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Appendix A: Connections to Other 

Mechanical Detection Methods 

The “ideal detection sphere” arguments leading up to the BOOMERANG 

detector of Figure 1.3 represent a significant break from the conceptual 

development of the several other force-detected magnetic resonance methods 

shown, with BOOMERANG, in Figure A.1. The more traditional line of thinking has 

Figure A.1. Force-detected magnetic resonance methods.
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been characterized by a “Stern-Gerlach” view, which has pervaded the field since 

the very first method of magnetic resonance, the Rabi molecular beam method1 

(which preceded by 8 years the observation of magnetic resonance in condensed 

phases using magnetic induction by Purcell2 and Bloch3). 

Rabi’s method makes use of the Stern-Gerlach effect, the state-dependent 

force F on a spin-magnetic dipole µµµµ in an inhomogeneous static field: 

 GF ⋅= µµµµ . (A.1) 

Here, rBG ∂∂=  is the gradient tensor of the static field B with respect to the spatial 

coordinates r. This force spatially separates populations of molecules in a beam by 

the eigenvalue of the projection of their spin angular momentum onto the static field 

direction. An applied rf field induces spin flips that reverse the initial deflections of 

the separate populations, modulating the intensity of the molecular beam at a 

detector in accordance with the spin-resonance condition. A Stern-Gerlach 

separation of eigenstates of precessing transverse angular momentum for magnetic 

resonance of molecular beams was later proposed4 and demonstrated5 by Bloom 

and coworkers. 

Both the spectroscopic resolution and sensitivity of these methods is limited 

by the residence time of the spins in the field. A key improvement in force-detected 

magnetic resonance is to keep the spins in the field for a longer time by confining 

them to a harmonic motion, applying the forcing fields at the mechanical resonance 

frequency of that motion. This is a feature of proposals by Pizarro and Weitekamp 

to detect electron spin resonance (ESR) and NMR of electromagnetically trapped 
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ions by way of a resonance-induced change in the amplitude of their orbits using 

switched field gradients6-8. 

Spin-dependent mechanical resonance is also a feature of a torque-detection 

method for magnetic resonance of condensed phases in homogeneous fields, which 

was introduced in the 1960’s by Gozzini and coworkers9-14. In those experiments, 

a spin-bearing solid sample (the solid free-radical diphenylpicrylhydrazyl, DPPH) 

suspended in a homogeneous magnetic field is made to absorb angular momentum 

from an rf field applied at the frequency of spin precession. The sample spins, 

which are bound to a torsional oscillator, transmit their acquired angular momentum 

via rapid thermalization with the lattice to the oscillator, which therefore 

experiences a torque. This absorption of angular momentum from the applied field is 

analogous to the absorption of power from the field attempted long ago by Gorter15 

and finally observed as a rise in temperature of the sample by Schmidt and 

Solomon16. While these methods may be used in a homogeneous field, the 

thermalization of angular momentum or of energy with the lattice, a necessary 

component of the methods, limits their use in the great majority of modern NMR 

pulse sequences, which rely on persistence of spin coherence through numerous rf 

pulses. 

Mechanical detection was revived in the context of condensed phases by 

Sidles, who proposed a “folded Stern-Gerlach effect”17 — the resonant driving of 

small oscillators, such as force-microscope cantilevers, with spin-dependent forces 

in accordance with Equation (A.1). The version of this proposal that has been 

implemented uses cyclic adiabatic rapid passage (ARP) or cyclic saturation to 
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modulate longitudinal magnetization at an audio frequency in the presence of a field 

gradient, driving the oscillator to which either the sample18,19 or a small 

ferromagnetic particle20, which provides the gradient, is attached. The 

ferromagnetic particle serves the dual purpose of providing a coupling force and 

varying the spin-resonance condition across the sample volume, which provides an 

imaging capability. The first experimental demonstration of this approach, which is 

now called magnetic resonance force microscopy (MRFM), was performed in Daniel 

Rugar’s laboratory at IBM Almaden18. This first demonstration was an ESR 

experiment with solid DPPH bound to the cantilever. Subsequently, MRFM as been 

extended to proton19, and fluorine21 NMR and to ferromagnetic resonance in cobalt 

thin films22. 

The sensitive-slice imaging capability of MRFM bears resemblance to 

Damadian’s magnetic resonance imaging method23,24. MRFM was also originally 

motivated by biological imaging — although at a dramatically reduced size scale. 

Rugar and Sidles have attempted to set the groundwork for a means of imaging 

biomolecules magnetically, angstrom-thick slice by angstrom-thick slice. A very 

challenging intermediate goal is detection of magnetic resonance from single 

electrons using MRFM, and to this end great strides have been made, particularly in 

Rugar’s laboratory, such that as of this writing it is now possible to observe 

magnetic forces with sub-attonewton per root hertz sensitivity at cryogenic 

temperatures25. This is in principle sufficient to observe resonance from single 

electrons, but so far efforts have been unsuccessful26. 
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In light of the history behind Equation (A.1), it is not surprising that authors 

describing molecular beam and MRFM-type force detection propose use of the 

highest gradients possible. The experimental trend in MRFM has been toward ever-

increasing gradients, and as of this writing MRFM has been performed with 

gradients as large as 250 kT/m27. But, as we have seen in Chapter 1, no gradients 

are in fact needed to observe magnetic resonance with force detection, and there 

are very good reasons for avoiding their use. What is going on here? 

The answer lies in the choice of a mathematical model for the sample. In 

Equation (A.1), the “sample” is a point dipole. 

The geometric optimization described in Chapter 2 takes into account the 

shape and size of a whole sample and asks the question of what detector provides 

optimal signal-to-noise for that sample.† Our choice of a sphere with a specified Rmax 

is based on computational simplicity and also on the fact that for powdered samples 

and fluids, one can arrange to pack the sample into a sphere. Often in solid-state 

magnetic resonance, even single crystals are shaped into spheres to mitigate 

susceptibility effects. In commercial (inductive) instruments for both solids and 

liquids, the effective sample volume is most often a cylinder with near-unit aspect 

                                        

† Specifically, the uncertainty in the measurement of the average magnetization of 
the sample is the observable that is optimized. This is not the only one that might be 
considered. For example, the “local sensitivity” alluded to in Chapter 3 varies over the 
sample volume by more than an order of magnitude. It might be of interest to optimally 
assess anisotropies in some heterogeneous sample. The information-theoretic question of 
how best to generalize the optimization given arbitrary constraints is well worth serious 
consideration. 
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ratio, a close match to a sphere mathematically. A sphere is in any case a first 

approximation to any 3-D sample. 

Which brings us back to the point dipole. This sample can be viewed as a 

sphere with vanishing Rmax. The theory of Chapter 2 is applicable, and in this special 

case, a moving sensor magnet designed for optimal detection is as small as possible 

and as close as possible to the sample dipole. In the absence of any compensation 

magnets this leads to the conclusion that higher gradients mean better sensitivity, 

as the detector would impose the largest possible gradient at the position of the 

sample dipole28. 

The difficulty of constructing nanoscopic BOOMERANG magnet assemblies 

with narrow gap spacings, relative to single magnet particles on cantilevers, is 

apparent. If the goal is to observe magnetic resonance from a single, isolated, fixed 

spin (nuclear or electronic), then the BOOMERANG concept is probably more trouble 

than it is worth. If the (single) spin is not in a fixed location, but instead is diffusing 

in a target volume or on a surface, then the elimination of field gradients is again 

relevant. It is almost always the case that the real information sought from an 

experiment is hidden in a volume that is at least as large as a molecule. Even 

imperfect composite magnet assemblies that allow a larger sample region with 

many spins during detection can extract information at a greater rate than can be 

had one spin at a time. 

Single-electron-spin sensitivity in MRFM may well be achieved in the very 

near future, and the very much more challenging observation of magnetic resonance 

from single nuclear spins may also be possible in theory. But the probable range of 
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superiority of force-detection over inductive detection (as regards sensitivity) is 

between 100 and 1012 or so spins in volumes of up to approximately 0.1 mm3. Such 

samples possess enormous information content that may best be extracted by 

whole-sample BOOMERANG methods, and we have proceeded accordingly in our 

efforts. 
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