
 

 

 

VORTEX FORMATION AND DRAG ON LOW ASPECT RATIO,  

NORMAL FLAT PLATES 

 

 

Thesis by 

Matthew James Ringuette 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2004 

(Defended May 21, 2004)  



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2004 

Matthew James Ringuette 

All Rights Reserved 



 iii
Acknowledgements 

 First, I would like to thank Michele Milano, whose friendship, guidance, and advice on time 

management helped to make this work possible.  Many other group members, past and present, also 

helped along the way.  In particular, I would like to thank Dana Dabiri, Paul Krueger, and David Jeon 

for their assistance with DPIV, lasers, and getting the Towing Tank running again.  I would also like 

to acknowledge Phillip Zukin, John Dabiri, Tait Pottebaum, Flavio Noca, and Derek Lisoski, for their 

help with various aspects of the project.  Most importantly, I would like to thank my advisor, 

Professor Mory Gharib.  He gave me the freedom and trust to pursue my interests, encouraged 

creativity, provided ideas and direction when they were needed, stressed clarity and understanding, 

and taught me how do science that is both fascinating and relevant.   

I also want to acknowledge Professor Anthony Leonard, who acted as my second advisor.  

His door was always open when I had a problem or idea that I wanted to go over.  A discussion with 

Professor Leonard always resulted in understanding rooted in fundamentals, and new directions to 

consider. 

 Additionally, I would like to thank my committee, Professors Mory Gharib, Anthony 

Leonard, Michael Dickinson, and Joel Burdick, for their evaluation of this work and their 

suggestions, which led to a more solid final product.  I also want to thank Professor Hans Hornung, 

who served on my candidacy committee. 

 My wonderful family and friends, who have supported and encouraged me throughout this 

endeavor, also deserve mention.  Particularly my wife Jen, my mother, who kept me in touch with my 

family and reality, and my father, for his council, spiritual guidance, and friendship.  I was also 

fortunate to have a great friend, Joel Tse, journey west to California with me, and, thanks to the 

divine hand and irony of Providence, head back east at the same time I did, each to pursue his own 

adventures. 

Finally, I would like to thank the Atari VCS (2600) and its players.  Specifically, Pitfall 

Harry, Roderick Hero, Frostbite Bailey, Ms. Pac-Man, and those pesky Space Invaders. 



 iv
To my wife, Jen, whose love, patience, and support over these five years on opposite coasts 

made this endeavor possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v
Abstract 

 Experiments were done in order to investigate the role of vortex formation in the drag 

force-generation of low aspect ratio, normal flat plates, with a free end condition, starting 

from rest.  This very simplified case is a first, fundamental step toward understanding the 

more complicated flow of hovering flight, which relies primarily on drag for propulsion.  The 

relative importance of the plate’s free end, or tip, with varying aspect ratio (AR) was also 

studied.  Identifying the relationship among AR, vortex formation, and drag force can provide 

insight into the wing AR’s and kinematics found nature, with the eventual goal of designing 

man-made flapping wing micro air vehicles (MAVs). 

 The experiments were carried out using flat plate models in a towing tank at a 

moderate Reynolds number of 3000.  An attached force balance measured the time-varying 

drag, and multiple, perpendicular sections of the flow velocity were measured quantitatively 

using digital particle image velocimetry (DPIV).  Finally, since the flow is highly 3-D, flow 

visualization was done to characterize its structure and to augment the 2-D DPIV data.  Two 

AR’s, 6 and 2, were considered, the latter in order to have a highly tip-dominated case.   

 The drag force for both AR’s was measured with the bottom end (or tip) free, and also 

with the tip of the AR = 6 plate “grazing” a bottom wall, to demonstrate the effects of AR and 

suppressing the flow around the free end, respectively.  As the plate accelerates from rest, it 

generates vortices at its leading edges and tip edge.  The velocity field of the leading edge 

vortices (LEVs) was measured using DPIV in chordwise planes at 50, 75, and 90% span, 

while the tip vortex (TV) was captured with DPIV in spanwise planes, parallel to the 

direction of travel, at mid-chord and at one leading edge (the flow is symmetrical about a 

spanwise plane at mid-chord).  It has been hypothesized that the LEV and the TV are 
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responsible for the force generation in hovering flight.  Vorticity fields and circulation were 

calculated from the DPIV data to identify any relationship between these vortices and 

features found in the drag force. 

 The effect of the plate’s tip or free end is to induce a highly 3-D, low-pressure flow 

that keeps the LEVs near the tip attached to the plate.  Chordwise DPIV data show that the 

accumulation of circulation in these LEVs is restricted, as compared to the LEVs away from 

the tip, creating a spanwise pressure gradient within the LEVs.  This pressure gradient is 

responsible for spanwise flow within the cores of the LEVs, directed away from the tip, 

which gives them a helical or tornado-like structure. 

 For AR = 6, the “grazing,” or nominally 2-D, lower end condition results in a 

minimum in the drag force at about 5 chord lengths of travel.  A previous study attributed 

this minimum to the formation of a low-drag, recirculating LEV bubble along the span. The 

free end case generates instead in a drag maximum, about 46% higher, at the same distance.  

Chordwise and spanwise DPIV show that this maximum corresponds to the saturation of 

circulation within the strong LEVs at 50% span, and to the accumulation of attached vorticity 

near the tip, generated by the free end itself.  This attached vorticity is a region of low 

pressure, and thus high drag.  In addition, the induced flow from the tip prohibits the 

formation of the essentially 2-D LEV recirculating bubble, which also results in increased 

drag.  The drag coefficient for AR = 2 was found to be higher than that of AR = 6, most likely 

because the attached vorticity generated from the tip acts over a relatively larger portion of 

its span.  Therefore, the relationship between the drag force and plate aspect ratio was found 

to be a result of the vortex dynamics. 
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 The flow for AR = 2 is very similar spatially to that of AR = 6, in terms of absolute 

distance from the plate tip.  However, the AR = 2 flow evolves faster in time, implying that 

the effect of the tip increases with decreasing aspect ratio.  

 Coupled with data from previous work for AR = 10 and 17 plates, the findings of the 

present study show that a significant drag benefit is only achieved for the free end condition 

when the AR is reduced to about 6 or less.  This is consistent with the range of AR’s found in 

hovering animals.  Additionally, the drag maximum for AR = 6, found at 5 chord lengths of 

travel, lies within the wing-stroke amplitude range found in insects.  Finally, the results of the 

present work point to the induced flow from the tip as being responsible for the restricted 

circulation and attachment of the LEVs near the tip.  This is in contrast to a previous study of 

hawkmoth hovering, which suggests that this effect is due to the spanwise flow within the 

LEVs. 
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 1
1  Introduction and background 

1.1  Introduction 

In recent years there has been a push to understand biological flight.  Observation of a 

honeybee in a flower garden or a fly in the house reveals the reasons why.  Flying animals 

are capable of extraordinary acrobatic maneuvers and operating in confined spaces.  They 

also offer lessons in control system and actuator design.  Biological inspiration coupled with 

a clear understanding of the underlying physics could lead to man-made devices with similar 

or superior capabilities.  Micro air vehicles (MAVs), as such creations are called, would have 

military and civilian applications, such as reconnaissance and search and rescue. 

 Flight in nature is typically achieved through the use of flapping wings (the exception 

being whirlybird seedpods), in contrast to the fixed- and rotary-wing aircraft employed by 

humans.  This thesis focuses on drag-based propulsion, which is exemplified by hovering 

flight.  Hovering is the condition of staying aloft while having no mean translational motion. 

It is the most extreme and demanding aspect of flapping wing flight; only one of the bird 

species, the hummingbirds, is able to do it for long durations without taking advantage of air 

currents (Dhawan, 1988).  During hovering, the wing typically oscillates along a horizontal 

path (Weis-Fogh, 1973; Ellington, 1984; Wang et al., 2004), with one back-and-forth motion 

being defined as a full wing stroke.  Due to the high wing angles of attack (α), the wing acts 

as a bluff, rather than a lifting body.  Thus, drag, which opposes the motion of the wing, is 

the primary fluid dynamical force generated during hovering.  Hovering animals flap their 

wings in such a way that this drag has a net upward component, in order to overcome gravity, 

and no net sideways component.  
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 A feature common to all creatures able to hover, namely, most flying insects and 

hummingbirds, is the low aspect ratio of their wings.  Aspect ratio (AR) will be defined 

throughout this work as Sb2 , where b is the span of a single wing, instead of the 

conventional definition, which is the distance between both wing tips; S is the single-wing 

planform (top-view) area.  Flying insects have AR’s between about 2.75 and almost 6, 

(Ellington, 1984; Dickinson, 1999), while hummingbirds have AR’s of around 4 (Dhawan, 

1988); a soaring animal, such as the albatross, has an AR of about 9 (Dhawan, 1988).  A 

finite AR wing, versus one of infinite span, experiences aerodynamic effects due to the tip, 

which increase relatively as the AR decreases.  Therefore, for low AR wings, the influence of 

the tip is very significant. 

 The flow over a wing undergoing hovering kinematics is necessarily unsteady: during 

one half-stroke, the wing accelerates and rotates, all while traveling a distance of only about 

3 to 5 chord lengths (Weis-Fogh, 1973; Wang et al., 2004).  Separation occurs at the edges of 

the wing, due to the high angles of attack and the sufficiently high velocities.  This results in 

the formation of wake vortices at the leading and trailing edges, as well as at the tip 

(Ellington et al., 1996; Wang, 2000; Birch & Dickinson, 2001).  The leading edge vortex 

(LEV) has been shown to be partly responsible for the significant force generation exhibited 

during hovering (Ellington et al., 1996; Dickinson & Götz, 1992).  For the 3-D flow over a 

hovering wing, studies have demonstrated that the LEV remains attached to the surface of the 

wing longer than if the flow were purely 2-D (Ellington et al., 1996; Birch & Dickinson, 

2001).  However, the mechanism responsible for this prolonged attachment is a matter of 

some controversy.   
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Upon performing flow visualization using a robotic model of a flapping hawkmoth, 

Ellington et al. (1996) observed significant spanwise flow (from wing root to tip) within the 

LEV core, which they attributed to a corresponding spanwise pressure gradient due to the 

higher velocities of the wing tip.  They hypothesized that this spanwise flow drains some of 

the vorticity of the LEV outboard to the wing tip.  This, they postulated, retards the vorticity 

accumulation in the LEV, as compared to the 2-D case (Dickinson & Götz, 1993), so that 

more time is required for the vortex to build up enough circulation to shed.  Birch and 

Dickinson (2001), using digital particle velocimetry (DPIV) to measure the velocity field 

around a flapping robotic model of a fruitfly, found only a very small spanwise velocity in 

the LEV.  Additionally, they observed a large tip vortex (TV) attached to the wing, which 

induced spanwise flow behind the LEV, near the wing’s trailing edge, as well as a strong 

downward flow around the wing; the flow from the previous wing stroke also contributed to 

this downward flow.  Birch and Dickinson proposed an alternative hypothesis that of 

Ellington et al., which is that this induced downward flow, or downwash, significantly lowers 

the effective angle of attack of the wing, compared to a purely 2-D case, thus retarding the 

growth of the LEV and increasing its time to shed.  Although Ellington et al. also reported a 

large TV, after the middle of the downstroke, they only commented that the outboard portion 

of the LEV breaks down and “feeds” into it.  Therefore, there is disagreement over the 

mechanism that keeps the LEV attached to a 3-D, hovering wing longer than its 2-D 

counterpart.  Moreover, the importance of the TV, and its effect on the LEV, is in dispute.    

 In order to investigate the roles of the LEV and the TV in the force generation during 

something as complicated as hovering flight, the philosophy that it is better to start by 

understanding the simplest realization of the problem will be adopted.  For this investigation, 
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the wing is modeled as a low AR flat plate of rectangular planform.  The α is 90°, so that drag 

is the primary force that the plate experiences.  Since each half-stroke has essentially mirror-

image force generation, only one half-stroke will be modeled.  Consequently, the problem 

reduces to an investigation of the vortex formation and force generation of a low AR flat plate 

accelerating from rest, oriented normal to its direction of travel.  A brief history of previous 

work related to this problem must therefore include studies from the fields of biology and 

fluid mechanics.  The literature pertaining directly to biological hovering will be discussed 

first, followed by a review of past studies on flat plate starting flow and AR effects. 

1.2  Background 

1.2.1  Hovering flight in nature 

 One of the first major investigations of hovering animals was done by Weis-Fogh in 

1973.  It contains a very thorough study of the many aspects of hovering flight, including 

aerodynamics, power, efficiency, wing kinematics, and some hypothesized unsteady lift-

generation mechanisms such as the “clap” and “fling.”  His observations on hovering 

kinematics are especially applicable to the present work.  Weis-Fogh found that most 

hovering animals exhibit similar kinematic behavior, which he thus called “normal 

hovering.”  He defined normal hovering kinematics as the animal flapping its wings 

“...through a large stroke angle and ... approximately in a horizontal plane.”  In addition, he 

investigated the ratio between the stroke arc length and the wing chord length (referenced at 

the radius of gyration of the second moment of the wing area, about the wing joint), which is 

the number of chord lengths traveled during a half-stroke, and observed that it is between 3 

and 5 for most hovering animals (as mentioned above).  However, throughout much of his 

analysis Weis-Fogh made the incorrect assumption that quasi-steady flow theory is sufficient 
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to explain the aerodynamic performance of most hovering animals, which severely limits the 

applicability of his results. 

 In 1984 Ellington published a 180-page, 6-part paper on the aerodynamics of insect 

hovering flight.  It provides a detailed analysis of wing geometry, improved kinematics data, 

a discussion on aerodynamic mechanisms, and information on lift and power requirements.  

Ellington confirmed Weis-Fogh’s observation that most hovering animals flap their wings in 

a horizontal stroke plane, but disagreed with Weis-Fogh’s use of the quasi-steady flow 

assumption.  More importantly, he examined the idea that vorticity generated by separation at 

the edges of the wing could be a lifting mechanism for hovering flight.  Based on 

experiments by Maxworthy (1979), he speculated that the LEV may be the primary lift-

generating vortex, and that the induced spanwise flow (from root to tip) due to the TV may 

keep the LEV from shedding throughout each half-stroke.  Technological advances during 

the 1990’s allowed for more advanced experiments to test these hypotheses. 

 In the study by Ellington et al. (1996), discussed in section 1.1, 3-D flow visualization 

was also performed on an actual hawkmoth flapping in a wind tunnel.  These results, coupled 

with the flow visualization done on their robotic flapping model of the hawkmoth, provided 

new insight into hovering flight.  As reported above, they observed a strong LEV during the 

downstroke, and spanwise flow within the LEV core from the wing root to the tip.  They also 

found that the LEV had a helical structure similar to that of a delta wing, and they 

hypothesized that the spanwise flow was responsible for this.  The fact that the LEV remains 

attached throughout the downstroke longer than if the flow were 2-D was attributed to its 

increase in circulation being slowed by the spanwise convection of its vorticity, via its helical 

structure, out of the LEV and toward the wing tip.  This slower accumulation of vorticity, as 
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mentioned above, increases the time needed for the vortex to build up enough circulation to 

shed.  During the latter half of the downstroke, the LEV was seen to merge with a large TV, 

but whether the TV itself was partly responsible for the spanwise flow in the LEV was not 

discussed. 

 A subsequent study by Liu, Ellington, and others (1998) compared direct numerical 

simulations of a hovering hawkmoth wing with the robotic flapper experiments of Ellington 

et al. (1996), and obtained a clearer picture of the interaction between the LEV and the TV.  

They found that early in the downstroke the LEV forms from the root to about 60 to 75% of 

the wing span, and has an essentially two-dimensional structure.  By the end of the first half 

of the downstroke, they observed significant spanwise flow, directed toward the tip, within 

the LEV core, consistent with that reported by Ellington et al. (1996).  They noted, as well, 

that the LEV had a helical structure, which they hypothesized was due to a spanwise pressure 

gradient created by the difference in velocity between the wing tip and root.  For reasons 

given previously, they postulated that this helical structure prolongs the attachment of the 

LEV, which generates a large lift force.  At the start of the second half of the downstroke, 

they observed a breakdown in the LEV at 75% span, which they reasoned was due to a 

reverse (decreasing toward the wing root) pressure gradient there and to wing deceleration.  

Additionally, they reported that the flow in the tip region separates and rolls up into a TV.  

Near the end of the downstroke, they found that a second LEV forms in this tip region and 

merges with the TV, but has an axial flow within its core toward the wing root, because of 

the reverse pressure gradient that was attributed to the TV.  They concluded that high lift is 

thus generated in the latter half of the downstroke due to the initial LEV (which remains 

attached over 50 to 75% of the span throughout the entire half-stroke), and the addition of the 
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second LEV, both of which are finally shed at the end of the half-stroke.  Again, whether or 

not the tip vortex itself is responsible for any force generation or the spanwise flow in the 

first LEV is not discussed. 

 As described in section 1.1, experiments done by Birch and Dickinson (2001) using a 

robotic model of a flapping fruitfly showed only a very small spanwise velocity component 

within the LEV core.  They also observed a large TV, which, along with wake vorticity shed 

from the previous stroke, induced a strong downward flow about the wing.  Further 

experiments were done to suppress any spanwise flow in the LEV (which had little effect), 

and to hinder the development of the TV by placing a wall at the wing tip, geometrically 

matched to the tip’s trajectory.  The latter experiment increased the strength of the LEV by 

14%, and the overall force on the wing by 8%, although, interestingly, the LEV still did not 

shed; for the fruitfly, apparently, LEV strength, not shedding, is the force-limiter.  These 

results led to the hypothesis that the prolonged attachment of the LEV is instead due to the 

aforementioned downwash from the TV and the previous stroke’s wake.  This downward 

flow, they postulated, lowers the effective angle of attack of the wing, thus decreasing the 

strength of the LEV and increasing its time to shed.  Therefore, there is some controversy as 

to the role of the tip vortex in hovering flight.  However, Birch and Dickinson noted that 

hawkmoths fly at Reynolds numbers of around 2000, while for fruitflies the Reynolds 

number is between 100 and 250.  They suggested that the pressure gradient along a fruitfly 

wing may simply be too small to generate significant spanwise flow. 

 To the best of this author’s knowledge, no study has yet explored the force generation 

due to the TV and its effect on the LEV, at Reynolds numbers on the order of 1000.  

However, direct numerical simulations of a flapping fruitfly wing (Reynolds number of order 
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100) done by Ramamurti and Sandburgh (2002) show that, for the case of symmetric (up- 

and downstroke) flapping kinematics, almost half of the total thrust is generated by the 

outboard 25% of the wing.  Given this result and that the TV has been implicated in 

prolonging the attachment of the LEV, a further study of their interaction, and how it is 

affected by aspect ratio, is warranted. 

1.2.2  Flat plate starting flow and aspect ratio effects 

 There is a great wealth of literature on bluff body flows.  Much of it is concerned with 

circular cylinders, due to their many engineering applications.  Of the studies on flat plates 

normal to the direction of travel, there are few that deal with the unsteady flow at the startup 

of motion; and there are virtually none that investigate low aspect ratio flat plates having a 

free end condition.  Most studies present results on long time behavior, such as Strouhal 

shedding frequency, and mean and fluctuating force coefficients (see Lisoski (1993) for a 

thorough review).  Some of the more well-known of these works are by Fage and Johansen 

(1927) and Roshko (1954; 1955). 

 Nominally 2-D flat plate starting flow was investigated experimentally by Sarpkaya 

and Kline (1982), Lian and Huang (1989), Dickinson & Götz (1992), and Dennis et al. 

(1993); experiments and computations were conducted by Chua et al. (1990) and Lisoski 

(1993); and Koumoutsakos and Shiels (1996) presented viscous computational simulations.  

Highlights from these investigations will now be summarized.  

 Sarpkaya and Kline (1982) measured the drag force on a flat plate at α = 90° in a 

water tunnel rigged to produce an essentially impulsively-started freestream.  The 

measurements were taken at a Reynolds number (Re) of 21000, and plotted versus a non-

dimensionalized time cUtT =* , equivalent to the number of chord lengths traveled; where 
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U is the free stream velocity, t is time, and c is the plate chord length.  They found a peak 

drag coefficient (CD) of about 3 at T* = 1, followed by a decrease to CD = 2.4 until T* of 

around 5, leveling off to an average CD of 2.2 after T* = 6 (measured out to T* = 13).  The 

large initial CD was attributed to the symmetric growth of the starting vortices generated by 

the plate’s 2 edges, and it was noted that shedding did not cause noticeable fluctuations in the 

CD. 

 The experiments done by Chua et al. (1990) investigated the unsteady forces on a 

normal flat plate accelerating from rest in a towing tank to a constant velocity.  The plate was 

accelerated until T* = 2, then driven at a constant Re of 5000, with a total travel of 60 chord 

lengths.  Initially, they measured a peak in the CD of 4.5 at T* = 2, which then dropped off to 

a minimum of 1.7 at T* = 8, and finally rose to an average of 1.9 after T* = 12.  Although the 

CD magnitudes are somewhat similar to Sarpkaya and Kline’s, no drag minimum was 

observed in the previous study.  This difference may be due to the difference in velocity 

profiles, or possibly Reynolds number, although Chua et al. obtained the same result for Re = 

5000 and 10000.  Using flow visualization, Chua et al. attributed this significant drag 

minimum, or “bucket,” to the existence of a “symmetric vortex bubble region” behind the 

plate, which broke up at T* = 10.  Force measurements and visualization showed no vortex 

shedding between T* = 12 and 30 to 40, after which shedding began and caused fluctuations 

in the CD.  The computations by Chua et al. did not agree well with their experiments for the 

starting flow case, probably due to unavoidable three-dimensionality in the experiments. 

 Dickinson and Götz (1993) measured the transient forces on impulsively started, 

nominally 2-D wings at high angles of attack.  The experiments were done in a towing tank 

filled with a 54% sucrose solution, in order to achieve the low Reynolds numbers appropriate 
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for small insects such as fruitflies.  A wall at each end of the wing ensured that the flow was 

primarily 2-D.  They found that, for this essentially 2-D case, the LEV shed into the wake 

after about 2 chord lengths of travel.  This distance, as discussed before, is shorter than the 

typical insect wing stroke amplitude of 3 to 5 chord lengths.   

 For their largest angle of attack, α = 90°, with a total travel of 7 chord lengths at a Re 

of 192, their measured CD agrees quite well with the results of Sarpkaya and Kline (1982), 

albeit with a higher initial peak CD.  The drag “bucket” measured by Chua et al. (1990) at T* 

= 8 was not observed by Dickinson and Götz.  This might be because their experiments did 

not go beyond 7 chord lengths of travel, or that their Re was so low that the recirculating 

wake bubble persisted throughout the entire run, and would have done so beyond 7c. 

 In 1996, Koumoutsakos and Shiels used vortex methods to compute the 2-D viscous 

flow around impulsively started and uniformly accelerated flat plates oriented normal to their 

direction of travel.  The impulsively started case, computed at Reynolds numbers between 20 

and 1000, agreed well with the flat plate flow visualization study of Dennis et al. (1993) for 

early times, when the experimental flows were still essentially 2-D.  The longer-time CD’s 

(between 0.8 and 1.2 for Re = 20 to 40, T* > 10) for both studies also agreed well; the 

computed CD was infinity at time t = 0, and therefore not amenable to comparison.  For the 

uniformly accelerated plate, Koumoutsakos and Shiels were the first to confirm 

computationally the existence of an instability along the shear layers emanating from the 

plate’s edges, manifested as “centers of vorticity.”  This instability was observed 

experimentally by Lian and Huang (1989), who used the hydrogen bubble technique to 

visualize the starting vortices of a flat plate, and by Pullin and Perry (1980), who used dye 

flow visualization to study the starting vortex of “wedge-like” sharp edges of varying wedge 
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angles.  Pullin and Perry speculated that the instability was triggered by vibrations, although 

very small, in their experimental apparatus, while Lian and Huang concluded that this 

instability is inherent to the flow.  Koumoutsakos and Shiels also determined that the 

instability is in fact a feature of the flow.  They showed that it is caused by the oscillatory 

behavior of the interaction of primary and secondary vorticity at the plate edges, which 

triggers Kelvin-Helmholtz-like instabilities in the shear layer. 

 Lisoski’s Ph.D. thesis (1993) at the California Institute of Technology continued the 

work he contributed to Chua et al. (1990).  He investigated experimentally and 

computationally the effect of “differing amounts of large-scale and small-scale three 

dimensionality” on the time-varying flow about a normal flat plate at Reynolds numbers 

between 1000 and 6000.  Large-scale three-dimensional effects were studied using flat plate 

models with varying end conditions and aspect ratio, with the objective of determining how 

best to suppress these effects.  The starting and intermediate-time flow, with the plate 

traveling a total of between 60 and 100 chord lengths, was studied in the same towing tank 

used in the present experiments.  Longer-time flows were investigated in a water tunnel, 

which allowed runs equaling thousands of chord lengths.  Force measurements and flow 

visualization were used to compare the experiments with one another, and with the results 

from a 2-D vortex element code. 

 For the towing tank experiments, Lisoski studied AR’s between 6 and 17, and end 

conditions at the bottom of the vertically mounted flat plate models as follows: no end plate, 

with an end plate whose angle of attack could be varied, and with the free end of the model 

0.1 mm above (grazing) the tank floor; the end condition at the top of the model was a clean 

free surface.  He found that, for the case of the free end moving just above the tank floor, 
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large-scale three-dimensionality was effectively suppressed: the results from AR = 6 to 17 

were very similar.  However, with an AR = 10 and the free end of the model significantly far 

away from the tank bottom, the drag “bucket” measured for his most nominally 2-D case (AR 

= 17, grazing), and reported in Chua et al. (1990), was not observed.  In addition, Lisoski 

noted that this free end condition “... effectively suppressed organized vortex shedding 

[which occurs beyond T* = 30 to 40] at both AR = 10 and AR = 17.” 

 Lisoski’s water tunnel experiments revealed that, for AR = 6 with an end plate 

mounted on the model, vortex shedding was intermittent, being absent for hundreds of chord 

lengths of travel at a time.  This was evident in the time-varying drag and lift measurements, 

which showed little variation during periods of no shedding.  Periodic vortex shedding was 

consistently observed, however, for AR’s greater than 10, and no shedding was observed for 

AR = 4.  Lisoski found that, when vortex shedding did occur for AR’s ≤ 6, the flow lacked 

spanwise correlation.  This decreased the drag by almost 40%, and suppressed the usual force 

oscillations at the Strouhal frequency.  Finally, Lisoski concluded that the flow for AR ≤ 6 

plates, with their free end far away from the bottom wall, is significantly three-dimensional, 

but that higher AR plates with the same end condition probably have some portion along the 

span that exhibits primarily 2-D flow. 

  Two examples from the literature on circular cylinder flows are also relevent to the 

present work.  The first is by Slaouti and Gerrard (1981), who used dye visualization to 

investigate how end conditions affect the wake of a circular cylinder being towed in a water 

tank at low Re’s (100 to 142).  They showed that a clean free surface (used by Lisoski) is the 

best upper-end condition for promoting a 2-D wake, since it deforms to match flow-induced 

pressures, and its slip condition allows vortex lines to intersect it normally.  The case of a 
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cylinder with its end free and far away from the tank floor was studied, and they showed that 

vortex shedding near the end of the cylinder is suppressed; it only occurs 3 to 4 diameters 

from the end.  Additionally, they observed that the oncoming flow near the free end is 

deflected upward, and that dye deposited on the end itself is “... drawn upwards into the 

wake, close behind the cylinder.”  This causes the wake vortices to bend toward the tip, 

which is seen in a side-view of the flow.  After this “bowing” is observed, the vortex 

interactions near the tip become complicated.  Slaouti and Gerrard wrote that “[a] contraction 

of the wake is thus gradually obtained as the lowest sections of the vortices disappear with 

downstream distance through cancellation of their vorticity due to mixing.” 

 In 1992, Champion and Coutanceau presented a short paper at the IUTAM 

Symposium on Bluff-Body Wakes, Dynamics and Instabilities entitled “Development of the 

Near Wake Structure on a Cantilevered Circular Cylinder with a Free-End.”  They 

characterized this highly three-dimensional flow qualitatively using 3-D dye flow 

visualization, as well as time-exposed 2-D particle visualization for multiple chordwise 

cross-sections and a spanwise section bisecting the wake.  A similar approach was used in 

conjunction with DPIV for the present study, so that flow cross sections could be captured 

quantitatively.  Champion and Coutanceau tested cylinders with AR’s between 2 and 5 in a 

vertical water tank, at Re = 1000.  One end of the cylinder was of course free, and a flat plate 

was mounted at the other end.  Their multiple visualizations allowed for a temporal and 

spatial picture of the time-evolving near-wake.  For the case of AR = 5, at T* = 2 

( DUtT =* , where D is the cylinder diameter) there is a chordwise symmetric recirculating 

bubble (made up of the initial Bénard-von-Kármán wake vortices) whose length varies along 

the span.  From the plate-end to Z/D = 3.5 (Z being referenced from the fixed end), these 
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vortices show a “quasi-2-D development.”  However, the flow near the free end remains very 

near to the cylinder and is highly 3-D, due to spanwise flow directed toward the fixed end.  

By T* = 3.5, the vortex lines in the spanwise region 1 ≤ Z/D ≤ 3.5 have bowed-out away from 

the cylinder, and are also asymmetric.  However, the vortices near the free end remain 

closely attached to it, and no vortex shedding is seen.  This same bending-in of the vortex 

lines toward the free end was observed by Slaouti and Gerrard (1981).  Near the end plate, 

the vortices stay attached to the cylinder but become very 3-D and irregular, versus the clean 

free surface end condition used by Slaouti and Gerrard, which promotes 2-D flow. 

 The 3-D dye visualization revealed that the vortices generated near the free and fixed 

end have a helical structure.  They propagate along the span in opposite directions, heading 

towards Z/D = 2, where they collide.  This meeting of helical vortices propagating in 

opposite directions was also observed Liu et al. (1998).  During the latter-half of the 

hawkmoth’s downstroke, the helical LEV over the inboard 75% of the wing (which has a 

spanwise velocity component directed toward the tip) connects with the outboard helical 

LEV (that has a velocity directed away from the tip), and the spanwise flow at that location is 

reduced to zero.   

 Lastly, Champion and Coutanceau commented on the effects of decreasing the 

cylinder aspect ratio.  They noted that the length of the recirculating bubble increases, as 

does its stretching speed.  Also, the spanwise location where the helical vortices traveling in 

opposite directions collide was seen to be a linear function of AR. 

1.3  Objectives and organization 

 The objective of the current work was to investigate the relationship between the 

vortex generation and drag force of a low-AR normal flat plate starting from rest, in order to 
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begin to understand the fundamental physics of hovering flight.  In addition, the effect of 

varying the AR, which changes the relative influence of the plate’s tip or free end, was 

explored to gain insight into AR selection in nature and for MAV design. 

 These goals were achieved through drag force measurements, quantitative 

measurements of multiple sections of the flow velocity, 2-D and 3-D flow visualization, and 

the formation time concept.  The formation time is a non-dimensionalized timescale that can 

be used to relate the time it takes for a vortex to reach its final strength before pinch-off with 

the kinematics that generated it.  Using this timescale, vortex saturation can be compared 

with other kinematics-dependent phenomena, such as peaks in the drag force.  Measuring the 

drag on different AR plates, as well as varying their end conditions, establishes the relative 

importance of the tip effect for force generation.  Using digital particle image velocimetry 

(DPIV), multiple chordwise and spanwise (2-D) sections of the flow velocity were captured 

quantitatively, in order to obtain vorticity and circulation data for the LEVs and the TV.  This 

data allowed vortex formation, strength, and interaction to be related, through the formation 

time, to features in the measured force.  Finally, flow visualization was used to choose the 

appropriate experimental parameters, obtain a picture of the full 3-D flow, and explain the 

DPIV results.  

 A more detailed discussion on the formation time concept and the experimental 

parameters chosen for this work is given in Chapter 2.  Chapter 3 describes the experimental 

setup and techniques, and the results are reported in Chapter 4.  Conclusions and 

recommendations for future work are presented in Chapter 5, and additional information on 

the experimental setup is provided in the Appendix. 
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2  Parameters 

2.1  Introduction 

 The parameters and concepts relevant to this work are presented in this chapter.  First, 

the experimental parameter selection is explained.  Following this is a discussion on the 

vortex formation time theory, which was first used to characterize vortex ring formation, and 

has also been applied to circular cylinder starting flows.  Formation time relates the growth 

and final strength of a vortex to the kinematics of the system that generated it, and is thus 

very useful for understanding vortex-based propulsion.  Therefore, formation times for the 

plate’s 2 LEVs and its TV are defined, and their physical meaning is discussed. 

2.2  Experimental parameters 

 The choice of experimental parameters was discussed only briefly in Chapter 1, so 

elaboration is needed.  It must be emphasized that this work represents a preliminary and 

fundamental step in understanding hovering flight, adopting the philosophy that it is best to 

first understand a case with fewer degrees of freedom.  Hovering kinematics involve three 

degrees of freedom: wing revolution or sweeping about the wing joint in the horizontal and 

vertical directions, and pitching or rotation of the wing about its own spanwise axis.  For the 

present investigation, pitching about a ball-and-socket-type joint are not considered.  In 

addition, the wing sweeping is simplified to pure translation along a single direction.  Finally, 

since the forces generated during hovering flight are essentially symmetric about the vertical 

axis, only one-half of the full back-and-forth wing stroke is considered.  Thus, this work 

focuses on an appendage accelerating from rest in pure translation and in a single direction. 

2.2.1  Model geometry 
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 A flat plate of rectangular planform was chosen as the experimental model because it 

is one of the simplest representations of a thin flapping wing appendage.  Additionally, 

having three distinct edges (the fourth is outside the working fluid) allows for predictable 

vortex generation: 2 vortices (the LEVs) will form at the long edges, while a tip vortex will 

roll up over the short edge; Chapter 4 will show that vortices also form at the plate’s corners.  

Although insect and especially bird wings deform, the models tested did not include this 

variable.  Dickinson et al. (1999) found that exchanging the rigid wings for flexible ones on 

their robotic fruitfly did not affect the forces appreciably, but this is probably due to their low 

operating Reynolds numbers.  An angle of attack of 90 degrees was selected in order to 

ensure that the force generation would be primarily drag-based, which is consistent with 

hovering flight. 

2.2.2  Aspect ratio  

  The range of aspect ratios tested was based on biological data and previous work in 

fluid mechanics.  In Chapter 1, it was stated that insect single-wing AR’s range from 2.75 to 

6, while hummingbird AR’s are around 4.  Also, Lisoski (1993) found significant 3-D effects 

for flat plates when the AR was reduced to 6, while Champion and Coutanceau (1992) 

observed highly 3-D flow for cantilevered cylinders with AR’s between 2 and 5.  This 

investigation, therefore, considered two AR’s: 6, as the prototypical case, and 2, in order to 

have a TV dominated flow. 

2.2.3  Reynolds number 

   Similar considerations, along with flow visualization, led to the choice of Reynolds 

number.  Insect flight Re’s are on the order of 102 to 104 (Dudley, 2000).  The experiments 

by Lisoski (1993) ranged from Re = 1000 to 6000, while Champion and Coutanceau (1992) 
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performed their cylinder experiments at Re = 1000.  In order to compare the present work 

with those studies just mentioned, and still be within the insect flight regime, a Re on the 

order of 1000 was chosen.  Reynolds number for the current flat plate study is defined as 

ν
finalcU

Re =  

Where c is the plate chord length, ν is the kinematic viscosity of water, and Ufinal is the final, 

constant velocity of the plate after it accelerates from rest (see Chapter 3).  Dye flow 

visualization in chordwise planes at 50, 75, and 90% span (measured from the plate root) was 

performed for AR = 6 at Re’s of 1000, 2000, 3000, 5000, and 10000, to determine an 

appropriate Re more precisely.  For Re = 1000, the symmetry of the recirculating bubble 

behind the plate was random: most runs exhibited wake symmetry, but some runs, after about 

5 chord lengths of travel, did not, probably depending on the level of background noise in the 

water tank.   

 A more repeatable flow, obtained by increasing the Re, was desirable, but the size of 

the shear layer instability described in Koumoutsakos and Shiels (1996) was found to scale 

with Re.  A compromise was reached at a Reynolds number of 3000, which provided 

consistent results along with the least amount of contamination from the instability.  The 

investigation was performed at only one Re, since 2-D and 3-D flow visualization showed 

that the flow was similar for Re between 2000 and 5000; this was true even for the Re = 

10,000 case, although the shear layer instability was very large.  Finally, the signal-to-noise 

ratio for the drag force measurements was much better at Re = 3000 versus 1000. 

2.3  Vortex formation time 

 The connection between how a vortex is generated and the resulting final vorticity 

field was not established in detail until Gharib, Rambod, and Shariff (1998) investigated 
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vortex ring formation over long timescales.  A vortex ring, which is a vortex with it ends 

connected together, is a clean, well-studied flow, with a simple generation mechanism.  

Gharib et al. produced vortex rings in a water tank using a piston to push a column (or slug) 

of water of length L through a cylindrical nozzle of diameter D (equal to the piston diameter).  

The vorticity fed into a forming vortex ring is provided by the separated shear layer at the 

nozzle exit, which is driven by the moving piston.  Stopping the piston after a certain 

distance prohibits the shear layer vorticity flux, so that the final circulation of the vortex ring 

is approximately equal to that generated at the nozzle exit; this is true for small 
D
L ’s.  The 

question that Gharib et al. asked is the following: for large 
D
L ’s, given a fixed mean piston 

velocity, is there a limiting process that keeps the circulation of the vortex ring from growing 

indefinitely, despite the vorticity flux emanating from the shear layer?  They found such a 

process by using digital particle image velocimetry (DPIV) to capture the formation, growth, 

and subsequent pinch-off of vortex rings generated by various piston kinematics. 

 In order to compare runs with different piston velocity programs and nozzle 

diameters, time was non-dimensionalized into what Gharib et al. (1998) referred to as 

“formation time” (T) using the running average of the piston speed U and the nozzle diameter 

as follows: 

( )
D
LdttU

tD
t

D
UtT

t

=== ∫
0

''1  

As the formula shows, formation time for this case is also equal to the stroke ratio, 
D
L , which 

is the number of diameters the piston traveled.  For small 
max
⎟
⎠
⎞

⎜
⎝
⎛

D
L , the vortex rings were 



 20
compact and clean, consistent with previous studies.  However, for T greater than about 4, 

the circulation of the vortex rings did not increase indefinitely.  Instead, it saturated, and the 

remaining circulation generated by the shear layer at the nozzle trailed the vortex rings in a 

jet-like structure.  Regardless of the 
max
⎟
⎠
⎞

⎜
⎝
⎛

D
L , Gharib et al. found that the maximum 

circulation of the vortex rings was acquired around T = 4, which they called the “formation 

number.”  Jeon (2000) studied the vortex formation of essentially 2-D cylinder starting flow, 

and also found vortex saturation at about T = 4 for many cases.  This showed that the 

formation time concept can be applied to bluff bodies, and suggested that the magnitude of 

the formation number might be similar for different vortex generators. 

 The formation number is the non-dimensional time at which a vortex achieves its 

maximum circulation before pinch-off.  Pinch-off occurs when a vortex is no longer being 

fed by the shear layer that generated it, and the two become distinct entities in terms of 

vorticity.  This does not necessarily happen exactly at the formation number (it typically 

happens sometime afterward), but pinch-off cannot occur before the vortex acquirers its 

maximum circulation.  The experiments by Gharib et al. (1998) showed that the pinch-off 

process for a vortex ring starts at around T = 4, but it is not clearly complete until T is about 7 

or 8.  This formation and pinch-off process will be described for low AR flat plates in this 

section and later chapters. 

 The significance of the formation number for vortex-based propulsion can be seen by 

considering animals that use vortex rings for locomotion, such as jellyfish and squid.  Based 

on the formation number concept, an animal would obtain the maximum amount of thrust by 

ejecting a slug of fluid in such a way that T = 4; anything beyond 4 would result in a loss of 

efficiency. 
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 The low AR plates considered in the present work were oriented vertically in a water 

tank, piercing the free surface so that three edges, the two leading or side edges and the tip 

edge at the bottom, were underwater (see Chapter 3).  As discussed above, vortices are 

generated at the two leading edges and at the tip of the plate as it accelerates from rest.  The 

two LEVs rotate primarily in the horizontal plane, while the TV rotates primarily in the 

vertical plane.  Using DPIV to obtain velocity and vorticity fields in horizontal and vertical 

sections (akin to the flow visualization study done by Champion and Coutanceau (1992)), 

formation numbers can be defined for the vortices that are visible in each section.  The 

variation of the LEVs along the span of the plate and in time was captured using DPIV data 

taken at horizontal (chordwise) sections at 50, 75, and 90% spanwise locations (measured 

from the top).  Visualization in 2-D and 3-D for AR = 6 revealed a complicated flow above 

40% span after the initially 2-D vortex generation phase, which was also observed by 

Champion and Coutanceau.  Although their root end condition was an endplate, while the 

upper-end condition for the present study was a clean free surface, something about the low 

ARs considered seems to cause significant 3-D flow at both ends of the body.  Since the 

present work is focused on phenomena near the plate tip, only the flow away from the upper 

end was considered.  The TV was investigated by taking DPIV data in two vertical 

(spanwise) sections: one at mid-chord, parallel to the direction of travel and in the symmetry 

plane of the LEV wake, and one at one of the leading edges, also parallel to the plate 

velocity, and within the rotating flow of the LEV there. 

 Formation time for the present work is defined as follows: 
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where c, again, is the plate chord length, and U  is the running mean of the plate velocity.  

Since the plate is a bluff body, it is appropriate to use its chord, or frontal projected length, as 

the normalizing length scale.  The formation time T is approximately equal to the number of 

chord lengths the plate has traveled, and it is very useful for comparing runs with different 

kinematics and chord lengths.  The formation number is the formation time at which a vortex 

generated by one of the plate edges acquires its maximum circulation.  It is found using 

circulation data obtained from DPIV measurements, which will now be discussed.  

 The case of AR = 6, Re = 3000, and DPIV data taken in a horizontal (chordwise) 

plane at 50% span will be used as an example of computing the formation number.  The 

DPIV measurements provide the time-varying velocity field in an area surrounding the plate.  

From the velocity data, quantities such as vorticity can be calculated.  At this Reynolds 

number and spanwise location, the starting flow is symmetric about a line at mid-chord 

parallel to the direction of travel.  Therefore, when flow quantities at one edge, such as the 

circulation, are desired, the quantities at each edge can be averaged.  In order to obtain the 

formation number, the total circulation generated at the edge as well as that within the LEV 

are computed from the DPIV vorticity data using Stokes’ theorem in 2-D:  

∫=Γ
A

dAω  

where ω is the vorticity, and A is the area enclosing it.  A curve of total and LEV circulation 

versus formation time can then be constructed. 

 Figure 2.1 gives both the total and LEV circulation at 50% span, with insets showing 

the vorticity field at significant formation times.  The LEV circulation was computed 

automatically, as the average of that of both LEVs, using a Matlab program to track the 

vortex itself.  This was done for all data sets, since computing the circulation of the vortex 
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Figure 2.1  Circulation at AR = 6, 
50% span, with vorticity field insets.
Triangles: total circ.; x’s: LEV circ. 
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manually, especially before pinch-off, is somewhat arbitrary.  The total circulation was also 

computed using Matlab, and it is the average of the circulation generated at each edge.  

Initially, the total and LEV circulation are equal (see Figure 2.1).  However, with time they 

begin to diverge, and at T equal to the formation number (in this case about 4.5), the LEVs 

saturate and can no longer accept vorticity from the separated shear layer that formed them.  

From this time on, the LEV circulation measurements are essentially constant, within the 

experimental error.  The formation number is therefore the formation time at which the LEV 

circulation data become constant.  After the formation number, the shear layer and the LEV 

then start to become separate entities (see the vorticity field inset at T = 5 in Figure 2.1).  

Finally, at pinch-off (T = 6.67 in Figure 2.1), the two are entirely distinct, which shows up on 

a vorticity contour plot as a disconnection of their contours, with a minimum of vorticity 

between the two.  For the cases where no pinch-off exists (which occurs near the tip), 

formation numbers can still be computed if the circulation of the vortices saturates, despite 

their continued attachment to the plate. 

 Similar to the example of vortex ring propulsion given earlier, a hovering animal’s 

kinematics may be based on the formation numbers of its vortices.  However, flapping wings 

differ from the vortex ring case in that there are multiple vortices involved: the LEV and the 

TV.  The goal of the present study is to clarify the effect of the tip on the leading edge vortex 

generation.  Comparing the formation number of each vortex will show how the growth of 

the TV influences the strength and pinch-off of the LEVs.  For example, Chapter 4 reports 

that the formation number for the TV is equal to that for the LEVs at 90% span.  This implies 

that the tip vortex has a strong influence on the LEVs close to it.  Knowing the interaction of 

the tip and leading edge vortices in terms of formation time may serve as a guide for 
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hovering kinematics.  The influence of the tip can be exploited to generate maximum force, 

or to optimize power efficiency. 
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3  Experimental setup and methods 

3.1  Introduction 

 This chapter presents the details of the experimental setup and methods.  First, the 

towing tank facility, where all the experiments were done, will be described.  Next, the 

specifications of the flat plate models and kinematics are given, followed by a brief 

discussion on the dye flow visualization.  After that, the force balance and data acquisition 

system are described.  Lastly, the details of the DPIV system and post-processing are given. 

3.2  Towing tank 

 Towing tanks, as opposed to wind and water tunnels, are very useful for studying 

unsteady starting flows, due to their capability of accurately “towing” models at pre-

programmed unsteady velocity profiles.  The GALCIT towing tank was used for all the 

experiments done for this thesis, as its size and the velocity range of its drive system were 

appropriate. 

3.2.1  Towing tank description 

 Originally designed for flow visualization (see Williamson, 1988), the tank has four 

uninterrupted glass side-walls, and a glass bottom covered only across its midpoint by a 

cross-bar support; the top is open to the air.  The interior dimensions of the tank are 450 cm 

in length and 96 cm in width, with a depth of 78 cm.  It is raised up above the ground on six 

legs, which can be adjusted to level it, providing space to perform visualization and acquire 

DPIV data from below.  Figure 3.1 shows a side-view sketch of the towing tank, along with 

the laser and CCD camera configurations for DPIV and flow visualization. 

 Two parallel cylindrical rails are mounted on the top of the tank, one above each of 

the long sides.  Riding on Teflon slider bearings above the rails is a carriage, below which 
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the force balance and flat plate models are attached.  The carriage is moved using a 2-pulley 

and cable drive system located along one of the side rails.  The pulley at one end of the tank 

is driven by a DC servomotor combined with a gearbox, while the pulley at the opposite end 

is free.  A smaller version of this drive system is located on the carriage itself, but oriented 

perpendicularly to the larger one.  The force balance and model combination are actually 

attached to the smaller carriage of this secondary system.  Thus, models can be moved in two 

dimensions, but only the main drive system was needed for the present work. 

 The DC servomotor is a PMI model OP-01206-026 (type U12M4HT/GH/M23) with 

an attached gearbox having a 20:1 input-to-output ratio.  The motor is driven by a PMI 

model 00-88029-006 multi-axis switching servo amplifier (type CX-75-10-30), which 

obtains tachometer feedback from the motor in order to close the velocity loop for motor 

control.  The position loop consists of an encoder and a motion controller, described next.  

Figure 3.1  Towing tank and hardware for DPIV and flow visualization. 
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 A PMI optical encoder with a resolution of 1024 counts per revolution is attached to 

the drive shaft of the DC servomotor, in order to provide position feedback to the motion 

controller.  The gearing of the servomotor is such that there are about 1427 counts per cm of 

carriage travel, providing more than enough position control accuracy for this study.  

Position information from the encoder is fed into a Delta-Tau Mini-PMAC (programmable 

multi-axis controller), which is mounted in a PC as a standard card, and thus allows the 

motor to be controlled by the PC.  The position control loop is closed by the command signal 

that is sent from the Mini-PMAC to the amplifier, which in turn drives the motor in the 

desired manner. 

 Software provided by Delta-Tau allows the controller gains to be tuned, the encoder 

output to be calibrated, and pre-programmed motion profiles to be sent to the motor.  The 

Mini-PMAC uses a proportional-integral-derivative (PID) control scheme to minimize the 

following error between the commanded an actual position of the motor.  Velocity and 

acceleration feed-forward gains are adjusted by the user via the software, utilizing the 

position information from the encoder, to optimize motor performance.  Once the controller 

is tuned, motion programs that prescribe velocity or position as a function of time can be 

written and used to command the motor.  The software allows for an almost unlimited variety 

of motion trajectories, restricted only by the mechanical properties of the system, and thus 

affords more than adequate control of the towing tank carriage.  

3.2.2  Towing tank procedures 

 The experimental procedures common to both the force and DPIV measurements will 

now be discussed, and those specific to each type of measurement will be described in later 

sections. 
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 The working fluid in the towing tank was water, and the plate upper-end condition 

was a clean free surface, for the reasons given in Chapter 1.  Before a series of data sets was 

taken the free surface was cleaned, and it stayed that way for many hours.  Due to the air 

filtration system in the laboratory, and the height of the tank above the floor, dust 

contamination on the free surface was minimal.  Slaouti and Gerrard (1981) noted that minor 

contamination of the free surface did not significantly affect vortex impingement there.  To 

clean the free surface, a fan at one end of the tank was used to blow any debris toward the 

opposite end of the tank.  A tube connected to a shop vac, and hovering just above the free 

surface, was then used to suction away the debris there.  This left a clean surface that was 

evident by its appearance, as well as wave generation and prolonged wave action at the 

slightest disturbance.  Some of the 10 micron particles used to seed the flow during DPIV 

measurements inevitably floated to the surface due to a slight density difference between 

them and the water, but they did not appreciably affect the behavior of the free surface.  If, 

however, the amount of particles on the surface became large, the surface was cleaned again 

as a precaution. 

 The ambient fluid motion in the tank at the start of each data set was directly related 

to the amount of time the water was allowed to settle between sets.  A short time after a run, 

leftover flow was still present in the tank.  However, if the water was left undisturbed for too 

long, thermal convection cells developed due to the height-wise temperature gradient.  To 

obtain adequate run conditions, the water was stirred randomly using the plate model in order 

to eliminate the convection cells before a series of runs; then the flow was left to settle for 

about an hour to an hour and a half.  The wait-time between data sets was then determined by 

trial and error using the measurement technique at hand.  For force measurements, the flow 
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was judged to be significantly settled when the force balance was no longer able to 

distinguish the ambient flow from its at-rest noise level.  This typically took about half an 

hour.  The DPIV measurements were a bit more sensitive, since the flow velocity itself is 

being measured, and wait-times between runs ranged from half an hour to an hour.  For the 

DPIV experiments, the initial tank stirring coincided with seeding the water with the tracer 

particles.  If any subsequent seeding in the middle of a series of data sets was needed, the 

stirring was repeated, and the flow was allowed to settle for an hour to an hour and a half. 

  When the GALCIT towing tank was chosen for the present work, its carriage was 

outfitted with wheels to roll it along the rails.  Although the wheels provided very low 

friction for the servomotor to overcome, and they did not require additional measures such as 

greasing the rails, the vibrations they transmitted to the carriage due to imperfections in the 

rails and their own construction were unacceptable.  Therefore, these wheels were removed 

and the run technique established by Lisoski (1993), which employed Teflon slider bearings 

along with greased rails, was used.   

 Before a series of data sets was taken, the carriage was elevated above the rails using 

its existing screw-jacks, and the four Teflon slider bearings (two on each side) were coated 

with a thick layer of Mystik JT-6 Multi-Purpose (anhydrous calcium-based) Grease.  The 

carriage was then lowered back onto the rails, and the rails themselves were coated with a 

thin, uniform layer of the same grease.  Initially, the carriage was jacked-up and the Teflon 

bearings were greased before each run.  However, this created a grease buildup along the 

rails near the middle of each run, which led to spurious vibrations.  The best results were 

obtained with the following procedure.  The carriage was raised and the Teflon bearings 

greased only at the beginning of a series of experiments.  It was then lowered, and a thin, 
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uniform layer of grease was applied to the rails.  One run, which involved the carriage 

moving forward to its final destination, then backing-up and returning “home,” was done to 

smooth-out the grease under the Teflon.  Following this, only the rails were greased before 

each data set was taken.  The forward-and-back travel of the carriage kept the Teflon 

bearings greased uniformly, which minimized the starting friction.  This procedure produced 

lower levels of vibration than those experienced with the wheels, although the servomotor 

had to overcome much more friction.  Finally, backlash was removed from the pulley-cable 

system before each run by backing-up the carriage beyond “home,” then moving it forward 

again to the starting point. 

3.3  Flat plate models and kinematics 

3.3.1  Flat plate model materials and dimensions 

 The flat plate models used for force and DPIV measurements were made from 

different materials.  For DPIV, a virtually transparent plate was desirable, while light weight 

and rigidity were necessary to obtain satisfactory force measurements.   

 For the DPIV measurements, the flow was illuminated with a laser sheet directed at 

the leeward face of the plate through one end of the tank.  An opaque plate would have cast a 

shadow over part of the flow field, and its parallax as it moved through the fixed field of 

view of the camera would also mask part of the image.  Although the laser sheet struck the 

rear face of the plate, and the current study was only concerned with the plate’s wake, a 

moving shadow in the DPIV images would have created numerous problems during data 

processing.  An opaque plate also has parallax, which becomes a problem when the plate is 

in the far end of the image at start up: the perspective seen when looking at the plate from 

below reveals that it blocks part of the wake.  This effect is eliminated when the plate reaches 
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the midpoint of the image field, so using an opaque plate would only allow for half of the 

DPIV image field to be utilized.  The simplest way to avoid these problems was to use a 

virtually transparent plate.  Standard 1/8 in. thick window glass was found to have adequate 

transparency and rigidity, and was light enough to be supported by the force balance. 

 The flat plate model used for the force measurements was made from a unidirectional 

carbon fiber composite, which gave it exceptional stiffness and light weight.  This model was 

one of the flat plates left over from Lisoski’s Ph.D. work, and was used with permission.  

The GALCIT towing tank is known to experience carriage vibrations generated by its drive 

system and rails, and the heavier and less rigid glass plates described above transmitted these 

vibrations to the force balance at an unacceptable level.  Therefore the carbon fiber plate was 

necessary, since the force balance is more sensitive to these vibrations than the DPIV 

measurements. 

 Lisoski beveled the edges of both carbon fiber plates at a 30-degree angle, on the 

leeward face, in order to have a model with sharp edges that more closely matched a 

theoretical flat plate.  This beveling was not possible for the glass plates, due to chipping, nor 

was a transparent material found that could be beveled successfully, yet have an acceptable 

stiffness at a reasonably small thickness.  The glass plates therefore had flat edges, which 

were left after they were cut to size.  Edge geometry, however, had little or no effect on the 

flow, since the thickness-to-chord ratio of the plate models was small.  The edge instabilities 

predicted by Koumoutsakos and Shiels (1996), for example, were observed for the carbon 

fiber and a glass plates alike.  

 Table 3.1 gives the specifications and use of the flat plate models for the present 

work.  Aspect ratios were set by adjusting the water level in the towing tank.  Therefore, only 
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one plate was used for the AR = 2 and 6 DPIV experiments, and similarly for the force 

measurements. 

chord, c thickness, h h/c ratio max span AR’s used material used for 

2.5 in 1/8 in 5% 23 in 6, 2 window glass DPIV 

5 cm 3.4 mm 6.8% 50 cm 6, 2 unidirectiona
l carbon fiber force meas. 

3.5 in 1/8 in 3.6% 24 in 6 window glass flow vis. 
Table 3.1  Flat plate model specifications 

3.3.2  Run kinematics 

 As given in Chapter 2, the Reynolds number for the DPIV and force measurements 

was 3000, based on the plate chord length as follows: 

ν
finalcU

Re =
 

where c is the plate chord length, Ufinal is the final velocity of the plate, and ν is the kinematic 

viscosity of water.  The velocity profile chosen was a constant acceleration over a distance of 

1/4c to a final, constant velocity.  It is a gentler version of an impulsive start, in order to not 

overstress the mechanical drive system and cause excessive plate vibrations at the start up, 

yet generate strong starting vortices.  The formation time concept, discussed in Chapter 2, 

allows the comparison of results from different plate chord lengths and velocities, in addition 

to data from other studies.  

3.4  Dye flow visualization 

Flow visualization was done with flourescene dye, which fluoresces when struck with 

the green laser used also for the DPIV experiments.  Horizontal and vertical laser sheets were 

employed to perform sectional visualization of chordwise and spanwise planes, respectively.  

A laser cone provided illumination for the fully 3-D flow visualization.  The Pulnix CCD 
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video camera used for DPIV (see section 3.6.2 below) was also incorporated for the dye flow 

visualization; camera orientations were similar to those required for DPIV.  

 For all but one set of the visualizations, dye blobs were used to tag the flow.  The dye 

was cooled in a container submerged in the tank water, in order to have the same buoyancy 

as the water itself.  Dye blobs were deposited, or “painted,” on the leeward face of the glass 

plate model in the desired locations using a long, thin syringe.  If cooled properly, the dye 

remained essentially where it was deposited until the run was started.  For the global, 3-D 

flow visualization, described in section 4.5, two rakes were used to inject dye at the upstream 

face of the plate near the tip, so that the plate velocity would force the dye into the leading 

and tip edge shear layers.  The rakes were long syringes attached to the upstream face of the 

plate, each parallel to the span and located equidistant between the mid-chord line and the 

closest leading edge.  Small holes were drilled in the upstream side of each syringe (the end 

holes of the syringes were plugged), and these drilled holes were located starting from near 

the tip up to about one chord length away from the tip.  This was done so that only the flow 

in the tip region would be tagged, and therefore the fluid near the tip could be followed if it 

convected away from the tip.  The leeward face of the plate that contained the dye rakes was 

painted and roughened up, to eliminate reflections due to the laser passing through the plate 

and striking the rakes. 

 Flow visualization was done using glass plates of a longer chord length, 3.5 in, than 

that used for DPIV, and always with an AR = 6.  The increased size of the plate provided a 

larger, more detailed view of what turned out to be a significantly complicated flow.  

Different Reynolds numbers were used based on which flow features were to be captured, 

but the characteristic plate velocity profile was always the same (based on the chord length).  
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Whenever dye flow visualization results are presented in this work, the details of the 

particular experimental conditions are also given, so there is no need to outline them here. 

3.5  Force measurements 

3.5.1  Force balance 

 Force measurements were done with a force balance designed and built specifically 

for the GALCIT towing tank by Lisoski (1993).  The balance is attached to the underside of 

the carriage, and, with a special clamp, it suspends the flat plate models vertically in the 

water (a function it served for all of the experiments).  It is capable of resolving time-varying 

forces on small models at low speeds, yet it can also hold large models and measure forces at 

high accelerations. 

 The force balance (see Figure 3.2) consists of a rigid, 5-sided box-like frame to which 

three Interface MB-5 5 lb. strain gage load cells were attached.  A separate platform with 

threaded mounting holes for test models makes up the bottom side of the box.  The mounting 

platform is supported from inside the box frame by three vertical flexural beams, which 

extend down from the top.  These beams restrict the mounting platform to horizontal 

movement only, while three other flexural beams, oriented horizontally and mounted just 

above the platform, attach it to the three load cells.  The ends of the flexural beams were 

designed with biased rigidity, so that the entire flexural framework transmits forces only in a 

horizontal plane (i.e., parallel to the mounting platform) to the load cells.  When the force 

balance is mounted below the towing tank carriage, two of the load cells (labeled N1 and N2) 

are oriented to measure drag, while the other (labeled D) measures lift.  The drag force is 
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Figure 3.2  Schematic of force balance.  See Lisoski (1993) for a more detailed schematic. 
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then the output of N1 plus N2, the lift is simply the output of D, and the pitching moment is 

proportional to N1 minus N2.  For the present work, with an angle of attack of 90 degrees, 

the outputs of N1 and N2 were indistinguishable.  Therefore, only the N1 transducer was 

used, and the drag force was equal to twice the output of N1.   

The force balance was calibrated by using a pulley and wire rig to attach a series of 

known weights to the transducer.  Weights were hung on one end of the wire, the other end 

of which was then run through a pulley and fixed to the load cell.  The pulley was needed in 

order to change the vertical weight into a horizontal force the balance could measure.  

Lisoski (1993) provides a very thorough treatment of the capabilities and calibration of this 

particular force balance.  The resolution of the force balance, which mechanically amplifies 

the force on the plate before it reaches the load cells, is ±0.0005 N, equating to a resolution 

of ±0.02 in the drag coefficient for AR = 6, and ±0.06 for the AR = 2 CD. 

3.5.2  Flat plate model clamp 

A rotating optical stage was mounted to the center of the measurement platform of 

the force balance, in order to change the angle of attack of the plate for other studies.  

Attached to this rotating stage was the model clamp, which was a simple sandwich-style 

clamp, made from aluminum.  The aluminum bracket that fixed the clamp to the optical stage 

was designed so that the chordline of the plate intersected the center axis of the stage.  Since 

the optical stage was centered on the balance’s measurement platform, centering the plate 

itself on the stage ensured that no moment arm between the model and the platform (parallel 

to the plane of measurement) was created. 

3.5.3  Amplifier and data acquisition 
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 An Interface model SGA/A strain gage amplifier was used to power the load cell and 

amplify and filter its output signal.  Designed specifically for Interface force transducers, the 

SGA/A has a large range of output voltage gains, an adjustable low pass filter, adjustable 

output ranges, and an adjustable offset of up to 79% full-scale in order to “zero” the 

transducer.  For all force measurements, the load cell excitation was 10 V, the output was set 

to ± 5 V, the gain was set to 17.35, and the low pass filter was set to a cutoff frequency of 5 

Hz.  This particular gain gave a force transducer output calibration of 0.0023 V/g. 

 The amplifier output was sent via a breakout board to a PC-mounted data acquisition 

card, a National Instruments PCI-1200.  The PCI-1200 converted the differential analog 

input into a 12-bit digital signal for the PC.  A custom LabVIEW program was written to 

control the data capturing, including the sampling rate.  To avoid picking up the ambient 60 

Hz noise in the laboratory, while ensuring that the force balance signal (which included the 

noise from the drive system) was sampled adequately, a sampling rate of 20 Hz (4 times the 

5 Hz cutoff frequency of the amplifier’s low pass filter) was chosen. 

3.5.4  Towing tank noise and signal conditioning 

 As mentioned above, vibrations from the drive system of the towing tank introduced 

noise in the force measurements, making it necessary to condition the amplifier output in 

hardware and in software.  Tests were done to determine the characteristics of the noise from 

the pulley cable and the rails.  Depending on the carriage location, the noise from the pulley 

cable had a frequency of between 6 and 10 Hz, while the noise from the rails and pulley 

system combined had frequencies between 4 and 10 Hz.  Since the drive system noise varied 

with the carriage motion, a resonance filter could not be used to eliminate it.  Therefore, low 

pass filters were used, the first being that of the amplifier, which was set to a cutoff 
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frequency of 5 Hz to get rid of the larger magnitude cable noise.  The subsequent amplifier 

output was filtered digitally in Matlab with a cutoff frequency of 2 Hz, which removed the 

drive system noise while preserving the lower frequency features resulting from the nearly 

constant kinematics described above.  To avoid picking up the ambient 60 Hz noise in the 

laboratory, while ensuring that the force balance signal was sampled adequately, a sampling 

rate of 20 Hz was chosen. 

 Finally, using the experimental procedures described in section 3.2.2, the runs were 

found to be very repeatable.  However, to reduce the impact of the small run-to-run 

variations, 10 runs for each aspect ratio were averaged to produce the final force trace.     

Figure 3.3  CD from amplifier output vs. averaged & digitally filtered CD. 
AR = 6, Re = 3000.  Gray line: amplifier output from one run;  

black line: average of 10 digitally low-pass filtered runs. 
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An example of the amplifier output for a single AR = 6 run (already low-pass filtered with a 5 

Hz cutoff frequency) is given by the gray line in Figure 3.3, while the average of all 10 runs, 

each filtered digitally in Matlab before the averaging, is given by the thicker black line in the 

same figure.   

3.6  DPIV system 

3.6.1  DPIV 

 To capture 2-D sections of the flow velocity quantitatively, and therefore extract 

quantities such as vorticity, and circulation, digital particle image velocimetry (DPIV) was 

used.  This technique, developed by Willert and Gharib (1991), uses cross-correlation to 

obtain velocity fields from the displacement of particles between two images separated in 

time.  First, the flow to be interrogated is seeded with particles.  Next, a pulsed or chopped 

laser sheet is used to briefly illuminate an essentially 2-D section of the flow at a periodic 

rate, and a synchronized video camera then captures a time-sequence of the nearly 

instantaneous particle images.  Each image in a pair is divided into a set of smaller 

interrogation windows, which are cross-correlated between the pair to obtain the particle 

displacement field.  Finally, a scaling factor converts the displacement field into the desired 

velocity field.  The computational techniques implemented for the DPIV of the present work 

are those described in Willert and Gharib (1991) and Westerwheel, Dabiri, and Gharib 

(1997). 

3.6.2  DPIV hardware setup 

 The towing tank was seeded with neutrally-buoyant, silicon-coated, hollow glass 

spheres approximately 10 microns in diameter, which followed the flow very well and 

scattered the laser light sufficiently.  Particle illumination for sections of the flow was 
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accomplished using a New Wave Gemini PIV pulsed Nd:YAG laser, which delivered 124 mJ 

in the 532 nm wavelength per 5 ns pulse.  An extremely short duration, high-powered pulse 

is required so that the captured particle images are essentially instantaneous (or “frozen” in 

time), but with sufficient luminosity. 

 As stated in Chapter 2, DPIV data were taken in horizontal (chordwise) planes at 

three different locations along the plate, 50, 75, and 90% span, as well as in vertical 

(spanwise) planes perpendicular to the plate chordline, at mid-chord and at one of the leading 

edges.  The laser beam was spread into an appropriately sized sheet using two identical 

cylindrical lenses, which could be rotated and leveled so as to produce horizontal or vertical 

laser sheets.  As shown in Figure 3.1, the laser sheet was directed into the tank end closest to 

the plate.  In order to change the height of the horizontal sheets to interrogate different 

spanwise locations, the head of the Gemini laser, along with the optics, was placed on a 

height-adjustable pneumatic die table, which could also be rotated to square-up the vertical 

sheets. 

A Pulnix TM-9701 black and white digital CCD video camera, with a resolution of 

768 by 480, was used to capture the particle images for DPIV.  To image chordwise flow 

sections, the camera was placed below the tank, looking upward (see Figure 3.1).  The 

camera was mounted on a tripod and pointed at the side of the tank in order to capture the 

spanwise flow sections.  A custom-built timing box synchronized the 30 Hz frame rate of the 

camera with the laser pulses. 

The 30 Hz frame rate of the camera was too slow to capture snapshots of the flow for 

this work, which required time steps on the order of 5 milliseconds.  In order to achieve such 

small time steps, the laser pulse to illuminate the first image in a pair was delivered near the 
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very end of the exposure time for its corresponding video frame, while the laser pulse for the 

second image in the pair was fired near the very beginning of the exposure time for its, the 

next, video frame.  Thus, the actual time between the pulsed illuminations was much shorter 

than the full exposure time of one frame (1/30 sec).  However, the resulting DPIV velocity 

fields, one field corresponding to each image pair, were then each separated in time by (1/15 

sec).  Therefore, the temporal resolution of the overall flow evolution was sacrificed for 

better temporal resolution of the “instantaneous” flow at each time step; for the moderate 

Reynolds number of the current investigation, this trade-off was entirely acceptable.  

Westerwheel, Dabiri, and Gharib (1997) offer a much more thorough treatment of the subject 

of time resolution. 

3.6.3  DPIV processing 

The DPIV processing was done using a 32 by 32 pixel interrogation window, with a 

16 by 16 pixel overlap.  This gave 48 by 30 (or 1440) vectors for each velocity field, and 

resulted in a typical resolution, depending upon the imaged section of the flow, of about 7 

mm in the horizontal and vertical directions, which was then improved upon using a window 

shifting technique with the same interrogation window size and overlap (see Westerwheel, 

Dabiri, & Gharib, 1997).  The interrogation window and overlap sizes were chosen so that 

the number of errant vectors, or outliers, in each velocity field was minimized.  The small 

number of outliers, if any, that appeared in the velocity fields, especially near the plate itself, 

were removed and replaced by a vector interpolated from its surrounding neighbors via the 

DPIV software (see Willert & Gharib, 1991). 

 Although the resolution after using the window shifting algorithm was better than 7 

mm, it was still not adequate enough to resolve the small-scale instability in the leading edge 
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shear layers, visible in the chordwise dye flow visualization.  The under-resolved instability 

thus appeared as noise.  Since the period of the shear layer instability was much smaller than 

the timescale of the leading edge and tip vortex formation, and this investigation was 

concerned only with the more gross features of the flow (namely, the larger-scale vortex 

formation), it was decided to use a low-pass filter to remove the instability.  The vorticity 

field, ω(x,t), calculated from the DPIV velocity data was therefore smoothed in time with the 

following low-pass filter: 

( ) ( ) ( )11 ,2.0,8.0, ++ += kkfkf txtxtx ωωω  

This filter did not appreciably affect the overall behavior of the circulation with time, as 

Figure 3.4, which shows circulation calculated from filtered and unfiltered vorticity field 

data, illustrates. 

 

-Γ (cm2/s) 

time (sec)
Figure 3.4  Circulation calculated from filtered and unfiltered vorticity data.   
AR = 6, 50% span.  Darker, jagged line: circulation from unfiltered vorticity;  

lighter line: circulation filtered using the low-pass filter given in the text. 
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4  Results 

4.1  Introduction 

 The results from the force measurements, DPIV experiments (including circulation 

and vorticity), and dye flow visualization will be presented in this chapter, in that order.  

More features of the flow will be brought out with each new section, and a model to explain 

the results at the startup will be presented at the end. 

4.2  Force measurements 

4.2.1  Aspect ratio 6 

 The drag coefficient, CD, versus formation time for aspect ratio 6 is plotted in Figure 

4.2.1a, and with a zoomed-in CD-scale in Figure 4.2.1b.  For all force measurements, the drag 

coefficient is computed using the measured drag, D, the final, constant velocity, Ufinal, the 

plate area, S, and the density of water, ρ, as follows 

SU
DC
final

D 2

2
ρ

=
 

As described in Chapter 3, the forces plotted are the average of 10 measurements, unless 

otherwise noted, each of which is low-pass filtered. 

 Figure 4.2.1a shows an initial peak CD of about 7.4, corresponding to the constant 

acceleration portion of the velocity profile.  During acceleration only, added mass and the 

inertia of the plate model contribute to the total drag force.  Throughout the entire run, the 

drag force has a component due to the pressure field created by the LEVs and the TV, in 

addition to a small contribution from viscosity.  The CD then drops below 2 at a formation 

time of 1.5, and remains between 1.4 and 1.65 for T > 3.  After the startup peak, the most 

noticeable feature of the data is a broad “hump” with its maximum at about T = 5 (see Figure 

4.2.1b).  The sections following this discussion on the force data will present 
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(a) 

(b) 
Figure 4.2.1  Measured CD vs. formation time, AR = 6.  Solid line: free end; dashed line: tip grazing bottom 
wall.  (b) zoomed-in CD-scale, with 2-D normal flat plate & 3-D AR = 1 normal flat plate steady-state CD’s. 

2-D normal flat plate, steady-state CD = 1.98  

AR = 1 normal flat plate (3-D), 
steady-state CD = 1.05  

AR between 1 & 4 normal, rectangular 
solid, one end free, steady-state CD = 1.5 



 46
circulation measurements and chordwise (horizontal) vorticity fields from DPIV that show 

flow phenomena occurring around T = 5.  Additionally, spanwise (vertical) vorticity fields as 

well as dye flow visualization will shed light on the role of the tip vorticity and the overall 

flow in the force generation. 

 In order to gain insight into the influence of the plate tip on the drag force, in addition 

to the information obtained from DPIV and flow visualization experiments, the drag 

measurements were retaken with the setup modified to suppress the flow around the tip, i.e., 

the tip vorticity.  Specifically, a raised platform with a flat, smooth upper surface was placed 

below the plate, creating a new bottom wall with only a paper-thin gap between it and the 

plate tip.  This “grazing” end condition (along with a clean free surface) was recommended 

and used by Lisoski (1993) and Slaouti and Gerrard (1981) for achieving highly 2-D flow; 

Lisoski did experiments with these end conditions with AR’s ranging from 6 to 17, and found 

little variation in CD with AR.  The dashed line in Figure 4.2.1 is the average of two such runs 

(which were very repeatable) from the present work, with AR = 6, and the major difference 

between this and the original force trace is that there is a minimum instead of a maximum 

around T = 5.  This result has important implications for flyers in nature that use low AR 

wings to hover, an assertion that will be supported with the following discussion. 

 It is well known that, under steady-state conditions, the drag on three-dimensional 

bodies at Reynolds numbers (Re’s) > 100 is lower than that of their two-dimensional 

counterparts.  For example, the drag coefficient of a sphere at Re = 103 is 0.41, while the CD 

of a 2-D (i.e., infinite AR) circular cylinder at the same Re is 1.0 (Blevins, 1984).  For a 

normal flat plate of infinite AR, CD is 1.98 (McCormick, 1995), while an AR = 1 plate 

(having all four edges free), oriented with its broad side to the flow, has a CD of 1.05 
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(Blevins, 1984).  In fact, for a variety of shapes over a wide range of Reynolds numbers, the 

ratio of the 2-D steady-state CD to its 3-D (body of revolution) counterpart is about 1.8 

(McCormick, 1995).  This is due to the difference in the flow separation over a 2-D versus a 

3-D body.  For a 2-D normal flat plate, separation occurs only over the 2 leading edges.  

Considering a 3-D example, such as an AR = 1 plate fully submerged (with its edges free) in 

a fluid and oriented normal to the flow, separation occurs at all 4 edges.  At sufficient Re, a 

2-D flat plate has an LEV that rolls up from each of its 2 edges to form a certain-sized wake, 

whereas a 3-D plate has 2 pairs of LEVs rolling up from its perpendicular pairs of edges, 

creating a more contracted wake that results in lower drag.  However, if the AR of a 2-D (in 

terms of end conditions) normal flat plate or circular cylinder is about 5 or less, the 2-D CD 

becomes approximately equal to the 3-D CD with the same AR (McCormick, 1995). 

 Although the current work considers only starting flow, the data on steady-state drag 

coefficients can provide some insight into the present AR = 6 results.  Based on the steady-

state findings, the drag of the grazing (2-D) case should be similar to that of the free-end 

case, at AR = 6, if the upper-end (i.e., that closest to the free surface) condition of this free-

bottom-end case was also a free end, far away from the free surface.  However, the flow 

considered in the present work is that of a flat plate with 2 different end conditions, one 

nominally 2-D (the free surface) and one 3-D (the free end), which more closely 

approximates a biological wing (more on this below).  This mixture of end conditions results 

in a drag force that is lower (after the initial acceleration) than the purely 2-D (i.e., infinite-

AR) normal flat plate steady-state case, but higher than the nominally 2-D, AR = 6 unsteady 

grazing case, as well as the steady-state, AR = 1 (3-D) normal flat plate case (Figure 4.2.1b 

reports all of these CD’s).  Mixed end conditions in steady-state also produce CD’s that are 
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higher than the fully 3-D case, but lower than the 2-D case, consistent with the unsteady 

results of the present work.  For example, a rectangular solid of square cross section attached 

to a wall at one end and having the other end free (such that it looks like a miniature 

building), has a CD of about 1.5 if the AR (or length to side ratio) is between 1 and 4, and it is 

oriented normal to the flow (this is true if most of the solid is well out of the boundary layer 

at the end wall, see Blevins, 1984).  The CD of the same solid if the AR were infinite is 2.2, 

while the CD is 1.05 for an AR = 1 normal cube (i.e., the fully 3-D case) with all of its sides 

free (Blevins, 1984). As will be shown presently, the mixed end condition phenomenon, 

which for the present work produces higher drag than the grazing flat plate and the AR = 1 

normal plate cases, is AR-dependent.  Unsteady flow results from the thesis of Derek Lisoski 

(1993) will be used next to show the effects of AR and end conditions on the drag force.  In 

addition, the results from the current work will be compared with those of previous studies, 

cited in Chapter 1. 

 In Chapter 1, it was noted that Chua et al. (1990) and Lisoski (1993) observed a drag 

“bucket,” or low drag region, centered around T* = 8.  The drag minimum of the present 

study occurs earlier than that reported by Chua et al. and Lisoski, presumably because the 

beginning plate acceleration, over a distance of only 1/4 chord, is more aggressive than their 

acceleration distances of 2c and 1.31c, respectively.  Sarpkaya and Kline (1982) and 

Dickinson and Götz (1993) did not, however, record drag buckets, and this will be discussed 

below.  Lisoski reported drag buckets for all of his experiments (from AR = 6 to 17) whose 

plate end conditions promoted nominally two-dimensional flow, and attributed the 

phenomenon to a symmetric recirculating bubble behind the plate, which becomes 

nonsymmetric (breaks down) before T* = 20.  He hypothesized that a closed, recirculating 
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wake bubble, made up of the pair of LEVs, induces flow near the wake centerline that is 

toward the rear face of the plate.  This creates higher pressure on the rear face than would 

exist without the bubble.  As the LEVs grow stronger, the induced velocity and base pressure 

increase, causing the drag minimum observed before the bubble breaks open. 

For the case of an AR = 17 plate with a free lower end, Lisoski also reported a drag 

bucket, albeit with a slightly higher minimum.  However, for the case of an AR = 10 plate 

with a free end, he found no drag bucket.  This illustrates that the effect of the tip (free end) 

for a plate with a 2-D upper end condition does not become important until the AR is reduced 

to at least about 10.  The findings of the present study suggest that a significantly beneficial 

gain in drag force, in this case about 46% at the CD maximum at T = 5, is not achieved unless 

the AR is reduced further to 6. 

 Given the above results and discussion, it seems that a wing designed for hovering 

flight, which must generate primarily drag force, should have one free end and an AR of 

around 6 or less.  Indeed, as stated in Chapter 1, hovering animals have AR’s between 2.75 

and almost 6.  Additionally, physiology dictates that the wings of flying animals can have 

only one free end, the other being attached to the body. 

Although the alternative, a single wing with both ends completely free, is not possible 

biologically, (single) wing shapes that approximate something close to 2 free ends can be 

imagined.  For example, this could be achieved by cutting out an area of the wing between 

the leading and trailing edge spars, somewhere along the span, so that the remaining wing 

area between the cutout and the actual wing tip acts like an outboard body with 4 free edges.  

However, such a configuration, with two 3-D, or free, end conditions, would most likely be 

unfavorable.  While the results from the present work show that, for unsteady starting flow, 
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“mixed” end conditions generate significantly higher drag than the nominally 2-D case, the 

steady-state data suggest that there are limitations to the benefits of 3-D flow.  Steady-state 

experiments (discussed above) show that the CD of a body with fully 3-D end conditions is 

lower than, or at most comparable to at low AR, its 2-D counterpart; a body with mixed end 

conditions has a CD somewhere in between the two extremes.  This information suggests that 

mixed end conditions may be more advantageous than purely 2-D or 3-D ones.  Indeed, the 

DPIV and flow visualization results of the current study, provided in the next sections, will 

show the benefits of a single tip vortex.  It acts to suppress the pinch-off of the LEVs near the 

tip, which creates a highly 3-D, low-pressure flow there that generates high drag.  However, 

it also allows the LEVs away from the tip to grow stronger than those near the free end, 

generating high drag that peaks before they pinch-off.  Without the TV, the LEVs along the 

span would grow and form a coherent, low-drag recirculating bubble, which results in the 

drag minimum measured for the grazing case (see Figure 4.2.1).  A plate with 2 TV’s, one at 

each end, would most likely limit the growth of the LEVs farthest away from the tips more 

than a single TV does.  This would reduce their force contribution, resulting in less drag than 

the single TV case. 

   The outboard ends of bird and insect wings are free, while, inboard, the ends attach 

to the animal’s body.  The latter end condition cannot have a significant tip vortex for two 

reasons.  First, because, the inboard end of the wing is attached to the body through a joint, it 

moves very little during hovering flight, compared with the outboard wing tip.  Second, 

although some insect wings may narrow at the wing-body joint, so that they are 

geometrically like a wing tip, the connection to the body interferes with flow from the 
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underside of the wing curling up over the wing’s end to the top surface, i.e., tip vortex roll 

up.   

 The current drag force data for AR = 6 will now be compared with the other studies 

cited in Chapter 1.  Sarpkaya and Kline (1982) performed their measurements on an AR = 8 

plate nearly impulsively started with a final Re of 21000, and having the wind tunnel walls as 

end conditions.  Theirs was the only investigation to report a drag maximum, albeit slight, at 

around the same time, T* = 4.5, as that measured in the present work.  However, since their 

plate model did not have one end free, it is unclear why they did not observe a drag bucket, 

nor what the cause of their drag maximum was.  The essentially impulsive start in addition to 

the high Reynolds number may not have allowed for a long-lived symmetrical recirculation 

bubble, which would explain why no drag bucket was observed.  The slight drag maximum 

may have been due to the saturation and subsequent pinch-off of the LEVs.  Finally, for the 

very low Reynolds number (192) case studied by Dickinson and Götz (1993), with grazing 

conditions at both plate ends, a recirculating wake bubble was probably present throughout 

the entire 7 chord lengths of total travel.  This would result in low drag (compared to a free 

end case) throughout the entire run, after the initial acceleration peak, similar to the grazing 

case of the present work if it was taken out to just T = 7.  This low drag could only be labeled 

a “bucket” if the experiments were run for longer time to obtain the drag after T = 7 for 

comparison. 

4.2.2  Aspect ratio 2 

 The drag coefficient for AR = 2 is plotted along with that of AR = 6 in Figure 4.2.2a, 

and with a smaller CD-scale in Figure 4.2.2b.  The initial peak in the CD corresponds to the 

constant acceleration over ¼c, during which added mass and the inertia of the model 
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(a) 

(b) 
Figure 4.2.2  Measured CD vs. formation time, AR = 2 and 6.   

Solid line: AR = 2; dashed line: AR = 6.  (b) zoomed-in CD-scale. 
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contribute significantly to the overall drag.  For AR = 2, the peak CD is about 1.8 times that of 

AR = 6.  In order to explain this difference, the drag coefficient due to added mass and inertia 

for both AR’s was estimated.  The added mass of thin plates of finite aspect ratio was 

obtained from calculations given in Sarpkaya and Isaacson (1981), and it is 0.7568πρbc2/4 

for an AR = 2 plate, and 0.909πρbc2/4 for an AR = 6 plate.  Since the same plate model was 

used for both AR’s (the AR was varied by changing the water level in the tank), the inertial 

force measured by the balance during the acceleration is the same for both cases.  The added 

mass for AR = 2 is 0.1486 kg, while it is 0.535 kg for AR = 6; the mass of the plate model is 

0.1239 kg.  Since the added mass and inertial force are both proportional to the acceleration 

of the plate (equal to 0.144 m/s2), they are both constant during the acceleration.  The drag 

due to the inertia of the model is 0.0178 N, the force due to added mass for AR = 2 is 0.0214 

N, and for AR = 6 the added mass force is 0.077 N.  Computing the drag coefficient (defined 

as above) due only to added mass and inertia, for AR = 2, CD = 4.36, while for AR = 6, CD = 

3.51; the ratio of the two CD’s (that of AR = 2 to AR = 6) is 1.24, compared to the measured 

ratio of 1.8.  Considering added mass only, the CD for AR = 2 is 2.38, and for AR = 6, CD = 

2.85, with their ratio being 0.84. 

 These calculations show that the significant difference in CD between AR = 2 and 6 is 

most likely not due to added mass (given the CD ratio of 0.84).  Instead, the force from the 

inertia of the plate, as measured by the balance, accounts for much of the difference.  Since 

the inertia of the plate is the same for both cases, its contribution to the AR = 2 CD is higher 

because the drag coefficient formula includes the plate area.  The fact that the computed drag 

coefficients are smaller than those measured by the balance, as is the ratio between them, 

could be due to a number of factors.  First, the towing tank drive system may introduce some 
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mechanical whiplash at the startup.  Second, the plate model bends, although slightly, as it is 

accelerated from rest.  Both of these non-ideal effects would be felt by the force balance.  In 

addition, since the water level for the AR = 2 plate is different from that of AR = 6, the 

damping that the water provides is less, but the relative moment from the resultant drag on 

the plate is higher.  These effects may contribute to the peak CD for AR = 2 being larger.  

Finally, viscous effects and pressure drag, although both are small at the startup, were 

neglected in the above computations. 

After T = 1.5, the magnitude of the CD for both cases resides between 1.5 and 2.  

However, instead of a single “hump” at T = 5 like the AR = 6 case, the AR = 2 data exhibit a 

“wiggling” behavior starting at T = 3 and ending at T = 7 (see Figure 4.2.2b).  Spanwise 

(vertical) vorticity fields from DPIV data, as well as images from flow visualization, indicate 

that vorticity from the plate’s corners convects into the mid-chord plane and then upward to 

impinge the free surface during this time.  This creates secondary vorticity and free surface 

deformation, which affects the drag force measurements.  Spanwise vorticity in the leading 

edge plane, due to the LEVs, exhibits similar behavior.  Additionally, vorticity fields and 

circulation measurements from horizontal DPIV show interesting flow phenomena, such as 

“inward” LEV pinch-off and wake contraction, at these formation times.  The “wiggles” in 

the drag force, which are not always in phase from run to run, are therefore a result of 

complex flow interactions that will be made clearer when the DPIV and flow visualization 

results are given in later sections.  Also, an explanation for the fact that the AR = 2 CD is 

higher than that of AR = 6 after T = 2 will be proposed. 

4.2.3  Drag force components 
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 There are many factors responsible for the total drag on the flat plate as measured by 

the force balance.  Specifically, these components are added mass (during acceleration), 

viscous effects, the inertia of the model itself, and the induced pressure field around the plate 

due to the vortices it generates.  To investigate the role of each component more easily, a 

gentler velocity profile with an acceleration portion over a distance of 10 times that of the 

original, i.e., 2.5c, followed by a constant velocity at Re = 3000, was chosen.  This milder 

profile ensured that any mechanical vibration at the startup was minimized, yet also that the 

acceleration portion did not extend into the region of vortex saturation, 3 to 5c, so that added 

mass and vortex effects did not entirely overlap. 

 Figure 4.2.3 shows the resulting CD versus real time for an AR = 6 plate with a free 

end, represented by the solid line (average of 4 runs), and the same plate with the grazing end 

condition, shown as a dashed line (average of 2 runs).  The velocity profile, with its 

magnitude scaled to fit on the plot, is also provided to aid the discussion. 

 When a body is accelerated through a fluid, energy must also be expended to 

accelerate the fluid that it is displacing around it.  This increases the force required to 

accelerate the body beyond that needed if the body was in a vacuum.  To experience this 

same force needed to accelerate the body through a fluid if it is then placed in a vacuum, 

mass must be added to the body, and this extra mass is called “added mass” (Daniel, 1984).   

The force on a body due to added mass is directly proportional to the body’s acceleration.  It 

also depends on the body’s shape relative to its direction of travel: an ellipsoid accelerating 

in a direction parallel to its long axis has a higher added mass than the same ellipsoid moving 

parallel to its short axis (Daniel, 1984).  Figure 4.2.3 shows that the slope of the velocity 

profile reaches its maximum at about 1 second, remains constant until about 3 seconds, then 
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decreases until the velocity is constant at about 4.2 seconds.  The force on the plate due to 

added mass should therefore increase at the startup due to the increase in acceleration, remain 

constant between t = 1 and 3 seconds, then drop to zero from 3 to 4.2 seconds.  Indeed, for 

both end conditions there is a sharp rise before t = 1 second (though it is somewhat lost in the 

filtering), and a drop in the drag force around t = 3 seconds.  Although the force due to added 

mass is significant, it is not the focus of the present work because such forces average to zero 

during the back-and-forth wing motions used for hovering (Wang et al., 2004). 

 The force measured by the balance during the non-zero acceleration portion of the 

velocity profile also includes a contribution from the inertial force of the plate model itself.  

The inertial force is directly proportional to the plate’s acceleration, so, like the force due to 

added mass, it increases until t = 1 second, then remains constant, and finally decreases to 

Figure 4.2.3  Measured CD vs. real time, AR = 6, acceleration over 2.5c.   
Solid line: free end; dashed line: tip grazing bottom wall; dash-dot line: velocity profile.  
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zero starting at t = 3 seconds.  Therefore, the drop in drag after t = 3 seconds is partially the 

result of both the force due to added mass and the inertia of the plate falling-off as the 

acceleration diminishes. 

 Viscous drag, although small for a thin body oriented normal to the flow, adds to the 

overall force, as well.  It is proportional to the plate velocity, and therefore increases until t = 

4.2 seconds, then levels off to a constant value. 

 Finally, the remaining drag force is due to the pressure on the plate induced by the 

vortices it generates.  Initially, as the LEVs and TV form and grow, they are small and close 

to the plate edges that formed them, and their high velocities make them regions of low 

pressure.  This causes an increase in the plate’s drag.  For the grazing case, the LEVs become 

larger after a certain time (a behavior that is partially masked by the other forces discussed 

above) and probably form a recirculating bubble behind the plate.  The induced upstream 

flow from the recirculation would increase the base pressure, thus decreasing the drag.  Such 

an effect is observed in the grazing case after t = 4 seconds, and it reaches its maximum 

shortly after t = 7 seconds, which presumably corresponds to the saturation time of the LEVs.  

For the free end case, the situation is more complicated.  The interaction between the TV and 

the LEVs certainly raises the drag force significantly above that measured for the grazing 

case after t = 5 seconds.  However, the exact mechanism through which this is accomplished 

can only be revealed by techniques such as DPIV and flow visualization, the results of which 

will be shown in the following sections. 
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4.3  Chordwise flow sections: DPIV, circulation, and formation number 

4.3.1  Aspect ratio 6 

 Chordwise sections of the flow velocity for aspect ratios 6 and 2 were captured at 50, 

75, and 90% spanwise locations, measured from the free surface, using DPIV.  The total 

circulation (the average of that generated by each edge) and leading edge vortex circulation 

(the average of that of each LEV) were calculated using Stokes’ theorem in 2-D, 

∫=Γ
A

dAω
, 

and vorticity field data from the DPIV (see Chapters 2 and 3 for details on the theory and the 

experimental setup, respectively).  Figure 4.3.1 shows the total and leading edge vortex 

circulation versus formation time for all three spanwise locations for AR = 6; the individual 

cases will be described separately, along with their corresponding vorticity fields and flow 

visualization, following this discussion. 

 The circulation data in Figure 4.3.1 were obtained from DPIV data normalized using 

the plate chord length and the final velocity, so that each case could be compared easily.  At 

the start of the plate motion, when the flow is primarily 2-D, the circulation for each 

spanwise location is about the same, and increases at nearly the same rate.  However, after a 

formation time of about 0.5, the total circulation for 75 and 90% span start to diverge from 

and become lower than that at 50% span.  Then at T = 2, the total circulation for 90% span 

flattens out, while at 50 and 75% span, it continues to increase.  At T = 5, the total circulation 

at 75% span starts to decrease, then flattens out and comes nearer to the circulation at 90% 

span after T = 6.3.  Shortly after the total circulation at 75% span begins to decrease, there is 

a small, temporary drop in the circulation at 90% span having its minimum at T = 5.5.  

Significant losses in this total, sectional circulation generated by each edge are possible 
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Figure 4.3.1  Circulation vs. formation time, AR = 6.   
Triangles: total circ., 50% span; x’s: LEV circulation, 50% span; circles: total circ., 

75% span; crosses: LEV circulation, 75% span; diamonds: total circ., 90% span. 
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because the flow is highly 3-D.  In order to begin to understand the overall trend of higher 

circulation with increasing distance from the tip, as well as the more salient features of the 

data, such as the leveling-off of the circulation at 90% span, and the drops in circulation at 75 

and 90% span around T = 5, the evolution of the vorticity fields with formation time at each 

spanwise station will be shown.  First, however, the circulation of the leading edge vortices 

for each case will be discussed. 

 For AR = 6, only the 50% spanwise location exhibited leading edge vortex formation 

and clear pinch-off.  The LEV formation number is defined as the formation time at which 

the LEVs reach their maximum circulation, or saturate (see Chapter 2), before pinch-off.  

Referring to the circulation data in Figure 4.3.1, the formation number for the AR = 6, 50% 

span case is therefore about 4.5.  The formation and growth of the LEVs at 75% span are 

similar initially to the 50% span case, but they occur more quickly.  By T = 3, the LEVs have 

achieved their maximum circulation.  However, as will be evident when the vorticity fields 

are shown, the LEVs do not experience a complete pinch-off.  Instead, by T = 4, they merge 

back with the shear layers from the plate’s edges that originally formed them, and a much 

more complicated wake follows after T = 5.  Finally, for 90% span there are no LEV 

circulation data separate from the total circulation because the two are coincident.  The 

vorticity fields there show that the LEVs remain attached to the plate throughout the entire 

run.  Therefore, the formation number for this case is the formation time at which the total 

circulation saturates or levels off.  This occurs at T = 2.2, leading to the result that the 

formation number decreases as the distance from the plate tip decreases. 

  The circulation at 50% span, along with insets showing vorticity field snapshots at 

key formation times, is given in Figure 4.3.2.  A larger set of vorticity field snapshots, 
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highlighting significant points during the evolution of the flow with formation time, is 

provided in Figure 4.3.5.  At T = 1, the wake of the plate consists of a symmetrical pair of 

compact LEVs that are growing with formation time.  The circulation increases as the LEVs 

become larger and elongate in the direction of the flow, which occurs until shortly after T = 

4.  At T = 4.5, the formation number, the LEVs have begun to pinch-off, or become separate 

vorticity entities, from the plate leading edge shear layers that formed them.  This process 

evolves through T = 5, and, although the total circulation continues to increase, the LEV 

circulation remains at the formation number value, since the LEVs are no longer being fed by 

the plate’s shear layers.  Finally, at T = 6.67, the pinch-off process is complete, since there is 

a near-zero region of vorticity between the shear layers and the LEVs.  However, the LEVs 

do not subsequently shed.  Instead, they merge again with their forming shear layers, as seen 

at T = 7.02 and 8.01 in Figure 4.3.6.  This is due to the highly 3-D flow induced by the plate 

tip, which will be explored in further detail in subsequent sections using the vertical DPIV 

data and dye flow visualization.  Figure 4.3.6 shows that by T = 9.3, new LEVs have formed 

and induced an opposite sign vortex dipole slightly aft of themselves and closer to the wake 

centerline.  In addition, the original LEVs have moved farther from the wake centerline, and 

are no longer symmetrical. 

 A plot of the circulation at 75% span, with insets of vorticity field snapshots, is given 

in Figure 4.3.3.  Figure 4.3.6 provides a greater number of snapshots to show the evolution of 

the flow in more detail.  At early formation times, the flow develops much like that at 50% 

span: 2 symmetrical LEVs form and grow, and therefore the circulation increases.  However, 

the pinch-off process starts at T = 2, rather than T = 4.5.  By about T = 3, the formation 

number for this case, the LEVs have achieved their maximum circulation, and have almost 
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Figure 4.3.2  Circulation at AR = 6, 
50% span, with vorticity field insets.
Triangles: total circ.; x’s: LEV circ. 
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pinched-off.  Before the pinch-off is completed, though, the LEVs merge again with the 

leading edge shear layers that formed them, then subsequently grow and elongate.  This 

continues, with the total circulation increasing correspondingly, until the circulation reaches 

a maximum at about T = 4.8.  After this formation time, the total circulation drops and the 

structure of the wake changes substantially.  The LEVs again start to pinch-off from the 

plate’s leading edge shear layers, but instead of moving outwardly, they are drawn in toward 

the wake centerline and the leeward side of the plate itself.  A momentary, “inward” pinch-

off occurs at T = 5.73.  However, by T = 7, the LEVs have merged with the shear layers 

again, leaving a complicated, elongated wake.  During this last wake transition, at about T = 

6.5, the total circulation stops decreasing and levels off at about 73% of the maximum value.  

For AR = 6, the 75% span case is the most complicated.  The behavior of the wake, which 

differs substantially from that of 50% and 90% span, is due to interaction between the tip and 

leading edge vortices.  Spanwise (vertical) DPIV and flow visualization given in the next 

section will show the (sectional) out-of-plane flow responsible for these wake features. 

 A glance at Figure 4.3.4, which shows the total circulation at 90% span along with 

insets of vorticity field snapshots, reveals that the chordwise section of the flow at this 

spanwise location is much simpler than the others.  The LEVs remain attached to the plate 

throughout the entire run, and no pinch-off process is observed.  Flow visualization shows 

that, near the plate tip, the interaction between the tip and leading edge vortices creates 2 

tornado-like LEV structures that emanate from the corners on the leeward side of the plate.  

The 90% spanwise location is near the base of these LEV “tornadoes,” which is evident by 

the fairly compact vortices displayed in the chordwise cross section of the flow there. 
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Figure 4.3.3  Circulation at AR = 6, 
75% span, with vorticity field insets.
Triangles: total circ.; x’s: LEV circ. 
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 Again, at early formation times the flow is similar to that at 50 and 75% span: a 

symmetrical pair of LEVs forms and grows, and the total circulation increases.  At T = 2.2, 

the formation number, the circulation flattens out or saturates, and the LEVs are still fairly 

compact.  After this formation time, the circulation fluctuates between 3.3 and 3.5, until 

about T = 4.8, during which time the wake structure changes (see Figure 4.3.7 for a larger 

number of vorticity snapshots).  As seen at T = 3, the sides of both LEVs closest to the wake 

centerline are drawn together toward the middle of the leeward face of the plate, where 

previously there was little vorticity.  By T = 4.29, a symmetrical recirculating bubble 

narrower and fuller than the original wake has formed.  Following this, the circulation drops 

to a local minimum at T = 5.5, corresponding to the LEVs becoming more compact and pull 

away from the plate near the wake centerline.  The LEVs remain in this configuration and 

grow in strength until most of the lost circulation is recovered by T = 6.2, after which they 

elongate slightly. 

  Looking at the circulation data and vorticity fields for 50, 75, and 90% span, all three 

cases exhibit significant changes around T = 4.5 to 6.  Specifically, the circulation data in 

Figure 4.3.1 show that, at T = 4.5, the LEVs at 50% span saturate, after T = 4.8 the total 

circulation at 75% span drops and does not level off until T = 6.5, and starting at T = 4.9 the 

circulation of the flow at 90% span drops and reaches a local minimum at T = 5.5.  At T = 4.5 

the LEVs at 50% span start to pinch-off, after T = 4.8 the LEVs at 75% span begin the 

complicated “inward” pinch off, and by T = 5.5 the LEVs at 90% span have transitioned from 

a narrow but full recirculating bubble to more compact structures.  Finally, it is worth 

repeating the above result that the formation number decreases with decreasing distance from 

the tip.   
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Figure 4.3.4  Circulation at AR = 6, 
90% span, with vorticity field insets.
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 Recalling the drag force “hump” or maximum at T = 5, it seems likely to be due to the 

features seen in the circulation data around that time.  The saturation of the 50% span LEVs 

and the maximum of the total circulation at 75% span occur at that time.  Additionally, the 

circulation at 75% span falls off after T = 5, and there is a temporary drop in circulation at 

90% span at T = 5.5, implying a decrease in CD after T = 5.  However, an explanation of the 

measured drag force is lacking without DPIV data in perpendicular (spanwise) planes, and 2-

D and 3-D flow visualization to complete the picture.  After the aspect ratio 2 case is 

discussed, this data will be presented in the next sections. 

4.3.2 Aspect ratio 2 

 The total circulation at 50, 75, and 90% span for AR = 2 is shown in Figure 4.3.8.  

There are no separate curves for the LEV circulation because the LEVs do not undergo a 

pinch-off process similar to that at AR = 6, 50% span.  Up until T = 6, the total circulation at 

50% span resembles that of AR = 6 at 75% span over the range of T = 0 to 8: it increases until 

it reaches a maximum, then decreases and levels off.  However, the maximum occurs at T = 

3.75, rather than T = 4.8, and the circulation increases again after leveling off.  Similarities in 

the flow for both cases, as will be seen below, are responsible for this qualitative agreement.  

There is also a likeness between the total circulation for AR = 2, 75% span and that of AR = 

6, 90% span.  Both increase until T = 2, then approximately level off, and both have local 

minima around T = 5.5.  These similarities are reflected in the vorticity fields of both flows, 

but they end after T = 6, when the wake of the AR = 2 plate becomes very different, and the 

circulation increases again.  Interestingly, the two pairs of cases that resemble each other are 

close in absolute spanwise locations when measured from the plate tip (recall that both AR 

plates have the same chord length).  The AR = 6 75% spanwise location is 3.75 in. from the 
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Figure 4.3.8 Circulation vs. formation time, AR = 2.   
Triangles: total circ., 50% span; circles: total circ., 75% span;  

diamonds: total circ., 90% span. 
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plate tip, while the AR = 2 50% span location is 33% lower at 2.5 in.  Ninety percent span for 

AR = 6 is 1.5 in. from the plate tip, while 75% span for AR = 2 is at 1.25 in.  The circulation 

for AR = 2, 90% span, however, does not have a close parallel to any of the AR = 6 cases.  It 

rises until T = 1.5, then decreases to a slight local minimum at T = 2.5, and finally continues 

to gradually increase afterward until the end of the run.  As with the discussion on AR = 6 

above, the vorticity fields for each spanwise location will be provided next to help explain 

the behavior of the circulation plots, as well as elucidate their similarities and differences 

with the AR = 6 case.  Finally, it should be noted that the circulation at each spanwise 

location for AR = 2 is less than that at the corresponding location for AR = 6.  This is 

expected, since, given that both plates have the same chord length and move at the same 

velocity, the one with the greater span generates stronger vortices at its leading edges. 

 Figure 4.3.9 shows the total circulation at 50% span for AR = 2, along with insets of 

significant vorticity field snapshots; a larger set of snapshots is given in Figure 4.3.12.  Until 

T = 2, the flow for this case is very similar to that of AR = 6, 75% span.  The vorticity field at 

the circulation maximum at T = 3.75 is also very close to that at the AR = 6 maximum at T = 

4.8: the LEVs for both cases are elongated, and are starting to be drawn into the wake 

centerline.  However, no near-pinch-off around T = 3, as with the AR = 6, 75% case, occurs.  

This is probably due to the fact that the AR = 2 case is more tip-dominated, and thus less apt 

to exhibit primarily 2-D features (i.e., LEV pinch-off) than its AR = 6 counterpart.  As with 

the AR = 6, 75% case, the LEVs are pulled toward the wake centerline and the base of the 

plate after the circulation maximum.  At about T = 4.4, the original LEVs pinch off in the 

inner part of the wake, and new LEVs have formed.  The circulation then flattens out to a 

value 17% lower than the original maximum, and, as the new LEVs grow, the pinched-off 
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Figure 4.3.9  Circulation at AR = 2, 
50% span, with vorticity field insets.
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original LEVs in the inner wake disappear.  Finally, the new LEVs then become larger and 

dominate, raising the circulation until it goes beyond the original maximum after T = 7.  In 

the AR = 6 case, the original LEVs do not disappear after they pinch off, nor do new LEVs 

form.  Instead, the wake eventually collapses into a complicated, elongated bubble, and the 

circulation levels off after having decreased from the maximum.  The “disappearance” of the 

original LEVs after they inwardly pinch off is due to 3-D flow not captured in this sectional 

DPIV.  Spanwise DPIV and flow visualization, discussed later, will shed more light on this 

phenomenon.  

  The total circulation as well as vorticity field snapshots for AR = 2, 75% span are 

given in Figure 4.3.10 (Figure 4.3.13 contains a larger collection of snapshots).  Just like the 

AR = 6, 90% span case, two symmetrical LEVs form at the startup, and the circulation grows 

and saturates at T = 2.  The circulation then decreases very gradually, and, by T =3.2, the 

LEVs are drawn in toward the wake centerline so that the overall wake is more compact and 

full, becoming a recirculating bubble after T = 4.  A similar phenomenon occurs around the 

same formation time for AR = 6, 90% span.  Around T = 5.3 there is a small, local minimum 

in the circulation.  This corresponds to a deformation in the 2 LEVs, which appear as if their 

leeward portions are being pinched together.  At the same minimum for AR = 6, 90% span, 

the LEVs actually become more compact and stand off farther from the plate, essentially 

remaining that way until the end of their run.  The AR = 2 wake, however becomes more 

complicated, and the circulation rises again after the minimum.  By T = 6.7, the LEVs have 

become disorganized into mitten-like structures with the “thumbs” pointing rearward.  The 

flow phenomena after T = 5 are probably related to that observed at the same formation time 
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Figure 4.3.10  Circulation at AR = 2, 
75% span, with vorticity field insets.
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at 50% span.  The vertical DPIV and dye flow visualization discussed below will help 

connect the two data sets. 

 Finally, the total circulation at 90% span is given in Figure 4.3.11, along with the 

usual vorticity field snapshots; the extended set of snapshots is provided in Figure 4.3.14.  As 

with AR = 6, this spanwise location has the simplest flow.  In the beginning, two LEVs form 

and grow, and the circulation increases monotonically, much like the 75% span case.  

However, the rise in circulation ceases earlier at T = 1.5, as opposed to T = 2.  After this 

circulation maximum, there is a slight local minimum around T = 2.7, corresponding to the 

LEVs becoming smaller.  The circulation then rises gradually throughout the rest of the run, 

except for another small minimum at T = 4.8.  At about T = 4, the LEVs have become larger 

and less compact, creating a wider and longer wake bubble.  They momentarily stand off a 

bit farther from the plate at the T = 4.8 minimum, then they start to elongate at T = 5.4.  Also, 

the positive LEV becomes larger at T = 5.4, introducing a slight asymmetry in the wake.  The 

circulation increases as the LEVs elongate, which continues through the remainder of the 

run.  Interestingly, the flow after T = 6 resembles that at 50% span, while the 75% span case 

is markedly different.  Again, the vertical DPIV and flow visualization presented in the next 

sections will be used to help explain these results. 

 Defining the formation number of the initial LEVs as the formation time when their 

circulation saturates or reaches a maximum, for 50% span this occurs at T = 3.75, and for 75 

and 90% span the formation numbers are 2 and 1.5, respectively.  Therefore, as with AR = 6, 

the formation number for AR = 2 decreases as the distance from the tip decreases  The 

formation numbers for AR = 2 are also less than their AR = 6 counterparts, implying that the 

flow at AR = 2 develops more quickly (discussed more in section 4.4).  Additionally, like the 
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Figure 4.3.11  Circulation at AR = 2, 
90% span, with vorticity field insets.
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AR = 6 case, the total circulation becomes lower closer to the tip, although it is nearly the 

same for 75 and 90% span after T = 5. 
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Figure 4.3.5(iv)  Evolution of the vorticity field for AR = 6, 50% span. 
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 81

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Vorticity field, AR = 6, 75% span, Re = 3000, T =3.1

x/c

y/
c

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Vorticity field, AR = 6, 75% span, Re = 3000, T =3.99

x/c

y/
c

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Vorticity field, AR = 6, 75% span, Re = 3000, T =4.74

x/c

y/
c
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Figure 4.3.6(iv)  Evolution of the vorticity field for AR = 6, 75% span. 
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Figure 4.3.7(i)  Evolution of the vorticity field for AR = 6, 90% span. 
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 87

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
Vorticity field, AR = 6, 90% span, Re = 3000, T =5.53

x/c

y/
c

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
Vorticity field, AR = 6, 90% span, Re = 3000, T =6.17

x/c

y/
c

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
Vorticity field, AR = 6, 90% span, Re = 3000, T =7.02

x/c

y/
c

 
 
 
 
 
 
 
 

Figure 4.3.7(iv)  Evolution of the vorticity field for AR = 6, 90% span. 
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Figure 4.3.12(i)  Evolution of the vorticity field for AR = 2, 50% span. 
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Figure 4.3.12(iii)  Evolution of the vorticity field for AR = 2, 50% span. 
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Figure 4.3.12(iv)  Evolution of the vorticity field for AR = 2, 50% span. 
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Figure 4.3.12(v)  Evolution of the vorticity field for AR = 2, 50% span. 
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Figure 4.3.13(i)  Evolution of the vorticity field for AR = 2, 75% span. 
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Figure 4.3.13(ii)  Evolution of the vorticity field for AR = 2, 75% span. 
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Figure 4.3.13(iii)  Evolution of the vorticity field for AR = 2, 75% span. 
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Figure 4.3.13(v)  Evolution of the vorticity field for AR = 2, 75% span. 
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Figure 4.3.14(i)  Evolution of the vorticity field for AR = 2, 90% span. 
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Figure 4.3.14(ii)  Evolution of the vorticity field for AR = 2, 90% span. 
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Figure 4.3.14(iii)  Evolution of the vorticity field for AR = 2, 90% span. 
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Figure 4.3.14(v)  Evolution of the vorticity field for AR = 2, 90% span. 
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4.4  Spanwise and chordwise flow sections, and measured drag revisited 

4.4.1  Introduction 

 The vorticity fields obtained from spanwise (vertical) sections of the flow at mid-

chord (center wake) and at one of the leading edges, in planes parallel to the direction of 

travel, will now be presented.  These results will be shown alongside the chordwise 

(horizontal) DPIV data and the force measurements reported above, so that the overall 

picture of the flow will become clearer.  In section 4.5, images from dye flow visualization 

will be used to formulate a vortex model that explains the flow near the tip at the startup, and 

the global flow, as it relates to the DPIV sections, will be described using 3-D flow 

visualization. 

 In the figures below, all five sectional vorticity fields are given at once when the flow 

is shown at each formation time.  The vorticity fields for the five cases, 50, 75, and 90% span 

in the chordwise direction, and at mid-chord and at one leading edge in the spanwise 

direction, are arranged in a “tiled” format.  The three chordwise cases are displayed in 

descending order on the left-hand side, while the mid-chord case is in the middle, with the 

leading edge case to its right (see Figures 4.4.7a-i).  All the vorticity fields in each set of tiles, 

for a specific aspect ratio, are at the same scale, so that the sizes and locations of wake 

vortices can be compared within and across sets of tiles; the location of each chordwise data 

set on the spanwise datasets is also labeled.    

4.4.2  Aspect ratio 6 

 Since the force balance measures the resultant force on the plate due to the LEVs and 

the tip vortex (in addition to added mass at the startup, etc.), the force phenomena discussed 

in section 4.2 will be revisited and compared with the tiled vorticity fields.  The measured CD 
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for AR = 6 is given here again in Figures 4.4.2 and 4.4.3, along with insets showing the tiled 

vorticity fields at significant formation times.  A larger set of tiled vorticity fields is provided 

in Figures 4.4.7a-i, in order to present the evolution of the flow in more detail.  In addition, 

the circulation of the tip vortex itself in the mid-chord plane is plotted in Figure 4.4.1.  The 

circulation data were obtained by distinguishing the TV from the added vorticity that appears 

above it after T = 2, which is actually convected into the mid-chord plane from the plate’s 

corners (see below).  This figure will be referred to when features of the circulation data 

correspond to flow phenomena. 

 Figures 4.4.7a-b show that nothing surprising occurs in the plate’s vorticity field at 

early formation times.  The flow at the startup should be primarily 2-D, and vortices should 

form at each of the plate’s edges due to separation caused by the high initial acceleration.  

Indeed, at T = 0.486 (Figure 4.4.7a), compact vortices have developed at each edge, and the 

LEVs from 50 to 90% span are predominantly 2-D, since their sizes and core locations are 

similar.  However, by this time the TV, which spans the entire bottom edge, is larger at mid-

chord than at the leading edges.  The 3-D development of the vortices in the plate’s corners, 

discussed in detail in section 4.5, will show why the TV appears smaller in the vertical plane 

at the edge. 

 By T = 2, which is the formation number for 90% span, the measured drag on the 

plate has settled down from the initial peak to below 2 (see Figure 4.4.2), and significant 

changes in the flow have occurred.  The TV at mid-span appears to have grown upward 

through 90% span (more on this later), and there are three distinct vortices in the leading 

edge plane, most notably a vortex of opposite sign, with respect to the TV, just above 75% 

span.  The existence of these vortices in the leading edge plane, which are weaker than the 
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Figure 4.4.1  Circulation of the AR = 6 tip vortex seen in the mid-chord plane. 
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chordwise LEVs, suggest that the LEVs below 50% span have developed a more 3-D overall 

structure by this formation time.  This is supported by the fact that only the vortices at 75% 

span have begun a pinch-off process.  Finally, it should be noted that T = 2 is the formation 

number for the TV (see Figure 4.4.1) as well as for the LEVs at 90% span.  Although no 

specific force phenomena occur at this time, it is significant because it is the time needed for 

the TV to develop its full circulation or strength and begin to affect the rest of the flow 

significantly. The LEVs at 90% span probably saturate at T = 2, rather than 3.1 or 4.5 like 75 

and 50% span, respectively, because they are strongly influenced by the TV; the fact that 

they remain closely attached to the plate throughout the entire run supports this.  This strong 

interaction between the TV and the LEVs is consistent with the work of Birch and Dickinson 

(2001), who demonstrated that the TV limits the growth of the LEV, thus keeping it attached 

to the wing longer than the 2-D case.  However, as will be shown below, the LEVs for the 

present study have a strongly 3-D helical structure and thus a spanwise flow component, 

which was observed by Ellington et al. (1996); section 4.5 will elaborate upon and attempt to 

reconcile the current work with these previous studies.     

 At T = 3.1, the CD has dropped to 1.65, from 1.8 at T = 2 (see Figure 4.4.2).  The 

LEVs at 75% span have reached the end of their near-pinch-off (recall from section 4.3 that 

the pinch-off is never completed, as shown in the inset at T = 4.49 in Figure 4.4.2), and the 

LEVs at 50% span are more elongated and also closer to the wake centerline than at T = 2.  

Also, the LEVs at 90% span have been drawn toward the center wake and begun to form a 

recirculating bubble there.  Given these observations, a possible explanation for the decrease 

in drag from T = 2 to 3.1 is that the plate’s base pressure has increased due to recirculation 

bubbles starting to form at 50 and 90% span.  However, the drop in drag is not dramatic 
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because the low pressure due to the vorticity in the mid-chord plane (which includes the TV) 

and the near pinch-off occurring at 75% span offsets it.  

The change in the 90% span wake at T = 3.1 coincides with vorticity in the mid-chord 

plane “growing” upward.  As the flow visualization images of section 4.5 will show, this new 

vorticity actually comes from the separation at the plate’s corners and the leading edges near 

the tip.  This vorticity is convected into the mid-chord plane by the LEVs, which have a 

helical (tornado) structure near the tip by this time.  The increasing three-dimensionality of 

the LEVs with time, and over a greater distance away from the tip, is indicated by the fact 

that the three regions of vorticity in the leading edge plane at T = 2 have grown stronger at T 

= 3.1, with the negative vorticity having been convected upward so that its upper bound 

crosses 50% span.  This helical, 3-D structure of the LEVs is consistent with the flow 

visualization results of Ellington et al. (1996).  As mentioned above, section 4.5 will provide 

a more detailed comparison of the current results with those of Ellington et al. and Birch and 

Dickinson (2001).   

 The drag force remains basically unchanged from T = 3.1 to T = 4.49, after which it 

increases until the “hump” or maximum at T = 5.  At T = 4.49, the recirculation bubble at 

90% span has fully formed, and the LEVs at 75% span have rejoined the shear layers that 

generated them, creating more elongated vortices (see Figure 4.4.2).  The vorticity at mid-

chord has continued increase in magnitude and height above the tip, and 3 centers of vorticity 

within it have appeared; the bottom-most and strongest is the TV.  Also, the three-

dimensionality of the LEVs has increased, since the two largest vortical structures in the 

leading edge plane, visible at T = 3.1, have grown stronger, with the negative vorticity 

convecting above 50% span.  As before, there continues to be a small vortex right at the tip in 
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the leading edge plane, which is a region of interaction between the LEVs and the TV.  At 

50% span, the LEVs have reached their maximum strength, and the pinch-off process has just 

begun.  Despite these changes, the CD at T = 4.49 is about the same as it was at T = 3.1 

because of competing effects.  The low-drag recirculating bubble at 90% span opposes the 

higher drag due to the saturated LEVs at 50% span and the low-pressure region of vorticity at 

mid-chord. 

 At the drag maximum at T = 5, the flow in the mid-chord plane has become more 

interesting (see Figure 4.4.3).  Although the vorticity in the leading edge plane has not 

changed significantly, which may imply that the overall 3-D structure of the LEVs has 

stabilized, the vorticity at mid-chord has formed a “neck” at 90% span, above the primary 

TV.  Looking ahead to the tiled vorticity insets at T = 5.73 and 6.67, it is clear that this is the 

start of an “upward” pinch-off process, where the vorticity at mid-chord above the TV 

pinches-off from the TV itself.  The pinch-off in this plane occurs right at 75% span, and 

coincides with very interesting phenomena there, which will be discussed below. 

This “upward” pinch-off is also reflected in the circulation of the TV in the mid-chord 

plane (see Figure 4.4.1).  There is a local minimum in the TV circulation around T = 5, 

followed by a steady increase, past the original saturation value at T = 2, through T = 9.  

These deviations from the initial saturation value imply that significantly 3-D flow is being 

reflected in the 2-D DPIV measurement, which is also evident in the complex flow at 75% 

span (see below).  It is the most likely explanation for such loss and gain in the circulation of 

this vortex for three reasons.  First, given the moderate formation time of 5, losses to viscous 

diffusion are probably not yet significant.  Second, since the velocity is constant after T = 

0.25, there can be no gains in vorticity due to plate acceleration.  Finally, because the TV is 
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perpetually attached to the plate (it does not pinch-off into the wake), its strength could not 

increase, if the flow were 2-D, after its formation number (at T = 2).  In section 4.4.3, it will 

be shown that the AR = 2 TV exhibits similar circulation behavior. 

 The tiled vorticity plots reveal many reasons for a drag maximum centered around T 

= 5.  First and foremost is the existence and influence of persistently attached vorticity in the 

mid-chord plane (including the strong TV), which, when suppressed as in the free end 

“grazing” case mentioned in section 4.2, causes a drag minimum instead.  The attached 

vorticity in the mid-chord plane is a region of low pressure, and is therefore responsible for 

an increase in CD.  Second, the drag "hump" coincides with the formation number of the 

LEVs at 50% span.   

If the flow at 50% span is considered to be primarily 2-D (which is the case until after 

the LEVs pinch-off), the following formula for the force due to a set of 2-D point vortices 

can be used to show how the LEVs for this case contribute to the force on the plate (the 

quantity in square brackets is the impulse) (Batchelor, 1967):   
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As just mentioned, this formula treats each LEV (subscript i) as a point vortex, i.e., with all 

of its circulation Γi concentrated at a point (Xi,Yi), which is spatially the centroid of its 

vorticity.  The positive x-direction, î , will be defined to be pointing right (i.e., opposite to the 

direction of the plate motion) with the origin located at mid-chord, and the positive y-

direction, ĵ , will be defined as pointing upward in the same plane.  Since the flow is 

essentially symmetrical about the x-axis, the circulation of the negative LEV, Γ1, is nearly 

equal in magnitude (but of course of opposite sign) to that of the positive LEV, Γ2, and their 
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x-direction vorticity centroid locations, Xi, are about equal.  Therefore, they exert little lift 

force (i.e., force in the y-direction) on the plate.  The dominant force on the plate due to the 

LEVs (looking at the signs of each of their circulations coupled with their y-centroid 

locations) is thus drag, and the formula shows that, as the LEVs move away from the wake 

centerline, the drag force they generate on the plate increases.  Referring to the vorticity field 

insets of Figure 4.4.3, the LEVs reach their maximum distance from the wake centerline right 

around the drag maximum.  However, after the LEVs pinch-off (see the T = 6.67 inset) they 

merge again with the shear layers that generated them, but they become weaker and 

disorganized due to 3-D effects (see Figure 4.4.7i); thus, their contribution to the drag after 

the pinch-off decreases. 

The vorticity field at 90% span at T = 4.98 shows LEVs that “stand-off” farther from 

the rear face of the plate than their counterparts at T = 4.49.  This means that the induced 

upstream velocity on the rear face of the plate, that existed when the recirculating LEVs were 

attached there, is now drawn outward, which reduces the pressure there and creates higher 

drag. 

 At T = 5.73, the flow at 50% span has evolved as expected, the LEVs at 90% span 

have elongated and “pealed away” from the wake centerline near the rear face of the plate, 

and the vorticity in the leading edge plane remains basically unchanged (see Figure 4.4.3).  

However, as mentioned above, the “upward” pinch-off of vorticity in the mid-chord plane 

has progressed and is almost completed, and the wake at 75% span has changed substantially.  

The fact that the locations of the pinched-off vorticity at mid-chord and the vortex projected 

in the leading edge plane are essentially the same, as are their signs of rotation, may imply a 

connection between the two.  Since this flow is highly 3-D, such a connection cannot be 
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proved or disproved based solely on these cross sections, and must await the dye 

visualization and vortex model discussed in section 4.5.  Regardless, it is clear that the mid-

chord plane pinch-off is related to the “inward” pinch-off seen at 75% span, which will be 

discussed next.   

 The induced flow from the “arm” of the mid-chord plane vorticity that extends up to 

75% span tends to pull the portion of the LEVs near mid-chord toward the plate and the wake 

centerline, while the pinched-off vorticity just above 75% span tends to also pull the LEVs 

toward the wake centerline, but away from the plate.  These partially opposing actions cause 

the LEVs at 75% span to be drawn toward the wake centerline, but also to become trapped 

there, allowed neither to reach the rear face of the plate nor to escape downstream from the 

near wake.  The vorticity at T = 6.67 and at a later time shown in Figure 4.4.7i illustrates this 

last condition: the wake has become more complicated and concentrated along the centerline, 

but no attached recirculating bubble exists, nor is there any evidence of a possible pinch-off 

process.  Also at T = 6.67, the spanwise vorticity at mid-chord has completely pinched-off, 

and secondary vorticity of opposite sign has been generated between it and the “arm” 

connected to the TV.  These three regions of alternate sign vorticity create the complicated 

wake at T = 6.67, and persist afterward so that the wake at 75% span retains the same 

character beyond T = 7 (see Figure 4.4.7i).   

Liu, Ellington, and others (1998) also observed interesting phenomena around 75% 

span.   During the first half of the downstroke, they found that the LEV forms from the wing 

root to about 60 to 75% span.  At the beginning of the second half of the downstroke, they 

reported that this LEV has a significant spanwise flow toward the tip, but that it breaks down 

at 75% span, which they attributed to a reverse (decreasing toward the wing root) pressure 
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gradient there, and to wing deceleration.  They also remarked that the flow in the tip region 

separates and rolls up at that time into a TV.  Finally, toward the end of the downstroke, they 

observed that a new LEV forms over the tip region and joins with the TV.  They found that 

this second LEV has a spanwise flow toward the wing root, because of a reverse pressure 

gradient due to the TV.  At 75% span, they noted that the opposite spanwise flows of the first 

and second LEVs collide, bringing the spanwise flow there to zero.  Section 4.5 will show 

that the spanwise flow of the LEVs, up to at least 50% span, is away from the tip.  However, 

the pressure gradient at the plate surface near the free end, due to the TV, opposes this.  It 

causes the flow near the tip and at the plate surface to travel downward before it curls aft and 

then upward into the LEV “tornadoes.”  This behavior might account for the complicated 

flow seen at 75% span.  The flow of the current study appears to disagree with the results of 

Liu et al. on some points (for example, the spanwise flow, toward the root or free surface, for 

the AR = 6 plate extends beyond 75% span), although this may be due in large part to the 

difference in wing and plate kinematics of both studies.  Again, when the flow visualization 

results are presented in section 4.5, these issues will be revisited in detail.  

 The decline in CD after T = 5 to a minimum of about 1.4 at T = 7.5 may be due to a 

number of events.  Most likely, as discussed above, the pinch-off and subsequent 

reattachment and weakening (due to 3-D effects) of the LEVs at 50% span should cause a 

decrease in the drag force.  Also, the narrower and more disorganized wake at 75% span (see 

the T = 6.67 inset in Figure 4.4.3) creates less drag than its counterpart at T = 4.98, which 

consists of coherent LEVs attached to the plate’s leading edges and located farther away 

from the wake centerline.  The flows at 90% span and in the leading edge plane do not 

change substantially after T = 5.73, and so are probably not responsible for any significant 
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Figure 4.4.2  Measured CD vs. T for AR = 6 (part 1), including tiled vorticity insets 
to show the flow at significant formation times.  
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Figure 4.4.3  Measured CD vs. T for AR = 6 (part 2), including tiled vorticity insets 
to show the flow at significant formation times.  
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Figure 4.4.4  Measured CD vs. T for AR = 2 (part 1), including tiled vorticity insets 
to show the flow at significant formation times.  
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Figure 4.4.5  Measured CD vs. T for AR = 2 (part 2), including tiled vorticity insets 
to show the flow at significant formation times.  
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changes in drag. 

4.4.3  Aspect ratio 2 

 A plot showing the measured CD for AR = 2 with tiled vorticity insets is given in 

Figures 4.4.4 and 4.4.5; a larger set of tiled vorticity plots is provided as Figures 4.4.8a-i.  

Also, Figure 4.4.6 shows the circulation of the TV in the mid-chord plane for AR = 2, 

compared with that of AR = 6, described above.  Figures 4.4.8a-b show that the flow at early 

formation times for AR = 2 is very similar to that of AR = 6.  This is expected, since both 

flows are highly 2-D at the startup, and the induced flow from the tip for AR = 2 does not 

reach the free surface immediately. 

 By T = 1.5, Figure 4.4.6 shows that the circulation of the TV for AR = 2 has reached a 

maximum. As with AR = 6, the formation numbers of the TV and LEVs at 90% span 

coincide, indicating the strong influence of the TV at that location.  Although the TVs for 

both AR = 2 and 6 saturate at essentially the same dimensional circulation value (the 

normalization constant for both cases is the same), the AR = 2 TV reaches that value more 

quickly.  This supports the assertion, made below, that the AR = 2 flow develops faster than 

its AR = 6 counterpart, because of the relatively stronger influence of its tip or free end.  In 

addition, after their circulation minimums between T = 4 and 5, the circulation for the AR = 2 

TV is higher and grows faster than that of AR = 6.  For AR = 6, this growth in circulation 

beyond that at the formation number was attributed to significantly 3-D or out-of-plane flow 

being reflected in the 2-D DPIV measurements.  If this is the case, the circulation data for AR 

= 2 imply that, after T = 5, the TV becomes more 3-D more quickly than that of AR = 6.  

Again, this is most likely due to the relatively stronger effect of the tip for AR = 2 
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Figure 4.4.6  Circulation of the AR = 2 & 6 tip vortices seen in  
the mid-chord plane.  Triangles: AR = 6; x’s: AR = 2. 
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 At T = 2, both flows are still very much the same, as are both drag coefficients (see 

Figure 4.4.4).  As noted in section 4.3.3, the flows are similar in terms of absolute distance 

from the tip rather than relative.  The flow at AR = 2, 50% span resembles that at AR = 6, 

75% span, and the vortices at AR = 2, 75% span are very similar to those at AR = 6, 90% 

span.  This agreement extends also to the flow at mid-chord and in the leading edge plane.  

As with AR = 6, the existence of significant vorticity in the leading edge plane (see the T = 

2.01 vorticity inset, Figure 4.4.4) implies that the LEVs of AR = 2 have acquired a more 3-D 

structure by T = 2.  Additionally, at this formation time, the spanwise vorticity generated by 

the 3-D LEVs has reached the free surface, and the behavior of the CD afterward differs from 

that of AR = 6. 

 Indeed, at T = 2.8 the CD is higher than that of AR = 6 (see Figure 4.4.4), and this 

remains true throughout the rest of the run.  The flow at this formation time still shares 

similarities with that of AR = 6, but some of these agreements are found at later times.  At 

50% span, the vorticity field looks remarkably like that of AR = 6, 75% span at T = 4.49.  

While at 75% span, the LEVs have started to move closer to the wake centerline and the rear 

face of the plate, as in the 90% span case for AR = 6 at a similar time to 2.8, T = 3.1.  As for 

90% span, the LEVs have become more compact, forming a tighter wake behind the plate; 

they remain in this general state until about T = 4.5.  The flow in the mid-chord plane, like 

the 75% span case, does resemble its AR = 6 counterpart: the vorticity from the plate’s 

corners has extended up through 50% span.  In the leading edge planes of both aspect ratios, 

the positive vortex above the tip has grown stronger and larger by this formation time.  

However, the negative vortex, observed at T = 2, has for AR = 2, T = 2.8 been nearly 

destroyed by its interaction with the free surface. 
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 Section 4.2 attributed the "wiggles" in the AR = 2 force data, which occur from about 

T = 3 to T = 7.5, to such interactions between vorticity generated by the 3-D induced flow 

from the tip and the free surface.  Supporting this is the fact that no such features appear in 

the CD of AR = 6.  The tiled vorticity field insets in Figures 4.4.4 and 4.4.5 (and Figures 

4.4.8a-i) show that vorticity from the tip-induced 3-D flow impinges the free surface in the 

leading edge plane at T = 2, 2.8, 6.77, and 7.51, and in the mid-chord plane at T = 3.75, 4.39, 

5.73, 6.77, and 7.51.  These interactions produce small waves on the free surface, which 

affect the force measurements. 

 The changes in the drag force due to the tip-generated vorticity impinging on the free 

surface also serve to mask any formation number effects.  For the AR = 6 case, the formation 

number at 50% span can be directly linked to the maximum at T = 5.  However, for AR = 2, 

the formation numbers at 50, 75, and 90% span, which are 3.75, 2, and 1.5, respectively, 

occur just at the start of the free surface phenomena.  It is possible that the initial peak at T = 

3 is due to the combined effect of all 3 formation numbers, but it is not certain. 

 By T = 3.75, the flow at 50% span for AR = 2 resembles that of AR = 6, 75% span at T 

= 5.33 (see section 4.3.2).  The flow at 75% span is close to that of AR = 6, 90% span at T = 

3.5, and the vorticity in the spanwise sections appears to be at an intermediate stage between 

that of AR = 6, T = 4.49 and 4.98.  At T = 4.39 (see Figure 4.4.5), an "inward" pinch-off of 

the LEVs is observed at 50% span for AR = 2, while an “upward” pinch-off of the vorticity 

from the tip is seen in the mid-chord plane.  As with AR = 6, this “upward” pinch-off process 

corresponds to a drop in the AR = 2 mid-chord circulation (see Figure 4.4.6).  Both of these 

events, the “inward” and “upward” pinch-off, occur in similar manners and in similar spatial 

locations for AR = 6, but at a later formation time, T = 5.73.  Given these results, it can be 
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concluded that above the absolute location of 75% span (as measured for AR = 2), the flow 

induced by the tip progresses more quickly for AR = 2 than for AR = 6.  In other words, the 

tip effect for AR = 2 is relatively stronger than that for AR = 6, showing that the influence of 

the tip increases with decreasing AR, as expected. 

 It follows, then, that the most plausible explanation for the drag coefficient of AR = 2 

being higher than that of AR = 6, after T = 2, is the relatively stronger influence of its tip 

vortex and other mid-chord vorticity.  This attached vorticity dominates a much greater 

portion of the span for AR = 2 than for AR = 6.  Since this vorticity is a region of low 

pressure, it creates drag on the plate, which is relatively higher for AR = 2. 

 The flow at T = 5.73 for AR = 2 is very complicated in the chordwise planes (see 

Figure 4.4.5), and differs significantly from anything observed for AR = 6.  At 50% span, the 

LEVs that pinched-off “inwardly” at T = 4.39 are almost completely destroyed, most likely 

due to out-of-plane flow, evident in the mid-chord plane.  The recirculating bubble at 75% 

span has deformed, and the LEVs at 90% span are exhibiting asymmetry.  In the spanwise 

planes, the flow still resembles that of AR = 6, albeit at T = 6.67.  At mid-chord, the 

“upward” pinch-off of the vorticity away from the tip has been completed, and secondary, 

negative vorticity has been induced between it and the tip vortex.  Also, the large positive 

vorticity in the leading edge plane is still present, and roughly in-line with the pinched-off 

vorticity in the mid-chord plane.  However, the tip vortex itself has become more elongated 

and weaker than its AR = 6 counterpart. 

 The overall wake of the plate becomes more elongated and disorganized as T reaches 

7.51 (see Figure 4.4.5).  At 75 and 90% span, the LEVs have deteriorated into longer 

structures with multiple centers of vorticity.  At 50% span the primary LEVs have instead 
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reestablished themselves, possibly due to the lack of spanwise flow at that location.  The 

spanwise sections reveal that the tip vortex has continued to elongate, in the direction of the 

freestream, since T = 5.73, but it remains attached to the plate.  As mentioned above, 

spanwise vorticity in both the mid-chord and leading edge planes impinges upon the free 

surface at this time.  In both planes, the positive vorticity has induced new negative vorticity 

near the surface.  The decrease in drag at this point, leading to a minimum at about T = 8.4, is 

due to the relative disorganization of the wake, and the vorticity in the mid-chord plane, that 

is no longer attached to as great a portion of the plate’s span. 
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Figure 4.4.7a  Tiled vorticity fields for AR = 6, T = 0.486.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7b  Tiled vorticity fields for AR = 6, T = 1.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7c  Tiled vorticity fields for AR = 6, T = 2.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7d  Tiled vorticity fields for AR = 6, T = 3.1.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7e  Tiled vorticity fields for AR = 6, T = 4.49.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7f  Tiled vorticity fields for AR = 6, T = 4.98.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7g  Tiled vorticity fields for AR = 6, T = 5.73.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7h  Tiled vorticity fields for AR = 6, T = 6.67.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.7i  Tiled vorticity fields for AR = 6, T = 7.51.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8a  Tiled vorticity fields for AR = 2, T = 0.486.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8b  Tiled vorticity fields for AR = 2, T = 1.02.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8c  Tiled vorticity fields for AR = 2, T = 2.01.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8d  Tiled vorticity fields for AR = 2, T = 2.8.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8e  Tiled vorticity fields for AR = 2, T = 3.75.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8f  Tiled vorticity fields for AR = 2, T = 4.39.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8g  Tiled vorticity fields for AR = 2, T = 5.73.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8h  Tiled vorticity fields for AR = 2, T = 6.77.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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Figure 4.4.8i  Tiled vorticity fields for AR = 2, T = 7.51.   
Chordwise: 50, 75, & 90% span; spanwise: mid-chord & leading edge planes. 
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4.5  Dye visualization and flow features explained 

4.5.1  Introduction 

 In this section a model for the flow near the tip at the startup, using vortex line 

behavior based on flow visualization, will be presented.  Following that, the global flow will 

be described based on 3-D flow visualization and the DPIV results.  Next, the flow near the 

tip will be reconciled with the global flow using evidence from flow visualization.  

Afterward, some of the features in the spanwise DPIV sections, such as the vorticity in the 

leading edge plane and the rapid growth of vorticity at mid-span, will be explained via flow 

visualization.  Finally, a comparison will be made with previous work. 

4.5.2  Vortex line model of the startup 

 The evolution of the vorticity generated by the plate near the tip at the startup will 

now be modeled using a sequence of vortex line snapshots, based on induced velocity 

arguments and evidence from flow visualization.  Figures 4.5.1a-f show a close-up view of 

the bottom right corner of the leeward face of the plate.  The thin lines in the Figures are 

vortex lines, and the arrows show their sense of rotation.  During the initial acceleration from 

rest, the flow separates at the leading edge and the tip edge, and rolls up to form vortices 

behind each edge (see Figure 4.5.1a).  The flow is primarily 2-D at this stage, since the 

vortices have not yet had enough time to interact and viscous effects are small; this makes the 

vortex lines essentially straight.  Additionally, the vortices at each edge connect in the corner, 

because the flow that separates there shares their rotational sense, which is directed away 

from the plate’s edges. 

 As the leading edge and tip vortices grow stronger, they interact in the corner region, 

inducing a velocity on the corner vortex that acts to rotate it up and away from the surface of 
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Figure 4.5.1  Vortex line model of the flow near the tip at the startup.  Right-hand 
corner of leeward plate face shown; flow is symmetrical about mid-chord line.

(a) (b)

(c) (d)

(e) (f) 
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the plate and away from the corner itself (see Figure 4.5.1b).  Once the corner vortex is lifted 

upward, its “upright” sides, which have opposing senses of rotation, induce velocities such 

that they fold slightly toward each other.  This causes the vortex line connecting them to 

bow, in a plane roughly parallel to the plate face, back toward the corner (see Figure 4.5.1c).  

In this orientation, the induced velocities from the ends of the bowed line segment, as seen in 

Figure 4.5.1c, act to push it downward toward the plate face (see Figure 4.5.1d).  This causes 

each end of the bowed segment to kink and pinch together to form an inverted V, with 

adjacent legs of the V having opposite rotational directions. 

 From the flow visualization, which will be described next, it is clear that the strength 

of the two inner inverted V legs, i.e., those attached to the bowed connecting vortex line, 

coupled with the induced velocity from the 2 primary edge vortex lines, which acts away 

from the corner and also down toward the plate face, is enough to twist the two inner V legs 

back behind and around the outside of the outer V legs.  This also stretches the connecting 

vortex line and pulls it away from the corner, giving rise to the configuration shown in Figure 

4.5.1e.  The centerlines emanating from the twisted V’s show the rotational sense of the 

twisting.  Finally, the twisting of each set of vortex lines perpetuates into a helical pattern, 

and both helices are drawn away from the plate’s edges and toward the interior of the wake 

by the induced velocity from the tip and leading edge vortices (see Figure 4.5.1f). 

 The dye blob method used to visualize the flow at the startup was not able to capture 

the initial 2-D phase shown in Figure 4.5.1a, nor was it able to capture the lifting up of the 

corner vortex illustrated in Figure 4.5.1b.  Both are very short-lived, and are lost in the initial 

dye blob that is “painted” on the plate.  However, the chordwise and spanwise vorticity fields 

obtained from the DPIV measurements, and reported in the tiled Figures in section 4.4, show 
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Fig. 4.5.1c 

Fig. 4.5.1d 

Fig. 4.5.1e 

Fig. 4.5.1e 

Fig. 4.5.1f 

right-side view 

tip vortex 

(c)

(d)

(e)

(e+)

(f)

Figure 4.5.2  Comparison of dye blob visualization with vortex line model. 



 145
the edge vortices in question, and that the flow is very 2-D at the startup for both aspect 

ratios 6 and 2.  Additionally, the dye blob visualization shows evidence of the flow in Figure 

4.5.1c, of which Figures 4.5.1a and b are legitimate precursors.  Given this, coupled with the 

induced velocity arguments, it is very likely that the actual flow starts out the same way as 

the model.    

 Figure 4.5.2 gives a side-by-side comparison between the remaining steps of the 

vortex line model and the 3-D dye blob visualization.  In the left-hand column, Figures 

4.5.1c-f are reproduced and skewed to the appropriate orientation to match the visualization 

images.  The right-hand column consists of the corresponding dye blob snapshots; the letter 

labels of both figures have also been matched.  Figure 4.5.2 (c) shows that the dye has been 

lifted off the corner and is concentrated in the “upright,” inwardly folded sides of the corner 

vortex.  In Figure (d), where the model predicts that the vortex line connecting the sides of 

the corner vortex should be bent down toward the plate, this can be seen in the upper-right 

side of the corner vortex.  The dye that is initially lifted up in that side curls back toward the 

plate as it approaches the middle of the corner vortex.  This downward motion of the 

connecting vortex line creates kinks, resembling inverted V’s, in each of its ends.  These 2 

kinks or V’s, with their apices pointing left, can be seen in the blob visualization snapshot at 

the far left in Figure 5.4.2 (d), which shows a view of the right side of the plate.  The model 

predicts that the inner legs of both V’s will then twist behind (i.e., away from the corner) and 

around the outside of the outer legs.  The result of this motion can be seen in the blob 

visualization snapshots of Figures 5.4.2e and e+ (a short time later); the video that the 

snapshots were taken from confirms this twisting mechanism.  Finally, the helical pattern that 

results from the interaction of the twisting vortex lines, which is then drawn into the wake, 
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can be seen in the upper pair of twisting vortices in the snapshot in Figure 4.5.2f; there is too 

much dye in the lower helix to resolve its details.  Thus, the flow visualization supports each 

of the main steps of the proposed vortex line model. 

4.5.3  Global flow 

 The larger-scale 3-D flow around the aspect ratio 6 plate was visualized using 

fluorescent dye injected from two rakes attached to the upstream face of the plate; the dye 

injection holes were in the tip region.  As expected, the results agreed with the sectional 

DPIV measurements.  However, since 2-D DPIV does not capture flow perpendicular to the 

measurement plane, this visualization was necessary to establish the 3-D structure of the 

flow. 

Figures 4.5.3a through d show snapshots from the movie of this dye flow 

visualization, which was taken at a Reynolds number of 2000 so that the details would be 

cleaner.  Given the perspective of the movies, it should be noted that the top of the plate in 

each image at about 50% span.  Since the dye was injected from the upstream face of the 

plate, it fed into the wake via the shear layers at the edges.  This created an absence of dye 

near the leeward surface of the plate in the vicinity of the tip, because the shear layers 

enclose the wake there.  However, the dye did highlight the evolution of the LEVs, which 

was the purpose of the experiment, and it also captured the tip vortex at the startup.  

Although the flow features local to the tip were described above, two additional snapshots 

from a larger-scale blob visualization are given in this section to show the flow in the corners 

when it is more fully developed at later times.  Finally, it should be remarked that the flow 

visualizations show the instability in the edge shear layers discussed in earlier chapters.  This 
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(a)  travel  
       = 0.8c 

(c)  travel = 2.6c 

(b)  travel = 1.7c (d)  travel = 3.6c 

Figure 4.5.3  3-D dye visualization.  Re = 2000, AR = 6.  Plate 
traveling right.  Dye injected from rakes upstream near tip. 

Top of plate in each 
image is at about 

50% span. 
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is particularly evident in Figure 4.5.3c, where the leading edge instabilities are manifested as 

vertically-oriented ripples in the shear layers inclosing the wake near the tip. 

 An image taken after about 0.8 chord lengths of travel is shown in Figure 4.5.3a.  The 

tip vortex can be seen in the left-hand corner, and the dye in the leading edge shear layers has 

rolled up into the LEVs, which already have a significant upward spanwise velocity.  The 3-

D development of the LEVs is now evident.  The low pressure created at the tip by the 

induced flow from the tip vortex causes the LEVs there to stay closely attached to the plate, 

and to remain weaker than their counterparts away from the tip (recall the LEV circulation 

measurements of section 4.3).  Since the LEVs away from the tip are stronger, they have 

comparatively lower pressure than those closer to the tip.  This pressure gradient within the 

LEVs causes a spanwise flow (again, within them) that is directed away from the tip.  When 

coupled with their rotation, this gives them a helical structure.  As the plate continues 

forward to a distance of about 1.7 chord lengths, the upward convection of the LEVs 

continues (see Figure 4.5.3b).  At this point, the LEVs near the plate tip have remained close 

to each other and the plate, but, at higher spanwise locations, their cores have grown farther 

from the wake centerline and the plate face; this is in total agreement with the DPIV data.  

Additionally, the helical structure of the LEVs is illustrated by 2 dye filaments at the top of 

the right-most LEV.  By 2.6 chords of travel, shown in Figure 4.5.3c, the dye within the 

LEVs has been convected farther from the plate tip, and it reveals that, at these spanwise 

locations, the LEVs continue to grow away from the plate, while the LEVs near the tip 

remain tightly attached.  The curved “front” of dye traveling up the face of the plate, which is 

connected to more dye seen to the lee of the left-most LEV, is actually dye drawn into the 

wake centerline that is pulled toward the face of the plate.  Finally, Figure 4.5.3d reveals the 
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situation after the plate has moved about 3.6 chord lengths.  The flow at this point has 

evolved much as before: the LEVs are still attached near the plate tip, while at higher 

spanwise locations they bow out and proceed toward pinching-off.  This snapshot also shows 

that the tip effect causes the LEVs to stretch, which is evident by their change in radius as the 

dye is convected upward.   

Figure 4.5.4a shows the same flow at about 4 chord lengths of travel, visualized by 

depositing a large blob of dye on the rear face of the plate.  Although the cores of the LEVs 

are not captured in this visualization, it does show their external, bowed structure, along with 

folds indicative of the shear layer instability.  More importantly, it shows how the vortex 

lines in each of the plate’s corners have evolved from the two counter-rotating helices 

described in the previous section.  They have merged together and are rotating in the 

direction of the (upper) helix that emanated from the leading edge vortex (which is stronger 

than the tip vortex); the snapshot is part of a movie, which shows the sense of rotation 

clearly.  Also, it reveals that these merged vortex lines, which grow out of the plate’s corner 

region, are first drawn down toward the tip before they subsequently bend back upward and 

Figure 4.5.4  3-D dye blob visualization, isometric view of leeward face of plate.  
Re = 2000, AR = 6.  Plate moving right.  Dye blob “painted” on leeward face. 

(a) ~ 4c of travel (b) ~ 4.5c of travel
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are fed into the leading edge vortex closest to them.  This indicates that, near the tip, there is 

a pressure gradient along the face of the plate that draws the flow toward the tip.  This 

pressure gradient is most likely due to induced velocity from the tip vortex where it is 

adjacent to the plate.  However, within the LEVs, the pressure gradient draws the flow away 

from the tip.  The second snapshot (Figure 4.5.4b), taken a short time later after about 4.5 

cords of travel, demonstrates again the helical structure of the LEVs, which have induced the 

same behavior in the corner vortices. 

 An explanation is now possible for the presence of vortical structures in the vorticity 

fields obtained from the DPIV in the leading edge plane.  From the 3-D visualization in 

Figure 4.5.3, it is apparent that the tip effect bends the LEVs so that their vorticity vectors 

have components perpendicular to the leading edge plane.  Given the rotational sense of the 

LEVs, if they are bent outwardly, or away from the wake centerline, when they intersect the 

leading edge plane, the vorticity in that plane will appear to have the same sign as the tip 

vortex (in this case positive).  If the LEVs are bent inwardly where they impinge the leading 

edge plain, the resulting vorticity in that plane will be negative.   

  Three of the tiled vorticity field diagrams from section 4.4, for AR = 6, are 

reproduced in Figure 4.5.5 to illustrate this point.  In the chordwise vorticity sections, the 

leading edge plane is marked by a dash-dot line, and the corresponding vorticity in that plane 

is, as before, given in the right-most tile of each diagram.  The core of each LEV in the 

chordwise sections is marked with a large dot, so that the position of the core with respect to 

the leading edge plane is highlighted. 

The vorticity at T = 2 is shown in Figure 4.5.5a.  At 50% span, the LEV cores are 

very close to the leading edge plane; the core of the positive LEV is just inside (i.e., closer to 
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Figure 4.5.5  Tiled vorticity plots, for AR = 6, from section 4.4 illustrating the connection 
between vorticity in the leading edge plane and LEV core locations in the chordwise 

planes.  In the chordwise tiles, the positions of the leading edge planes are marked with a 
dash-dot line, while the LEV core locations are marked with black dots.  The flow is 

essentially symmetrical, so DPIV data was taken in only one leading edge plane. 

(a) (b) 

(c) 
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the wake centerline) of it.  The LEV cores at 75% span are a bit outside (relative to the wake 

centerline) of the leading edge planes.  Therefore, between 75 and 50% span, the LEVs bend 

slightly inward, toward the center wake.  According to the prediction above, this should 

result in the appearance of a negative vortex in the leading edge plane between 75 and 50% 

span, which Figure 4.5.5a shows.  The LEV cores at 90% span are very close to the leading 

edge, implying that between 90 and 75% span, the LEVs are bent outwardly.  This should 

produce a positive vortex in the leading edge plane between 90 and 75% span, which can be 

seen in the Figure.  At T = 3.1, the chordwise shift in LEV core locations from 90 to 75% 

span is more extreme (see Figure 4.5.5b), and the LEVs themselves have acquired more 

circulation.  This causes the positive vortex visible in the leading edge plane, between those 

spanwise locations, to grow stronger (see Figure 4.5.5b).  Also, the LEV cores at 75% span 

are more leeward than those at 90% span.  This implies that the rearward location of the core 

of the positive vortex in the leading edge plane should be somewhere in between, which it is.  

The LEVs at 50% span have moved closer to the wake centerline and increased in 

circulation, which results in the negative vortex between 75 and 50% span growing stronger 

than its T = 2 counterpart.  Finally, Figure 4.5.5c shows the vorticity at T = 4.49.  The cores 

of the LEVs at 75 and 50% span are nearly the same chordwise distance from the leading 

edge planes, and so there is little vorticity in the leading edge plane between these spanwise 

locations.  Between 90 and 75% span, the LEV core locations have not changed significantly 

since T = 3.1.  However, the circulation of the LEVs at 75% span is greater, so the positive 

vortex in the leading edge plane is stronger. 

The tiled vorticity diagrams in Figure 4.5.5 show that the positive and negative 

vortices in the leading edge plane grow stronger and propagate away from the plate tip with 
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time.  This agrees with the global flow visualization snapshots given in Figure 4.5.3, which 

illustrate the spanwise flow within the LEVs directed away from the tip.  It should be 

remarked that the same bending of the LEVs occurs for AR = 2.  As with the AR = 6 case, the 

chordwise LEV core positions at each spanwise location predict the sign of the vorticity in 

the leading edge plane. 

Lastly, the small positive vortex seen attached to the plate tip in the leading edge 

plane (see Figures 4.5.6d and 4.5.5a-c) must be explained.  Initially, it seems that this 

vorticity may be due to the corner vortices described above.  However, Figure 4.5.2 shows 

(a) ~ 0.9c of travel (b) ~ 0.96c of travel 

(c) ~ 1c of travel 

Figure 4.5.6  (a)-(c) Bifurcation of tip vortex into helical corner vortex and a smaller, 
outboard tip vortex near the leading edge.  AR = 6, Re = 3000.  (d) Spanwise DPIV of 

same flow at T = 1. 

(d) spanwise DPIV, T = 1 
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that the 2 helical vortices in the corner are closer to the wake centerline than the leading edge 

itself.  Also, according to Figures 4.5.2 and 4.5.5, the vorticity vectors of these corner 

vortices appear to be directed normal to the plate face and toward the center wake.  Given 

this, it seems unlikely that the vorticity near the tip in the leading edge plane would be due to 

these vortices.  Figure 4.5.6 shows that this vorticity may in fact be from the tip vortex 

bifurcating into a vortex line that ends up being the corner, helical vortex, and another vortex 

line parallel to the tip edge, which has the same rotational sense as the main tip vortex.  The 

curled-up dye in the plate’s corner in Figure 4.5.6b follows the rotational sense of the helical 

corner vortex that is there.  Below and to the right of that dye, the remaining dye travels out 

along the tip edge toward the leading edge (see Figure 4.5.6c), and rotates with the same 

direction as the primary tip vortex at mid-chord.  The motion and location of this dye along 

the tip edge entirely fits with the vorticity seen in the leading edge span at that location and 

time (see Figure 4.5.6d). 

4.5.4  Connection between corner and global flow 

 A complete picture of the flow requires that the vortices in the plate’s corners are 

reconciled with the global flow of the LEVs just described.  A 3-D dye blob visualization of 

the LEV at one edge, as well as the corner vortices below it, was done using a laser cone for 

illumination, with the camera looking at the side of the plate (i.e., facing a spanwise plane 

parallel to the flow).  Dye was deposited in the corner of the plate closest to the camera, as 

well as near the tip edge at mid-chord.  The dye in the corner allowed the visualization of the 

2 helical vortices that emanate from there, which were described in section 4.5.2.  The dye at 

the tip near mid-chord was convected into the leading edge vortex of the edge closest to the 

camera. 
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 Figure 4.5.7 provides 7 snapshots from this dye flow visualization.  Image a, taken at 

about 1.1 chord lengths of travel, shows the two kinked vortices in the corner that are 

described by the vortex line model (see Figure 4.5.1d); the kinks are just starting to twist 

around themselves.  Also, the lower portion of the LEV created by the leading edge closest to 

the camera can be seen, and it has an upward, spanwise velocity component.  This LEV has 

been made visible by the dye blob originally placed near the tip at mid-chord, which was 

convected into the center wake by the LEV, then pulled out into the edge shear layer, and 

finally rolled-up into the vortex itself.  Some of that same dye remains in the center wake, 

visible as a dark, horizontal band.  This band travels upward at the spanwise velocity of the 

LEV, and feeds out into the leading edge shear layer (the outer shear layer of the LEV) from 

the center wake.  Thus, this dye marks the rolled-up shear layer forming the outer boundary 

of the LEV, as well as the inner region of the vortex.  Dye near the tip, seen below the corner, 

tags the tip-edge shear layer that rolls up into the tip vortex.   Ripples in both the leading and 

tip edge shear layers (especially apparent in the later snapshots) are caused by the instabilities 

there, predicted by Koumoutsakos and Shiels (1996). 

 A short time later, after 1.2c of travel (see Figure 4.5.7b), the 2 kinks in the corner 

vortex have twisted around themselves to form the helical vortices described by the model 

and shown in Figure 4.5.1f.  The LEV has grown larger, and the upward convection of the 

dye marking it reveals the upward spanwise flow within the vortex.  Snapshots c and d, taken 

at about 1.3c and 1.5c, respectively, show that the 2 helical vortices at the corner have 

extended farther out, horizontally, into the wake.  They have also moved closer to one 

another, and by snapshot f they have become a single entity, rotating in the direction of the 

upper of the two former helices.  This is consistent with the visualization in Figure 4.5.4a, 
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Figure 4.5.7  Dye blob vis., AR = 6, Re = 3000, reconciling corner vortices & the main LEV.

(a) 1.1c of travel (b) 1.2c of travel (c) 1.3c of travel 

(d) 1.5c of travel (e) 1.6c of travel

(f) 1.7c of travel (g) 1.8c of travel
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captured when the flow is more developed, which shows that the 2 helical vortices have 

merged.  As expected, Figures 4.5.7c and d indicate that the LEV has grown larger and the 

dye has been convected farther upward as time progressed.  The leading edge shear layer 

instability is also visible as vertically-oriented ripples in its ribbon-like structure, which rolls 

up into the LEV. 

 Figures 4.5.7f and g finally reveal how the corner vortex interacts with the main 

leading edge vortex.  Especially visible in snapshot g, the corner vortex has been drawn into 

the LEV.  However, it is not pulled straight through the LEV core.  Instead, behaving as it 

should like a material line, it follows the rotating, helical velocity of the much stronger LEV, 

wrapping, so-to-speak, probably around an inner layer of the LEV between the LEVs outer 

shear layer and its core.  This behavior is clearer in the video these images were taken from.  

The conclusion that the corner vortex is within the LEVs outer shear layer is based on an 

extrapolation of the visible part of the shear layer, above the corner, down to the level of the 

corner. 

4.5.5  The decrease in LEV circulation near the tip 

 Kelvin’s Theorem, 0=Γ
Dt
D , for a baratropic, inviscid fluid subjected to only a 

potential body force, states that the circulation around a material loop does not change with 

time (Green, 1995).  Since the circulation measured in the chordwise planes decreases with 

decreasing distance from the tip (see Figure 4.5.8), Kelvin’s Theorem dictates that this “lost” 

circulation must go somewhere.  Viscous dissipation cannot be solely responsible for this 

decrease in circulation, because there is not enough time for it to become significant.  

However, there are other plausible solutions to the problem.  Given the vortex line model 

developed in section 4.5.2, it is possible that the vorticity of the LEVs near the tip is fed into 
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the corner vortices.  Depending on how these vortices develop spatially, this might reduce the 

circulation of the LEVs near the tip, and increase that of the corner vortices.  Another 

explanation for the drop in circulation is that interaction with the plate itself is responsible.  

Vorticity could be lost at the plate surface, or secondary vorticity generated near the plate 

surface, of opposite sign, might lower the total circulation measured at a single edge.  

Finally, since the flow is highly 3-D near the tip, the circulation measured in the 2-D DPIV 

sections may not reflect the actual circulation there. 

4.5.6  Mid-chord vorticity features explained 

 A conspicuous feature common to both the AR = 2 and 6 cases is the rapid increase in 

vorticity in the mid-chord plane between T = 2 and 4.  Section 4.4 showed that the vorticity 

from the tip vortex appears to quickly grow upward (i.e., away from the tip), become more 

complicated, and then undergo an “upward” pinch-off.  This pinch-off event is important 

because it coincides with the unique, “inward” pinch-off of the LEVs at 50% span for AR = 

2, and at 75% span for AR = 6.  Either this swift increase in vorticity in the mid-chord plane 

(seen in the tiled vorticity plots of Figures 4.5.5 above) is a result of the tip vortex itself 

growing upward along the span, or it is due to vorticity generated somewhere else that is 

convected there.  The alternative source of this vorticity can only be the leading edges, the 

corners, or both. 

 In order to test this hypothesis, a small drop of fluorescent dye was “painted” in each 

corner of the leeward face of the plate.  If this dye was convected into the wake centerline at 

around 2 to 3 chord lengths, it would be likely that the vorticity production above the tip  

vortex in the mid-chord plane would be due to the vorticity generated in the corners or at the 
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leading edges.  A spanwise laser sheet was placed at mid-chord, parallel to the flow like the 

DPIV laser sheet, to illuminate any dye in that location. 

 Figures 4.5.8a-c show three snapshots from this experiment, which was done at Re = 

3000 with an AR of 6.  The camera is facing the mid-chord laser sheet, so that it sees a side-

view of the plate.  For clarity, the plate has been artificially added to the image; it is moving 

to the right, and only its lower portion is visible.  In Figure 4.5.8a, the plate has traveled 

about 3 chord lengths and, not surprisingly, some dye has been drawn into the tip vortex; 

there is little dye above the tip vortex at this time.  The next snapshot, taken 0.27 seconds 

later and given in Figure 4.5.8b, shows a significant amount of dye in this mid-chord plane, 

which did not come from the tip vortex.  It appears that the tip vortex aids the LEVs in 

convecting the dye into this plane, but the vortex itself does not enlarge and grow upward.  

After another 0.33 seconds (see Figure 4.5.8c), a substantial amount of dye from the corners 

has been pulled into this plane, and the area that dye occupies has grown larger and upward, 

Figure 4.5.8  Mid-chord plane dye visualization, Re = 3000.  Dye from the 
plate corners is convected into the mid-chord plane above the tip vortex. 

(c) tref + 0.33 sec.(b) tref + 0.27 sec. (a) tref, about 3c of travel 
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consistent with the DPIV.  The tip vortex itself remains attached to the plate and coherent 

throughout this process. 

 This experiment demonstrates that, since dye from the corners is convected into the 

mid-chord plane by the LEVs (with the aid of the tip vortex), and the corners are a strong 

source of vorticity, it is likely that the accumulation of vorticity in the mid-chord plane is due 

to vorticity generated by the corners.  The DPIV measurements show that the introduction of 

vorticity into this planar region, between the symmetrical LEVs, is then responsible for the 

interactions that produce the interesting phenomena in this spanwise plane and in the 

chordwise plane at 75% span (for AR =6, and 50% span for AR = 2). 

4.5.7  Comparison of the flow structure with previous studies 

 The structure of the flow agrees well with the results of Champion and Coutanceau 

(1992), who studied the starting flow of AR = 2 to 5 circular cylinders with free, squared-off 

ends at Re = 1000 (see Chapter 1 for more details).  They observed two helical LEVs (from 

40 to 100% span) having spanwise flow away from the tip, consistent with the results of the 

present work.  The duration of their experiments was T* = 3.5, and the LEVs remained 

closely attached to the cylinder near its free end for the entire time.  By T* = 3.5, the LEVs 

from 80 to 60% span grew larger than those near the tip, increasing in size with increasing 

distance from the tip.  The LEVs of the current study exhibited both of these behaviors.  At 

the lower Reynolds number and shorter run-time of the cylinder experiments, however, no 

LEV pinch-off (such as that for the present work at AR = 6, 50% span) was observed.  Also, 

due to the cylinder’s lack of a sharp, thin tip edge, they reported only a very small tip vortex. 

 Champion and Coutanceau (1992) found that the LEVs from 0 to 40% span also had 

a helical structure, but with spanwise flow toward the tip.  They observed a “collision” 
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between these opposing vorticity fluxes at 40% span and T* = 3.5.  Ellington et al. (1996) and 

Liu et al. (1998) reported a similar phenomenon in the LEV of a hawkmoth wing late in the 

downstroke.  However, the opposite-sign spanwise flows in their inboard and outboard LEVs 

met at 75%, rather than 40% span.  The results of the present work do not disagree with those 

of Champion and Coutanceau, in the sense that the lack of spanwise data for AR = 6 above 

50% span does not confirm nor refute any spanwise flow (toward the tip) in the LEVs there.  

Champion and Coutanceau also report that the location of this meeting of opposite spanwise 

flows scaled linearly with AR.  Although the spanwise DPIV of the present work for AR = 2 

includes the flow over the full span, no significant spanwise flow toward the tip was 

observed.  In fact, the current study shows that the flows for AR = 6 and 2 are similar in 

absolute terms spatially (they do not scale linearly), but that the AR = 2 flow progresses faster 

in time.  Both of these results disagree with those of Champion and Coutanceau.  However, 

the current AR = 2 data are for a plate with a clean free surface for its upper end condition, 

while the upper end condition of for the cylinder study was an end plate.  This may at least 

account for the lack of spanwise flow (directed toward the tip) above 40% span for the AR = 

2 plate. 

 The flat plate flow of the present work is similar to the hawkmoth studies of Ellington 

et al. (1996) and Liu et al. (1998), in that both cases exhibit LEVs that have significant 

spanwise flow, and thus helical structures.  However, as mentioned above, the spanwise flow 

for the hawkmoth investigations is opposite that of the current flat plate experiments (at least 

from 50% span to the plate’s tip), except for the tip-to-root flow that appears in the outboard 

hawkmoth LEV near the end of the downstroke.  Ellington et al. (1996) hypothesized that the 

prolonged attachment of the LEV to the wing is due to the convection of vorticity out of the 
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LEV and toward the wing tip, via a strong root-to-tip spanwise flow.  This, they postulated, 

would slow the increase in circulation of the LEV, compared to a 2-D case without spanwise 

flow, thus increasing the time required for the LEV to build up enough circulation to shed.  

The present work shows that the LEVs for AR = 6 remain attached to the plate outboard of 

50% span for at least 8 chord lengths of travel, but with spanwise flow from tip to root that is 

opposite that implicated by Ellington et al. (1996) in keeping the LEVs attached.  Based on 

the results of the current study, this author proposes that it is instead the low pressure created 

in the tip region by the induced 3-D flow from the tip vortices that is responsible for keeping 

the LEVs attached there, as well as for the high drag generated.  The spanwise flow within 

the LEVs is a result of the flow induced by the tip, but not the mechanism responsible for the 

attachment of the LEVs there.  Ellington et al. also observed a significant tip vortex, but they 

did not comment on any effect it may have on the LEV.  Given the existence of this tip 

vortex, it is possible that its influence may be responsible for the behavior of the hawkmoth 

LEV.  The discrepancy in spanwise flows between the investigation of Ellington et al. and 

the present work may simply be due to differences in kinematics.  The hawkmoth wing has a 

sweeping shoulder motion that could create a pressure gradient from root to tip strong 

enough to generate a spanwise flow within the LEV in that direction. 

 The results of the present study are more consistent with the work of Birch and 

Dickinson (2001), who investigated the flow around a robotic flapping model of a fruitfly 

using DPIV and force measurements.  They concluded that the tip vortex, along with flow 

from the previous stroke, creates a downward flow, or downwash, that reduces the effective 

angle of attack of the wing.  This retards the build-up of circulation in the LEV, compared to 

a purely 2-D flow, thus keeping it attached longer.  Since the angle of attack for the flat plate 
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experiments of the present work was fixed at 90 degrees, no downwash can be defined, per 

se.  In fact, due to this special-case α and the rectangular geometry of the plate, there are two 

equal but opposite corner vortices in addition to the tip vortex between them, generated at the 

tip edge.  For this flow, the effect of the vortices at the tip can instead be discussed in terms 

of circulation and pressure.   

 As with the study by Birch and Dickinson (2001), the effect of the tip vortices in the 

current investigation was to decrease the circulation of the LEVs; in this case the LEVs 

became weaker with decreasing distance from the tip.  Figure 4.5.9 gives the total and LEV 

Figure 4.5.9  Circulation vs. formation time, AR = 6.   
Triangles: total circ., 50% span; x’s: LEV circulation, 50% span; circles: total circ., 

75% span; crosses: LEV circulation, 75% span; diamonds: total circ., 90% span. 



 164
circulation for AR = 6, reproduced from section 4.3.  The circulation and LEV formation 

numbers decrease from 50 to 90% span, and the vortices at 90% span remain attached to the 

plate for the full 8 chords of travel.  Flow visualization and DPIV from this chapter showed 

that the induced 3-D flow from the tip is responsible for these trends in circulation.  The 

significant influence of the tip vortex, especially at 90% span, is also reflected in the fact that 

the formation number of the tip vortex is the same as that for 90% span.  In other words, 

when the tip vortex reaches its maximum circulation, its induced flow is strong enough to 

keep the LEVs at 90% span from gaining further circulation. 

 Although the effect of the tip vortex was to reduce the circulation of the LEVs for 

both the robotic fruitfly and the current flat plate experiments, the influence of this effect on 

the drag force was opposite for both studies.  Upon suppressing the tip vortex with a wall 

adjacent to their model’s wing tip, Birch and Dickinson (2001) measured an 8% increase in 

force on the wing.  However, when a bottom wall was placed just below the plate tip for the 

present work, a drag minimum was measured in the place of the free end drag maximum, 

which was 46% higher at the peak.  The most likely explanation for this dissimilarity is the 

substantial differences in Reynolds number and kinematics between the two cases.   

 The experiments of the present work were at a much higher Reynolds number (3000) 

than those of the fruitfly model (Re = 160), and the kinematics were much simpler.  Birch 

and Dickinson (2001) found that, at their model’s low Re, the LEV did not pinch-off when its 

circulation was increased (by 14%) with the addition of the tip vortex-suppressing end wall.  

Therefore, this stronger LEV that remained attached throughout the entire downstroke 

generated higher drag than the free end case; at a higher Re, the LEV would have been more 

likely to pinch-off.  Additionally, the wing kinematics of their model, which consisted of 
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high yet varying angles of attack as well as sweeping shoulder motions, did not allow for the 

generation of a closed, low-drag leading and trailing edge vortex recirculating bubble, with 

or without tip vortex suppression.  Section 4.2 of the current study shows that the lack of this 

bubble near the free end of the flat pate, due to the induced 3-D flow there, is partly 

responsible for the large difference in drag between the 2-D (grazing) and free end cases.  

Since the model fruitfly wing studied by Birch and Dickinson did not experience such a 

drastic change in flows when they diminished the effect of the tip vortex, the difference 

between that and their free end case was not as large as the one for the present work.   

 However, the absence of a recirculating LEV bubble for the current flat plate study is 

not the sole reason for the drag maximum measured for the free end case.  There is 

substantial vorticity generated by the plate’s tip and corners, which can be seen in the 

spanwise DPIV data (see Figure 4.5.5 above or section 4.4), that remains attached to the plate 

and grows stronger until the drag maximum around T = 5 (for AR = 6).  This attached 

vorticity is a region of low pressure, which generates high drag.  Additionally, the LEVs at 

50% span, which are stronger than those closer to the tip, saturate around T = 5, thus 

contributing to the drag maximum before they pinch-off afterward.  The reason why Birch 

and Dickinson (2001) did not measure a drag benefit due to influence of the tip is probably 

because of the differences in Re and kinematics discussed above.  At such low Reynolds 

numbers, the strong pressure gradient near the tip, observed for the current study, is not as 

substantial.  For the present case, it is the lower pressure near the tip that keeps the LEVs 

attached there and limits the growth of their circulation, compared to those away from the tip.  

This difference in circulation with distance from the tip creates a spanwise pressure gradient 

within the LEVs, which causes the spanwise flow within them from tip to root.  Birch and 
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Dickinson measured very little spanwise flow within the LEV, which implies that the tip 

effect for the fruitlfly wing is very small.  Finally, some dissimilarities in the results are very 

likely due to the fact that fruitfly wing kinematics have 3 degrees of freedom, while the 

simpler plate motion of the present work has only 1. 
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5  Summary and conclusions 

5.1  Summary and conclusions 

5.1.1  Objectives and methods 

 The primary objective of this work was to investigate the role of vortex formation in 

the drag force-generation of low AR flat plates at α = 90° starting from rest.  This study was a 

first, fundamental step toward understanding the more complicated case of hovering flight, 

which relies primarily on drag for propulsion.  The second goal of this investigation was to 

determine the effect of changing the AR, i.e., varying the relative importance of the plate’s 

tip.  By identifying how aspect ratio affects vortex generation and drag force, insight into AR 

selection in nature, as well as for micro air vehicle (MAV) design, can be gained. 

 Force measurements, DPIV of perpendicular sections, and 2-D and 3-D flow 

visualization were performed on flat plate models in a towing tank, at a moderate Re of 3000, 

to achieve these objectives.  The drag of the two different AR plates (6 and 2) considered was 

measured with the bottom end (or tip) free, and a case where the tip of the AR = 6 plate 

“grazed” a bottom wall was also studied.  These experiments demonstrated the effect of AR 

and tip vortex suppression, respectively, on the drag.  The DPIV measurements were done in 

chordwise and spanwise planes to capture the velocity fields of the LEVs and the TV, 

respectively, both of which have been implicated by previous studies in the force generation 

of hovering flight (Ellington et al., 1996; Birch & Dickinson, 2001).  Vorticity fields and 

circulation were calculated for each section to study the effect of the TV on the LEVs, and to 

establish the relationship between the vortex generation of the plate and the features of the 

drag force.  Finally, since the flow is highly 3-D, flow visualization was used to characterize 

the overall vortex structure, study the interaction of the LEVs and the TV at the startup, and 
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account for features of the 2-D DPIV that were thought to be due to 3-D effects.  After the 

formation time concept is described, the results of these experiments will be summarized, 

and conclusions based on the findings will be presented. 

 To compare results from experiments with different plate chord lengths and Reynolds 

numbers, whether within the present work or with other investigations, the formation time 

concept was used.  Formation time is a dimensionless timescale, normalized in this case by 

the plate’s chord length and mean velocity, and it is approximately equal to the number of 

chord lengths traveled.  Its primary use is to connect the time required for a vortex to attain 

its maximum circulation, before pinch-off, with the kinematics that generated it.  If this 

maximum circulation can be correlated with force phenomena, formation time can be used as 

a guide for wing kinematics.  For example, if vortex saturation occurs after 5 chord lengths 

of travel, and correlates with a peak in the force, little will be gained by traveling farther, 

suggesting that the wing should then turn around and start another half-stroke. 

5.1.2  Force measurements 

 Section 4.2 reported the data from the drag force measurements.  The peak in the CD 

during the initial acceleration of the plate was 1.8 times higher for AR = 2 than AR = 6.  This 

was attributed to the inertia of the plate model, which was relatively higher for AR = 2 

because of the definition of the drag coefficient, which accounts for the submerged plate 

area.  At T = 5, for the AR = 6 free end case, a broad “hump” or maximum in the CD was 

measured.  For the AR = 6 grazing end case, a drag minimum was measured at the same 

formation time; the maximum was 46% higher than the minimum.   

Lisoski (1993), who studied AR = 6 to 17 plates with the grazing end condition, also 

found drag minimums for each AR, albeit at a later time (T* = 8) due to a much lower initial 
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acceleration.  He observed that this grazing lower end condition, coupled with a clean free 

surface above, was the best for promoting a highly 2-D flow.  Lisoski attributed the drag 

minimum to a closed recirculating bubble behind the plate, made up of the essentially 2-D 

LEVs.  He hypothesized that the recirculating flow induces velocity, near the wake 

centerline, toward the rear face of the plate.  This would raise the base pressure there, which 

would lower the drag.  He postulated that the CD minimum occurs when the LEVs reach their 

maximum strength, after which the recirculating bubble eventually breaks open, raising the 

CD again.  These results demonstrate that the effect of the tip or free end is to prevent the 

formation of this recirculating bubble over at least a portion of the span, which increases the 

drag.  Additionally, since a drag maximum was observed for the free end case, it seemed that 

presence of the tip has more of an effect than simply suppressing the recirculating bubble, 

which the DPIV and flow visualization results later confirmed.   

To gain insight as to why mixed end conditions (nominally 2-D at the root, 3-D at the 

tip) are beneficial, steady-state drag data for fully 2-D and 3-D end conditions were 

examined.  A steady-state, infinite-AR normal flat plate has a CD of 1.98, and for an AR = 1 

normal flat plate (with all edges free), the steady-state CD is 1.05.  Separation and shear layer 

roll-up at all edges (as with a fully 3-D body), rather than just two for a 2-D body, creates a 

more contracted wake, and thus less drag.  For the unsteady case, the present work shows 

that mixed end conditions produce more drag than nominally 2-D end conditions.  The 

steady-state data suggest that an unsteady plate with two 3-D end conditions, i.e., a tip vortex 

at either end, would generate less drag than the mixed end condition case.  In fact, for a 

rectangular solid oriented normal to the flow and having one free end (i.e., mixed end 

conditions), the steady-state CD is about 1.5 for AR’s between 1 and 4, while for the fully 3-D 
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case (a normal cube with all sides free), the CD is a significantly lower 1.05; the 2-D case, 

namely, a rectangular solid of infinite AR, has a CD of 2.2.  The current study shows that the 

one tip vortex of the mixed end condition plate prohibits the low-drag, 2-D recirculating 

LEV bubble, induces highly 3-D, low pressure flow at the tip, and yet allows the LEVs away 

from the tip to grow strong and contribute to the drag.  However, tip vortices at each end of 

the plate would reduce the strength of the LEVs over a greater portion of the span, thus 

diminishing their significant contribution to the drag force. 

Since the free end effect presumably has less of an influence as AR increases, the 

issue of what magnitude AR is needed to obtain a significant benefit from the tip effect was 

explored.  Lisoski (1993) also measured the drag on plates with a free lower end condition to 

determine if nominally 2-D flow was possible for this case.  For an AR = 17 plate, he still 

measured a drag minimum.  When the AR was reduced to 10, the drag minimum disappeared, 

although he observed no maximum.  Therefore, given these results and those of the present 

work, it was concluded that a significant drag benefit due to the influence of the tip is only 

achieved when the AR is reduced below 10, with a 46% peak gain in the drag over the 

nominally 2-D case when the AR is set to 6.  Based on these findings, it is recommended that 

a wing designed for hovering flight, which relies primarily on drag for propulsion, should 

have an AR of about 6 or less.  The works cited in Chapter 1 indicate that, consistent with 

this recommendation, hovering animals in nature have AR’s between 2.75 and almost 6.  

Their single wings also have only one tip vortex, consistent with the above discussion on end 

conditions. 

 For AR = 2, the CD was higher than that of AR = 6 even after the initial peak at the 

startup.  This was attributed to the relatively greater influence of the plate tip at AR = 2, 
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which will be discussed in more detail in section 5.1.4.  The drag for AR = 2 did not exhibit a 

single maximum like that of AR = 6.  Instead, “wiggles” in the CD were observed between T 

= 3 and 7, and were found to correspond with vorticity induced by the plate’s tip impinging 

the free surface.  Unfortunately, any features due to the formation and saturation of the LEVs 

or the TV were masked by these drag oscillations. 

5.1.3  Chordwise flow sections: vorticity, circulation, and formation number 

 Chordwise (horizontal) sections of the flow velocity were captured quantitatively at 

50, 75, and 90% span (measured from the free surface), for AR’s = 6 and 2, in order to 

investigate the LEVs (see section 4.3).  For both AR = 6 and 2, the total circulation generated 

at a single plate edge (the flow is symmetrical) decreased with decreasing distance from the 

plate tip.  The AR = 6, 50% span case was the only one that exhibited LEV pinch-off.  At 

75% span for the same AR, the LEVs exhibited a near-pinch-off, but subsequently merged 

again with the shear layers that formed them.  After this merging, the LEVs were drawn 

toward the center wake, where they subsequently pinched-off “inwardly” from the edge shear 

layers, then remained trapped in the plate’s wake.  The spanwise DPIV data showed, as 

expected, that this was a result of the highly 3-D flow induced by the plate tip.  No pinch-off 

occurred at 90% span, only a saturation in the circulation, and the vortices there remained 

attached to the plate throughout the entire run.  The formation number for the LEVs at 50% 

span was 4.5, for 75% span the formation number before the initial, near-pinch-off was 3, 

and the formation number at 90% span was 2.  Therefore, the formation number, like the 

circulation, was found to decrease with diminishing distance from the tip.  This shows that 

the effect of the tip is to limit the growth of the circulation of the LEVs closer to it, as 

compared to those farther away.  Additionally, the reduction in formation number with 
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decreasing distance from the tip illustrates that the induced flow from the tip affects the 

LEVs closer to it more quickly. 

The formation time T = 5, when the force peak for AR = 6 is observed, corresponded 

to certain features in the LEV circulation.  First, it is at about that time that the LEVs at 50% 

span saturate.  Second, there is a drop at T = 5 in the total circulation at 75% span, as well as 

a minimum in the circulation at 90% span.  Decreases or increases in circulation based on 2-

D DPIV, after the formation number but before viscous diffusion becomes significant, 

indicate substantially 3-D flow.  The spanwise DPIV indeed revealed this to be the case 

around T = 5. 

 The AR = 2 flow exhibited no LEV pinch-off similar to that of AR = 6 at 50% span.  

However, LEV saturation did occur, and, like the AR = 6 case, the formation number 

decreased with decreasing distance from the plate tip.  Upon comparison of the circulation 

and vorticity fields of AR = 2 and 6, the flows were found to have similar features spatially, 

but in the absolute sense.  In other words, the flow at AR = 6, 90% span was very much like 

that of AR = 2, 75% span, and both spanwise locations are at almost the same absolute 

distance from the plate tip.  However, temporally the AR = 2 flow developed more quickly 

after about T = 3.  This implies that the effect of the tip increases with decreasing AR. 

5.1.4  Spanwise and chordwise flow sections, and measured drag revisited 

 Section 4.4 presented the chordwise vorticity data discussed in the previous section 

along with the spanwise vorticity fields.  These spanwise vorticity fields were calculated 

from DPIV data taken in a plane at mid-chord, parallel to the free stream, and another plane 

at one of the leading edges (since the flow is symmetrical).  The full set of spanwise and 

chordwise vorticity fields were compared with the measured drag force, in order to correlate 
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any features between the two.  Additionally, the circulation of the tip vortex itself, in the 

mid-chord plane, was calculated from the DPIV data, for comparison with the chordwise 

circulation.  

 It was found that the TV formation number is the same as that of the LEVs at 90% 

span, for both AR = 6 and 2.  This indicates that the TV has a strong influence on the LEVs 

there, limiting their growth much more than those away from the tip (which have higher 

formation numbers and circulation). 

 Substantial vorticity, in addition to that of the TV, was measured in the mid-chord 

and leading edge planes for both AR’s.  The vorticity in the mid-chord plane, which appears 

to “grow” out of the TV and up the span very quickly after T = 2, could not be explained 

based on the 2-D DPIV data alone.  In the leading edge plane, more coherent vortices were 

observed, implying that the LEVs bend and impinge the leading edge plane as the plate 

travels.  The 2-D and 3-D flow visualization presented in section 4.5, discussed next, was 

needed to explain and verify these phenomena. 

 The “inward” pinch-off of the LEVs of AR = 6, 75% span and AR = 2, 50% span, was 

observed to coincide with features of the mid-chord vorticity.  At the same formation time 

that the “inward” LEV pinch-off occurs, the vorticity in the mid-chord plane that is above the 

TV pinches-off upwardly and away from the TV.  This pinched-off vorticity is located at the 

spanwise location where the “inward” LEV pinch-off occurs.  Thus, the “inward” pinch-off 

of the chordwise LEVs is due to substantial out-of-plane flow. 

 Consistent with to the flow in the chordwise planes, the vorticity in the mid-chord 

and leading edge planes of AR = 6 and 2 were very similar spatially, in the absolute sense.  

However, as with the chordwise flow, the spanwise vorticity of AR = 2 was temporally more 
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accelerated.  This adds support to the above conclusion that the influence of the tip increases 

with decreasing AR, which was expected.  

 For AR = 6, the “hump” or maximum in the drag force at T = 5 corresponds to 

chordwise and spanwise flow phenomena.  As discussed above, the LEVs at 50% span 

saturate around this formation time, and thus contribute to the drag force until they pinch-off 

at T = 6.67.  Also by this formation time, the vorticity in the mid-chord plane has increased 

substantially, and it remains attached to the plate; the “upward” pinch-off just described 

starts to occur at this time.  The drag maximum at T = 5 is therefore due to the low pressure 

created by the saturated LEVs at 50% span, in addition to the strong attached vorticity visible 

in the mid-chord plane.  This attached vorticity is also a region of low pressure and thus high 

drag on the plate. 

 Finally, the fact that the drag coefficient for AR = 2 is consistently higher than that of 

AR = 6 was explained using the spanwise vorticity fields.  As mentioned above, the attached 

vorticity observed in the mid-chord plane, due to flow induced from the plate tip, is a region 

of low pressure that creates high drag.  This vorticity exists over a relatively larger portion of 

the span for AR = 2 versus AR = 6, thus the CD for AR = 2 is larger. 

5.1.5  The structure of the flow from dye visualization 

  Dye flow visualization was used to devise a vortex line model for the flow near the 

tip at the startup, and also to capture the global structure of the flow.  Additionally, it allowed 

the local flow at the tip to be reconciled with the global flow.  Finally, flow visualization 

proved invaluable in explaining the DPIV vorticity field data taken in the spanwise planes. 

 At the startup, the LEV and the TV are essentially 2-D, and they join together at the 

corner of the plate.  A vortex line model, backed up by evidence from flow visualization, was 
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used to show that the induced flow from the LEV and the TV eventually cause this corner 

vortex to bend up, and fold at its ends.  These folds at either end then kink and twist around 

themselves, forming two helical vortices that appear to “sprout” perpendicularly from the 

face of the plate in the corner. 

 Globally, there is a tip vortex that is especially strong at mid-chord, and the induced 

flow from it and the corner vortices causes the LEVs near the tip to remain closely attached.  

Away from the tip, the LEVs are larger, and grow farther out into the wake.  Within the 

LEVs, there is an upward (i.e., away from the tip) spanwise flow, which gives them a helical 

or tornado-like structure.  Since the LEVs farther (spanwise) from the tip are stronger (shown 

by the chordwise LEV circulation data), the pressure within them is lower than their 

counterparts near the tip.  This creates a spanwise pressure gradient within the LEVs that is 

responsible for the spanwise flow seen in the visualizations.  The 2 helical vortices in each 

corner of the plate “connect” with the global flow by simply being convected, as material 

lines, into the LEVs nearest them.  They “wrap around” within the larger LEV helices, 

following the induced velocity there.   

 The larger-scale flow visualizations also showed that the LEVs bend so that they 

have significant vorticity vectors normal to leading the edge planes.  By comparing the 

locations of the chordwise LEV vortex cores at different spanwise stations, the sign of any 

LEV vorticity that impinges the leading edge planes, between those chordwise sections, can 

be predicted. 

 Finally, the rapid increase in vorticity in the mid-chord plane, above the tip vortex, 

was found to be due to vorticity from the plate’s corners been convected into the center wake 

by the LEVs. 
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5.1.6  Comparison with previous work (see section 4.5.7 for a more detailed discussion) 

 The results of the current work agreed very well with those of Champion and 

Coutanceau (1992), who performed similar experiments with low AR circular cylinders with 

one end free.  However, the mechanism responsible for keeping the LEVs attached to the 

plate near the tip was not that hypothesized by Ellington et al. (1996), who studied the LEV 

of a flapping model of a hawkmoth.  Ellington et al. attributed the prolonged attachment of 

the hawkmoth LEV to a strong root-to-tip spanwise flow within its core.  They hypothesized 

that this spanwise flow convects vorticity out of the LEV and toward the tip, which slows the 

accumulation of circulation within the LEV and thus keeps it attached longer.  The spanwise 

flow within the LEVs of the present study (from tip to root) was the opposite of that found by 

Ellington et al.  Therefore, another mechanism must prevent the LEVs from pinching-off.  

Based on the results of the current work, this author proposes that it is instead the low 

pressure created at the tip by the induced 3-D flow from the tip vortices that keeps the LEVs 

attached there and limits their strength.  This low pressure is also responsible for the high 

drag generated.  The spanwise flow within the LEVs is a result of the flow induced by the 

tip, and not the mechanism actually responsible for the attachment of the LEVs near the tip.  

Since Ellington et al. also observed a significant tip vortex, it may be the cause for the 

behavior of the hawkmoth LEV.  The discrepancy in spanwise flows between that 

investigation and the present work may simply be due to differences in kinematics.  The 

hawkmoth wing has a sweeping shoulder motion that could create a pressure gradient from 

root to tip strong enough to generate a spanwise flow, within the LEV core, in that direction. 

 The findings of the current investigation are more consistent with that of Birch and 

Dickinson (2001), who studied the flow around a flapping model of a fruitfly wing.  
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Combining DPIV and force measurements, they found that the tip vortex, coupled with flow 

from the previous wing stroke, generates downwash that lowers the effective angle of attack 

of the wing.  They hypothesized that this downwash slows the acquisition of circulation 

within the LEV, compared to the 2-D wing case, thus delaying its pinch-off.  To test this 

idea, they placed a wall at the tip of their wing model in order to suppress the TV.  This 

resulted in a 14% increase in the LEV circulation, which supports their hypothesis.  

 Circulation measurements from the present work also show that the effect of the 

induced flow from the tip is to decrease the circulation of the LEVs as they get closer to the 

tip.  This is in agreement with the results of Birch and Dickinson (2001).  However, when a 

wall was placed just below the plate’s free end in order to suppress the tip vortex, the drag on 

the plate decreased substantially.  Although this disagrees with the results of the similar 

experiment performed by Birch and Dickinson, this discrepancy is most likely due to the 

large differences in Reynolds number and kinematics between the two studies.  Whereas the 

current flat plate experiments were done at a Reynolds number of 3000, with a 1 degree of 

freedom motion, the fruitfly model of Birch and Dickinson (2001) operated at Re = 160 with 

3 degrees of freedom. 

 At this low Re, the LEV of the fruitfly model did not pinch-off when the TV was 

suppressed.  Instead, it simply grew larger and generated more force on the wing.  In this 

Reynolds number regime, the tip vortex appears to be a hindrance rather than an asset (Birch 

and Dickinson, 2001).  However, for the higher Re flat plate, the induced 3-D flow from the 

tip generates substantial vorticity in the tip region (visible in the spanwise DPIV data in 

Chapter 4).  This vorticity remains attached to the plate throughout the run and generates 

high drag, since it is a region of low pressure.  Birch and Dickinson may not have found a 
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drag benefit due to the induced flow from the wing tip because the pressure gradient there 

was not as strong as that of the current work.  It is the strong tip effect of the present flat 

plate study that restricts the circulation acquired by the LEVs near the tip, which leads to the 

spanwise flow within the LEVs.  Birch and Dickinson measured only a very small spanwise 

flow within the fruitfly wing LEV, which supports the hypothesis of a weaker tip effect.   

 Lastly, it should be remarked that the differences in kinematics between the current 

flat plate investigation and the insect flight work of Birch and Dickinson certainly creates 

discrepancies in the two sets of results.  For example, the effect of the tip vortex in the 

present flat plate study is to prohibit the generation of the low-drag, recirculating LEV 

bubble observed in nominally 2-D flat plate flow at very high angles of attack.  Such a 

bubble is not observed over the fruitfly wing because of the constantly changing angle of 

attack and the wing’s sweeping motion, which form non-symmetric vortices at the leading 

and trailing edges.  This lack of a recirculating bubble for the fruitfly wing also explains why 

the difference in measured drag between the free end and end-wall cases was not as large as 

that for the similar experiments of the present work. 

 The results of the current study agree well with the data on hovering flight.  As 

presented in section 5.1.2, the aspect ratios determined to give the greatest amount of drag 

force, about 6 or less, are consistent with the range of AR’s found in actual hovering animals, 

which are between 2.75 and almost 6 (Ellington, 1984; Dhawan, 1988; Dickinson, 1999).  

Additionally, the maximum in the drag force, for AR = 6, occurred at about 5 chord lengths 

of travel, which is within the horizontal wing-stroke amplitude range of 3 to 5 chord lengths 

observed for insects (Weis-Fogh, 1973; Wang et al., 2004).  The relationship between the 

drag force and plate aspect ratio was found to be a result of the vortex dynamics.  Thus, 
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MAV wing kinematics and geometry should be designed so as to take advantage of vortex 

formation time, coupled with wing size and shape, for generating optimal drag force. 

 Despite the above discussion, one may still question the applicability of the results 

from the present work to the more complicated case of hovering flight.  In order to address 

this issue, it is easiest to identify the flow features found for hovering kinematics that are not 

present during the simpler motion of the current flat plate study.  First, since there is no 

shoulder-type movement about the plate root (as in the wing sweeping and two-degree of 

freedom translation about a ball-and-socket-type joint exhibited during hovering), there is no 

difference in plate velocity from root to tip.  Therefore, the forced root-to-tip pressure 

gradient seen, for example, in the flow around a hawkmoth wing (Ellington et al., 1996) is 

not modeled by the present case.  Second, since the angle of attack of the current flat plate 

does not change, there is no dominant LEV, and at α = 90°, no downwash, as observed for a 

fruitfly wing (Birch & Dickinson, 2001), can be defined.  There are, in fact, two opposite-

sign LEVs of equal strength, two equal but opposite-sign corner vortices (due to the 

rectangular geometry), and a tip vortex between the vortices near the corners. 

 From the results of Ellington et al (1996), it appears that the effect of the forced root-

to-tip pressure gradient, at Reynolds numbers on the order of 1000, is to induce spanwise 

flow within the LEV core from root-to-tip, which is opposite that of the current study.  

However, given the present results (which report a strong tip effect), and the fact that 

Ellington et al. observed a significant tip vortex, it is possible that the spanwise flow is not 

the mechanism responsible for the prolonged attachment of the LEV.  Alternatively, since 

Ellington et al. did observe spanwise flow in the same direction of the present work, over the 

outboard region of the hawkmoth wing late in the downstroke, it may be that the current flat 
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plate case is most applicable to the outboard portion of a hovering wing.  This is reasonable, 

since the root-to-tip pressure gradient is relatively minor if only that region is considered.  

Conversely, the tip effect for that portion of the wing is very strong.  Limiting the 

applicability of the current flat plate case to only the outboard portion of the wing may, 

however, be dismissing the observed agreement in AR range (i.e., the range needed to 

achieve high drag) between the present results and those of hovering animals.  

 Changes in α are a necessity for the reciprocating motion of a hovering wing, and 

they allow for more control of the resultant wing force vector.  However, although changing 

the α for the present work would alter the formation and interaction of the LEVs, the corner 

vortices, and the TV, the results of Birch and Dickinson (2001) suggest that it would not 

change the influence of the tip on the LEVs.  It seems likely that the tip effect would still 

limit the accumulation of circulation within the LEVs, as reported for the current study and 

by Birch and Dickinson, prolonging their attachment to the plate. 

 Finally, the fact that the AR’s and stroke distance recommended by the present work 

for a flapping MAV agree with the data on hovering flight also provides justification for the 

applicability of this simple model. 

5.2  Recommendations for future work 

 Given the connections between drag, AR, and vortex dynamics found with this simple 

geometry and motion, it seems worthwhile to continue this work by adding degrees of 

freedom.  The eventual goal would be to understand the physics behind the more complex 

kinematics and wing shapes found in nature, in order to create a man-made MAV.  Two more 

translational degrees of freedom could be added, to more closely match natural flapping, as 

well as rotation about a spanwise axis to allow time-varying angles of attack.  Additionally, 
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the current study could be repeated at a different angle of attack, in order to investigate the 

effect of making the two corner vortices, as well as the two LEVs, non-symmetric.  Different 

wing tip geometries could also be explored, such as rounded or pointed (triangular) shapes.  

This type of work has been and continues to be done in the fruitfly Reynolds number regime 

(see Birch and Dickinson, 2001, for example), so that future work should be focused on the 

higher Re range of the current study. 
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Appendix 

A.1  PMAC motion control programs 

A1.1  PMAC program for carbon fiber plate, standard velocity profile 

;  Program for Thesis 
; 
;  Formation number study for flat plate at 90 degrees of attack. 
; 
;  Plate accelerates linearly over a distance of 1/4 chord length 
;  to a constant velocity, and overall travels 15 chord lengths. 
; 
;  Chord length = 5cm 
; 
; 11/18/03 
;******************************************** 
 
A 
CLOSE 
DELETE GATHER 
DELETE TRACE 
OPEN PROG 1 CLEAR 
 
FRAX(X) 
INC 
 
P1 = 5*15  ; Distance of travel during experiment (cm) 
P2 = 6   ; Desired max velocity during experiment (cm/s), gives Re = 3000 
P3 = 0.4167*1000 ; TA 
TS0 
TA(P3) 
F(P2) 
X(-P1) 
 
 
DWELL4000 
LINEAR 
ABS 
TA1000 
F(2) 
X0 
 
CLOSE 
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A1.2  PMAC program for carbon fiber plate, ramp velocity profile 

;  Program for Thesis 
; 
;  Formation number study for flat plate at 90 degrees of attack. 
; 
;  Plate accelerates linearly over a distance of 2.5 chord lengths 
;  to a constant velocity (then decelerates TRAPEZOID!), and overall travels 15 chord 
lengths. 
; 
;  Chord length = 5cm 
; 
; 4/02/04 
;******************************************** 
 
A 
CLOSE 
DELETE GATHER 
DELETE TRACE 
OPEN PROG 1 CLEAR 
 
FRAX(X) 
INC 
 
P1 = 5*15  ; Distance of travel during experiment (cm) 
P2 = 6   ; Desired max velocity during experiment (cm/s), gives Re = 3000 
P3 = 4.1667*1000 ; TA 
P4 = P3/4 
TS(0) 
TA(P3) 
F(P2) 
X(-P1) 
 
 
DWELL4000 
LINEAR 
ABS 
TA1000 
F(2) 
X0 
 
CLOSE 
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A1.3  PMAC program for glass plate used for DPIV, standard velocity profile 

;  Program for Thesis 
; 
;  Formation number study for flat plate at 90 degrees of attack. 
; 
;  Plate accelerates linearly over a distance of 1/4 chord length 
;  to a constant velocity, and overall travels 13 chord lengths. 
; 
;  Chord length = 6.35cm (glass) 
; 
; 11/30/03 
;******************************************** 
 
A 
CLOSE 
DELETE GATHER 
DELETE TRACE 
OPEN PROG 1 CLEAR 
 
FRAX(X) 
INC 
 
P1 = 6.35*13  ; Distance of travel during experiment (cm) 
P2 = 4.724  ; Desired max velocity during experiment (cm/s), gives Re = 3000 
P3 = 0.672*1000 ; TA 
TS0 
TA(P3) 
F(P2) 
X(-P1) 
 
 
DWELL4000 
LINEAR 
ABS 
TA1000 
F(2) 
X0 
 
CLOSE 
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A1.4  PMAC program for glass plate used for flow vis., standard velocity profile 

;  Program for Thesis 
; 
;  Formation number study for flat plate at high angles of attack. 
; 
;  Plate accelerates linearly over a distance of 1/4 chord length 
;  to a constant velocity, and overall travels 11 chord lengths. 
; 
;  Chord length = 8.89cm 
; 
; 10/18/02 
;******************************************** 
 
A 
CLOSE 
DELETE GATHER 
DELETE TRACE 
OPEN PROG 1 CLEAR 
 
FRAX(X) 
INC 
 
P1 = 8.89*11   ; Distance of travel during experiment (cm) 
P2 = 1.125*2   ; Desired max velocity during experiment (cm/s), gives Re = 
2000 
P3 = (0.79/2*10)*1000/2 ; Time to complete linear acceleration to constant velocity (ms) 
 
TS0 
TA(P3) 
F(P2) 
X(-P1) 
 
 
DWELL4000 
LINEAR 
ABS 
TA1000 
F(3) 
X0 
 
CLOSE 
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A.2  Force balance calibration 

Example of calibration curve for N1 force transducer. 

Re-Test (4/7/02) of Transducer N1 w/ Amp N1

y = 0.0023x - 0.0017
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