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Abstract

One of the key mandates of modern optoelectronic research is the development of

compact photonic integrated circuits, capable of performing many diverse functions

for the generation, manipulation, and detection of light, all on a single chip. A key

practical requirement for such circuits is the development of optical devices for the lo-

calization and processing of light within extremely small dimensions. In recent years,

planar microring and microdisk resonators, in which light is confined by total internal

reflection, have emerged as versatile photonic elements for filling this role. The high

quality factors and long photon storage times associated with the whispering-gallery

modes supported by these microcavities result in several technologically useful char-

acteristics, including narrow-band filter response, and large resonant enhancement

of the circulating electric field. These properties have been exploited in numerous

passive and active device applications, including optical add/drop multiplexers, all-

optical switches, and tunable lasers.

This thesis describes the study of several unique ring-based optical microcavity

geometries based upon the indium gallium arsenide phosphide/indium phosphide alloy

semiconductor material system, undertaken in an effort to explore new optoelectronic

architectures for confining and manipulating light.

The first portion of this work involves the analysis and demonstration of a new

microcavity geometry, in which cylindrical Bragg reflection is used for radial optical

confinement, as an alternative to total internal reflection. In this class of structures,

collectively known as annular Bragg resonators, light can be guided within a ring

or pillar defect layer surrounded by cylindrical Bragg mirrors. Several microcavities

based upon this configuration are designed and fabricated using a thin InGaAsP
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quantum well membrane. Using pulsed optical excitation, the characteristics of these

structures as low threshold vertically emitting lasers is explored.

Second, a total internal reflection-based coupled waveguide-resonator geometry,

having applications to low power optical switching and modulation, is analyzed. This

geometry makes use of the hybrid integration of a Mach-Zehnder interferometer with

a racetrack resonator. Switching takes place using the Mach- Zehnder to control

the coupling parameters in the vicinity of the critical coupling condition. Charac-

terization of the static and dynamic output response of a thermooptically actuated

InGaAsP-InP hybrid switch device demonstrates good ON-OFF switching contrast,

microsecond response time, and reduced switching power in comparison with a con-

ventional Mach-Zehnder configuration.

Finally, this work concludes by examining both the annular Bragg resonator and

hybrid switch geometries in application to chemical and biological sensing. Both

microcavity devices are shown to possess unique characteristics making them ideal

for sensitive monitoring of small changes in the refractive index of a chemical or

biological analyte.
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Chapter 1

Introduction

1.1 Ring and disk microcavities in optoelectronics

The field of optoelectronics continues to be an important area of study in engineering

and applied physics, encompassing broadly the generation, manipulation, storage,

and detection of light. Much of the past and present work in this field has been

performed in the pursuit of one of the key visions for optoelectronics, this being the

development of compact photonic integrated circuits. Such devices are often modeled

after the modern silicon microchip, in which data encoded onto electrical currents can

be processed in a massively parallel fashion. By contrast, in ideal photonic integrated

circuits, all data is carried and processed in the optical domain, taking advantage of

the huge information capacity available in the optical and near infrared spectrum,

where the electromagnetic carrier frequencies are on the order of hundreds of tera-

hertz. Ultimately, such circuits would process multiple data channels in parallel, using

a large number of passive and active photonic devices, all integrated, for example,

upon a single semiconductor optical waveguide substrate.

As optoelectronic research pursues technologies to replace various electronic com-

ponents with their photonic counterparts, a key motivation is the miniaturization

of these components, in order to facilitate dense integration and minimize substrate

consumption. Fundamentally, this requires the development of optical devices for the

localization of light within extremely small dimensions. Optical microcavities have

long been used as an ideal platform for the generation, processing, and localization



2

of light. Traditional semiconductor planar Fabry-Perot resonators can be realized

in counterpart to their free-space geometries by defining two mirror surfaces using

parallel cleaved crystal planes of a semiconductor slab waveguide. However, the ne-

cessity to cleave the semiconductor substrate naturally prevents the integration of

such Fabry-Perot cavities with additional photonic components.

Ring and disk microcavities have emerged as excellent alternatives. The whisper-

ing gallery modes (WGMs) [1] propagating near the periphery of these cylindrical

devices are confined by total internal reflection (TIR) at the curved interfaces be-

tween a waveguide core composed of a high refractive index dielectric, and a low-index

cladding. These modes can be of high quality factor (Q), resulting in long photon

storage times, and permitting the electromagnetic fields to build up to large ampli-

tudes within the microcavity. As opposed to the Fabry-Perot geometry, ring and disk

microcavities do not require substrate cleaving for introduction of optical feedback.

Rather, the cylindrical reflecting surfaces can be generated simultaneously with any

number of additional guided-wave components, using one of several parallel processes

such as ion exchange, UV photocuring of polymeric materials, or reactive ion etching.

The original concept of an optical ring resonator was proposed by Marcatili in

1969 [2]. Early demonstrations of integrated ring resonators were made in direct laser

written polymers [3] and ion-exchanged glass substrates [4], but due to the relatively

low refractive index contrast between the core and cladding, the ring radii were on

the order of several centimeters to avoid incurring severe radiative bend losses [5]. On

the other hand, the high refractive index of many semiconductor materials, such as

the AlGaAs-GaAs and InGaAsP-InP III-V systems, naturally permits the reduction

of bend losses for small-radius microcavities particularly when low-index cladding

materials are used, thus making these materials ideal platforms for the realization

of dense photonic integrated circuitry. For example, the early demonstrations of

microdisk semiconductor lasers [6—8] were made using these materials, with air as the

outer cladding.

The majority of recent studies of ring and disk microcavities has focused upon

coupled waveguide-resonator systems [9—11]. In such systems, single/multiple res-
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onators are laterally/vertically coupled to one or more bus waveguides, which can

either be integrated upon the same substrate as the microcavity [12, 13], or used

in the form of an external fiber taper [14, 15]. When weakly coupled to the bus

waveguides, the long photon storage times achieved by the high-Q WGMs can have

a significant impact upon the propagation of light through the bus, imparting, for

example, a narrow-band filter response [16], highly non-linear phase response [17],

and large cavity enhancement of the electric field [18]. These characteristics have

been used to propose and implement a wide range of passive and active devices,

including all-pass [19] and tunable add/drop [20] filters, wavelength-selective mir-

rors [21], all-optical switches [22,23], wavelength convertors [24], tunable lasers [25],

and biochemical sensors [26,27]. More complex architectures, incorporating chains of

ring and disk resonators coupled to one another, have been suggested for observation

of slow light [28, 29], development of delay lines [30, 31], and the study of optical

analogues to electromagnetically induced transparency in atomic systems [32—34].

Furthermore, high-Q ring and disk microcavities have proven useful in the funda-

mental study of nonlinear optical processes, where the large resonant enhancement

of the electromagnetic field within the cavity has enabled observation of numerous

stimulated nonlinearities at low threshold pump powers, including Raman scattering

and Kerr-induced parametric oscillation [35—37].

The body of this thesis is split into the study and demonstration of two classes of

novel optical microcavities. The first type of resonator treated is a new ring microcav-

ity geometry, in which cylindrical Bragg reflectors provide radial optical confinement

as opposed to TIR. The second class of device investigated is an index guided ring

resonator architecture with applications to low power optical modulation and switch-

ing, using electrical control of waveguide-resonator coupling. This work continues the

effort to explore new optoelectronic geometries for confining and manipulating light.
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1.2 Choice of material system

While the microcavity systems introduced below can be realized in a number of differ-

ent dielectric materials, the work presented here focuses upon the In1−xGaxAsyP1−y-

InP III-V semiconductor alloy system. Compositional tuning of the bandgap wave-

length can be achieved through manipulation of the atomic ratios x and y during the

semiconductor growth process. For material lattice matched to InP, bandgap wave-

lengths in the range of 1.0-1.65 µm are available [38]. Through appropriate design

and material growth, the semiconductor substrates used for the devices presented here

make use of the InGaAsP quaternary system to achieve either absorptive/emissive

or transparent properties within the spectral region near 1.55 µm technologically

relevant to modern fiber optic communication systems.

1.3 Annular Bragg resonators (ABRs)

For many of the optoelectronic technological applications mentioned above, it is de-

sirable to obtain high-Q microring and microdisk cavities having a large free spectral

range (FSR). For example, a large FSR will prevent an add/drop filter or switch used

in a multi-channel wavelength division multiplexed (WDM) system from inducing

cross-talk between several different wavelength channels. Increasing the FSR of ring

and disk microcavities requires reduction of the cavity round-trip time, and thus,

necessitates reduction of the bend radius. However, as the bend radius of micror-

ing and microdisk resonators continues to decrease, the TIR confinement mechanism

becomes increasingly inefficient, leading to substantial radiative bend losses even for

resonators employing high index contrast materials. Therefore, an improvement in

the cavity FSR generally comes at the expense of degradation of the cavity Q.

Alternatively, Bragg reflection may be employed for in-plane radial optical confine-

ment, as opposed to TIR. Previous theoretical and experimental studies of cylindrical

microcavities making use of Bragg reflectors have treated circular distributed feed-

back (DFB) resonators [39—44], and disk resonators surrounded by a cylindrical Bragg
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reflector [45—49]. The first portion of this thesis presents work on a novel microring

cavity geometry, in which light is confined to propagate azimuthally at a radial defect

layer within a cylindrical Bragg grating. This class of microcavities are collectively re-

ferred to as annular Bragg resonators (ABRs), and have been analyzed using transfer

matrix, conformal transformation, and coupled mode techniques [50—52]. Microcavi-

ties of this sort are analogous to the distributed Bragg reflector (DBR) geometry in

the Cartesian coordinate system [53], where light is confined within a defect layer

positioned between two high-reflectivity Bragg mirrors. However, whereas the Bragg

mirrors in a typical DBR provide feedback along the longitudinal axis of the cavity, the

Bragg mirrors in the ABR structure are intended for optical confinement transverse

to the direction of power flow within the cavity. Again in similar fashion to Carte-

sian Bragg gratings, the reflectivity of cylindrical Bragg mirrors can be increased by

adding more grating periods. Therefore, by increasing the number of layers in the

Bragg reflectors, the bend radius of an ABR microcavity can be decreased without

increasing the bend losses, thus breaking the link between the bend losses and the

FSR.

An overview of the subsequent chapters pertaining to ABR microcavities proceeds

as follows. In Chapter 2, a transfer matrix formalism is derived for the purpose of

analyzing the electromagnetic fields within cylindrical multi-layer optical structures,

such as ABRmicrocavities. Chapter 3 makes use of this formalism to illustrate the nu-

merical design of appropriate dielectric structures and optical mode profiles for ABR

microcavities. A set of design rules for generating optimal first-order and higher-order

cylindrical Bragg reflectors is outlined, and various properties of radial defect ABR

guided modes are described. The fabrication of ABR devices using a thin InGaAsP

quantum well membrane is described in Chapter 4, outlining the development of an

epitaxial membrane transfer process required for achieving out-of-plane optical con-

finement. Chapter 5 presents the characterization of optically pumped low-threshold

ABR lasers making use of a second-order Bragg grating design to induce vertical emis-

sion. Several properties of the laser emission are discussed, including polarization,

spectral linewidth, and infrared near field intensity profiles. The influence of fabrica-
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tion process variations upon the ABR emission spectrum and laser threshold is also

evaluated. Furthermore, the design and lasing properties of another distinct resonator

geometry are discussed, in which light is confined within a sub-micron semiconductor

pillar surrounded by a cylindrical Bragg reflector.

1.4 Optical modulation and switching using con-

trolled waveguide-resonator coupling

In addition to being useful in a multitude of static applications, coupled waveguide-

resonator systems can also be operated dynamically, for example, as optical switches

or amplitude modulators. For instance, by tuning an input laser into resonance with

one of the longitudinal modes supported by the ring or disk cavity, and simultaneously

modulating the refractive index of the resonator, the transmitted power can also be

modulated. This amplitude modulation is accomplished by altering the round-trip

phase condition in the cavity, thereby shifting the spectral positions of the microcavity

resonances, and causing the (approximately) Lorentzian cavity transmission lineshape

to scan across the stationary input laser wavelength. Several devices based upon this

switching mechanism have been reported, using electrooptic polymer [54] and InP

semiconductor materials [55].

In the latter portion of this document, a TIR-guided device architecture employ-

ing controlled waveguide-resonator coupling for optical modulation and switching,

as opposed to tuning of the optical path length, will be discussed. This geometry

can be described as a hybrid integration of a Mach-Zehnder interferometer (MZI)

with a racetrack resonator, in which the MZI is used as a variable coupler. Using

coupling control, amplitude modulation of an input laser tuned into resonance is ac-

complished by means of altering the depth of the cavity transmission lineshape, as

opposed to its wavelength. Controlled waveguide-resonator coupling is advantageous

with regard to modulation and switching applications, owing to the high ON-OFF

contrast achievable when operating near the critical coupling point. In comparison,
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achieving comparable ON-OFF contrast in switch geometries operated by tuning

the resonator optical path length requires very stringent fabrication tolerances, with

post-fabrication trimming [56] likely being necessary to reach the critical coupling

condition. Furthermore, in comparison with a conventional MZI device, the hybrid

MZI/racetrack resonator geometry requires the application of less electrical power

for ON-OFF switching. Applications for which low power optical switching can be

beneficial include enabling the use of low power drive electronics to reduce power

consumption in an optical transmitter, and improving the link gain in analog fiber

optic photonic systems [57,58].

In Chapter 6, several techniques useful for the design and fabrication of index

guided coupled waveguide-resonator systems will be presented. Two-dimensional

finite-difference techniques for the modeling of optical waveguides, as well as a method

for the analysis of multi-mode interference couplers, will be discussed. These tech-

niques are then applied in Chapter 7, where the transmission characteristics of the

hybrid MZI/racetrack resonator switch are analyzed. The static and dynamic per-

formance of an InGaAsP-InP switch device, fabricated using the hybrid geometry

and actuated using thermooptic effects, is subsequently characterized and compared

to that of a conventional MZI switch. A set of measurements for evaluating the

thermooptic coefficients in planar integrated optical waveguides is also described.

Finally, in Chapter 8, the ABR microcavities and hybrid switch geometry are re-

lated in the common application of chemical and biological sensing. Both microcavity

devices are shown to possess unique characteristics enabling sensitive monitoring of

small changes in the refractive index of a chemical or biological analyte.
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Chapter 2

Transfer matrix formalism for
multi-layer cylindrical optical
structures

2.1 Introduction

The transfer matrix method [53] is a straightforward yet powerful method for analyz-

ing optical structures composed of an arbitrary number of dielectric layers. In general

terms, a transfer matrix can be used to relate the electromagnetic fields on either side

of a general optical interface or region, by accounting for its dielectric properties,

and by ensuring that the appropriate boundary conditions are satisfied. Therefore,

transfer matrices can be used as lumped element representations of several optical

building blocks, including interfaces between heterogeneous dielectrics, and propaga-

tion through transparent, lossy, or amplifying media. More complex structures can

be modeled by simple matrix multiplication of these basic subcomponents. For exam-

ple, the axial structures for various resonant optical cavities, including multi-section

Fabry-Perot, DBR, DFB, and VCSEL geometries [53, 59—61], are particularly well

suited to analysis using the transfer matrix formalism.

While the above optical resonator geometries are most often based upon a Carte-

sian coordinate system (i.e., axial confinement along the z-axis, transverse confine-

ment within the x-y plane), the transfer matrix approach is equally suited to anal-

ysis of structures possessing cylindrical symmetry. For example, Yeh, Yariv, and
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Marom [62] have used this method to study a multi-layer axisymmetric structure

referred to as Bragg fiber, illustrated in Fig. 2.1. This geometry utilizes cylindri-

cal Bragg mirrors to confine light within the transverse ρ-θ plane, rather than total

internal reflection (TIR) as in conventional step-index fiber [63, 64]. For the Bragg

fiber geometry, Yeh, Yariv, and Marom were primarily interested in optical modes

confined to propagate axially within the central hollow core region, for which the

axial component of the propagation constant kz is much larger than the azimuthal

component kθ, i.e. kz À kθ. The radial component kρ is determined by the Bragg

grating.

Figure 2.1: Schematic of optical Bragg fiber, in which the axially propagating light is
confined to the hollow core region by Bragg reflection from the alternating high and
low index cladding layers.

Figure 2.2 shows a cross-sectional view of a typical ABR geometry with a radial

defect layer. In this unique structure, we are primarily interested in optical modes for

which light propagates azimuthally within the wider defect layer, and is radially con-

fined by the inner and outer cylindrical Bragg reflectors. In this case, the azimuthal

component of the propagation constant is much larger than the vertical component,

i.e. kθ À kz. Again, the radial component of the propagation constant kρ is de-
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termined by the inner and outer gratings. Vertical confinement along the z-axis is

generally provided by total internal reflection (TIR) in practical ABR structures.

Figure 2.2: General annular Bragg resonator geometry, shown in cross-section. Light
is confined to the wider defect layer and propagates azimuthally, while being reflected
from the radial Bragg layers.

In this chapter, a transfer matrix formalism appropriate for description of the

optical modes of cylindrical Bragg reflectors and ABR microcavities is derived. The

electromagnetic modes of cylindrical multi-layer structures are analyzed both in terms

of cylindrical standing waves, i.e. Bessel functions [50], and in terms of propagating

waves, i.e. Hankel functions [44,49,52].

2.2 Transfer matrix analysis in the basis of stand-

ing waves

The vector electric and magnetic fields
−→
E (−→r , t) and −→H (−→r , t) within the jth layer

of the cylindrical ABR structure shown in Fig. 2.2 are found by solving the wave
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equation. Using Maxwell’s equations,

−→∇ ·−→D(−→r , t) = ρ(−→r , t) (2.1)
−→∇ ·−→B (−→r , t) = 0 (2.2)

−→∇ ×−→E (−→r , t) = −∂
−→
B (−→r , t)
∂t

(2.3)

−→∇ ×−→H (−→r , t) =
−→
J (−→r , t) + ∂

−→
D(−→r , t)
∂t

, (2.4)

the constitutive relations between the electric/magnetic field vectors and the elec-

tric/magnetic displacement vectors,

−→
D(−→r , t) = ε

−→
E (−→r , t) = ε0

−→
E (−→r , t) +−→P (−→r , t) (2.5)

−→
B (−→r , t) = µ

−→
H (−→r , t) = µ0(

−→
H (−→r , t) +−→M(−→r , t)), (2.6)

and assuming a current-free region (i.e.
−→
J (−→r , t) = 0), the wave equation is given by

·−→∇2 − µε
∂2

∂t2

¸−→E (−→r , t)−→
H (−→r , t)

 = 0. (2.7)

Taking a time harmonic form for the fields,
−→
E (−→r , t) = −→E (−→r ) exp(iωt) and−→H (−→r , t) =

−→
H (−→r ) exp(iωt), the complex amplitudes−→E (−→r ) and−→H (−→r )must satisfy the Helmholtz
equation, £∇2 + k2j

¤−→E (−→r )−→
H (−→r )

 = 0 (2.8)

where

k2j = ω2µεj (2.9)

εj = ε0n
2
j . (2.10)

Above, kj is the wavenumber in the jth layer, ω is the angular frequency, and µ, εj,

and nj are the magnetic permittivity, dielectric permeability, and refractive index of
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the of the jth layer. Since we assume the material is non-magnetic, µ is a constant for

all layers. Equation 2.8 must be satisfied by all six field components, namely Eρ (
−→r ),

Eθ (
−→r ), Ez (

−→r ), Hρ (
−→r ), Hθ (

−→r ), and Hz (
−→r ). However, if Ez(

−→r ) and Hz(
−→r ) are

known, it is possible to obtain the other four field components [65]. Thus, Eq. 2.8

reduces to two equations. Expressing the Laplacian in cylindrical coordinates, the

Helmholz equation for Ez (
−→r ), Hz (

−→r ) becomes

·
1

ρ

∂

∂ρ

µ
ρ
∂

∂ρ

¶
+
1

ρ2
∂2

∂θ2
+

∂2

∂z2
+ k2j

¸Ez(
−→r )

Hz(
−→r )

 = 0. (2.11)

We now look for separable solutions to Eq. 2.11. The cylindrical symmetry of

the structure suggests that the solution must be periodic in the azimuthal direction.

In addition, since we wish to focus upon optical modes which propagate primarily in

the azimuthal direction, we can assume a solution with a standing wave form along

the z-axis. Therefore, we seek solutions of the form

Ez(
−→r ) = Ez (ρ) cos(βz + φ)eimθ (2.12)

Hz(
−→r ) = Hz (ρ) cos(βz + ϕ)eimθ. (2.13)

In Eqs. 2.12-2.13, β = kz is the component of the propagation constant directed along

the z-axis, and φ, ϕ are arbitrary phases to be determined. The azimuthal number

m can take on only integer values for closed cylindrical geometries such as the ABR

microcavity, i.e. m = 0,±1,±2.... However, for more general cylindrical reflectors,
bends, and ABR waveguides, non-integral values of m are permitted. Substituting

these solutions into Eq. 2.11, we obtain Eq. 2.14 for the radial part of the fields.

·
ρ2

∂2

∂ρ2
+ ρ

∂

∂ρ
+ (k2j − β2)ρ2 −m2

¸Ez(ρ)

Hz(ρ)

 = 0 (2.14)
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Equation 2.14 has the form of Bessel’s equation, given by

·
x2

∂2

∂x2
+ x

∂

∂x
+ x2 −m2

¸
y(x) = 0. (2.15)

The general solution is a linear superposition of Bessel functions the first and second

kind having order m. Therefore, within the jth layer, the solutions take the form

Ez(
−→r ) =

£
AjJm(γjρ) +BjYm(γjρ)

¤
cos(βz + φj)e

imθ (2.16)

Hz(
−→r ) =

£
CjJm(γjρ) +DjYm(γjρ)

¤
cos(βz + ϕj)e

imθ, (2.17)

where

γ2j = k2j − β2. (2.18)

The complete solution requires that the constants Aj, Bj, Cj, and Dj must be deter-

mined in each layer.

The other four field components can be expressed in terms of Ez(
−→r ) and Hz(

−→r )
by making use of Maxwell’s curl equations, Eq. 2.3-2.4. Equating terms for each

vector component, one obtains

Eθ(
−→r ) =

i

γ2j

·
ωµ

∂Hz(
−→r )

∂ρ
+

m

ρ

∂Ez(
−→r )

∂z

¸
(2.19)

Eρ(
−→r ) =

1

γ2j

·
mωµ

ρ
Hz(
−→r ) + ∂2Ez(

−→r )
∂z∂ρ

¸
(2.20)

Hθ(
−→r ) =

i

γ2j

·
m

ρ

∂Hz(
−→r )

∂z
− ωεj

∂Ez(
−→r )

∂ρ

¸
(2.21)

Hρ(
−→r ) =

1

γ2j

·
∂2Hz(

−→r )
∂z∂ρ

− mωεj
ρ

Ez(
−→r )
¸
. (2.22)

The boundary condition at the interface between the jth and (j + 1)th layers at a

radius ρ = Rj requires that the tangential field components Ez(
−→r ), Eθ(

−→r ), Hz(
−→r ),
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Hθ(
−→r ) be continuous across the interface. Using Eq. 2.16 continuity of Ez(

−→r ) gives

£
AjJm(γjRj) +BjYm(γjRj)

¤
cos(βz + φj) (2.23)

=
£
Aj+1Jm(γj+1Rj) +Bj+1Ym(γj+1Rj)

¤
cos(βz + φj+1).

Since this equation needs to be satisfied for all z, this implies that φj = φj+1 = φ.

Likewise, enforcing continuity of Hz(
−→r ) using Eq. 2.17 implies that ϕj = ϕj+1 = ϕ.

Therefore, continuity of Ez(
−→r ) and Hz(

−→r ) gives

AjJm(γjRj) +BjYm(γjRj) = Aj+1Jm(γj+1Rj) +Bj+1Ym(γj+1Rj) (2.24)

CjJm(γjRj) +DjYm(γjRj) = Cj+1Jm(γj+1Rj) +Dj+1Ym(γj+1Rj). (2.25)

Furthermore, using Eqs. 2.19, 2.16, and 2.17, the continuity of Eθ(
−→r ) gives

1

γ2j
{ωµγj[CjJ

0
m(γjRj) +DjY

0
m(γjRj)] cos(βz + ϕ)

−mβ

ρ

£
AjJm(γjRj) +BjYm(γjRj)

¤
sin(βz + φ)}

=
1

γ2j+1
{ωµγj+1[Cj+1J

0
m(γj+1Rj) +Dj+1Y

0
m(γj+1Rj)] cos(βz + ϕ)

−mβ

ρ

£
Aj+1Jm(γj+1Rj) +Bj+1Ym(γj+1Rj)

¤
sin(βz + φ)}, (2.26)

where J 0m(γjRj) and Y 0
m(γjRj) are derivatives of the Bessel functions with respect to

their own argument. From Eq. 2.24 and the derivative of Eq. 2.25 with respect to

its argument, we know that

1

γ2j

£
AjJm(γjRj) +BjYm(γjRj)

¤
6= 1

γ2j+1

£
Aj+1Jm(γj+1Rj) +Bj+1Ym(γj+1Rj)

¤
, (2.27)

1

γj
[CjJ

0
m(γjRj) +DjY

0
m(γjRj)]

6= 1

γj+1
[Cj+1J

0
m(γj+1Rj) +Dj+1Y

0
m(γj+1Rj)], (2.28)
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so long as γj 6= γj+1. Since Eq. 2.26 must hold for all z, this implies that

cos(βz + ϕ) = ± sin(βz + φ), (2.29)

and thus,

ϕ = φ± π

2
. (2.30)

For cylindrical structures having finite extent along the z-axis, for example, ABR

devices employing a thin single-moded semiconductor membrane for vertical optical

confinement, we expect from waveguide theory that Ez(
−→r ) will have an extremum

at the center of the membrane, i.e. located at z = 0, for an appropriate choice of φ.

Therefore, we take ϕ = φ− π/2, giving the expected z dependence for φ = 0, which

leads to

Ez(
−→r ) =

£
AjJm(γjρ) +BjYm(γjρ)

¤
cos(βz + φ)eimθ (2.31)

Hz(
−→r ) =

£
CjJm(γjρ) +DjYm(γjρ)

¤
sin(βz + φ)eimθ. (2.32)

The continuity of Eθ(
−→r ) can now be expressed as

1

γ2j
{ωµγj[CjJ

0
m(γjRj) +DjY

0
m(γjRj)]

−mβ

ρ

£
AjJm(γjRj) +BjYm(γjRj)

¤}
=

1

γ2j+1
{ωµγj+1[Cj+1J

0
m(γj+1Rj) +Dj+1Y

0
m(γj+1Rj)]

−mβ

ρ

£
Aj+1Jm(γj+1Rj) +Bj+1Ym(γj+1Rj)

¤}. (2.33)
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Similarly, using 2.21 for continuity of Hθ(
−→r ), we have

1

γ2j
{mβ

ρ
[CjJm(γjRj) +DjYm(γjRj)]

−ωεjγj
£
AjJ

0
m(γjRj) +BjY

0
m(γjRj)

¤}
=

1

γ2j+1
{mβ

ρ
[Cj+1Jm(γj+1Rj) +Dj+1Ym(γj+1Rj)]

−ωεjγj+1
£
Aj+1J

0
m(γj+1Rj) +Bj+1Y

0
m(γj+1Rj)

¤}. (2.34)

The constants Aj, Bj, Cj, Dj satisfying the boundary conditions for the tangential

field components can be expressed in matrix form [50, 66]. Writing the equations in

the order of Ez(
−→r ), Hθ(

−→r ), Hz(
−→r ), Eθ(

−→r ), i.e. using Eqs. 2.24, 2.34, 2.25, 2.33,
the matrix equation is given by

Mj+1


A

B

C

D


j+1

=Mj


A

B

C

D


j

, (2.35)

where

Mj =



Jm(γjRj) Ym(γjRj) 0 0

−n
2
j

γj
J 0m(γjRj) −n

2
j

γj
Y 0
m(γjRj)

mβ

ρωε0γ2j
Jm(γjRj)

mβ

ρωε0γ2j
Ym(γjRj)

0 0 Jm(γjRj) Ym(γjRj)

− mβ

ρωµγ2j
Jm(γjRj) − mβ

ρωµγ2j
Ym(γjRj)

1

γj
J 0m(γjRj)

1

γj
Y 0
m(γjRj)


.

(2.36)

In Eq. 2.36, we have used εj = ε0n
2
j , where ε0 is the permeability of free space, and

nj is the refractive index of the jth layer. Therefore, given the vector of constants
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[A B C D]j in the j
th layer, the constants in the (j + 1)th layer are given by


A

B

C

D


j+1

=M−1
j+1Mj


A

B

C

D


j

= Tj


A

B

C

D


j

. (2.37)

Repeated application of the transfer matrix Tj allows one to "propagate" the tangen-

tial field components from the innermost j = 1 layer to the outermost j = N layer,

or vice-versa, providing that Ez(
−→r ) and Hz(

−→r ) are known at either the innermost
or outermost layer.

If β = 0, for example, when the cylindrical structure has infinite extent along the

z-axis and ∂/∂z = 0, the matrix Mj becomes block diagonal, indicating that there

are two independent polarizations which can exist in the cylindrical structure. These

polarizations are labeled as TM (transverse magnetic), with field components Ez(
−→r ),

Hθ(
−→r ), and Hρ(

−→r ), and TE (transverse electric), with field components Hz(
−→r ),

Eθ(
−→r ), and Eρ(

−→r ). The boundary condition matrices applicable to each of these
decoupled polarizations are as follows.

MTM
j =

 Jm(γjRj) Ym(γjRj)

−n2j
γj

J 0m(γjRj)
−n2j
γj

Y 0
m(γjRj)

 (2.38)

MTE
j =

 Jm(γjRj) Ym(γjRj)
1

γj
J 0m(γjRj)

1

γj
Y 0
m(γjRj)

 (2.39)

Note that the labeling of polarization used here has been made in accordance with

the common convention used by the planar integrated optics community [67], rather

than that typically used in the description of photonic crystal devices [68].

Alternatively, a non-zero value of β can be incorporated by means of the effective

index method [69]. In this method, a fully 3D structure is approximated by an

"effective" 2D structure, by calculating a modal effective index neff for propagation
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within the ρ-θ plane. Equations are then applied along with the definition

γ2j = k2j − β2 =
2πneff

λ
. (2.40)

The inner boundary condition at the axis of radial symmetry (ρ = 0) in layer

j = 1 requires that the fields be finite, resulting in

B1 = 0 (2.41)

D1 = 0, (2.42)

owing to the fact that Ym(γjρ) diverges as ρ approaches zero. In addition, the outer

boundary condition requires that there be no inward propagating wave beyond the

outermost layer of the cylindrical structure. An inward propagating wave can be

expressed as a Hankel function of the second kind,

H(2)
m (γjρ) = Jm(γjρ)− iYm(γjρ), (2.43)

for which the asymptotic limit of large argument has the form [70]

H(2)
m (γjρ) ∝ e−iγjρ. (2.44)

If we label j = N as the final layer of the cylindrical structure, then in the j = N +1

layer, i.e. in the homogeneous medium surrounding the structure, Ez(
−→r ) and Hz(

−→r )
can be cast into the form of Eq. 2.43 if

BN+1 = −iAN+1 (2.45)

DN+1 = −iCN+1. (2.46)

While strict enforcement of the condition that there be no inward propagating wave

in the (N + 1)th layer then requires that AN+1 = CN+1 = 0, when structures of finite

extent are considered, we will in fact have AN+1 = CN+1 6= 0. However, AN+1, CN+1
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will have local minima when all other boundary conditions are appropriately satisfied.

For example, when analyzing typical radial defect ABR structures, resonant modes

confined to the defect layer are found to exist at discrete wavelengths (values of γj)

for which m takes on integer values, and AN+1, CN+1 have local minima. Therefore,

assessment of the wavelength-dependent boundary condition in the (N + 1)th layer

forms the basis of a numerical search criteria in the design and analysis of the optical

modes of ABR microcavities. The results of this numerical analysis are presented in

greater detail in Chapter 3.

2.3 Transmission matrix analysis in the basis of

propagating waves

The general solution to Eq. 2.14 can also be expressed as a superposition of Hankel

functions of the first and second kind [44,49]. The Hankel functions of the first and

second kind are themselves superpositions of Bessel functions of the first and second

kind [70], and are given by

H(1)
m (x) = Jm(x) + iYm(x) (2.47)

H(2)
m (x) = Jm(x)− iYm(x). (2.48)

The Hankel functions are the cylindrical analogues of propagating plane wave solu-

tions exp(±ix) found when solving the Helmholtz equation in the Cartesian coordi-
nate system. For large argument x >> 1, the Hankel functions take the form

H(1)
m (x) →

r
2

πx

h
cos(x− mπ

2
− π

4
) + i sin(x− mπ

2
− π

4
)
i
∝ eix (2.49)

H(2)
m (x) →

r
2

πx

h
cos(x− mπ

2
− π

4
)− i sin(x− mπ

2
− π

4
)
i
∝ e−ix, (2.50)

and thus behave like cylindrical plane waves, propagating radially outward or inward,

respectively. Therefore, is possible to write Ez(
−→r ) and Hz(

−→r ) within the jth layer of
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a general cylindrical structure as a sum of outgoing and incoming waves, as

Ez(
−→r ) = E+

z (
−→r ) +E−z (

−→r )
=

h eAjH
(1)
m (γjρ) + eBjH

(2)
m (γjρ)

i
eimθ (2.51)

Hz(
−→r ) = H+

z (
−→r ) +H−

z (
−→r )

=
h eCjH

(1)
m (γjρ) + eDjH

(2)
m (γjρ)

i
eimθ. (2.52)

In the above, the existence of independent TE and TM polarizations has been as-

sumed.

At the interface between the jth and (j + 1)th layers, located at ρ = Rj, the

tangential field components (Ez(
−→r ), Hθ(

−→r ) for TM, Hz(
−→r ), Eθ(

−→r ) for TE) must
be continuous. Using Eqs. 2.19, 2.21, 2.51, 2.52, and applying a similar approach to

that developed in Section 2.2, the boundary conditions at the interface can be used

to relate the coefficient vectors
h eA eBi

j
and

h eC eDi
j
in the jth layer (for TM and

TE polarizations, respectively) to those in the (j + 1)th layer. In matrix form, these

relationships can be expressed by eAeB

j+1

=
³fMTM

j+1

´−1 fMTM
j

 eAeB

j

= eT TM
j

 eAeB

j

(2.53)

 eCeD

j+1

=
³fMTE

j+1

´−1 fMTE
j

 eCeD

j

= eT TE
j

 eCeD

j

, (2.54)

where

fMTM
j =

 H
(1)
m (γjRj) H

(2)
m (γjRj)

−nj
γj

H
0(1)
m (γjRj)

−nj
γj

H
0(2)
m (γjRj)

 (2.55)

fMTE
j =

 H
(1)
m (γjRj) H

(2)
m (γjRj)

1

γj
H
0(1)
m (γjRj)

1

γj
H
0(2)
m (γjRj)

 . (2.56)

In Eqs. 2.55 and 2.56, H 0(1,2)
m (γjRj) are the derivatives of H

(1,2)
m (γjRj) with respect
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to their own argument. At ρ = 0 in the first layer (j = 1), requiring that the fields

be finite gives rise to the boundary condition

eA1 = eB1 (2.57)eC1 = eD1. (2.58)

Beyond the outer boundary of the structure, in the j = (N + 1)th layer, the require-

ment that there be no incoming wave takes the form

eBN+1 = 0 (2.59)eDN+1 = 0. (2.60)

Similarly to the transfer matrix formalism in the standing wave (Bessel function)

basis, Eqs. 2.53-2.54 coupled with the boundary conditions in Eqs. 2.57-2.60 al-

low calculation of the z-component fields within each layer of a general cylindrical

structure by "propagating" from the innermost to the outermost layer, or vice-versa.

Furthermore, expressing the fields in terms of a propagating wave basis allows for

straightforward computation of the reflectivity r and transmissivity t at a cylindrical

dielectric interface, by making use of the transmission matrices eT TM
j and eT TE

j shown

in Eqs. 2.53 and 2.54. The transmission matrices for a cylindrical dielectric interface

take the general form

eT TM,TE
j =

ajm bjm

bj∗m aj∗m

 , (2.61)

where aj∗m , b
j∗
m are the complex conjugates of a

j
m, b

j
m. The transmission matrix elements

are given by

ajm =
iπγj+1ρ

4

h
H
0(2)
m (γj+1Rj)H

(1)
m (γjRj)

− γj
γj+1

H
(2)
m (γj+1Rj)H

0(1)
m (γjRj)

i (2.62)

bjm =
iπγj+1ρ

4

h
H
0(2)
m (γj+1Rj)H

(2)
m (γjRj)

− γj
γj+1

H
(2)
m (γj+1Rj)H

0(2)
m (γjRj)

i (2.63)
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for TM polarization, and by

ajm =
iπγj+1ρ

4

h
H
0(2)
m (γj+1Rj)H

(1)
m (γjRj)

−γj+1
γj

H
(2)
m (γj+1Rj)H

0(1)
m (γjRj)

i (2.64)

bjm =
iπγj+1ρ

4

h
H
0(2)
m (γj+1Rj)H

(2)
m (γjRj)

−γj+1
γj

H
(2)
m (γj+1Rj)H

0(2)
m (γjRj)

i (2.65)

for TE polarization.

For an outgoing (incoming) cylindrical wave incident upon the interface between

the jth and (j+1)th layers, the reflectivity ro (ri), transmissivity to (ti), power reflec-

tion coefficient Ro (Ri), and power transmission coefficient To (Ti) are given by Eqs.

2.66-2.71, with the help of Fig. 2.3. Note that φ+,− = {E+,−
z (−→r ), H+,−

z (−→r )}.

ro =
φ−j
φ+j

¯̄̄̄
¯
φ−j+1=0

= − bj∗m
aj∗m

(2.66)

to =
φ+j+1
φ+j

¯̄̄̄
¯
φ−j+1=0

= −
det

¯̄̄ eT TM,TE
j

¯̄̄
aj∗m

(2.67)

ri =
φ+j+1
φ−j+1

¯̄̄̄
¯
φ+j =0

=
bjm
aj∗m

(2.68)

ti =
φ−j
φ−j+1

¯̄̄̄
¯
φ+j =0

=
1

aj∗m
(2.69)

Ro,i = |ro,i|2 (2.70)

To,i = |to,i|2 (2.71)

The determinants of the transmission matrices are given by

det
¯̄̄ eT TM

j

¯̄̄
= 1 (2.72)

det
¯̄̄ eT TE

j

¯̄̄
=

µ
nj+1
nj

¶2
. (2.73)

The transmission matrix formalism is particularly useful for analyzing reflection
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Figure 2.3: Illustration of the reflectivity r0(ri) and transmissivity t0 (ti) coefficients at
a cylindrical interface, for outgoing (incoming) cylindrical waves. The fields E+,−

z (−→r ),
H+,−

z (−→r ) are represented by φ+,−.

from and transmission through more complex multi-layered cylindrical structures,

such as Bragg reflectors or ABR defect resonators. A series of layers with arbitrary

thickness and refractive index may be modeled by a single transmission matrix, formed

by multiplication of the transmission matrices representing each individual layer, as

eT TE,TM
total = eT TE,TM

N
eT TE,TM
N−1 ...eT TE,TM

2
eT TE,TM
1 . (2.74)

Composite transmission matrices calculated in this manner will be applied to evaluate

the reflection coefficients of cylindrical Bragg reflectors in Chapter 3.
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Chapter 3

Numerical design and modeling of
ABR devices

3.1 Introduction

In Chapter 2, a transfer matrix approach for evaluating the TM and TE modes of a

general cylindrically symmetric multi-layer structure was developed. Given a priori

the refractive index and width of each layer, and by requiring that the fields be real

and finite on the axis of symmetry at ρ = 0, application of the transfer matrices given

by Eqs. 2.38-2.39 will yield the TM and TE fields in each layer, as per Eq. 2.37.

However, when engaging in the practical design of efficient cylindrical Bragg reflectors

and ABR defect resonators, we may initially know only the refractive index of the

various dielectric media we have at our disposal for the high and low index layers.

It remains to determine the appropriate radii Rj at which to place the interfaces

between the jth and (j + 1)th layers, and thus, determine the thickness of each layer.

This chapter will outline a set of design rules for placing these interfaces, and apply

these rules toward generating optimal cylindrical Bragg reflectors and radial defect

ABR microcavities. Comparisons between Bragg gratings designed in cylindrical and

Cartesian coordinate systems will be made, illustrating the chirped structure of the

ideal cylindrical Bragg reflector. Numerically evaluated designs for several types of

cylindrical grating structures will be presented, and the properties of guided ABR

optical modes will be discussed.
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3.2 Design of radial defect ABR microcavities

3.2.1 Comparison of cylindrical and linear Bragg reflectors

The criteria for determining the thickness of each dielectric layer within a cylindrical

Bragg reflector can be made in analogy to the criteria for a one-dimensional (1D)

Bragg grating in Cartesian coordinates. In order to ensure that a linear multi-layer

dielectric mirror has a large reflection coefficient, the dielectric interfaces must be

placed such that the partial reflections of an incident wave from each successive layer

all add up in phase with one another [65], as illustrated in Fig. 3.1(a). This requires

Figure 3.1: Schematics of multi-layer Bragg reflectors, showing partial reflections of
an incident wave from each dielectric interface. (a) 1D linear Bragg grating. (b)
Cylindrical Bragg grating.

that the total phase accumulated by the wave upon propagating through each layer
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be an odd multiple of π/2. Stated mathematically,

Z
layer

k⊥dx = (2l + 1)
π

2
, (3.1)

where k⊥ is the projection of the wavevector of the incident wave along the axis of

the 1D Bragg reflector, l = 0, 1, 2, ... , and l + 1 is the reflection order of the Bragg

layer. The integration is intended to be carried out over the coordinate x between

two successive dielectric interfaces. For simplicity, let us consider normal incidence

upon the grating. For the Cartesian coordinate case, the wave incident upon the 1D

linear Bragg reflector can be expressed as a plane wave, having the form exp(ik⊥x),

where the wavenumber k⊥ = 2πnj/λ0 is a constant within a given layer of refractive

index nj. Thus, the width wj of the jth layer is given by

wlayer
j = (2l + 1)

λ0
4nj

, (3.2)

i.e., the layer width must be an odd multiple of a quarter-wavelength in the material.

The fact that the spatial period of the plane wave’s oscillation is constant regardless

of the longitudinal position x within a given layer therefore gives rise to the typical

periodic 1D Bragg reflector design, as shown in Fig. 3.1(a).

For the case of a cylindrical Bragg reflector, the incident waves we wish to consider

are no longer plane waves, but cylindrical waves. The partial reflections from each

cylindrical dielectric interface must also add up in phase, and the condition of Eq.

3.1 holds equally well, where k⊥ and dx are replaced by kρ and dρ, respectively.

However, in contrast to the case in Cartesian coordinates, kρ is not constant within

a given layer of index nj, but depends upon the radius ρ, due to the character of the

Bessel function solutions of the Helmholtz equation in cylindrical coordinates. To

illustrate, a comparison of the spatial oscillation of the Bessel function J4(x) with a

sinusoidal function cos(x + 7π/4) is made in Fig. 3.2. For small argument x, the

spatial period of the Bessel function is significantly larger than that of the sinusoidal

function. However, at larger values of x, the spatial period decreases, and approaches
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Figure 3.2: Comparison of the Bessel function J4(x) with its asymptotic sinusoidal
form. The spatial period of the Bessel function is larger than that of the sinusoid for
small argument x, and asymptotically approaches a constant for large argument.

a constant value. For large argument x >> 1, the Bessel functions of the first and

second kinds have asymptotic forms [70] given by

Jm(x) →
r
2

πx
cos
³
x− mπ

2
− π

4

´
(3.3)

Ym(x) →
r
2

πx
sin
³
x− mπ

2
− π

4

´
. (3.4)

The sinusoid in Fig. 3.2 was plotted with the same phase as the asymptotic form of

the J4(x) Bessel function, and the zero-crossings of both functions intersect at larger

radii.

As will be discussed in greater detail below, the conditions for generating an opti-

mal cylindrical Bragg reflector require that the interfaces between each dielectric layer

be placed at the zeros or extrema of electromagnetic field profile. Therefore, because

the fields within each layer are described by a superposition of Bessel functions, as

shown in Eqs. 2.31-2.32, it follows that the ideal layer width will not be a uniform

quarter-wavelength throughout the structure as in the Cartesian case, but will be
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chirped, being thicker at small radii, and converging to a constant thickness at large

radii. We can, however, consider the layers in a cylindrical Bragg reflector as being

an "effective" quarter-wavelength wide, as defined by phase accumulation according

to Eq. 3.1. The schematic shown in Fig. 3.1(b) clearly illustrates the chirped nature

of the cylindrical Bragg grating.

3.2.2 Grating defect cavities

Bragg gratings with high reflectivity can be used to define optical resonators, in

much the same way as two partially reflecting mirrors can be used to form a Fabry-

Perot cavity [53]. Introducing a small separation wdefect between two 1D Bragg

reflectors, or equivalently, creating a phase defect within a single Bragg reflector, can

lead confinement of resonant modes within this defect. Such defect cavities have been

used in various microresonator laser configurations, including vertical cavity surface

emitting lasers (VCSELs) [61], distributed Bragg reflector (DBR) lasers [71], and

quarter-wavelength shifted distributed feedback (DFB) lasers [72]. Waves traversing

the cavity must acquire a net round-trip phase equal to an integer multiple of 2π in

order to be resonant, i.e.

2

Z
defect

k⊥dx+ 2φmirror = 2lπ, (3.5)

where φmirror is the phase of the reflection from the mirror, and l = 1, 2, 3, ... is the

defect order. The integration is carried out over the coordinate x between the two

mirrors. Assuming that |φmirror| = π or 0, the resonance condition can be written as

Z
k⊥dx = lπ. (3.6)

In a 1D linear Bragg reflector where k⊥ is a constant function of x, Eq. 3.6 states

that the cavity must be an integer number of half-wavelengths wide, i.e.,

wdefect = l
λ0

2ndefect
. (3.7)
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As discussed above, for the cylindrical Bragg reflector, k⊥ = kρ is a function of ρ.

The defect cavity width will therefore depend upon its radial position within the

Bragg reflector, and this width can be designed as an integer number of "effective"

half-wavelengths.

3.2.3 Design rules for placement of dielectric interfaces in

optimal Bragg reflectors

If we wish to design, for example, an ABR resonator similar to that shown in Fig.

2.2, to support a mode with concentrated amplitude within the azimuthal defect layer

and exponentially decaying amplitude in both the internal and external gratings,

it remains to determine the appropriate radii Rj at which to place the interfaces

between the jth and (j+1)th layers. This type of ABR defect mode requires that the

field increases exponentially throughout the interval 0 < ρ < Rdefect (internal Bragg

grating), and decreases exponentially within the interval Rdefect < ρ < RN (external

Bragg grating), where Rdefect and RN are taken to be the radii of the azimuthal

defect and the last interface, respectively. The conditions for optimal placement of

the interface between dielectric layers having refractive indexes nj and nj+1 were

derived by Yeh et al. [62], in the context of Bragg fiber. These conditions were found

by considering the maximization/minimization of the electromagnetic flux flowing

radially outward within the outermost layer of the Bragg fiber’s cladding. It was

shown that in order to produce the most efficient exponential increase or decrease

of the fields, and thus the outgoing flux, the interfaces should be placed at radii Rj

corresponding to the zeros or extrema of the z-component fields within the cylindrical

structure, according to the following set of rules.

For TE modes and increasing field amplitude, the interfaces should be placed at:

Hz(Rj) = 0 for nj < nj+1 (3.8)

H 0
z(Rj) = 0 for nj > nj+1. (3.9)
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For TE modes and decreasing field amplitude, the interfaces should be placed at:

H 0
z(Rj) = 0 for nj < nj+1 (3.10)

Hz(Rj) = 0 for nj > nj+1. (3.11)

For TM modes and increasing field amplitude, the interfaces should be placed at:

E0
z(Rj) = 0 for nj < nj+1 (3.12)

Ez(Rj) = 0 for nj > nj+1. (3.13)

For TM modes and decreasing field amplitude, the interfaces should be placed at:

Ez(Rj) = 0 for nj < nj+1 (3.14)

E0
z(Rj) = 0 for nj > nj+1. (3.15)

In the above, it is understood that the layers j, j + 1, j + 2, ... are labeled in order

of increasing radius ρ. These conditions are equivalent to those found for Bragg

reflectors in Cartesian coordinates.

3.2.4 First-order cylindrical gratings

As an example, the procedure followed to design an ABR defect resonator with first-

order Bragg gratings is outlined below, in the specific case of TE polarized modes.

For a given choice of the azimuthal number m and the wavelength λ0, the width of

each layer in the cylindrical structure and the TE field components can be found

simultaneously using the Bessel function transfer matrix formalism described in Sec-

tion 2.2. Beginning in layer j = 1, the boundary condition requiring finiteness of the

fields at ρ = 0 (Eq. 2.42) dictates that the vector of constants describing the Hz(ρ)

field be given by C
D


1

=

1
0


1

, (3.16)
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where we have taken C1 = 1 for simplicity. Given a numerical value for this vector,

and knowing γ1 = 2πn1/λ0, the radial dependence of the field Hz(ρ) within layer

j = 1 is fixed. The field, along with the radial positions of its zeros and extrema,

can be found using a numerical routine for evaluating Bessel functions, such as those

included in Matlab. Since we desire to design an optical mode having a concentration

of intensity at the position of the annular defect within the cylindrical Bragg reflector,

the placement of the first dielectric interface, located at a radius ρ = R1, is dictated

by the design rules for increasing TE field amplitude, given by Eqs. 3.8-3.9. After

the radial position of the first dielectric interface is known, the refractive index of

the dielectric is changed. The transfer matrix T1 enforcing the continuity of the

tangential field components at the interface is then used in order to calculate the

vector of constants in the j = 2 layer, as per Eqs. 2.37 and 2.39. After numerical

evaluation of the field’s zeros and/or extrema within the j = 2 layer, the second

dielectric interface is appropriately placed, and so on. The above steps are repeated

for the desired number of periods of the inner Bragg reflector. The annular defect is

then introduced. The inner defect radius is again chosen according to the design rules

for increasing field, however the outer radius is chosen according to the design rules

for decreasing field, given by Eqs. 3.10-3.11. Finally, within the outer Bragg reflector,

the radial positions of the interfaces are chosen according to decreasing field. The

number of periods in the outer Bragg reflector is chosen to achieve sufficient damping

of the field at large radii, in order to produce a low-loss radially confined mode.

In order to illustrate the results of this design approach, we consider the particular

example of a TE polarized defect mode designed to have an azimuthal number m = 7

at a wavelength λ0 = 1.55 µm, within an ABR structure having high index layers

with n = 2.8, and low index layers with n = 1.56. These values of the refractive index

and polarization have been chosen for their relevance toward the semiconductor ABR

devices which will be discussed in greater detail in Chapters 4 and 5. The normalized

Hz(ρ) mode profile is plotted as a function of the radial coordinate in Fig. 3.3(a),

superimposed with the designed refractive index profile. For the case shown, the

j = 1 layer was taken to have low index, and the defect layer was taken to have high
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Figure 3.3: (a) TE profile Hz(ρ) of an ABR defect mode havingm = 7, λ0 = 1.55 µm,
first-order high index layers with n = 2.8, and first-order low index layers with n =
1.56. The radial refractive index profile is superimposed to illustrate the placement of
the dielectric interfaces with respect to the zeros and extrema of the field. (b) Width
of the low and high index layers versus layer index. The sixth high index layer is the
defect layer, and has a width approximately twice that of the high index layers within
the Bragg reflectors.
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index. The defect is the sixth high index layer going radially outward from ρ = 0.

The inner and outer Bragg reflectors consist of 5 and 10 periods, respectively. The

field has peak amplitude within the defect layer, and decays exponentially within a

relatively few number of periods of the Bragg reflectors on either side, due to the large

refractive index contrast. Note that within each reflector layer, the field completes an

"effective" quarter wavelength oscillation, i.e. the width of each layer is equivalent

to the distance between successive zeros and extrema of the field. Furthermore, the

defect layer spans the distance between two successive zeros of the field, an "effective"

half wavelength. The width of each low and high index layer is plotted in Fig. 3.3(b).

The layer width is seen to decrease as a function of radius, in particular for the

low index layers, and approaches a constant value at large radii, equivalent to the

conventional "quarter-wavelength" thickness of a 1D Bragg reflector.

It is worthwhile to note that in addition to supporting modes with peak inten-

sity within a high index defect, the Bragg confinement mechanism also admits the

possibility of guiding light within a low index defect, a scenario impossible for total-

internal-reflection based devices [50].

The procedure followed for the design of ABR structures for TM polarized modes

is identical to that outlined above, but makes use of the appropriate transfer matrix

in Eq. 2.38 and the design rules in Eqs. 3.12-3.15.

3.2.5 Higher-order/mixed-order cylindrical gratings

Rather than placing the dielectric interfaces at consecutive zeros/extrema of the radial

field profile, as was done above for the first-order grating design, an alternative design

procedure would be to make use of higher order Bragg reflection by permitting the

field to cycle through a larger odd multiple of "quarter-wavelengths" before placing

the interface. Furthermore, the high and low index layers do not need to be of the

same Bragg order. Thus, a mixed-order grating, with higher-order high-index layers

and first-order low-index layers, could be employed to ease fabrication tolerances. For

example, in the case of the high contrast first-order ABR structure illustrated in Fig.
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3.3, the high index layers are very narrow, being approximately 140 nmwide, while the

low index layers are significantly wider at approximately 250 nm. By comparison, a

mixed-order grating design having second-order (three "quarter-wavelengths" wide)

high index layers, and first-order low index layers, would be significantly easier to

fabricate.

Such a structure, again having 5 and 10 period inner and outer Bragg reflectors,

and the associated m = 7 TE mode profile resonant at λ0 = 1.55 µm, are plotted in

Fig. 3.4(a). Comparison with the mode profile of the ABR with first-order gratings

in Fig. 3.3(a) shows that while the field is still localized at the position of the defect

layer, it decays more slowly in the radial direction away from the defect. Thus, higher-

order designs bear the consequence that the Bragg mirrors will in general require a

larger number of periods in order to achieve adequate radial optical confinement. In

addition, even for the same number of periods in the inner and outer Bragg reflectors,

and the same m number, the design with second order high index layers also forces

the defect layer to larger radii, resulting in an increase in the size of the resonator,

and a decrease in the free spectral range (FSR), as will be discussed below. Figure

3.4(b) illustrates that the high index layers are now wider than the low index layers,

and will consequently be easier to fabricate.

Furthermore, Fig. 3.4(a) illustrates that the transverse mode profile undergoes

one complete oscillation between each quasi-period of the grating, and therefore,

light scattered from adjacent quasi-periods will have equal phase modulo 2π. The

particular mixed-order grating illustrated then acts as a second-order grating design,

which not only couples counter-propagating radial waves, but also induces coupling of

radially propagating waves into the direction normal to the plane of the ABR device,

i.e the z-direction [47]. These properties of second-order gratings are illustrated in

Fig. 3.5. The Fourier spectrum of a square wave second-order grating has components

at the harmonics of the fundamental grating wavenumber kG, given by

kG = 2π/Λ = 2π/λρ, (3.17)
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Figure 3.4: (a) TE profile Hz(ρ) of an ABR defect mode having m = 7, λ0 = 1.55
µm, second-order high index layers with n = 2.8, and first-order low index layers
with n = 1.56. The radial refractive index profile is superimposed to illustrate the
placement of the dielectric interfaces with respect to the zeros and extrema of the
field. (b) Width of the low and high index layers versus layer index. The sixth high
index layer is the defect layer, and has a width smaller than that of the high index
layers within the Bragg reflectors.
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Figure 3.5: Illustration of radial wavevector components participating in resonant
scattering from a second-order Bragg grating. (a) Coupling of counter-propagating
radial waves via the second-order Bragg reflection. (b) Cancellation of radial wavevec-
tor component by the first-order Bragg reflection, inducing coupling to vertically
propagating waves.
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where Λ is the "period" of the radial grating, and λρ is the "wavelength" of the

oscillations in the mode profile along the radial direction. Considering a wave incident

upon the grating with radial wavenumber k(i)ρ = k0ρ = 2π/λρ, the second-order Bragg

reflection (second harmonic) gives rise to the back-reflected wave with k
(f)
ρ = −k0ρ

desired for in-plane optical confinement, as shown in Fig. 3.5(a). Addition of the

radial wavenumber components for second-order Bragg reflection can be expressed as

k(f)ρ = −k0ρ = k0ρ − 2kG = k(i)ρ − 2kG. (3.18)

However, the first Fourier harmonic scatters incident waves with k(i)ρ = k0ρ into waves

with no radial component, as given by the sum

k(f)ρ = 0 = k0ρ − kG = k(i)ρ − kG. (3.19)

Therefore, the first-order Bragg reflection from a second-order grating can phase-

match radially propagating waves to vertically propagating plane waves. This prop-

erty of second order gratings has been exploited previously to demonstrate vertical

output coupling from in-plane DBR and DFB lasers in Cartesian coordinates [73—75],

and will be discussed further in the context of ABR lasers in Chapter 5.

3.2.6 Reflection coefficients for cylindrical Bragg mirrors

The design of ABR defect resonators requires that we choose the combination of

an appropriate number of periods for the inner and outer Bragg reflectors, as well

as a sufficient refractive index contrast between the low and high index layers, in

order to ensure that the optical mode can propagate azimuthally within the defect

with relatively low in-plane losses. Leakage of power out of the defect mode can be

minimized, and modal quality factor Q maximized, by design of efficient cylindrical

Bragg mirrors with large reflectivity. While infinite Bragg gratings can in theory have

a reflection coefficient of unity, practical designs are limited to a fairly small number

of periods, and thus, an estimation of the reflection coefficient from finite gratings is
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useful.

The reflection coefficients RTE,TM for TE and TM polarized cylindrical waves

incident upon annular Bragg reflectors can be computed using the Hankel function

transmission matrix formalism developed in Section 2.3. To illustrate, a series of re-

flectors with a number of low/high index periods varying from 1 to 10 was constructed

according to the design rules described above. The design procedure was optimized

for TE waves having m = 7 and a wavelength of λ0 = 1.55 µm. The high index layers

had second-order width and n = 2, and the low index layers had first-order width

and n = 1.5. For each reflector, the innermost and outermost layers were taken to

have n = 1.5.

The dependence of the TM and TE reflection coefficients upon the number of

grating periods, evaluated at λ0 = 1.55 µm for m = 7, is plotted in Fig. 3.6(a). As

the number of periods is increased, constructive reflection from the multiple dielectric

interfaces in the reflector leads to a rapid increase in the reflection coefficient. For 10

periods, RTM = 0.993 and RTE = 0.978. In general, TE polarized waves are reflected

less strongly than TM waves. Figure 3.6(b) illustrates the spectral dependence of

the TM and TE reflection coefficients, for a grating with 10 periods and m = 7.

Several dominant reflection lobes are evident, with oscillatory reflection within sev-

eral adjacent side-lobes. The main lobes near 1.55 µm and 1.05 µm are the second

(nominal design) and third reflection orders of the grating. As in the case of linear

Bragg gratings, the side-lobes are due to the finite extent of the grating, and can be

damped by increasing the number of grating periods, or by an appropriate apodization

scheme [65,76]. In addition to having a slightly smaller peak reflection coefficient, the

full-width-at-half-maximum (FWHM) bandwidth of the TE second-order reflection

lobe is smaller than that for TM polarization.

As the refractive index contrast between the low and high index layers is increased,

the number of periods required to achieve the same reflection coefficient decreases,

and the bandwidth of the high reflection lobes increases. This behavior is similar

to that found for Bragg reflectors in Cartesian coordinates. The magnitude of the

reflection coefficients and shape of the reflection spectra for azimuthal numbersm 6= 7
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Figure 3.6: (a) Reflection coefficient R versus number of grating periods, evaluated
at λ0 = 1.55 µm and azimuthal number m = 7. (b) Spectral dependence of R for
grating with 10 periods. High reflection lobes near 1.55 µm and 1.05 µm are the
second and third reflection orders, respectively.
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are found to be very similar to that shown in Fig. 3.6, particularly for reflectors with

more than one or two periods. Furthermore, the reflection behavior of cylindrical

gratings is in general the same regardless whether one considers outgoing or incoming

cylindrical waves.

3.2.7 Dispersion of ABR defect modes

Once the radial refractive index profile of a given ABR defect resonator has been

fixed for a chosen design wavelength λ0 and azimuthal number m, the transfer matrix

approach of Section 2.2 can be applied to numerically evaluate the wavelengths and

m numbers of any additional modes that may be supported by the structure. These

additional resonant modes exist at wavelengths for which the boundary condition that

there be no inward propagating wave within the outermost layer is satisfied, as given

by Eqs. 2.45-2.46. Knowing the m numbers and resonant wavelengths, the modal

field profiles may then be determined.

Figure 3.7(a) plots the dispersion curve of the TE defect modes within the first-

order ABR structure of Fig. 3.3. The resonant wavelength increases as the azimuthal

number m decreases. The free spectral range (FSR) is approximately 11 nm near

λ0 = 1.55 µm, and increases as the wavelength becomes shorter. The Hz(ρ) radial

field profiles for several resonant modes near 1.55 µm are superimposed against one

another in Fig. 3.7(b). All modes demonstrate a peak within the defect layer of the

ABR structure, and possess very similar profiles within the inner and outer Bragg

reflectors. The radial field profile is thus reasonably independent of wavelength, being

determined primarily by the spatial period of the refractive index profile of the ABR.

The dispersion curve and several TE radial mode profiles belonging to the second-

order ABR structure of Fig. 3.4 are plotted in Fig. 3.8. In terms of the dispersion

curve, the primary difference between the first and second-order ABR devices is the

smaller FSR of approximately 4 nm near 1.55 µm. As mentioned above, this is due

to the larger defect radius of the second-order device. The radial mode profiles of the
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Figure 3.7: (a) Dispersion of TE defect modes with varying azimuthal number m,
for the first-order ABR structure of Fig. 3.3. (b) Normalized field profile Hz(ρ) for
m = 6, 7, 8. Refractive index profile not shown for clarity.
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Figure 3.8: (a) Dispersion of TE defect modes with varying azimuthal number m, for
the second-order ABR structure of Fig. 3.4. (b) Normalized field profile Hz(ρ) for
m = 6, 7, 8. Refractive index profile not shown for clarity.
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second-order ABR again show little variation with m number and wavelength, and

maintain a strong peak within the defect layer.
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Chapter 4

Fabrication of InGaAsP ABR
microcavities using polymer
epitaxial transfer

4.1 Introduction

This chapter describes a versatile process for the fabrication of ABR devices, employ-

ing a thin semiconductor membrane for out-of-plane optical confinement by index

guiding. The semiconductor substrate used is based upon the InGaAsP-InP material

system, selected for its capacity as a light emitter at telecommunications wavelengths

near 1.55 µm. The ABR fabrication procedure involves patterning and epitaxial

transfer of a single-mode membrane to a transfer substrate, using a polymer adhe-

sive for bonding. This method simultaneously ensures the mechanical integrity of

the ABR concentric ring structure, as well as achieving the desired vertical optical

confinement. The various ABR geometries discussed in subsequent chapters have all

been fabricated by the methods outlined in this chapter, unless stated otherwise.

4.2 Practical structures for optical confinement along

the z-axis

The transfer matrix formalism developed in Chapter 2 presents a means of analyz-

ing the optical modes of a generalized axisymmetric cylindrical multi-layer dielectric
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structure. Since we wish to consider modes which propagate azimuthally around the

cylindrical structure rather than down its axis, we made the assumption that the axial

(z) component of the propagation constant was zero, i.e., β = 0. This assumption

intrinsically implies that the dielectric structure has translational invariance along

the z-axis. Therefore, in order to have experimental access to the optical modes of

devices such as the radial defect ABR microcavities discussed in Chapter 3, we are at

first glance faced with the challenge of fabricating a 2D structure having extremely

small in-plane dimensions and infinite extent along the z-axis, or at the very least, an

extent much larger than the wavelength of interest (quasi-2D). While it may be pos-

sible to fabricate such a geometry within a configuration such as an optical fiber, i.e.,

Bragg/Omniguide fiber [62,77], we are then restricted to materials which are workable

by extrusion. Materials in this class can include various amorphous substances, such

as glasses and optical polymers. However, if we wish to make use of the desirable

optical and electronic properties of semiconductors, such as their large optical gain

and high refractive index, we are limited to the techniques of planar wafer processing.

Practically speaking, the fabrication of semiconductor structures with large aspect

ratio, i.e. the ratio of the structure’s extent along the z-axis to the critical in-plane

dimension, becomes extremely difficult. Typical limits on the maximum aspect ratio

achievable are on the order of 10:1 - 20:1 [78,79], with certain exceptions depending

upon the material system used [80]. Therefore, 2D or quasi-2D structures are not

practically viable, and a dielectric structure providing optical confinement in three

dimensions must be considered. While the in-plane optical confinement in ABR

devices is provided by reflection from the annular Bragg mirrors, a means for achieving

out-of-plane confinement is required.

A similar issue has been addressed during the early theoretical and experimental

development of 2D photonic crystals (PCs) [81, 82] and PC defect cavities [83], and

has led to the use of air-clad suspended membrane structures, such as the one shown

in Fig. 4.1. In these structures, a thin dielectric membrane, most often a high index

semiconductor, is perforated with a periodic lattice of holes to generate an optical

bandgap for light propagating within the plane of the membrane. Creation of a lattice
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defect by removing or changing the size of a single hole (or several holes) can result

in trapping of light at the defect site, where in-plane optical confinement is provided

by the photonic bandgap. The substrate material beneath the membrane is then

selectively removed, often by wet chemical etching, to create an air gap [84—86]. Out-

Figure 4.1: Schematic of a typical air-clad suspended semiconductor membrane 2D
photonic crystal structure. A defect has been created by removing a single hole from
the periodic lattice. The air gap is formed by selective chemical undercutting beneath
the membrane.

of-plane optical confinement is thus provided by total internal reflection (TIR) at the

horizontal air-dielectric interfaces, as in a typical slab waveguide [65]. The membrane

is generally on the order of one-half a wavelength thick in the material, which ensures

that it will support only a single slab mode. Other possible solutions for achieving

optical confinement in all directions have included use of three-dimensional photonic

crystals, such as stacked logpile [87] and angle-etched [88] structures. However, the

air-clad TIR membrane structure has been the most common geometry, and is fre-

quently adopted for its intrinsic advantages over the other 3D options in terms of

fabrication simplicity.

The concept of using TIR for vertical optical confinement is equally applicable for

ABR devices, and a similar thin single-mode membrane may be used. However, unlike
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the typical 2D photonic crystal, the ABR structure is composed of concentric rings

which are physically unconnected. If the substrate material beneath the membrane

were removed, the ABR structure would collapse. Therefore, a different method for

achieving strong out-of-plane optical confinement based upon epitaxial transfer has

been developed, and will be discussed in detail below.

4.3 Semiconductor membrane slab mode design

considerations

Annular Bragg resonators with large index contrast Bragg reflectors were realized in

a membrane of active quantum well (QW) InGaAsP semiconductor material. The

broadband photoluminescence from InGaAsP QWs provides a means of probing the

modal properties of ABR devices at wavelengths in the near infrared relevant to opti-

cal telecommunication. In addition, optical gain within such a QWmaterial allows for

investigation of the performance of ABR microcavities as low-threshold lasers, a sub-

ject which will be explored in greater detail in Chapter 5. The semiconductor medium

used is illustrated in Fig. 4.2. The 250 nm thick InGaAsP membrane consisted of 6

strained InGaAsP QWs and their barrier layers (75 Å wells, 1% compressive strain;

120 Å barriers, 0.5% tensile strain, λg = 1.2 µm), which were sandwiched between two

605 Å InGaAsP (λg = 1.2 µm) layers. The peak photoluminescence from the QWs

occurred at λpeak = 1559 nm. All epitaxial layers were grown by metal-organic chem-

ical vapor deposition (MOCVD) on an InP substrate [89]. The 250 nm InP sacrificial

layer can be selectively removed to produce an air gap below the patterned InGaAsP

membrane, as in the case of the 2D photonic crystals discussed above. However,

in the ABR fabrication process, the InP sacrificial layer and 50 nm InGaAsP stop

etch are used to facilitate transfer of the InGaAsP QW membrane to an alternative

substrate, as will be described below.

The out-of-plane optical confinement was investigated using a custom one-dimensional

finite difference semi-vectorial mode solver (see [90] and Chapter 6) to analyze the
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Figure 4.2: Schematic of the InGaAsP quantum well membrane epistructure used for
the ABR devices. Where shown, the quantity in parentheses, i.e., (Q1.1), refers to
the bandgap wavelength λg of the InGaAsP alloy in the given layer.
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modes of the 250 nm thick InGaAsP slab. Since the optical gain in the 1% com-

pressively strained InGaAsP quantum wells is greatest for electric fields polarized in

the plane of the quantum wells [91, 92], i.e., Er, and Eθ, the optical design focused

upon the TE polarized ABR modes, which have field components Hz, Er, and Eθ.

The TE polarized modes are expected to have the lowest laser threshold, given the

compressively strained quantum well design [93,94].

The refractive index of the various quaternary alloys in the epitaxial structure

of Fig. 4.2 were calculated using the empirical formula in reference [95], assuming

a wavelength of λ = 1.55 µm. Figure 4.3 plots the refractive index profile of the

as-grown InGaAsP membrane structure along the growth axis (z-axis), superimposed

with the transverse electric field profile Ex(z) of the fundamental TE polarized slab

mode (electric field and x-axis parallel to the plane of the membrane). With the

membrane in contact with the high-index (n ∼ 3.17 at λ = 1.55 µm) InP substrate,
the fundamental slab mode exists at the cut-off condition [65], where the modal

effective index neff equals the refractive index of the substrate, i.e. neff ∼ nsubstrate =

3.17. As a result, the mode is broadly distributed and extends deep into the InP

substrate. Furthermore, the mode has peak amplitude at the depth of the InGaAsP

stop etch layer, and thus possesses a small overlap with the quantumwells in the center

of the membrane. These factors predict that the while the InGaAsP semiconductor

membrane remains clad from below by the high-index InP substrate, the optical

modes of ABR structures patterned into the membrane will suffer from large substrate

radiation losses and low optical gain.

In order to achieve strong out-of-plane optical confinement, the InGaAsP mem-

brane must be clad by low-index material both above and below. As discussed above,

the ABR geometry prohibits use of the suspended membrane configuration. There-

fore, an epitaxial layer transfer technique [96,97], using UV-curable Norland optical

adhesive NOA 73 (Norland Products, n ∼ 1.56 at λ = 1.55 µm), was adopted to facil-
itate transfer of the InGaAsP membrane to a transparent sapphire substrate. Figure

4.4 shows the fundamental TE polarized mode supported when the InGaAsP mem-

brane is clad below by the NOA 73 adhesive and above by air. In comparison with
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Figure 4.3: Fundamental TE polarized slab mode profile Ex(z) supported by the as-
grown InGaAsP-InP epistructure, superimposed against the refractive index profile,
evaluated at λ = 1.55 µm. The mode is nearly cut off, and extends deep into the
high-index InP substrate.

Fig. 4.3, the optical mode is far more confined within the membrane, and has a peak

amplitude overlapping with the quantum wells, as desired for maximizing the optical

gain. The peak is shifted slightly towards the NOA 73 layer, due to the asymmetry in

refractive index between the air and NOA 73 claddings. Numerical calculations con-

firmed that the transferred membrane supported only a single TE transverse mode,

with neff = 2.822. Therefore, an effective index of 2.8 has been assumed for the

majority of the ABR numerical designs and experimentally demonstrated devices

presented in Chapters 3 and 5, respectively.

4.4 ABR fabrication

The ABR fabrication process flow is illustrated in Fig. 4.5 [97, 98]. The lower case

letters in parentheses (a-h) included in the following description refer to the corre-

sponding cross-sectional schematic in Fig. 4.5.

First, a 120 nm SiO2 etch mask layer was deposited on top of the InGaAsP-InP

semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD)
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Figure 4.4: Fundamental TE polarized slab mode profile Ex(z) supported by the
InGaAsP membrane after epitaxial transfer using Norland optical adhesive NOA 73,
evaluated at λ = 1.55 µm. The mode is well confined to the InGaAsP membrane,
and has a large overlap with the quantum wells.

(a). Approximately 550 nm of poly(methyl methacrylate) (PMMA) electron beam

resist was then applied by spin-coating and baked to drive off solvents (b). Several

ABR geometries were patterned into the PMMA layer using a Leica Microsystems

EBPG 5000+ direct electron beam writer operating at 100 kV accelerating voltage.

Development of the patterned PMMA film was carried out in a solution of 1:3 methyl

isobutyl ketone:isopropyl alcohol (MIBK:IPA) for 60 seconds (c). The SEM cross-

section through a typical PMMA pattern shown in Fig. 4.6 illustrates a characteristic

result from this high-resolution lithography.

Subsequently, the PMMA patterns were transferred into the SiO2 etch mask layer

by inductively coupled plasma reactive ion etching (ICP-RIE) using C4F8 plasma, in

an Oxford Instruments Plasmalab System100 tool (d). The remaining PMMA was re-

moved with a gentle O2 plasma ashing step. The patterned SiO2 layer then served as

a hard mask for transfer into the active InGaAsP membrane, using a low-voltage ICP-

RIE etch employing HI/Ar chemistry (e) [99]. The HI/Ar system has two significant

advantages over more common alternative chemical systems for etching InP-based

semiconductors, such as CH4/H2/Ar and Cl2/Ar. First, no polymeric deposits form
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Figure 4.5: Flow diagram for the ABR fabrication and polymer bonding process. The
dark region in the middle of the InGaAsP QW membrane is intended to represent
the location of the quantum wells.
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Figure 4.6: Cross-section of PMMA pattern after electron beam lithography and
development. The thin horizontal SiO2 mask layer can be seen between the PMMA
and the substrate. The sample was coated with a thin layer of gold to prevent charging
during imaging.

on the sample or chamber walls during etching, as is typical with the frequently used

CH4/H2/Ar gas chemistry [100]. Second, the InIx etch products generated at the

exposed semiconductor surfaces are quite volatile at room temperature. Therefore,

sample heating is not needed to enhance etch product desorption, as is generally

required in the case of the rather involatile InClx etch products formed on the semi-

conductor surfaces when using Cl2/Ar reactive gas mixtures [101]. In the etch recipe

typically used, the HI/Ar gas flow was 10/6 sccm, the chamber pressure was 5 mTorr,

and the ICP and RF electrodes were driven with 950 W and 30 W, respectively. The

plasma DC self-bias was ∼100 V, and the etch rate was ∼325 nm/min. The SiO2-
masked ABR samples were etched for 1 minute, to a depth penetrating completely

through the InGaAsP membrane and partially into the InP sacrificial layer. The

remaining SiO2 hard mask was then stripped in a buffered hydrofluoric acid solution.

Several SEM images of a typical ABR device at this stage in the fabrication

process are shown in Figs. 4.7, 4.8, and 4.9. Figure 4.7 provides a view of the

entire ABR resonator. Figure 4.8 shows a magnified view of the annular Bragg layers

after SiO2 removal. Figure 4.9 is a cross-section through the etched ABR structure,

with the SiO2 etch mask still remaining. These SEM images illustrate the smooth
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anisotropic features generated by the HI/Ar etch used to define the Bragg reflectors.

The vertical striations visible on the etched sidewalls in Figs. 4.8-4.9 originate from

the 10 nm resolution with which the ABR patterns were fractured prior to electron

beam lithography.

Figure 4.7: SEM image taken after HI/Ar ICP-RIE etch and SiO2 mask removal,
with the ABR sample tilted at approximately 40◦ with respect to the electron beam.
The annular defect is the (slightly narrower) sixth ring from the center.

Next, the epitaxial layer transfer technique was begun by applying the NOA 73

optical adhesive to the patterned InGaAsP surface by spin-coating, and the entire

sample was flip-bonded to a crystalline sapphire substrate (f). The adhesive was then

cured by illumination with an ultraviolet lamp through the sapphire. Subsequently,

the InP substrate was removed by a combination of mechanical polishing and selective

wet chemical etching. Mechanical polishing was performed using a slurry of water

and aluminum oxide powder with 5 µm particle size. A chemical etchant consisting

of 3:1 HCl:H2O was used to remove the InP, and a mixture of 1:1:4 H2SO4:H2O2:H2O

was used to remove the 50 nm InGaAsP stop etch layer. This procedure left only the

250 nm thick patterned active InGaAsP membrane encapsulated within the cured

optical adhesive film (g). The transferred ABR devices demonstrated excellent ad-

hesion over the entire sample. Finally, the adhesive filling the trenches was removed

with a selective isotropic NF3/O2 ICP-RIE etch, to improve the lateral refractive
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Figure 4.8: Magnified SEM image of etched semiconductor grating, angled to illus-
trate vertical and smooth sidewalls produced by HI/Ar etch process. The SiO2 mask
has been removed at this stage.

Figure 4.9: Cross section through ABR after HI/Ar etch, showing excellent
anisotropic profile. The SiO2 mask still remains on top of the semiconductor mem-
brane.
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index contrast (h). The SEM image in Fig. 4.10 shows a magnified view of several

transferred annular rings taken after adhesive removal. This image was obtained us-

ing an environmental SEM (ESEM) operating at a water vapor pressure of 0.45 Torr

in the chamber, and an accelerating potential of 5 kV, in order to mitigate charging

effects from the non-conductive sapphire substrate and optical adhesive. Comparison

of Fig. 4.8 with Fig. 4.10 shows no obvious roughening or milling of the semiconduc-

tor surfaces, suggesting that exposure to the NF3/O2 plasma process is not expected

to generate any additional sources of optical scattering loss.

Figure 4.10: Magnified ESEM image of semiconductor rings, taken after epitaxial
transfer to the sapphire substrate and optical adhesive etching. Brighter regions are
the top and side surfaces of the semiconductor rings, dark regions are the trenches
from which the adhesive was removed.

An atomic force microscope (AFM) can be used as an alternative means of imaging

the transferred InGaAsP membrane. Several contact mode AFM images obtained

within a small region of a typical transferred ABR device are shown in Fig. 4.11.

Figure 4.11(a) contains the three-dimensional surface profile of the ABR taken before

ICP-RIE etching of the NOA 73 adhesive (i.e., between fabrication steps (g) and (h)).

Because the semiconductor substrate was etched through the 250 nm membrane to a

depth of ∼325 nm, the profile of the cured NOA 73 adhesive (light regions) is raised
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above the height of the semiconductor rings (dark regions). A cross-section of the

3D profile taken at y = 2 µm is plotted in Fig. 4.11(b). The raised ridges of cured

adhesive between the flat semiconductor regions are clearly visible. A similar image

taken after etching the adhesive (from a slightly different ABR device having narrower

trenches) and an associated cross-section trace are shown in Figs. 4.11(c)-(d). In this

case, the profile of the semiconductor rings (light regions) is raised above the areas in

which the adhesive has been removed (dark regions). The cross-section shows narrow

trenches between the protruding semiconductor ridges. The triangular shape of the

trenches is an imaging artifact due to convolution of the AFM probe tip with the

sharp edges of the semiconductor rings. The sloping tops of the semiconductor ridges

are due to an artifact produced by an improperly functioning scan stage on the AFM

used.
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Figure 4.11: (a) AFM image showing surface profile of a small region of an ABRmem-
brane after epitaxial transfer to a sapphire substrate, taken before adhesive etching.
(b) Cross section of the image in (a) (through y = 2 µm), showing cured adhesive
ridges (high points) raised above level of semiconductor rings (low points). (c) AFM
surface profile taken after adhesive etching. The device imaged here is not the same
as the one shown in (a)-(b). (d) Cross-section of the image in (c) (through y = 2
µm), illustrating the trenches where the adhesive has been removed.
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Chapter 5

Vertically emitting radial defect
and nanocavity ABR lasers

5.1 Introduction

Applying the theoretical and practical frameworks developed in the previous chap-

ters for the design and fabrication of cylindrical Bragg microcavities, this chapter

presents the experimental characterization of several vertically emitting ABR laser

geometries. First, the apparatus used for pulsed optical excitation of the ABR de-

vices will be described, along with the optical components used for collection of

the photoluminescence signal and imaging of the ABR near field emission patterns.

Subsequently, data demonstrating low threshold lasing from radial defect ABR mi-

crocavities will be presented, and various characteristics of the observed ABR laser

emission, including polarization and linewidth, will be discussed. Images of the near

field emission patterns from several ABR devices, obtained with an infrared camera

above laser threshold, will then be presented, serving to illustrate that laser action

occurs in spatial modes having low azimuthal number guided within the ABR de-

fect layer. Next, the emission spectra observed from the radial defect ABR lasers

will be further characterized, by comparison with a numerically predicted spectrum

calculated using the finite-difference time-domain algorithm. The sensitivity of ABR

microcavities to electron beam lithography process variations will then be evaluated,

with applications to lithographic tuning. Finally, an alternative Bragg nanocavity
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design, in which a small central semiconductor pillar is surrounded by a cylindrical

Bragg reflector, will be presented. This resonator geometry is optimally designed to

support the non-degenerate m = 0 mode, and is theoretically predicted to have ultra-

small mode volume. Characteristic low threshold single-mode lasing spectra obtained

from this Bragg nanocavity will be presented and discussed.

5.2 Apparatus for optical excitation

The optical apparatus for characterizing the ABR laser devices was assembled as

shown in Fig. 5.1. The ABR resonators were pumped by pulsed optical excitation,

using a mode-locked Ti:sapphire laser emitting ∼100 fs FWHM pulses at a repetition

rate of 78 MHz, with a center wavelength of λp = 890 nm. A 50/50 non-polarizing

beamsplitter was used to direct 50% of the pump power to a wavemeter/calibrated

optical power meter for monitoring of the pump power directed at the ABR devices.

The pump beam was incident normal to the plane of the ABR devices, and focused

through the transparent sapphire substrate with a 50x (NA = 0.42) microscope ob-

jective. The vertically emitted photoluminescence (PL) signal was collected from the

side of the device opposite to the pump beam, using a 20x (NA = 0.42) microscope

objective. The collected PL was then focused into a multimode optical fiber and fed

into an optical spectrum analyzer (OSA). The OSA wavelength resolution was 1 nm.

Alternatively, the emitted PL could be directed to an infrared (IR) vidicon camera,

for imaging of the ABR near field intensity profile. The white light source and CCD

camera were used to image the position and diameter of the focused Ti:sapphire pump

spot, relative to the ABR resonator under test. The pump spot size was manipulated

by changing the position of the pump objective’s focal plane with respect to the plane

of the ABR, as shown in the lower right corner of Fig. 5.1. The ABR sample was

aligned to the pump spot using a precise 3 axis translation stage with piezoelectric

motion control, permitting careful positioning at the sub-micron scale. Measurements

were performed at room temperature.
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Figure 5.1: Schematic of the measurement apparatus used to optically pump the
semiconductor ABR lasers, and to image the vertically emitted photoluminescence.
The legend shows the paths followed by the pump, infrared photoluminescence, and
white light beams. The positioning of the pump spot with respect to the ABR device
is illustrated in the magnified view in the lower right corner.
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5.3 Characterization of radial defect ABR emis-

sion spectra and near field emission profiles

5.3.1 Description of ABR structure parameters

Figure 5.2 shows an SEM image of the ABR geometry for which the optical emis-

sion characteristics are evaluated below. The Bragg reflectors were of mixed order,

with second-order high-index and first-order low-index layers. The grating pitch was

chirped from 0.91 µm to 0.81 µm from the inner to the outer perimeter. The width

of the high-index semiconductor defect was 0.28 µm, chosen for a first-order defect

("effective" λ/2n wide), and the defect radius was 7.72 µm. The defect layer and

cylindrical reflectors were together designed to support an azimuthally propagating

mode with m = 7 at a wavelength of λ = 1550 nm. The Bragg reflectors were com-

posed of 5 periods to the inside of the radial defect, and 10 periods to the outside.

The radius of the innermost and outermost semiconductor layers were 3.5 µm and

16 µm, respectively. As discussed in Chapter 3, the radial component of a wave res-

onant with the cylindrical grating completes a full optical cycle between successive

grating "periods," owing to the mixed-order design. Thus, waves diffracted vertically

from consecutive periods have phase differences of 2π and interfere constructively [48],

leading to efficient vertical emission into the collection objective normal to the plane

of the ABR.

5.3.2 Below threshold quantum well spontaneous emission

When an unpatterned region of the epitaxially transferred InGaAsP QW membrane

was illuminated with a focused pump beam having ∼3 µm spot diameter, broadband
spontaneous emission was observed. This emission originates from optical transitions

between the lowest energy confined electron (e1) and heavy hole (hh1) states within

the QWs [102]. Figure 5.3(a) contains a series of PL spectra obtained as a function

of the pump power incident upon the membrane. At a pump power of 1 mW, the

peak PL occurs at a wavelength of 1559 nm, with a FWHM of approximately 70
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Figure 5.2: SEM image of the radial defect ABR geometry described and tested. The
annular defect layer is the sixth ring from the center.

nm. As the pump power is increased to 20 mW, the emitted PL intensity increases,

the FWHM peak width broadens to ∼120 nm, and the PL peak is redshifted to
a wavelength of 1575 nm. Heating of the membrane due to hot carrier intraband

relaxation and non-radiative interband recombination of photogenerated electron-hole

pairs results in broadening of the energy distribution of electrons and holes within

the QW subbands [103], and is thus responsible for the observed peak broadening.

Redshifting of the peak is again due to thermal effects, due to the typical reduction

of the semiconductor bandgap energy with increasing temperature [104].

When an ABR defect resonator such as the one shown in Fig. 5.2 is optically

pumped, the PL spectrum observed is substantially different. For these measure-

ments, the pump spot was defocused to a diameter of ∼16 µm and centered over

the resonator, to ensure even illumination of the radial defect. For incident pump

powers significantly below 1 mW, the observed spontaneous emission spectrum gen-

erally consists of one or more narrow peaks with spectral widths on the order of a

few nanometers, superimposed upon a typical broadband QW PL background. The

narrow peaks occur at the wavelengths λ of the resonant modes of the ABR device.

For example, Fig. 5.3(b) plots a restricted spectral region in which one such peak

is found. The low signal-to-noise ratio in the experimental data is due to the weak
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Figure 5.3: (a) Quantum well photoluminescence spectra from an unpatterned region
of the transferred InGaAsP membrane, as a function of incident pump power. As the
pump power is increased, the PL peak is slighly redshifted, and the spectral FWHM
broadens, due to membrane heating. (b) Below threshold photoluminescence from
an ABR device. The Lorentzian lineshape fitted to the spontaneous emission peak
suggests a quality factor Q ∼ 1200.

intensity of light emitted from the ABR modes at low pump power, requiring mea-

surement near the noise floor of the OSA. The linewidth ∆λFWHM of the ABR PL

peak, measured at a pump power just below laser threshold where the QW material

is approximately transparent, can be used to provide an estimate of the quality factor

Q of the resonant mode [105, 106], given by Q = λ/∆λFWHM . Numerically fitting

a Lorentzian lineshape to the data, the linewidth was found to be ∆λFWHM = 1.3

nm, giving Q ∼ 1200. Peaks in the ABR spontaneous emission from optical modes at
several wavelengths and various different ABR devices were found to suggest similar

values of Q, all on the order of 103.

The limited quality factors observed below threshold originate from various con-

tributions to the unsaturable optical losses within the ABR microcavity. Sources of

material-related optical losses can include scattering from the interfaces between the

numerous epitaxial layers within the InGaAsP membrane [107], which depends upon

the quality of the crystal growth. In addition, although the entire 250 nm InGaAsP
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membrane was grown nominally undoped, the typical background doping for such

III-V semiconductor alloys is n-type with a concentration of approximately 1× 1015
cm−3 [108], giving rise to a loss contribution from free carrier absorption [109—111].

Additional sources of scattering and absorption loss can be introduced during the

course of the ABR fabrication process. For example, roughness on the etched side-

walls of the membrane originates from the finite resolution of electron beam lithog-

raphy (roughness in the PMMA patterns) and ultimately transfers into the InGaAsP

semiconductor. The semiconductor reactive ion etching step itself can generate some

additional intrinsic sidewall roughness. This sidewall roughness can give rise to signif-

icant scattering [112—114], particularly because of the large refractive index contrast

between the semiconductor layers and low-index trenches, and the large total number

of sidewalls intersecting the ABR optical modes. Furthermore, the semiconductor

reactive ion etching step leaves behind an unterminated semiconductor surface with

dangling bonds, and also generates ion damage proportional to the energy of ions bom-

barding the surface. Both these processes can lead to generation of a large density

of surface states within the semiconductor bandgap, giving rise to a degree of optical

absorption [115,116]. Finally, although the in-plane radiative losses are rendered very

small by the high-reflectivity cylindrical Bragg reflectors, out-of-plane radiative losses

may contribute to limit the Q. Using a symmetrical slab structure, with material of

the same refractive index both above and below the semiconductor membrane, would

help to reduce the vertical losses. Further reduction of vertical radiation could be

obtained by increasing the thickness of the semiconductor membrane [117].

5.3.3 Onset of laser oscillation and characteristics of laser

spectra

As the optical pump power was increased, a sharp increase in the emitted IR power

was observed due to the onset of laser oscillation, occurring at the same wavelengths

at which narrow peaks were found in the spontaneous emission spectrum [97]. The

integrated power collected from the ABR within the spectral range from 1500 nm
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- 1660 nm is plotted in Fig. 5.4(a). Evidence for laser action from this device is

given by a clear threshold occurring at a pump power of Pth ∼ 860 µW. Emission

spectra obtained under several pump intensities are illustrated in Fig. 5.4(b), showing

multiple lasing modes. Under these measurement conditions, two separate groups of

lasing modes were observed, each with a distinct free spectral range (FSR) and laser

threshold behavior. At low pump power (Pp = 1.17 mW, Pp = 1.52 mW), resonances

at λ1 = 1588.7 nm, λ2 = 1614.0 nm, and λ3 = 1562.6 nm, dominated the spectrum.

The FSR of this first group of modes was ∼25.5 nm. At an increased pump power of
1.77 mW, an additional mode at λ4 = 1622.2 nm appeared, and at Pp = 2.06 mW,

a mode at λ5 = 1601.4 nm appeared. These new modes were attributed to a second

group, owing to their narrower linewidth and smaller FSR of ∼20.8 nm. Further
increase in pump intensity resulted in increased emission from this second group of

modes, with emission from the first group showing saturation. A weak feature at λ6

= 1538.0 nm, belonging to the first group, appeared at the highest pump powers.

Figure 5.4: (a) L-L curve of integrated ABR emission vs. pump power, showing laser
threshold at Pth ∼ 860 µW. (b) Optical spectra collected from lasing ABR cavity.
Spectra are vertically offset to illustrate the effects of increasing pump power.

The multiple modes belonging to each group are likely to posses a similar radial

profile, with consecutive azimuthal numbers (m, m+ 1, m+ 2, etc.). Dissimilarities
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in the threshold and FSR between the two groups of modes suggest they may possess

slightly different radial profiles and/or different overlap with the pump spot. Dif-

ferences such as these could arise from multiple transverse modes within the radial

defect, and/or localization at different radii within the ABR structure.

Further insight into the origin of the observed lasing modes can be obtained by

considering the limited numerical aperture of the collection optics. For the measure-

ment configuration used here, in which the collection objective positioned normal

to the plane of the ABR device, the dependence of the vertical diffraction angle in

air upon the modal azimuthal number m influences the collection efficiency for light

diffracting from the cylindrical Bragg grating [47]. Azimuthally propagating modes

in the ABR structure contain exp(imθ) dependence. Upon circulating around a loop

of radius R, the mode advances in phase by exp(ikθL) = exp(i2kθπR) = exp(i2mπ),

resulting in kθ = m/R. Given that the first harmonic of the mixed order grating’s

crystal momentum, kG, cancels the radial component of the modal wavevector, kρ

(i.e. kρ = −kG), it is possible to use Snell’s law to estimate the air diffraction angle
θ0 in the azimuthal direction, as illustrated in Fig. 5.5. Recalling that the numerical

aperture of the 20x collection objective is 0.42, one finds that a mode must satisfy

the criteria

sin(θ0) =
kθ
k0
=

mλ

2πR
< 0.42 (5.1)

in order to enter the finite numerical aperture of the collection optics. At λ = 1.59 µm

(near the middle of the spectral region plotted in Fig. 5.4(b)), Eq. 5.1 is satisfied only

form . 26, where R = 16 µm has been assumed, corresponding to the outer radius of
the ABR device. While the semiconductor rings in the mixed-order Bragg reflectors

are wide enough (∼0.43 µm) to support relatively low loss whispering gallery modes
(WGMs) by index guiding (when considered in isolation from the rest of the grating),

these modes are expected to have 38 . m . 187, estimated using

mλ ≈ 2πRneff , (5.2)

where 3.5 µm ≤ R ≤ 16 µm and neff = 2.8 were assumed. Therefore, the vertically
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Figure 5.5: Illustration of wavevector components contributing to vertical diffraction
within an ABR with a mixed order grating. The radial component kρ is cancelled
by the first harmonic of the grating vector kG, while the azimuthal and vertical
components kθ and kz sum to give a wavevector k0 in air.
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collected ABR emission leading to the observed spectral features in Fig. 5.4(b) can be

attributed to Bragg-guided low-order azimuthal modes, for example, modes localized

within the ABR radial defect, as opposed to TIR-guided WGMs.

It should be noted that a small amount of blueshifting of all the lasing peaks

in Fig. 5.4(b) was observed as the pump power was increased. This spectral shift

was attributed to free carrier dispersion effects caused by the high density of photo-

generated electron-hole pairs, and the associated reduction of the refractive index of

the InGaAsP semiconductor membrane [109,111]. This implies that for the range of

incident optical pump powers used, generally < 4 mW, any membrane heating effects

present were dominated by free carrier dispersion effects. If significant membrane

heating was occurring, redshifting of the laser spectra with increasing pump power

would be expected, owing to the positive sign of the thermooptic coefficient dn/dT for

InGaAsP, and the associated increase in the index of refraction [38]. However, it was

observed that at pump powers in the range of ∼6-10 mW (depending upon the pump

focal spot size), optical heating of the ABR semiconductor membrane and the NOA

73 adhesive led to reflow of the adhesive, as the glassy temperature of the UV cured

polymer material was exceeded. Adhesive reflow and subsequent re-solidification led

to small shifts in the relative positions of the semiconductor rings, and altered the

local planarity of the membrane, resulting in permanent damage to the ABR device.

5.3.4 Polarization of ABR defect modes

The polarization characteristics of the various lasing modes shown in Fig. 5.4(b) were

investigated by introducing a linear polarizer into the PL collection path, between

the ABR laser and the multimode fiber in Fig. 5.1. The pump power used was ∼2.5
mW, such that modes belonging to both the first and second groups discussed above

had reached laser threshold. A series of spectra were obtained for various rotation

angles of the polarization axis. Plotting the integrated power within a narrow spec-

tral band encompassing each individual lasing peak against the polarization angle,

the modes of two distinct groups of lasing modes were found to exhibit different po-
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larization characteristics [97]. Figure 5.6 plots two polarization characteristics which

are representative of the modes in each group.

Figure 5.6: Integrated power versus polarizer angle for ABR laser modes belonging
to the first and second groups. (a) Modes of the first group exhibit approximately
unpolarized emission. (b) Modes of the second group exhibit partially polarized
emission.

The emission from the modes of the first group is relatively unpolarized, as shown

in Fig. 5.6(a). The egg-shaped deformity of the polarization characteristic and the

offset between the start and end of the curve near 0◦ are due to drift in the intensity

of the optical pump beam during the time taken to acquire the data. On the other

hand, Fig. 5.6(b) shows that the emission from the modes of the second group is

partially polarized.

Figure 5.7(a) plots the theoretical Hz(
−→r ) spatial field distribution of the m = 7

TE mode within an ABR defect resonator similar to the device tested. The outlines

of the high index rings are overlaid for clarity. Figure 5.7(b) plots an enlarged view

of the fields within the boxed region in Fig. 5.7(a), showing a quiver plot of the

in-plane electric fields Eρ(
−→r ) and Eθ(

−→r ), in addition to the Hz(
−→r ) distribution in

color. For the magnified region shown, the arrow directions illustrate that within
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Figure 5.7: (a) Spatial field distribution Hz(
−→r ) for a typical ABR radial defect mode

having m = 7. (b) Field distribution within the boxed region from (a). Color plot
corresponds to Hz(

−→r ). Quiver plot shows the in-plane electric field components
Eρ(
−→r ) and Eθ(

−→r ) vectorially.
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each angular slice ∆θ = 2π/m of the ABR defect mode, the direction of the in-plane

field alternates between predominantly azimuthal and radial polarizations. Averaging

over the entire radial defect mode, this complex polarization state will be indistin-

guishable from unpolarized light at a linear polarizer, thus explaining the polarization

plot in Fig. 5.6(a). However, slight deviations from the ideal cylindrically symmetric

structure, which can occur during the electron beam lithography fabrication step for

example, may cause departures from the theoretically predicted modal field profiles

and polarization state. For example, a slight ellipticity could cause enhanced output

coupling of light linearly polarized along the long axis of the distorted ABR micro-

cavity [118, 119]. Therefore, the partially polarized emission observed from modes

belonging to the second group, as shown in Fig. 5.6(b), suggests a small degree of

spatially localized emission of linearly polarized light, superimposed upon a weaker

unpolarized background, and is attributed to fabrication errors that break the radial

symmetry of the device.

5.3.5 ABR laser linewidth broadening

The spectra in Fig. 5.4(b) show that the FWHM linewidths ∆λlaser of the vari-

ous ABR lasing modes are in the range of 2-5 nm, with wider linewidths occurring

for larger values of the incident pump power. With typical linewidths for standard

commercial edge emitting Fabry-Perot semiconductor lasers being on the order of

∆λlaser ∼ 1 pm (below the resolution limit of the OSA; also ∆νlaser ∼ 100 MHz),
it is interesting to examine the possible factors contributing to the broad observed

linewidth for the ABR laser.

First, the relationship between the linewidth and the cavity Q is illustrated by

the expression for the modified Schawlow-Townes linewidth, including the broadening

factor (1 + α2) found to be important in semiconductor lasers [120, 121]. Stated in
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terms of frequency, the laser linewidth ∆νlaser is given by

∆νlaser =
2πhν0(∆νFWHM)

2

P0

N2

N2 −N1
(1 + α2)

=
2πhν30
Q2P0

N2

N2 −N1
(1 + α2), (5.3)

where ν0 is the laser frequency, ∆νFWHM is the linewidth of the passive cavity reso-

nance, P0 is the power coupled out of the cavity, and N1 and N2 are respectively the

total number of atoms in the lower and upper laser levels. The quantity α is known

as the linewidth enhancement factor, and is defined as the ratio of the differential

change in the real and imaginary parts of the complex refractive index n = n0 − in00,

giving α = ∆n0/∆n00. Equation 5.3 predicts that the linewidth scales inversely with

the square of the cold-cavity Q, making the quality factor a critical parameter for the

realization of narrow linewidth laser sources.

Since we do not necessarily have reliable estimates for the Q or the output power

P0, it is more convenient to use a different form of Eq. 5.3, given by

∆νlaser =
R

4πnp
(1 + α2) =

R

4πρpVm
(1 + α2), (5.4)

whereR is the average spontaneous emission rate, np is the average number of photons

in the lasing mode, ρp is the average photon density, and Vm is the cavity mode

volume. The above expression can be used to facilitate the comparison of ABR and

edge emitting laser linewidths on the basis of their mode volume. Assuming similar

spontaneous emission rates, photon densities, and chirp parameters for each type of

resonator, an order-of-magnitude estimate for the ABR laser linewidth ∆νlaser,ABR is

given by

∆νlaser,ABR = ∆νlaser,FP
Vm,FP

Vm,ABR
, (5.5)

where ∆νlaser,FP is the linewidth of the edge emitting Fabry-Perot laser, and Vm,FP

and Vm,ABR are the mode volumes of the Fabry-Perot and ABR geometries, respec-

tively. As mentioned above, edge emitting semiconductor lasers operating continuous
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wave typically have fundamental linewidths on the order of 100 MHz [122,123]. While

the mode volume for a typical Fabry-Perot mode is on the order of several thousand

cubic wavelengths in the semiconductor material (Vm,FP ∼ 103(λ/n)3), the mode vol-
ume for a radial defect ABR mode is much smaller, on the order of several tens of

cubic wavelengths (Vm,ABR ∼ 10(λ/n)3). Therefore, the number of photons in the
ABR mode is much smaller than that for the edge emitter, and broader linewidth

of ∆νlaser,ABR ∼ 10 GHz can be expected. At wavelengths near 1.55 µm, where

a spectral bandwidth of 1 nm converts to a frequency bandwidth of 125 GHz, the

estimated linewidth translates to ∆λlaser ∼ 0.08 nm. However, in comparison with
the measured ABR laser linewidths, the above estimation falls short by a factor of

∼25-60.
The discrepancy between the observed and measured linewidths can be accounted

for by additional sources of broadening induced by the pulsed manner in which the

ABR devices are excited. For most semiconductor lasers, the fundamental linewidth

originates predominantly from the term multiplying α2, which describes the coupling

of the carrier density to the cavity field’s amplitude and phase fluctuations due to

spontaneous emission events. The expressions for the laser linewidth in Eqs. 5.3-5.4

were derived assuming steady state operating conditions, where spontaneous emission

and the resulting carrier density fluctuations amount to only a small signal. However,

the use of extremely short pulses approximately 100 fs in duration for optical exci-

tation naturally prohibits laser action from reaching steady state operation. Typical

semiconductor lasers require on the order of several nanoseconds for turn-on tran-

sients in the injected carrier density and cavity power to stabilize [124]. Therefore,

the linewidth estimates given above cannot be expected to hold under such dynamic

large-signal excitation conditions, but can at best be used to predict the fundamental

ABR laser linewidth which would be observed if the device were excited continuous

wave, or at least with longer pulses on the order of 100 ns - 1 µs.

Nevertheless, the enhanced broadening observed in the ABR laser linewidth is also

likely due to the dynamic coupling of the free carrier density to the field’s amplitude

and phase during the transient excitation and emission occurring with each incident
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pump pulse. A large density of electron-hole pairs is photogenerated within the

semiconductor membrane upon absorption of a pump pulse. When sufficient carriers

have diffused or been swept into the QWs to reach the threshold gain condition, the

laser will turn on. At this point, the density of free carriers within the QWs is rapidly

depleted as the stimulated power in the cavity grows. Eventually the carrier density

will be reduced to the point that the ABR laser pulse will cease. The depletion of the

carrier density results in an increase of the semiconductor refractive index during the

ABR laser pulse. This increase in refractive index in turn chirps the optical carrier to

longer wavelengths throughout the duration of the pulse, contributing to the observed

degree of linewidth broadening.

There are two mechanisms contributing to the carrier dependent refractive in-

dex, these being free carrier plasma effects [111], and band-filling effects [109, 110],

which result from the shift in the semiconductor bandgap with carrier concentration,

and which change the refractive index through the Kramers-Kronig relations. These

mechanisms have been used to explain similar laser linewidth broadening observed

upon the onset of noise-induced self-pulsation in edge emitting semiconductor lasers

operating under cw electrical excitation conditions [125,126]. Asymmetric lineshapes

for which the peaks were skewed towards the red end of the spectrum were observed

for these pulsating lasers, and are very similar in appearance to those shown for the

radial defect ABR lasers in Fig. 5.4(b). Although the excitation conditions differ from

those used here for ABR lasers, the dynamic mechanisms responsible for linewidth

broadening should be similar in both cases.

5.3.6 Images of infrared near field emission profiles

Additional information regarding the optical characteristics of ABR defect resonators

can obtained by imaging the near field standing wave intensity profile at the ABR

surface. The vertically collected emission can be focused onto an IR vidicon camera

for this purpose, as shown in Fig. 5.1. Not shown in Fig. 5.1 are a double-side polished

Si wafer and a long-pass filter transparent for wavelengths longer than 1500 nm, which



76

were placed in the infrared PL collection path and used to filter the residual 890 nm

pump beam transmitted through the ABR semiconductor membrane. When pumped

above laser threshold, efficient vertical emission induced by the mixed-order grating,

in addition to surface scattering, permits imaging of the structure’s lasing spatial

mode profiles. For example, Figs. 5.8(b)-(c) contain a pair of IR images obtained

from two ABR devices with slightly different designs, each having a geometry similar

to the ABR device in Fig. 5.8(a). Each of the devices shown has a fifth-order defect

layer, i.e. an "effective" 5λ/2n wide. Specifically, the devices producing the images

in Figs. 5.8(b)-(c) were designed for operation at λ = 1550 nm with m = 9 and

m = 7, respectively. The superimposed outlines, corresponding to the edges of the

semiconductor rings in each structure, show that the m = 9 design has a slightly

larger defect radius that that of the m = 7 design.

Using the IR images, several important observations can be made. First, the

emission is localized within an annular region coincident with the wide radial defect

layer. In addition, the emission intensity decays rapidly within the first two periods of

the cylindrical Bragg reflectors on either side of the defect. Both these features occur

as expected from numerical calculations of ABR defect mode profiles, as discussed

in Chapter 3. Furthermore, the spatial emission profiles show multiple lobes of high

intensity around the circumference of the defect layer, separated by regions of reduced

emission. Although some estimation is involved, the emission pattern appears to

possess 14 bright lobes in Fig. 5.8(b), and 12 bright lobes in Fig. 5.8(c), suggesting

that the patterns correspond to modes with azimuthal numbers of m = 7 and m = 6,

respectively. The differences between the designed and observed m numbers can be

due to uncertainty and/or dispersion in the membrane slab effective index neff used

in the design calculations, or deviations of the defect radius from the desired nominal

value occurring during the ABR fabrication process. The observed azimuthal numbers

m = 7 and m = 6 correspond to azimuthal effective indexes neff,θ of 0.21 and 0.19,

respectively, as given by neff,θ = mλ/2πReff , where Reff is the effective radius at

which the mode travels. The effective radii were taken as 8.3 µm and 7.7 µm for the

devices in Fig. 5.8(b) and Fig. 5.8(c), respectively. These values of neff,θ are lower
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Figure 5.8: (a) SEM image of an ABR having a higher order defect with an "ef-
fective" width of 5λ/2n. The device geometry shown here is representative of the
devices producing the subsequent IR images. The IR near field emission patterns
corresponding to m = 7 and m = 6 ABR defect modes are shown in (b) and (c),
respectively, superimposed against outlines locating the edges of the semiconductor
rings.
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than the refractive index of air as well as the NOA 73 adhesive layer forming the

lower cladding layer (n = 1.56), confirming that the IR patterns observed are due to

modes guided by Bragg reflection.

The slow azimuthal modulation of the IR pattern intensity, particularly visible

in Fig. 5.8(b) where the lobes possess higher intensity in two main clusters along

the y-axis of the image, is likely due to some small ellipticity in the ideally circular

ABR structure. Such ellipticity could lead to slightly different widths or spacings of

the high and low index layers in the Bragg reflectors along the x and y directions,

resulting in different in-plane defect mode confinement efficiency, vertical diffraction

angle, and vertical collection efficiency along each of these axes [48,118]. These effects

can combine to produce enhanced directional emission from ABR regions with higher

curvature, giving rise to the intensity non-uniformities of the sort seen in Fig. 5.8(b).

Although ABR devices with a first order defect layer such as that shown in Fig.

5.2 were found to produce IR emission patterns with similar features, the images

themselves were not as clear due to a poor signal-to-noise ratio. Therefore, the images

from the higher order defect ABR microcavities are shown here for the purpose of

illustrating the optical confinement within the defect layer.

5.4 Comparison of ABR lasing spectra with FDTD

simulations

In Section 5.3, the above threshold lasing spectra from ABR defect lasers was shown

to be composed of multiple modes. Measurements on a number of similar ABR

devices illustrated a common trend; as the optical pump power was increased, a

larger number of modes reached laser threshold. For pump powers greater than

approximately 3 mW (roughly three times the threshold pump power of ∼1 mW), the
lasing spectra typically became quite complex, as is illustrated in the experimental

spectrum in Fig. 5.9(a), for which the incident pump power was ∼3.2 mW. The
ABR device producing this spectrum was similar to that discussed in Section 5.3,
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having a first-order semiconductor defect, and mixed-order Bragg reflectors composed

of second-order high-index and first-order low-index layers. However, the Norland

optical adhesive filling the low index layers was not removed in the present case,

giving these layers a refractive index of n = 1.56 rather than n = 1.

Figure 5.9: Comparison of experimental laser spectrum at Pp ∼ 3.2 mW (a) with
numerically derived FDTD spectrum (b). Modes labeled D are confined within the
ABR defect. Modes labeled I are confined within one of the semiconductor rings of
the inner Bragg reflector. The modes labeled M are not confined to a single ring, but
overlap with multiple rings.

In an effort to explain the complicated spectral characteristics shown in Fig.

5.9(a), the ABR device was modeled using a finite-difference time-domain (FDTD)

numerical simulation tool [127,128]. By exciting the simulated ABR structure with a

very short temporal pulse, all optical modes within a broad frequency band about the
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center frequency of the pulse were excited. Time evolution of this initial excitation

allows non-resonant frequency components to dissipate or "leak" from the ABR struc-

ture, while the resonant frequencies of interest continue to propagate within the ABR.

Subsequent analysis of the Fourier spectrum of the resonant optical fields reveals a

series of spectral peaks corresponding to the resonant wavelengths of the structure,

as shown in Fig. 5.9(b) [129].

Comparison of Figs. 5.9(a)-(b) illustrates that the modal spectrum computed

by FDTD agrees quite well with the experimental spectrum, both in terms of the

resonant wavelengths as well as their relative amplitudes. As a guide to the eye,

common groups of resonant modes are connected by dashed arrows between the two

spectra. However, the wavelength axis of the FDTD spectrum is slightly "stretched"

with respect to that of the experimental spectrum. This effect can be attributed to

the fact that the FDTD simulation does not take into account the material dispersion

of the ABR semiconductor membrane or the Norland optical adhesive. The material

contribution to the group index is therefore not captured by the FDTD simulation,

leading to a slightly larger wavelength spacing between the resonant modes.

The FDTD spatial field profiles corresponding to the resonant modes were found

to be well classified into three separate types, labeled by the letters D, I, and M

in Fig. 5.9(b). The modes belonging to the D class are confined within the ABR

defect layer, as expected from the device design. The subscripts D1, D2, and D3

label defect-confined modes with different azimuthal number m. The modes of class

I are confined within the semiconductor ring closest to the radial defect within the

inner Bragg reflector. These modes are in fact guided by total internal reflection,

and are supported because of the use of wider second-order semiconductor layers

within the mixed-order Bragg mirror design. The modes belonging to class M are not

localized to a single layer as are the D and I modes, but are more broadly distributed

over several grating periods, having significant amplitude within both the high and

low-index layers.
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5.5 Effects of electron beam lithography process

variations and lithographic tuning of ABR lasers

The lasing wavelength of the ABR radial defect modes is very sensitive to the modal

effective index, or equivalently, the optical path length traversed by a given mode

per revolution around the cylindrical structure. One means by which the ABR lasing

wavelength may be controlled is by "lithographic tuning" [130,131], for example, fine

tuning of the optical path length via the dimensions of the annular Bragg reflectors

and the defect layer, during the initial ABR transfer matrix design process. However,

additional sources of lithographic tuning can originate from the device fabrication pro-

cess itself, particularly during electron beam lithography [98]. For a given thickness of

PMMA resist, there exists a finite range of electron doses for which the PMMA resist

is fully exposed, leaving no residues on the substrate, and does not yet suffer from a

reduction in contrast due to overexposure. Within this range of doses, however, the

lateral pattern dimensions may experience subtle changes from the nominal design

on the order of only several nanometers. Such small deviations can be difficult to

detect, even using scanning electron microscopy. Nevertheless, the optical properties

of the resulting ABR structure, specifically the lasing wavelengths, provide a sensitive

probe of lithographic process variations, and can give an indication of the electron

beam lithography process latitude [132].

A series of ABR devices were prepared to evaluate the effects of varying the

electron dose D applied during electron beam lithography. These devices all had first

order radial defects and mixed order cylindrical Bragg reflectors, very similar to the

device shown in Fig. 5.2. The overall range of doses for which the PMMA patterns

were adequately exposed was experimentally determined to be 600-725 µC/cm2. Four

different doses interior to this range, specifically 625, 650, 675, and 700 µC/cm2, were

investigated.

Near infrared spectra obtained while pumping this set of devices above laser

threshold are shown in Fig. 5.10. The pump objective lens was defocused such that

the pump spot diameter was ∼16 µm, in order to ensure reasonable overlap between
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the pump and the ABR defect. The time averaged pump power incident upon each

device was 1.4 mW. While devices given the same dose exhibited almost identical

spectra, comparison of the spectra from devices with D = 700 µC/cm2, 675 µC/cm2,

and 650 µC/cm2 shows successive shifts of the lasing modes to longer wavelengths as

the electron dose decreases. The position of a pair of closely spaced modes in each

spectrum was used to track the redshift, as indicated by the arrows. The wavelengths

of these modes were 1581 nm/1589 nm for D = 700 µC/cm2, 1588 nm/1596 nm for

D = 675 µC/cm2, and 1608 nm/1615 nm for D = 650 µC/cm2. The observed red-

shifts are approximately 7 nm between D = 700 µC/cm2 and 675 µC/cm2, and 20

nm between D = 675 µC/cm2 and 650 µC/cm2.

Figure 5.10: Illustration of lithographic process variation effects upon ABR lasing
mode wavelengths. Emission spectra shown were taken from four different ABR lasers
fabricated with varying electron dose D. The arrows follow the spectral redshift of
a particular pair of optical modes resulting from the increasing semiconductor filling
fraction with decreasing electron dose, for D = 700, 675, and 650 µC/cm2. The slight
blueshift observed for the D = 625 µC/cm2 spectrum departs from this trend. Optical
pump power was 1.4 mW for all spectra.

The redshift can be understood by noting that as the exposure dose is decreased,

the widths of the PMMA rings remaining after development of the ABR pattern
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(Fig. 4.6) are slightly increased, ultimately resulting in wider semiconductor rings in

the Bragg reflectors and ABR defect. The resulting increase in the semiconductor

filling fraction raises the effective index neff (and increases the optical path length)

of the guided optical modes, which in turn causes a redshift. The percent change in

neff and optical path length is estimated to be 0.44% between D = 700 µC/cm2 and

675 µC/cm2, and 1.26% between D = 675 µC/cm2 and 650 µC/cm2. In contrast,

the spectrum from the device patterned with D = 625 µC/cm2, in which the two

closely spaced modes were located at 1605 nm and 1612 nm, appears to be slightly

blueshifted with respect to the D = 650 µC/cm2 spectrum. This departure from

the trend observed for the larger electron doses is likely due to some additional non-

systematic source of fabrication process drift.

The numerically estimated shift in the resonance wavelength as a function of the

lithography-induced adjustment in the width of each semiconductor ring in the ABR

structure is plotted in Fig. 5.11. The nominal resonance wavelength at zero width

adjustment was taken to be 1580 nm. Dispersion of the refractive index has been

neglected. The wavelength shift is linear in the layer width adjustment, and the slope

of the relationship indicates an expected shift of 5.79 nm per 1 nm change in the layer

width. As expected, a very small change in the ABR device dimensions (in fact smaller

than both the pattern fracture resolution limit of the electron beam lithography and

the sidewall roughness after reactive ion etching), results in a significant change in

the operating wavelength. Using Fig. 5.11, it is estimated that the semiconductor

ring widths across the ABR structure have changed by less than 4.7 nm each, within

the dose range from 650 - 700 µC/cm2.

Plots of the integrated ABR emission versus optical pump power for each of the

four devices are given in the L-L curves of Fig. 5.12. As the electron dose is de-

creased, a decrease in the pump power Pth required to reach laser threshold is ob-

served. Threshold occurred at Pth = 0.39 mW, 0.33 mW, and 0.30 mW for D = 700

µC/cm2, 675 µC/cm2, and 650 µC/cm2 respectively. The dosage-dependent increase

in the semiconductor filling fraction also results in a larger overlap of the ABR modes

with the amplifying quantum wells. The corresponding increase in the optical gain
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Figure 5.11: Numerically estimated resonance wavelength shift versus electron beam
lithography dose induced adjustment in the semiconductor ring layer widths through-
out the ABR structure.

experienced by the ABR modes gives rise to a reduction in threshold pump power.

Again, the L-L curve for the device patterned with D = 625 µC/cm2 departs from the

observed trend, demonstrating a larger threshold pump power of 0.36 mW, and also

having poor slope efficiency above threshold compared with devices given a larger

dose. The higher value of Pth and the degraded efficiency lend further evidence for

the degradation of this device by a non-systematic fabrication error.

The large sensitivity of the operating wavelength to small changes in the modal

effective index, as observed during the course of lithographic process variations, sug-

gests that ABR devices can be used as high responsivity optical sensors. For example,

in cases where the sensing mechanism involves a change in the refractive index of the

local medium surrounding and/or infiltrating the ABR, the spectral shift associated

with the change in the modal effective index can be monitored, leading to applications

in chemical and biological sensing. Making use of ABR devices in such applications

will be the subject of Chapter 8.
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Figure 5.12: L-L plots from four ABR lasers fabricated with varying electron dose D.
The increase in modal gain with decreasing dose leads to sucessively lower threshold
pump powers Pth for D = 700, 675, and 650 µC/cm2. The higher threshold pump
power and poor efficiency of the D = 625 µC/cm2 device departs from this trend.
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5.6 Circular nanocavity lasers with ultra-small mode

volume

The radial defect ABR microcavity geometry discussed above was shown to lase

at multiple frequencies above threshold. However, for many applications, such as

telecommunications and spectroscopy, single mode lasers are far more desirable. As

illustrated in Chapter 3, a radial defect ABR structure designed to support a mode

with azimuthal number m at a nominal wavelength of λm can also support several

other modes with adjacent azimuthal numbers ...,m − 1,m + 1, ..., at wavelengths

near λm. Owing to the relative similarity of the spatial field profiles of these modes,

they are all likely to possess similar modal gain within the active InGaAsP QW

membrane, and thus have similar laser thresholds, provided that these modes have

resonant wavelengths lying within the gain spectrum.

In general, single mode laser oscillation can be obtained by designing the mi-

crocavity such that the free spectral range between the resonant wavelengths of the

designed mode and the nearest adjacent mode is large enough to push all but the

designed mode outside of the semiconductor gain bandwidth. This goal may be ac-

complished by substantially reducing the size, or optical path length, of the resonant

cavity in which the light is guided, for example, by reducing the radius of the ABR

defect layer. Continuing to make use of cylindrical Bragg reflectors for radial optical

confinement, the limit of this approach leads to the geometry shown in the SEM im-

age of Fig. 5.13(a), in which the resonant cavity is no longer an annular defect, but

rather a small pillar or disk placed at the center of a radial Bragg mirror [133, 134].

This Bragg pillar geometry can be used to realize compact sub-micron microcavities

with very small mode volume, particularly when they are designed for the m = 0

cylindrical mode. Whereas the radial defect ABR modes with m 6= 0 considered

previously propagate azimuthally and are doubly degenerate with ±m modes prop-

agating clockwise and counter-clockwise, the m = 0 mode supported by the Bragg

pillar structure is non-degenerate, and has the form of a radial standing wave with

maximum intensity located at the center of the device.
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Figure 5.13: (a) SEM image of a Bragg pillar resonator designed to support them = 0
mode. The cavity is composed of a 400 nm diameter central disk surrounded by a
cylindrical Bragg reflector. (b) Calculated modal intensity pattern of the resonator
shown in (a). The intensity is highly confined within the central pillar, as illustrated
by the superimposed Bragg reflector outline.
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The design of the Bragg pillar resonator shown in Fig. 5.13(a) was performed

using a coupled mode approach for cylindrical structures [52,135]. In this technique,

the inward and outward propagating wave solutions in cylindrical coordinates (Han-

kel functions of the first and second kind, H(1,2)
m (k0neffρ)), are coupled by a radial

perturbation profile ∆ε(ρ) which describes the Bragg reflector. For the structure to

support a resonant TE mode with azimuthal number m, the radius ρ0 of the central

pillar must fulfil the condition

Jm(k0neffρ0) = 0, (5.6)

where k0 = 2π/λ is the wavenumber in free space at the resonant wavelength. In

addition, the grating profile ∆ε(ρ) must satisfy

∆ε(ρ) =

 −2 |α|0
for

 sin
n
2phase

h
H
(1)
m (k0neffρ)

io
< 0

sin
n
2phase

h
H
(1)
m (k0neffρ)

io
≥ 0

, (5.7)

where α is a perturbation strength parameter related to the grating contrast. By Eq.

5.6, the smallest Bragg pillar resonator having m = 0 can be designed by choosing

the pillar radius to coincide with the first zero of the Bessel function J0(k0neffρ0).

Using a slab effective index neff = 2.8 and a wavelength λ = 1550 nm gives a pillar

radius of approximately 200 nm for the structure in Fig. 5.13(a). The external

Bragg reflector consisted of 35 quasi-periods of the mixed-order optimally chirped

design similar to those used in the radial defect ABR devices discussed previously,

and was fabricated using the active InGaAsP QW membrane by the same procedure

as outlined in Chapter 4.

Figure 5.13(b) contains a theoretical plot of the m = 0 modal intensity profile.

The superimposed outlines, corresponding to the edges of the semiconductor rings in

the structure, illustrate that the modal intensity is confined almost completely within

the 400 nm diameter central pillar. A compact mode volume Vm of 0.213 (λ/n)3, or

0.024 µm3, is estimated for thism = 0mode, which is only 1.75 times the theoretically
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predicted limit of a cubic half-wavelength. The mode volume is defined as

Vm =

R
ε(−→r ) |E(−→r )|2 d−→rh
ε(−→r ) |E(−→r )|2

i
max

.

In comparison with several demonstrated photonic crystal defect cavity designs [83,

136], the Bragg pillar mode volume is approximately 30% smaller. This feature again

illustrates one of the intrinsic advantages of ABR microcavity geometries. On one

hand, photonic crystal defect microcavities require extensive numerical simulation to

investigate the effects of a large space of parameters upon the modal characteristics.

In contrast, the cylindrical symmetry of Bragg pillar devices permits an analytical

description of their electromagnetic properties, enabling straightforward evaluation

of the optimum cavity and Bragg reflector configuration for obtaining ultra-small

mode volume. The estimated mode volume could be further reduced by using a more

symmetric scheme for vertical optical confinement, i.e. using material of the same

refractive index (preferably less than the current n = 1.56 NOA 73 polymer) both

above and below the InGaAsP membrane.

The Bragg pillar nanocavity in Fig. 5.13(a) was excited by pulsed optical pumping

as described previously. The pump beam was focused to a spot ∼3 µm in diameter

and was aligned with the central disk. The L-L curve in Fig. 5.14(a) shows that

laser threshold was reached at an incident pump power of Pth ∼ 900 µW. Several

spectra measured as a function of pump power are depicted in Fig. 5.14(b). As

anticipated, the emission consists primarily of a single mode at λ = 1561 nm, very

close to the design wavelength. At higher pump levels of approximately 1.5 × Pth,

two additional low-intensity peaks appear in the spectra at longer wavelengths near

1585 nm. These additional modes are attributed to emission from the surrounding

cylindrical Bragg grating, which is optically pumped through overlap with the tails

of the pump spot. This conclusion was reached by correlating the observed spectral

features with both the diameter and position of the pump spot with respect to the

central pillar of current device [66].

Although it was pointed out for the radial defect ABR microcavities above that
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Figure 5.14: (a) L-L curve of integrated Bragg pillar nanocavity emission vs. pump
power, showing laser threshold at Pth ∼ 900 µW. (b) Optical spectra measured above
laser threshold. Spectra are vertically offset to illustrate the effects of increasing pump
power.

the individual second-order high-index semiconductor layers Bragg gratings are suffi-

ciently wide to support undesirable index guided microring modes, in the case of the

Bragg pillar cavity, the net reduction in the size of the cavity acts to suppress these

modes. By shrinking the radii of the high-index layers of the cylindrical Bragg reflec-

tor to correctly surround the m = 0 central pillar, the radiative bend and scattering

losses for TIR microring modes within the smallest rings will be strongly increased,

resulting in lower Q factors and much higher thresholds for laser oscillation. Since the

pump spot only overlaps with high-index rings having very small radii, the emission

from these undesirable microring modes is strongly reduced.
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Chapter 6

Design and fabrication of
InGaAsP-InP integrated planar
coupled waveguide-resonator
systems

6.1 Introduction

This chapter presents a discussion of several aspects relevant to the design and realiza-

tion of InGaAsP-InP coupled waveguide-resonator systems. First, the numerical finite

difference (FD) technique for solving the Helmholtz equation will be described, with

applications to computing the transverse electromagnetic mode profiles and modal

propagation constants of 2D dielectric waveguides. Next, the design of a particular

type optical coupler device, known as a multimode interference (MMI) coupler, will

be outlined, and some examples of the theoretically predicted coupler performance

will be illustrated. Finally, a fabrication process for electrically actuated InGaAsP-

InP planar photonic integrated circuits will be described. The fabrication process and

design techniques for optical waveguides and MMI couplers discussed in this chapter

are applied to demonstrate a novel InGaAsP-InP thermooptic switch geometry in

Chapter 7.
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6.2 Numerical finite-difference eigenmode solver

The design of functional photonic devices depends heavily upon manipulation of the

manner in which light propagates along various types of waveguide structures, and

thus, accurate techniques for evaluating the electromagnetic properties of such struc-

tures are required. Assuming translational invariance along the axis of the waveguide,

taken as the z-axis, the dielectric properties (refractive index, material loss/gain, etc.)

of the waveguide cross-section in the x−y plane will determine the relevant parameters
describing the waveguide. These include, for example, the optical mode profiles, prop-

agation constants, polarizations, and cut-off conditions. For simple slab waveguides

in which the cross-section only varies along one axis, say, the y-axis, straightforward

analytical methods for finding the eigenmodes and eigenfrequencies exist [65]. Fur-

thermore, by using the effective index approximation [69], it is also possible to gener-

alize the one-dimensional slab waveguide solutions to structures with two-dimensional

optical confinement, along both the x- and y-axes. The effective index approach is

most accurate for waveguides having low refractive index contrast between the core

and cladding regions, and much larger spatial extent of the waveguide core along the

x-axis than the y-axis, or vice-versa. Analytical methods for finding the modes of

such structures often solve the scalar Helmholtz equation within each of the homoge-

neous, isotropic dielectric layers comprising the waveguide, and apply the appropriate

boundary conditions for the electric and magnetic fields along the dielectric interfaces

to match the solutions within each layer.

However, for more complicated two-dimensional waveguide cross-sections, particu-

larly those with high index contrast such as the channel waveguide shown in Fig. 6.1,

the approximations used in the application of purely analytical methods break down.

In these cases, numerical methods must be applied to obtain the most accurate pre-

dictions of the waveguide modal properties. Several numerical techniques have been

applied to the problem of waveguides with arbitrary refractive index profiles, with

two of the most common being the finite element [137] and finite difference [90,138]

methods. Finite element methods do not directly solve the Helmholtz equation, but
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Figure 6.1: Cross-section of a typical channel waveguide structure, labeling refractive
index in each region/layer.

rather make use of the variational principle to minimize a functional derived from

the Helmholtz equation. The finite difference method approaches the problem in a

more direct fashion, by discretizing the waveguide cross-section over a fine grid, and

approximating the partial derivatives in the Helmholtz equation by numerical differ-

ence equations. Ultimately, this approach leads to a set of algebraic equations which

is cast in the form of a matrix eigenvalue problem. Standard numerical methods for

finding the eigenvalues and eigenvectors of the matrix can then be applied [139].

6.2.1 Finite difference approximations

Consider a general continuous and smooth function of one variable f(x). When

numerical techniques are employed, the x-axis is discretized to take on the values

{..., xi−1, xi, xi+1, ...}, and the function f(x) is represented by discrete values at these
points, as shown in Fig. 6.2. Expanding f(xi−1) and f(xi+1) in Taylor series about



94

Figure 6.2: Discretization of a one-dimensional function f(x), illustrating the finite
difference method.

x = xi gives

f(xi−1) = f (xi)− (xi − xi−1)f (1)(xi) +
(xi − xi−1)2

2
f (2)(xi)

−(xi − xi−1)3

6
f (3)(xi) +O((xi − xi−1)4) (6.1)

f(xi+1) = f (xi) + (xi+1 − xi)f
(1)(xi) +

(xi+1 − xi)
2

2
f (2)(xi)

+
(xi+1 − xi)

3

6
f (3)(xi) +O((xi+1 − xi)

4), (6.2)

where f (n)(x) are the nth derivatives with respect to x. Subtracting Eq. 6.1 from Eq.

6.2 and solving for the first derivative evaluated at xi gives

f (1)(xi) =
f(xi+1)− f(xi−1)

xi+1 − xi−1
− xi+1 + xi−1 − 2xi

2
f (2)(xi) +O((xi+1 − xi)

2). (6.3)

For the case of equidistant discretization, where xi − xi−1 = xi+1 − xi = ∆x, the

second term on the right hand side of Eq. 6.3 vanishes, and the central difference

approximation for the first derivative results:

f (1)(xi) =
f(xi+1)− f(xi−1)

2∆x
+O((∆x)2). (6.4)
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In the limit of ∆x → 0, Eq. 6.4 converges to the true first derivative of f(x).

Therefore, the numerical error associated with representing the derivative as a finite

difference decreases as the grid spacing ∆x becomes more fine. For non-equidistant

discretization (i.e. xi−xi−1 6= xi+1−xi), the numerical errors become larger, being of
O(∆x), and thus a uniform grid is generally desirable. Following a similar procedure,

the central difference approximation for the second derivative, assuming equidistant

discretization, can be written as

f (2)(xi) =
f(xi−1)− 2f(xi) + f(xi+1)

(∆x)2
+O((∆x)2). (6.5)

The finite difference approximations can take other forms aside from the central

difference expressions above, for example, forward and backward differences. How-

ever, the central difference approximations are preferred for their smaller numerical

error. For functions of several variables, partial derivatives can be approximated by

generalizing the 1D approach above.

6.2.2 Semi-vectorial wave equations

In order to correctly capture the boundary conditions on the field components tangen-

tial and normal to a dielectric interface, the vectorial form of the Helmholtz equation

must be numerically discretized. The vectorial Helmholtz equation for the electric

field assumes that the dielectric permittivity ε(−→r ) varies spatially, and is given by

∇2−→E (−→r ) +∇
µ∇εr(−→r )

εr(
−→r ) ·

−→
E (−→r )

¶
+ k20εr(

−→r )−→E (−→r ) = 0, (6.6)

where εr(−→r ) = n2(−→r ) is the relative dielectric permittivity, k0 is the wavenumber in
free space, and a harmonic time-dependence of the form exp(iωt) has been assumed.

In a uniform waveguide, we have ∂εr(
−→r )/∂z = 0. Taking a spatial dependence of

the form exp(−iβz) along the z-axis allows the x and y components of Eq. 6.6 to be
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expressed as

∂2Ex

∂x2
+

∂

∂x

µ
1

εr

∂εr
∂x

Ex

¶
+

∂2Ex

∂y2
+ (k20εr − β2)Ex +

∂

∂x

µ
1

εr

∂εr
∂y

Ey

¶
= 0 (6.7)

∂2Ey

∂x2
+

∂2Ey

∂y2
+

∂

∂y

µ
1

εr

∂εr
∂y

Ey

¶
+ (k20εr − β2)Ey +

∂

∂y

µ
1

εr

∂εr
∂x

Ex

¶
= 0,(6.8)

where the spatial dependence of all quantities has been suppressed for clarity. The

last terms in Eqs. 6.7-6.8 represent coupling between the TE and TMmodes typically

associated with slab waveguides [65]. Therefore, the general solutions of the vectorial

Helmholtz equations will be hybrid modes having six non-zero field components, i.e.

Ex, Ey, Ez, Hx, Hy, and Hz.

However, in many cases the coupling terms are small and can be ignored, decou-

pling Eqs. 6.7-6.8 and making more efficient numerical solution possible. Assuming

Ey = 0 or Ex = 0 leads to the semi-vectorial Helmholtz equations for the quasi-TE

(principal field component Ex) and quasi-TM modes (principal field component Ey),

respectively, given by

∂2Ex

∂x2
+

∂

∂x

µ
1

εr

∂εr
∂x

Ex

¶
+

∂2Ex

∂y2
+ k20εrEx = β2Ex (6.9)

∂2Ey

∂x2
+

∂2Ey

∂y2
+

∂

∂y

µ
1

εr

∂εr
∂y

Ey

¶
+ k20εrEy = β2Ey. (6.10)

Figure 6.3 illustrates the primary field components associated with the quasi-TE and

quasi-TM modes of a typical channel waveguide cross-section similar to that shown

in Fig. 6.1.

Discretizing the cross-sectional relative dielectric permittivity εr(x, y) and electric

field Ex,y(x, y) on a 2D grid of size Nx × Ny (where Nx, Ny are the integer number

of grid points along the x and y axes, respectively), and replacing all derivatives in

Eqs. 6.9-6.10 by their finite difference equivalents as discussed above, results in a

set of algebraic finite difference equations which can be cast in the form of a matrix

eigenvalue problem,

Mφ = β2φ. (6.11)
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Figure 6.3: Principal field components associated with semivectorial quasi-TE (Ex)
and quasi-TM (Ey) modes of a channel waveguide.

In Eq. 6.11, M is a non-symmetric sparse matrix of size NxNy × NxNy, and φ is a

length NxNy column eigenvector containing the field Ex,y at all the points on the 2D

grid. The details of the specific form of the matrix M for the quasi-TE/quasi-TM

modes are presented in [90].

Finally, in order to truncate the simulation domain, a set of boundary conditions

must be applied along the domain’s edges. These boundary conditions can be of the

Dirichlet (field equals zero), Neumann (normal derivative of the field equals zero),

or analytical (field decays exponentially) types. If the simulation domain is made

large enough and includes sufficient cladding thickness around the waveguide core,

the evanescent tails of the guided modes will completely decay away before reaching

the outer boundaries, and a simple Dirichlet boundary condition may be used. Details

of the incorporation of boundary conditions into the matrixM will not be presented

here, for purposes of brevity. The interested reader is again directed to reference [90]

for a thorough discussion.

Once the final form of the matrixM is known, the guided (and leaky) optical mode
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profiles E(i)
x,y(x, y) and propagation constants β(i) of the particular waveguide structure

defined by εr(x, y) may then be found by numerical evaluation of the eigenvectors and

eigenvalues ofM. The index i refers to the optical mode number, with i = 0 labeling

the fundamental mode. As an example, a semivectorial finite difference mode solver

implementing the approach above was used to numerically solve for the quasi-TE

fundamental mode profile E(0)
x (x, y) and propagation constant β(0) of a 1.5 µm wide

single-mode channel waveguide, as shown in Fig. 6.4. The wavelength was assumed

to be λ0 = 1.55 µm.

Figure 6.4: (a) Refractive index profile n(x, y) of the simulated channel waveguide
structure. The colorbar on the right labels the index within each layer. (b) Numer-
ically computed equi-amplitude contours of the fundamental quasi-TE mode profile
E
(0)
x (x, y). The effective index for the mode shown is neff = 3.24. The black dash-
dotted line illustrates the outline of the waveguide layers. The colorbar on the right
indicates the (peak normalized) electric field amplitude.

The values of the refractive index n within each layer illustrated in Fig. 6.4(a),

as well as the cross-sectional profile, were chosen to be similar to the deeply etched

InGaAsP-InP semiconductor waveguides used in the planar photonic integrated cir-

cuits to be discussed in Chapter 7. The semiconductor waveguide core (dark red

region) has n = 3.39, the semiconductor cladding layers (light red regions) have

n = 3.17, and the lateral cladding (blue region) has n = 1.56. The semiconductor
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waveguide core layer is 400 nm thick. Figure 6.4(b) contains a contour plot of the

fundamental quasi-TE transverse mode profile E(0)
x (x, y), normalized to have a peak

value of unity. The dash-dotted black line illustrates the boundaries of each layer in

the waveguide structure, showing that the mode profile is strongly confined to the

high index semiconductor waveguide core layer. The computed modal effective index

is neff = 3.24, where neff is proportional to the propagation constant β
(0) as

neff =
β(0)λ0
2π

.

Although the discussion presented above has focused upon finite difference tech-

niques for 2D waveguide structures, the concepts are equally applicable to waveguides

with only 1D optical confinement, such as the slab waveguides used for ABR micro-

cavities in Chapter 4. For a slab waveguide in which the dielectric layers are oriented

normal to the y-axis, setting ∂/∂x = 0 in Eqs. 6.9-6.10 gives the relevant 1D semivec-

torial Helmholtz equations for the quasi-TE and quasi-TM modes. Application of the

finite difference approximations on a 1D axis of length Ny results in a matrixM, this

time of size Ny × Ny, whose eigenvectors and eigenvalues give the 1D mode profiles

E
(i)
x,y(y) and propagation constants β(i).

6.3 Multimode interference couplers

The coupling region of any waveguide-resonator device must be designed keeping

several concerns in mind. Particularly, these can include designing for a desired

power coupling ratio, ensuring broadband operation, minimization of the coupler

size/length, and ease of fabrication. In-plane lateral evanescent directional couplers,

in which power is exchanged between phase-matched modes of two proximal dielectric

waveguides separated by a "coupling gap" [65], are commonly used in a number

of devices [140]. However, when high index contrast waveguides must be used in

order to make low-loss, small radius bends, such as those required for microring and

microdisk resonators, the fabrication of appropriate evanescent directional couplers
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[12] becomes more difficult. The tight confinement of the optical mode within the

waveguide requires that the coupling gap be made extremely small, i.e. on the order

of ∼100 nm, in order to achieve evanescent coupling. Fabrication of features on

this size scale naturally requires electron beam lithography, and moreover, coupler

performance will be extremely sensitive to small deviations in the coupling gap size,

leading to issues of reproducibility.

Several other coupling schemes have been studied in order to mitigate the problems

associated with lateral evanescent couplers. For example, the vertical evanescent

coupling configuration carries the advantage that the coupling gap between the two

waveguides can be precisely and reproducibly controlled via epitaxial crystal growth

[141], physical vapor deposition [142], or spin coating of dielectric materials [20].

However, the fabrication procedure for vertical couplers can be significantly more

complex than that for lateral couplers, at the very least requiring multiple lithography

and alignment steps, and potentially incorporating the use of more difficult processes

such as direct wafer bonding. Adiabatic couplers [143,144] make use of the principle

that an optical system excited into a given mode will remain in that mode while the

system is changed, provided that it is changes slowly. The exact dimensions (length

and cross-section) of the adiabatic coupling region are not critical to the coupler

performance, and can in fact be very tolerant to the kinds of fabrication errors or

offsets which would strongly affect the performance of lateral evanescent couplers.

However, in order to make an adiabatic waveguide transition, the coupling region of

such a device naturally becomes very long in comparison to that of an evanescent

coupler, consuming valuable "real estate" on the substrate.

Multimode interference (MMI) couplers have proven to be useful in realizing highly

compact, fabrication tolerant couplers and power splitters/combiners within high in-

dex contrast materials [145]. This type of coupler is based upon the concept of self-

imaging in a multimode waveguide [146,147]. Self-imaging is a property of multimode

waveguides which produces a series of single or multiple images of the electromag-

netic field profile at the waveguide input, at periodic intervals along the waveguide

propagation direction. If single-mode waveguides are used to generate the input field
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profile, a number of identical single-mode waveguides can be placed at any of the im-

age planes along the axis of the multimode waveguide, in order to generate a variety

of MMI couplers.

Figure 6.5: (a) Schematic of a typical 2×2MMI coupler. Propagation occurs along the
z-axis. (b) Illustration of the transverse field profiles ϕν supported by the multimode
waveguide, superimposed against the laterial refractive index profile. The effective
refractive indexes under the ridge and in the lateral cladding are labeled nr and
nc, respectively. The vertical dotted lines label the positions dividing the effective
MMI width WMMI into thirds, used for aligning the access waveguides for restricted
interference couplers.

An illustrative analysis of MMI couplers can be carried out by expanding the

fields in terms of the guided eigenmodes of the multimode waveguide [148,149]. Fig-

ure 6.5(a) depicts a typical 2× 2 MMI coupler, with input/output access waveguides
having width Wa butt-coupled into a wider multimode section having width WMMI

and length LMMI . The effective index approximation [69] can be used to reduce the

refractive index profile of the two-dimensional multimode waveguide cross-section to

one dimension (across the lateral y-axis), as shown at the bottom of Fig. 6.5(b). Solu-

tion of the Helmholtz equation in the multimode waveguide yields guided field profiles

ϕν(y) similar to those illustrated in this same figure. The propagation constants βν
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of the modes can be approximated as

βν =
q
k20n

2
r − k2y '

s
k20n

2
r −

π2(ν + 1)2

W
2

MMI

= k0nr − π2(ν + 1)2

2k0nrW
2

MMI

, (6.12)

where k0 is the wavenumber in free space, nr is the effective refractive index under the

multimode waveguide ridge, WMMI is the effective width of the MMI region, taking

into account the finite penetration of the field into the lateral cladding region, and

ν = 0, 1, 2, .... To obtain the expression in the last line, we have made the assumption

that ky ¿ k0nr and used the binomial expansion.

The transverse field at the input of the multimode waveguide, Φ(y, z) = Φ(y, 0),

is assumed to be completely contained within the width of WMMI . Therefore, this

input field can be decomposed into the guided modes of the multimode waveguide,

as

Φ(y, 0) =
X
ν

cvϕν(y), (6.13)

where the mode excitation coefficients are given by the overlap integrals

c2ν =

R |Φ(y, 0)ϕν(y)| dy£R |Φ(y, 0)|2 dy R |ϕν(y)|2 dy
¤1/2 . (6.14)

The total field within the multimode waveguide at a distance z along its axis can be

written as a superposition of all the guided modes excited at the input, with their

appropriate phase factors. We have:

Φ(y, z) =
X
ν

cvϕν(y) exp(−iβνz)

= exp(−iβ0z)
X
ν

cvϕν(y) exp [i(β0 − βν)z]

=
X
ν

cvϕν(y) exp

·
i
ν(ν + 2)π

3Lπ
z

¸
, (6.15)

where the expression for βν in Eq. 6.12 was used in going from the second to the
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third line, and the common phase factor exp(−iβ0z) was dropped.
The phase factor in the last line of Eq. 6.15 gives rise to the reproduction of

single or multiple images of the input field at certain lengths LMMI of the multimode

waveguide. Using the fact that ν(ν + 2) is even for ν even and odd for ν odd, and

defining the beat length Lπ as

Lπ =
π

β0 − β1
, (6.16)

Eq. 6.15 can be rewritten as

Φ(y, LMMI) =



P
ν

cνϕν(y)P
ν

(−1)ν+1cνϕν(y)P
ν even

i(−1)qcνϕν(y) +
P
ν odd

cνϕν(y)

for LMMI =


2q(3Lπ)

(2q + 1)(3Lπ)

(q + 1
2
)(3Lπ)

,

(6.17)

where q = 0, 1, 2, .... Making use of the even/odd symmetry of the modes ϕν(y) with

respect to the center line of the multimode waveguide, Eq. 6.17 can be expressed in

terms of the input field at z = 0, as

Φ(y, LMMI) =


Φ(y, 0)

−Φ(−y, 0)
i(−1)q+1

2
Φ(y, 0) + i(−1)q−1

2
Φ(−y, 0)

for LMMI =


2q(3Lπ)

(2q + 1)(3Lπ)

(q + 1
2
)(3Lπ)

.

(6.18)

Equation 6.18 shows that the MMI coupler operates in the bar state, cross state, and

3 dB state, when LMMI is chosen to be 2q(3Lπ), (2q + 1)(3Lπ), or (q + 1/2)(3Lπ),

respectively. Note that in the 3 dB state, the two images are in phase quadrature with

one another. Thus, a low-loss MMI coupler is realized by truncating the multimode

waveguide at the desired LMMI , and placing the single-mode output waveguides at

the lateral positions of the single/multiple images, such that a large overlap between

Φ(y, LMMI) and the mode of the output waveguides exists.

The situation above is typically referred to as one of general interference, i.e. no

special restrictions are placed upon the excitation of modes at z = 0. However, if the

modes ν = 2, 5, 8, ... are not excited at z = 0, it can be shown that a similar reproduc-
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tion of single/multiple images will occur as in Eq. 6.18, only with 3Lπ replaced by Lπ.

Thus, the MMI coupler can accordingly be made three times shorter. This type of

modal excitation can be achieved by exciting the multimode waveguide with a mode

of even symmetry (i.e. the fundamental mode of a single-mode waveguide) centered

at the positions dividing the effective MMI width WMMI into thirds, as labelled by

the dotted lines in Fig. 6.5(b). The modes ν = 2, 5, 8, ... possess odd symmetry about

these positions, and the overlap integrals in Eq. 6.14 will consequently yield cν = 0

for these modes. This MMI configuration is referred to as one producing restricted

interference, for the selective excitation of modes.

Figure 6.6: (a) Normalized intensity pattern within a 2×2 restricted interference MMI
coupler with WMMI = 8 µm, nr = 3.276, nc = 3.17, excited at λ = 1.55 µm. The
vertical red lines label the center positions of 1.0 µm wide single-mode input/output
access waveguides. The red (bright) and blue (dark) colors indicate regions of high
and low intensity, respectively. (b) Net MMI coupler loss and imbalance as a function
of LMMI .

Figure 6.6(a) plots the normalized intensity within the multimode waveguide as a

function of LMMI , for a 2 × 2 MMI coupler. The 1.0 µm wide input/output single-

mode access waveguides have been placed at the appropriate positions relative to the
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8 µm wide multimode section in order to achieve restricted interference. The vertical

red lines label the centers of the input/output waveguides. The effective refractive

indexes under the waveguide ridge and in the lateral cladding are given by nr = 3.276

and nc = 3.17, respectively, values in the correct range for a typical waveguide with

an InGaAsP core and InP cladding. The multimode waveguide is excited from one

input waveguide only, as indicated by the high-intensity region along the lower left

edge of Fig. 6.6(a). Beating between the excited modes of the multimode waveguide

leads to evolution of a complex interference pattern along the propagation direction.

A single inverted image of the input is reproduced at a distance Lπ = 212 µm, i.e.

the cross state of the coupler, and a double image is produced at Lπ/2 = 106 µm, i.e

the 3 dB state. Figure 6.6(b) plots the excess power loss and imbalance at the two

outputs as a function of LMMI , as defined by

excess loss = 10

¯̄̄̄
log

·
Pout,1 + Pout,2

Pin,1 + Pin,2

¸¯̄̄̄
(6.19)

imbalance = 10

¯̄̄̄
log

·
Pout,1

Pout,2

¸¯̄̄̄
(6.20)

where Pout,(1,2) and Pin,(1,2) are the power in each of the two output and input waveg-

uides, respectively. In the cross state, the loss is at a local minimum (∼ 0.5 dB)

and the imbalance is large (> 30 dB), indicating low cross-talk, since all the power is

coupled into a single output waveguide. In the 3 dB state, the loss is again at a local

minimum (∼ 0.5 dB), but the imbalance is also minimized (< 0.1 dB), since the power
is coupled equally into the two output waveguides. Minimizing the 3 dB coupler im-

balance is particularly important when designing Mach-Zehnder interferometers with

large extinction ratio.
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6.4 Coupled waveguide-resonator device fabrica-

tion

The fabrication process used for InGaAsP-InP planar integrated optical devices was

common in many respects to the fabrication process for ABR microcavities discussed

in Chapter 4, making use of several similar procedures. There were, however, several

notable additions with respect to the fabrication of the electrodes required for electri-

cally driven coupled waveguide-resonator-based devices, such as those which will be

presented in Chapter 7. Figure 6.7 depicts the InGaAsP-InP semiconductor double

heterostructure waveguide used to fabricate these devices. The structure consisted of

an n-type InP substrate, a 3 µm InP buffer/lower cladding layer, a 0.4 µm InGaAsP

(λgap = 1.3 µm) waveguide core layer, a 1.2 µm InP upper cladding layer, and a 0.2 µm

p-type InGaAs cap layer. The waveguide core and upper/lower cladding layers were

grown nominally undoped, by metal-organic chemical vapor deposition (MOCVD).

The process flow for fabrication of the switch devices discussed in Chapter 7 is

illustrated in Fig. 6.8, and can be applied to any InGaAsP-InP semiconductor slab

waveguide substrate, as follows. Lower case letters in parentheses (a-i) in the text

refer to the sub-diagrams in Fig. 6.8.

First, an etch mask layer of SiO2 was deposited by PECVD. A layer of PMMA elec-

tron beam resist was then applied by spin coating (a). Subsequently, direct electron

beam lithography was employed to expose an array of patterns within the PMMA,

using a Leica Microsystems EBPG 5000+ electron beam writer operating at 100 keV

(b). After development, the PMMA patterns were transferred into the underlying

SiO2 layer using an ICP-RIE etch step and C4F8 gas. The remaining PMMA was

cleanly removed using an O2 plasma (c). Transfer of the patterns into the semiconduc-

tor substrate was accomplished using ICP-RIE etching and HI/H2/Ar chemistry [98],

using the SiO2 layer as a hard mask. The waveguides were deeply etched through

the InGaAsP waveguide in order to ensure strong optical confinement for compact

low-loss waveguide bends [150]. The remaining SiO2 mask was then removed in a

buffered hydrofluoric acid solution (d). Next, a benzocyclobutene (BCB) electrical
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Figure 6.7: InGaAsP-InP semiconductor epistructure used for the hybrid
MZI/racetrack resonator switch.
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Figure 6.8: Process flow for general electrically contacted ring resonator-based de-
vices.
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isolation layer was applied by spin coating and cured at 300 ◦C. During the thermal

cure, the BCB layer reflowed and planarized the sample surface (e). In a self-aligned

procedure, a short ICP-RIE etch using a NF3/O2 gas mixture was used to partially

etch back the BCB, exposing the tops of the waveguide ridges (f). Subsequently, a

layer of UV photoresist (Shipley 1813) was applied by spin coating, and was exposed

using an appropriate mask and contact lithography to define the desired pattern for

the front side electrodes (g). After a short wet etch in a buffered hydrofluoric acid

solution to remove any residual oxides on the exposed waveguide ridges, the front

side (p-type doped) of the sample was metallized with Cr/AuZn/Au, deposited by

thermal evaporation (h). The sample was then soaked in acetone (often with the aid

of weak ultrasonic agitation) to lift off the unwanted metal, leaving behind the desired

electrodes. The InP substrate was mechanically thinned to a thickness of ∼100 µm,
metallized on the back side (n-type doped) with AuGe/Au, cleaved into bars, and

mounted to brass submounts with conductive epoxy for testing (i).
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Chapter 7

Hybrid Mach-Zehnder
interferometer/racetrack resonator
geometry for low power
thermooptic switching via coupling
control

7.1 Introduction

In this chapter, a device architecture employing controlled waveguide-resonator cou-

pling for low power optical modulation and switching is presented. The geometry to

be illustrated here is a hybrid integration of a Mach-Zehnder interferometer (MZI)

with a racetrack resonator, in which the MZI operates as an electronically tunable

coupler. A theoretical analysis of the hybrid switch’s transmission characteristics will

be presented below, illustrating that this geometry achieves a significant reduction

of the required electrical switching power with comparison to the conventional MZI

configuration. The compromise between switching power reduction and the optical

switching bandwidth will also be discussed. The demonstration of an InGaAsP-InP

semiconductor hybrid switch device will then be described, in which electrical control

of waveguide-resonator coupling is achieved using thermooptic effects [151]. Subse-

quently, the device’s steady state optical transmission and modulation response will

be characterized, revealing the predicted reduction in switching power, good ON-OFF
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switching contrast, and microsecond switching speed. Finally, a set of measurements

used to evaluate the thermooptic coefficients in the demonstrated integrated optical

devices will be described.

7.2 Analysis of the hybrid switch geometry

One intriguing application of the microring resonator optical platform is the active

control of an optical signal through precise command of the magnitude of waveguide-

resonator coupling [152]. Consider the geometry in Fig. 7.1, in which one of the

output ports of a 2 × 2 MZI is connected with one of the input ports to form a

racetrack-shaped resonator. In this composite architecture, the waveguide-resonator

coupling coefficient κ can be modulated via electrical control of the relative phase ∆φ

between the MZI arms. As will be shown below, this hybrid MZI/racetrack resonator

can achieve high-contrast modulation of an optical input wave, and furthermore, can

reduce the required electrical switching power in comparison with a conventional MZI

of similar dimensions [152]. Switching is achieved by tuning∆φ to bring the resonator

in and out of critical coupling, the state in which complete destructive interference

occurs between the portion of the travelling wave coupled out of the resonator and

the wave transmitted past the resonator [11].

Figure 7.1: Schematic of the hybrid MZI/racetrack resonator switch geometry, illus-
trating the relevant electric field components a1, a2, b1, b2, and the relative phase ∆φ
between the arms of the MZI.
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The optical transmission characteristics of the hybrid MZI/racetrack resonator

switch in Fig. 7.1 are derived using the coupling matrix in Eq. 7.1, and the resonator

circulation condition in Eq. 7.2 [152].

b1
b2

 =
 t κ

κ∗ −t∗

a1
a2

 = i

cos (∆φ/2) − sin (∆φ/2)

sin (∆φ/2) cos (∆φ/2)

a1
a2

 (7.1)

a2 = αeiθb2 (7.2)

The coupling matrix relates the complex electric field components a1 and a2 at the

MZI input to the MZI output components b1 and b2, through the coupling and trans-

mission coefficients κ and t. The field quantities are normalized such that their

squared absolute value, i.e., |a1|2 represents the power at a given port. Equation 7.1
shows that κ and t are functions of the relative phase ∆φ between the arms of the

MZI. The upper branch of the MZI in Fig. 7.1 is shown with an extra bias phase of π,

in order to ensure that κ = 0 when ∆φ = 0. For a lossless MZI, |κ|2+ |t|2 = 1. Light
propagation through the resonator is characterized by a round-trip transmissivity α,

and a phase factor eiθ, as shown in Eq. 7.2. For a lossless resonator, α = 1. The

round-trip phase is given by θ = 2πneffLr/λ, where neff is the effective index of

the optical mode in the racetrack, Lr is the racetrack circumference, and λ is the

optical wavelength. Combining these relationships results in the expression for the

normalized transmitted optical power Pout/Pin shown in Eq. 7.3.

Pout

Pin
=

¯̄̄̄
b1
a1

¯̄̄̄2
=

α2 + cos2(∆φ/2)− 2α |cos (∆φ/2)| cos(θ)
1 + α2 cos2(∆φ/2)− 2α |cos (∆φ/2)| cos(θ) (7.3)

On resonance (θ = 2mπ, m = 1, 2, 3...), the normalized transmission becomes

Pout

Pin
=

¯̄̄̄
b1
a1

¯̄̄̄2
=
[α− |cos (∆φ/2)|]2
[1− α |cos (∆φ/2)|]2 . (7.4)

Transmission through the device is switched from unity at∆φ = 0 (|t| = |cos (∆φ/2)| =
1, |κ| = 0) to a theoretical value of zero at the condition of critical coupling, given by
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α = |t| = |cos(∆φ/2)|, or ∆φ = 2 cos−1(α). In contrast, the normalized transmission

of a conventional MZI (one without an integrated resonator, equivalent to α = 0) is

given by
Pout

Pin

¯̄̄̄
MZI

= cos2 (∆φ/2) , (7.5)

and the relative phase required for ON-OFF switching is∆φ = π. Figure 7.2 compares

the normalized transmission on-resonance through the hybrid device with that of a

conventional MZI, as a function of the relative phase ∆φ. For a low loss resonator as

shown (α = 0.99), the portion of the hybrid device’s transmission curve near ∆φ = 0

is extremely steep. Compared with the conventional MZI, operation within this region

makes high-contrast modulation possible with a comparatively small change in the

relative phase ∆φ.

Figure 7.2: Comparison of the on-resonance normalized transmission through the
hybrid MZI/racetrack resonator switch with α = 0.99, with the transmission through
a conventional MZI. The hybrid device switches ON-OFF with a fraction of the π
phase shift required for the conventional MZI.

In practical devices, it is possible to control∆φ electronically, through the applica-

tion of an electric field or current. For example, electrooptic [153], thermooptic [154],

or free carrier dispersion [111] effects may be utilized to control ∆φ. The reduction
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in the phase shift required for ON-OFF switching shown in Fig. 7.2 then translates

into a reduction in the required applied voltage or electrical power. In the context of

the thermooptic effects relevant to the device demonstrated below, it is appropriate

to express the relative phase in terms of the dissipated electrical power ∆Pe (which

induces a relative temperature change ∆T between the two arms of the MZI), as

shown in Eq. 7.6.

∆φ =
π

∆Pπ
∆Pe (7.6)

In the above expression, ∆Pπ is defined as the power required to induce ∆φ = π, and

is thus equivalent to the switching power for a conventional MZI. Therefore, critical

coupling occurs when ∆Pe = ∆Pcr = 2∆Pπ cos
−1(α)/π. The ratio of the switching

powers ∆Pcr/∆Pπ, given in Eq. 7.7, provides a quantitative metric for comparison of

the hybrid switch with the conventional MZI.

∆Pcr

∆Pπ
=
2 cos−1(α)

π
(7.7)

This switching power reduction ratio is plotted in Fig. 7.3 for α in the range 0 ≤ α ≤
1, illustrating that a significant decrease in the switching power can be expected in

the limit of low resonator loss, α ∼ 1.
However, while presenting desirable improvements in terms of the required switch-

ing power, the hybrid device naturally has limitations to its maximum switching

speed, on account of the feedback path introduced by the racetrack resonator. The

switching bandwidth ∆νhybrid is limited by the photon storage time in the racetrack,

and is given by the spectral half-width-at-half-maximim of the cavity resonance. Us-

ing Eqs. 7.1-7.2 to solve for the circulating power in the racetrack |a2/a1|2, and finding
the values of the round-trip phase ±θ1/2 where the circulating power drops to one
half its peak value, the switching bandwidth can be expressed as

∆νhybrid =
c

2πneffLr

1− α√
α

, (7.8)

assuming an unloaded resonator (|t| = 1), and ±θ1/2 ¿ 2π. In the above expression, c
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Figure 7.3: Switching power reduction ratio as a function the racetrack round-trip
transmissivity α.

is the speed of light, neff is the effective index of the racetrack resonator mode, and Lr

is the racetrack circumference. Figure 7.4 plots the relationship between the switching

power reduction ratio and the resulting bandwidth (implicit upon α), illustrating as

expected that the optical bandwidth is reduced as the reduction ratio grows small.

Values of neff = 3.3 and Lr = 500 µm were used for the plot. The bandwidth and

power reduction can be traded off with one another to produce a switch with the

desired properties, depending upon the application.

7.3 Characterization of InGaAsP-InP switch per-

formance

7.3.1 InGaAsP-InP device parameters

The hybrid switch geometry fabricated and tested is shown in the 3D schematic and

optical microscope images in Figs. 7.5(a)-(b), respectively. The MZI was composed

of two 3 dB multimode interference (MMI) couplers, designed using the analysis
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Figure 7.4: Switching bandwidth as a function of the switching power reduction ratio,
for a racetrack resonator with effective index neff = 3.3 and circumference Lr = 500
µm.

described in Chapter 6. The MMI couplers were 8 µm wide and 90 µm long, and

the MZI electrodes were 180 µm long. The racetrack resonator had bends of 50 µm

radius, and a total circumference of 1430 µm. The single-mode channel waveguides

were nominally 1.5 µm wide.

7.3.2 Measurement apparatus

The hybrid switch device was tested using the apparatus shown in Fig. 7.6. Light

from a fiber coupled tunable laser source was collimated for free space, and coupled

into the input waveguide facet of the switch through a 60x (NA = 0.65) aspheric

lens. A 40x (NA = 0.55) aspheric lens was used to collect the transmitted light from

the output end of the device. Both aspheric lenses were mounted on precision 5-axis

micrometer translation stages for careful positioning of the lens focal planes relative to

the input and output facets. The micrometers used on the stages had a resolution of

∼0.02 µm, in order to allow for precise optimization of the input coupling efficiency.
However, the input coupling efficiency was in general limited due to a significant
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Figure 7.5: (a) 3D schematic of the device geometry as fabricated (not to scale). The
relevant component parts are labeled, including the 3 dB MMI couplers, MZI elec-
trodes, and racetrack resonator. (b) Optical microscope image of several InGaAsP-
InP switches. The gold-colored regions are the electrodes. The electrodes on the
racetrack resonator and MMI couplers were not used.
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degree of overlap mismatch between the aspheric lens focal spot size and the optical

mode of the semiconductor waveguide. Tapered waveguide mode convertors can be

used to improve the input coupling efficiency [144]. The pellicle beamsplitters were

used to bring in white light (from two lamp sources not shown in Fig. 7.6) to image

the input/output waveguide facets, with the help of the CCD or infrared cameras.

Figure 7.6: Schematic of apparatus used to measure hybrid switch performance.

The polarization of the laser input was controlled with a set of fiber paddles and

a linear polarizer, and the input intensity was controlled via a variable attenuator.

A calibrated infrared photodetector was placed at the output to measure the power

transmitted through the device, and an oscilloscope was used to monitor the detector

signal. Alternatively, the output from the hybrid switch could be directed into an

infrared vidicon camera via a flip-up mirror. This camera was useful for viewing

the optical mode profile at the output waveguide facet, and for optimizing the input

coupling conditions. Active control of the switch was achieved through injection of

current into one of the MZI electrodes shown in Fig. 7.5(a). Electrical probe tips
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with micrometer positioners were used to make contact between the device electrodes

and the external circuit.

7.3.3 DC and dynamic output response

As discussed in Section 7.2, switching of the transmitted optical power was achieved

through control of the coupling coefficient κ, via electrical modulation of the MZI

relative phase ∆φ. The mechanism of phase control used here was thermooptic in

nature. As current injected into the MZI electrode passes vertically through the series

resistance of the semiconductor channel waveguide (measured at ∼600 Ω) and into

the back side contact, ohmic heating changes the waveguide’s refractive index, and

introduces a phase shift given by

∆φ =
2πLe

λ

∂neff
∂T

∆T =
2πLe

λ

∂neff
∂T

ZT∆Pe, (7.9)

where Le is the electrode length, dneff/dT is the waveguide’s thermooptic coefficient,

and ∆T is the temperature change [154]. In going from the first to the second

equality in Eq. 7.9, the proportionality of the temperature change to the dissipated

electrical power is expressed, where the proportionality constant ZT is the thermal

impedance [107]. The thermooptic coefficient is ∂neff/∂T ∼ 2.7 × 10−4 K−1, as
determined through a series of measurements observing the temperature-dependent

spectral shift of a characteristic Fabry-Perot transmission spectrum (described below),

from waveguide Fabry-Perot cavities fabricated on the same InGaAsP-InP substrate.

Figure 7.7 contains a portion of the switch’s normalized transmission spectrum

near λ = 1569 nm, plotted as a function of the electrical power dissipated within a

single MZI electrode. The 0.45 nm wavelength span shown corresponds to one free

spectral range of the racetrack resonator. Transmission is shown for TE polarized

input in Fig. 7.7(a), and for TM polarization in Fig. 7.7(b). When the MZI was

biased such that the magnitude of the coupling coefficient |κ| is approximately zero,
the transmission was rendered relatively flat across the spectral region shown. As |κ|
was increased by further increasing the electrical power, the waveguide-resonator sys-
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Figure 7.7: Normalized transmission illustrating the behavior of a single racetrack
resonance as the MZI is tuned. The electrical power dissipated in a single MZI
electrode appears in the legend. (a) TE polarized input, maximum contrast ∼12 dB,
switching power ∼ 26 mW. (b) TM polarized input, maximum contrast ∼18.5 dB,
switching power ∼ 29 mW.

tem was tuned through undercoupled, critically coupled, and overcoupled conditions.

These conditions are characterized by the coupling coefficient being less than, equal

to, or greater than the round-trip resonator loss, respectively [155]. On resonance,

a contrast ratio of approximately 12 dB and 18.5 dB was observed near critical cou-

pling, for TE and TM polarizations, respectively. The lower extinction observed for

TE polarization is likely due to a slight polarization-dependent deviation from the

ideal 50%/50% power splitting ratio in the MMI 3 dB couplers. The spectral width of

the transmission null broadens as |κ| increases with increasing electrical power, cor-
responding to the expected reduction in the loaded Q. From the linewidth at critical

coupling, the unloaded intrinsic resonator Q was estimated to be 1.9×104 for TE and
1.7 × 104 for TM. The slight asymmetry seen in the lineshapes of the transmission
minima in Fig. 7.7 was attributed to the influence of Fabry-Perot reflections from the

cleaved facets of the device.

The switching power ∆Pcr, i.e., the power necessary to switch the hybrid device

from the |κ| ∼ 0 (|t| ∼ 1) condition to critical coupling, was approximately 26 mW
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for TE and 29 mW for TM. By operating the MZI in the push-pull configuration,

the switching power may be further reduced by a factor of two. In comparison, con-

ventional MZI modulators fabricated on the same substrate with identical electrode

lengths were observed to have a (single electrode) switching power of ∆Pπ ∼ 40 mW.
Using Eq. 7.9 with ∆φ = π gives a value of approximately 400 K/W for the ther-

mal impedance ZT . The observed reduction in switching power can be expressed

following Eq. 7.7 as (∆Pcr/∆Pπ)TE = 0.65, and (∆Pcr/∆Pπ)TM = 0.73. This im-

plies αTE ∼ 0.52, and αTM ∼ 0.41. Again, the lower switching power of the hybrid
MZI/racetrack resonator switch compared to the conventional MZI is strictly due to

the unique geometry for controlled waveguide-resonator coupling used here.

Figure 7.8: Normalized transmission as a function of differential electrical power,
for TE-polarized input. Square-marker data and dash-dotted guide-line represent
on-resonance transmission. Circle-marker data and dashed guide-line indicate off-
resonance transmission. Guide-lines are theoretical plots for α = 0.50 and ∆Pπ = 39
mW.

Figure 7.8 plots the normalized transmission for TE-polarized input, both on-

resonance (square markers, θ = 2mπ, m = 1, 2, 3... in Eq. 7.3) and off-resonance

(circle markers, θ = (2m − 1)π, m = 1, 2, 3... in Eq. 7.3), as a function of the dif-

ferential electrical power applied to a single MZI electrode. The power axis has been
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shifted by the power required to bias the hybrid switch to the state of maximum

transmission. The error bars on the data account for uncertainty in the transmitted

optical power due to undesirable superimposed Fabry-Perot resonances from reflec-

tions at the cleaved facets of the device. The dash-dotted and dashed guide-lines are

theoretical plots for the on-resonance and off-resonance transmission, respectively,

with α = 0.50 and ∆Pπ = 39 mW, and can be seen to follow the trends in the data.

These values are in reasonable agreement with αTE ∼ 0.52 and ∆Pπ ∼ 40 mW as

obtained above, and suggest that a reasonable estimate of α can be made using the

measured switching power reduction ratio ∆Pcr/∆Pπ. The theoretical guide-lines

fit the data best with a maximum normalized transmission of 0.94 at a differential

electrical power of zero, suggesting that the MZI itself may have some additional

losses, i.e. |κ|2 + |t|2 < 1. These additional losses, as well as the relatively low values
of α suggested by the data, can be attributed to scattering losses in the racetrack

resonator, and to free carrier loss from a non-optimal MZI electrode structure.

Figure 7.9: (a) Frequency domain modulation response, showing 3 dB small-signal
bandwidth of 400 kHz. (b) Temporal response of normalized optical transmission to
a 10 µs voltage pulse, showing a rise/fall time of ∼1.8 µs.

To investigate the small signal modulation response, the TE polarized input was

tuned into resonance with a racetrack mode at λ = 1564.54 nm. One arm of the

MZI was driven at a bias power of ∼30 mW, superimposed with a 0.12 mW average
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power sinusoidal signal from a function generator. The transmitted optical power

was coupled into a single mode optical fiber, amplified by an erbium doped fiber

amplifier (EDFA), and fed into a fast photodetector. A lock-in amplifier was used to

extract the signal component at the modulation frequency, while this frequency was

stepped from 30 kHz — 1.3 MHz. The resulting modulation response is plotted in Fig.

7.9(a), showing a 3 dB bandwidth of approximately 400 kHz. Figure 7.9(b) shows the

time domain response to a 10 µs, 1.75 V peak-to-peak pulse. For the bias conditions

shown, the positive-going voltage pulse gates the optical output into the OFF state

by switching the hybrid MZI/resonator to the critical coupling condition. Fitting an

exponential decay to the normalized transmission, a 10%-90% rise/fall time of ∼1.8 µs
is extracted. In comparison with previous studies of integrated thermooptic switches,

for example the silicon-on-insulator (SOI) MZI devices in [154], the InP-based hybrid

switch presented here exhibits a ∼4x faster rise time and a switching power 60%
smaller, while using a shorter thermooptic drive section. The improved performance

is due to the unique hybrid design, in addition to enhanced thermal conductance

in the InP structure. This switch may be easily integrated with other passive or

thermally tunable InP-based devices, for compact photonic integrated systems.

The response time of the device can be improved dramatically by reduction of

the large series resistance of the current path through the MZI waveguide. This can

be achieved by inclusion of a p-i-n diode in the semiconductor epitaxial substrate,

and would permit fast free carrier dispersion effects [111] to become the dominant

mechanism for control of the relative phase∆φ. In addition, straightforward reduction

of the racetrack resonator loss can result in further reduction of the switching power

by as much as an order of magnitude [152]. Decreasing the length of the racetrack,

and/or introduction of optical amplification within the resonator, can accomplish

this goal. However, the latter option requires the difficult challenge of simultaneously

integrating both active and passive regions on the same substrate. Various techniques,

including semiconductor regrowth [156], quantum well intermixing [157—159], and

vertical coupling between active/passive layers [160,161], constitute potential means

of achieving this integration.
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7.4 Measurement of waveguide thermooptic coef-

ficients

The thermooptic coefficient ∂n/∂T of a given bulk material describes how its refrac-

tive index changes with temperature. In semiconductor materials, several physical

processes can contribute to the observed thermooptic effects, including the tempera-

ture dependence of the bandgap due to thermal expansion and/or changes in phonon

populations [104], lattice stress-optical effects due to thermal expansion mismatch in

epitaxial structures [91], and changes in the thermal population of the conduction and

valence bands with free carriers [110]. However, for the majority of semiconductors,

the shrinkage of the bandgap with increasing temperature is generally the dominant

contribution. As the temperature increases, the optical absorption edge moves to

lower energy, and therefore, by the Kramers-Kronig relations [162], the refractive in-

dex of the material increases for wavelengths within the semiconductor bandgap, giv-

ing the thermooptic coefficient a positive sign. Although tabulated values of ∂n/∂T do

not exist for arbitrary In1−xGaxAsyP1−y alloy compositions, the necessary coefficients

may be estimated by interpolating the more readily available [38] values of ∂n/∂T

for the constituent binary alloys InAs, InP, GaAs, GaP, using Vegard’s Law [163].

In semiconductor optical waveguides, the core and cladding are typically composed

of heterogeneous alloys, and the relevant thermooptic coefficient is not that of any

particular layer, but rather the coefficient for the effective index of the optical mode

itself, ∂neff/∂T , as illustrated in Eq. 7.9. In general, ∂neff/∂T depends upon the

specific cross-sectional geometry and material composition of the waveguide. While

it is possible to estimate ∂neff/∂T by computing modal confinement factors and

averaging the respective bulk thermooptic coefficients in each layer over the waveguide

mode profile, a more accurate numerical value can be found by measuring ∂neff/∂T

directly. This may be accomplished by examining the thermal dependence of the

transmission spectrum of a Fabry-Perot (FP) passive filter, formed by a straight

semiconductor waveguide with end facets cleaved perpendicular to the waveguide

axis.
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Consider a typical FP transmission spectrum as shown in Fig. 7.10, with suc-

cessive longitudinal modes labelled λm−1, λm, λm+1, ..., (m integer) obtained at a

temperature T . Upon changing the temperature of the entire FP cavity to T 0, using

a thermoelectric cooler (TEC), for example, the transmission spectrum is red shifted

by less than one FSR, with longitudinal modes labelled λ0m−1, λ
0
m, λ

0
m+1, and so on.

The resonance conditions for the modes at λm and λ
0
m, neglecting thermal expansion

Figure 7.10: Illustration of Fabry-Perot transmission spectra taken at temperatures
T and T 0. The spectrum at T 0 is redshifted with respect to the spectrum at T .

of the FP cavity, are given by

β(λm, T )L =
2neff(λm, T )L

λm
= mπ (7.10)

β(λ0m, T
0)L =

2neff(λ
0
m, T

0)L
λ0m

= m0π, (7.11)

where the modal propagation constant β and effective index neff have been expressed

as functions of the wavelength λ and temperature T . Subtracting Eq. 7.10 from Eq.

7.11, assuming m0 = m, and expanding neff(λ
0
m, T

0) in a Taylor series to first order
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in λ and T as

neff(λ
0
m, T

0) = neff (λm, T ) +∆λm
∂neff
∂λ

¯̄̄̄
λm

+∆T
∂neff
∂T

¯̄̄̄
T

, (7.12)

gives
∂neff
∂T

=
ng(λm, T )

λm

∆λm
∆T

=
ng(λm, T )

λm

∂λm
∂T

. (7.13)

In Eq. 7.13, ∆λ = λ0m − λm, ∆T = T 0 − T , and ng(λm, T ) is the group index, given

by

ng(λm, T ) = neff(λm, T )− λm
∂neff
∂λ

¯̄̄̄
λm

. (7.14)

The group index can be calculated using numerical mode solver techniques (such as

the finite-difference technique discussed in Chapter 6), by taking into account the

dispersion of the various materials in the waveguide core and cladding [95]. Assum-

ing that ng is independent of temperature and wavelength is sufficient to obtain a

first-order estimate for ∂neff/∂T . Thus, ∂neff/∂T may be calculated by measuring

∂λm/∂T from a series of FP spectra taken at various temperatures.

In practical thermooptic devices, such as the hybrid MZI/racetrack switch dis-

cussed above, only a portion of the device is heated to produce a change in the modal

effective index, i.e., through ohmic heating by current injected into an on-chip elec-

trode. Consider for example, a two-section FP cavity, having an active heated section

of length La, and a passive unheated section of length Lp, where L = La + Lp. The

general resonance condition for a longitudinal mode with wavelength λm in a two-

section FP cavity, assuming no reflection occurs at the interface between the heated

and unheated sections, is given by

2neff,a(λm, T )La

λm
+
2neff,p(λm, T )Lp

λm
= mπ, (7.15)

where neff,a(λm, T ) and neff,p(λm, T ) are the modal effective indexes in the heated

and unheated sections, respectively. Following a procedure similar to that outlined
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above for the case of heating the entire FP cavity results in the expression

∂neff,a
∂T

=
L

La

ng(λm, T )

λm

∂λm
∂T

, (7.16)

where the heated and unheated sections are assumed to have the same group index

ng.

When working with thermooptic devices actuated by on-chip electrodes, the tem-

perature change of the waveguide is in general unknown. Rather, it is more feasible to

measure the shift in the FP resonance at λm with the electrical power Pe dissipated in

the heated section, i.e., ∂λm/∂Pe, as opposed to ∂λm/∂T . The change in temperature

is related to the change in dissipated electrical power by the thermal impedance ZT ,

as

∆T = ZT∆Pe. (7.17)

Substituting Eq. 7.17 into Eq. 7.16, and equating the resulting expression with Eq.

7.13 permits calculation of the thermal impedance, as

ZT =
L

La

µ
∂λm
∂T

¶−1
TEC

µ
∂λm
∂Pe

¶
on−chip

, (7.18)

where the subscripts TEC and on− chip have been used to label the cases of chang-

ing the temperature of the entire FP cavity or just a portion of the cavity length,

respectively.



128

Chapter 8

Chemical and biological sensing
applications of optical
microcavities

8.1 Introduction

The application of miniaturized photonic devices for the detection of extremely small

quantities of chemical or biological agents has enabled significant progress toward the

realization of compact "lab-on-a-chip" systems. One possible means of using optical

components to monitor various chemical and biological systems is via sensing of the

refractive index. For example, chemical and biological compounds are often used and

handled in liquid form, after being dissolved within an appropriate solvent solution.

The dissolved compound and solvent are together referred to as the analyte. Small

relative changes in the concentration or composition of the solute will in general have

an effect upon the refractive index of the analyte.

Optical waveguide devices can perform as ideal refractive index sensors, particu-

larly when the analyte becomes a physical part of the device, such as the waveguide

cladding. In this case, the evanescent portion of the guided mode within the cladding

will overlap spatially and interact with the analyte. Any changes occurring in the

refractive index of the analyte will consequently result in modification of the optical

path length seen by the propagating waveguide mode. This change in the optical

path length can in general manifest itself as a change in one or more measurable
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transfer characteristics of the device, such as the optical power transmission or reflec-

tion coefficients. A number of refractive index sensors based upon optical waveguide

geometries have been demonstrated, including etched core fiber Bragg grating [164],

directional coupler [165], and Mach-Zehnder interferometer [166] configurations.

The use of optical microcavities as sensors presents intrinsic advantages over non-

resonant waveguide-based geometries. These advantages stem from the fact that light

resonant with the microcavity can be trapped for times long compared with the cavity

round-trip time. Therefore, the effective interaction length of the optical mode with

the surrounding analyte becomes proportional to the physical cavity length multiplied

by a factor on the order of the finesse of the cavity [18]. This resonant enhancement

permits high sensitivity to changes in the local refractive index using an optical device

occupying only a fraction of the physical footprint consumed by typical waveguide-

based devices. For microcavity sensors, changes in the round-trip optical path length

results in red or blue shifting of the supported mode spectrum.

While the ability to measure an alteration of the environmental refractive index

does not necessarily provide information regarding the exact nature of the substance

responsible for the change, chemical and/or biological specificity can be achieved by

careful preparation of the sensing surfaces, such that only a single compound will

bind to the optical interaction region. For example, for biosensors in which detection

of a specific antibody is desired, functionalization of the sensing surfaces with an

antigen having an affinity for only the desired antibody can ensure that the optical

transfer characteristics of the sensor will only be affected by the presence of the

matching antibody [167,168]. Biosensors of this type are referred to as affinity-based

biosensors.

Therefore, the chief concern is to identify particular optical device geometries

demonstrating externally observable transfer characteristics having high sensitivity to

small changes in the local refractive index. This chapter will discuss the advantages

of both annular Bragg resonators and the hybrid Mach-Zehnder/racetrack resonator

switch in the context of optical microcavity refractive index sensing applications.



130

8.2 ABR microcavity sensors

8.2.1 Passive vs. active microcavity sensor designs

Development of refractive index sensors based on semiconductor optical microcavities

has largely focused upon passive cavity designs. For example, the whispering gallery

modes in cylindrical ring and disk microcavities [26, 169], and the localized defect

modes in 2D photonic crystal membrane structures [170], have been proposed and

demonstrated in sensing applications. As mentioned above, changes in the refrac-

tive index of the analyte induce a corresponding red or blue shift of the cavity mode

spectrum. The resolution ∆n0 of a passive microcavity sensor, i.e., the minimum

detectable change in the refractive index of the analyte, is determined by both the

sensitivity S and the smallest resolvable shift in the resonant wavelength. The sen-

sitivity S is defined as the observed shift in the wavelength of a given cavity mode

per unit change in the refractive index, and is a function of the microcavity geometry

and the resulting optical spatial mode profile. The minimum resolvable spectral shift

is generally determined by the larger of the instrument resolution (i.e., tunable laser,

resolution typically on the order of 1 pm), or the linewidth ∆λFWHM of the cavity

resonance. The linewidth∆λFWHM (inversely proportional to the square of the cavity

quality factor Q) is in general larger than the instrument resolution, and therefore

plays a dominant role in determining ∆n0.

On the other hand, active cavity sensors, which are fabricated using an amplifying

semiconductor medium to achieve optical gain and ultimately laser oscillation, have

received less attention. For example, some limited work incorporating photolumines-

cent porous silicon DBR microcavity sensors [171], and photonic crystal defect laser

refractive index [172] and nanoparticle [173] sensors has been demonstrated. Active

designs, particularly those with sufficient gain and intrinsic cavity losses low enough

to achieve laser oscillation, theoretically possess the advantage that the emission

linewidth ∆λlaser is subject to a large degree of spectral narrowing above thresh-

old [120,121]. Comparing passive and active cavities with similar unsaturable losses,

the above threshold active cavity emission linewidth can be much narrower than the
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passive cold-cavity spectral linewidth. Therefore, assuming that the shift of the ac-

tive cavity emission spectrum can be measured with an instrument-limited resolution

similar to that in the passive cavity case, it follows that active cavity sensors should

demonstrate an improved index resolution ∆n0 with respect to passive cavity sensors.

8.2.2 Demonstration of ABR laser refractive index sensors

For conventional TIR-based microring or microdisk resonators, a surrounding ana-

lyte will only interact with the small evanescent tails of the optical mode penetrating

beyond the high index waveguide core layer. The small overlap between the mode

and the analyte will consequently limit the sensitivity to changes in refractive index.

In contrast, distributed Bragg reflector type microresonators such as the ABR radial

defect resonator geometry possess a unique optical mode profile, which can be advan-

tageous for enhancing the sensitivity [174]. For example, the ABR defect mode profile

carries significant field amplitude within the low index layers adjacent to the high in-

dex defect layer, as a result of the oscillatory manner in which the field decays into

the cylindrical Bragg reflectors. With appropriate ABR design and fabrication, the

analyte can completely fill the low index regions, leading to a larger interaction vol-

ume and an enhanced degree of sensitivity in comparison to a conventional resonator

of similar dimensions.

In order to demonstrate this concept, a set of ABR radial defect microcavities

was fabricated along with several conventional microring resonators, using the active

InGaAsP quantum well membrane material and epitaxial transfer process described

in Chapter 4. The grating design of the ABR sensor devices used here was quite

similar to that of the vertically emitting lasers described in Chapter 5, with 5 and

10 periods in the inner and outer Bragg reflectors, respectively. The ABR devices

were designed to support a mode with m = 9 at a wavelength λ = 1570 nm, with

mixed-order Bragg reflectors and a first-order defect layer. The conventional index-

guided microring resonators had a bend radius of 5 µm, similar to the defect radius

of the ABR devices, and a width of 1 µm. All high index semiconductor layers
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were assumed to have an effective index of 2.8, and an index of 1.56 was used for

the low index regions and ABR trenches. After the patterned 250 nm semiconductor

membrane was transferred to a sapphire substrate, the low index trenches in the ABR

devices and the areas surrounding the microring resonators were cleared of the NOA

73 UV curable transfer polymer using an NF3/O2 ICP-RIE etch, thus permitting the

analyte to efficiently surround the semiconductor devices from three sides.

The devices were mounted to a specially designed clamp, and immersed within a

glass cuvette filled with an index matching fluid (Cargille Labs) which served as the

analyte. The devices were exposed to a total of five fluids, having refractive indexes

in the range of 1.52-1.60, in steps of 0.02. The series was chosen to have an average

refractive index of 1.56, matching that used for the low index layers during the device

design. The fluid refractive index values were standardized by the manufacturer

at λ = 5893 Å and 25 ◦C, with an error of ±0.0002. The fluids were composed
of a mixture of organic liquids, and were found to be compatible with both the

InGaAsP membrane and the NOA 73 adhesive. During prolonged exposures, the

index matching fluids caused a slight swelling of the adhesive, but this was not found

to affect any of the observed device optical characteristics. The mounted sample,

clamp, and cuvette were thoroughly rinsed with acetone and isopropyl alcohol between

immersion in each fluid, to ensure that no residues of the previous fluid remained.

For each matching fluid, both the radial defect ABR and conventional microring

devices were optically pumped above laser threshold, and the emission spectra were

recorded. The optical characterization apparatus was very similar to that shown

in Chapter 5, with the difference that the Ti:sapphire mode locked pump laser was

tuned to a center wavelength of λp = 980 nm. The incident pump power used for

each index matching fluid was ∼2.5 mW for the ABR devices, and ∼3.5 mW for

the microrings. Figures 8.1(a)-(b) plot the set of spectra obtained for the ABR and

conventional microring sensors, respectively, with the fluid refractive index indicated

in the legend. As expected, the lasing wavelengths were redshifted as the refractive

index of the fluid was increased.

Figure 8.2 compares the relative shift in the peak wavelength for both the ABR
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Figure 8.1: Laser emission spectra as a function of refractive index of the surrounding
fluid, indicated in the legend. Spectra have been normalized to the peak values.
(a) Spectra for radial defect ABR sensor. (b) Spectra for conventional TIR-guided
microring with 5 µm bend radius.

and microring devices, as a function of fluid refractive index. The blue diamonds and

solid red line refer to the ABR sensor, and the magenta circles and black dotted line

refer to the microring. While the lasing wavelength of the ABR sensor redshifted

by more than 10 nm through a total refractive index change of 0.08, the microring

sensor lasing wavelength shifted by only 2.6 nm under the same conditions. The

sensitivity evaluated from the slope of each numerical fit line was SABR = 130 nm

and Sr = 33 nm, for the ABR and microring sensors, respectively, illustrating that

the ABR geometry tested here exhibits a sensitivity approximately four times that of

the microring.

An estimate of the index resolution ∆n0 possible for each sensor configuration can

be obtained by considering the measured sensitivity in conjunction with the FWHM

emission linewidth of the lasing modes shown in Fig. 8.1. The linewidths for both

the ABR and microring sensors are ∆λlaser ∼ 1.4 nm. Assuming that a spectral shift
of 0.14 nm can be easily detected, the ABR and microring sensors have an estimated

resolution of ∆n0,ABR ∼ 1 × 10−3 and ∆n0,r ∼ 4 × 10−3, respectively. However, it
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Figure 8.2: Relative spectral shift of lasing wavelength as a function of index matching
fluid refractive index. Comparison of data from radial defect ABR and microring
sensors demonstrates a four times greater sensitivity for the ABR device.

is important to point out that the observed linewidths, and thus the resolution, are

limited by dynamic broadening effects occurring due to optical pumping with ∼100
fs pulses, as discussed in Chapter 5. By increasing the duration of the excitation

pulses to ∼1 µs, reduction of the linewidth and improvement of the resolution by

one to two orders of magnitude should be possible. However, the onset of thermal

effects degrading the optical gain may limit the effectiveness of this approach. Further

improvements in the resolution can be obtained through reduction of the fundamental

laser emission linewidth, by optimization of the ABR cavity design to obtain lower

cavity losses and a higher cold-cavity Q.

Although the observed ABR laser linewidths are larger than those measured for

various ultrahigh-Q passive microcavities demonstrated recently [35, 116], they are

comparable if not smaller than the linewidths demonstrated for the active photonic

crystal laser sensor devices reported in [172], despite suffering from enhanced dynamic

broadening. Nevertheless, the above measurements serve to illustrate the inherent

advantages of ABR microcavities in sensor applications. Further improvements in
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sensitivity can be made by designing an ABR microcavity to support an optical

mode with peak field amplitude located within a low-index radial defect [50], which

will consequently increase the interaction volume with the analyte.

It is worthwhile to note that the choice of a low-index crystalline sapphire transfer

substrate is not critical to the success of the polymer epitaxial transfer technique

employed in the fabrication of the ABR microcavity sensors, nor does it impact the

device optical properties. The low-index NOA 73 adhesive layer is thick enough

to optically isolate the ABR devices, and as such, common substrates such as a

Si wafer or glass slide would function equally well as sapphire. Indeed, the ability

to epitaxially transfer ABR devices in single units or large arrays to any substrate

creates the potential for integration and application of ABR microcavities as key

elements within chemical and biological sensing systems incorporating microfluidic

technology [175,176].

8.3 Hybrid MZI/racetrack resonator sensors

8.3.1 Conventional MZI sensors

Conventional planar integrated MZIs have previously been demonstrated as refractive

index sensors [166,177]. In this application, the relative phase shift ∆φ between the

two MZI branches, and thus the optical power transmitted through the MZI, can be

made a function of the environmental refractive index, via the modal effective index

neff . During the sensor fabrication process, the interferometer’s waveguiding layer is

encapsulated by an upper cladding, everywhere isolating the optical mode from the

surrounding environment. As shown in Fig. 8.3, a window in the upper cladding

isolation layer over one arm of the MZI is then opened to create an active sensing

region of length La, in which the evanescent tail of the waveguide mode may interact

with an analyte. The other branch of the MZI remains optically isolated from the

analyte, and serves as a reference.

The relative phase shift ∆φ between the sensing and reference arms impacts the
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Figure 8.3: Schematic of a conventional Mach-Zehnder interferometric refractive index
sensor. The analyte only interacts with the evanescent tail of the waveguide mode in
the sensing window of length La in the upper branch. The resulting relative phase
difference between the reference arm and the sensing arm modulates the transmitted
power Pout.

normalized transmitted optical power TMZI at the output, given by
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2πLa

λ
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The relative phase in Eq. 8.1 has been expressed as the sum of a constant bias phase

φ0, and a term ∆φa depending upon the change ∆neff,a in the modal effective index

within the active sensing region. The bias phase depends upon the nominal effective

indexes within the sensing and reference regions, neff,a and neff,ref respectively, as

well as the physical path difference ∆L, which is the difference in the length between
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complete lower branch and the portion of the upper branch in which the waveguide

mode has neff,ref , i.e., the total length of the upper branch less the length of the

sensing region.

Strictly speaking, the MZI sensor output quantified in Eq. 8.1 depends upon

∆neff,a, not the desired quantity ∆nanalyte. The degree to which ∆neff,a depends

upon ∆nanalyte varies depending upon the specific details of both the geometrical and

dielectric design of the optical waveguide within the sensing region. However, it is

in general possible to express ∆neff,a in terms of ∆nanalyte and a modal confinement

factor Γxy [178], as

∆neff,a = Γxy∆nanalyte, (8.4)

where

Γxy =

nanalyte
neff,a

R
analyte

|Ea(x, y)|2 dxdyR |Ea(x, y)|2 dxdy
. (8.5)

In Eq. 8.5, nanalyte is the nominal refractive index of the analyte, and Ea(x, y) is

the transverse field profile of the optical mode within the sensing region, calculated

assuming a dielectric material with index nanalyte occupies the appropriate part of the

cross-section. The integral in the numerator is carried out over the fraction of the

waveguide cross-section occupied by the analyte, and the integral in the denominator

is carried out over the whole cross-section. It is assumed that any changes in the

refractive index of the analyte ∆nanalyte are sufficiently small so as to have only a

perturbative effect, allowing the unperturbed values of neff,a and Ea(x, y) to be used

in estimating ∆neff,a.

The sensitivity SMZI of the MZI sensor is defined as the change in normalized

transmission per unit change in the refractive index. Specifically, SMZI is given by

the absolute value of the derivative of Eq. 8.1 with respect to ∆nanalyte, evaluated at

∆nanalyte = 0. Substitution of Eq. 8.4 and differentiation gives

SMZI =
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dTMZI
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Equation 8.6 shows that SMZI can be maximized by designing or operating the MZI

sensor with a bias phase of φ0 = π/2. This corresponds to biasing the MZI at the

quadrature point at TMZI = 0.5, where the slope of the MZI output characteristic is

largest. The above expression also indicates that the sensitivity can be improved by

increasing the sensing window length and/or increasing the confinement factor.

The resolution ∆n0,MZI of the MZI sensor, i.e., the minimum detectable change

in the refractive index of the analyte, is determined by both the sensitivity SMZI

and the instrument-limited signal-to-noise ratio for the measurement of changes in

the normalized transmission TMZI . Index resolution values on the order of 10−6-10−7

have previously been reported for MZI-based devices with sensing regions 15-20 mm

long [166,177].

8.3.2 Enhancement of sensitivity using the hybridMZI/racetrack

resonator switch geometry

Recalling that the hybrid MZI/racetrack resonator geometry discussed in Chapter 7

exhibited a significant reduction in the phase shift required for ON-OFF switching

when compared to a conventional MZI, it follows that a proportional enhancement in

the sensitivity and resolution may be expected when the hybrid device is utilized as a

passive cavity sensor. An illustration of the hybrid switch sensor geometry is shown in

Fig. 8.4, demonstrating how the optical device may be integrated with a microfluidic

flow circuit [179, 180] for the manipulation of single or multiple chemical/biological

analytes. As with the conventional MZI sensor device discussed above, a segment

of one MZI branch having length La overlaps with the flow channel, forming the

sensing region. The other MZI branch and the racetrack resonator can be intentionally

encapsulated and optically isolated from the analyte by the microfluidic circuit’s

substrate.

The normalized optical power transmitted through the hybrid sensor at a wave-
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Figure 8.4: Schematic of a hybrid MZI/racetrack resonator sensor integrated with a
microfluidic flow channel for analyte delivery. One branch of the MZI is exposed to
the analyte within the interaction region of length La.

length on resonance with the racetrack is given by
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where the definitions of φ0 and ∆φa are identical to those for the conventional MZI

sensor, as per Eqs. 8.2-8.3. In Eq. 8.7, α is the round-trip transmissivity of the race-

track resonator, with 0 ≤ α ≤ 1. Figure 8.5(a) compares the normalized transmission
for the hybrid sensor with α = 0.99 with that for the conventional MZI sensor, as

a function of the total relative phase ∆φ = φ0 + ∆φa. Given that the sensitivity

is linearly proportional to the slope of the power transfer characteristic, Fig. 8.5(a)

reveals that the hybrid switch sensor should have a larger sensitivity to a change in

the index of the analyte than the conventional MZI sensor, when biased for operation

within the region of large slope near ∆φ = 0.

The ratio of the sensitivities evaluated at Thybrid = TMZI = 1/2 gives a mea-

sure of the sensitivity enhancement factor provided by the hybrid geometry. Using
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Figure 8.5: (a) Normalized optical transmission as a function of total relative phase,
for hybrid switch sensor with α = 0.99 and conventional MZI sensor. (b) Calculated
and estimated sensitivity enhancement factor for the hybrid sensor geometry. An
enhancement factor of ∼10 is obtained for α = 0.99.

expressions for the hybrid switch similar to those in Eq. 8.6, the ratio is given by
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SMZI

=
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¯̄̄̄
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, (8.8)

which can be evaluated numerically. Alternatively, a crude linear estimation of the

slope of each curve in Fig. 8.5(a) gives

Shybrid
SMZI

¯̄̄̄
estimated

=
π

2 cos−1(α)
, (8.9)

which is recognized as the inverse of the switching power reduction ratio ∆Pcr/∆Pπ

derived in Chapter 7.

The sensitivity enhancement factor Shybrid/SMZI of Eq. 8.8 was calculated for

values of α between 0 and 1, and is plotted in Fig. 8.5(b). The estimated expression

in Eq. 8.9 is also shown, and closely approximates the directly calculated curve. For

α = 0.99, an enhancement factor of approximately 10 is obtained. Therefore, given an

index resolution of ∆n0,MZI = 10
−7 as previously reported for the conventional MZI
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sensor, the hybrid MZI/racetrack switch geometry could be expected to resolve index

changes to a resolution of at least ∆n0,hybrid = 10
−8, when using a comparably sized

sensing region. Alternatively, the sensing region of the hybrid sensor could be reduced

in length by the enhancement factor, obtaining the same resolution but using only a

fraction of the substrate area occupied by a conventional MZI device. It is worthwhile

to point out that the optical modulation bandwidth limitations imposed by the use

of high Q resonators are not expected to influence the performance of sensors based

on the hybrid MZI/racetrack resonator geometry, given that the properties of the

analyte will typically vary at frequencies in the range of Hz-kHz.

In the event that changes in the absorptivity of the analyte provide a more appro-

priate measure of the chemical/biological compound’s composition and/or concentra-

tion than changes in its refractive index, the optical transmission characteristics of

a coupled waveguide-resonator system can similarly be modulated by the analyte’s

effect upon the racetrack transmission coefficient α. Changes in α can, for exam-

ple, be achieved by introducing a chemical or biological compound with significant

absorption at the resonant wavelength(s) into proximity with the evanescent tail of

the optical mode in the racetrack resonator [26]. The expression for the transmitted

power in Eq. 8.7 is invariant upon exchange of the positions of α and the absolute

value of the coupler transmission coefficient |t| = |cos [(φ0 +∆φa) /2]|, and therefore,
similar sensor performance should be expected under these conditions. Furthermore,

for an analyte prepared with fluorescent labels tagging the chemical/biological com-

pounds of interest, changes in the resonator absorption may also be accompanied

by changes in the excitation of fluorescence. The fluorescence signal can be reso-

nantly enhanced by the high intensity of pump light building up within the racetrack

resonator, providing the basis for high-resolution fluorescence-based sensors [27].
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Chapter 9

Conclusions

In the preceding chapters, the design, fabrication, and characterization of several

unique semiconductor optical microcavity architectures based upon the InGaAsP-

InP material system has been described.

First, the annular Bragg resonator, a novel ring resonator geometry in which ra-

dial optical confinement is provided by diffraction from a set of cylindrical Bragg

gratings, was described and demonstrated. A transfer matrix formalism for analyzing

multi-layer cylindrically symmetric structures was outlined, and was used to show

that the ideal cylindrical grating possesses layers with chirped thickness along the ra-

dial direction, in contrast with the uniform quarter-wavelength layers typical of Bragg

reflectors in Cartesian coordinates. After numerically investigating several cylindrical

grating designs and the optical properties of radial defect ABR microcavities, a ver-

satile process for the fabrication of ABR devices was presented. This process made

use of electron beam lithography and several reactive ion etching steps to pattern

a thin InGaAsP quantum well membrane. A technique for epitaxial transfer of the

membrane to a sapphire transfer substrate was developed, making use of a poly-

mer adhesive for bonding. Several vertically emitting ABR lasers with sub-milliwatt

thresholds were then demonstrated using pulsed optical excitation, including ring de-

fect and pillar nanocavity resonators. Multiple characteristics of the laser emission

were investigated, including emission spectra, polarization, infrared near field images,

and sensitivity to fabrication process variations.

Second, a coupled waveguide-resonator geometry having applications to low power
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optical switching was presented. This geometry made use of a Mach-Zehnder inter-

ferometer as an electrically tunable coupler to an integrated racetrack resonator.

The fundamental advantage predicted by the analysis of this hybrid MZI/racetrack

resonator structure was the reduction of the switching power in comparison with

a conventional Mach-Zehnder interferometer. The hybrid switch was based upon

a conventional TIR-guided microcavity design, and was fabricated using InGaAsP-

InP passive semiconductor waveguide material. Characterization of the device’s DC

and dynamic optical transmission performance revealed high-contrast switching ca-

pabilities with the predicted reduction in required power, as well as microsecond

thermooptic response time.

Finally, both the ABR microcavity and hybrid switch architecture were shown

to have excellent potential in applications as chemical and biological sensors. Both

classes of device were shown to be highly sensitive to very small fluctuations in the

refractive index of a chemical or biological analyte in which they are immersed.

Directions for the future study of semiconductor ABR microcavities can include

the introduction of additional degrees of optical feedback into the existing radial de-

fect ABR geometries. While the devices explored in the previous chapters employed

cylindrical Bragg gratings arranged to provide radial Bragg reflection, it is also pos-

sible to periodically modulate the dielectric medium along the azimuthal coordinate.

If such an azimuthal Bragg grating is appropriately introduced in order to have some

degree of interaction with the ABR defect mode, 2D optical Bragg feedback, both

radial and azimuthal, may be achievable. Several "gear ABR" structures of this sort,

named after the gear tooth perturbation applied to the semiconductor rings, have

been fabricated, and are shown in Fig. 9.1. In Figs. 9.1(a)-(b) an azimuthal grating

having 100 nm tooth depth is applied to only the radial defect layer, and in Figs.

9.1(c)-(d) a perturbation of similar size is applied to the defect layer and the two ad-

jacent rings in the internal and external Bragg reflectors. By designing the azimuthal

grating to have a number of periods Ng equal to twice the azimuthal number m of



144

the ABR defect mode divided by an integer, i.e.,

−2m
M

= Ng, (9.1)

it is possible to induce coupling between the two degenerate counter-propagating ABR

defect modes having ±m. In Eq. 9.1, M = ±1,±2,±3, ... is the azimuthal Bragg
reflection order. This inter-modal coupling is expected to lift the degeneracy of the

modes phase-matched to the azimuthal grating, resulting in the splitting of their res-

onant wavelengths. In addition, the presence of the azimuthal grating may contribute

to a significant increase in the optical losses experienced by the non-phase-matched

resonant modes with |m| 6=MNg/2, relative to those modes which are phase-matched.

Therefore, the introduction of even a small azimuthal perturbation can potentially

serve to restrict the number of oscillating modes observed for gear ABR lasers in

comparison to the radial defect ABR lasers discussed in Chapter 5, perhaps resulting

in single-mode laser operation for a range of pump powers significantly above thresh-

old. The validity of these concepts is supported by previous work considering the

operation of a "microgear" laser, which incorporates an azimuthal grating patterned

around the periphery of a pedestal whispering gallery microdisk resonator [181,182].

The subtleties of the design of gear ABR microcavities, including the influence of the

azimuthal grating strength and spatial profile, as well as their experimental perfor-

mance in terms of azimuthal mode selection, remain to be investigated.

Furthermore, the concept of azimuthal modulation of the ABR geometry can also

be framed within the context of 2D cylindrical photonic crystal structures. Two types

of photonic crystal structures commonly occurring in the literature are based upon

thin semiconductor membranes perforated with a lattice of air holes, having either

square [136] or hexagonal [83] symmetry. Resonant optical cavities are formed by cre-

ating a point or line defect within the lattice, by removing or altering the size of one

or more of the air holes. By extension, the structures shown in Figs. 9.2(a)-(b) com-

prise the cylindrical analogues of Cartesian coordinate-based square and hexagonal

lattice photonic crystal defect cavities, respectively, and are thus referred to as pho-
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Figure 9.1: The InGaAsP gear ABR structures in the SEM images shown here were
obtained by modifying the semiconductor layer widths of the nominal mixed-order
grating, first-order radial defect ABR microcavity structures discussed in previous
chapters. Within each azimuthally perturbed ring, the nominal ring width was
changed by ±50 nm within the "high" and "low" index regions, respectively, for
a net tooth depth of 100 nm. The azimuthal gratings shown were designed with
Ng = 18, serving as first-order Bragg reflectors for the m = ±9 ABR defect modes.
Azimuthal gratings were patterned into only the radial defect layer of the device in
(a)-(b), and into the defect layer and two adjacent semiconductor rings of the device
in (c)-(d).
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tonic crystal (PC) ABRs. The optical modes of such structures are radially confined

within the central high-index region by cylindrical Bragg reflection from the array of

air holes, and have been analyzed using a coupled mode approach [52, 135] similar

to that applied in the case of the Bragg pillar ABR geometry discussed in Chapter

5. In general, the number of azimuthal periods Ng within the PC ABR structure is

chosen to be much larger than the azimuthal number m of the optical mode to be

confined, i.e., Ng À m, and also chosen such that Ng 6= −2m/M , in order to avoid

the inter-modal coupling described by Eq. 9.1 for m 6= 0. Specifically, the devices in
Fig. 9.2 are designed to support the non-degenerate m = 0 cylindrical mode, having

the smallest mode volume within such a structure. Photonic crystal ABR devices

also possess the added advantage that the InGaAsP patterned membrane maintains

physical continuity throughout the device, and therefore, such microcavities could be

fabricated using the traditional air-suspended membrane undercutting process com-

mon to many 2D photonic crystals. Of course, the polymer epitaxial transfer method

developed here remains as another viable fabrication alternative for PC ABR devices.

The experimental demonstration of optical confinement and lasing from the various

possible PC ABR lattices represents a promising direction for further consideration.

Another relevant topic of study includes improving the heat-sinking of the In-

GaAsP quantum well membrane, in order to reduce thermal effects and allow for

optical excitation with long duty cycles, or even continuous wave pumping. Steady

state (or quasi-steady state) operation of ABR lasers would help to significantly re-

duce the laser linewidth, permitting much higher resolution in refractive index sensing

applications. Finally, the epitaxial transfer process utilized for the fabrication of ABR

microcavities can be exploited to transfer arrays of such resonators onto glass sub-

strates, facilitating their integration with compact microfluidic circuits for complete

"lab-on-a-chip" systems.

For the hybrid switch, future work could potentially include the introduction of

an optical amplifier section into the racetrack resonator. The round-trip cavity losses

could be offset by such an amplifier, resulting in a greater reduction of the required

electrical switching power. Possible means of introducing such an amplifying section
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Figure 9.2: SEM images of several InGaAsP photonic crystal ABR devices. These
resonators have been designed to support the m = 0 cylindrical mode within the
central high-index disk, and employ azimuthal modulation with Ng = 20. The cylin-
drical patterning of the air holes is chosen in analogy to the square lattice (a), and
the hexagonal lattice (b) forms commonly used in Cartesian coordinate-based 2D
photonic crystal structures.

could involve semiconductor regrowth or quantum well intermixing techniques. In

addition, using an appropriately designed p-i-n diode semiconductor optical waveg-

uide structure could potentially provide an improvement in the switching response

time, by replacing thermooptic effects with faster free carrier dispersion effects as the

mechanism for control of the waveguide-resonator coupling coefficient.
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