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Abstract

A long-standing ambition in the field of cavity quantum electrodynamics has been to

trap single atoms inside high-Q cavities in a regime of strong coupling. Our goal has

been to develop techniques for trapping that are compatible with strong coupling and

that do not interfere with the cavity QED interactions. This is crucial for applications

to quantum computation and communication. We have accomplished this goal by

creating a trapping potential through an intracavity FORT at the ‘magic’ wavelength

for Cesium, 935.6 nm. Unlike typical FORTs, where the signs of the AC-Stark shifts

for excited and ground states are opposite, our trap causes small shifts to the relevant

transition frequencies, enabling a trapping potential for the center-of-mass motion

that is largely independent of the internal atomic state. This has enabled us to

achieve extended trapping times (∼ 3 sec) for individual Cesium atoms in cavity

QED in a regime of strong coupling. Although our longest lifetimes are obtained

when the probing fields are turned off, the atoms can also be continuously monitored,

leading to mean trapping times of 0.4 sec, with some atoms observed for over 1 sec.

An important tool for studying atom-field interactions is a high-Q cavity with

small mode volume. Considerable effort has been made in advancing our capabilities

for high-Q resonators. While much of our work involves Fabry-Perot cavities, some of

the highest quality optical resonators to date have been achieved with the whispering

gallery modes (WGMs) of quartz microspheres (Q ∼ 8×109). Therefore, considerable

effort has been given to understanding the usefulness of microspheres for cavity QED

with strong coupling. We have also worked at manufacturing high-Q microspheres

suitable for cavity QED. To this end, we have been succesful at making spheres with

radius ∼ 10 µm and Q ∼ 107.
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Chapter 1

Introduction

1.1 Background

The last decade has seen an incredible number of advances in quantum information

science. The areas of quantum computation and communication have grown into

mature fields with many research fronts. These advances have benefited from the

progress in atomic and optical physics made possible by the realization of optical

trapping and cooling techniques.

Our ultimate goal is to study the interaction of individual atoms and photons.

The model for single atom-photon interactions in a regime of strong coupling was

described by E. T. Jaynes and F. W. Cummings forty years ago [1]. However, the

experimental realization of this model with trapped atoms has only been achieved

relatively recently [2]. We accomplish this by trapping individual atoms inside a

high-Q Fabry-Perot cavity in a regime of strong coupling [3]. Diverse avenues have

been pursued for creating the trapping potential for atom confinement, including the

use of additional far off-resonant trapping beams [2, 4] and of the cavity QED light

itself [5, 6]. Our goal has been to develop techniques for trapping that are compatible

with strong coupling and that do not interfere with the cavity QED interactions. This

is crucial for applications to quantum computation and communication [7, 8, 9, 10,

11, 12].

Our trapping potential was provided by an intracavity FORT at the ‘magic’ wave-

length for Cesium, 935.6 nm [13, 14, 15, 16]. Unlike typical FORTs, where the signs
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of the AC-Stark shifts for excited and ground states are opposite, our trap causes

small shifts to the relevant transition frequencies, enabling a trapping potential for

the center-of-mass motion that is largely independent of the internal atomic state.

This has enabled us to achieve extended trapping times (∼ 3 sec) for individual Ce-

sium atoms in cavity QED in a regime of strong coupling. Although our longest

lifetimes are obtained when the probing fields are turned off, the atoms can also be

continuously monitored, leading to mean trapping times of 0.4 sec, with some atoms

observed for over 1 sec. This trap represents an improvement by a factor of 102 be-

yond the first realization of trapping in cavity QED [2], and by roughly 104 beyond

prior results for atomic trapping [5] and localization [6] by way of the cavity QED

field itself.

An important tool for studying atom-field interactions is a high-Q cavity with

small mode volume. Considerable effort has been made by Jeff’s group to advance

our capabilities for high-Q resonators. While much of our work involves Fabry-Perot

cavities, some of the highest quality optical resonators to date have been achieved with

the whispering gallery modes (WGMs) of quartz microspheres (Q ∼ 8× 109) [17, 18].

Therefore, considerable effort has been given to understanding the usefulness of micro-

spheres for cavity QED with strong coupling. We have also worked at manufacturing

high-Q microspheres suitable for cavity QED. To this end, we have been succesful at

making spheres with radius ∼ 10 µm and Q ∼ 107.

1.2 A History of My Involvement in the Kimble

Group

I joined Jeff’s group in the Fall of 1996. It was an exciting time, with the recent

advances in quantum computation and information theory. My first task was to work

with a visiting scientist, Akira Furusawa, on a project to develop an apparatus for

performing Raman Spectroscopy on trapped Cesium atoms. We realized that we

would need several lasers for the metrology beams and MOT. Unhappy with the
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current electronics and mechanical setup of our homemade diode laser systems, I

spent some time improving the system. This ended up being a side project of mine

for the rest of my time at Caltech. Along the way, there were significant contributions

made by postdocs Jun Ye and Christoph Nagerl.

Akira became interested in Quantum Teleportation and began to pursue that while

I began to work on microspheres. Hideo Mabuchi had started this work in the group,

and it was continued by David Vernooy along with Erik Streed, Akira Furusawa, and

Nikos Georgiades [19, 18, 20]. We also benefited from continued interaction with

Vladimir Ilchenko. My work focused on understanding the limits of microspheres for

achieving cavity QED in the strong coupling regime. We investigated this theoreti-

cally while I worked on manufacturing and testing small spheres (radius ∼ 10 µm)

with high quality factors (Q∼ 107).

During this time, I became interested in quantum communication theory, and be-

gan working on a project with two postdocs, Steven van Enk and Chris Fuchs. We

devised an experimental proposal for achieving superadditive communication capac-

ities with a binary quantum alphabet [21]. The hope was to develop a protocol that

could be implemented in the atom-cavity system that already existed in the group.

While this work represents an important step in understanding the use of entangle-

ment to improve detection sensitivity, the effect is small and would be difficult to

implement in our current system.

Akira and Jens succeeded in achieving the first unconditional quantum telepor-

tation of an optical coherent state, by utilizing squeezed-state entanglement. After

they left, I switched to the teleportation experiment to continue their work. Akira

visited to help me, and we finally worked directly together on an experiment.

After this I moved to Lab 1 to work with Theresa Lynn and Kevin Birnbaum on a

cavity QED experiment. The hope was to achieve continuous feedback control for the

dynamics of an atom trapped in a high finesse Fabry-Perot cavity. Unfortunately, the

experiment developed problems requiring a new cavity and vacuum system. At that

point the decision was made to rebuild the experiment in a dual chamber configuration

as had been implemented in Lab 11.
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The cavity QED experiment in Lab 11 had been rebuilt by David Vernooy and Jun

Ye. Their work involved using an intracavity FORT at 869 nm to trap single atoms

with a lifetime of τ ∼ 28 ms. This work was then continued by Jason McKeever, and

two postdocs, Dan Stamper-Kurn and Christoph Nagerl. After Dan and Christoph

left, Kevin and I joined Jason part-time to continue the work. In addition, a new

post-doc, Alex Kuzmich, joined the experiment. Kevin eventually went back to Lab

1 full-time and Alex pursued a different experiment in Lab 2. Jason and I worked

many long hours continuing the experiment before finally achieving our first successful

advance with a 906 nm FORT. While toiling away on the experiment, we managed

to keep each other entertained and even refined our French. The Lab 11 experiment

is now being continued by Jason, Dave Boozer, and Andreea Boca.

1.3 Electronics Projects

During my time in Jeff’s group, I have spent a great deal of time improving the

electronics we use for conducting our experiments. This work is well documented in

my ‘electronics notebook’ and will not be reproduced in this thesis. In this section, I

will describe some of the work that is documented there.

The diode laser systems we use in our group have continuously evolved over time.

There are three main components to the system: the current controller, temperature

controller, and FET modulation board. The current controllers can be traced back

to the work of K. G. Libbrecht and J. L. Hall [22]. I made some improvements to the

circuit and generalized it to act as either a current source or sink depending on the

particular laser diode being used. The temperature controllers can be traced back to

the work of Bradley et al. [23]. The FET modulation board is used for high-speed

feedback to the laser diode. This type of circuit was first implemented by Christoph

Nagerl. I improved the circuit and designed a board that incorporates the laser diode

protection circuitry. This board has a 3 dB point of ∼ 5.5 MHz, so the bandwidth

will be limited by the capacitance of the laser diode. Overall, I am pleased with the

system, however, if I was going to spend time on one of the elements, it would be the
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temperature control.

Another useful circuit for the lab is a high-voltage offset controller. This is useful

for applying a voltage offset to PZTs used for length and angle control. Christoph

first used high-voltage DC-DC converters for this purpose, and I designed a board

incorporating these and filtering for the output.

Jun Ye and I worked on making high-speed photodetectors (∼ 280 MHz) to be

used for balanced heterodyning in our experiments. Now many people use these

detectors for performing the RF-locking of a laser to Cesium. While these circuits

are overkill for this purpose, they are relatively easy to mass produce, since we have

many of these boards and all of the components.

Another circuit I will mention here is a rate meter for pulses from the photon

counting modules we have recently incorporated into our cavity QED experiment.

This circuit is essentially an integrator. However, our purposes require a low-noise,

high-speed circuit. This is due to the nature of the pulses (width∼ 33 ns, height∼
4.3 V) and the low rates we require. The circuit has a buffered output, so the photon

counting module can be hooked up to the rate meter box as well as a counting card in

the computer. While the data stored by the computer provides a complete record of

the pulse arrival time, the rate meter output provides a real-time signal that can be

used for control of the experiment. This circuit is documented in my Lab notebook.

1.4 Organization of the Thesis

This thesis is comprised of five parts. There is a little redundancy in the material

covered in some of the parts, allowing each to be read independently. Part I is an

overview of atom-photon interactions with emphasis on the strong coupling regime

of an atom-cavity system. The chapters comprising Part I are not intended to be an

exhaustive exposition on the topic, but rather provide a consistent framework for the

work presented throughout the rest of this thesis.

Part II describes our recent work in implementing an intracavity FORT at the

‘magic’ wavelength of 935.6 nm [13, 14, 15, 16]. This has allowed us to achieve ex-
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tended trapping times (∼ 3 sec) for individual Cesium atoms in cavity QED in a

regime of strong coupling by realizing a trapping potential for the center-of-mass mo-

tion that is largely independent of the internal atomic state. This has also facilitated

the demonstration of a scheme for extended continuous observation of a strongly cou-

pled trapped atom. The mean trapping time for a continuously observed atom is

∼ 0.4 sec, with some atoms observed for over 1 sec.

An important tool for studying atom-field interactions is a high-finesse cavity with

small mode volume. The work described in Part II utilized a Fabry-Perot cavity. How-

ever, some of the highest quality optical resonators to date have been achieved with

the whispering gallery modes (WGMs) of quartz microspheres [17, 18], making them a

natural candidate for use in cavity QED. Part III describes our work [24] towards un-

derstanding the limits of microspheres for cavity QED in the strong coupling regime.

In addition, details are given about the fabrication of small microspheres with radii

a ∼ 10µm. The experimental results for Q are compared with those from our theo-

retical analysis. We also present a detailed comparison for the state of the art and

future prospects for achieving strong coupling in cavity QED for both microsphere

and Fabry-Perot cavities.

Part IV describes an interesting problem that arose during our work to trap single

atoms in a Fabry-Perot cavity. It turns out that our system is sensitive to the ther-

mally excited motion of the cavity mirrors. We were able to see these effects in our

system, and the results have been confirmed by Theresa and Kevin in a similar cav-

ity setup. While thermal noise is important in many mechanical measurements [25],

it was not obvious that it would be important in our intracavity FORT trapping

experiments.

Finally, Part V describes an experimental proposal for achieving superadditive

communication capacities with a binary quantum alphabet [21]. This work represents

an important step in understanding the use of entanglement to improve detection

sensitivity.
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Part I

Atom-Field Interactions
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The chapters comprising Part I are not intended to be an exhaustive exposition

on the topic of atom-field interactions. Instead they are meant to give an overview

and provide a consistent framework for the notation used throughout the rest of this

thesis.

An effort is made to show the difference between the quantum and semiclassical

theories of atom-field interactions involving the electromagnetic field. The semiclas-

sical theory uses a classical electromagnetic field coupled to a quantized atom. Many

situations including most aspects of the photoelectric effect can be understood using

the semiclassical theory. In the full quantum theory, quantum mechanics is used for

both the light and the atoms. This was first discussed by Dirac [26]. The semiclassi-

cal theory sometimes yields the same results as the completely quantum mechanical

calculation. However, the semiclassical theory has the advantage that the radiative

processes can be treated in terms of classical models.

An important tool for studying atom-field interactions is a high-finesse cavity with

small mode volume. The properties of Fabry-Perot cavities are detailed in Part II, and

the properties of microsphere resonators are detailed in Part III. With a sufficiently

small mode-volume and cavity loss rate, we will see that the single-photon Rabi

frequency for a single, two-level atom coupled to the cavity can be made much larger

than the cavity and atomic decay rates. In this regime, the atom is said to be strongly

coupled to the cavity.

For an atom in the strong coupling regime, there are two parameters that become

useful for characterizing the atom-cavity system. These are the saturation photon

number and the critical atom number. The saturation photon number is the number

of photons required to saturate the atomic transition. The critical atom number

corresponds to the number of intracavity atoms required to have an appreciable effect

on the transmission of a probe through the cavity. In the strong coupling regime, these

parameters are less than unity. In a system with both parameters much less than

unity, the interaction of an individual atom and photon can be nonlinear.
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Chapter 2

Semiclassical Theory

A two-state description of an atom coupled to a single mode of the electromagnetic

field is valid if the two atomic states are resonant or nearly resonant with the driving

field and all other fields are highly detuned. Here I will discuss the semiclassical

theory of the interaction of an individual two-state atom coupled to a single mode of

the field. In the semiclassical treatment, the atom is treated as a quantum two-state

system and the field is treated classically.

The two-state atom is analogous to a spin-1
2

system with two possible states. In the

dipole approximation, when the field wavelength is larger than the atomic size, the

atom-field interaction is mathematically equivalent to a spin-1
2

particle interacting

with a time-dependent magnetic field. The particle then undergoes optical Rabi

oscillations under the action of the driving electromagnetic field. If there is atomic

decay, the oscillations are damped.

2.1 Hamiltonian

The Hamiltonian for an electron of charge e and mass m is given as [27]

H =
1

2m
[p− eA(r, t)]2 + eU(r, t) + V (r), (2.1)

where p is the momentum operator, A(r, t) is the vector potential of the external

field, U(r, t) is the scalar potential of the external field, and V (r) is the electrostatic
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potential (typically the atomic binding potential). A(r, t) and U(r, t) are the gauge

dependent potentials. The gauge independent quantities are the electric and magnetic

fields

E = −∇U − ∂A

∂t
, (2.2)

B = ∇×A. (2.3)

2.2 Dipole Approximation and Radiation Gauge

If we work in the radiation gauge, we have the following for the potentials of the

external field

U(r, t) = 0, (2.4)

and

∇ ·A = 0. (2.5)

p = −i~∇ and Equation 2.5 imply that

[p,A] = 0. (2.6)

Schrödinger’s Equation is

Hψ(r, t) = i~
∂ψ(r, t)

∂t
, (2.7)

where H is now given by

H = − ~
2

2m

[
∇− ie

~
A(r0, t)

]2

+ V (r). (2.8)

We now define a new wave function φ(r, t) as

ψ(r, t) = exp

[
ie

~
A(r0, t) · r

]
φ(r, t). (2.9)
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Substituting this into Schrödinger’s Equation above yields

i~

[
ie

~

∂A

∂t
· rφ(r, t) +

∂φ(r, t)

∂t

]
=

[
p2

2m
+ V (r)

]
φ(r, t) (2.10)

Equations 2.2 and 2.4 imply that E = −∂A
∂t

. Therefore, rearranging Equation 2.10 we

now have

i~
∂φ(r, t)

∂t
=

[
p2

2m
+ V (r)− er · E(r0, t)

]
φ(r, t). (2.11)

Therefore, the Hamiltonian can now be expressed as

H =
p2

2m
+ V (r)− er · E(r0, t). (2.12)

This Hamiltonian is obtained from the radiation gauge Hamiltonian above by applying

the gauge transformation ξ(r, t) = − e
~
A(r0, t) · r. It can be expressed as the sum of

an unperturbed Hamiltonian Hun and an interaction Hamiltonian Hint where

H = Hun +Hint, (2.13)

where

Hun =
p2

2m
+ V (r), (2.14)

Hint = −er · E(r0, t). (2.15)

2.3 Rabi Oscillations

Now consider the interaction of a single-mode radiation field of angular frequency

ωfield with a two-state atom. Let |g〉 be the ground state and |e〉 the excited state of

the two-state atom. These are the eigenstates of the unperturbed Hamiltonian, Hun,

of Equation 2.14. The eigenvalues are Eg and Ee for the ground and excited states

respectively. The wave function can now be expressed as a superposition of these



14

eigenstates

|ψ(t)〉 = Cg(t)|g〉+ Ce(t)|e〉, (2.16)

where Cg and Ce are the probability amplitudes for finding the atom in the ground

and excited states respectively.

The completeness theorem implies that |g〉〈g|+ |e〉〈e| = 1. Therefore, the unper-

turbed Hamiltonian of Equation 2.14 can be expressed as

Hun = Eg|g〉〈g|+ Ee|e〉〈e|, (2.17)

where Eg and Ee are the energies of the ground and excited states, respectively. The

angular frequency for the atomic transition, ωatom, would then be given by

ωatom =
Ee − Eg

~
. (2.18)

In the dipole approximation we can express the field as E(t) = E0 cos(ωfieldt), where

E0 is the amplitude and ωfield is the angular frequency of the field. The interaction

part of the Hamiltonian can be expressed as

Hint = −erE(t) = −(Dge|g〉〈e|+Deg|e〉〈g|)E(t), (2.19)

where Dge = D∗
eg = e〈g|r|e〉 is the matrix element of the electric dipole moment.

Defining the Rabi frequency to be

ΩR =
e |〈g|r|e〉|E0

~
, (2.20)

we can now express the interaction Hamiltonian in terms of the Rabi frequency

Hint = −~ΩR

(
eiφ|g〉〈e|+ e−iφ|e〉〈g|

)
cos(ωfieldt), (2.21)

where φ is the phase of the dipole matrix element, that is, Dge = |Dge|eiφ.
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Integrating the Schrödinger Equation gives

|ψ(t)〉 = U(t)|ψ(0)〉, (2.22)

where the unitary time evolution operator is defined by

∂U(t)

∂t
= − i

~
HU(t), (2.23)

and

U(0) = 1. (2.24)

In the interaction picture, the state vector’s time dependence is due purely to the

interaction energy given by the interaction Hamiltonian. We define the state vector,

|ψI(t)〉, in the interaction picture to be

|ψI(t)〉 = U †
0(t)|ψ(t)〉, (2.25)

with

U0(t) = exp

(
− i

~
Hunt

)
, (2.26)

and Hun is the the unperturbed Hamiltonian. Therefore, if we define the interaction

picture Hamiltonian V(t) to be

V(t) = U †
0(t)HintU0(t), (2.27)

the state vector |ψI(t)〉 in the interaction picture evolves according to

∂

∂t
|ψI(t)〉 = − i

~
V(t)|ψI(t)〉. (2.28)

This is solved by the state

|ψI(t)〉 = UI(t)|ψI(0)〉, (2.29)
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where

UI(t) = T exp

[
− i

~

∫ t

0

V(τ)dτ

]
(2.30)

is the time evolution operator in the interaction picture, and T is the time ordering

operator. This is a shorthand notation for

T exp

[
− i

~

∫ t

0

V(τ)dτ

]
= 1− i

~

∫ t

0

V(τ1)dτ1 +

(
i

~

)2 ∫ t

0

dτ1

∫ t1

0

V(τ1)V(τ2)dτ2 + . . .

(2.31)

Now for our case of a two-state atom interacting with a monochromatic electro-

magnetic field of angular frequency ωfield, the unperturbed Hamiltonian Hun is given

by Equation 2.17 so that we have

U0(t) = exp

(
− i

~
Hunt

)

= exp

(
− i

~
Egt

)
|g〉〈g|+ exp

(
− i

~
Eet

)
|e〉〈e|. (2.32)

Therefore, the interaction picture Hamiltonian is given by

V(t) = −~ΩRU
†
0(t)

(
e−iφ|g〉〈e|+ eiφ|e〉〈g|

)
U0(t) cos(ωt)

= −~ΩR

2

[
e−iφ|g〉〈e|ei∆t + eiφ|e〉〈g|e−i∆t

+e−iφ|g〉〈e|ei(ωatom+ωfield)t + eiφ|e〉〈g|e−i(ωatom+ωfield)t
]
, (2.33)

where ∆ = ωatom − ωfield is the detuning between the atom and driving field. The

interaction picture Hamiltonian contains terms proportional to e±i(ωatom+ωfield)t, which

vary very rapidly compared to the other terms. Their average over a timescale larger

than the inverse optical driving frequency is quite small. The Hamiltonian can be

simplified by making the “Rotating Wave Approximation” and neglecting these terms.

This simplified Hamiltonian is

V(t) = −~ΩR

2

(
e−iφ|g〉〈e|ei∆t + eiφ|e〉〈g|e−i∆t

)
. (2.34)

The time evolution operator for the case of zero detuning ∆ = 0, is found by noting
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that

V2n(t) =

(
~ΩR

2

)2n

[ |g〉〈g|+ |e〉〈e| ]n , (2.35)

and

V2n+1(t) =

(
~ΩR

2

)2n+1 [
e−iφ|g〉〈g|+ eiφ|e〉〈e|

]
. (2.36)

The time evolution operator UI(t) is given by

UI(t) = cos

(
ΩRt

2

)
(|g〉〈g|+ |e〉〈e|) + i sin

(
ΩRt

2

)(
e−iφ|g〉〈g|+ eiφ|e〉〈e|

)
. (2.37)

This time-evolution operator and Equation 2.29 yield the time evolution for a given

initial state |φI(0)〉. For example, if the atom is initially in the ground state |φI(0)〉 =

|g〉,
|φ(t)〉 = cos

(
ΩRt

2

)
|g〉+ i sin

(
ΩRt

2

)
eiφ|e〉. (2.38)

The probability for the atom to be in the ground and excited states is given by

Pg = |〈g|φ(t)〉|2 = cos2

(
ΩRt

2

)
,

Pe = |〈e|φ(t)〉|2 = sin2

(
ΩRt

2

)
. (2.39)

We see that the angular frequency of population transfer occurs at the Rabi frequency

ΩR. This example illustrates the usefulness of the interaction picture in solving for

the time evolution of a system.
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Chapter 3

Quantum Theory

With a sufficiently small mode volume, the dynamics of the interaction of a single

radiation mode of the field with a single, two-level atom can be very different for a full

quantum theory than those of a semiclassical theory. Here I discuss the interaction

of a quantized radiation field with a two-level atom approximated using the dipole

and rotating wave approximations. For a more careful treatment of this topic see

Reference [28].

3.1 Hamiltonian

The Hamiltonian for a single electron atom is given by [27]

H = Hatom +Hfield − e−→r ·
−→
E , (3.1)

where Hatom is the energy of the atom, Hfield is the energy of the field, −→r is the

electron position, and E is the electric field. Note that the field is assumed to be

uniform over the atom.

The Hamiltonian for the modes of a cavity can be expressed as [29]

Hcavity =
∑

n

~ωn

(
a†nan +

1

2

)
, (3.2)

where a† is the field creation operator, a is the field annihilation operator, and ω is

the frequency of the cavity field.
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The Hamiltonian for the atom is given by

Hatom =
∑

i

Ei|i〉〈i| =
∑

i

Eiσii, (3.3)

where Ei is the energy of the eigenstate |i〉, and |i〉 forms a complete set of atomic

eigenstates.

Now the interaction term is found by noting that

e−→r =
∑

i,j

e|i〉〈i|−→r |j〉〈j| =
∑

i,j

e〈i|−→r |j〉σij, (3.4)

where σij is the atomic transition operator |i〉〈j|, and e〈i|−→r |j〉 is the electric dipole

transition matrix element. If we place the atom at the origin, the electric field oper-

ator,
−→E , can be expressed as

−→E =
∑

n

ε̂nEn(an + a†n), (3.5)

where

En =

√
~ωn

2ε0Vn

, (3.6)

ε̂n is the unit polarization vector, ε0 is the permittivity of free space, and Vn is the

electromagnetic mode volume.

If we let

gij
n = −e〈i|

−→r |j〉σij · ε̂n

~

√
~ωn

2ε0Vn

, (3.7)

the Hamiltonian for the system can now be expressed as

H =
∑

n

~ωn

(
a†nan +

1

2

)
+
∑

i

Eiσii + ~

∑

i,j

∑

n

gij
n σij

(
a†n + an

)
. (3.8)

For an individual two-level atom interacting with a single cavity mode, we denote

the ground state by |g〉 and the excited state by |e〉. The electric dipole transition
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matrix is only non-zero for ∆l = ±1. Therefore,

gii = 0. (3.9)

Also,

gij = gji. (3.10)

If we let g0 = geg = gge, the Hamiltonian is reduced to

H = ~ω

(
a†a+

1

2

)
+ Egσgg + Eeσee + ~g0 (σeg + σge)

(
a† + a

)
. (3.11)

Now, we can rearrange this further by noting a few relations. First, the atomic states

form a complete basis,
∑

n

|n〉〈n| =
∑

n

σnn = 1. (3.12)

In the case of a two level atom we have

σgg + σee = 1. (3.13)

We now define the following operators [29]

σ† =



0 1

0 0



 , σ =



0 0

1 0



 , σz =



1 0

0 −1



, (3.14)

where σ† is the atomic raising operator, σ is the lowering operator, and σz is the

inversion operator. If we now make the rotating wave approximation, that is, neglect

all terms that do not conserve energy, we are left with the following Hamiltonian

H = ~ω

(
a†a+

1

2

)
+

1

2
~ωσz + ~g0

(
a†σ + aσ†). (3.15)

We refer to g0 as the coupling coefficient, since it determines the strength of the

atom-field interaction term in the Hamiltonian. This coefficient corresponds to one

half the single-photon Rabi frequency discussed in Section 2.3, that is, g0 = ΩR

2
.
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This Hamiltonian now corresponds with the Jaynes-Cummings model [1] for a single,

stationary two-level atom in an electromagnetic field. It is realized in the limit of

negligible dissipation and no detunings.

The Jaynes-Cummings model can be extended to allow the presence of dissipation

and detunings to give a master equation for the evolution of the density operator, ρ,

for the joint state of the atom and cavity. With the electric dipole and rotating wave

approximations [16]

H = ~(ωc − ωp)â
†â+ ~(ωa − ωp)σ̂

†σ̂ + ~g(−→r )[âσ̂† + â†σ̂] + ~ε(â+ â†), (3.16)

where ε is the driving probe field of frequency ωp.

3.2 The Jaynes-Cummings Ladder

The previous section contains a derivation of the Hamiltonian for the Jaynes-Cummings

model of a single, stationary two-level atom in an electromagnetic field. Diagonalizing

Equation 3.15 yields

|±〉n =
1√
2
(|g, n〉 ± |e, n− 1〉) (3.17)

with (g, e) denoting the atomic ground and excited states. These states form the

Jaynes-Cummings ladder and represent the atom and cavity equally sharing an exci-

tation with corresponding energy eigenvalues (n~ω ±√n~g0). Measurements of the

structural properties for weak excitation yields a double peaked vacuum Rabi trans-

mission spectrum (see Figure 3.2), which comes from the ±~g0 splitting in the energy

eigenstates for a single excitation. This was first directly observed in [30].
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Figure 3.1: The Jaynes-Cummings Ladder
The ‘ladder’ of eigenvalues for the fully quantum treatment of a single, two-level
atom coupled to a cavity, where the cavity is on resonance with the atomic transition.
In the case of zero atom-cavity coupling, g0 = 0, the eigenstates |g, n〉 and |e, n− 1〉
are degenerate, where g and e refer to the atomic ground state and atomic excited
state respectively, and n refers to the number of intracavity photons present. The
energy splittings are ±√n~g0.
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Figure 3.2: Vacuum-Rabi Splitting
The double peaked Vacuum-Rabi transmission spectrum due to the ±~g0 splitting
in the energy eigenstates for a single excitation of one intracavity atom. This plot is
for the case of zero cavity detuning, ωc = ωa, where ωc is the resonance of the cavity
and ωa is the atomic resonance. The blue line is the relative transmission of a probe
through the empty cavity as a function of probe detuning ∆ωp = ωp−ωc, where ωp is
the frequency pf the probe. In the empty cavity case, the half-width half-maximum
point occurs for ωp = κ, where κ is the cavity decay rate. The red line is the relative
transmission of a probe through the cavity with a single intracavity atom coupled to
the cavity mode with coupling coefficient g0. The energy splitting is ±~g0, so the
two peaks occur for ∆ωp = ±g0. These plots are made using the parameters of our
system in the weak field limit: the coupling coefficient g0

2π
= 32 MHz, the cavity decay

rate κ
2π

= 4 MHz, and the atomic spontaneous decay rate γ⊥
2π

= 2.61 MHz.
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Chapter 4

Critical Parameters for Strong

Coupling

There are two dimensionless parameters useful in describing the atom-cavity system

in the strong coupling regime, the saturation photon number and the critical atom

number. A critical atom number of N0 indicates that the insertion of N0 atoms into

the cavity mode has a significant effect on the transmission of a probe field through

the cavity. If there is a single atom in the cavity, the saturation photon number, n0,

gives the number of photons it takes to saturate the the atomic transition.

Most quantum systems have large critical parameters. For example, a typical laser

has a threshold photon number
√
n0 ∼ 103− 104, so that adding or removing a single

photon has little effect. Similarly, in a cavity QED system with large critical parame-

ters, the effect of individual photons or atoms is small. As the critical parameters are

reduced, however, we move to a regime where individual quanta are important. When

the critical parameters are less than unity, they serve to determine the “quality” of

the atom-cavity system by showing the relative importance of a single quanta on the

system.

For an atom-cavity system to be in the strong coupling regime, these parameters

must be less than unity. In that case, the interaction of a single intracavity atom

and photon will be nonlinear. There has been steady progress over the years in the

Kimble group to drive these parameters to smaller values. Figure 4.1 illustrates this

progress.
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4.1 Electromagnetic Mode Volume

For a Gaussian standing wave inside a Fabry-Perot cavity, the electromagnetic mode

has a spatial dependence of

ψ(−→r ) = sin

(
2πx

λ

)
exp

[
−y

2 + z2

w2
0

]
, (4.1)

where w0 is the cavity waist and the mirrors are located at x = 0, L. The electro-

magnetic mode volume, Vm, is found by integrating over the cavity mode

Vm =

∫
|ψ(−→r )|2dV

=

∫ Leff

0

∫ 2π

0

∫ ∞

0

cos2

(
2πx

λ

)
re

− 2r2

w2
0 drdθdx

=
πw2

0

4
Leff , (4.2)

where Leff is an effective length for the cavity. Here we have assumed that the cavity

has hard edges at x = 0, Leff and the mode is a pure sinusoidal standing wave. In

fact, the mirrors are composed of a mirror substrate with a stack of ∼ 35 dielectric

layers each λ
4

thick. For very short cavities, there will be significant penetration of

the electromagnetic mode into the dielectric stack. As the length is decreased, this

leakage has a greater impact on the mode volume. The cavity used in our experiment

has a length of ∼ 40 µm. The dielectric stack is ∼ 5 µm thick, so a careful analysis

would have to include these effects on our cavity mode. These effects are discussed

in greater detail in Reference [35].

If we neglect penetration of the mode into the mirror substrates, the mode volume

Vm =
πw2

0

4
L. The cavity waist, w0, for a symmetric Fabry-Perot cavity is given by

w2
0 =

Lλ

2π

√
2R− L
L

, (4.3)

where L is the cavity length and R is the radius of curvature of the mirrors. Therefore,

for the case of no penetration of the mode into the cavity mirrors, the mode volume
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is given by

Vm =
λ

8

√
L3(2R− L). (4.4)

Figure 4.2 shows this dependence on cavity length of the mode volume for the param-

eters of our system. In our cavity, the radius of curvature of the mirrors is R = 0.2 m,

and the wavelength is λ = 852 nm.

4.2 Strong Coupling Regime

As we have seen earlier, the coherent atom-field coupling coefficient is given by

g(−→r ) = g0 sin

(
2πx

λ

)
exp

[
−y

2 + z2

w2
0

]
, (4.5)

where

g0 = d · E = d

√
~ω

2ε0Vm

, (4.6)

d is the atomic dipole matrix element, ω is the transition frequency, Vm is the cavity

mode volume, and 2g0 is the single-photon Rabi frequency. The position dependence

is due to the standing wave structure of the cavity mode.

One might assume that the cavity mode volume, Vm, should be made as small as

possible in order to improve the coupling coefficient, and hence the strength of the

atom-cavity coupling. However, this is not the case. In the regime of strong coupling,

the atom and cavity must be considered as a coupled system whose structure and

dynamics approach those of the Jaynes-Cummings model. The regime of strong

coupling is achieved when the coherent evolution rate of the single quanta dominates

any dissipation in the system. The dissipation rates are set by the atomic dipole

decay rate, γ⊥, and the cavity field decay rate, κ. In the case of Fabry-Perot cavities,

the electromagnetic mode volume is minimized by decreasing the cavity length, L.

However, as the cavity length is decreased, the cavity field decay rate is increased.

Therefore, we shall see later that the atom-cavity system is not optimized by simply

minimizing the cavity mode volume.
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Since the atomic decay is purely radiative, the rate for decay of atomic inversion

γ‖ = 2γ⊥. Also, γ‖ is essentially the same as for an atom in free space, since the solid

angle subtended by the cavity mode is small, (∼ 10−5). It is also important to note

that the cavity decay, κ, does not necessarily lead to decoherence, since this light

could in principle be measured or reintroduced to the cavity to maintain coherence.

4.3 Saturation Photon Number

The saturation intensity, Isat, for an atomic transition is [36]

Isat =
4π2

~cγ

3λ3
. (4.7)

The intracavity intensity for n photons in a mode volume Vm is

Iphoton =
n~ωc

Vm

. (4.8)

Therefore, the number of intracavity photons, n0, required to saturate the transition

is given by

n0 =
2πγVm

3cλ2
. (4.9)

This parameter, n0, is referred to as the saturation photon number. From earlier we

know that the Rabi frequency, ΩR, is given by

ΩR =
e |〈g|r|e〉|E0

~
,

=

√
ω

2ε0Vm~
e |〈g|r|e〉| ,

=

√
3cγλ2

4πVm

. (4.10)
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Because the coupling coefficient g0 = ΩR

2
, we can now express the saturation photon

number in terms of the coupling coefficient

n0 =
γ2

2g2
. (4.11)

Therefore, we see that n0 is a dimensionless parameter that corresponds to the number

of intracavity photons required to saturate the transition of an intracavity atom.

When n0 � 1, the atomic transition is saturated by a single intracavity photon.

4.4 Critical Atom Number

The critical atom number, N0, corresponds to the number of atoms required to have

an appreciable effect on the intracavity field. The effective coupling coefficient for

multiple intracavity atoms in the weak field limit is given by geff = g0

√
N . If we

assume that the atom has an appreciable effect on the system when the splitting is

greater than the geometric mean of the cavity decay rate, κ, and the spontaneous

decay rate, γ, the critical atom number will scale roughly as

N0 ∼
κγ

g2
. (4.12)

C = N−1
0 is the single atom cooperativity parameter [37]. Cooperative sponta-

neous radiation, also referred to as superradiance, occurs as a result of the mutual

coupling of atoms through the electromagnetic field. The rate that each excited atom

radiates is significantly influenced by the presence of the other atoms. When multi-

ple atoms are very close together, this can lead to an enhanced rate for the sponta-

neous decay. The cooperativity parameter then arises from solving the Maxwell-Bloch

equations for a system of N two-state atoms coupled to a classical electromagnetic

field [38]. The single atom cooperativity parameter is C = g2

2κγ
. Therefore, the critical

atom number is given by

N0 =
2κγ

g2
. (4.13)
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4.5 Cavity Length and the Critical Parameters

The saturation photon number and critical atom number are useful because of their

physical meaning. However, one can define a new dimensionless parameter,

β =
8π2Vm

3λ3
0

1
∣∣∣~Ψ(r)

∣∣∣
2 , (4.14)

that corresponds to the cavity mode volume in units of λ3 weighted by the inverse of

the strength of the mode function at the atomic position. This enables the equations

for the saturation photon number and critical atom number to be expressed as:

n0 =
β

4Qatom

, (4.15)

and

N0 =
β

Qcavity

, (4.16)

where

Qatom =
πc

λ0γ⊥
, (4.17)

and

Qcavity =
πc

λ0κ
=

2FL
λ0

. (4.18)

This parameter, β, then also determines the coupling coefficient in the following

manner:

g(r) =

√
2πcγ⊥
βλ0

. (4.19)

Therefore, we see that one can use a single parameter, β, combined with the properties

of the atom to be used (λ0 and γ⊥) and the quality factor of the resonator, Qcavity, to

determine the three parameters (n0, N0, g0) of importance in determining the quality

of an atom-cavity system.

For a Fabry-Perot cavity, if we neglect penetration of the mode into the mirror

substrates, we know from Section 4.1 that the mode volume for a symmetric Fabry-
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Perot cavity is given by

Vm =
πω2

0

4
L =

λ

8

√
L3(2R− L), (4.20)

where L is the cavity length and R is the radius of curvature of the mirrors. Therefore,

at the maximum of the electromagnetic mode function, we have

β =
2π3ω2

0L

3λ3
=

π2

3λ2

√
L3(2R− L), (4.21)

We can now see how the three parameters scale with cavity length:

n0 =
π2ω2

0γ

6λ2c
L =

πγ

12λc

√
L3(2R− L), (4.22)

N0 =
π3ω2

0

3λ2F =
π2

6λF
√
L(2R− L), (4.23)

and

g0 =

√
3λ2cγ

π2ω2
0L

=

(
6λcγ

π

) 1
2
(

1

L3(2R− L)

) 1
4

, (4.24)

where L is the cavity length, γ is the atomic decay rate, and F is the cavity finesse.

Figure 4.3 is a plot of the saturation photon number and critical atom number as

a function of cavity length for the parameters of our cavity. Figure 4.4 shows the

dependence of the coupling coefficient, g0, on cavity length. The cavity used in our

experiment has a finesse of F ≈ 4.2×105 for λ = 852 nm, cavity length L ≈ 44.6 µm,

and mirror radius of curvature R = 0.2 m. γ⊥
2π

= 2.61 MHz is the transverse decay

rate for the D2 transition in Cesium at λ = 852 nm.
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Figure 4.1: Progress in Strong Coupling
Progress on improving the strong coupling of atoms and cavities in the Kimble
group. � represents published results for Fabry-Perot cavities [31, 30, 32, 5, 2, 33].
N represents published results for Microsphere cavities [18, 24]. � represents the
ultimate limit for Fabry-Perot cavities discussed in Reference [34]. M represents the
ultimate limit for Microsphere resonators discussed in Reference [24] and Part III of
this thesis.
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Figure 4.2: Electromagnetic Mode Volume for a Fabry-Perot Cavity
The electromagnetic mode volume, Vm (see Equation 4.4), for a Fabry-Perot cavity
as a function of cavity length, L. This plot assumes that there is no penetration of
the cavity mode into the mirrors. The parameters for our system are used, that is, a
wavelength of λ = 852 nm and radius of curvature for the mirrors of R = 0.2 m.
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Figure 4.3: Critical Parameters in Cavity QED
This plot shows the two parameters, (n0, N0), of importance to cavity QED as a
function of cavity length. These plots assume there is no penetration of the cav-
ity mode into the mirrors. The blue line represents the saturation photon number,
n0, of Equation 4.22, and the red line represents the critical atom number, N0, of
Equation 4.23. The parameters for our system are used to generate this plot: the
transverse spontaneous decay rate for the D2 transition in Cesium is γ⊥

2π
= 2.61 MHz

for a wavelength λ = 852 nm, the cavity finesse F = 4.2 × 105, and the radius of
curvature of the mirrors is R = 0.2 m. The two curves cross for a cavity length of
L = 273.7 µm with n0 = N0 = 4.81× 10−2.
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Figure 4.4: Coupling Coefficient for a Fabry-Perot Cavity
The coupling coefficient, g0

2π
, for a Fabry-Perot cavity as a function of cavity length (see

Equation 4.24). The plot is made for the parameters of our system: the transverse
spontaneous decay rate for the D2 transition in Cesium is γ⊥

2π
= 2.61 MHz for a

wavelength λ = 852 nm, and the radius of curvature of the mirrors is R = 0.2 m.
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Part II

Realizing Strong Coupling with

Cesium in Fabry-Perot Cavities
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Our ultimate goal is to study the interaction of individual atoms and photons de-

scribed by the Jaynes-Cummings model (see Part I). We accomplish this by trapping

individual atoms inside a high-Q Fabry-Perot cavity in a regime of strong coupling [3].

Diverse avenues have been pursued for creating the trapping potential for atom con-

finement, including the use of additional far off-resonant trapping beams [2, 4], of the

cavity QED light itself [5, 6], and of single trapped ions in high-finesse optical cavities

[39, 40]. Our goal is to develop techniques for trapping that are compatible with strong

coupling and that do not interfere with the cavity QED interactions. This is crucial

for applications to quantum computation and communication [7, 8, 9, 10, 11, 12].

Our work [4] utilizes an intracavity FORT and represents an important step for-

ward by achieving extended trapping times (∼ 3 sec) for individual Cesium atoms

in cavity QED in a regime of strong coupling, realizing a trapping potential for the

center-of-mass motion that is largely independent of the internal atomic state, and

demonstrating a scheme that allows continuous observation of a strongly coupled

trapped atom. Our trap represents an improvement by a factor of 102 beyond the

first realization of trapping in cavity QED [2], and by roughly 104 beyond prior re-

sults for atomic trapping [5] and localization [6] by way of the cavity QED field itself.

Although our longest lifetimes are obtained when near-resonant fields are turned off,

atoms can also be continuously monitored, leading to mean trapping times of 0.4 sec,

with some atoms observed for over 1 sec. These observations as well as cooling and

trapping protocols are facilitated by the choice of a “magic” wavelength for the FORT

[13, 14, 15, 16]. Unlike typical FORTs, where the signs of the AC-Stark shifts for

excited and ground states are opposite, our trap causes small shifts to the relevant

transition frequencies, thereby providing advantages for coherent state manipulation

of the atom-cavity system.
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Chapter 5

The Cavity

Our cavity consists of two spherical mirrors with radius of curvature R ∼ 20 cm on

fused silica substrates with diameter D ∼ 3 mm. These substrates are turned down to

have a diameter of ∼ 1 mm at the mirror face. (See Figure 5.1 for an illustration of the

geometry of our mirrors.) The flat surface of the substrate is anti-reflection coated

and the curved surface has a high reflectivity coating consisting of 35 alternating

layers λ/4 thick of Ta2O5, n = 2.041 and SiO2, n = 1.455.

The minimum cavity length is limited to

Lmin = 2R−
√

4R2 −D2, (5.1)

where R corresponds to the mirror radius of curvature, and D is the diameter of the

substrate at the mirror surface. With a 20 cm radius of curvature, the minimum

cavity length for a 3 mm diameter substrate would be Lmin ∼ 11.3 µm, and for a

1 mm diameter substrate it would be Lmin ∼ 1.3 µm. Turning down the mirror

substrate also allows a greater clearance for the transverse beams we need to deliver

to the cavity mode from the side.

There is a practical limit to how much we can turn down the mirror face. If the

mirror face is too small, there will be losses due to the transmission of the Gaussian

beam through an aperture. The transmission (power) of an aperture with radius a
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Figure 5.1: Geometry of Our Mirrors
The geometry of the mirrors comprising our Fabry-Perot cavity. A mirror is made
of a BK7 substrate with an anti-reflective coating on one side and a dielectric high
reflecting coating on the other side. The diameter is 2.98 mm(R2 = D2

2
= 1.49 mm),

the total length is 3.85 mm, the length before the taper is L1 = 2.91 mm, the
length of the tapered section is L2 = 0.94 mm, and the radius of the front face is
R1 = D1

2
= 0.5 mm. The radius of curvature for the mirror surface is 20 cm.
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for a beam with waist w at the aperture is given by [41]

T = 1− e− 2a2

w2 . (5.2)

These losses reach 1 ppm when a ≈ 2.63w. In our case, the beam waist at the mirror

is w ∼ 23 µm, so the aperture transmission losses will be negligible.

Figure 5.2 is a picture showing the cavity setup. The mirrors are glued to alu-

minum v-blocks which are placed on shear-mode piezoelectric transducers. This al-

lows the cavity length to be actively controlled. These are then glued to a solid copper

base which is placed on a vibration isolation stack inside the chamber. More details

concerning cavity construction can be found in Christina Hood’s thesis [35].

5.1 Cavity Transmission and Losses

The loss, l, for the highly reflecting coating of our mirrors is given by

l = A+ S, (5.3)

where A is the absorptive loss, and S is the scattering loss. The cavity transmission,

Itrans, is

Itrans =
4T1T2

(T1 + T2 + l1 + l2)2
, (5.4)

where T is the transmission of the coating and the subscript refers to mirrors 1 and

2, respectively. The cavity finesse is

F =
2π

T1 + T2 + l1 + l2
=

π

T + l
, (5.5)

where the second part is for the case of equivalent mirrors.

For an incident input power of Pin, the transmitted power, Pt, is given by [34]

Pt = εPinItrans = εPinT1T2

(F
π

)2

, (5.6)
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Figure 5.2: The Cavity
A picture of the cavity setup. The mirrors are glued to aluminum v-blocks which
are placed on shear-mode piezoelectric transducers. These are then glued to a solid
copper base which is placed on a vibration isolation stack inside the chamber.
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where ε is the mode matching factor. The reflected power, Pr, is given by

Pr = (1− ε)Pin + εPin(l1 + l2 + T1 − T2)
2

( F
2π

)2

. (5.7)

A little rearranging yields

Pt

Pr − Pin

=
T 2
(F

π

)2

l2
(F

π

)2 − 1
. (5.8)

Equations 5.5 and 5.8 allow us to infer the transmission and losses for the mirrors

comprising a cavity after it has been constructed. Jun Ye performed these measure-

ments for our cavity with Pin = 54 µW, Pr = 42.6 µW, and Pt = 4.82 µW. Our

finesse is F ∼ 4.2 × 105 implying T + l ∼ 7.5 ppm. Equation 5.8 then infers that

T ∼ 4.5 ppm and l = 3.0 ppm.

5.2 Modes of a Fabry-Perot Cavity

For a Gaussian standing wave inside a Fabry-Perot cavity with mirrors located at

x = (0, L), the electromagnetic mode has a spatial dependence of

ψ(−→r ) = sin

(
2πx

λ

)
exp

[
−y

2 + z2

w2
0

]
, (5.9)

where w0 is the cavity waist. For a symmetric Fabry-Perot cavity, the cavity waist is

given by

w0 =

√
Lλ

2π

√
2R− L
L

, (5.10)

where L is the cavity length and R is the radius of curvature of the mirrors.

The electromagnetic mode volume, Vm, is found by integrating over the cavity
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mode

Vm =

∫
|ψ(−→r )|2dV

=

∫ Leff

0

∫ 2π

0

∫ ∞

0

sin2

(
2πx

λ

)
re

− 2r2

w2
0 drdθdx

=
πw2

0

4
Leff , (5.11)

where Leff is an effective length for the cavity. Here we have assumed that the cavity

has hard edges at x = (0, Leff) and the mode is a pure sinusoidal standing wave. In

fact, the mirrors are composed of a mirror substrate with a stack of ∼ 35 dielectric

layers each λ
4

thick. For very short cavities, there will be significant penetration of

the electromagnetic mode into the dielectric stack. As the length is decreased, this

leakage has a greater impact on the mode volume. The cavity used in our experiment

has a length of ∼ 45 µm. The dielectric stack is ∼ 5 µm thick, so a careful analysis

would have to include these effects on our cavity mode. These effects are discussed

in greater detail in Reference [35].

If we neglect penetration of the mode into the mirror substrates, L = Leff and

the mode volume is given by

Vm =
πw2

0

4
L,

=
λ

8

√
L3(2R− L). (5.12)

Our cavity has length L ∼ 45 µm and radius of curvature R ∼ 0.2 m. Therefore, for

a wavelength of λ = 852 nm, the cavity mode volume is ∼ 2.0× 104 µm3.

5.3 Cavity Length Stabilization

In order to keep the cavity on resonance (or at a specified detuning), the length needs

to be stabilized. For a Fabry-Perot cavity, we have the following relation between
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changes in the resonance frequency, ω, and cavity length, L,

∆L

L
= −∆ω

ω
(5.13)

If we wish to stabilize the cavity to within 2κ
A

of the cavity linewidth 2κ, the length

must be stabilized to within

∆L =
κλL

πcA
=

λ

2AF . (5.14)

In our setup, the cavity has linewidth 2κ ≈ 8 MHz and finesse F ≈ 4.2×105. In order

to stabilize the cavity to within one hundredth of its linewidth, the length would need

to be stabilized to within ∆L ∼ 1× 10−14 m.

We use the TEM00 longitudinal mode of our cavity located two orders above

the cavity QED mode, with a wavelength of ∼ 836 nm. The mirrors are attached

to piezoelectrics allowing us to actively servo the cavity length. This allows us to

arbitrarily control the probe and trapping beams without interfering with the cavity

length stabilization. The locking laser and cavity QED probe are referenced to each

other through the use of a separate transfer cavity (see Figure 8.2).
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Chapter 6

Delivering Cold Atoms to the

Cavity

This chapter discusses the vacuum system used for our experiment as well as the

Magneto-Optical Trap (MOT) used to deliver cold atoms to our cavity. These may at

first appear to be disparate topics; however, they complement each other in forming

a tool crucial to our experiment. Collisions with background gas will provide the

ultimate limit to any trapping experiment. Therefore, a good vacuum is necessary

for achieving long trap lifetimes.

Unfortunately, loading a MOT from the background cesium gas in a high vacuum

would take a prohibitively long time. We use the trick of differential pumping to

support a pressure differential between two connected chambers with pressures Pupper

and Plower, where the subscript refers to the upper and lower chamber. Figure 6.1

is a schematic of this setup, and Figure 6.2 is a picture of the actual chamber with

the associated MOT optics. Our setup supports a pressure ratio of Pupper

Plower
∼ 26. This

allows a suitable pressure in the upper chamber for loading a MOT from background

gas in a timely fashion, while maintaining a high vacuum in the lower chamber. The

cold atoms trapped in the upper MOT can then be efficiently transferred to a MOT in

the lower chamber. Finally, the cloud of cold atoms in the lower MOT can be dropped

into the cavity. As we shall see, this process allows cold atoms to be delivered to the

cavity in a timely fashion while maintaining the high vacuum necessary for achieving

long trap lifetimes.
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L ~2cm
D~0.4cm25 cm

0.5 cm

MOT 1

MOT 2

Figure 6.1: Schematic for Differential Vacuum System
The dual-chamber vacuum system used in our setup. The upper and lower chambers
are at pressures Pupper ∼ 1.07×10−8 Torr and Plower ∼ 4.06×10−10 Torr, respectively
(inferred from measurements with an ion guage). The two chambers are connected
by a tube of length L ≈ 2 cm and diameter D ≈ 0.4 cm which supports a ratio of
pressures Pupper

Plower
∼ 26 (see Section 6.1.2).

The chamber and MOT setup used in our experiment was constructed by David

Vernooy and Jun Ye. The details of construction and setup of the system are given

in detail in David’s Thesis [42]. The information contained in this chapter instead

describes the possible effects of background gas on trapped atoms in our cavity.

Magneto-Optical Traps are also discussed to understand the technology involved in

delivering cold atoms to our cavity.
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Figure 6.2: Vacuum Chamber for Our Experiment
The two chambers used to create the differential system for our experiment. The
optics and magnet coils associated with the upper and lower MOTs can also be seen.
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6.1 The Vacuum System

We are interested in the relation of the vacuum properties to the corresponding back-

ground gas. This is necessary to understand the effects of the background gas on

our trap lifetime. Clearly, if a Cesium atom at room temperature collides with a

cold atom trapped in our cavity, it will not remain trapped. Therefore, this type of

interaction will constitute the ultimate limit for our trap lifetime.

6.1.1 Gas Flow in a Vacuum System

There are three useful quantities for understanding gas flow in a vacuum system.

They are the pumping speed, S, the conductance, C, and the throughput, Q. The

pumping speed is given by

S ≡ dV

dt
, (6.1)

corresponding to the volume rate of flow through a cross section of the vacuum system.

This quantity is usually denoted in units of [ liter
sec

], and vacuum pumps are typically

specified by this parameter at their inlet.

The throughput is defined as the product of the pressure and pumping speed at

a given cross section of the system. This is proportional to the mass rate of flow

through that cross section, which can be verified as

Q ≡ PS = P
dV

dt
= nvkBT

dV

dt
=
kBT

m
mnv

dV

dt
=
kBT

m

dM

dt
∝ dM

dt
, (6.2)

where P and S respectively are the pressure and pumping speed at the cross section in

question, nv is the number of particles per unit volume at the point, kB is Boltzman’s

constant, T is the temperature of the gas, m is the mass of a Cesium atom, and dM
dt

is the total mass rate of flow through the cross section.

The final quantity needed to analyze a vacuum system is the conductance, C, of

a section of tube, defined as the proportionality constant between the driving force
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applied (i.e., the pressure differential) and the throughput:

Q = (P1 − P2)C. (6.3)

Figure 6.3 shows the simplest setup of a tube with conductance C where the pressure

and pumping speed at each end are (P1, S1) and (P2, S2). If we assume there are no

sources inside the tube, the mass throughput will be uniform throughout the tube,

so that

Q =






S1P1

C(P1 − P2)

S2P2.

(6.4)

Some rearranging also reveals the relation

1

S1

=
1

S2

+
1

C
. (6.5)

For a vacuum pump located at point 2 and connected to a chamber at point 1 by

a tube of conductance C, Equation 6.5 would yield the net pumping speed at the

chamber. This is extremely useful in checking the suitability of a connection tube for

a given system. It is best to overdesign the connection so that it does not severely

degrade the pump performance. As an example, we consider the situation of a pump

with speed S2 = 200 liter
sec

connected to a tube with conductance C = 14 liter
sec

. In this

case, the net speed at the chamber is ∼ 13 liter
sec

. This is not a good design, since

the large capacity of the pump is wasted. This also demonstrates the importance of

proper gauge placement. If the pressure is monitored at the pump, the pressure on

the other end of the connection tube can be very different. A little algebra yields

P1 = P2

(
1 +

S2

C

)
. (6.6)

In our example, the pressure at the chamber would be a factor of ∼ 15 higher than

that measured at the pump. This illustrates the importance of gas flow analysis in
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Figure 6.3: Relating Conductance, Throughput and Pumping Speed for a Tube
The pumping speed, S, throughput, Q, and conductance, C, are useful parameters in
analyzing the gas flow in a vacuum system. The relations between them are explored
in Section 6.1.1.

designing connection tubes and monitoring the pressure.

The conservation of mass throughput, Q, can be used to derive the network equa-

tions for tubes connected in series or parallel. For two tubes connected in series, the

net conductance is

Cseries =
C1C2

C1 + C2

, (6.7)

while the net conductance for tubes connected in parallel is

Cparallel = C1 + C2. (6.8)

When the mean free path for collisions of the gas is much greater than the di-

mensions of the vacuum chamber, the process for gas flow is referred to as molecular

flow. In this case, the momentum transfer occurs between the gas particles and the
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wall of the container with very little interaction between the particles. Therefore, the

conductance in this region does not depend on the pressure, but only the geometry

of the system. For a tube of circular cross section in the regime of molecular flow,

the conductance for air at 20◦ C is given by

C ≈ (1.2× 105)
D3

L
, (6.9)

where D and L are the tube diameter and length respectively in [m], and C has the

units [ liter
sec

].

6.1.2 Analysis of Gas Flow in Our Vacuum System

We need to know the pressure inside our lower chamber (see Figure 6.1) in order

to determine the lifetime for trapped atoms due to collisions with a background

gas. A simplified model of our system is found by assuming there are no sources

in the lower chamber or the tubes connecting the chambers and pump. There are

additional sources, such as outgassing throughout the chamber as well as the atoms

that are dropped from the upper and lower MOT. However, this model will at least

put a bound on how good our pressure can be and give us an idea of the expected

collisional lifetimes.

The simplified model is illustrated in Figure 6.4. In this model, we have neglected

the conductance of the lower chamber, since it is of significantly larger cross section

than the tubes connected to it. Because we have assumed there are no extra sources

in the lower chamber or the tubes connecting the chambers, the mass throughput,

Q, is constant throughout the system. We will account for some of the imperfections

of this model by assuming there is a base pressure throughout the system, P0, when

there is no mass flow through the system. This modifies Equation 6.2 to yield

Q = (P − P0)S. (6.10)
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These conditions give the following for the mass throughput

Q =






(PP − P0)SP

C3(PI − PP )

(PI − P0)SI

C2(PL − PI)

(PL − P0)SL

C1(PU − PL)

(PU − P0)SU ,

(6.11)

where PP and SP are the pressure and pumping speed at the ion pump, PI and

SI are the measured pressure and pumping speed at the ion gauge, PL and SL are

the pressure and pumping speed in the lower chamber, PU and SU are the pressure

and pumping speed of the upper chamber, P0 is the base pressure in the system, C1

is the conductance of the tube connecting the upper and lower chamber, C2 is the

conductance of the tube connecting the lower chamber to the T for the ion gauge,

and C3 is the conductance for the tube connecting the T to the ion pump. A little

algebra then yields the following for the pumping speeds throughout the system

1

SI

=
1

C3

+
1

SP

,

1

SL

=
1

C2

+
1

C3

+
1

SP

,

1

SU

=
1

C1

+
1

C2

+
1

C3

+
1

SP

. (6.12)

A little more rearranging yields the following results for the pressures:

PP =
1

C3 + SP

(C3PI + SPP0), (6.13)

PL = P0 +

(
1

C2

+
1

C3

+
1

SP

)
C3SP

C3 + SP

(PI − P0), (6.14)
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and

PU = P0 +

(
1

C1

+
1

C2

+
1

C3

+
1

SP

)
C3SP

C3 + SP

(PI − P0). (6.15)

The ratio of the upper chamber pressure to the lower chamber is given by

PU

PL

= 1 +

C3SP

C1(C3+SP )
(PI − P0)

P0 +
(

1
C2

+ 1
C3

+ 1
SP

)
C3SP

C3+SP
(PI − P0)

. (6.16)

In our system (see Figure 6.4), the pumping speed of the ion pump is SP ≈ 200 liter
sec

.

PI is the pressure measured with the ion gauge and is typically PI ∼ 2.5×10−10 Torr.

The background pressure is inferred from the pressure obtained when the system has

been depleted of Cesium by closing the valve and pumping for some time, so that

P0 ∼ 1.0×10−10 Torr. The tube connecting the upper chamber to the lower chamber

has a length of L1 ∼ 2 × 10−2 m and diameter D1 ∼ 4 × 10−3 m. The conductance

of this tube is C1 ∼ 0.384 liter
sec

. The tube connecting the lower chamber to the T for

the ion gauge has a length of L2 ∼ 1.524 × 10−1 m, diameter D2 ∼ 3.175 × 10−2 m,

and conductance C2 ∼ 25.2 liter
sec

. The tube connecting the T for the ion gauge to the

ion pump has a length of L3 ∼ 1.27 × 10−1 m, diameter D3 ∼ 3.175 × 10−2 m, and

conductance C3 ∼ 30.24 liter
sec

.

For a measured ion gauge pressure of PI = 2.5 × 10−10 Torr and background

pressure P0 = 1.0× 10−10 Torr, the parameters of our system yield a lower chamber

pressure of PL ≈ 4.06 × 10−10 Torr and an upper chamber pressure of PU ≈ 1.07 ×
10−8 Torr. The ratio of pressures supported by the differential pumping hole in this

case is then 26.3.

These calculations show some important features of our system. Since the example

of bad system design discussed in Section 6.1.1 corresponds to the actual parameters

for our chamber, we see that while we have a large capacity ion pump with speed

SP ∼ 200 liter
sec

, it is strangled by the connection tube to give a pumping speed at the

lower chamber of SL ∼ 12.9 liter
sec

. The other important feature is the tube connecting

the upper and lower chamber. The conductance is very small, C1 ∼ 0.384 liter
sec

. In

this case, the small conduction is intentional. We want to be able to have a low
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Figure 6.4: A Simple Model for Gas Flow in Our System
In our simplified model, we assume that the only source is the upper chamber,
so that the throughput, Q, is constant from the upper chamber to the lower ion
pump. We also assume that the conductance of the lower chamber is infinite. This
approximation is not unreasonable, since the cross section is much larger than the
tubes connecting the pump and chambers. These approximations allow us to put a
bound on the pressure in the lower chamber. (See Section 6.1.2)
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pressure in the lower chamber for long trap lifetimes, while keeping a higher pressure

in the upper chamber for efficient loading of a MOT from the background gas. This

connection is referred to as a differential pumping hole, because it allows for a large

differential in pressures. Our setup allows a pressure ratio of Pupper

Plower
≈ 26. This allows

us to load the upper MOT in a reasonable time while maintaining a good vacuum in

the lower chamber.

6.1.3 Relation of Pressure to Kinetic Properties of Particles

A simple kinetic calculation of the pressure is given by

P =
F

A
=

1

A

d(mv⊥)

dt
=

1

A

d(mv⊥)

dx
v⊥ =

1

A
(mnvAv2

⊥)

= mnvv2
⊥ =

1

3
mnvv

2
rms =

1

3
ρv2

rms, (6.17)

where F is the force on the wall, A is the area of the wall, m is the mass of the

particles comprising the gas, v⊥ is the average velocity of the particle perpendicular

to the wall, nv is the number of particles per unit volume, ρ is the mass per unit

volume, and vrms is the root-mean-squared velocity of the particles.

The Maxwell-Boltzmann distribution of velocities is given by

N(v) = 4πN

(
m

2πkBT

)3/2

v2e
− mv2

2kBT , (6.18)

where T is the temperature, kB is Boltzmann’s constant, m is the mass of the par-

ticles, and N is the total number of particles in the sample which can be verified by

integrating the distribution

N =

∫ ∞

0

N(v)dv. (6.19)

The average velocity is found to be

v =

∫∞
0
N(v)vdv

N
=

√
8kBT

πm
. (6.20)
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The root-mean-square velocity is given by

vrms =
√
v2 =

√∫∞
0
N(v)v2dv

N
=

√
3kBT

m
. (6.21)

6.1.4 Mean-Free Path and Collision Times

Assuming the particles comprising a gas have a collisional cross section of σ, in a

time t a particle sweeps out a volume σvt. Let nv be the number of particles per unit

volume. On average, the number of collisions in time t is given by σvreltnv, where vrel

is the average relative velocity. The mean time between collisions, t, is given by

t =
1

σnvvrel

. (6.22)

Note that the mean time between collisions depends on the average relative velocity.

Therefore, for collisions within the background gas, vrel = v
√

2, where the
√

2 is due

to the relative motion of the particles, and v is given by Equation 6.20. For collisions

with a stationary atom, vrel = v.

The mean distance between collisions is referred to as the mean free path, L. From

the preceding discussion we see that

L = vt =
v

σnvvrel

=
1√

2σnv

, (6.23)

where v is the average velocity in the gas (Equation 6.20), and vrel = v
√

2 is the mean

relative velocity of particles in the gas.

From Section 6.1.3 we know that the number of particles per unit volume can be

related to the pressure as follows

nv =
P

kBT
, (6.24)

where P is the pressure, kB is Boltzmans’s constant, and T is the temperature. The
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mean free path can now be expressed as

L =
kBT

σP
√

2
, (6.25)

where σ is the collisional cross section of the particles.

There are two types of collisions that will be important for our situation. First,

collisions within the gas for which the mean collision time is

tgas =
1

σnvvrel

=
kBT√
2σPv

=
1

σP

√
kBTπm

16
, (6.26)

where the average velocity is given by Equation 6.20. In the second case, for inter-

actions between stationary particles and the background gas, the relative velocity is

increased by a factor
√

2. The mean time between collisions tstat for this stationary

particle case is

tstat =
1

σP

√
kBTπm

8
. (6.27)

6.1.5 Collisional Lifetime for Background in Our System

The collisional lifetime, τcoll, for almost stationary atoms in our trap interacting with a

background gas is described precisely by the second case above. Therefore, τcoll = tstat,

where tstat is given by Equation 6.27. For a given temperature, the collisional lifetime

depends inversely on the pressure, illustrating the importance of pressure on trap

lifetimes.

We assume the background gas in our system is Cesium, with mass m = 2.206×
10−25 kg and collisional cross section σ ≈ 2 × 10−17 m2 [43]. In many vacuum

systems the pressure is measured in Torr, defined as 1
760

of a standard atmosphere.

(The following conversion is useful: 1 Torr = 1.33322 × 102 N
m2 .) For a pressure of

P ∼ 1×10−10 Torr ≈ 1.333×10−8 N
m2 at room temperature (300K), we would have a

collisional lifetime τcoll ∼ 71 sec. Unfortunately, as we have seen in Section 6.1.2, the

pressure in the lower chamber of our system is at least P ∼ 4.06 × 10−10 Torr. The

collisional lifetime for a trapped atom in this case would be limited to τcoll ∼ 17 sec.
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Unfortunately, we have no direct measurement of the residual pressure in the narrow

cylinder between the mirror substrates (diameter 1 mm and length 40 µm). However,

this places an upper bound on our expected lifetime. Therefore, our measured trap

lifetime of ∼ 3 sec [4] may be limited by collisions with the background gas. This

demonstrates the extreme importance of the vacuum system in conducting trapping

experiments with long lifetimes. Other possible limits to the lifetime are discussed in

Chapter 7.

6.2 Magneto-Optical Traps

The basic techniques involved in laser cooling and trapping have become a stan-

dard tool in atomic physics. The Magneto-Optical Trap (MOT) in particular forms

the starting point for many experiments. There are many references describing the

various types of Magneto-Optical traps and the theory behind their operation (see

Reference [36]). This section is not intended to be an exhaustive reference on laser

cooling and trapping. I will only discuss the principles involved, since these concepts

are important for my later discussion of trapping atoms in our cavity.

6.2.1 Optical Molasses

Optical cooling of atomic motion arises from the transfer of momentum from a light

field to a recoiling atom through the scattering of photons. Cooling is achieved by

making this process velocity dependent. When this is extended to three dimensions,

the light field acts as a viscous medium and is referred to as an optical molasses.

To understand the optical molasses, we start by examining the one-dimensional

case of a two-level atom with resonance ωa in the field of a laser with frequency ωL

propagating to the right. When the atom absorbs a photon, it is given a momentum

kick of in the direction of propagation of the laser. When it spontaneously emits

a photon, the direction is random. Therefore, over many cycles of absorption and

emission, the recoil momentum for spontaneous emission will average to zero. This

causes the atom to experience a net force along the direction of propagation of the
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laser given by

< F >= Rsc
~ω

c
, (6.28)

where Rsc is the number of spontaneous scattering events per second given by

Rsc =
γ I

Isat

1 + I
Isat

+
(

∆
γ

)2 , (6.29)

I is the intensity of the field, Isat is the saturation intensity, γ is the spontaneous

decay rate (HWHM), and ∆ = ωL − ωa is the detuning of the laser from the atomic

resonance. At low intensities the scattering rate is proportional to the intensity.

As the intensity increases the scattering rate shows power broadening and the rate

saturates.

The velocity of the atom leads to a Doppler shift, so the atom sees a laser frequency

of ωL

(
1− v

c

)
, where v is the velocity of the atom anti-parallel to the field propagation.

The scattering probability is related to the detuning, so the maximum scattering

occurs when the Doppler shifted frequency matches the atom’s resonance frequency.

This occurs when v = c
ωL

∆, where ∆ = ωL − ωa is the detuning of the laser from the

atomic resonance. The average force discussed above will have a velocity dependence

due to the Doppler shift given by

< F >=
~ω

c

γ I
Isat

1 + I
Isat

+
(

∆−k·v
γ

)2 , (6.30)

where k is the wave vector of the incident photon. Figure 6.5 shows the force on an

atom as a function of velocity. The maximum force occurs for velocity v = c∆
ωL

. When

ωL < ωa (∆ < 0), the laser is red detuned and the force opposes the atom’s forward

motion. If a similarly detuned beam is directed to counterpropagate with the first,

it will oppose the atom’s backward motion. In this way, the atom will experience

an average velocity dependent force, which is zero if it is not moving (also shown in

Figure 6.5). This velocity dependent force can be extended to three dimensions with

3 orthogonal sets of counterpropagating beams acting as a viscous medium to slow
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down the atom. This configuration is referred to as an optical molasses. While the

molasses leads to cooling, the atom performs a random walk in momentum space as

it emits spontaneously. These fluctuations limit the lowest temperature achievable

when the laser beam is present, corresponding to the Doppler cooling limit with

temperature

TD =
~γ

kB

. (6.31)

For the D2 line in Cesium, γ
2π
≈ 2.61 MHz, so the Doppler limit is ∼ 125 µK.

The process relies on having many cycles of absorption and emission for the tran-

sition used for cooling. For an excited two-level atom, the atom will trivially return

to the ground state through spontaneous emission and can be re-excited by the same

beam. When such a transition exists in a real atom, it is referred to as a cycling tran-

sition. In a real atom, other levels could interfere with the Doppler cooling process by

interfering with the necessary cycling (in the next section we will also see that they

can sometimes lead to sub-Doppler cooling). Alkali atoms with nuclear spin I and to-

tal angular momentum F have the transition from the S 1
2

ground state with F = I+ 1
2

to the P 3
2

state with F = I + 3
2

that satisfies the cycling condition. The excited state

cannot decay to the other hyperfine level (F = I − 1
2
) of the ground state because of

the ∆F = 0,±1 selection rule. This transition is the D2 line and is commonly used

for the trapping of alkali atoms, with saturation intensities Isat ∼ 1 mW
cm2 .

6.2.2 Magneto-Optical Trap

Although the optical molasses will cool the atoms, they will still diffuse out of the

region if there is no position dependence to the damping/friction force. While there

are multiple ways to induce a position dependence, one method relies on the Zeeman

shift produced by a magnetic field. The position dependent force is created by ap-

plying an inhomogeneous magnetic field and appropriately polarized laser beams to

the region. The magnetic field regulates the rate at which an atom in a particular

position scatters photons, creating a position dependent force [36].

Consider the simplified case of an atom with J = 0 ground state and J = 1 excited



65

F
o

rc
e

Atom Velocity

Figure 6.5: Force on an Atom in Counterpropagating Red-Detuned Fields
The one-dimensional case of a two-level atom in counterpropagating fields with
detuning ∆ = ωL − ωa < 0. The blue line shows the force on an atom in a field
propagating to the right, the red line shows the force for a field propagating to the
left, and the green line shows their sum, which is the net force on the atom for the
two counterpropagating fields. These forces are velocity dependent because of the
Doppler shifts due to the atomic motion. For a single beam, the maximum force
occurs at speed v = c∆

ωL
. For the combined beams, the force is zero when the atom is

not moving. This effect leads to Doppler cooling of the atoms.
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state illuminated by counterpropagating beams with opposite circular polarization.

Conservation of angular momentum dictates that the σ− beam can only excite tran-

sitions to the mF = −1 state, while the σ+ beam can only excite transitions to the

mF = +1 state.

A quadrupole magnetic field can be created by using two anti-Helmholtz coils.

This field is zero at the origin and is proportional to the distance from the origin,

for small displacements. The degenerate excited state energy levels will be split by

an amount (1
2
µBgBmF ), where µB is the Bohr magneton, B is the magnitude of

the magnetic field, g is the Landé g-factor, and mF is the magnetic sublevel of the

atom. If the optical beams and magnetic field are oriented as shown in Figure 6.6A,

the Zeeman shift is linear in x. When the atom moves to the right of the origin,

the magnetic field it sees increases causing the mF = +1(−1) state to go up (down)

in energy. If the laser frequency is red detuned to be below all of the split levels,

the level with the least detuning will scatter the most. In this case, it will be the

mF = −1 state with the σ− light which is propagating to the left, opposite the atom’s

motion (see Figure 6.6B, B > 0 case). This will tend to push the atom back towards

the center. If the atom moves to the left of the origin, the opposite happens and

the atom is once again pushed back to the center of the trap where the magnetic

field is zero. In this way, a restoring force can be created to confine the atoms to

the origin. This idea can be extended to three dimensions by using three orthogonal

pairs of counterpropagating beams to create a linear restoring force in each direction.

Damping in the trap is then provided by the optical molasses created by the same

beams as discussed in the previous section.

6.2.3 Sub-Doppler Cooling in a MOT

As we have seen in the previous sections, Doppler cooling methods are limited in

their ability to cool an atom. If one wishes to cool beyond the Doppler limit, other

mechanisms must be employed. While there are many possible methods of performing

sub-Doppler cooling, I will discuss one method referred to as Polarization Gradient
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Figure 6.6: Restoring Force in a MOT
The one-dimensional case of a two-level atom in a position-dependent magnetic field
with counterpropagating opposite circularly polarized beams. As the atom moves
from the origin, the magnetic field causes Zeeman splitting affecting the scattering
rates. A position-dependent restoring force is created.
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Cooling (PGC).

The following example is discussed in detail in References [44] and [45]. Consider

an atom with ground state J = 1
2

and excited state J = 3
2

confined to move along

two orthogonal linearly polarized counterpropagating beams. The atom will see a

position-dependent polarization for the field. Over a distance of λ/2, the polarization

will vary from purely σ+ to linear at 45◦ with respect to the two beams, to purely

σ−, to linear at −45◦, returning to σ+. This is just one method of creating a light

field with polarization gradients.

The light will induce Stark shifts in the different magnetic sublevels of the ground

level, yielding a position and internal-state dependent potential. When the light field

is σ+, the shift of the m = +1
2

sublevel is larger than that of the m = −1
2

sublevel.

When the light is σ−, the opposite is true. Therefore, the ground state shifts for the

two cases will change as shown in Figure 6.7. In addition, the different polarizations

will induce different optical pumping effects: The σ+ light tends to put the population

into the m = +1
2

state, whereas the σ− light tends to put the population into the

m = −1
2

sublevel.

In this way, as the atom moves due to its thermal energy, it is forced to climb a

potential hill. If it has enough energy to reach the top of a neighboring hill, it will

be optically pumped to the other sublevel where it is again at the minimum of the

potential. As the atom moves away from this point, it once again climbs a potential

hill. As shown in Figure 6.7, each optical pumping event results in the absorption of

light at a lower frequency than the emitted light, leading to a dissipation of energy.

This process will continue until the kinetic energy is too small to climb the next hill.

This process is often referred to as Sisyphus Cooling because the atoms are forced to

always move ‘uphill.’
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Figure 6.7: Polarization Gradient Cooling
An atom with ground state J = 1

2
and excited state J = 3

2
is confined to move along

two orthogonal linearly polarized counterpropagating beams. These beams create
an alternating polarization gradient of σ+ and σ−. The σ+ light tends to pump the
atom to m = +1

2
, while the σ− light tends to pump the atom to m = −1

2
. The

polarization gradient also creates a position and internal state dependent potential.
This potential combined with the optical pumping leads to the Sisyphus cooling
described in Section 6.2.3. As shown in the diagram, each optical pumping event
results in the absorption of light at a lower frequency than the emitted light, leading
to a dissipation of energy.
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Chapter 7

Dipole Force Traps

While a cavity QED probe can be used to trap an intracavity atom [5], we prefer to

decouple the trap and probe fields. In addition, we would like to create a trapping

potential that is independent of the atom’s internal state. Optical dipole traps are far

detuned and rely on the electric dipole interaction with far detuned light, implying

low optical excitation of the transition. In addition, we will see that the multiple

levels of a real atom can be exploited to create a trap that is insensitive to the atomic

state.

7.1 Classical Dipole Force

When a dielectric is placed in an electric field
−→
E , it becomes polarized with a dipole

moment −→p given by

−→p = α
−→
E , (7.1)

where α is the polarizability of the dielectric. The force on the induced dipole moment

is given by
−→
F dip = (−→p · ∇)

−→
E = ∇

(−→p · −→E
)
. (7.2)

Because the dipole potential is related to the dipole force by

−→
F dip = −∇Udip, (7.3)
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we now can express the dipole potential as

Udip = −−→p · −→E = −α
∣∣∣
−→
E
∣∣∣
2

. (7.4)

If the electric field is due to electromagnetic radiation, we can now see that the dipole

potential will be proportional to the intensity, I, of the electromagnetic field,

Udip ∝ −I. (7.5)

This implies that a trapping potential could be produced with a spatially varying

intensity profile. This potential is not stable, however, since scattering with the

detuned field leads to heating. Fortunately, as we shall see in the next section, the

scattering rate can be made arbitrarily small.

7.2 Two-Level Atom

The dipole potential for a two-level atom in the limit of large detuning and negligible

saturation is given by [46]

Udip =
3πc2γ

ω3
0

I

∆
∝ I

∆
, (7.6)

where ω0 is the atomic resonance frequency, ωtrap is the frequency of the trapping

light, ∆ = (ωtrap − ω0) is the detuning of the trapping field, I is the intensity of the

trapping light, and γ is the spontaneous decay rate (HWHM) for the transition. For

a red detuned field (∆ < 0) we have an attractive potential, Udip < 0, and the atom

will be attracted to the maximum of the field intensity. The scattering rate, Rsc, for

this transition in the same regime is given by

Rsc =
6πc2γ2

~ω3
0

I

∆2
∝ I

∆2
∝ Udip

∆
. (7.7)

For a desired potential, Udip, as the detuning, ∆, is increased, the intensity, I, can

be increased to maintain the same potential depth. However, the scattering rate will



73

decrease. In this way, the scattering rate can be made arbitrarily small for a given

trap depth. The practical limits to this in a real atom are the other atomic levels

that are present, making it difficult to have arbitrarily large detunings for a trapping

potential.

The trap depth, U0, is often quoted in terms of the resulting AC Stark shift, δAC ,

through the relation [47]

U0 = ~δAC , (7.8)

where the AC Stark shift is given by [46]

δAC =
3πc2γ

~ω3
0

I

∆
. (7.9)

The spontaneous scattering rate can then be expressed as

Rsc =
2γ

∆
δAC . (7.10)

Both absorption and spontaneous emission contribute to the heating of the trapped

atom [46]. At large detunings, the heating due to absorption corresponds to an in-

crease in thermal energy in the direction light propagation equal to the recoil energy,

Erec, per scattering event. Spontaneous emission also results in an increase in energy

equal to the recoil energy per scattering event, however, this occurs in a random

direction. In this way, the longitudinal motion will be heated on average by 4
3
Erec

per scattering process, whereas the two transverse directions are each heated by by

1
3
Erec. The overall heating corresponds to an increase of 2Erec in a time R−1

sc .

If we assume that a spontaneously scattered photon leads to heating by twice the

recoil energy, Erec, we have a lifetime of [48]

τ =
U0

2ErecRsc

, (7.11)
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where the recoil energy is given by

Erec =
~

2k2

2m
=

2~
2π2

mλ2
. (7.12)

7.3 Multi-Level Alkali Atoms

There are several references for the general results of a multi-level atom in a FORT [46,

48, 47, 49, 50]. Here we will consider the results for the ground state of alkali atoms,

where spin-orbit coupling leads to the D-line doublet with S1/2 → (P1/2, P3/2). The

coupling to the nuclear spin then produces the hyperfine structure of the ground and

excited states. In this case, the potential and spontaneous scattering rate of a ground

state with total angular momentum F and magnetic quantum number mF is given

by [46]

U(r) =
πc2γ

w3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I(r),

Rsc(r) =
2πc2γ2

~w3
0

(
2

∆2
2,F

+
1

∆2
1,F

)
I(r), (7.13)

where P = (1, 0,−1) for transitions (σ+, π, σ−) respectively, ∆1,F is the detuning of

the FORT light from the P1/2 state, ∆2,F is the detuning of the FORT light from the

P3/2 state, (F,mF ) are the hyperfine and magnetic sublevels, and gF is the Landé

g-factor. This result is valid for both linear and circular polarization as long as all

optical detunings stay large compared with the excited state hyperfine splitting.

7.4 State Insensitive Trap

In order to create a trapping potential, spatial variations in the fields which cre-

ate AC Stark shifts are necessary. However, this makes spectroscopy difficult, since

they change the ground and excited states differently. For a two-state atom, a field

that causes an AC Stark shift for the ground state would cause the opposite shift

in the excited state. Therefore, for a trapping potential of the ground state, the
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excited state is actually repelled. This leads to the unfortunate consequence that

the effective detuning between an atomic transition and the cavity mode becomes

a strong function of the atom’s position within the trap, which interferes with the

cavity QED interactions [16]. However, due to the specific multi-level structure of

Cs, the wavelength of the trapping laser can be tuned to a region where this prob-

lem is eliminated [13, 14, 15]. Ideally we would like to have both the excited and

ground state trapped with the same shifts, so that optical transitions will not lead to

additional heating beyond the recoil heating.

We can use the multiple atomic levels to our advantage by choosing the appropriate

trapping laser wavelength that couples to several excited states. In this way, we can

manipulate the AC Stark Shifts of multiple levels to produce a potential with the same

shift in the ground and excited state [46]. A simplified illustration of this scenario

is depicted in Figure 7.1. Imagine a three-level system (|g〉, |e〉, |c〉) where |g〉 is the

ground state, |e〉 is the excited state, and |c〉 is another state. If we have a field, Ω, red-

detuned from the |g〉 → |e〉 transition by ∆ge, the AC Stark shift of the ground state

is Uge ∝ − γeI
∆ge

, where γe is the spontaneous decay rate of |e〉 and I is the intensity of

the field. The AC Stark shift for the state |e〉 due to this field has the opposite sign as

that of the ground state, −Uge. The applied field has a similar effect on the |e〉 → |c〉
transition. In that case, the AC Stark shift of the state |e〉 is Uec ∝ − γcI

∆ec
, where γc

is the spontaneous decay rate of |c〉. The AC Stark shift of the state |c〉 due to this

field is −Uec. If the wavelength is chosen appropriately, such that Uec = 2Uge, the

AC Stark shift of the ground and excited states will be equal (see Figure 7.1). This

is a desirable situation for spectroscopy, since the spatial dependance of the trapping

field will have no effect on the transition frequency. The trapping wavelength that

achieves this situation is referred to as the ‘magic’ wavelength [13, 14, 15].

In Cesium we can use the 6S1/2, 6P3/2 and 6D5/2 atomic levels to achieve the

scenario described in Figure 7.1. In the range 920 − 950 nm the ground state is

relatively unchanged, while the excited state is strongly affected because it couples

to a higher lying state. This is similar to the scheme proposed in Reference [51] and

implemented in Reference [52]. Around the ‘magic’ wavelength λF = 935.6 nm, the
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Figure 7.1: Simplified Illustration of the ‘Magic’ Wavelength
Imagine a three-level system (|g〉, |e〉, |c〉) where |g〉 is the ground state, |e〉 is the
excited state, and |c〉 is another state. A FORT is created with a field, Ω, red-detuned
from the |g〉 → |e〉 transition by ∆ge, to produce an trapping potential in the ground
state of U1. The AC Stark shift for the state |e〉 due to this field has the opposite
sign as that of the ground state to create a repulsive potential, −U1. The applied
field has a similar effect on the |e〉 → |c〉 transition. If the wavelength is chosen such
that the potential created for the |e〉 state is 2U1, the potential for the |c〉 state will
be −2U1. The resultant potential for the excited state due to these two effects is U1.
In this situation, the AC Stark shift of the ground and excited states will be equal.
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sum of the AC Stark shifts coming from different allowed optical transitions results

in the ground, 6S1/2, and excited, 6P3/2, states both being shifted downwards by

comparable amounts, δ6S1/2
' δ6P3/2

. The AC-Stark shifts remain slightly dependent

on the hyperfine and magnetic quantum numbers of the 6P3/2 states, as shown in

Figure 7.2. Jeff computed these shifts using an extended model that includes counter-

rotating terms and the following couplings: 6S1/2 → nP1/2,3/2, for n = (6 − 11);

6P3/2 → nS1/2 for n = (6 − 15); 6P3/2 → nD3/2,5/2 for n = (5 − 11). The relevant

parameters are taken from References [35] and [53].

7.5 Trap Vibrational Frequencies

In the harmonic approximation for a standing wave dipole force trap, the oscillation

frequency for the trapped atom in the axial direction will be

ωax = 2π

√
2~δAC

mλ2
, (7.14)

where m is the mass of the atom and δAC is the maximum AC stark shift (in radians

per second) of the trap. In the radial direction, the oscillation frequency is

ωrad =

√
4~δAC

mw2
0

, (7.15)

where w0 is the beam waist.

For our case of Cesium, m = 2.206 × 10−25 kg, in a FORT with wavelength λ =

935.6 nm and trap depth δAC

2π
= 47 MHz, the axial and radial oscillation frequencies

are νax ∼ 570 kHz and νrad ∼ 5.2 kHz, respectively.
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Figure 7.2: AC Stark Shifts for Cesium in a Linear FORT
A) The AC-Stark shifts (δ̂6S1/2

, δ̂6P3/2,F ′=4) as functions of FORT wavelength λF

for atomic Cs for a linearly polarized FORT. In each case, the normalization is
δ̂ = δ/[δ6S1/2

(λF = 935.6 nm)].

B) The AC Stark shift δ̂6P3/2
versus mF ′ for each of the levels 6P3/2, F

′ = (2, 3, 4, 5)

for λF = 935.6 nm. The normalization is δ̂ = δ/[δ6S1/2
(λF = 935.6 nm)].
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7.6 Scattering Processes and Population Transfer

in the FORT

There are off-resonant scattering processes driven by the FORT light that transfer

the population between the 6S1/2, F = (3, 4) ground-state hyperfine levels for Cesium

atoms trapped in our FORT. Therefore, we typically have repump light present in

the trap that maintains the F = 4 population. Figure 7.3 shows a lifetime plot for

the trapped Cesium atoms in the presence of the F = 3 → 4 repump light. In this

experiment, the trap lifetime was τtrap ≈ 2.7 sec. In order to check the timescales

for the off-resonant scattering rates, we initially deplete the F = 4 population and

monitor the re-equilibration of the population between F = (3, 4). Figure 7.3 also

shows a plot of the change in population due to scattering as a function of time for

the case of no repump light. In that case we see that the population equilibrates

between the F = 3 and F = 4 states with a timescale of τeq = 0.14± 0.03 sec. David

Boozer performed a numerical simulation based upon the relevant scattering rates in

our FORT that predicts τeq ∼ 0.10 sec for atoms trapped exactly at the peak FORT

intensity and with an unpolarized initial state in the F = 3 manifold.

7.7 Heating Due to FORT Intensity Fluctuations

Intensity fluctuations of the trapping field lead to parametric heating of the trapped

atom [54, 55]. This heating is characterized by an exponential temperature growth

at the rate

Γp ≡
1

τp
= π2ν2

trSe(2νtr), (7.16)

where Se(2νtr) is the power spectral density of fractional intensity fluctuations eval-

uated at twice the (harmonic) trap frequency νtr. In our FORT, the relevant har-

monic frequencies are νa = 570 kHz for motion along the x-axis of the cavity and

νr = 5.2 kHz in the radial y − z plane. However, due to the anharmonic shape of

the FORT potential, as a trapped atom heats, its motion will include a wide spec-
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trum of frequencies below (νa, νr). We therefore estimate a lower bound to the FORT

lifetime due to this heating mechanism by taking the maximum value of Γp over the

frequency range of interest, leading to τaxial
p > 1.6 s and τ radial

p > 104 s, suggesting

that parametric heating in the radial direction is not an issue; however, axial heating

could be important. Subsequent measurements of the FORT lifetime were performed

in which the intensity noise was reduced below the shot-noise level of our detection

system, giving a lower bound of τaxial
p > 9 s. Unfortunately, the measured lifetime

was only τ = (3.1 ± 0.4) s, indicating that other mechanisms are at least partially

responsible for the observed decay rates.
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Figure 7.3: Depolarization of State Populations in Our FORT
The blue trace is a lifetime curve for atoms trapped in our FORT in the presence of
F = 3→ 4 repump light. In that case, the exponential decrease in the population is
due to atoms leaving the trap. A fit to y = Ae−t/τ for the data yields A = 0.20±0.01
and τtrap = 2.7 ± 0.3 sec. The red trace is for the case of no repump light and an
initial depletion of the F = 4 state population. Because we are able to detect the
atoms in the F = 4 state, we can monitor the population as a function of time. The
resulting curve will be due to both the decrease in atoms leaving our trap and an
increase in the F = 4 population (Our detection scheme is not sensitive to atoms
in the F = 3 state.) For the lower trace, a fit of y = Ae−t/τtrap − Be−t/τeq , where A
and τtrap are obtained from the previous lifetime fit, yields B = 0.072 ± 0.01 and
τeq = 0.14± 0.03 sec. This timescale agrees well with that obtained from simulations
of the scattering rates.
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Chapter 8

Realizing Trapping with an

Intracavity FORT

This chapter discusses the details of our experiments to trap single atoms in a high-

finesse Fabry-Perot cavity. We achieve this trapping through the use of an intracavity

far off resonance dipole force trap (FORT). In the course of this experiment, we have

constructed FORT trapping potentials at various wavelengths (constrained by the free

spectral range of our cavity). In the current version, by making use of the ‘magic’

wavelength for Cesium described in Chapter 7, we have been able to create an external

potential for the center-of-mass motion that is only weakly dependent on the atom’s

internal state. This has enabled long trapping lifetimes τ ' 3 sec. In addition, it has

allowed us to perform continuous, real-time observations of single trapped atoms in

a regime of strong coupling with mean duration 0.4 sec and with individual events

lasting ' 1 sec.

The principal parameters for our system relevant to cavity QED are the Rabi

frequency, 2g0, for a single quantum of excitation and the amplitude decay rates (κ, γ)

due to cavity losses and atomic spontaneous emission. For our system, g0

2π
= 24 MHz,

κ
2π

= 4.2 MHz, and γ
2π

= 2.6 MHz, where g0 is for the (6S1/2, F = 4,mF = 4) →
(6P3/2, F

′ = 5,m′
F = 4) transition in atomic Cs at λ0 = 852.4 nm. We are able to

meet the requirements of strong coupling, g0 � (κ, γ), discussed in Chapter 4. The

saturation photon and critical atom number are respectively n0 ≡ γ2

2g2
0
' 0.006 and

N0 ≡ 2κγ
g2
0
' 0.04.
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The small transition shifts for our FORT should enable the application of a variety

of laser cooling schemes to achieve atomic confinement in the Lamb-Dicke regime.

The realization of this FORT also sets the stage for further advances in quantum

information science via photon-atom interactions. For example, for an atom trapped

in our FORT, the rate of optical information [56] isR ≡ g2
0

κ
∼ 109 1

sec
� (κ, γ), leading

to information about atomic dynamics at a rate that far exceeds that from either

cavity decay at the rate κ or spontaneous scattering at the rate γ (as in fluorescence

imaging). This suggests new possibilities for sensing and control of the quantum

dynamics of an individual system.

8.1 The Experimental Setup

Our experimental setup is schematically depicted in Figures 8.1 and 8.2. The input to

the cavity consists of cavity QED probe, FORT-trapping, and cavity-locking beams,

all of which are directed to separate detectors at the output. Figure 8.2 shows a

schematic for the optical layout used to derive these beams. Because of a small stress-

induced birefringence in the cavity mirrors, we attempt to align the directions of linear

polarization for the FORT and cavity QED fields along an axis that coincides with one

of the cavity eigen-polarizations [34]. The transmitted probe beam is monitored using

heterodyne detection, allowing real-time detection of individual cold atoms within the

cavity mode [32]. The cavity length is actively controlled using a cavity resonance

at λC = 835.8 nm, so the length is stabilized and tunable independently of all other

intracavity fields [2].

Figure 8.1 also shows the transverse beams used for cooling and repumping of the

atoms. They are comprised of two additional orthogonal pairs of counter-propagating

beams in a σ+−σ− configuration, illuminating the region between the cavity mirrors

along directions at ±45◦ relative to ŷ, ẑ (the “y − z beams”) and contain cooling

light tuned to the red of the F = 4 → F ′ = 5 transition and repumping light near

the F = 3 → F ′ = 3 transition. These beams eliminate the free-fall velocity to

capture atoms in the FORT and provide for subsequent cooling of trapped atoms.
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Figure 8.1: Schematic of the Trapping Experiment
An overview of our experiment to trap single atoms in a high-finesse Fabry-Perot
cavity. The input to the cavity consists of cavity QED probe, FORT-trapping,
and cavity-locking beams, all of which are directed to separate detectors at the
output. Relevant cavity parameters are length l = 43.0 µm, waist w0 = 23.9 µm,
and finesse F = 4.2 × 105 at 852 nm. The inset illustrates the transverse beams
used for cooling and repumping. They are comprised of two additional orthogonal
pairs of counter-propagating beams in a σ+ − σ− configuration, illuminating the
region between the cavity mirrors along directions at ±45◦ relative to ŷ, ẑ (the “y− z
beams”) and contain cooling light tuned to the red of the F = 4→ F ′ = 5 transition
and repumping light near the F = 3→ F ′ = 3 transition. These beams eliminate the
free-fall velocity to capture atoms in the FORT and provide for subsequent cooling
of trapped atoms.
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Figure 8.2: Optical Layout for the Trapping Experiment
The input to the cavity consists of cavity QED probe, FORT-trapping, and cavity-
locking beams, all of which are directed to separate detectors at the output. The
transmitted probe beam is monitored using heterodyne detection, allowing real-time
detection of individual cold atoms within the cavity mode. The cavity length is
actively controlled using a cavity resonance at λC = 835.8 nm, so the length is
stabilized and tunable independently of all other intracavity fields. This beam is
referenced to the correct wavelength for the cavity through the use of a separate
transfer cavity locked to the appropriate Cesium transition.
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We estimate the (incoherent) sum of the four intensities to be I4−5 ∼ 60 mW
cm2 for the

cooling and I3−3 ∼ 40 mW
cm2 for the repumping light, with uncertainties of roughly a

factor of 2.

While the principles involved in realizing our trapping system are relatively straight-

forward, the implementation of this seemingly simple protocol is fairly involved. This

can be illustrated best by comparing the schematic shown in Figure 8.2 to a picture

of the actual experiment in Figure 8.3.

8.1.1 Delivering Atoms to the Cavity Mode Volume

As discussed in Chapter 6, we use a dual MOT system in order to deliver cold Cesium

atoms to our cavity. We first collect approximately 108 Cesium atoms in the upstairs

MOT (as estimated by Jun and David [42]). They are cooled with polarization

gradient cooling before being dropped through the differential pumping hole (see

Figure 6.1). These atoms are then captured in the lower MOT approximately 5 mm

above the cavity, where they are again cooled to through polarization gradient cooling.

The transfer efficiency of this process is approximately 10% [42].

After being released from the lower MOT, the freely falling atoms pick up energy

when they are dropped from a height h, corresponding to a temperature of

TD =
mgh

kB

. (8.1)

Therefore, the atoms have a temperature of ∼ 0.8 mK when they reach the cavity.

Because this is much larger than the Doppler temperature for Cesium (∼ 125 µK),

it would at first appear unnecessary to further cool the sample in the lower MOT.

However, the expansion of the MOT as it falls is governed by its temperature. There-

fore, in order to efficiently deliver atoms to the cavity mode volume, the MOT must

be made as cold as possible to reduce the expansion. Similarly, the cloud of atoms

from the upper MOT must be able to drop through the differential pumping hole to

be efficiently transferred to the lower MOT.

We are able to control the density of atoms delivered to the cavity mode volume



88

Figure 8.3: Lab 11 Trapping Experiment
A picture of the actual setup for our experiment. This can be contrasted to the
optical layout depicted in Figure 8.2, demonstrating the complexity of the apparatus
currently necessary for experimentally achieving the simple situation of a single atom
coupled to a high-finesse cavity in a regime of strong coupling.
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by changing the number of initial atoms in the upper MOT. This is accomplished by

controlling the upper MOT loading time. The freely falling atoms arrive at the cavity

mode over an interval of about 10 ms, and the density of intracavity atoms can be

controlled over the range 0.011 ≤ N̄ ≤ 0.30. Estimates of N̄ are obtained from the

mean number of atom transit events (each of duration ' 150µs) during the interval

' 10ms from the falling MOT atoms, in the absence of trapping.

8.1.2 Atom Transits

Transits occur because the presence of an intracavity atom modifies the intracavity

field (see Chapter 4) which is then measured by monitoring the probe transmission

through the cavity. The trajectory of an atom can be monitored, since the output is

dependent on the spatially dependent coupling coefficient

g(−→r ) = g0 sin

(
2πx

λ

)
exp

[
−y

2 + z2

w2
0

]
, (8.2)

where

g0 = d · E = d

√
~ω

2ε0Vm

, (8.3)

d is the atomic dipole matrix element, ω is the transition frequency, Vm is the cavity

mode volume, and 2g0 is the single-photon Rabi frequency. The spatial dependence

is due to the standing wave structure of the cavity mode.

From the previous section we know that the atoms dropped from the lower MOT

have a kinetic energy of EK

kB
' 0.8 mK, corresponding to a velocity of v ' 0.22 m/s.

For a cavity mode waist of w0 ∼ 20 µm, this will translate into a cavity mode transit

time of δt = 2w0

v
' 175 µs. For atoms dropped from the upper MOT at a height of

h ∼ 25 cm without lower MOT trapping, the transit time will be reduced to ∼ 25 µs.

Figure 8.4 shows typical transits from the upper and lower MOTs.
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Figure 8.4: Transits from the Upper and Lower MOTs
The red trace on the left (A) is a typical transit for atoms dropped from the upper
MOT at a height of ∼ 25 cm. The blue trace on the right is a typical transit for
atoms dropped from the lower MOT at a height of ∼ 5 mm. Average transit times
for the upper and lower MOT are respectively ∼ 25 µs and ∼ 175 µs. For this data
the probe and cavity were on resonance with the F = 4→ F ′ = 5 transition.
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8.2 Trapping in an 869 nm FORT

The intracavity FORT in our experiment was first implemented by David Vernooy and

Jun Ye [2, 42]. Their setup used a FORT wavelength of λF = 869 nm (two longitudinal

modes below the cavity QED mode in our cavity) with the FORT triggered ON by a

transit detected by the probe beam. Without triggering the FORT, the atoms would

not become trapped, since the FORT provides a nearly conservative potential. Before

triggering the FORT, the atom’s free-fall energy is dissipated by the optical molasses

created by the transverse lattice beams discussed earlier.

In this experiment, the cavity QED interaction employed the (F,mF ) = (4, 4)→
(F ′,mF ′) = (5, 5) cycling transition using σ+ light. Therefore, a σ+ FORT was im-

plemented for simplicity. In this case, the F = 4,mF = (−3,−4) and F = 3,mF = 3

states are not trapped. This has serious consequences for the atoms in the implemen-

tation of cavity QED on the (6S1/2, F = 4) → (6P3/2, F = 4) transition since they

are off-resonantly scattered from F = 4 through F ′ = 4 into the F = 3 state. This

makes repumping of the atomic population out of this state critical on timescales

comparable to the inverse scattering rate.

The lifetime in this experiment, τ = 28 ms, was attributed to parametric heating

caused by intensity fluctuations of the trapping field [54, 55]. Since then, we have

invested considerable effort to understand and eliminate this heating mechanism [57],

which is characterized by an exponential temperature growth (see Chapter 7).

8.3 Trapping in a 906 nm FORT

As discussed in the previous section and Chapter 7, intensity fluctuations of the

trapping field lead to parametric heating of the trapped atoms. Therefore, we have

endeavored to improve the stability of the trapping lasers and cavity. However, in

Part IV we will see that an important source of intensity fluctuations is Brownian

motion of the cavity mirrors. Our system is sensitive to this motion because of the

high finesse of our cavity. Because this noise scales as the square of the cavity finesse,
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we just need to change the FORT wavelength to a cavity mode with lower finesse.

For our cavity, the finesse at the three trapping wavelengths we have implemented

is F869 ≈ 3.3 × 105, F906 ≈ 5.9 × 104, and F936 ≈ 2.2 × 103. Another suspect that

cannot be discounted is the presence of stray light, which we have also endeavored to

eliminate. For our setup, we require a mean intracavity photon number n̄� 10−5 for

light near the cavity QED resonance, which is not trivial to diagnose.

As discussed in Chapter 7, we ultimately want to use a trapping wavelength of

935.6 nm. However, it was simpler to implement a FORT wavelength of 906 nm as

an intermediate step to check our ideas for improving the lifetime. This was due to

the optics we already had in the setup to deliver the FORT light to the cavity, as

well as the limitations of the Ti:Sapphire laser we were using to implement this light.

Figure 8.5 is the lifetime plot for the 906 nm FORT. From this plot we see that the

lifetime was improved to τ ∼ 90 ms. This improvement allowed us to locate other

sources of noise and stray light. The next step was to move to a trapping wavelength

of 935.6 nm as described in the next section.

8.4 Trapping in a 936 nm FORT

We were fortunate that our cavity has a TEM00 longitudinal mode located nine orders

below the cavity QED mode, at the ‘magic’ wavelength λF = 935.6 nm, allowing the

implementation of an internal-state insensitive FORT. We implemented this wave-

length using a grating feedback diode laser system. Our cavity linewidth at this

wavelength is FWHM = 1.6 GHz, corresponding to a cavity finesse F ∼ 2200. This

implies that a mode-matched input power of 1.2 mW gives a peak AC-Stark shift

δ6S1/2
= −47 MHz for all states in the 6S1/2 ground manifold, corresponding to a

trap depth U0

kB
= 2.3 mK, which was used for all of our experiments. In addition, the

noise due to thermally driven oscillations of our mirrors is reduced even further at

this wavelength, since it scales as the square of the cavity finesse.

In order to probe the atoms, we use the F = 4 → F ′ = 5 transition for cavity

QED interactions with zero detuning of the cavity from the bare atomic resonance,
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Figure 8.5: Lifetime Plot for our 906 nm FORT
Detection probability P as a function of trapping time tT . An exponential fit (solid
line) yields a lifetime τ ≈ 90 ms.



94

∆C ≡ ωC − ω4→5 = 0. In contrast to Section 8.2, here the FORT is ON continuously

without switching, which makes a cooling mechanism necessary to load atoms into

the trap (due to the conservative nature of the potential). The initial detection of

a single atom falling into the cavity mode is performed with a probe beam tuned

to the lower sideband of the vacuum-Rabi spectrum (∆p = ωp − ω4→5 = −20 MHz),

generating an increase in transmitted probe power when an atom approaches a region

of optimal coupling [33]. This increase triggers ON a pulse of transverse cooling light

from the y− z beams, detuned 41 MHz red of ω4→5. During the subsequent trapping

interval, all near-resonant fields are turned OFF (including the transverse cooling

light), both via acousto-optical switches and mechanical shutters. After a variable

delay tT , the cavity QED probe field is switched back ON to detect whether the atom

is still trapped, where now ∆p = 0, resulting in a sharp decrease in transmission when

an atom is present.

Data collected in this manner are shown in Figure 8.6, which displays the condi-

tional probability P to detect an atom given an initial single-atom triggering event

versus the time delay tT . The two data sets shown in Figure 8.6 yield comparable life-

times, the upper having been acquired with mean intracavity atom number N̄ = 0.30

atoms and the lower with N̄ = 0.019. The offset in P between the two curves in

Figure 8.6 arises primarily from the reduction in duration, δt, of the cooling pulses,

from 100 µs to 5 µs, which results in a reduced capture probability. In addition to

determining the lifetime, such measurements with various loading conditions allow us

to investigate the probability of trapping an atom other than the “trigger” atom and

of capturing more than one atom. For example, with δt = 5 µs as in the lower set,

we have varied 0.011 . N̄ . 0.20 with no observable change in either PT or the trap

lifetime τ . Since a conservative upper bound on the relative probability of trapping a

second atom is just N̄
2

(when N̄ � 1), these data strongly support the conclusion that

our measurements are for single trapped atoms. Quite generally, we routinely observe

lifetimes in the range 2 sec < τ < 3 sec depending upon the parameters chosen for

trap loading and cooling.
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Figure 8.6: Lifetime Plots for our 935.6 nm FORT
Detection probability P as a function of trapping time tT . The upper data set is
for mean intracavity atom number N̄ ≈ 0.30, while the lower set is for N̄ ≈ 0.019
atoms. Exponential fits (solid lines) yield lifetimes τupper = (2.4 ± 0.2) sec and
τlower = (2.0 ± 0.3) sec. (Note: Because of the lowered probability for having an
intracavity atom in the lower trace, the data collection for this trace took 38 hours
of continuous observation!)
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8.5 Continuous Observation of Trapped Atoms

The results presented in the previous section were obtained “in the dark” with the

atom illuminated only by the FORT laser at λF and the cavity-locking laser at λC .

Toward the goals of continuous observation of single trapped atoms over long times

and of implementing Λ-schemes in cavity QED [7, 8, 9, 58], we next present results

from a second protocol used with our state-insensitive 935.6 nm FORT. In this scheme,

the cavity is on resonance with the F = 4→ F ′ = 4 transition (∆′
C ≡ ωC−ω4→4 = 0).

Atoms falling into the cavity mode are detected by a reduction in probe transmission

through the cavity (∆′
p = ωp − ω4→4 = 0), with the probe then triggered OFF. Here,

the repumping light from the transverse y−z beams is always ON, with fixed detuning

∆3 with respect to the F = 3 → F ′ = 3 resonance. Cooling light from the y − z

beams to drive F = 4 → F ′ = 5 is no longer used. After a delay of 80 ms following

a trigger event (which allows other atoms to fall through the cavity and be lost), the

probe beam is switched back ON, and sets t = 0. As before, the FORT is left ON

continuously.

An example of the resulting probe transmission is shown in Figure 8.7, which

displays the continuous observation of a single trapped atom. In these experiments,

unlike those of Figure 8.6, we use a lower detection bandwidth (1 kHz instead of

30 kHz) since the probe power is much weaker (m̄e ' 0.02 instead of ' 0.5 for

the empty cavity). This reduced time resolution for the trigger in the presence of

continuous probing and repumping fields means that we trap more than one atom

with increased frequency, as evidenced by probe transmission below the level m̄1

of Figure 8.7. In such cases, the probe transmission versus t is observed always

to increase in a discontinuous “staircase” of steps, presumably due to the loss of

successive atoms, with the last level before m̄e corresponding to m̄1, which we then

associate with a single atom. An example of this staircase is shown in Figure 8.8.

For independent heating of each atom, we would expect a lifetime of each level in

Figure 8.8 to be given by

τn =
τ1
n
, (8.4)
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where τn is the lifetime for the level corresponding to n intracavity atoms. Figure 8.9

shows a lifetime plot for the first two levels, n = (1, 2), taken from 1, 000 drops. An

exponential fit yields τ1 = 278 ms and τ1 = 146 ms.

Given that the FORT is ON continuously, it is remarkable that a falling atom

can be trapped and observed over long intervals as in Figure 8.7 in the absence of

transverse cooling light on the F = 4 → F ′ = 5 transition. Since we have not

seen such striking phenomena under similar conditions for cavity QED with the F =

4 → F ′ = 5 transition, it seems likely that a cycle between hyperfine ground levels

F = 3⇔ 4 is involved in a cooling process involving the repumping and cavity QED

beams. We observe a strong dependence of the trapping and continuous observation

times on the detuning of the y − z repumping beams near F = 3 → F ′ = 3, with

an optimal value ∆3 ' 25 MHz to the blue, which strongly suggests blue Sisyphus

cooling as has been employed in “gray” optical molasses [59]. Figure 8.10 shows the

method used to determine this optimal detuning. The cavity QED probe is also a

critical component, since without it, observations as in Figure 8.7 are not possible,

although it is not clear whether this beam is acting as a simple “repumper” or is

functioning in a more complex fashion due to strong coupling.

We see that we can efficiently load multiple atoms into our cavity. Now that we

have the means for determining the number of intracavity atoms, we should be able

to efficiently load a single cold atom into our cavity. This could be achieved by first

intentionally loading many atoms, then applying some heating to ‘boil’ out all but

one atom. We can then apply our cooling to the remaining atom to have a single,

cold, trapped atom with nearly every MOT drop.
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Figure 8.7: Continuous Observation of a Trapped Atom
A single atom trapped inside the cavity is continuously observed for ∼ 0.8 sec.
The average lifetime for continuously observed atoms is ∼ 0.4 sec. Displayed is the
strength of the intracavity field m̄ = |〈â〉|2 deduced from the heterodyne current as
a function of time t, where the initial trigger event occurred at t = −80 ms. The RF
detection bandwidth is 1 kHz, ∆′

C = 0 = ∆′
p, and ∆3 = 25 MHz (blue detuned).
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Figure 8.8: Observing the Number of Intracavity Atoms
We are now able to load multiple atoms into the FORT and resolve the intracavity
atom number. Displayed is the strength of the intracavity field m̄ = |〈â〉|2 deduced
from the heterodyne current as a function of time t, with an RF detection bandwidth
of 1 kHz, ∆′

C = 0 = ∆′
p, and ∆3 = 25 MHz (blue detuned).
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Figure 8.9: Lifetime Plots for One and Two Intracavity Atoms
We expect the lifetime for a given level in Figure 8.8 to be given by τn = τ1

n
. We used

1, 000 traces taken with the same parameters as that shown in Figure 8.8. The upper
trace is the lifetime for the one-atom level, with an exponential fit of τ1 ∼ 278 ms.
The lower trace is for the two-atom level, with an exponential fit of τ2 ∼ 146 ms.
This is in good agreement with our expectations.
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Figure 8.10: Determining the Optimal Detuning for Intracavity Cooling
As discussed in Section 8.5, we are now able to load multiple atoms into the FORT
and resolve the intracavity atom number. This plot is an average of 1, 000 traces
obtained in the same manner as shown in Figure 8.8. Displayed is the strength of
the intracavity field m̄ = |〈â〉|2 deduced from the heterodyne current as a function of
time t, with an RF detection bandwidth of 1 kHz and ∆′

C = 0 = ∆′
p. The detuning,

∆3, of the repump light from the F = 3→ F ′ = 3 transition for each trace is shown
in the legend. A deeper trace implies that more atoms are loaded into the trap on
average. We deduce the optimal detuning for the repump light to be ∆3 = 25 MHz.
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Part III

Cavity QED with Dielectric

Microspheres
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Motivated by the pioneering work of Braginsky and Ilchenko [60], some of the

highest quality optical resonators to date have been achieved with the whispering

gallery modes (WGMs) of quartz microspheres [17, 18]. Over the wavelength range

630 − 850 nm, quality factors Q ≈ 8× 109 have been realized, and cavity finesse

F = 2.3 × 106 demonstrated [17, 18]. Such high quality factors make the WGMs of

small dielectric spheres a natural candidate for use in cavity QED [19, 61, 60, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

While much of the work regarding quartz microspheres has centered around achiev-

ing the ultimate quality factors [17, 18], the quality factor of the resonator is but one

of the factors that determines the suitability of the WGMs for investigations of cavity

quantum electrodynamics in a regime of strong coupling. In this case, the coherent

coupling coefficient, g, for a single atom interacting with the cavity mode must be

much larger than all other dissipative rates, including the cavity decay rate, κ, and

the rate of atomic spontaneous emission, γ; namely g � (κ, γ). Note that 2g = Ω

gives the Rabi frequency associated with a single quantum of excitation shared by the

atom-cavity system [77, 56]. The atom-field interaction can be characterized by two

important dimensionless parameters: the saturation photon number, n0 ∝ γ2

g2 , and

the critical atom number, N0 ∝ κγ
g2 . Since these parameters correspond respectively

to the number of photons required to saturate an intracavity atom and the number

of atoms required to have an appreciable effect on the intracavity field, strong cou-

pling requires that (n0, N0) � 1. Ideally one would hope to minimize both of these

parameters in any particular resonator. Unfortunately, within the context of our cur-

rent understanding of the loss mechanisms of the WGMs [18], the critical parameters

(n0, N0) cannot be minimized simultaneously in a microsphere.

Motivated by these considerations, in these chapters we explore possible limits

for the critical parameters (n0, N0) for the WGMs of quartz microspheres. Following

the analysis of References [61, 19, 74], we study the particular case of a single atom

coupled to the external field of a WGM near the sphere’s surface. We show that
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there are radii that minimize (n0, N0) individually, and that there is an “optimal”

sphere size that minimizes the geometric mean,
√
n0 ×N0, of these two cavity QED

parameters and allows both parameters to be near their respective minima. We also

report our progress in the fabrication of small microspheres with radii a ∼ 10µm,

and compare our experimental results for Q with those from our theoretical analysis.

Finally, we present a detailed comparison for the state of the art and future prospects

for achieving strong coupling in cavity QED for both microsphere and Fabry-Perot

cavities. Throughout the presentation, an attempt is made to develop a general for-

malism that can be applied to diverse systems. However, detailed analysis is given for

the case of an individual Cesium atom coupled to the WGMs of quartz microspheres.
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Chapter 9

Electromagnetic Properties of

Dielectric Spheres

9.1 Modes of a Microsphere

Solving for the mode structure of the resonances of a dielectric sphere in vacuum is

a classic problem in electricity and magnetism, and the resulting field distributions

have been known for some time [78]. The electric field of the TM, electric type,

modes inside and outside a sphere of refractive index n at free-space wavelength λ0

are respectively,

~Ein(r, θ, φ) ∝ l(l + 1)
jl(kr)

kr
Pm

l (cos θ)eimφr̂

+
[krjl(kr)]

′

kr

∂Pm
l (cos θ)

∂θ
eimφθ̂

+
im

sin θ

[krjl(kr)]
′

kr
Pm

l (cos θ)eimφφ̂ (9.1)

and,

~Eout(r, θ, φ) ∝ l(l + 1)
h

(1)
l

(
kr
n

)

kr
n

Pm
l (cos θ)eimφr̂

+

[
kr
n
h

(1)
l

(
kr
n

)]′

kr
n

∂Pm
l (cos θ)

∂θ
eimφθ̂

+
im

sin θ

[
kr
n
h

(1)
l

(
kr
n

)]′

kr
n

Pm
l (cos θ)eimφφ̂ . (9.2)
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where a is the radius of the sphere, k = 2πn
λ0

is the wave vector inside the sphere, jl(x)

is the spherical Bessel function, h
(1)
l (x) is the spherical Hankel function, (r̂, θ̂, φ̂) are

unit vectors, and the ′ refers to differentiation with respect to the argument. Note

that the TM modes have a predominantly radial electric field vector.

In order to satisfy the boundary conditions at the surface of the microsphere,

the tangential components of the mode function immediately inside and outside the

sphere must be equal. However, there is a discontinuity in the radial component of

the electric field at the dielectric boundary (as can be seen from Figure 9.1.) The

eigenmodes are determined by solving for the roots of a characteristic equation [78],

which can be reduced to

jl−1(ka)

jl(ka)
− nh

(1)
l−1

(
ka
n

)

h
(1)
l

(
ka
n

) +
n2l

ka
− l

ka
= 0 . (9.3)

Throughout this paper, we normalize the mode functions such that their maximum

value is unity. This condition then yields for the l = m modes of the sphere

~Ψin(r, θ, φ) = N(l + 1)
jl(kr)

kr
sinl(θ)eilφr̂

+ NF (r) cos θ sinl−1 θeilφθ̂

+ iNF (r) sinl−1 θeilφφ̂ (9.4)

and,

~Ψout(r, θ, φ) = NB(l + 1)
h

(1)
l

(
kr
n

)

kr
n

sinl θeilφr̂

+ NBH(r) cos θ sinl−1 θeilφθ̂

+ iNBH(r) sinl−1 θeilφφ̂, (9.5)

where

F (r) =
jl(kr)

kr
+

l

2l + 1
jl(kr)−

l + 1

2l + 1
jl+1(kr), (9.6)
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Figure 9.1: Mode Function for a Dielectric Microsphere
The magnitude of the normalized mode function as a function of radius for the TM
mode of a 5.305 µm radius sphere (p = 1, l = m = 50) with θ = π

2
and φ = 0 for

a wavelength of λ0 = 852.359 nm and index of refraction n = 1.45246. In our case,
the function is normalized to have a maximum value of unity. Note that there is a
discontinuity at the surface.

H(r) =
h

(1)
l

(
kr
n

)

kr
n

+
l

2l + 1
h

(1)
l−1

(
kr

n

)

− l + 1

2l + 1
h

(1)
l+1

(
kr

n

)
, (9.7)

B =

jl(ka)
ka

+ l
2l+1

jl(ka)− l+1
2l+1

jl+1(ka)

h
(1)
l ( ka

n )
ka
n

+ l
2l+1

h
(1)
l−1

(
ka
n

)
− l+1

2l+1
h

(1)
l+1

(
ka
n

) , (9.8)

and N is the normalization factor. Because we will require the field outside the sphere

to be as large as possible, we will choose the p = 1 modes. Also, because the coherent

coupling constant g ∝ 1√
V~P

, where V~P is the cavity mode volume, we choose the

l = m modes, since they yield the smallest electromagnetic mode volume, as will be
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explained in the next section.

9.2 Electromagnetic Mode Volume

The effective mode volume V~P associated with the electromagnetic field distribution

~Ψ(r, θ, φ) [19] is given by

V~P =

∫

VQ

ε (~r)
∣∣∣~Ψ~P (~r)

∣∣∣
2

dV , (9.9)

where

ε (~r) =






n2 if r < a,

1 if r > a.

(9.10)

and ~P corresponds to the (p, l,m) mode. VQ is the quantization volume discussed in

Ref. [19]. Because the WGMs are the modes of an open resonator, the mode volume,

V~P , diverges as rQ → ∞. However, this divergence is logarithmic, and V~P is quite

insensitive to the choice of rQ for a large range of values. Figure 9.2 shows that for

the optimal sphere size discussed in Section 10.2, where l = 76, V~P varies by less than

1% for 1 < 2πn
λ0

(rQ − a) < 104. As long as the quantization radius rQ is chosen large

enough to include the effects of the evanescent field, the mode volume is relatively

insensitive to the particular choice of quantization radius.

Using the relations developed in Section 9.1 and the arguments outlined in Ref. [79],

it is relatively straightforward to see that the modes of a dielectric sphere of finite

dielectric constant and radius must radiate. Since the resonator is finite, it is con-

tained entirely within a sphere of radius R. Outside of this sphere, the field can

be expanded in terms of a fundamental set of solutions obtained by separating the

vector wave equation in polar coordinates. The radial dependence of these solutions

is given by the Hankel functions of the first and second kind, whose orders are half-

odd-integers, and whose arguments are kr with k = 2π
λ

. The Hankel functions of the

second kind represent waves coming in toward the origin from infinity. Since we do

not have these in our case, their coefficients would be zero. Therefore, only the Han-
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Figure 9.2: Electromagnetic Mode Volume and the Cutoff Parameter
Semi-log plot of the mode volume as a function of cutoff parameter (rQ − a) for the
optimal sphere size discussed in Section 10.2. Here rQ is the quantization radius and
a = 7.83038 µm is the sphere radius for the l = m = 76 mode for a wavelength of
852 nm. Note that V~P varies by less than 1% for 1 < 2πn

λ0
(rQ − a) < 104. Therefore,

the mode volume is insensitive to the choice of quantization radius as long as the
evanescent field is included.

kel functions of the first kind would have nonzero coefficients. If the power radiated

was zero, then all of the coefficients would have to vanish for this solution outside

the sphere. Therefore, the field would vanish everywhere outside the sphere and just

outside the surface of the resonator. At the surface, the boundary conditions are such

that the tangential components of the electric intensity E and the normal component

of the dielectric displacement D must be continuous. For a finite dielectric constant,

the field must then vanish everywhere just inside the outer surface of the resonator.

Therefore, the only non-radiating solutions are everywhere zero.

As discussed more extensively in References [77, 56] the interaction between the

internal atomic degrees of freedom and the intracavity field is characterized by the
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coherent coupling constant g(r, θ, φ), where

g(r, θ, φ) ≡ g0
~Ψ(p,l,m)(r, θ, φ) (9.11)

and

g0 ∝
1√
V~P

. (9.12)

Note that in the absence of damping, 2g (~r) gives the frequency for Rabi nutation

associated with a single photon in the cavity for an atom initially in the ground state

located at position ~r within the mode. Therefore, in order to maximize the coupling

strength, one must endeavor to minimize the cavity mode volume.

In order to derive an answer that can be applied to different wavelengths, one

can define a dimensionless mode volume parameter, Ṽ , and plot as a function of a

dimensionless sphere size parameter, x̃, defined as:

Ṽ =
V~P

( λ0

2πn
)3

(9.13)

and

x̃ =
2πna

λ0

, (9.14)

where V~P is the cavity mode volume, n is the index of refraction at the free-space

wavelength λ0, and a is the sphere radius. The plots then only depend on the index

of refraction (see Figure 9.3).

Naively, one might assume that the sphere should be made as small as possible in

order to minimize the electromagnetic mode volume, and hence to provide a maximum

for g0 and hence globally for g (~r). However, as shown in Figures 9.3 and 9.4, the

mode volume for the TM modes of a quartz microsphere actually passes through a

minimum at some particular radius a0. This behavior can be understood by noting

that for a < a0, the intrinsic, radiative losses are increasing rapidly and ultimately

cause the mode to no longer be well-confined by the sphere, with a concomitant

increase of the mode volume. Note that in Figure 9.3 and subsequent figures, we give
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results for n ∼ 1.45 corresponding to fused silica, as well as for n = 2.00 and n = 3.00.

These latter cases serve to illuminate the role of n as well as being applicable to other

materials (i.e., the index of refraction for GaAs is n = 3.4 for λ = 1550 nm [80]).

For a very low-OH fused silica microsphere at λ0 = 852 nm (the wavelength of the

D2 transition in atomic Cesium) with index of refraction n = 1.45246, the minimum

mode volume V min
~P
≈ 28.4µm3 occurs for radius a ≈ 3.73µm corresponding to mode

numbers p = 1, l = m = 34 (see Figure 9.4). One might at first believe that this

value for the radius represents the optimal sphere size for use as a cavity with single

atoms. However, while the mode volume V~P plays an important role in determining

the coupling constant (Equation 9.12), it is not the only parameter relevant to cavity

QED with single atoms in a regime of strong coupling. As discussed in the next

sections, the quality factor, Q, of a WGM has a strong dependence on the sphere

radius, and must also be considered in an attempt to optimize the critical atom and

saturation photon numbers.

9.3 Losses in Dielectric Spheres

For fused silica spheres with radius a & 15 µm, the effect of intrinsic radiative losses

can be safely neglected, since they allow quality factor Q & 1021, as illustrated in Fig-

ure 9.6. Such large values of Q greatly exceed those imposed by technical constraints

of material properties, such as bulk absorption and surface scattering.

However, as one moves to very small spheres with radius a . 10 µm, the intrinsic

radiative Q falls steeply enough to become the dominant loss mechanism even in the

face of other technical imperfections. When assessing the usefulness of microspheres

for cavity QED, one must account for the entire set of loss mechanisms to determine

the optimal size for the microsphere, which is the subject to which we now turn our

attention.

The quality factors of the WGMs of fused silica microspheres are determined by

several different loss mechanisms. The overall quality factor can then be calculated
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by adding the different contributions in the following way [17]:

Q−1 = Q−1
rad +Q−1

mat, (9.15)

Q−1
mat = Q−1

s.s. +Q−1
w +Q−1

bulk, (9.16)

where Qrad is due to purely radiative losses for an ideal dielectric sphere and Qmat

results from non-ideal material properties. The principal mechanisms contributing

to Qmat are scattering losses from residual surface inhomogeneities (Qs.s.), absorption

losses due to water on the surface of the sphere (Qw), and bulk absorption in the

fused silica (Qbulk). The intrinsic material losses are known very accurately, since

they arise from absorption in the material at the wavelength of concern [81]. Consid-

erably greater uncertainty is associated with the losses due to surface scattering and

absorption due to adsorbed material on the surface of the sphere, of which water is

likely the principal component. We will adopt the models for these losses presented

in References [17, 18], extrapolated to the regime of small spheres of interest here.

9.3.1 Intrinsic Radiative Losses

The contribution to the quality factor for purely radiative effects, Qrad, can be derived

by following the arguments presented in Ref. [82]. These losses are due to the leakage

of light from the resonator due to its finite dielectric constant and radius of curva-

ture. The results can then be compared to numerical results obtained by Lorenz-Mie

theory [83]. We find from Ref. [82] that

Qrad =
1

2

(
l +

1

2

)
n1−2b

(
n2 − 1

)1/2
e2Tl , (9.17)

where

Tl =

(
l +

1

2

)
(ηl − tanh ηl) , (9.18)

ηl = arccosh

{
n

[
1− 1

l + 1
2

(
t0pξ +

l1−2b

√
l2 − 1

)]−1
}
, (9.19)
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ξ =

[
1

2

(
l +

1

2

)] 1
3

, (9.20)

and

b =






0 TE modes,

1 TM modes.

(9.21)

Also, n is the index of refraction and t0p is the pth zero of the Airy function Ai. This p

corresponds to the mode number (p, l,m). In our case, we are only interested in the

p = 1 modes of the sphere to maximize the electromagnetic field outside the sphere

while maintaining a small mode volume. Note that these expressions for Qrad become

invalid in the limit of small l mode numbers. The error in the mode functions used

to derive these results reaches 1% for l = 18. However, the error is less than 0.2%

for l = 76 (This is the optimal sphere size discussed in Section 10.2). Fortunately,

the expressions are valid in the regimes for which we are concerned. This has been

confirmed by making comparisons with numerical values obtained using Lorenz-Mie

scattering theory.

From Figure 9.6, we see that the radiative Q falls approximately exponentially

as the radius a is decreased, and can become quite important as the sphere size is

decreased below 10 µm. For example, for a 15 µm radius sphere and a wavelength

λ0 = 852.359 nm, Qrad ≈ 2 × 1021. Therefore, the net quality factor would most

certainly be dominated by other loss mechanisms in Equation 9.15. However, for a

7 µm radius sphere, Qrad ≈ 4 × 108, and the radiative losses can play a crucial role

in the characteristics of the spheres that are optimal for use in cavity QED.

9.3.2 Material Loss Mechanisms

The quality factor due to bulk absorption, Qbulk, in fused silica is actually known very

well, since this depends only on the absorption of the material at the wavelength of

concern [17]:

Qbulk =
2πn

αλ0

, (9.22)



116

where n is the index of refraction, and α is the absorption coefficient of the material.

From Figure 9.7 we see that for very low-OH fused silica, the absorption coefficient

at 852 nm is α ≈ 4.5 × 10−4m−1 [81]. This would correspond to a quality factor

of Qbulk ∼ 2.4 × 1010. Fused silica has a minimum in its absorption coefficient of

α ≈ 1.5× 10−5m−1 at 1550 nm, which yields a quality factor of Qbulk ∼ 3.8× 1011.

The quality factor due to surface scattering, Qs.s., and absorption by adsorbed

water, Qw, has also been studied and modelled, albeit for larger spheres with a &

600 µm. For losses due to surface scattering, we follow the work of References [17, 18]

and take

Qs.s. ∼
3ε(ε+ 2)2

(4π)3(ε− 1)5/2

λ
7/2
0 (2a)1/2

(σB)2
, (9.23)

where ε = n2 is the dielectric constant and σB ∼ 5 nm2 is an empirical parameter

determined by the size and correlation length of the distribution of residual surface

inhomogeneities. This quantity was reported in Ref. [18] based upon atomic force

microscopy measurements of a microsphere.

The quality factor due to water adsorbed on the surface, Qw, is given by [18]

Qw ∼
√

π

8n3

(2a)1/2

δλ
1/2
0 βw

, (9.24)

where δ ∼ 0.2 nm is an estimated thickness for the water layer, and βw ∼ 4.33 m−1

is the absorption coefficient of water at 852 nm.

Combining these various results, we display in Figure 9.8 a curve for the quantity

Qmat as a function of sphere radius, a, for a wavelength λ0 = 852 nm. This same

figure shows the quality factor, Qrad, set by intrinsic radiative losses (Equation 9.17),

as well as the overall quality factor, Q = QradQmat

Qrad+Qmat
. From this plot, we see that the

radiative losses dominate the overall quality factor below a radius of a . 8 µm, while

the losses due to material properties are most significant for a & 8 µm. Because of

the extremely steep dependence of Qrad on sphere size, the point of transition from

material to radiative dominated loss should be reasonably insensitive to details of the

models employed to describe the material losses. Although we focus our attention here
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on the wavelength appropriate to the particular case of the D2 transition in atomic

Cesium, a similar analysis could be carried out for other wavelengths of interest

using the above formalism, as for example the 2S → 2P transition at 1.083 µm in

metastable Helium.
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Figure 9.3: Dimensionless Volume Parameter
(a) The dimensionless volume parameter, Ṽ (defined by Equation 9.13), as a function
of the dimensionless size parameter, x̃ (defined by Equation 9.14). The solid line
is for an index of refraction n = 1.45246, the index of refraction for fused silica at
λ0 = 852 nm, with a minimum of Ṽ = 34883.4 for x̃ = 39.9469 (l = m = 34). The
dotted line is for an index of refraction n = 2.00, with a minimum of Ṽ = 15596.2
for x̃ = 18.9864 (l = m = 14). The dashed line is for an index of refraction n = 3.00,
with a minimum of Ṽ = 11546.4 for x̃ = 10.2748 (l = m = 6). (b) Because the index
of refraction for fused silica varies from n = 1.444 at λ0 = 1550 nm to n = 1.458 for
λ0 = 600 nm (see Figure 9.5), this plot of the dimensionless volume parameter, Ṽ , as
a function of the dimensionless size parameter, x̃, is made for that range of values.
The solid line is for an index of refraction n = 1.44, with a minimum of Ṽ = 36247.5
for x̃ = 40.9812, (l = m = 35). The dotted line is for an index of refraction n = 1.45,
with a minimum of Ṽ = 35161.1 for x̃ = 41.0036, (l = m = 35). The dashed line is
for an index of refraction n = 1.46, with a minimum of Ṽ = 34129.1 for x̃ = 39.9631,
(l = m = 34).
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Figure 9.4: Electromagnetic Mode Volume for a Dielectric Microsphere
The electromagnetic mode volume, V~P , for the TM modes of a very low-OH fused
silica microsphere as a function of sphere radius at the wavelength λ0 = 852 nm for the
D2 line of atomic Cesium. The minimum, 28.4 µm3, occurs for radius a0 ≈ 3.73 µm
corresponding to mode numbers p = 1 and l = m = 34.
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Figure 9.5: Index of Refraction for Fused Silica
The index of refraction of very low-OH fused silica as a function of wavelength.
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Figure 9.6: Radiative Quality Factors for Dielectric Microspheres
(a) Semi-log plot of the radiative quality factor, Qrad, for various indices of refraction
as a function of the dimensionless size parameter, x̃ = 2πna

λ0
. (b) Semi-log plot of

the radiative quality factor, Qrad, as a function of sphere radius for a wavelength of
λ0 = 852.359 nm (index of refraction is n = 1.45246).
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Figure 9.7: Quality Factor Due to Bulk Absorption
The quality factor, Qbulk, from Equation 9.22 for a very low-OH fused silica micro-
sphere as a function of wavelength. Because fused silica has a minimum in absorp-
tion at 1550 nm, there is a maximum for the quality factor due to bulk absorption
of Qbulk ∼ 3.8 × 1011. At 852 nm, the quality factor due to bulk absorption is
Qbulk ∼ 2.4× 1010.



123

10
7

10
8

10
9

10
10

10
11

Q
u
a
lit

y
 F

a
c
to

r

109876

Sphere Radius, a  [µm]

 Qrad

 Qbulk

 Qbulk & Q
rad

 Q
 Qmat

2.0

1.5

1.0

0.5

0.0

Q
u

a
lit

y
 F

a
c
to

r 
(1

0
9
)

12111098765

Sphere Radius, a  [µm]

 Q
 Qmat 

 Qrad

B)

A)

Figure 9.8: Quality Factors for Dielectric Microspheres
(a) Semi-log plot of the quality factors due to the various loss mechanisms discussed
in Section 9.3 for a very low-OH fused silica microsphere as a function of sphere
radius for the l = m, TM modes at a wavelength of λ0 = 852 nm. In particular,
traces are shown for the quality factor due to purely radiative losses (Qrad), the bulk
absorption of fused silica (Qbulk), both radiative losses and bulk absorption, the three
loss mechanisms comprising Qmat: (Qbulk, Qs.s., Qw), and the predicted Q due to
all four loss mechanisms. (b) This linear plot zooms in on the region of interest at
the transition where the radiative losses become the dominant loss mechanism. The
plot contains the quality factor due to purely radiative losses (Qrad), the three loss
mechanisms comprising Qmat: (Qbulk, Qs.s., Qw), and the predicted Q due to all four
loss mechanisms.
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Chapter 10

Strong Coupling with Dielectric

Spheres

10.1 The Strong Coupling Regime

The ultimate goal that we consider here is to employ the WGMs of quartz micro-

spheres as cavity modes for achieving strong coupling to atoms within the setting

of cavity QED. The atom of choice in our work is Cesium, and in particular, the

D2 (F = 4 7→ F ′ = 5) transition in Cesium at λ0 = 852.359 nm as an illustrative

example. Such an analysis allows a direct comparison with the state of the art in

Fabry-Perot cavities [34].

The coupling coefficient g(~r) is the coupling frequency of a single atom to a par-

ticular cavity mode and corresponds to one-half the single-photon Rabi frequency

[77, 56]. For an atom located just at the outer surface of the microsphere (i.e., in

vacuum) and interacting with a whispering gallery mode ~P = (p, l,m), the coupling

coefficient is given by [19]

g(a) ≡ ga = γ⊥

∣∣∣~Ψout(a)
∣∣∣

√
V0

V~P

, (10.1)

where a is the sphere radius, γ⊥
2π

= 2.61 MHz is the transverse spontaneous decay rate

for our transition in Cesium, V0 =
3cλ2

0

4πγ⊥
is the effective volume of the atom for purely

radiative interactions, and V~P is the electromagnetic mode volume of the whispering
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gallery mode designated by ~P = (p, l,m).

Armed with a knowledge of g, we are now able to determine certain dimensionless

parameters relevant to the strong coupling regime of cavity QED. In particular, we

consider an atom-cavity system to be in the strong coupling regime when the single-

photon Rabi frequency, 2g, for a single intracavity atom dominates the cavity field

decay rate, κ, the atomic dipole decay rate, γ⊥, and the inverse atomic transit time,

T−1 [77, 56]. We will defer further discussion of T−1, however, this requirement relates

to the need for atomic localization [19, 61]. In the strong coupling regime, important

parameters for characterizing the atom-cavity system are the two dimensionless pa-

rameters: the saturation photon number, n0, and the critical atom number, N0. The

saturation photon number, given by

n0 ≡
γ2
⊥

2g2
, (10.2)

corresponds to the number of photons required to saturate an intracavity atom [77,

56]. The critical atom number, defined by

N0 ≡
2γ⊥κ

g2
, (10.3)

corresponds to the number of atoms required to have an appreciable effect on the

intracavity field [77, 56]. Ideally, one hopes to minimize simultaneously both the

critical atom number, N0, and the saturation photon number, n0, which corresponds

to simultaneous maxima for both g2

κγ⊥
and g2

γ2
⊥

.

The saturation photon number and critical atom number are useful because of

their physical meaning. However, one can define a new dimensionless parameter

β =
8π2V~P

3λ3
0

1
∣∣∣~Ψout(a)

∣∣∣
2 , (10.4)

that corresponds to the cavity mode volume in units of λ3 weighted by the inverse of

the strength of the mode function at the atomic position. This enables the equations
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for the saturation photon number and critical atom number to be expressed as:

n0 =
β

4Qatom

, (10.5)

and

N0 =
β

Qcavity

, (10.6)

where

Qatom =
πc

λ0γ⊥
, (10.7)

and

Qcavity =
πc

λ0κ
. (10.8)

This parameter, β, then also determines the coupling coefficient in the following

manner:

g(a) =

√
2πcγ⊥
βλ0

. (10.9)

Therefore, we see that one can use a single parameter, β, combined with the properties

of the atom to be used (λ0 and γ⊥) and the quality factor of the resonator, Qcavity, to

determine the three parameters (n0, N0, g0) of importance in determining the quality

of an atom-cavity system.

Figures 10.1 and 10.2 are plots of this dimensionless parameter β and of 1√
β

as

functions of the dimensionless size parameter x̃ = 2πna
λ0

for a few values of index of

refraction. Because the index of refraction for fused silica varies from n = 1.444 at

λ0 = 1550 nm to n = 1.458 for λ0 = 600 nm (see Figure 9.5), Figures 10.1b and 10.2b

are made for that range of values. From Figures 10.1 and 10.2 one sees that there is

a minimum for β and a maximum for 1√
β

that depends on the index of refraction.

10.2 Strong Coupling with Cesium

The results of the previous section can now be used to determine the saturation

photon number, n0, the critical atom number, N0, and the coupling coefficient, g(a),
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for any atomic transition. In our case, we are concerned with the D2 transition in

Cesium (λ0 = 852.359 nm). For this transition, the spontaneous transverse decay

rate is γ
2π

= 2.61 MHz. Also, at this wavelength the index of refraction for fused

silica is n = 1.45246. This allows one to compute the coupling coefficient, g(a) =
√

2πcγ⊥
βλ0

. Figure 10.3 shows that there is a maximum of g
2π

= 749.986 MHz for a radius

a = 3.63µm, (l = m = 33). Interestingly, because we are restricted to having the

atom couple to the external field of the microsphere, the maximum in the coupling

coefficient, g(a), does not coincide with the minimum for the mode volume, V~P (see

Figures 9.4 and 10.3.)

The saturation photon number, n0, is proportional to the dimensionless parameter

β as shown in Equation 10.5. Since the factor of proportionality is a constant that

depends only on the properties of the particular atom of concern, the curve is deter-

mined by that of β along with the quality factor of the atomic resonance (in our case

Cesium), which is given by Equation 10.7 to be Qatom = 6.738 × 107. Figure 10.4 is

a plot of the saturation photon number for the D2 transition in Cesium as a function

of sphere size. Figure 10.4 shows that there is a minimum for the saturation photon

number of n0 = 6.05527× 10−6 for a sphere radius of a = 3.63163µm (l = m = 33).

The critical atom number, N0, is also proportional to the dimensionless parameter

β as shown in Equation 10.6. However, its factor of proportionality is the quality

factor of the resonator, Qcavity, which has a very strong dependence on the sphere

radius, a, in the region below 10µm (see Figure 9.8). Therefore, the minimum for the

critical atom number does not occur for the same sphere size as for the saturation

photon number. Figure 10.5 is a plot of the critical atom number as a function of

sphere size. Using for Qcavity the model that incorporates all of the loss mechanisms

discussed in section 9.3 (radiative losses, bulk absorption, surface scattering, and

absorption due to water on the surface), we find that the minimum for the critical

atom number N0 = 8.99935 × 10−6 occurs for a sphere radius of a = 8.12015µm

(l = m = 79). At this radius, the coupling coefficient is g
2π

= 304.16 MHz.

Unfortunately, as illustrated in Figure 10.6, the minima for the two parameters, n0

and N0, do not occur for the same sphere radius. However, if one uses the minimum of
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the geometric mean of the two parameters, each can have a value near its respective

minimum. The minimum of the geometric mean occurs for a sphere radius a =

7.83038µm (l = m = 76). For this sphere size, the coupling coefficient is g
2π

=

318.333 MHz, the saturation photon number is n0 = 3.36107× 10−5, and the critical

atom number is N0 = 9.27834× 10−6. Therefore, each cavity QED parameter can be

made to achieve simultaneously a value near its respective minimum.

10.3 Progress in Small Sphere Manufacture

A large portion of the work being done on microspheres has been to push the quality

factors of the spheres to record levels [17, 18]. This effort has produced some of the

highest finesse (F = 2.3× 106) optical cavities to date with quality factors Q ∼ 1010

[17, 18]. However, we have seen that Q is not the only relevant factor in determining

the suitability of the WGMs for cavity QED in a regime of strong coupling. In

general, the preceding analysis demonstrates the requirement to push to microspheres

of small radius, a . 10µm. Unfortunately, the experiments that have achieved the

highest quality factors and which have investigated certain material loss mechanisms

are of rather larger size, and hence not optimal for cavity QED in a regime of strong

coupling. For example, the experiment of Ref. [18] achieved a quality factor of Q =

7.2× 109 at 850 nm in a sphere of radius a = 340µm.

To explore the possibilities of cavity QED with strong coupling in substantially

smaller spheres, we have undertaken a program to study fabrication techniques for

quartz microspheres with a . 30µm, while still maintaining high quality factors. We

have been able to fabricate 10µm radius spheres using an oxygen-hydrogen micro-

torch to melt the ends of very low-OH fused silica rods to form a sphere on the end of

a stem. Light is then coupled to the sphere using frustrated total internal reflection

of a prism, as in References [19, 18, 20]. Our observations demonstrate that spheres

of this size can be made consistently to have quality factors Q & 0.8×107. While this

is encouraging progress, the resulting Q is two orders of magnitude smaller than the

theoretical maximum of approximately 1.3 × 109 for this size based upon the model
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discussed in Section 9.3.

One possible reason for this discrepancy could be the importance of minimizing

the ellipticity of the small spheres. Because the small resonators fabricated by our

technique have a stem protruding out of them, they are far from spherical. When

coupling to an l = m mode in spheres with a & 100µm and hence large l, the mode

is tightly confined to the equator; therefore, the poles do not have an appreciable

impact on the mode structure or quality factor. In this case, it is not of critical

importance to have the best sphere possible, but rather the best great circle possible

to achieve large quality factors. However, this is not the case in small spheres with

a . 10µm. As a decreases, the l = m modes occupy an increasingly larger proportion

of the sphere in polar angle, and the ellipticity of the sphere becomes increasingly

important in determining the mode structure as well as the Q. However, while there

is certainly room for improvement in our fabrication technique and in the resulting

mode structures and quality factors, we shall see in the next section that the current

results have promising implications.

10.4 Comparing Microspheres and Fabry-Perot

Cavities

Figure 10.7 offers a comparison of the state of the art for Fabry-Perot and microsphere

cavities for cavity QED, as well as projections of likely limits for each. It is interesting

to note that in our projections for the limiting cases of each, microspheres allow for

a significant improvement in the critical atom number, N0, relative to Fabry-Perot

cavities. On the other hand, a principal advantage of Fabry-Perot cavities relative

to microspheres would seem to be significant improvements in the saturation photon

number, n0. The specific specific task at hand would then dictate which technology

to apply.

As shown in Figure 10.7, there has already been some progress in coupling atoms to

the external fields of a microsphere [20]. The sphere employed for the work of Ref. [20]



131

had a radius of a ≈ 60 µm, and quality factor Q . 5× 107, corresponding to a mode

volume of V~P ≈ 3.7 × 103 µm3, coupling coefficient ga/(2π) ≈ 24 MHz, saturation

photon number n0 = 5.54 × 10−3, and critical atom number N0 = 2.99 × 10−2. If

instead this experiment were to be implemented with a smaller sphere with 10µm

radius and with quality factor Q ∼ 0.8 × 107 such as we have manufactured and

described in Section 10.2, the following parameters would be achieved: a mode volume

of V~P ≈ 1.4 × 102 µm3, coupling coefficient ga/(2π) ≈ 233 MHz, saturation photon

number n0 ≈ 6.27× 10−5, and critical atom number N0 ≈ 2.11× 10−3. Therefore, we

see that currently achievable quality factors in spheres of radius 10µm already would

allow for impressive results in cavity QED with single atoms.

By comparison, the state of the art for Fabry-Perot cavities has already achieved

the following results for the TEM00 modes [5]: a cavity finesse of F = 4.8×105, a mode

volume of Vm ≈ 1.69× 103 µm3, coupling coefficient g0/(2π) ≈ 110 MHz, saturation

photon number n0 ≈ 2.82× 10−4, and critical atom number N0 ≈ 6.13× 10−3. If one

then looks at possible limits of Fabry-Perot technology for cavity QED as analyzed in

Ref. [34], the following may be possible; a cavity of length λ0/2 with a cavity finesse

of F = 7.8 × 106 yields coupling coefficient g0/(2π) ≈ 770 MHz, saturation photon

number n0 ≈ 5.7× 10−6, and critical atom number N0 ≈ 1.9× 10−4.

It is encouraging that the currently achievable results for small sphere manufac-

ture would already allow the WGMs to compete favorably with the current state

of the art in Fabry-Perot cavity QED. However, if one were able to manufacture

and couple to spheres at the optimal size a ≈ 7.83µm with a Q ∼ 9.76 × 108

(the theoretical maximum predicted from the analysis of Section 9.3), the follow-

ing results could be achieved: a mode volume of V~P ≈ 90 µm3, coupling coeffi-

cient ga/(2π) ≈ 318 MHz, saturation photon number n0 ≈ 3.36 × 10−5, and critical

atom number N0 ≈ 9.28 × 10−6. This would represent a significant improvement

over the current Fabry-Perot technology and be competitive with the likely limits

of Fabry-Perot technology. However, even short of achieving this stated maximum

Q for the WGMs, impressive results can already be attained. With a quality factor

Q ∼ 0.8×107 at the optimal sphere radius a ≈ 7.83 µm, one would obtain these same
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results (i.e., ga/(2π) ≈ 318 MHz and saturation photon number n0 ≈ 3.36 × 10−5),

except that the critical atom number, N0, would increase to N0 ≈ 1.13× 10−3. This

is still an impressive gain over the current capabilities of Fabry-Perot cavities for the

saturation photon number, with room for improvement in the critical atom number.

Overall, we thus find that the technologies of microspheres and Fabry-Perot res-

onators each have their advantages and disadvantages. However, there is one notable

advantage of microspheres; they can be made cheaply and relatively simply given

sufficient training and skill. By contrast, the Fabry-Perot cavities considered here re-

quire specialized coating runs with expensive equipment and considerable expertise,

which is to be found at only a few locations worldwide. This alone makes micro-

spheres an attractive alternative to Fabry-Perot cavities for cavity QED. Another

unique advantage of the WGMs is the ability to control the cavity decay rate, κ, by

controlling the coupling efficiency into and out of the microsphere (e.g., by adjusting

the distance between a coupling prism and the microsphere [84].) Furthermore, as

one moves to the limit of small cavities, the open geometry of microspheres offers a

considerable advantage when compared to the geometry of Fabry-Perot cavities. Such

possibilities combined with our projected values of the critical parameters, (n0, N0),

shown in Figure 10.7 point to the competitiveness of microspheres with current and

future Fabry-Perot technology and demonstrate their potential as a powerful tool for

cavity QED in the regime of strong coupling.
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Figure 10.1: Dimensionless Parameter β
(a) The dimensionless parameter β as a function of the dimensionless size parameter
x̃ = 2πna

λ0
. For an index of refraction n = 1.45246 (i.e., the index of refraction for

fused silica at λ0 = 852 nm), there is a minimum of β = 1632.01 for x̃ = 38.8833,
(l = m = 33). For an index of refraction n = 2.00, there is a minimum of β = 221.124
for x̃ = 17.8763, (l = m = 13). For an index of refraction n = 3.00, there is a
minimum of β = 45.3744 for x̃ = 10.2748, (l = m = 6). (b) Because the index of
refraction for fused silica varies from n = 1.444 at λ0 = 1550 nm to n = 1.458 for
λ0 = 600 nm (see Figure 9.5), this plot is made for that range of values. For an
index of refraction n = 1.44, there is a minimum of β = 1753.92 for x̃ = 39.9188,
(l = m = 34). For an index of refraction n = 1.45, there is a minimum of β = 1653.7
for x̃ = 38.8778, (l = m = 33). For an index of refraction n = 1.46, there is a
minimum of β = 1561.45 for x̃ = 37.8348, (l = m = 32).
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Figure 10.2: Dimensionless Parameter 1√
β

(a) The dimensionless parameter 1√
β

as a function of the dimensionless size parameter

x̃ = 2πna
λ0

. For an index of refraction n = 1.45246 (i.e., the index of refraction for

fused silica at λ0 = 852 nm), there is a maximum of 1√
β

= 0.0247536 for x̃ = 38.8833,

(l = m = 33). For an index of refraction n = 2.00, there is a maximum of 1√
β

=

0.0672484 for x̃ = 17.8763, (l = m = 13). For an index of refraction n = 3.00,
there is a maximum of 1√

β
= 0.148455 for x̃ = 10.2748, (l = m = 6). (b) Because

the index of refraction for fused silica varies from n = 1.444 at λ0 = 1550 nm to
n = 1.458 for λ0 = 600 nm (see Figure 9.5), this plot is made for that range of values.
For an index of refraction n = 1.44, there is a maximum of 1√

β
= 0.0238779 for

x̃ = 39.9188, (l = m = 34). For an index of refraction n = 1.45, there is a minimum
of 1√

β
= 0.0245908 for x̃ = 38.8778, (l = m = 33). For an index of refraction n = 1.46,

there is a minimum of 1√
β

= 0.0253068 for x̃ = 37.8348, (l = m = 32).
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Figure 10.3: Coupling Coefficient for Dielectric Microspheres
The coupling coefficient, g

2π
, as a function of sphere size for the D2 transition in

Cesium (λ0 = 852.359 nm). There is a maximum of g
2π

= 749.986 MHz for a sphere
radius of a = 3.63163µm, (l = m = 33). Note that the maximum for g

2π
does not

coincide with the minimum for the cavity mode volume, V~P (see Figure 9.4).
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Figure 10.4: Saturation Photon Number for Microsphere Resonators
The saturation photon number, n0, as a function of sphere size for the D2 transition
in Cesium (λ0 = 852.359 MHz). There is a minimum n0 = 6.05527×10−6 for a sphere
radius of a = 3.63163µm (l = m = 33). At this radius, the coupling coefficient is
g
2π

= 749.986 MHz.
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Figure 10.5: Critical Atom Number for Microsphere Resonators
The critical atom number, N0, as a function of sphere size for the D2 transition in
Cesium (λ0 = 852.359 MHz). There is a minimum N0 = 8.99935× 10−6 for a sphere
radius of a = 8.12015µm (l = m = 79). At this radius, the coupling coefficient is
g
2π

= 304.16 MHz. This plot of the critical atom number incorporates the model
for the quality factor of the resonator, Qcavity, outlined in section 9.3, for the four
loss mechanisms: bulk absorption, surface scattering, absorption due to water on the
surface, and radiative losses. The dark blue region is bounded by the effects of purely
radiative losses. The light blue region is bounded by the effects of both radiative
losses and bulk absorption.
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Figure 10.6: Comparison of the Critical Parameters for Microsphere Resonators
This plot shows the two parameters, (n0, N0), of importance to cavity QED as a
function of sphere radius. The geometric mean of these two parameters is also plotted.
The solid line represents the saturation photon number, n0, the dashed line gives the
critical atom number, N0, and the dotted line shows the geometric mean of the
two parameters,

√
n0 ×N0. The minimum of each plot corresponds to the following

dimensionless parameters: n0 = 6.05527 × 10−6 for a = 3.63163µm (l = m = 33),
and N0 = 8.99935 × 10−6 at a = 8.12015µm (l = m = 79). The two curves cross
at a = 7.03µm with n0 = N0 = 2.56 × 10−5. The geometric mean of these two
parameters,

√
n0 ×N0, is minimized for a = 7.83038µm (l = m = 76). For this

radius, the parameters are: n0 = 3.36107× 10−5 and N0 = 9.27834× 10−6. Note that
the curve for N0 assumes the model for the Q discussed in this paper, and that the
coupling coefficient g (~r) is evaluated at the maximum of the mode function for r = a.
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Figure 10.7: Comparison of Microsphere and Fabry-Perot Cavities
The solid line gives a parametric plot of the critical atom number, N0, and the
saturation photon number, n0, for fused-silica microspheres and the D2 transition of
atomic Cesium, incorporating the loss mechanisms outlined in section 9.3. The dark
blue region is bounded by the effects of radiative losses. The light blue region is
bounded by the effects of bulk absorption and radiative losses. This plot also offers a
comparison of experimental and theoretical cavity QED parameters for microsphere
and Fabry-Perot cavities. � represents the current state of the art for cavity QED in
Fabry-Perot cavities as in Ref. [5]. � is a projection of the practical limit for Fabry-
Perot cavities based upon Ref. [34]. N represents the 60µm radius sphere implemented
for cavity QED in Ref. [20]. H is the current state of the art in 10µm microspheres
based upon the results presented in section 10.2. M is the currently achievable Q with
the optimal sphere size of 7.83µm based upon the analysis of sections 9.3 and 10.1. O

is the theoretically achievable Q ∼ 9.76×108 at the optimal sphere size, a ≈ 7.83µm.
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Part IV

Brownian Motion of Mirrors in

High-Finesse Fabry-Perot Cavities
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Thermal noise is important in many mechanical measurements [25]. It is of course

crucial in experiments designed to measure the small displacement of an interferome-

ter. For example, the Laser Interferometer Gravitational-Wave Observatory (LIGO)

relies on measuring the gravitational-wave strain h(t) = ∆L
L

with a sensitivity of

h(t) ≈ 10−23. For a length L = 4 km, this implies a sensitivity in cavity length of

∆L ≈ 10−19 m [85]. In the simplest case for the LIGO interferometer, the Brownian

motion of the suspended mirrors can be decomposed into suspension and internal

thermal noises. The internal thermal noise results in thermally induced deformations

of the mirror surface. Measurements of displacement are complicated by the fact that

the modes depend on the spatial matching between light and internal acoustic modes

as well as the shape of each eigenmode of the mirror [86]. The energy associated

with these displacements is determined by the equipartion theorem. For an acoustic

mode of a macroscopic object, an energy equal to kBT corresponds to a very small

displacement.

As we have seen in Chapter 5, Fabry-Perot cavities can be made to have a very

high finesse (F ∼ 1×106). We have also seen that our atom-trapping experiments rely

on being able to servo the cavity length to an accuracy exceeding ∆L ∼ 10−15 m. As

we will see in Section 11.4.3 our Fabry-Perot setup can already achieve a sensitivity

of ∼ 10−19 m. This is already quite spectacular, especially given that the setup was

designed for atom trapping and not for observing the thermally excited modes of the

mirrors. As shown in Part II, the thermally induced motion of the mirrors can have

an effect on an intracavity FORT. Our study of these modes has been limited by

the level of intracavity optical power we were willing to tolerate. Since we currently

have a working setup for studying single atom trapping in a high finesse cavity (see

Part II), we were very conservative in turning up the intracavity optical power lest

we damage the mirrors inadvertently. Also, the mirrors are mounted in a manner

suitable for stability, and not in a way that would reduce the damping of each mode.

Therefore, our sensitivity would be improved significantly by simply turning up the
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input power. We should be able to further improve the sensitivity by designing a

better mounting scheme for the mirrors.

These effects have been studied extensively by other groups as well. Researchers in

the LIGO project have studied these effects with the goal of limiting the noise in their

interferometers [86]. Other groups have built cavities specifically for studying thermal

noise as well. The experiment of Reference [87] is one example that has also achieved

a sensitivity of ∼ 10−19 m. Their experiment used a cavity of finesse F ∼ 37000

and length L ∼ 1.06 mm. While the sensitivity of their experiment is comparable to

ours, we shall see that our setup affords a significant advantage. Because our cavity

is so short (L ≈ 40 µm) and has a very high finesse, we can observe many thermal

modes, and thereby have an accurate measurement of the spectral density function

for displacement due to thermal noise. I believe that our apparatus is unique in this

respect.
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Chapter 11

Brownian Motion and Harmonic

Oscillators

11.1 Effect of Displacement on Cavity Output

11.1.1 Fabry-Perot Finesse

The finesse of a Fabry-Perot cavity is given by

F ≡ ∆ωF.S.

∆ω0

, (11.1)

where ∆ωF.S. = πc
L

is the free spectral range of the cavity, ∆ω0 = ω0

Q
is the full width

at half maximum of the resonance at frequency ω0, L is the cavity length and Q is

the quality factor of the resonance. Therefore, the finesse can be written as

F =
πcQ

Lω0

=
πc

2κL
, (11.2)

since

Q =
ω0

∆ω0

=
πc

λκ
, (11.3)

where κ is the cavity field decay rate.
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11.1.2 Power Fluctuations for Length Changes

For a Fabry-Perot cavity, a displacement δL of one mirror causes a change in the

resonant frequency ω0 as follows

δω0 = −ω0

L0

δL. (11.4)

The measured power of the cavity output can be approximated as a Lorentzian for

frequencies sufficiently near the resonance and for modes that are sufficiently sepa-

rated

P (ω) =
P0(

ω0

2Q
)2

(ω − ω0)2 + ( ω0

2Q
)2
, (11.5)

where P0 is the measured power at the resonance ω0. Therefore, the derivative as a

function of ω0 is given by

dP

dω0

=
2P0

ω0

2Q
(ω − ω0)

[(ω − ω0)2 + ( ω0

2Q
)2]2

[
ω − ω0 +

ω0

2Q

]
. (11.6)

Evaluating this derivative at the side of the cavity (half maximum) for ω = ω0 + κ =

ω0 + ∆ω
2

then yields
dP

dω0

∣∣∣∣
ω0+κ

=
2P0Q

ω0

=
2P0FL
πc

. (11.7)

Since we have
dω0

dL
=
ω0

L0

, (11.8)

we then have at the side of the cavity

dP

dL
=

4P0F
λ0

=
2P0ω0F
πc

. (11.9)

This yields the measured power changes for small changes in the cavity length.

11.1.3 Important Assumptions

An important assumption in this discussion is that the TEM00 component of the

distorted optical mode reflected from the vibrating mirror surface still resonates in
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the Fabry-Perot cavity, and that the light scattered into other optical modes does

not. This will be true if the change in resonant frequencies ∆ωn of the optical modes

of the cavity due to the vibrations of the mirror is less than the linewidth κ of the

cavity and if the transverse mode spacing is much larger than the cavity linewidth.

Therefore, from Equation 11.8 we see that the change in frequency will be less than

the linewidth if

∆l <
λ0

2F . (11.10)

The transverse mode spacing will also be much larger than the linewidth 2κ if

F2 � R

8L
, (11.11)

where F is the finesse of the cavity, R is the radius of curvature of the mirrors, and L

is the cavity length. This condition is easily satisfied in our case, since F = 3.5× 105

for λ = 869 nm, R ∼ 0.2 m, and L ∼ 40 µm.

Another important effect related to the cavity linewidth is the cavity buildup time.

If we are interested in a frequency greater than the inverse cavity buildup time, then

the effects at that frequency will be attenuated. In our case, the linewidth (FWHM)

at 869 nm is 2κ
2π
≈ 10.7 MHz.

11.2 Simple Harmonic Oscillator in Thermodynamic

Equilibrium

As we will discuss in Section 11.2.3, the coupling of each mode, ωn, can be param-

eterized in terms of an effective mass coefficient, αn, so that the effective mass is

αnm, where m is the actual mass of the mirror. In this way, the motion of the mirror

surface can then be modelled as if it were a point mass of magnitude αnm vibrating

with frequency ωn in harmonic oscillation.
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11.2.1 Classical Harmonic Oscillator

For a Hooke’s Law force, where the restoring force is proportional to the displacement

F = −kx, the potential is

Vn =
1

2
knx

2 =
1

2
αnmω

2
nx

2, (11.12)

where the frequency of oscillation ωn is given by

ω2
n =

kn

αnm
. (11.13)

The energy is then given by

E = T + V =
p2

2αnm
+

1

2
knx

2 = αnmω
2
nA

2. (11.14)

Therefore, the total energy is proportional to the square of the amplitude, and is

time-independent (conservative).

The mean energy of any system in thermodynamic equilibrium is

〈E〉 = kBT. (11.15)

Therefore, the amplitude of displacement, ∆l, for a mode of a harmonic oscillator in

thermodynamic equilibrium is

∆ln =

√
kBT

αnmω2
n

. (11.16)

11.2.2 Quantum Harmonic Oscillator

The classical quantities x and p are replaced by the conjugate observables X and P ,

where

[X,P ] = ı~. (11.17)
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The Hamiltonian is then

H =
P 2

2αnm
+

1

2
αnmω

2
nX

2 = − ~
2

2αnm

d2

dx2
+

1

2
αnmω

2
nX

2. (11.18)

For a one-dimensional quantum harmonic oscillator in thermodynamic equilibrium

with a reservoir at temperature T ,

〈H〉 =
~ωn

2
+

~ωn

e
~ωn
kBT − 1

. (11.19)

For kBT � ~ωn

〈H〉 ' ~ωn

2
+ ~ωne

− ~ωn
kBT . (11.20)

However, for kBT � ~ωn

〈H〉 ' ~ωn

2
+ kBT (1− 1

2

~ωn

kBT
+ . . .) (11.21)

or

〈H〉 ' kBT. (11.22)

At room temperature (300K), we have kBT
2π~
≈ 6 × 1012 Hz. For our mirrors, the

first mode occurs at ∼ 800 kHz. Therefore, we are definitely in a regime where

kBT � ~ωn.

11.2.3 Effective Mass Coefficients

Following Ref. [86] we can remove the dependence of the amplitudes of the displace-

ments on the energy normalization by parametrizing the coupling of each mode in

terms of an effective mass coefficient αn defined as

αn =
U

mω2
n∆l2n

, (11.23)

where m is the actual mass of the mirror, ωn is the angular resonant frequency of

the vibrational mode, ∆ln is the displacement given by Equation 11.16, and U is the
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energy of the mode given by E or H for the classical or quantum cases, respectively.

In this way, the motion of the surface can then be modelled as if it were a point mass

of magnitude αnm vibrating at frequency ωn measured by an ideal one-dimensional

laser beam.

We can then use the equipartition theorem to calculate the root-mean-squared

motion of a mode of the thermally excited mirror. Each mode will have an energy

of kBT , where kB is Boltzman’s constant and T is the temperature. Therefore, in

thermodynamic equilibrium, the displacement ∆ln of each mode will be given by

Equation 11.16

As a first approximation, most of the energy of the motion occurs within a band-

width given by the quality factor of the acoustic mode. However, a better prediction

can be made by applying the fluctuation dissipation theorem [25] as discussed in the

next section.

11.3 Spectral Density Function for Displacement

11.3.1 Velocity Damping

In some instances, the damping force is proportional to the velocity of the particle.

Examples include viscous drag on a particle suspended in a liquid and eddy currents

in moving conductors. In this case, the frictional force is given by

Ffric = −βv, (11.24)

where β is the friction coefficient and v is the velocity of the particle. For a harmonic

oscillator the fraction of energy lost in one cycle of oscillation is 2π
Q

, where Q is the

quality factor. For the velocity damping described above, the quality factor of each

mode is given by Qn = mωn

β
.

The energy lost per cycle can be found by integrating the work done by the
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frictional force over one cycle

W =

∫
Ffric · dx

= βπωnA
2, (11.25)

whereA is the rms amplitude of displacement. Since the total energy is Etot = mω2
nA

2,

we can easily see that the fraction of energy lost per cycle is 2βπ
mωn

. Because the fraction

of energy lost in one cycle of oscillation is 2π
Q

, the quality factor is Qn = mωn

β
.

In the case of velocity damping, the spectral density function for displacement is

[25]

Sx(f) =
∑

n

4kBTβ

m2(ω2
n − ω2)2 + β2ω2

. (11.26)

The root-mean-square displacement is then found by integrating the spectral density

function and then taking the square root

∆xRMS =

[∫ ∞

0

Sx(f)df

]1/2

. (11.27)

We then find that in the case of velocity damping for a single resonance ω0,

∆xRMS =

√
kBT

mω2
0

. (11.28)

This is consistent with the equipartition theorem since in thermodynamic equilibrium

the mode should have an energy of kBT and the energy of the harmonic oscillator

mode would be given by mω2
0∆x

2. Note that the result is independent of the friction

coefficient, β.

11.3.2 Structural Damping

If we define a loss function, ϕn, where the fraction of energy lost in one cycle of

oscillation at frequency ω is given by 2πϕ(ω), then the loss function is related to the

Q of the mode by ϕn(ωn) = 1
Qn

. The spectral density function of displacement due to
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thermal excitation can be found from the fluctuation dissipation theorem to be [86]

Sx(f) =
∑

n

Sxn(f)

=
∑

n

4kBT

αnmω

[
ω2

nϕn(ω)

(ω2 − ω2
n)2 + ω4

nϕ
2
n(ω)

]
. (11.29)

The root-mean-squared displacement ∆lrms
B for a measurement bandwidth B is

then given by

∆lrms
B =

[∫ f+B
2

f−B
2

Sx(f)df

]1/2

. (11.30)

The spectral density function in the case of structural damping can be found from

that of velocity damping by giving the frictional coefficient for each mode a frequency

dependence of βn = ϕnmω2
n

ω
.

11.4 Measuring Brownian Motion in Fabry-Perot

Cavities

11.4.1 Shot Noise in Photodetectors

Because there is a fundamental noise source in the measurement of the amplitude

of a light source, it is common to compare measurements to this limit. This limit

is the photon shot noise due to the quantum uncertainty of the light power. Shot

noise arises by assuming that the arrival of electrons at a given point in a circuit is a

Poissonian process. The current i will have a noise current spectral density of

〈iN〉 =
√

2ei, (11.31)

where 〈iN〉 has units
[

A√
Hz

]
. The current noise for a detection bandwidth B is then

given by in = 〈iN〉
√
B. Note that it is possible to have situations that exhibit

more or less than shot noise. For example, a battery will exhibit less than shot

noise for a given average current. However, the measurements we will discuss involve
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photodiodes which exhibit full shot noise.

If we assume that the conversion efficiency and gain of the photodiode and circuit

are constant as a function of frequency, then for a current i in the circuit, the inci-

dent optical power Pin required to achieve this current is Pin = iRσ where σ = Power
Voltage

is the conversion coefficient that factors in the effect of the transimpedance ampli-

fier. Therefore, for an incident optical power Pin, detection bandwidth B, circuit

impedance R, and conversion coefficient σ, the optical power corresponding to the

shot noise level is given by

Psn = inRσ

=
√

2eBPinRσ. (11.32)

11.4.2 Measuring Displacements Due to Brownian Motion

Because the mode of the cavity is approximately Lorentzian, we know that small

changes in the length at the resonant frequency ω0 will have no first-order effect on the

measured output optical power. That is, from Equation 11.6, dP
dω0

(ω0) = 0. However,

as we move from the center of the resonance, the slope increases and the cavity

becomes more efficient at converting displacements into changes in the transmitted

optical power. Therefore, to maximize the effects of Brownian motion of the mirrors,

one should tune the cavity to frequency ω = ω0 + κ (i.e., the half-maximum point).

If the cavity is tuned to the half-maximum point, then we know from Equation 11.9

that the optical power, Popt, due to the thermally excited mirror displacements is

Popt = ∆P =
4P0F
λ0

∆lrms
B , (11.33)

where P0 is the output power of the cavity on resonance, F is the finesse of the cavity,

λ0 is the wavelength of the cavity resonance, ∆lrms
B is the RMS displacement defined

in Equation 11.30, and B is the detection bandwidth (in cycles
sec

).

Experimentally, it is much easier to compare the theoretical and experimental

results if they are given relative to shot noise. The optical power corresponding to
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the shot noise level is given by Equation 11.32. In the case of detuning the cavity

to frequency ω = ω0 + κ, the incident power on the detector is one half the output

power of the cavity on resonance. Therefore, the signal level relative to shot noise is

Level [dBm] = 10 log

[
4F
λ0

√
P0

eRσB
∆lrms

B

]
, (11.34)

where F is the finesse of the cavity, λ0 is the wavelength of the resonant light, P0 is

the output optical power of the cavity on resonance, ∆lrms
B is the RMS displacement

defined in Equation 11.30, e is the electric charge, R is the input impedance of

the spectrum analyzer, and σ is the conversion factor that takes into account the

transimpedance amplifier. It is because of our definition of the conversion factor

σ, that the shot noise level depends on the input impedance, R, of the spectrum

analyzer. The conversion factor is the ratio of the optical power at the detector input

to the voltage generated across the input impedance of the spectrum analyzer.

11.4.3 Sensitivity of the Mechanical System

We define the sensitivity of the system to be the displacement corresponding to the

optical power that represents the shot noise level. Therefore, in order to be mea-

surable, the displacements would have to be greater than the sensitivity. Combining

Equations 11.32 and 11.33, we have the sensitivity Υl,B in units of [m] for a measure-

ment bandwidth of B is

Υl,B =
λ0

4F

√
eRσB

P0

. (11.35)

Therefore, increasing the optical power and the finesse improve the sensitivity as

expected. Decreasing the measurement bandwidth B also improves the sensitivity,

since this decreases the shot noise level.

For our measurements, the power transmitted through the cavity on resonance was

P0 = 5.6 µW, for wavelength λ0 = 869 nm, finesse F = 3.5 × 105, conversion factor

σ = 2.78×10−5 W
V

, and measurement bandwidth B = 1 kHz. With these parameters,

we see from Equation 11.35 that the sensitivity of our setup is Υl,B = 1.24×10−19 m.
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This is quite amazing and is yet another illustration of the extreme care that must

be taken when dealing with high-finesse cavities. For other examples of this see

Chapter 5.
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Chapter 12

Normal Modes of Oscillation and

Cavity Output

The problem of solving for the normal modes of oscillation for a solid body was un-

derstood more than a century ago. For the case of a sphere, exact solutions are known

in analytic form for the case of small amplitude of oscillation. One might assume that

this would make the study of the thermally excited modes of a microsphere resonator

(see Part III) easier to study than those of a Fabry-Perot cavity. Unfortunately,

in the case of microspheres the oscillations induce stresses that change the index of

refraction. These effects are just as important as those due to the geometric deforma-

tion. Therefore, the situation is actually somewhat more complicated than the case

of Fabry-Perot cavities where the only item of concern is the net displacement of the

surface.

When one moves to the case of cylinders and parallelepipeds, there are exact

solutions in the sense that there are series solutions which quickly converge for small

mode numbers [88, 89]. These types of solutions also exist in a less sophisticated

manner for the truncated quadrangular pyramids, prisms and cones [90]. The results

can then be compared to various finite element analyses with excellent agreement.

Also, the ‘exact’ solutions for thick plates have been successfully compared to the

proper limit of a right circular cylinder as well as a finite element analysis [91]. These

solutions have then been compared to various experimental results [88]. There is also

a great deal of experimental work done with resonant ultrasound techniques for many
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of these basic geometric shapes in a range of aspect ratios and the solutions have been

compared to these results with good agreement (see Reference [92]).

12.1 Normal Modes of a Cylinder

We first study the modes of a cylinder as an approximation to the more complicated

case of our mirrors. The simplest approximation is to just solve for the longitudinal

modes of a bar. A better approximation is found by solving the elastic wave equation

for the cylinder. These modes can then be modified to account for both the lateral

inertia and shear stiffness that have a large effect on the longitudinal modes of a ‘thick’

cylinder. Ultimately, the best solution is found by using finite element analysis to

numerically solve for the eigenmodes. We use all of these methods to understand

the differences and limits of each before using finite element analysis to solve for the

actual case of our mirrors in Section 12.2.

12.1.1 Longitudinal Modes of a Bar

For a bar of length L, let the longitudinal displacement be ξ(x, t). For a sufficiently

thin bar, the displacement will be the same at all points in any particular cross section.

∂2ξ

∂x2
=

1

c2
∂2ξ

∂t2
, (12.1)

where c =
√

Y
ρ

is the speed of sound, Y is Young’s modulus of elasticity, and ρ is the

density. The two simplest boundary conditions are either a fixed or free end. In the

case of a fixed end, there can be no displacement, so that ξ = 0 at that point. In

the case of a free end, there can be no internal elastic forces, so that ∂ξ
∂x

= 0 at that

point. Note that a solid bar is very rigid, therefore, it is difficult to provide supports of

greater rigidity, and hence a fixed boundary condition is difficult to realize in practice.

For the cases of either a Free-Free or Fixed-Fixed boundary condition, the normal

modes are ωn = nπc
L

. For the Fixed-Free case, ωn = 2n−1
2

πc
L

.

For the case of Free-Free boundary conditions with the ends located at x = (0, L),
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the amplitude for displacement along the bar is given by

ξ(x) = A cos
(nπ
L
x
)
. (12.2)

The energy in the mode ωn is given by

En =

∫ L

0

ρω2
nA

2 cos2
(nπ
L
x
)
dx =

1

2
mω2

nA
2, (12.3)

where the displacement amplitude is A, and the mass of the bar is m = ρL. The

energy can now be expressed in terms of an effective mass as discussed in Section 11.2.3

to be

En = αnmω
2
nA

2. (12.4)

This implies that the effective mass coefficient will be αn = 1
2

for each of these modes.

For the longitudinal modes of a bar, the phase speed is calculated using Young’s

modulus Y , that is, c =
√

Y
ρ
. However, when the transverse dimensions of the solid

are large compared to a wavelength, the bulk and shear moduli must be used in place

of Young’s modulus to calculate the phase speed. In that case [93],

c =

√
B + 4

3
G

ρ
, (12.5)

where B is the bulk modulus and G is the shear modulus. The substrates for our

mirrors are made of BK7, for which the two relevant phase speeds are c =
√

Y
ρ

=

5, 681 m
s

and c =
√

B+ 4
3
G

ρ
= 6, 032 m

s
. Figure 12.1 is a plot of the spectral density

function for the longitudinal modes of a bar of BK7 that has length L = 0.00345 m

with free-free boundary conditions. This is a simple approximation to the mirror used

in our experiment (as described in more detail in Section 12.2). Figure 12.2 is a plot

of the root-mean-square displacement ∆lrms
B and the corresponding power fluctuations

(relative to shot noise) for the spectral density function shown in Figure 12.1.
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Figure 12.1: Spectral Density Function for a Bar

The spectral density function Sx

[
m2

Hz

]
for the case of structural damping (see

Equation 11.29) for the longitudinal modes of a bar of BK7 with free-free boundary
conditions (shown in blue). The length is L = 0.00345 m and each mode given by
Equation 12.2 is assumed to have an effective mass coefficient of αn = 1

2
and quality

factor Q = 100. The quality factor determines the loss function in Section 11.3.2.
Also shown (red) is the case of the Bishop corrections discussed in Section 12.1.3.
Note that the normal modes are shifted to lower frequencies.
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Figure 12.2: Thermal Displacement Noise for a Bar
The right axis corresponds to the root-mean-square displacement ∆lrms

B [m] of
Section 11.3.2 for the modes of a bar of length L = 0.00345 m with free-free
boundary conditions, as in Equations 12.2-12.5, and a measurement bandwidth
B = 1 kHz. The left axis corresponds to the expected power fluctuations (relative
to shot noise) discussed in Section 11.4.2 to be measured at the side of the cavity
for the computed RMS displacement using the parameters of our system. For the
measurements detailed in Section 12.2, we had an on resonance power transmitted
through the cavity of P0 = 5.6 µW, λ0 = 869 nm, finesse F = 3.5 × 105, and
conversion factor σ = 2.78 × 10−5 W

V
. Also shown (red) is the case of the Bishop

corrections discussed in Section 12.1.3. Note that the normal modes are shifted to
lower frequencies.
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12.1.2 Wave Equation in an Elastic Cylinder

For an assumed sinusoidal dependance, e−iωt, the wave equation leads to the Helmholtz

equation

∇2Ψ + k2Ψ = 0, (12.6)

where in cylindrical coordinates we have

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
. (12.7)

If we let Ψ(r, ϕ, z) = R(r)Φ(ϕ)Z(z), then the acoustic modes are indexed by

(p,m, n) as Ψ(r, ϕ, z) = Rm,n(r)Φm(ϕ)Zn(z), where

Zp(z) = cos
(pπ
L
z
)

Φm(ϕ) = cos(mϕ)

Rm,n(r) = Jm

(xm,n

a
r
)
, (12.8)

where (p,m, n) = 0, 1, 2, . . ., and the frequencies are given by

ωp,m,n =
c

L

[
x2

m,nβ
2 + p2π2

]1/2
, (12.9)

where β = L
a

is the aspect ratio and xm,n is the coordinate of the nth zero of the

derivative of an mth order Bessel function. Therefore, the indices can be understood

as follows: p is the number of longitudinal nodes along axis of cylinder, m is the

number of radial nodal lines, and n is the number of azimuthal nodal lines. For

p = n = 0, the only nonzero mode is m = 1. Also, for a given p and m 6= 1,

all m 6= 1, n = 0 modes are degenerate in frequency to the (p, 0, 0), which is the

corresponding longitudinal mode of a bar of the same length (see Section 12.1.1).

Now, since xm,0 = 0,∀m 6= (0, 1), we have Jm

(
xm,0

r
a

)
= 0,∀m 6= (0, 1). Therefore,

these are not actual eigenmodes. Using these conditions, we can then neglect the

m 6= 1, p = n = 0 modes. We also neglect the m 6= (0, 1), n = 0 modes since they

have zero displacement everywhere.
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We now have the following classes of solutions (p,m, n) for p,m, n ≥ 1: (p, 0, 0)

purely longitudinal (corresponding to the longitudinal modes of a bar); (0, 1, 0) has

one radial nodal line; (0, 0, n) axisymmetric and purely radial; (0,m, n) non-axisymmetric

radial and rotational; (p, 0, n) axisymmetric radial and longitudinal; (p,m, n) mixed.

Figure 12.3 is a plot of the spectral density function for these modes of a cylinder

of BK7 with free boundary conditions that has length L = 0.00345 m and radius

a = 0.00149 m, to improve upon the approximation of the previous section for the

mirror used in our experiment (as described in more detail in Section 12.2). Fig-

ure 12.4 is a plot of the root-mean-square displacement ∆lrms
B and the corresponding

power fluctuations (relative to shot noise) for the spectral density function shown in

Figure 12.3.

12.1.3 Corrections to Cylinder Modes

There are a variety of corrections to the eigenfrequencies of a rod [94]. These correc-

tions attempt to account for both the lateral inertia and shear stiffness. The lateral

inertia decreases the natural frequency estimated from the elementary theory, since

the lateral inertia increases the kinetic energy. However, the effect of shear stiffness

is to increase the natural frequencies, since the shear stiffness increases the strain

energy.

From the elementary theory, we know that the longitudinal modes are ωn = nπc
L

.

The Rayleigh correction is made to include the effects of lateral inertia [94]

ωn = n
πc

L

1√
1 + r2

1(nπ)2
. (12.10)

The Bishop correction is made to include both lateral inertia and shear stiffness [94]

ωn = n
πc

L

√
1 + r2

1r2(nπ)2

1 + r2
1(nπ)2

, (12.11)
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Figure 12.3: Spectral Density Function for Elastic Modes of a Cylinder
The spectral density function Sx

[
m2Hz−1

]
(see Equation 11.29) for the elastic modes

of a cylinder (given by Equation 12.9) of BK7 with free boundary conditions (shown
in blue). The length is L = 0.00345 m, radius a = 0.00149 m, and effective mass
coefficient is taken to be αn = 1

2
for each mode with quality factor Q = 100. Also

shown (red) is the case of the Bishop corrections discussed in Section 12.1.3.
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Figure 12.4: Thermal Displacement Noise for Elastic Modes of a Cylinder
The right axis corresponds to the root-mean-square displacement ∆lrms

B [m] of
Section 11.3.2 for the elastic modes of a cylinder (given by Equation 12.9) of BK7
with free boundary conditions (shown in blue). The length is L = 0.00345 m,
radius a = 0.00149 m, measurement bandwidth B = 1 kHz, and the effective mass
coefficient is taken to be αn = 1

2
for each mode with quality factor Q = 100. The

left axis corresponds to the expected power fluctuations (relative to shot noise)
discussed in Section 11.4.2 to be measured at the side of the cavity for the computed
RMS displacement using the parameters of our system. For the measurements
detailed in Section 12.2, we had an on resonance power transmitted through the
cavity of P0 = 5.6 µW, λ0 = 869 nm, finesse F = 3.5 × 105, and conversion factor
σ = 2.78× 10−5 W

V
. Also shown (red) is the case of the Bishop corrections discussed

in Section 12.1.3.



166

where

r2
1 = ν2 r

2
0

L2
,

r2
0 =

Ip
A0

,

Ip =
π

2
R4,

A0 = πR2,

r2 =

√
G

E
. (12.12)

For a cylinder radius a and aspect ratio β = L
a
,

r2
0 =

a2

2

r2
1 =

ν2

2β2

r2 =

√
G

E
(12.13)

The correction to the eigenfrequency is then given by

χn =




1 + ν2

2β2

√
G
E

(nπ)2

1 + ν2

2β2 (nπ)2





1/2

(12.14)

so that

ωn = n
πc

L
χn (12.15)

The effects of these corrections for the modes of a bar and the elastic modes of a

cylinder are shown in Figures 12.1 through 12.4.

12.1.4 Finite Element Analysis for a Cylinder

We want to start with the case of a right circular cylinder in order to understand

the finite element analysis for our actual mirror geometry (see Figure 12.7). The

analysis was done by Dennis Coyne (with the LIGO project) for a cylinder of radius
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a = 0.149 cm and length L = 0.345 cm. This cylinder has a volume of 0.02406 cm3

and a mass of 6.0397×10−2gm. The finite element analysis was performed using 5004

elements (7882 nodes) of parabolic tetrahedrons. The I-Deas software package from

SDRC was used to perform these calculations.

We then use the following values for BK7 [95]:

Elastic Modulus, E = 81 GPa (12.16)

Poisson′s Ratio, ν = 0.208 (12.17)

Shear Modulus, G =
E

2(1 + ν)
= 33.5 GPa (12.18)

Density, ρ = 2.51gm/cm3 (12.19)

For calculating the effective mass coefficients, we use a beam waist radius of 23 µm,

which corresponds to the waist in our actual measurements. The normalized axial

amplitude can then be found by finding the displacement for a given energy. We

can use this result to find the effective mass coefficients. Figure 12.5 is a plot of the

spectral density function for these modes of a cylinder of BK7 with free boundary

conditions that has length L = 0.00345 m and radius a = 0.00149 m. This can then

be compared to the simple approximations discussed in the previous section. Fig-

ure 12.6 is a plot of the root-mean-square displacement ∆lrms
B and the corresponding

power fluctuations (relative to shot noise) for the spectral density function shown in

Figure 12.5.

12.2 Normal Modes of Our Mirrors

As can be seen in Figure 12.7, the analysis of our physical system is complicated

by the irregular geometry of the mirrors comprising our Fabry-Perot cavity. The

Finite Element Analysis was then performed using 5004 elements (7882 nodes) of

parabolic tetrahedrons for the dimensions of the mirrors in our cavity. The diameter

is D2 = 2.98 mm, the total length is 3.85 mm, the length before the taper is L2 =

2.91 mm, the length of the tapered section is L1 = 0.94 mm, and the diameter of the
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Figure 12.5: Spectral Density Function for Modes of a Cylinder
The spectral density function Sx

[
m2Hz−1

]
for the modes of a cylinder of BK7 with

free boundary conditions determined through finite element analysis as discussed in
Section 12.1.4. The length is L = 0.00345 m, radius a = 0.00149 m, and effective
mass coefficient is taken to be that computed through the finite element analysis
with each mode given a quality factor Q = 100. Note that the function is computed
with only the first 50 modes.
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Figure 12.6: Thermal Displacement Noise for Modes of a Cylinder
The right axis corresponds to the root-mean-square displacement ∆lrms

B [m] of
Section 11.3.2 for the modes of a cylinder of BK7 with free boundary conditions
determined through finite element analysis as discussed in Section 12.1.4. The length
is L = 0.00345 m, radius a = 0.00149 m, measurement bandwidth B = 1 kHz, and
the effective mass coefficient is taken to be that determined through the finite element
analysis with each mode given a quality factor Q = 100. The left axis corresponds to
the expected power fluctuations (relative to shot noise) discussed in Section 11.4.2 to
be measured at the side of the cavity for the computed RMS displacement using the
parameters of our system. For the measurements detailed in Section 12.2, we had an
on resonance power transmitted through the cavity of P0 = 5.6 µW, λ0 = 869 nm,
finesse F = 3.5 × 105, and conversion factor σ = 2.78 × 10−5 W

V
. Note that the

function is computed with only the first 50 modes.
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front face is D1 = 1.0 mm. The volume of the straight section is then V2 = πR2
1L1 =

2.0296×10−2 cm3 and the volume of the tapered section is V1 = πL2

3
(R2

1+R
2
2+R1R2) =

3.1648× 10−3 cm3. The total volume is then V = V1 + V2 = 2.3461× 10−2 cm3. This

implies a mass of 5.8887× 10−5 kg.

For determining the effective mass coefficients, we use a beam waist radius of

23 µm. The normalized axial amplitude can be found by finding the displacement

for a given energy. We can use this and Equation 11.23 to find the effective mass

coefficients. Figure 12.8 is a plot of the spectral density function of these modes

for our mirrors (shown in Figure 12.7). This can then be compared to the simple

approximations discussed in the previous sections. Figure 12.9 is a plot of the root-

mean-square displacement ∆lrms
B and the corresponding power fluctuations (relative

to shot noise) for the spectral density function shown in Figure 12.8. Figure 12.10

compares this result to the experimental results we obtained with our cavity. For

the measurements shown in Figure 12.10, we had an on resonance power transmitted

through the cavity of P0 = 5.6 µW, λ0 = 869 nm, finesse F = 3.5×105, and conversion

factor σ = 2.78× 10−5 W
V

.

The theoretical results qualitatively compare favorably to the experimental results.

It should be no surprise that the modes do not match up exactly, since the cavity

mounting structure is actually far more complicated than we have modelled. Also,

we used the same loss function for each of the mechanical modes. In reality, the

quality factor of each mode will be different. We see from Figure 12.10 that we

can qualitatively model the density of states and its translation into thermal noise.

Therefore, we can use these results as a first attempt to model the noise and apply

this to the results of Chapter 7 to see the effect on an intracavity FORT.
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Figure 12.7: Geometry of Our Mirrors
The geometry of the mirrors comprising our Fabry-Perot cavity. The mirrors are made
of a BK7 substrate with an anti-reflective coating on one side and a dielectric high
reflecting coating on the other side. The diameter is D2 = 2.98 mm, the total length
is L1 +L2 = 3.85 mm, the length before the taper is L2 = 2.91 mm, the length of the
tapered section is L1 = 0.94 mm, and the diameter of the front face is D1 = 1.0 mm.
The volume of the straight section is then V1 = πR2

2L2 = 2.0296× 10−2 cm3 and the
volume of the tapered section is V2 = πL1

3
(R2

1 + R2
2 + R1R2) = 3.1648 × 10−3 cm3.

The total volume is then V = V1 + V2 = 2.3461 × 10−2 cm3. This implies a mass of
5.8887× 10−5 kg.



172

10
-36

10
-35

10
-34

10
-33

S
p
e
c
tr

a
l 
D

e
n
s
it
y
, 
S

x 
 [
m

2
 H

z
-1

]

2.01.51.00.50.0

Frequency  [MHz]

Figure 12.8: Spectral Density Function for Modes of Our Mirror
The spectral density function Sx

[
m2Hz−1

]
for the modes of our mirror (see Fig-

ure 12.7) comprised of BK7 determined through finite element analysis as discussed
in Section 12.2. The effective mass coefficient is taken to be that computed through
the finite element analysis with each mode given a quality factor Q = 100. The modes
below 100 kHz arise from tacking down the mirror with two points at one end.
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Figure 12.9: Thermal Displacement Noise for Modes of Our Mirror
The right axis corresponds to the root-mean-square displacement ∆lrms

B [m] of Sec-
tion 11.3.2 for the modes of our mirror determined through finite element analysis
as discussed in Section 12.2. The measurement bandwidth is B = 1 kHz, and the
effective mass coefficient is taken to be that determined through the finite element
analysis with each mode given a quality factor Q = 100. The left axis corresponds to
the expected power fluctuations (relative to shot noise) discussed in Section 11.4.2 to
be measured at the side of the cavity for the computed RMS displacement using the
parameters of our system. For the measurements detailed in Section 12.2, we had an
on resonance power transmitted through the cavity of P0 = 5.6 µW, λ0 = 869 nm,
finesse F = 3.5 × 105, and conversion factor σ = 2.78 × 10−5 W

V
. The modes below

100 kHz arise from tacking down the mirror with two points at one end.
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(a)

(b)

Figure 12.10: Comparison of Calculated and Measured Thermal Noise
(a) & (b) The measured power fluctuations (relative to shot noise) discussed in Sec-
tion 11.4.2 measured at the side of our cavity (shown in blue). The right axis cor-
responds to the root-mean-square displacement ∆lrms

B [m] of Section 11.3.2. The
left axis corresponds to the power fluctuations (relative to shot noise) discussed in
Section 11.4.2 measured at the side of the cavity. We had an on resonance power
transmitted through the cavity of P0 = 5.6 µW, λ0 = 869 nm, finesse F = 3.5× 105,
conversion factor σ = 2.78 × 10−5 W

V
, and measurement bandwidth B = 1 kHz. A

comparison is made to the results computed in Section 12.2 using finite element anal-
ysis (shown in red). The effective mass coefficient is taken to be that determined
through the finite element analysis with each mode given a quality factor Q = 100.
The modes were only calculated up to 2.5 MHz, so the spectral density function was
only computed up to 2 MHz.
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Part V

Applications of Cavity QED to

Communication Theory:

Superadditivity
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Chapter 13

Superadditivity for a Binary

Quantum Alphabet: Introduction

These chapters are about achieving the maximal information transfer rate possible

when information is encoded into quantum systems via the preparation of one or an-

other of two nonorthogonal states. This might at first seem like a questionable thing

to consider: for transmissions through a noiseless medium, the maximal transfer rate

(or capacity) of 1 bit/transmission is clearly achieved only with orthogonal alpha-

bets. This is because nonorthogonal preparations cannot be identified with complete

reliability. However, there are instances in which it is neither practical nor desirable

to use such an alphabet. The most obvious example is when a simple laser trans-

mitter is located a great distance from the receiver. The receiver’s field will take on

the character of a very attenuated optical coherent state. Because the states become

less orthogonal as the power is attenuated, one is confronted with precisely the issue

considered here. In this case, one is typically stuck with trying to extract informa-

tion from quantum states that are not only nonorthogonal, but almost completely

overlapping.

The practical method in many situations for compensating for very weak signals

is to invest in elaborate receiving stations. For instance, in microwave communication

very large-dish antennas are the obvious route. Recently, however, a new quantum

mechanical effect has been discovered for the decoding of nonorthogonal signals on

separate quantum systems. Traditional signal processing methods have only con-
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sidered fixed decoding measurements performed on the separate transmissions (see

for example Ref. [96]): i.e., taking into account the intrinsic noise generated by the

quantum measurement [97], one is left with a basic problem of classical information

theory—coding for a discrete memoryless channel [98]. Quantum mechanics, however,

allows for more possibilities than this [99]. If one is capable of doing collective mea-

surements on blocks of transmitted signals, it is possible to achieve a greater capacity

than one might have otherwise thought [100]—this is referred to as the superaddi-

tivity of quantum channel capacities. This is an effect that does not exist classically

[98, Lemma 8.9.2]. The physics behind the effect relies on a kind of nonlocality dual

to the famous one exhibited by entangled quantum systems through Bell inequality

violations [101, 102, 103].

More precisely, a communication rate R is said to be achievable if in k trans-

missions there is a way of writing 2Rk messages with the nonorthogonal alphabet so

that the probability of a decoding error goes to zero as k → ∞. The number R

signifies the number of bits per transmission that can be conveyed reliably from the

transmitter to the receiver in the asymptotic limit. Clearly the rates that can be

achieved will depend on the class of codings used for the messages and the class of

quantum measurements allowed at the receiver. The capacity Cn is defined to be the

supremum of all achievable rates, where n is the number of transmissions to be saved

up before performing a measurement. The meaning of superadditivity is simply that

Cn > C1, where the inequality is strict.

Generally it is a difficult problem to calculate Cn even with a quantum version

of Shannon’s noisy channel coding theorem available [100]. And it is a much more

difficult task still to find codes that approach Cn. This is because the coding theorems

generally give no information on how to construct codes that approach a given capac-

ity. It turns out however that the number C1 is rather easily calculable and, because

of a recent very powerful theorem on quantum channel capacities [104, 105, 106], so

is the asymptotic case C∞ [103]. The most striking thing about these two quantities

is that even though both C1 → 0 and C∞ → 0 as the overlap between the states goes

to unity, the ratio C∞/C1 nevertheless diverges (see Figure 13.1). This means that
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Figure 13.1: C∞/C1 for Nonorthogonal States
The ratio C∞/C1 as a function of the angle γ in degrees, where γ is the angle between
the two nonorthogonal states comprising the transmission alphabet.

grossly collective measurements can, in principle at least, produce an arbitrarily large

improvement in the channel capacity of very weak signals—a very desirable state of

affairs and one of some serious practical import.

The problem from the practical side of the matter is that before one will be able

to decode very large blocks, one must first be able to tackle the case of small blocks,

preferably of just size two or three. There has already been substantial progress in

this direction by Sasaki et al., in a series of papers [107, 108, 109]. They explicitly

demonstrate a code that uses collective decoding three transmissions at a time to

achieve a communication rate R3 greater than C1. Nevertheless, it would be nice to

demonstrate superadditivity with an even simpler scheme, namely two-shot collective

measurements. Also the ratio R3/C1 → 1 as the angle γ between the two states goes
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to zero for their given coding scheme. Thus just where one would be looking for the

most help from superadditivity (in the very weak signal regime), one loses it for this

code.

We improve on the work of Sasaki et al., by showing that in fact C2 > C1 for angles

γ . 19◦, and moreover that this superadditivity is sustained and only strengthened

as γ → 0. On the down side, the improvement in capacity is not great—only 2.82

percent—but is definitely there and not so small as to be forever invisible. In this

vein, we propose an experimental demonstration that relies on near-term laboratory

capabilities for implementation. For our two nonorthogonal quantum states, we use

low photon-number coherent states |α〉 and | − α〉 with the separate signals carried

on different circular polarizations. The two-shot signal decoding is performed with

atomic state measurements on a single Cesium atom in a high-finesse optical cavity

via the technique of quantum jumps in fluorescence similar to those demonstrated on

ions in References [110, 111, 112].
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Chapter 14

Deriving Superadditivity for

Two-Shot Collective Measurements

14.1 Quantum Shannon Noisy Coding Theorem

Following the discussion of the previous chapter, we will take as an alphabet for all

communication schemes a fixed set of two nonorthogonal quantum states |ψ0〉 and

|ψ1〉 characterized by the single parameter γ:

〈ψ0|ψ1〉 = cos γ . (14.1)

We would like to know what communication rates Rn can be achieved with this

alphabet when decoding measurements are performed n transmissions at a time.

This in general is a very difficult problem, especially if one is also confronted with

the issue of explicitly demonstrating codes for achieving those rates. However, if one

can be contented in knowing the number Cn itself and the quantum measurements

required to achieve that (i.e., without knowing the coding scheme explicitly), then

a great simplification arises because of a quantum extension to the Shannon noisy

coding theorem [98] due to Holevo [100].

We shall state the result of this theorem presently. Let the variable x denote the

binary strings of length n that index the set of all messages |Ψx〉 = |ψx1〉|ψx2〉 · · · |ψxn〉,
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let the function p(x) denote a probability distribution over those messages, and let

ρ =
∑

x

p(x)|Ψx〉〈Ψx| (14.2)

denote the resultant density operator of that distribution. We shall use the notation

E to denote a generalized quantum measurement or positive operator-valued measure

(POVM) [113] on the message Hilbert space Hn, i.e., E = (Ek) is an infinite sequence

of operators on Hn with only a finite number of Ek 6= 0 such that 〈ψ|Ek|ψ〉 ≥ 0 for

all k and |ψ〉, and the Ek’s form a decomposition of the identity operator on Hn. In

order to find Cn, it is enough to perform the following maximization:

Cn =
1

n
max
p(x)

max
E

[
HE(ρ)−

∑

x

p(x)HE(|Ψx〉)
]
, (14.3)

where

HE(ρ) = −
∑

k

(trρEk) log(trρEk) (14.4)

and

HE(|Ψx〉) = −
∑

k

〈Ψx|Ek|Ψx〉 log〈Ψx|Ek|Ψx〉 (14.5)

are the Shannon informations for the various probability distributions generated by

the measurement E. (In these expressions we have used the base-two logarithm so

that information is measured in bits.) For any rate Rn = Cn − ε, ε > 0, there exists

a code that will achieve that rate. Moreover, if E is fixed and only the maximization

over p(x) is performed in Equation (14.3), then the resulting expression will define

the capacity that can be reached with the given measurement.

14.2 Limiting Cases for Cn

There are two limiting cases where the calculation of Cn becomes tractable, n = 1

and n = ∞. In the first case, one can use References [114, 115, 103] to find rather
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easily that

C1(γ) =
1

2

[
1 +

√
1− cos2 γ

]
log
[
1 +

√
1− cos2 γ

]

+
1

2

[
1−

√
1− cos2 γ

]
log
[
1−

√
1− cos2 γ

]
. (14.6)

For the limit where arbitrarily many collective measurements are made, one can use

the powerful theorem of Ref. [104] to find that the channel capacity per bit is given

by [103]

C∞(γ) = − 1

2
(1− cos γ) log

1

2
(1− cos γ)

− 1

2
(1 + cos γ) log

1

2
(1 + cos γ) . (14.7)

For all cases in between, there is nothing better to be done than an explicit search

over all probabilities p(x) and all measurements E.

As stated in Chapter 13, one can see from Equations (14.6) and (14.7), that

lim
γ→0

C∞(γ)

C1(γ)
−→ ∞ . (14.8)

So the incentive to use collective measurements in the decoding of these signals is

great.

14.3 R2: Rate for Two-Shot Collective Measure-

ments

Therefore, let us specialize to the case of collective measurements on two transmissions

at a time. In this case, with respect to the decoding observables we have an effective
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alphabet consisting of the tensor-product states

|a〉 = |ψ0〉|ψ1〉 (14.9)

|b〉 = |ψ1〉|ψ0〉 (14.10)

|c〉 = |ψ0〉|ψ0〉 (14.11)

|d〉 = |ψ1〉|ψ1〉 , (14.12)

with the consequent inner products

〈a|c〉 = 〈b|c〉 = 〈a|d〉 = 〈b|d〉 = cos γ , (14.13)

and

〈a|b〉 = cos2 γ . (14.14)

It turns out that these states can already exhibit superadditivity even when the

collective observables are taken to be simple von Neumann measurements: i.e., by

taking Ek = |ek〉〈ek| where the |ek〉 are four orthonormal vectors. Taking pi to be a

probability distribution on the effective alphabet states, we must attempt to maximize

the rate

R = HE(ρ)− paHE(|a〉)− pbHE(|b〉)− pcHE(|c〉)

−pdHE(|d〉) (14.15)

with

ρ = pa|a〉〈a|+ pb|b〉〈b|+ pc|c〉〈c|+ pd|d〉〈d| , (14.16)

HE(ρ) = −
∑

k

〈ek|ρ|ek〉 log〈ek|ρ|ek〉 , (14.17)

and

HE(|a〉) = −
∑

k

|〈ek|a〉|2 log |〈ek|a〉|2 (14.18)
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and likewise for |b〉, |c〉, and |d〉. The rate R2 we will be interested in is then

R2 =
1

2
max

pi

max
|ek〉

R . (14.19)

We have thoroughly studied R2 numerically with a steepest descent and simulated

annealing technique. As one might guess, the optimal solution to Equation (14.19)—

for sufficiently small angles (γ . 19◦)—appears to obey the following symmetries

pd → 0,

pa = pb ≡ p,

pc ≡ 1− 2p. (14.20)

Therefore we make the following Ansatz (see Figure 14.1)

〈c|e3〉 = cos η

〈a|e1〉 = 〈b|e2〉

〈a|e3〉 = 〈b|e3〉

〈c|e1〉 = 〈c|e2〉 (14.21)
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Figure 14.1: Effective Alphabet Projection
The effective alphabet for our implementation represented in an orthogonal measure-
ment basis. The projections are in the |e1〉,|e2〉 plane.
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14.4 Measurement Basis and Limit for R2

Taking these symmetries as a more analytic starting point, we can expand the mea-

surement basis as a function of η, γ, and the alphabet states (see Figure 14.1):

|e1〉 =
cos η + 1

2 sin γ
|a〉+ cos η − 1

2 sin γ
|b〉

+

√
2 sin η sin γ − 2 cos η cos γ

2 sin γ
|c〉

|e2〉 =
cos η − 1

2 sin γ
|a〉+ cos η + 1

2 sin γ
|b〉

+

√
2 sin η sin γ − 2 cos η cos γ

2 sin γ
|c〉

|e3〉 = −
√

2 sin η

2 sin γ
|a〉 −

√
2 sin η

2 sin γ
|b〉

+

√
2 sin η cos γ + cos η sin γ

sin γ
|c〉 (14.22)

Thus the rate can now be expressed as

R2(γ) = max
η,p

R(η, p, γ) (14.23)

Even with these strong assumptions and simplifications, R2(γ) does not yield a

simple analytic expression. We must instead content ourselves with a numerical study

as depicted in Figure 14.2. Note in particular that as γ → 0 the superadditivity does

not dwindle away:

lim
γ→0

R2(γ)

C1(γ)
−→ 1.02818 . (14.24)

This contrasts with the rate R3 exhibited by Sasaki et al. [107, 108, 109] for which

the ratio R3/C1 goes to one within the very weak signal regime.

Note that we use the notation R2 rather than C2 because our favored quantity can

only be asserted as a lower bound to the two-shot capacity. The symmetry assump-

tions on the probabilities along with the specialization to symmetric von Neumann

measurements could turn out to be overly restrictive. However, further numerical

investigations seem to indicate that any further improvement is likely to be very
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Figure 14.2: Comparison of Superadditivity
The red line represents the ratio R2/C1 as a function of γ. The blue line represents
the ratio obtained using the experimentally feasible but nonoptimal basis discussed
in Section III. The green line represents R3/C1 obtained by Sasaki et al. in
References [107, 108, 109].

small [116]. Also we should emphasize that demonstrating that R2 > C1 does not

give an automatic means for finding a code that comes within ε of this rate: the

channel capacity theorem Equation (14.3) is only an existence proof of such a code.

However, the noise model that our alphabet and measurement leads to—i.e., a sim-

ple stochastic transition diagram on three letters—has been extensively studied in

classical information-theory literature, and good codes for this problem are likely to

exist.

Finally, let us mention one more quantification of the superadditivity due to our

nonorthogonal alphabet; this is the simple difference between the two-shot rate and
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Figure 14.3: Difference in Communication Rates (R2 − C1)
The difference in rates R2 − C1 as a function of the angle γ.

the one-shot rate. We plot R2−C1 in Figure 14.3. It has been suggested in Ref. [103]

that the differences Cn − C1 can help define various notions of when two quantum

states are most “quantum” with respect to each other (and hence least “classical”).

When one goes to the limit C∞ −C1 one finds a well-behaved notion: two states are

most quantum with respect to each other when they are 45◦ apart. Figure 14.3 seems

to indicate that R2 − C1 plays no such simple role: at the very least, it means that

this difference does a poor job of ferreting out the quantumness of two states in the

geometrical sense already supplied by Hilbert space.
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Chapter 15

Experimental Proposal for

Achieving Superadditivity

15.1 Basis for Experiment

Let us now focus on the case we are most interested in for our experimental proposal:

two very low photon-number coherent states |α〉 and |−α〉 of a particular field mode.

We choose α real so that the mean photon number in that mode is α2. For the

angles for which we demonstrated superadditivity, i.e., γ . 19◦, this translates to a

mean photon number less than 0.03 in each transmission. In this case, we are well

warranted in making the approximation

|ψ0〉 = |α〉 ∼= 1√
1 + α2

|0〉+ α√
1 + α2

|1〉

|ψ1〉 = | − α〉 ∼= 1√
1 + α2

|0〉 − α√
1 + α2

|1〉 , (15.1)

where |0〉 and |1〉 denote the zero- and single-photon states of the mode, respectively.

Moreover, we have

α ∼=
√

1− cos γ

1 + cos γ
. (15.2)

In order to keep track of the separate transmissions, we encode each transmission in

a different mode. For our purposes it is convenient to choose two orthogonal circular

polarizations.

Expanding the measurement basis in terms of the photon number states, we thus
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have

|e1〉 =

√
2 sin η + 2α cos η

2(1 + α2)
|0〉+|0〉−

+
α
√

2 sin η − cos η + α2 cos η − 1− α2

2(1 + α2)
|0〉+|1〉−

+
α
√

2 sin η − cos η + α2 cos η + 1 + α2

2(1 + α2)
|1〉+|0〉−

+
α2
√

2 sin η − 2α cos η

2(1 + α2)
|1〉+|1〉− (15.3)

|e2〉 =

√
2 sin η + 2α cos η

2(1 + α2)
|0〉+|0〉−

+
α
√

2 sin η − cos η + α2 cos η + 1 + α2

2(1 + α2)
|0〉+|1〉−

+
α
√

2 sin η − cos η + α2 cos η − 1− α2

2(1 + α2)
|1〉+|0〉−

+
α2
√

2 sin η − 2α cos η

2(1 + α2)
|1〉+|1〉− (15.4)

|e3〉 =
cos η − α

√
2 sin η

(1 + α2)
|0〉+|0〉−

+

√
2 sin η(1− α2) + 2α cos η

2(1 + α2)
|0〉+|1〉−

+

√
2 sin η(1− α2) + 2α cos η

2(1 + α2)
|1〉+|0〉−

+
α
√

2 sin η + α2 cos η

(1 + α2)
|1〉+|1〉− (15.5)

The + and − subscripts in these equations refer to righthand and lefthand circularly

polarized light, respectively.

The measurement basis above is, of course, orthonormal. However, after optimiz-

ing over η as in the previous section, one finds that the coefficient of each |1〉+|1〉−
component turns out to be of order α while the other terms are of order one. Because

one is free to choose any measurement basis, we choose to ignore the small |1〉+|1〉−
term for each |ei〉. This new basis |ẽi〉 is close to the optimal basis |ei〉 but allows the
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great simplification of not having to worry about how to distinguish |1〉+|1〉− from

|0〉+|1〉− and |1〉+|0〉−. We may then focus on experiments based on the absorption

of at most a single photon.

The final step for defining our measurement scheme is to re-orthogonalize the

vectors |ẽi〉. A simple convenient technique for this is the one introduced in Ref. [117].

Let

M =
3∑

i=1

|ẽi〉〈ẽi| . (15.6)

Then clearly the vectors

|e′i〉 = M− 1
2 |ẽi〉 (15.7)

form an orthonormal set. It is this basis that we will use in the experimental proposal,

the main point of interest about it being that it contains no two-photon contribu-

tions. Of course, the new basis cannot be optimal for achieving the rate R2 already

calculated, but for small α it becomes arbitrarily good. In fact, it is already sufficient

for demonstrating superadditivity for γ . 17◦ (see Figure 14.2).

15.2 Experimental Protocol

We now turn to the task of realizing the measurement explored in the last section.

To carry this out, we need the ability to perform an entangled measurement on

two wave packets at a time. We can achieve this collective decoding by mapping

the orthonormal measurement basis in Equation (15.7) onto a set of orthonormal

superpositions of three sublevels of a single atom (see Figure 15.1). Note that only

two levels would be required to perform the optimal (unentangled) measurement to

distinguish |α〉 and | − α〉 [118].

The basic idea is to first transfer the information from the propagating light fields

to photons inside an optical cavity and subsequently map the information from the

cavity field to a single atom inside that cavity. In order to make sure the photon

wavepacket enters the cavity, rather than being reflected off the cavity mirror, we

make use of the adiabatic passage scheme of [119, 120]. This means that the laser fields



194

m’ = -1 m’ = 0 m’ = 1

m = 0m = -1 m = 1

ω ωL
L

σ- σ+

Figure 15.1: Transition Diagram for Experimental Implementation
Transition diagram for our implementation: a π-polarized laser field with frequency
ωL is applied to a single atom inside an optical cavity. The laser will induce a Raman
transition from the initial state |m = 0〉 to |m = +1〉 or |m = −1〉 in the presence
of a single σ+ or σ− polarized cavity photon, with frequency ωC = ωL. No transition
is induced in the absence of a cavity photon, as the m = 0 ↔ m′ = 0 transition is
forbidden. Note that π-polarized modes are not supported by the cavity.

taking care of the mapping process (for details see below) actually have to be turned

on before the wavepacket arrives at the cavity. Alternatively, one might consider

the scheme of [8] using symmetric photon wavepackets. However, this relies on the

ability to maintain symmetric wavepackets, which is impractical for long distance

communication.

15.2.1 Mapping the Photon States to an Atom

The mapping is then accomplished as follows: First, the atom is prepared in a ground

state with |m = 0〉 by optical pumping. The presence of a single σ+ polarized cavity

photon is then more than sufficient to induce a Raman transition to the |m = 1〉 state

with the help of a π-polarized laser field (in fact, the advances in cavity QED have

increased the atom-cavity coupling to such a large degree that the saturation photon
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number for optical transitions is very small [77]; in particular, for the (6S 1
2
, F =

4,m = 4) → (6P 3
2
, F = 5,m = 5) transition in Cesium it is only 2.3 × 10−4 [33]).

Similarly, the presence of a single σ− photon will induce the transition to |m = −1〉,
while if no cavity photon is present, the atom will stay in |m = 0〉. Thus, the

measurement scheme is based on the mapping

|0〉+|0〉−|m = 0〉 7−→ |0〉+|0〉−|m = 0〉,

|0〉+|1〉−|m = 0〉 7−→ |0〉+|0〉−|m = −1〉,

|1〉+|0〉−|m = 0〉 7−→ |0〉+|0〉−|m = +1〉. (15.8)

This mapping must be executed within the cavity lifetime (a typical lifetime for high-

finesse optical cavities is κ−1 ∼ 0.1 µs [121]). Once this mapping has been performed,

we no longer rely on cavity fields.

In order to avoid any disturbing effects from the laser field on level |m = 0〉 in

the absence of a cavity photon, we require the transition |m = 0〉 7→ |m′ = 0〉 to be

forbidden, which is easily accomplished by choosing δF = 0 transitions. For example,

one might consider the following transition between hyperfine multiplets in Cesium

6S 1
2
, F = 3 ←→ 6P 1

2
, F = 3. (15.9)

Moreover, the frequency ωL of the laser field is chosen such that we are on two-photon

resonance with the |m = 0〉 ↔ |m = ±1〉 Raman transitions, but far off resonance

with respect to the excited states. Therefore, the latter will not be populated and no

further transitions from |m = 1〉 or |m = −1〉 will occur.

15.2.2 Transforming the Measurement Basis

Once the information has thus been transferred from the polarizations to the atom

in the cavity, the measurement basis is an orthonormal superposition of the three

relevant atomic ground states |m = −1〉, |m = 0〉, and |m = 1〉. Making a mea-
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surement of a superposition of these states is far more difficult than measuring the

states themselves. Therefore, we first apply a unitary operation that transforms the

basis of Equation (15.7) into the physical measurement basis. This operation can be

performed by a series of at most 16 appropriately timed Raman pulses [122, 123]. In

general, for an N level system, with N even, the unitary evolution can be controlled

with a sequence of N2 pulses consisting of two distinct perturbations in an alternating

sequence [123]. While this scheme is not optimal for N = 3, it does give an upper

bound for the required number of pulses.

15.2.3 Measuring the Projection in the Physical Basis

Once this transformation of basis has been performed, the only remaining task is to

measure the projection onto each of the three possible hyperfine levels of our physical

measurement basis. To perform this measurement, a magnetic field is turned on

adiabatically, causing a splitting of the energy of these otherwise degenerate hyperfine

levels. Next, we use the technique of optical shelving to make a measurement of the

levels [110, 111, 112]. With this technique, a Raman pulse is applied to cause a

transition from the |m = 1〉 state into a secondary state that can then be driven on

resonance to yield a large number of photons. If the atom fluoresces at the driven

frequency, the measurement outcome is m = 1, and the measurement is finished.

Otherwise, if no fluorescence is detected, the atom will not be affected by this driving

laser and the process is then repeated for the |m = 0〉 and |m = −1〉 states.

At the time the work for our paper was done [21], atoms could only be held in a

cavity for times exceeding 250µs [121], which was nearly sufficient for the measure-

ments and laser manipulations discussed to be performed. Now as discussed earlier in

this thesis, we are able to hold atoms for approximately 3 seconds. This improvement

has greatly relaxed the conditions on timing necessary to carry out the manipulations

needed to demonstrate superadditivity. Therefore, the ability to hold single atoms

in a cavity for a sufficient period of time will open up a world of possibilities for the

field of communication [8, 124, 125].
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