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ABSTRACT 
 
 

The field of membrane protein folding is relatively new compared to soluble 

protein folding.  This thesis describes spectroscopy investigations of the refolding and 

dynamics of a β-barrel membrane protein.  The amphiphilic, β-barrel outer membrane 

protein A (OmpA) refolds and inserts directly into a lipid vesicle or micelle from a 

denatured state in aqueous urea solution.  Spectroscopic probes used to study this system 

are native tryptophans located at positions 7, 15, 57, 102, and 143.  Steady-state and time-

resolved fluorescence measurements have been performed using single tryptophan 

mutants of full-length OmpA (325 residues) and the truncated, transmembrane domain 

(176 residues).  Both full-length and truncated mutants exhibit similar tryptophan 

emission lifetimes, suggesting that the transmembrane microenvironment is not greatly 

perturbed by the presence of the C-terminus. 

While the microenvironments of folded full-length and truncated OmpA appear 

similar, the dynamics of refolding at each tryptophan position exhibit subtle differences 

when the C-terminus is present.  Specifically, we observe that tryptophan-102, which 

faces the pore interior, inserts and folds the fastest while tryptophan-7, which does not 

cross the bilayer, is the slowest.  Fluorescence anisotropy decays also indicate that 

tryptophan-7 is the most flexible residue compared to the other tryptophans. Temperature 

studies below the lipid gel-liquid transition temperature have also been performed.  In the 

lipid gel phase, OmpA adsorbs to the surface of the vesicles but contains immediate β-

sheet structure upon folding as well as very hydrophobic tryptophan environments.  It is 

still uncertain from ensemble measurements whether this species is a true intermediate. 
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Fluorescence energy transfer kinetics have successfully determined the 

intramolecular distance between tryptophan-7 and cysteine-175 labeled with a dansyl 

fluorophore.  These results reveal that the barrel ends of OmpA come into contact early in 

the refolding process and remain close together up to the final assembly of the barrel.  

We also have evidence that the adsorbed species at low temperatures is not an 

intermediate in the folding pathway since no energy transfer is observed for this species.  

These spectroscopic investigations have provided the foundation for further fundamental 

studies to dissect the molecular mechanism of the folding pathway of OmpA as well as 

other integral membrane proteins. 
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truncated mutants and red traces are full-length mutants. 
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Figure 6.1. Sample potential energy landscape for lysozyme folding.    168 

Adapted from Dobson et al., 1998. 

Figure 6.2. Schematic depicting the relationship between protein    173 

conformations and fluorescence decay kinetics. The left side shows a 

simplified energy landscape funnel.  At the top of the funnel, an ensemble 

of unfolded proteins will exhibit a broad distribution of distances (P(r)) 

between the FET donors and acceptors and slow excited-decay kinetics. 

At the bottom, an ensemble of folded proteins should exhibit a narrow 

distance distribution and faster excited-state decay kinetics. The distance 

distribution function can be transformed using Eq. 1 to a distribution of 

fluorescence decay rates (k).  P(k) can be transformed using Eq. 4 to a 

fluorescence decay intensity profile (I(t)) . Figure obtained from Julia 

Lyubovitsky’s dissertation (Lyubovitsky, 2003). 

Figure 6.3. Overlap of NATA emission with normalized Dns absorption.  182 

Figure 6.4.  Reaction of a general cysteine with 1,5 IEADANS to produce  184 

the dansylated cysteine on the protein.  Note that cysteine was drawn as a 

free amino acid for simplicity.  In reality, these cysteines are attached to 

the protein. 

Figure 6.5.  Structure of OmpA showing the positions and distance of W7  185 

and A175C.  The α-carbon position of W7 ~16 Å from to A175C, 

according to the NMR structure (PDB file IG90). 

Figure 6.6.  Absorption spectra of time points from a side-by-side labeling  186 
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reaction of W7/A175C and the control protein, W7/C290S/C302S 

(abbreviated as W7/0C), with IAEDANS.  The ratio of Dns to protein 

indicates that 5 hr is sufficient for labeling. 

Figure 6.7.  Fluorescence spectra of full-length W7/A175C-Dns    187 

immediately following protein injection to initiate folding into DMPC 

vesicles at 30oC.  Two general processes are observed (top): blue-shift in 

emission maxima and quantum yield increase.  Relative changes in 

emission maxima (bottom, blue trace) and emission intensity (bottom, 

green and red traces) are shown as a function of folding time.  Traces were 

normalized so that a value of “1” corresponds to the emission maximum or 

intensity at t = 2 hr. 

Figure 6.8.  Fluorescence spectra of truncated W7t/A175C-Dns    188 

immediately following protein injection to initiate folding into DMPC 

vesicles at 30 oC.  Two general processes are observed (top): blue-shift in 

emission maxima and quantum yield increase.  Relative changes in 

emission maxima (bottom, blue trace) and emission intensity (bottom, 

green and red traces) are shown as a function of folding time.  Traces were 

normalized so that a value of “1” corresponds to the emission maximum or 

intensity at t = 2 hr. 

Figure 6.9.  Excitation of Dns in W7/A175C-Dns with 340 nm excitation   189 

does not produce a continuous rise in emission. 

Figure 6.10.  Fluorescence spectra of W7/A175C (unlabeled) immediately  190 
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following protein injection to initiate folding into DMPC vesicles at 30oC.  

Relative changes in emission maxima (bottom, blue trace) and emission 

intensity (bottom, red trace) are shown as a function of folding time.  

Traces were normalized so that a value of “1” corresponds to the emission 

maximum or intensity at t = 2 hr. 

Figure 6.11.  Fluorescence spectra of W7t/A175C (unlabeled)    191 

immediately following protein injection to initiate folding into DMPC 

vesicles at 30oC.  Relative changes in emission maxima (bottom, blue 

trace) and emission intensity (bottom, red trace) are shown as a function of 

folding time.  Traces were normalized so that a value of “1” corresponds 

to the emission maximum or intensity at t = 2 hr. 

Figure 6. 12.  Energy transfer rates are shown for the different folding   192 

times for W7/A175C-Dns and W7t/A175C-Dns. The energy transfer rate 

has decayed to a constant by ~ 14 min for W7/A175C and between 10-60 

min for W7t/A175C. 

Figure 6. 13.  Typical data sets collected for FET kinetics.  Top, left graph  193 

are measurements of Trp decays as the protein folds into DMPC vesicles; 

Trp decays become only slightly faster as the protein folds.  Top, right 

graph are measurements of Dns emission using 290 nm excitation; energy 

transfer is observed as a slow rise in intensity.  Bottom graph is Dns 

emission from W7/A175C-Dns in urea; no energy transfer to Dns is 

observed. 

Figure 6.14.  CD spectra of W7/A175C, W7t/A175C, and wild-type   198 
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OmpA.  Note that the ellipticities are lower than those from Chapter 3, 

most likely due to inaccurate protein concentrations used to determine 

molar ellipticities. 
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