LIST OF TABLES

Table 2.1. List of proteins prepared and their number of residues,	37
calculated molecular weight (kDa), and calculated extinction coefficients.	
Table 3.1 List of emission maxima for the different Trp mutants in urea,	76
OG micelles, and DMPC vesicles in nm.	
Table 3.2. Exponential (mono-, bi-, tri-) fits of lifetimes of NATA in	78
urea, phosphate buffer, micelles, and vesicles (30 $^{\circ}$ C and 15 $^{\circ}$ C).	
Tryptophan decays were fit with triple exponentials. Amplitudes (amp)	
and their corresponding lifetimes (τ) are shown as well as the amplitude	
weighted lifetimes.	
Table 3.3. Lifetimes of full-length and truncated mutants unfolded in	80
urea. Tryptophan decays were fit to biexponentials or triple exponentials.	
Amplitudes (amp) and their corresponding lifetimes (τ) are shown as well	
as the amplitude weighted lifetimes.	
Table 3.4. Lifetimes of full-length and truncated mutants folded in OG	82
micelles. Tryptophan decays were fit to triple exponentials. Amplitudes	
(amp) and their corresponding lifetimes (τ) are shown as well as the	
weighted lifetimes.	
Table 3.5. Lifetimes of full-length and truncated mutants folded in	84
DMPC vesicles at 30 °C. Tryptophan decays were fit to biexponentials or	
triple exponentials. Amplitudes (amp) and their corresponding lifetimes	
(τ) are shown as well as the weighted lifetimes.	

Table 3.6. Lifetimes of full-length and truncated mutants folded in	87
DMPC vesicles at 15 °C. Tryptophan decays were fitted to	
biexponentials. Amplitudes (amp) and their corresponding lifetimes (τ)	
are shown as well as the weighted lifetimes.	
Table 3.7. List summarizing the amplitude weighted lifetimes of NATA	88
and Trp mutants in urea, micelles, and vesicles.	
Table 3.8. Steady-state anisotropy of NATA and Trp mutants in urea, OG	92
micelles, and DMPC vesicles (30°C).	
Table 3.9. Average slow and fast correlation times (Θ) for both full-	98
length and truncated mutants.	
Table 4.1. Ratios of quenched (F) to unquenched (Fo) emission maxima	121
for 6,7-DiBr and 11,12-DiBr. The quenching rates (ratio of quenched to	
unquenched fluorescence decays) shown are amplitude weighted average	
lifetimes from biexponential fits ($y = c_0 + ae^{-klt} + be^{-k2t}$). The unquenched	
fractions (c _o) are also listed.	
Table 6.1. Lifetimes and amplitudes of the Dns excited-state decay	183
Table 6.2. W7/A175C folding into DMPC vesicles at 30 °C. Probability	194
weighted energy transfer rates (k_{et}) and their corresponding weighted	
distances (r). The percent of unquenched fluorescence is also listed.	
Table 6.3. Percentage of unquenched Trp fluorescence for W7/A175C	194
folding into DMPC vesicles at 15°C.	
Table 6.4. W7t/A175C folding into DMPC vesicles at 30°C. Probability	195

weighted energy transfer rates (k_{et}) and their corresponding weighted distances (*r*). The percent of unquenched fluorescence is also listed.

Table 6.5.	Percentage of unquenched Trp fluorescence for W7t/A175C	195
folding into	DMPC vesicles at 15°C.	

Table 6.6. W7/A175C folding into OG micelles at 30°C. Probability	196
weighted energy transfer rates (k_{et}) and their corresponding weighted	
distances (r). The percent of unquenched fluorescence is also listed.	
Table 6.7. W7/A175C folding into OG micelles at 15°C. Probability	196
weighted energy transfer rates (k_{et}) and their corresponding weighted	
distances (r). The percent of unquenched fluorescence is also listed.	

Table 6.8. W7t/A175C folding into OG micelles at 30°C. Probability	197
weighted energy transfer rates (k_{et}) and their corresponding weighted	
distances (r). The percent of unquenched fluorescence is also listed.	

Table 6.9. W7t/A175C folding into OG micelles at 15°C. Probability	197
weighted energy transfer rates (k_{et}) and their corresponding weighted	
distances (r). The percent of unquenched fluorescence is also listed.	