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Chapter 2: On Signal Detection and Noise 

2.0 BOOMERANG Force Detection 

Without considering how to encode the NMR spectrum of a sample, in this 

chapter we address measurement of its nuclear magnetization by using the latter to 

drive a given mode of a mechanical oscillator. For concreteness, we consider the 

case of an oscillator that couples linearly to the longitudinal magnetization of the 

entire sample, which we therefore invert twice per oscillator period to drive the 

mode. We address the specifics of cyclic inversion in BOOMERANG in Chapter 3. 

Here we note only that the entire magnetization of the sample is inverted, and that 

this magnetization decays exponentially with a time constant we shall call T1a, 

which for many samples is ideally as long as the longest relaxation time of the spin 

system, T1. In a typical experiment, the Fourier component of the oscillator’s motion 

at the driving frequency is proportional to the sample’s magnetization at the 

beginning of a time interval during which the oscillator is driven. 

In general, the oscillator’s motion is defined in terms of a mechanical 

coordinate in the “flexible detector” of Chapter 1 along which the sample’s 

magnetic force acts. This is also the coordinate along which the flexible 

suspension’s restoring forces act and along which displacements are measured. We 
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take the “signal” to be the magnetic force exerted by the sample at the start of the 

oscillator-driving or detection period (or, rather, the projection of this force on the 

measured coordinate). The goal of the detection period is to measure this value with 

least uncertainty. 

For concreteness, we return to the uniformly magnetized spherical sample 

inside the magnet assembly of Figure 1.3, with its designated sensor magnet. Each 

of the component magnets will in principle move separately in response to forces 

exerted by the sample’s magnetization. However, since the sensor magnet is much 

lighter than other magnets in the assembly by design, and since the other magnets 

are fixed to rigid supports, the driven mechanical mode is very nearly approximated 

by the harmonic motion of the sensor magnet inside its encircling annulus. Thus, in 

the prototype described in Chapter 3, the sensor magnet moves up and down along 

the symmetry axis inside an otherwise rigid magnet assembly, and the 

displacement, z, of the sensor magnet relative to a fiber-optic position sensor fixed 

to the other magnets is recorded. The signal is thus defined as the net force exerted 

by the sample on the sensor magnet only. 

The force exerted on a magnetic dipole dµµµµ  by another dipole sµµµµ  may be 

written 

 ( ) 




 ⋅





 −⋅

π
µ

+∇=⋅−−∇= dsd
rrBF µµµµµµµµµµµµ
3

0
s

1ˆ̂3
4 r

, (2.1) 

where r̂  denotes the unit vector pointing from the position of sµµµµ  (the sample) to 

that of dµµµµ  (the detector), ∇  denotes the gradient with respect to the coordinates of 
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Figure 2.1.  Force field near a sample with moment µs for axial detector dipoles µd.  
a) Coordinate system used in the text. b) Dotted lines define surfaces of revolution 
upon which the z-component of the force vanishes. 

dµµµµ , and Bs denotes the magnetic field due to the sample1. To calculate the force of 

one rigid body of finite extent on another, we must replace sµµµµ  by ( ) sss dVrM  and dµµµµ  

by ( ) ddd dVrM  and then integrate over the volumes Vs and Vd of the two bodies, 

whose magnetizations are ( )ss rM  and ( )dd rM . For the present case, zM ŝs M=  and 

zM d̂d M=  are constant vectors along the axis of cylindrical symmetry, ẑ . 

Integration over the sample’s spherical volume yields 

 ( ) ( )[ ] d
22

4
dss0 ˆsincos153ˆcoscos159

4
dV

r
MMV ρρρρθθ−+θθ−π

µ= zdF  (2.2) 

for the force on the dipole element dd̂ dVM z  at position ( )ρρρρ̂sinˆcos θ+θ= zr r  in 

coordinates that are defined in Figure 2.1 a. Equation (2.2) may be viewed as 

defining a field of force around the sample that is experienced by detector dipoles 
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aligned along ẑ . This force field is illustrated in Figure 2.1 b, where the lines of 

force (which are not the same as magnetic field lines) are parallel to dF at all points. 

This picture allows us to make some observations regarding the design of a suitable 

force detector. 

First, since the force field is cylindrically symmetric, and since we wish to 

preserve field homogeneity in the sample volume as best as possible, our sensor 

magnet will be a solid of revolution about the magnetization axis ẑ . Our choice of a 

circular cylinder, which is motivated by ease of fabrication and sample access, turns 

out to be very nearly the best shape (see Appendix B) given the requirement that 

the sensor magnet and the sample not occupy the same space. We make this latter 

criterion more concrete by defining a distance Rmax from the center of the sample to 

the near edge of the sensor magnet. Rmax is ideally dominated by the sample’s 

radius, but it also includes space that may be necessary for intervening NMR coil 

windings and any barriers that might be required to keep the sample and sensor 

oscillator at different temperatures or pressures. Cylindrical symmetry requires that 

integration of Equation (2.2) over the sensor magnet volume yield a net force 

whose transverse components vanish, and so we consider only the z-component 

dFz ⋅= ˆzdF  in what follows. The dotted lines in Figure 2.1 denote nodal surfaces of 

revolution (cones), at angles of 90° and °≈=θ 2.3953arccos0  with the vertical, 

upon which dFz vanishes. The z-component of the force field changes sign when 

crossing through these surfaces. In order for the forces on individual dipole 

elements in the sensor to add in concert, a single, rigid sensor will lie entirely inside 

a nodal surface. 
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We calculate the dc force on the sensor magnet by integrating Equation (2.2) 

over the sensor’s volume. The result for any volume may be written 

 maxdss0Fz RMMVF µκ= , (2.3) 

where ( )∫ θ−θπ=κ d
3

4
max

F cos15cos91
4

dV
r

R
 (2.4) 

is a dimensionless (and scale 

invariant) “shape factor.” For a 

cylindrical sensor of radius a and 

height h placed a distance Rmax 

from the center of the sample as 

in Figure 2.2, 
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2.1 Optimization of the Sensor Magnet 

We consider as “optimal” the sensor magnet that maximizes the force signal-

to-noise ratio, 

 Nrmsz,BOOM FFSNR = , (2.6) 

the ratio of the root-mean-square (rms) signal force ( ) zrmsz, 2 FwF = , less by 2  

than the dc force of Equation (2.2) and scaled by the Fourier component of the 

R

V
h

a

sample

sensor

Figure 2.2. Sensor magnet dimensions and 
definition of . Dotted lines denote the 
positions of other magnets in the 
BOOMERANG assembly.

R   max

max
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inversion scheme used (which is 27.14 ≈π=w  for square-wave modulation of the 

longitudinal magnetization), and a time-average “noise force,” FN. The predominant 

noise source over a wide range of conditions is the Brownian motion of the sensor 

magnet. At a given temperature T, the corresponding average noise force is given 

by2,3 

 fTkF ∆α= BN 4  (2.7) 

in the measurement bandwidth ∆f, which is a141 Tf =∆ in the present case†. The 

damping parameter, α, is the proportionality constant between the dissipative 

(frictional) force and the instantaneous velocity of the sensor magnet. This quantity 

may be written 

 τ=α m2 , (2.8) 

where m is the motional mass of the oscillator, which is ideally dominated by the 

mass of the magnet, and where τ is the oscillator’s “damping time,” the time 

required for its amplitude to decay to %8.361 ≈e  of its initial value after excitation 

by an impulse. 

Empirical evidence from our prototype BOOMERANG spectrometer4 suggests 

that damping due to eddy currents induced in the conducting magnets by virtue of 

their relative motion makes the largest contribution to the damping rate τ=γ 2 . 

                                        

† We define the bandwidth as ( ) ( )2
max

0

2 fZdffZ∫
∞

for a system or process with 

impedance or transfer function Z(f) in accordance with theory3 that leads to (2.7). 
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Estimates of this damping rate for the case of cylindrical symmetry are made in 

Appendix C. The functional form of the damping rate is complicated and not 

particularly instructive, and it depends much more strongly on other factors, such 

as the size and shape of the gap between the sensor and annulus, than it does on a 

and h. For that reason we leave the explicit dependence of τ on a and h out of the 

present optimization. 

More importantly, we conclude in Appendix C that τ is scale-invariant. We 

write 

 ( ) τηπ=α ha22  (2.9) 

for the damping constant, in accordance with a motional mass dominated by a 

cylindrical magnet with density η. 

After appropriate substitutions, we 

then find the maximum of SNRBOOM in 

the usual way, by differentiating 

Equation (2.6) with respect to both a 

and h and setting derivatives equal to 

zero. The result is a set of dimensions 

( max59.0 Ra ≈ , max53.0 Rh ≈ , corres-

ponding to 072.0F −≈κ , the sign 

indicating a downward force) that 

maximize sensitivity. It should be 

noted, however, that the sensitivity 
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figure of merit, as a function of a and h, is not sharply peaked (see Figure 2.3), and 

so some latitude exists in playing off sensitivity against homogeneity. The sensor 

magnet in Figure 2.2 is drawn with the above values for a and h relative to Rmax. 

We now turn to the scaling, relative to a linear dimension r of the sample-

plus-optimized-detector, of the signal-to-noise ratio. As regards the signal, the only 

scale-dependent parameters appearing in Equation (2.3) are the sample’s volume 

and Rmax. The signal force thus scales as r2. As regards noise, the conclusion of 

Appendix C, namely, the scale-invariance of the damping rate, makes α scale as r3, 

and so SNRBOOM is predicted to scale as r½. This conclusion is based on the 

experimentally observed dominance of eddy-current damping at the prototype size 

scale. As this damping rate is scale-invariant, the r½ law will hold as size scales are 

reduced until other mechanisms (for example, thermoelastic damping, surface 

losses, or so-called “anchor losses” due to phonon radiation out of mechanical 

supports) become more important. These damping mechanisms are the subject of 

much recent scrutiny in the nano-oscillator literature5-7, and they are treated in the 

context of BOOMERANG by Madsen4. The very favorable r½ scaling is in marked 

contrast to sensitivity scaling in inductive detection, to which we now turn. 

2.2 Inductive Detection 

For direct comparison to BOOMERANG, we assess sensitivity in inductive 

detection in the same way, by defining the signal-to-noise ratio, 

 NrmsINDUCT VVSNR = , (2.10) 
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in terms of a measured quantity, the rms electromotance Vrms in the coil, which is 

proportional to the magnetization of the sample. During detection, the sample’s 

magnetization drives an electrical oscillator (an LC circuit tuned near the Larmor 

frequency of the target spins). The time-average noise voltage, VN, is usually 

dominated by Johnson noise (thermal voltage fluctuations) in the resistive coil, but 

can also include contributions from dielectric losses in tuning capacitances and, for 

electrically lossy samples such as living tissue or solutions with electrolytes at 

physiological concentrations, induction losses in the sample. The average noise 

electromotance at a given temperature T is 

 fTRkV ∆= BN 4  (2.11) 

in the measurement bandwidth ∆f. Here, R denotes the total resistance of the circuit 

at the Larmor frequency. The ohmic resistance in a conductor can be substantially 

larger at radio frequencies than at dc due to the skin effect, the tendency of rapidly 

oscillating currents to flow only within a shallow depth near the surface of a 

conductor. As a point of reference, the skin depth in room-temperature copper coils 

(with conductivity -1-17 m 108.5 Ω×=σ  and permeability 0µ≈µ ) at MHz 2002 =πω  

is8 

 m7.42
21

µ≈






ωσµ=δ . (2.12) 

The bandwidth ∆f of the measurement can be maximized and VN minimized 

by prolonging the magnetization during detection with pulsed spin locking9, in 

which the NMR circuit is driven by the sample’s precessing magnetization during 
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the windows of a pulse sequence. Loss of magnetization then takes place 

exponentially with time constant T1ρ, the rotating-frame relaxation time, which can 

be substantially larger than T2, the transverse relaxation time. The bandwidth for 

the signal is then ρ×=∆ 141 Tbf , where the factor b, which accounts for the fact 

that the rf preamplifier is effectively decoupled from the signal for part of the time 

following pulses to avoid saturation and damage, can be substantially larger than 

unity. As a best case, b=1 is used in the numerical examples that follow. 

Since the detected signal is the electromotance induced in the detection coil 

by time-varying magnetization, the detector in this case is actually sampling the 

electric field induced by the sample. This fundamental detection process, the 

analogue of detecting the static force between two dipoles considered in section 

2.0, is shown in Figure 2.4. An element of a conductor is positioned in the field of 

the magnetic dipoles in the sample, 

which are sources of electric field 

when they reorient in response to 

applied magnetic fields (e.g., during 

precession). The electric field induced 

at r by the precessing magnetization 

may be obtained by taking the time 

derivative of the magnetic vector 

potential A(r) induced at r by a 

magnetic moment µµµµs: 

E

dl

z

time-derivative
of sample moment

detection
coil element

r µ ω= µ xzss

Figure 2.4.

dl

 Electric field near a sample 
dipole with time-varying moment  at the 
position of a detection coil element . The 
time-derivative vector is shown the 
moment vector 

µ 

— 
µ  is out of the plane of the 

page for samples containing spins with 
positive magnetogyric ratios.

s

s

 



  24 

  

 ( ) ( ) ( )
2

0
2

0
2

0 ˆˆ
4

ˆ
4

ˆ
4 rrrtt

zrrr
rArE sss ××ωπ

µ=×
π

µ=




 ×

π
µ

∂
∂−=∂

∂−= µµµµµµµµµµµµ
. (2.13) 

The last equality is true for magnetic dipoles precessing in the xy-plane 

perpendicular to ẑ  at angular frequency ω. For a sample of finite size, we replace 

sµµµµ  by ( ) sss dVrM , where Ms is the sample’s magnetization at position rs within the 

sample, and integrate over the sample volume dVs. The result for a uniformly 

magnetized spherical sample with µµµµs along the y-axis is 

 
( ) 2ss

0 ˆˆ
4 r

VM xrrE ×ωπ
µ=

. (2.14) 

The electric field of Equation 

(2.14) can be viewed as a field of 

force, the analogue of the force field 

acting on magnetic dipoles in Figure 

2.1. Here, the electric field acts on 

point charges, which are the 

electrons in the conducting coil. 

Figure 2.5 shows a density plot of 

the force field, with its strength 

indicated by color. The picture 

strongly suggests that a solenoid 

wound around the sample is an ideal 

detector. 

time-derivative of
sample moment

a)

b)
z

x

Figure 2.5. a) Density plot of the electric 
field near a sample with time-varying 
magnetization. The time derivative of the 
magnetization is as shown. The electric field 
is perpendicular to the page for all points in 
the plane of the page. b) View of the electric 
field from the side, along the axis of  .µ s
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Figure 2.6 shows a solenoidal coil wound around a spherical sample with a 

distance of closest approach, Rmax, defined as shown. As in BOOMERANG, Rmax is 

ideally dominated by the sample’s radius, but technical considerations, such as the 

homogeneity of applied rf fields, can demand that Rmax exceed the sample’s radius 

by tens of percent and usually much more. The amplitude V of the oscillating 

electromotance is obtained by integrating Equation (2.14) over the coil. While the 

relevant integration was over a detector magnet volume in BOOMERANG, in this 

case, it is a line integral along a current path C: 

 ( )∫ ⋅=
C

V dlrE . (2.15) 

The result for any geometry can be written 

 maxss0V RMVV ωµκ= , (2.16) 

where 

 ∫ ⋅×
π

=κ
3

max
V

ˆ

4 r

R dlr ζζζζ
 (2.17) 

r R
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ζ
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 Inductive detector model. a) Internal view 
with position of the coil element defined.   is a unit vector along the direction of the time 
derivative of the sample's magnetization.
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is a shape factor for the coil, the analogue of κF, and ζζζζ̂  is the unit vector along sµµµµ . 

For a helical n-turn coil of length 2g and radius rc, the shape factor is 

 
22

c

max
V

gr

nR

+
=κ . (2.18) 

At sufficiently low frequencies, one could quantify resistive losses in the coil 

by setting 

 
A
dLdR ρ=         or        

δ
ρ=

p
dLdR , (2.19a,b) 

where ρ is the coil’s resistivity and A it’s 

cross-sectional area, and integrating over 

the length L of the unwound conductor. In 

Equation (2.19b), the cross-sectional area 

is replaced by an effective area pδ, the 

product of the skin depth δ and a cross-

sectional perimeter p. With appropriate 

substitutions, Equation (2.10) could then 

be used to optimize the dimensions of the 

solenoid. At commonly used radio frequencies, however, the situation is 

complicated by “proximity effects,” the inductive and capacitive effects of currents 

in one part of the coil on other parts. These can be accounted for with a 

phenomenological proximity-effect factor10-12 3≈σ . Optimization for the case of a 

(roughly spherical) human head yields an optimal winding geometry for a solenoid, 

as shown in Figure 2.7. While the size scale used in this optimization is far from the 

2g

2r

3s 2s

c

 

Figure 2.7. Dimensions for optimal 
NMR coil according to Hoult and 
Lauterbur10. 
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microcoil designs that are our present concern, the aspect ratio 7.0c =rg  turns out 

to be consistent with intuition from Figure 2.5 and with results of the simpler 

optimization suggested above, and we shall use the dimensions of Figure 2.7 in the 

numerical examples that follow. 

Using Equations (2.11) and (2.16), the latter reduced by the factor 2  as 

befits an rms electromotance, we may write Equation (2.10) as 

 
fTRk
RMV

SNR
∆

ωµκ=
B

maxss0V
INDUCT 8

, (2.20) 

This is to be compared to the expression for BOOMERANG, which can be written 

 
fTk
RMMVw

SNR
∆α

µκ=
B

maxdss0F
BOOM 8

. (2.21) 

As we have already remarked, SNRBOOM scales as r1/2. We can similarly 

analyze SNRINDUCT. The scale-dependent factors in the numerator of Equation (2.20) 

are the sample’s volume and Rmax, and so we find that the signal electromotance 

scales as r2. In the size regime where the coil’s windings are larger than the skin 

depth, the resistance R, which is proportional to the conductor’s total length divided 

by its cross-sectional perimeter, is scale-invariant. In accordance with 

Equation (2.20), in this regime SNRINDUCT scales as r2. At smaller scales, where 

current flows more uniformly through wires that are small in comparison to the skin 

depth, the resistance is proportional to total length and inversely proportional to 

cross-sectional area, and it therefore scales inversely with r. In that case SNRINDUCT 

scales as r5/2. These scaling relations are confirmed by the observations of Peck et  



  28 

  

al., who report SNR per unit volume of r-1 and r-1/2 in NMR experiments in microcoils 

with diameters above and below ~250 µm at 200 MHz (4.7 T)13. 

This prediction that SNRBOOM decreases substantially more slowly with size 

than does SNRINDUCT suggests that BOOMERANG will have superior sensitivity at and 

below a sufficiently small size scale. In Figure 2.8, SNRBOOM and SNRINDUCT are 

estimated and plotted over 5 orders of magnitude in sample size for a 29Si NMR 

spectrum of the mineral scapolite. This example is motivated by a hypothetical 

mineralogical study with a low-power spectrometer transported to Mars on a space 

probe. The simulated device is optimized at each scale, and the parameters used in 

the simulation are listed the accompanying table. 
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Figure 2.8 SNR and scaling for inductive detection and BOOMERANG. Signal-to-noise ratios 
are estimated for natural-abundance (4%) 29Si NMR at 17 MHz in a 2T field at 150 K. The 
sample is scapolite, a siliceous mineral believed to be present in martian soil. The simulation 
is motivated by a study of low-power spectrometers for in-situ planetary exploration. The 
parameters at right are for the hypothetical optimized inductive and BOOMERANG detectors 
for a 60 µm sample, and the curves at left are based on the scaling relations described in 
the text. A one-second relaxation time is assumed for the magnetization, and two ring-down 
times are chosen for the BOOMERANG curves. The 80 ms time has been demonstrated 
experimentally at the millimeter scale, and, at fields higher than the 0.66 T of the prototype 
and with careful attention to eddy-current suppression, 1 s ring-down times are anticipated. 

Rmax 34 µm 
sample mass 0.3 µg 
# of spins 6x1013 

detector mass 0.2 µg 
magnetization 2 T/µ0 
frequency 500 Hz 
ring-down times 80 ms, 1 s 
coil x-section 15 µm 
coil diameter 83 µm 
coil length 58 µm 
# of turns 6 
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Figure 2.9 SNR and scaling in proton NMR. Signal-to-noise ratios are estimated for 1H NMR 
at 500 MHz and 310 K. The sample is a crystal of a hypothetical 50 kD protein, and the 
SNR is for a single proton site per molecule, or perhaps a 13C label which has been 
polarization-enhanced and indirectly detected. As in Figure 2.8, the parameters at right are 
for optimized inductive and BOOMERANG detectors for a 60 µm sample, and the curves at 
left are based on the scaling relations described in the text. A one-second relaxation time is 
assumed for the magnetization, and again 80 ms and 1 s are chosen for the oscillator ring-
down times. The graphs show that, even for this case that is most favorable for inductive 
detection, there is a useful size range where BOOMERANG methods are predicted to exhibit 
superior sensitivity. 

Rmax 34 µm 
sample mass 0.17 µg 
# of spins 2x1012 

detector mass 0.2 µg 
magnetization 2 T/µ0 
frequency 500 Hz 
ring-down times 80 ms, 1 s 
coil x-section 15 µm 
coil diameter 83 µm 
coil length 58 µm 
# of turns 6 

While the scaling relations apply to all nuclei, the size scale below which 

BOOMERANG’s sensitivity is predicted to exceed that of inductive detection will 

depend on the magnetogyric ratio of the target spin and on the strength of the field. 

The Larmor frequency ω, which appears in SNRINDUCT (2.20), is absent in SNRBOOM 

(2.21), and so the relative advantage of BOOMERANG is greater at a given scale for 

nuclei with small magnetogyric ratios at fixed field, or at lower fields for a given 

nuclide. The case most advantageous to inductive detection (with the exception of 

NMR of tritium, whose magnetogyric ratio exceeds the proton’s by 7%) is proton 

spectroscopy in high field. Figure 2.9 shows that, even in the 11.7 T field of a 

commercial 500 MHz superconducting magnet, BOOMERANG’s sensitivity is 

preferable in samples with Rmax below about 20-50 µm. 
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The foregoing motivates construction of a BOOMERANG spectrometer at the 

sub-millimeter scale, and efforts toward microfabrication of BOOMERANG 

spectrometers are detailed elsewhere4,14. But even with the r1/2 scaling of SNRBOOM, 

sensitivity is still a challenge at smaller scales, and so a proof-of-concept instrument 

optimized for 3 mm samples was constructed. That instrument is subject of 

Chapter 3. 

2.3 A Note About Reciprocity 

The integrand in Equation (2.15) may be interpreted in two ways. We have 

already used it to describe the electric field induced at the site of a conductor by a 

time-varying magnetic dipole. With the help of Equation (2.13), this integrand may 

be rewritten 

 ( ) ( )12
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0 ~ˆ

4
ˆ

4
Bddlrdlr

dlrE ss
s ⋅

∂
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
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


 ⋅×
π

µ
∂
∂−=⋅ µµµµµµµµ

µµµµ
trtrt

 (2.22) 

where rr ˆˆ −=′  is the unit vector pointing from the current element dl to the sample 

dipole µµµµs. 1
~
Bd  is the element of magnetic field induced at µµµµs per unit current flowing 

through dl. We can thus recast the equations that permit us to calculate the induced 

electromotance by exchanging the roles of the “source” and “observation point.” 

This is a reciprocity relationship8. The right-hand side of Equation (2.22) has been 

the standard means of calculating signal-to-noise ratios in NMR since Hoult and 

Richards introduced it in 197615. One can calculate (or measure) a local sensitivity 
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to magnetic moments by integrating 1
~Bd  over the NMR coil, and this can be useful 

in evaluating imaging apparatus. 

A similar analysis can be applied to force detection. For a differential sample 

moment dµµµµs, Equation (2.1) may be written in two ways: 

 ( ) ( ) ( )dsds3
0

s
~~1ˆ̂3

4
BddBdrrdBdF dsd ∇⋅−=⋅∇−=





 ⋅





 −⋅

π
µ

∇=⋅∇= µµµµµµµµµµµµµµµµµµµµ
r

,(2.23) 

which are related by the antisymmetry of the gradients (∇ and ∇~) of the dyadic 

( ) 31ˆ̂3 r−rr with respect to the coordinates of the detector and sample dipoles, 

respectively. The parameter ( )d
~BddG ∇=  is the change in the magnetic field at the 

sample (due to the detector element dµµµµd) per unit displacement of the flexible 

detector along the “detection coordinate,” z. That this reciprocity parameter dG, the 

equivalent of 1
~
Bd  in inductive detection, has units of magnetic field gradient (T/m) 

is an artifact of the detection coordinate’s units, which are length (m) in the case 

we have treated here. The displacement may also be an angle, as we shall see in 

Chapter 5 when the subject of torsional oscillators is taken up. 
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