics and engineering, giving

way to a wealth of literature and numerous numerical methods for solving such systems. While

early fluid animation systems such as [29] used a Successive Over Relaxation iterate, in this text

we will overview the preconditioned conjugate gradient algorithm (PCG) that provides faster

convergence (i.e., speed) through superior numerical conditioning.

2.4.3 Solving a Linear System via Preconditioned Conjugate Gradient

In order to use the PCG method, it is essential to create, from the fluid cells of the MAC grid,

the proper matrices that are fed as input to the numerical system solver. A typical linear system

37

is written in the form

Ax = b, (2.25)

in which A is an N×N matrix for which each of the N rows represents an equation, x is a column

vector of N unknown variables, and b is a column vector of N specified (known) values. To solve

the system, it is necessary to compute A−1; a surprisingly non-trivial proposition, especially if

A is large and/or nearly singular. Relating the Equation 2.24 with Equation 2.25, we set

A≡ −h2∇2, (2.26)

scaling by a factor of h2/∆t to make the matrix entries of A integer (useful for preserving

memory), and multiplying through by negative one (−1) to form a positive definite rather than

negative definite—a prerequisite for convergence of the PCG algorithm we will apply shortly.

We relate the x vector by

x ≡ p, (2.27)

as expected, and finally the vector b is set through the Equation

b ≡ −h2ρ

∆t
∇ · ~utemp, (2.28)

where the scaling by −h2/∆t is a consequence of earlier applying the same scaling to the left

hand size. The divergence, ∇ · ~utemp, is calculated via the finite difference Equation 2.10; note

that it has a factor h in the denominator, effectively canceling out a h in the Equation above.

Neumann Boundary Conditions In creating the matrix A from the N fluid cells, it becomes

apparent that the correct boundary conditions will be required to deal with two different kinds

of situations. For fluid cells with one or more solid wall neighbors, Neumann boundary con-

ditions are required because solid wall cells do not have an entry in A. We set a Neumann

boundary condition of zero, implying that there is no pressure gradient between the solid wall

and neighboring fluid. This is correct in our model because we explicitly enforce a zero velocity

component perpendicular to the wall and therefore as we subtract off the pressure gradient,

38

we expect this zero velocity to be maintained. Consider the left hand side of Equation 2.25,

plugging in Equations 2.26 and 2.27. A line from this matrix representing an equation with

unknown pressure values might look as follows,

−pi−1 − p j−1 − pk−1+ 6p− pi+1 − p j+1 − pk+1, (2.29)

where we have suppressed the irrelevant subscripts. This can be reformulated as

(p− pi−1) + (p− p j−1) + (p− pk−1) + (p− pi+1) + (p− p j+1) + (p− pk+1). (2.30)

The Equation above clarifies how to appropriately deal with solid boundaries. Since we want

the pressure gradient to be zero, the appropriate difference term simply falls out of the Equation

above. For example, if cell (i− 1, j, k) is a solid wall, we remove the (p− pi−1) term. Extensive

discussion and further clarification can be found in the doctoral thesis of Mark Carlson [13].

Dirichlet Boundary Conditions In the alternate case, Dirichlet boundary conditions are needed

for when a fluid cell is neighboring an empty cell that has no entry in matrix A. Because we

assume a zero pressure in empty cells, this is easily deal with by setting corresponding entry in

the matrix A to zero as well. A final word over the boundary conditions, is that there must be at

least one Dirichlet boundary condition contained in the matrix A, in order to ensure A is not sin-

gular and remains uniquely invertible, i.e., positive definite rather than positive semi-definite.

A more accurate pressure discretization at the free surface can be obtained by taking into ac-

count information from the mass density function ρ. We aim to enforce a pressure p = 0 at

the immiscible interface. By setting Dirichlet boundary conditions of zero on the pressure at

neighboring cells, we implicitly assume the surface passes through the center of such a neigh-

boring cell (recall that pressure is cell-centered). Using the mass density, we can obtain a more

accurate location of the interface ρ = 1/2 and use this to set Dirichlet conditions. We specify

these more complex Dirichlet boundary conditions on the Poisson equation at the fluid/vacuum

interface by setting the weight of the dual edge between two cells on opposite sides of the in-

terface to 1/(1
2
+ρi), where i is the cell on the ‘vacuum’ side of the interface. This is a heuristic

similar in spirit to the level set fluid interface alternative described by Bridson [9], as we are

ensuring that pressure is zero at the surface estimated at the distance of 1
2
+ρi from the center

39

of the fluid cell.

After creating the required matrices, we apply a conjugate gradient algorithm. For a good

reference on learning about the theory of conjugate gradients and the fundamental principles

they exploit, see [53] or [5], as such discussion is omitted here for brevity.

2.4.4 PCG Pseudo Code

Please refer to Algorithm 1. We solve Ax= b using a preconditioner matrix M. The N × N

matrices A and M are known, as is the column vector b. The solution is computed through an

iterative process and stored in x. As the method converges, r holds the residual of the solution.

The vectors p and q, and scalars α, β , ϕ, ϕold and bnorm store temporary values. The algorithm

terminates when the maximum number of iterations, itermax , is reached or when the solution

is found up to a tolerance threshold ε. For a typical simulations, we set itermax = 1000 and

ε= 10−12 when computing with 32-bit floating point (doubles). In general, larger systems will

have increasingly ill-conditioned matrices A, so it may be necessary to relax these conditions

by increasing itermax and/or ε. The preconditioner M can be used to improve the numerical

Algorithm 1: Preconditioned Conjugate Gradient
ϕ = 0
bnorm =

p
b · b

r= b−Ax

for i = 0 to i termax do
solve Mz = r

ϕold = ϕ

ϕ = r · z
if ϕ == 0 or

p
ϕ ≤ εbnorm then

break

if i == 0 then
p= z

else

β = ϕ/ϕold

p= z+ βp

q = Ap

α = ϕ/(p · q)
x = x+αp

r= r−αq

conditioning of the solution, allowing for improved convergence. Many preconditioners can

40

be used here, such as Gauss-Siedel, Incomplete LU, Incomplete Cholesky, and others. A trivial

preconditioner to implement is the Jacobi preconditioner, where M = diag A, hence making

the inversion required by line 5 of Algorithm 1 very easy; recall in this special case that M−1

is given by the element-wise reciprocal of the diagonal terms of M. Alternate preconditioners

are also possible. In particular, a popular choice in fluid animation literature is the Incomplete

Cholesky (IC) which is generally considered to have improved numerical properties, at the cost

of a delicate implementation. In this case we therefore recommend the reader to TAUCS [61], a

packaged and freely available library for efficiently solving sparse linear systems, which includes

many possible preconditioners, including IC, for users to experiment with.

2.4.5 Implicit Solution to Viscosity

The most straightforward way to solve the viscosity term ν∇2~u is to discretize the Laplacian

as in Equation 2.11. We can then express this viscosity term as a matrix V, and use a forward

Euler step of viscosity from the temporary operator splitting velocity field ~u1 to find ~u2 via

~u2 = ~u1 +∆t V~u1. (2.31)

For a particular velocity, for example the x -component at cell (i, j, k), the line in the matrix V

for this particular equation may look like

−ui−1 − u j−1 − uk−1+ 6u− ui+1 − u j+1 − uk+1, (2.32)

where we have suppressed the obvious subscripts. Note that we apply such a matrix V to x , y,

and z-components individually. Unfortunately the explicit forward Euler discretization above

leads to severe constraints on the time step ∆t. When the kinematic viscosity ν is large, the

time integration suffers from stiffness, and through stability analysis we determine the time

constraint is given by

∆t <
h2

6ν
. (2.33)

This condition is particularly severe; for advection we saw that the CFL condition is propor-

tional to the cell size h, ∆t ∼ h, while here for viscosity we have found that ∆t ∼ h2. This

quickly becomes computationally untractable as we refine the mesh, i.e., when reducing h.

41

In order to achieve stability, we convert the explicit matrix formulation into an implicit back-

ward Euler technique. This can handle arbitrarily large time steps, and although it requires

the solution to a costly linear system, it circumvents the need to adhere to the small time step

imposed to enforce stability in explicit schemes. The net is result is that this implicit scheme is

actually faster, in practice. The backward Euler formulation, first presented by Stam in [58], is

given by

(I−∆t V) ~u2 = ~u1, (2.34)

where I is the identity matrix. We therefore must solve for (I−∆t V)−1 and apply it to our

velocity field ~un to account for velocity. We use the PCG method presented in Section 2.4.3 as

a means to solve the linear system in Equation 2.34. This is quite simple, since the pressure

projection machinery (PCG solver) is already in place.

2.5 Computational Cycle

In this section we present the computational cycle of the complete fluid solver to perform a

time update through a brief explanation of each of the algorithmic steps not yet discussed.

An excellent supplement to this discussion can again be found in [13]. Let us examine the

remaining steps required to complete the picture—dynamically determining a time step during

simulation, enforcing physical boundaries, and velocity extrapolation.

2.5.1 Selecting a Time Step ∆t

As a predefined user input to the system, a frame rate for the simulation should be specified.

Typically this might be set to 1/24th of a second to parallel the speed of film, 1/30th for video,

and perhaps even a faster speed if slow motion footage or motion bluring effects are desired.

In the case of video, we are thus required to save and store the state of the liquid/air interface

thirty times per second of simulation time for further post-processing; isosurface extraction,

rendering and so forth. As we have seen previously, the Courant-Friedreichs-Lewy (CFL) condi-

tion will limit explicit simulation time steps for numerical stability, and although our simulator

is unconditionally stable for large time steps through use of implicit formulations, we choose

42

to moderate this by marching forward in time by a CFL factor of 1/2 in order to obtain a vi-

sually acceptable accuracy, rather than an arbitrarily large time step, for example ∆t = 1/30.

Because an output frames is desired at the specified frame rate, we introduce the notion of time

subcycling. At each iteration of the algorithm we select the upper threshold on the time step,

∆t =
1

2

�

hp
3 max |~u|

�

, (2.35)

unless the step required to progress the absolute simulation time t to the next frame output

point is less than the ∆t defined above. Intuitively, from Equation 2.35 it follows that very

turbulent fluid flows will require more iterations per frame than calm flows, since the CFL

condition is inversely proportional to the maximum velocity in the grid. The time step ∆t is

maintained throughout the iteration, and is used to guide both the update in velocity field ~u as

well as the evolution of the fluid’s mass density.

2.5.2 Enforcing Physical Domain Boundaries

Recall that the second component of Equation 2.6, ~u|∂D = 0 ensures that fluid cannot travel

through the solid wall interface that encases the valid fluid domain D. Because the per-

pendicular velocity components of ~u are defined precisely on the wall interface ∂D, and be-

cause we said earlier that perpendicular velocity must be eliminated, we simply set to zero

all the velocity components of cell faces that constitute a portion of the wall. In other words,

u1, j,k = uI−1, j,k = 0 ∀ j, k, and similarly in the other dimensions. While we have accounted for

the velocities at the interface ∂D, it is necessary to correctly set the velocities tangent to the

solid wall as well, i.e., the velocities inside the wall. This is true because we are using an in-

terpolation scheme to obtain valid velocity values, so particles near the wall will be effected by

such tangential values, even although they remain inside D. Three options exist for specifying

these velocities. Slip conditions simply try to facilitate the motion of the flow by specifying that

v0, j,k = v1, j,k ∀ j, k, anti-slip conditions purposely hinder the flow by setting v0, j,k = −v1, j,k ∀ j, k,

while ‘do nothing’ conditions — v0, j,k = 0 ∀ j, k — admittedly do nothing. The other dimensions

are set similarly. Under grid refinement, as h→ 0, anti-slip conditions are the physically correct

choice because it is reasonable to expect that surface friction will hinder fluid motion. Over a

discrete lattice, however, we have frequently chosen slip conditions because they help to keep

the liquid motion lively and interesting for longer, in accordance with our goals as a computer

43

graphics simulation.

2.5.3 Velocity Extrapolation

We perform a velocity extrapolation similar in spirit to Adalsteinsson and Sethian [2]. Velocity

extrapolation is a heuristic used to counteract the velocity dissipation caused by trilinear inter-

polation of the velocity during the semi-Lagrangian self advection step. By extrapolating the

velocity field to regions outside of the fluid (not accounted for by the Navier-Stokes update),

we create the effect of an “upwind” advection scheme to counteract the dissipation, as the ve-

locities unaccounted for by the Navier-Stokes update will not be used during any interpolation.

The procedure exploits the use of a queue to flood the domain, growing velocities from the fluid

into the empty neighbors.

To initialize, we cycle through all cells in the mesh and add to the queue all cells along the

vacuum / liquid interface, specifically all cells ‘i’ where ρi ≤ 1/2, and where at least one

adjacent cell ‘ j’ has ρ j > 1/2. We also cycle through all faces, tagging velocities as ‘valid’ if at

least one cell adjacent to the face is on the liquid side of the interface, i.e., if ρi > 1/2 and /

or ρ j > 1/2. We then begin to process the queue: for each cell in the queue, we cycle through

all velocities that are not tagged as ‘valid’. We evaluate the neighboring velocities of the same

orientation (e.g. x−, y- or z-components) using a six-point stencil, and assign to the face the

average velocity of all the neighbors tagged with a ‘valid’ velocity. This updated face is then

itself tagged as a ‘valid’ velocity. Once we have performed this computation on each of the

faces of the cell, all faces will have ‘valid’ velocities. We continue the extrapolation flooding by

adding any adjacent empty cells to the queue. Once the queue is empty, the entire domain has

been marked with valid velocities.

2.6 Conclusions

In this chapter we have detailed a MAC based algorithm for discretization of the Navier-Stokes

equations, and presented a novel mass-density representation of fluid with conservative advec-

tion using a forward Euler HOLA scheme. This yields robust free surface simulations, as mass

is preserved in the computational domain for all time. The mass-density representation also

accommodates volumetric interaction of miscible fluids through use of multiple density fields.

44

Bibliography

[1] R. Abraham, J. Marsden, and T. Ratiu, editors. Manifolds, Tensor Analysis, and Applications.

Applied Mathematical Sciences Vol. 75, Springer, 1988.

[2] D. Adalsteinsson and J. Sethian. The Fast Construction of Extension Velocities in Level

set Methods. J. Comput. Physics, 148:2–22, 1999.

[3] D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, and M. Shashkov, editors. Compatible

Spatial Discretizations, volume 142 of The IMA Volumes in Mathematics and its Applications.

Springer, 2006.

[4] D. N. Arnold, R. S. Falk, and R. Winther. Finite Element Exterior Calculus, Homological

Techniques, and Applications. Acta Numerica, 15:1–155, 2006.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[6] P. B. Bochev and J. M. Hyman. Principles of Mimetic Discretizations of Differential Oper-

ators. IMA Volumes In Mathematics and its Applications, 142:89–119, 2006.

[7] A. Bossavit. Computational Electromagnetism. Academic Press, Boston, 1998.

[8] A. Bossavit. Extrusion, Contraction : their Discretization via Whitney Forms. COMPEL:

The International Journal for Computation and Mathematics in Electrical and Electronic

Engineering, 22(3):470–480, 2003.

[9] R. Bridson, R. Fedkiw, and M. Müller-Fischer. Fluid Simulation. In ACM SIGGRAPH Course

Notes, 2006.

45

[10] S. Bryson and D. Levy. Mapped WENO and Weighted Power ENO Reconstructions in Semi-

Discrete Central Schemes for Hamilton-Jacobi Equations. Applied Numerical Mathematics,

56:1211–1224, 2006.

[11] W. L. Burke. Applied Differential Geometry. Cambridge University Press, 1985.

[12] C. Canuto, M. Yousuff-Hussaini, A. Quarteroni, and T. Zang. Spectral Methods in Fluid

Dynamics. Series in Computational Physics. Springer-Verlag, 1987.

[13] M. Carlson. Rigid, Melting, and Flowing Fluids. PhD thesis, Georgia Institute of Technology,

2004.

[14] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Pearson Educa-

tion, 2003.

[15] É. Cartan. Les Systèmes Differentiels Exterieurs et leurs Applications Géometriques. Hermann,

Paris, 1945.

[16] W. Chang, F. Giraldo, and B. Perot. Analysis of an Exact Fractional Step Method. Journal

of Computational Physics, 180(3):183–199, Nov. 2002.

[17] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer,

New York, 1993.

[18] R. Courant, E. Issacson, and M. Rees. On the Solution of Nonlinear Hyperbolic Differntial

Equations by Finite Differences. Comm. Pure and Applied Math, 5:243–255, 1952.

[19] K. Crane. Free Surface Flows Implemented on the GPGPU. Promotional demonstration

nVidia available at http://www.acm.uiuc.edu/ kcrane/www/, 2006.

[20] M. Desbrun, E. Kanso, and Y. Tong. Discrete Differential Forms for Computational Sci-

ences. In E. Grinspun, P. Schröder, and M. Desbrun, editors, Discrete Differential Geometry,

Course Notes. ACM SIGGRAPH, 2006.

[21] T. Dupont and Y. Liu. Back-and-Forth Error Compensation and Correction Methods for

Removing Errors Induced by Uneven Gradients of the Level Set Function. Journal of

Computational Physics, 190(1):311Ű–324, 2003.

46

[22] V. Dyadechko and M. Shashkov. Moment-of-Fluid Interface Reconstruction. LANL Techni-

cal Report LA-UR-05-7571, 2006.

[23] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. Stable, Circulation-Preserving,

Simplicial Fluids. ACM Trans. Graph., 26(1):4, 2007.

[24] B. Engquist and S. Osher. One-Sided Difference Schemes and Transonic Flow. PNAS,

77(6):3071–3074, 1980.

[25] D. Enright, S. Marschner, and R. Fedkiw. Animation and Rendering of Complex Water

Surfaces. ACM Trans. Graph., 21(3):736–744, 2002.

[26] R. Fedkiw, J. Stam, and H. W. Jensen. Visual Simulation of Smoke. ACM Trans. Graph.,

20(3):15–22, 2001.

[27] H. Flanders. Differential Forms and Applications to Physical Sciences. Dover Publications,

1990.

[28] N. Foster and R. Fedkiw. Practical Animation of Liquids. ACM Trans. Graph., 20(3):23–30,

2001.

[29] N. Foster and D. Metaxas. Realistic Animation of Liquids. Graphics Models and Image

Processing, 58:471–483, 1996.

[30] T. Frankel. The Geometry of Physics. Second Edition. Cambridge University Press, United

Kingdom, 2004.

[31] P. Frolkovic and K. Mikula. High-resolution Flux-based Level Set Method. Preprint 2005-

12, 2005. Department of Mathematics and Descriptive Geometry, Slovak University of

Technology, Bratislava.

[32] X. Gu and S.-T. Yau. Global Conformal Surface Parameterization. In Proc. Symp. Geometry

Processing, pages 127–137, 2003.

[33] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving

Algorithms for ODEs. Springer, 2002.

[34] F. H. Harlow and J. E. Welch. Numerical Calculation of Time-dependent Viscous Incom-

pressible Flow of Fluid with Free Surfaces. Phys. Fluids, 8:2182Ű–2189, 1965.

47

[35] D. J. Hill and D. I. Pullin. Hybrid Tuned Center-Difference-WENO Method for Large Eddy

Simulations in the Presence of Strong Shocks. J. Comput. Phys., 194(2):435–450, 2004.

[36] A. N. Hirani. Discrete Exterior Calculus. PhD thesis, Caltech, May 2003.

[37] A. Iske and M. Käser. Conservative Semi-Lagrangian Advection on Adaptive Unstructured

Meshes. Numerical Methods for Partial Differential Equations, 20(3):388–411, 2004.

[38] H.-P. Langtangen, K.-A. Mardal, and R. Winter. Numerical Methods for Incompressible

Viscous Flow. Advances in Water Resources, 25:1125–1146, 2002.

[39] D. Levy, S. Nayak, C. Shu, and Y. Zhang. Central WENO Schemes for Hamilton-Jacobi

Equations on Triangular Meshes. J. Sci. Comput., 27:532–552, 2005.

[40] X. Liu, S. Osher, and T. Chan. Weighted Essentially Non-oscillatory Schemes. J. Sci.

Comput., 126:202–212, 1996.

[41] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction

Algorithm. Proceedings of SIGGRAPH, 21(4):163–169, 1987.

[42] D. Lovelock and H. Rund. Tensors, Differential Forms, and Variational Principles. Dover

Publications, 1993.

[43] J. E. Marsden and M. West. Discrete Mechanics and Variational Integrators. Acta Numerica,

2001.

[44] A. McNamara, A. Treuille, Z. Popović, and J. Stam. Fluid Control using the Adjoint

Method. ACM Trans. Graph., 23(3), 2004.

[45] S. Morita. Geometry of Differential Forms. Translations of Mathematical Monographs, Vol.

201. Am. Math. Soc., 2001.

[46] P. Mullen, A. McKenzie, Y. Tong, and M. Desbrun. A Variational Approach to Eulerian

Geometry Processing. ACM Trans. on Graphics (SIGGRAPH), Aug. 2007.

[47] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA, 1984.

[48] J. Nédélec. Mixed Finite Elements in 3D in H(div) and H(curl). 1192, 1986.

48

[49] R. A. Nicolaides and X. Wu. Covolume Solutions of Three Dimensional DIV-CURL Equa-

tions. SIAM J. Numer. Anal., 34:2195, 1997.

[50] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153 of

Applied Mathematical Sciences. Springer-Verlag, New York, 2003.

[51] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and

R. Fedkiw. Directable Photorealistic Liquids. Symp. on Computer Animation, pages 193–

202, 2004.

[52] J. A. Sethian. Level Set Methods and Fast Marching Methods, volume 3 of Monographs on

Appl. Comput. Math. Cambridge University Press, Cambridge, 2nd edition, 1999.

[53] J. Shewchuk. An Introduction to the Conjugate Gradient Method without the Agonizing

Pain, 1994.

[54] J. Shi, C. Hu, and C. Shu. A Technique for treating Negative Weights in WENO Schemes.

J. Comput. Phys., 175:108–127, 2002.

[55] L. Shi and Y. Yu. Taming Liquids for Rapidly Changing Targets. In Symp. on Computer

Animation, pages 229–236, 2005.

[56] C. Shu and S. Osher. Efficient Implementation of Essentially non-Oscillatory Shock Cap-

turing Schemes. J. Sci. Comput., 77:439–471, 1988.

[57] C.-W. Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes

for Hyperbolic Conservation Laws, volume 1697 of Lecture Notes in Mathematics, pages

325–432. Springer, 1998.

[58] J. Stam. Stable Fluids. ACM Trans. Graph., 18(3):121–128, 1999.

[59] A. Staniforth and J. Cote. Semi-Lagrangian Integration Schemes for Atmospheric Models—

a Review. Monthly Weather Review, 119:2206–2223, 1952.

[60] V. A. Titarev and E. F. Toro. Finite-Volume WENO Schemes for Three-Dimensional Conser-

vation Laws. J. Comput. Phys., 201(1):238–260, 2004.

[61] S. Toledo. Taucs. Software at http://www.tau.ac.il/ stoledo/taucs/, 2003.

49

[62] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing Quadrangulations with

Discrete Harmonic Forms. In Proc. Symp. Geometry Processing, pages 201–210, 2006.

[63] A. Treuille, A. McNamara, Z. Popović, and J. Stam. Keyframe Control of Smoke Simula-

tions. ACM Trans. Graph., 22(3):716–723, 2003.

[64] J. Welch, F. Harlow, J. Shannon, and B. Daly. The MAC Method: A Computing Tech-

nique for solving Viscous, Incompressible, Transient Fluid-Flow Problems involving Free

Surfaces. Report LA-3424, 1965.

[65] H. Whitney. Geometric Integration Theory. Princeton Press, Princeton, 1957.

[66] M. Wiebe and B. Houston. The Tar Monster: Creating a Character with Fluid Simulation.

In ACM SIGGRAPH 2004 Sketches, 2004.

[67] Y. Zhang and C. Shu. High-Order WENO Schemes for Hamilton-Jacobi Equations on

Triangular Meshes. J. Sci. Comput., 24:1005–1030, 2003.

