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Abstract 

This thesis describes a new method of magnetic resonance detection based 

on mechanical displacements caused by magnetic forces, which is general with 

respect to sample and pulse sequence. A spin-bearing sample placed inside a 

flexible magnet assembly distorts that assembly in proportion to the sample’s 

magnetization. Radio-frequency fields that modulate the sample’s spin 

magnetization at this detector’s mechanical resonance frequency encode magnetic 

resonance spectra into the detector’s trajectory. A key insight is that such 

mechanical detection can be performed within optimized detectors with no need for 

field gradients inside the sample volume, circumventing the deleterious 

consequences of such gradients for sensitivity and resolution. The new method is 

called Better Observation of Magnetization, Enhanced Resolution, and No Gradient 

(BOOMERANG), and its sensitivity is predicted to exceed that of inductive detection 

at microscopic size scales. 

A prototype BOOMERANG spectrometer optimized for 3 mm diameter liquid 

and solid samples is described. The device uses direct digital synthesis of radio-

frequency waveforms in its operation and fiber-optic interferometry to detect 

picometer-scale motions of a detector magnet. This magnet is bound to a tuned 

mechanical oscillator inside a magnet assembly designed for homogeneity of the 

magnetic field in the sample. Several types of time-domain FT-NMR spectra on test 

samples are presented. The data confirm theory and design principles. 
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The favorable scaling of BOOMERANG’s sensitivity and the numerous 

potential uses for NMR at reduced size scales motivate construction of 

spectrometers optimized for microscopic samples. Geometric concerns in scaling 

down BOOMERANG are addressed quantitatively. At size scales where the number 

of spins is such that mean magnetization is smaller than fluctuations, such 

fluctuations, if not accounted for, can dominate the noise regardless of the physical 

detection method used. A measurement paradigm using correlations of these 

fluctuations to encode spectra is proposed to suppress this quantum noise, and the 

sensitivity of this method, which we call Correlated Observations Narrow Quantum 

Uncertainty, Enhancing Spectroscopic Transients (CONQUEST), is analyzed. 

BOOMERANG and CONQUEST promise to extend the applicability of nuclear 

magnetic resonance (NMR) for chemical analysis to samples and problems that are 

currently inaccessible by NMR due to poor sensitivity. 
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Chapter 1: Overview 

1.0 Introduction 

This thesis concerns observation of magnetic resonance phenomena through 

measurements of magnetically induced mechanical oscillations. The principal result 

of this work is a new class of detectors and methods that promises to extend the 

applicability of nuclear magnetic resonance (NMR) for chemical analysis and imaging 

to samples and problems that are currently inaccessible by NMR due to the poor 

sensitivity of traditional methods at reduced size scales. 

NMR is known by its practitioners as a method of finely detailed non-

destructive chemical analysis or as a tool for non-invasive medical imaging. But at 

the most fundamental level, nuclear magnetic resonance is the resonant 

reorientation of nuclear moments by applied magnetic fields. The reorientation of 

nuclear moments in a sample produces changes in the sample’s magnetization as a 

function of applied electromagnetic stimuli, such stimuli most often taking the form 

of pulses of radio-frequency (rf) fields. The dynamics of the sample’s spin system 

are registered by a detection apparatus as changes in the weak magnetic field 

produced by the sample. Leaving aside the so-called “trigger methods” of magnetic 

resonance1, and optical methods that are peculiar only to a very narrow range of 
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samples or conditions2-4, NMR devices are therefore essentially magnetometers 

connected to ancillary apparatus of varying degrees of sophistication. 

Three types of detection schemes are commonly used to measure the 

magnetization of a sample (or its susceptibility). The first type of detector, an 

induction coil, forms the basis of all commercial NMR spectrometers and magnetic 

resonance imagers. Coherent precession of a sample’s magnetization produces a 

change in the magnetic flux linking a nearby or enclosing coil. The resulting 

electromotive force in the coil, produced in accordance with Faraday’s law, is 

amplified and analyzed. 

A second type of detector is the superconducting quantum interference 

device (SQUID). The static magnetic flux through a superconducting loop disposed 

near the sample causes a change in the relative phase of two parts of an electron’s 

wavefunction as those parts coherently traverse two separate paths around the 

loop. Recombination of the two parts of the wavefunction can occur in phase or out 

of phase, and as a result, the conductance of the device depends upon the flux 

linking the loop, and therefore on the magnetization of the sample. This physics 

forms the basis of SQUID magnetometers, which are used for static or low-

frequency magnetometry5,6. SQUIDs have also been used in low-field NMR and 

nuclear quadrupole resonance (NQR)7,8. 

A third type of detector is the force detector. Any magnetized body that 

either moves in response to magnetic forces exerted by the sample or that forces 

the sample itself to move falls into this class. Force detection is the oldest method 
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of magnetometry/susceptometry. It is the basis for the Gouy balance9,10 and for 

the vibrating-sample magnetometer11. It was also the basis for the very first 

method of magnetic resonance spectroscopy in the form of Rabi’s molecular beam 

method12. Despite this long history, here we take a fresh look at detection of 

magnetic resonance with mechanical means. 

1.1 Better Observation of Magnetization, Enhanced Resolution, 

and No Gradient (BOOMERANG) 

Figure 1.1 shows a spherical sample enclosed inside an idealized flexible 

magnetic “detector” in the shape of a hollowed-out sphere. The magnetizations of 

the sample and the detector are aligned along the same axis. The sample exerts 

magnetic forces that tend to distort the detector as those dipole elements in the 

detector near the “poles” of the sample are attracted axially, while those near the 

“equator” are repelled laterally. Cyclic inversion of the sample’s magnetization 

(discussed in Chapter 3) reverses the sign of the forces, alternately compressing 

and extending the flexible detector along its magnetization axis. 

This mechanical detector is ideal in the sense that at no time is there a field 

gradient inside the sample volume, no matter how large the elliptical distortion of 

the spherical detector along its magnetization axis. 
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Figure 1.1. Flexible-sphere model of idealized mechanical detector. The sample is 
surrounded by a hollowed sphere of flexible magnetic material, and both are magnetized as 
shown by the vertical arrows. The sample exerts forces on individual dipole elements in the 
detector material, and these forces distort the detector along its symmetry axis.

flexible,
magnetized
sphere

sample

 

Figure 1.2 shows a single cylindrical magnet above a spherical sample. Both 

the magnet and the sample are magnetized along the symmetry axis of the cylinder. 

The magnet is bound to a flexible 

suspension that provides for it a high-

quality harmonic motion along its 

symmetry axis. Cyclic inversion of the 

sample’s magnetization may be used to 

modulate the force coupling the sample 

and the magnet, resonantly driving this harmonic oscillation. The arrangement of 

sample, magnet, and suspension is reproduced inside an assembly of other 

Figure 1.2. Cylindrical detector magnet 
bound to an anchored, flexible suspension 
and disposed near a spherical sample.  
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magnets, all polarized along the common axis of cylindrical symmetry, in Figure 1.3, 

with the single magnet of Figure 1.2 now designated as a “sensor magnet.” 

In this geometry, the axial oscillation of the sensor magnet takes place inside 

an annular magnet, with the height of these two magnets the same, their faces 

flush when the sensor magnet is at the equilibrium point of its axial motion. The 

totality of the magnets in the assembly provides for the sample a homogeneous 

field that, by design, approximates the homogeneity of the idealized spherical case 

of Figure 1.1. 

Figure 1.3. Magnet assembly incorporating the sensor magnet and flexible suspension of 
Figure 1.2. All the magnets in the assembly are magnetized along the common axis of 
cylindrical symmetry, which is vertical in the figure. The dimensions of the magnets are 
chosen so that the magnetic field throughout the sample volume is as homogeneous as 
possible, such homogeneity being limited by the smallest possible spacing between the 
sensor magnet and surrounding annulus. Reflection symmetry across the horizontal plane 
through the sample nulls odd-order field gradients.

annuli

sample

homogeneous
field

suspensionsensor magnet

symmetry and
magnetization axis
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In both the idealized geometry of Figure 1.1 and in the cylindrical geometry 

of Figure 1.3, the latter being motivated by the practical concerns of ease of 

fabrication and sample access, we have emphasized the homogeneity of the 

magnetic field throughout the sample volume. The experimentally observed fact that 

the sensor magnet of Figure 1.3 can be made to oscillate in response to modulation 

of the sample’s magnetization shows that the ability to measure susceptibility and 

magnetic resonance with force detection is entirely independent of any field 

gradient in the sample volume. This view, which is in contrast to the conceptual 

development of other force-detection methods (briefly surveyed in Appendix A), is 

the central theme behind the method of magnetic resonance now called Better 

Observation of Magnetization, Enhanced Resolution, and No Gradient 

(BOOMERANG)13,14. 

1.2 Problems Caused by Field Inhomogeneity 

The BOOMERANG method solves several problems associated with large 

gradients in the sample volume. Without the annular and other magnets of Figure 

1.3, the sensor magnet’s own inhomogeneous field spreads the Larmor frequencies 

of spins in the sample over a range incompatible with the great majority of NMR 

experiments. While the deleterious consequences of this for spectroscopic 

resolution are readily appreciated, the consequences for imaging and for sensitivity 

in general are also severe. This spread of Larmor frequencies over a given sample 

volume becomes larger as the sensor magnet is made smaller. In Chapter 2, we 

examine the sensitivity of force-detection in the presence of thermal fluctuations in 
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the average force on the sensor magnet (Brownian-motion noise), and we find that 

in order to be near the optimal sensitivity, the sensor magnet, which must be placed 

as close as possible to the sample, must also be roughly the same size as the 

sample volume. In this case, the spread of nuclear Larmor frequencies can be of 

order 30 MHz for sensor magnets composed of the best ferromagnetic materials. 

In force-detection methods that couple spin-dependent forces exerted by 

longitudinal magnetization to oscillatory motion, an rf field near the Larmor 

frequency is used to invert the sample’s magnetization. The spectral range over 

which spins can be inverted with 

practical rf fields in nuclear resonance 

is of order ~100 kHz. As shown in 

Figure 1.4, in the absence of the 

annular and other magnets, the field 

gradient zBG ∂∂= zzz  of the sensor 

magnet and the effective rf field B1 

define a “sensitive slice” through the 

sample, whose thickness is of order B1/Gzz, outside of which the rf field is 

ineffective in inverting the spins. These spins therefore do not contribute to the 

signal energy. In combination with means to scan this surface through the sample 

volume, this provides an imaging capability15-17, in which data from separate pixels 

is collected during separate shots of the experiment, and this approach is called 

magnetic resonance force microscopy (MRFM). However, this capability is bought 

at the price of reduced signal energy per shot, in contrast to modern NMR imaging 

Figure 1.4. Sensitive slice in the sample 
volume.  In the absence of the other parts of 
the magnet assembly of Figure 1.3, the 
sensor magnet can spread the Larmor 
frequencies of spins in the sample over 
many megahertz. Only those spins within 
the bandwidth of the applied rf field are 
inverted during detection.  
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protocols with higher throughput (e.g., Fourier zeugmatography and back 

projection)18, in which signal is acquired during each shot from many pixels, often 

the whole imaged volume, with the spatial information encoded in the frequency 

domain by way of field gradients that do not move the magnetization out of the 

observable spectral range. 

The boundaries of the sensitive surface in gradient-based methods of force-

detected magnetic resonance15 are not sharply defined, but instead, the distribution 

of Rabi frequencies falls off gradually near the edges of the slice†. This renders such 

methods incompatible with modern multiple-pulse sequences that depend upon both 

a spatially homogeneous Rabi frequency and a spread of Larmor frequencies less 

than this Rabi frequency to achieve precise, coherent control of the observed spin 

population through numerous rf pulses. 

The problems of reduced spectroscopic resolution, sensitivity, and coherent 

control will be more severe in NMR of liquids or of molecules weakly bound to a 

surface, where diffusion out of a sensitive region will occur on a timescale that may 

be short compared to the time during which either spectral information is to be 

encoded or during which detection is to take place. In order to suppress the effects 

of such diffusion, gradient-based methods must be used at lower temperatures or 

be subject to reduced sensitivity as a result of designs that use larger-than-optimal 

sensor magnets. This may seriously limit the possibilities for application of such 

                                        

† The Rabi frequency characterizes the rate at which the rf field reorients the angle 
the local magnetization makes with the static field. 
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methods in chemistry and, especially, biology. The BOOMERANG method minimizes 

all of these difficulties. 

1.3 Outline 

In Chapter 2, we quantitatively address the detection of magnetic resonance 

signals in the presence of thermal noise for the cases of force detection and 

inductive detection. While this subject has been taken up by several other 

authors1,19,20, the indirect, “reciprocity” arguments used by these authors are 

bypassed herein in favor of a more direct approach that lends itself well to analyses 

of scaling relations and geometrical optimizations, which are partially obscured by 

reciprocity arguments. The principal conclusion of Chapter 2 is that in the range of 

microns to millimeters the signal-to-noise ratio of BOOMERANG force-detected NMR 

scales with the square-root of the size r of the sample-plus-optimized-detector, 

while that of traditional inductively detected NMR scales at best as r2, indicating a 

sample size (in the ~0.1-1 mm range, depending on the field strength and the 

magnetogyric ratio of the target spins) below which BOOMERANG detection is 

preferred. 

Chapter 3 introduces the apparatus used in the experiments described in this 

thesis. The prototype apparatus obtains a variety of NMR data on liquid and solid 

samples contained within a ~3 mm diameter sample region. The observed signals 

and noise confirm design principles and the theory of force-detected NMR. Chapter 

3 details the magnet assembly and the quantitative assessment of field parameters, 

the sensor oscillator, the fiber-optic interferometer used to monitor the oscillator’s 
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position, the signal acquisition and conditioning system, rf synthesis and 

amplification, the NMR coil and sample-holder assembly, and cyclic inversion of the 

sample’s magnetization. Also included is a detailed assessment of system noise 

sources. 

The measurement of various kinds of spectroscopic data with the 

BOOMERANG prototype forms the subject of Chapter 4. The general notion of time 

sequencing, in which spectroscopic data are encoded pointwise during a time period 

separate from the signal-detection period, is used to measure several different kinds 

of spectroscopic observables. The combination of optimal sensitivity with high 

resolution has allowed measurement of FT-NMR spectra, longitudinal relaxation 

times, nutation, spin-echoes with sub-hertz line widths, and heteronuclear J 

spectroscopy in model compounds containing protons and fluorine-19. 

Chapter 5 concerns issues that arise in scaling down BOOMERANG NMR to 

the small numbers of spins in the sample volume possible at the micron size scale 

and below. The principal subject of this chapter is spin noise, which is the 

uncertainty in measured spectroscopic parameters arising from quantum-

thermodynamic fluctuations in the sample’s magnetization. These fluctuations, if 

not accounted for, are an increasingly important source of noise, whatever the 

method of detection, in the size regime where such fluctuations exceed the mean 

polarization. The solution suggested herein is measurement of time-correlations of 

magnetization21-23. The correlation signal contains the same information as does 

the ordinary NMR spectrum, but with roughly unit signal-to-noise ratio per root shot 

of the experiment, independent of the sample’s polarization. Also addressed are 
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geometrical considerations in application of BOOMERANG to surface-bound or to 

nanoscopic samples, where, in the latter, the higher mechanical frequencies 

associated with optimized nanoscopic oscillators suggest coupling torsional 

oscillators to precessing or spin-locked transverse magnetization at radio 

frequencies. 



  12 

References 

1 A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961). 

2 J. Wrachtrup, A. Gruber, L. Fleury, and C. von Borczyskowski, Chem. Phys. Lett. 
267, 179 (1997). 

3 H. Arnolds, D. Fick, H. Unterhalt, A. Voss, and H. J. Jansch, Sol. St. Nucl. Magn. 
Reson. 11, 87 (1998). 

4 R. Tycko and J. A. Reimer, J. Phys. Chem. 100, 13240 (1996). 

5 W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, J. Phys. D Appl. Phys. 30, 293 
(1997). 

6 J. Clarke, Curr. Opinion Sol. St. & Matl. Sci. 2, 3 (1997). 

7 C. Connor, Adv. Magn. Reson. 15, 201 (1990). 

8 Y. S. Greenberg, Rev. Mod. Phys. 70, 175 (1998). 

9 L. G. Gouy, Compt. Rend. 109, 935 (1889). 

10 L. N. Mulay, in Physical Methods of Chemistry, Vol. I part 4, 4th ed., edited by A. 
Weissberger and B. W. Rossiter (Wiley-Interscience, New York, 1972), Chapter 7. 

11 Y. L. Yousef, R. K. Gigris, and H. Mikhail, J. Chem. Phys. 23, 959 (1955). 

12 I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, Phys. Rev. 53, 318 (1938). 

13 G. M. Leskowitz, L. A. Madsen, and D. P. Weitekamp, Sol. St. Nucl. Magn. Reson. 
11, 73 (1998). 

14 D. P. Weitekamp and G. M. Leskowitz, U. S. Patent No. 6,100,687 (California 
Institute of Technology, USA, 2000). 

15 J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. 
Yannoni, Rev. Mod. Phys. 67, 249 (1995). 

16 O. Züger and D. Rugar, Appl. Phys. Lett. 63, 2496 (1993). 

17 O. Züger and D. Rugar, J. Appl. Phys. 75, 6211 (1994). 

18 P. Mansfield and P. G. Morris, in Adv. Magn. Reson., Supplement 2 (Academic 
Press, New York, 1982). 

19 D. I. Hoult and R. E. Richards, J. Magn. Reson. 24, 71 (1976). 

20 J. A. Sidles and D. Rugar, Phys. Rev. Lett. 70, 3506 (1993). 

21 P. J. Carson, L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, Bull. Am. Phys. 
Soc. 44, 541 (1999). 



  13 

22 P. J. Carson, L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, U. S. Patent 
No. 6,081,119 (California Institute of Technology, USA, 2000). 

23 P. J. Carson, L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, U. S. Patent 
No. 6,087,872 (California Institute of Technology, USA, 2000). 



  14 

  

 

Chapter 2: On Signal Detection and Noise 

2.0 BOOMERANG Force Detection 

Without considering how to encode the NMR spectrum of a sample, in this 

chapter we address measurement of its nuclear magnetization by using the latter to 

drive a given mode of a mechanical oscillator. For concreteness, we consider the 

case of an oscillator that couples linearly to the longitudinal magnetization of the 

entire sample, which we therefore invert twice per oscillator period to drive the 

mode. We address the specifics of cyclic inversion in BOOMERANG in Chapter 3. 

Here we note only that the entire magnetization of the sample is inverted, and that 

this magnetization decays exponentially with a time constant we shall call T1a, 

which for many samples is ideally as long as the longest relaxation time of the spin 

system, T1. In a typical experiment, the Fourier component of the oscillator’s motion 

at the driving frequency is proportional to the sample’s magnetization at the 

beginning of a time interval during which the oscillator is driven. 

In general, the oscillator’s motion is defined in terms of a mechanical 

coordinate in the “flexible detector” of Chapter 1 along which the sample’s 

magnetic force acts. This is also the coordinate along which the flexible 

suspension’s restoring forces act and along which displacements are measured. We 



  15 

  

take the “signal” to be the magnetic force exerted by the sample at the start of the 

oscillator-driving or detection period (or, rather, the projection of this force on the 

measured coordinate). The goal of the detection period is to measure this value with 

least uncertainty. 

For concreteness, we return to the uniformly magnetized spherical sample 

inside the magnet assembly of Figure 1.3, with its designated sensor magnet. Each 

of the component magnets will in principle move separately in response to forces 

exerted by the sample’s magnetization. However, since the sensor magnet is much 

lighter than other magnets in the assembly by design, and since the other magnets 

are fixed to rigid supports, the driven mechanical mode is very nearly approximated 

by the harmonic motion of the sensor magnet inside its encircling annulus. Thus, in 

the prototype described in Chapter 3, the sensor magnet moves up and down along 

the symmetry axis inside an otherwise rigid magnet assembly, and the 

displacement, z, of the sensor magnet relative to a fiber-optic position sensor fixed 

to the other magnets is recorded. The signal is thus defined as the net force exerted 

by the sample on the sensor magnet only. 

The force exerted on a magnetic dipole dµµµµ  by another dipole sµµµµ  may be 

written 

 ( ) 




 ⋅





 −⋅

π
µ

+∇=⋅−−∇= dsd
rrBF µµµµµµµµµµµµ
3

0
s

1ˆ̂3
4 r

, (2.1) 

where r̂  denotes the unit vector pointing from the position of sµµµµ  (the sample) to 

that of dµµµµ  (the detector), ∇  denotes the gradient with respect to the coordinates of 
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θ r
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ρ

r

a) b)
detector
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sample
dipole µ

s

null surfaces
for Fz

 

Figure 2.1.  Force field near a sample with moment µs for axial detector dipoles µd.  
a) Coordinate system used in the text. b) Dotted lines define surfaces of revolution 
upon which the z-component of the force vanishes. 

dµµµµ , and Bs denotes the magnetic field due to the sample1. To calculate the force of 

one rigid body of finite extent on another, we must replace sµµµµ  by ( ) sss dVrM  and dµµµµ  

by ( ) ddd dVrM  and then integrate over the volumes Vs and Vd of the two bodies, 

whose magnetizations are ( )ss rM  and ( )dd rM . For the present case, zM ŝs M=  and 

zM d̂d M=  are constant vectors along the axis of cylindrical symmetry, ẑ . 

Integration over the sample’s spherical volume yields 

 ( ) ( )[ ] d
22

4
dss0 ˆsincos153ˆcoscos159

4
dV

r
MMV ρρρρθθ−+θθ−π

µ= zdF  (2.2) 

for the force on the dipole element dd̂ dVM z  at position ( )ρρρρ̂sinˆcos θ+θ= zr r  in 

coordinates that are defined in Figure 2.1 a. Equation (2.2) may be viewed as 

defining a field of force around the sample that is experienced by detector dipoles 
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aligned along ẑ . This force field is illustrated in Figure 2.1 b, where the lines of 

force (which are not the same as magnetic field lines) are parallel to dF at all points. 

This picture allows us to make some observations regarding the design of a suitable 

force detector. 

First, since the force field is cylindrically symmetric, and since we wish to 

preserve field homogeneity in the sample volume as best as possible, our sensor 

magnet will be a solid of revolution about the magnetization axis ẑ . Our choice of a 

circular cylinder, which is motivated by ease of fabrication and sample access, turns 

out to be very nearly the best shape (see Appendix B) given the requirement that 

the sensor magnet and the sample not occupy the same space. We make this latter 

criterion more concrete by defining a distance Rmax from the center of the sample to 

the near edge of the sensor magnet. Rmax is ideally dominated by the sample’s 

radius, but it also includes space that may be necessary for intervening NMR coil 

windings and any barriers that might be required to keep the sample and sensor 

oscillator at different temperatures or pressures. Cylindrical symmetry requires that 

integration of Equation (2.2) over the sensor magnet volume yield a net force 

whose transverse components vanish, and so we consider only the z-component 

dFz ⋅= ˆzdF  in what follows. The dotted lines in Figure 2.1 denote nodal surfaces of 

revolution (cones), at angles of 90° and °≈=θ 2.3953arccos0  with the vertical, 

upon which dFz vanishes. The z-component of the force field changes sign when 

crossing through these surfaces. In order for the forces on individual dipole 

elements in the sensor to add in concert, a single, rigid sensor will lie entirely inside 

a nodal surface. 



  18 

  

We calculate the dc force on the sensor magnet by integrating Equation (2.2) 

over the sensor’s volume. The result for any volume may be written 

 maxdss0Fz RMMVF µκ= , (2.3) 

where ( )∫ θ−θπ=κ d
3

4
max

F cos15cos91
4

dV
r

R
 (2.4) 

is a dimensionless (and scale 

invariant) “shape factor.” For a 

cylindrical sensor of radius a and 

height h placed a distance Rmax 

from the center of the sample as 

in Figure 2.2, 

 

 
( )[ ] [ ] 













+
−

++
=κ 2322

max
2322

max

max
2

F
11

2 aRahR

Ra
. (2.5) 

2.1 Optimization of the Sensor Magnet 

We consider as “optimal” the sensor magnet that maximizes the force signal-

to-noise ratio, 

 Nrmsz,BOOM FFSNR = , (2.6) 

the ratio of the root-mean-square (rms) signal force ( ) zrmsz, 2 FwF = , less by 2  

than the dc force of Equation (2.2) and scaled by the Fourier component of the 

R

V
h

a

sample

sensor

Figure 2.2. Sensor magnet dimensions and 
definition of . Dotted lines denote the 
positions of other magnets in the 
BOOMERANG assembly.

R   max

max
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inversion scheme used (which is 27.14 ≈π=w  for square-wave modulation of the 

longitudinal magnetization), and a time-average “noise force,” FN. The predominant 

noise source over a wide range of conditions is the Brownian motion of the sensor 

magnet. At a given temperature T, the corresponding average noise force is given 

by2,3 

 fTkF ∆α= BN 4  (2.7) 

in the measurement bandwidth ∆f, which is a141 Tf =∆ in the present case†. The 

damping parameter, α, is the proportionality constant between the dissipative 

(frictional) force and the instantaneous velocity of the sensor magnet. This quantity 

may be written 

 τ=α m2 , (2.8) 

where m is the motional mass of the oscillator, which is ideally dominated by the 

mass of the magnet, and where τ is the oscillator’s “damping time,” the time 

required for its amplitude to decay to %8.361 ≈e  of its initial value after excitation 

by an impulse. 

Empirical evidence from our prototype BOOMERANG spectrometer4 suggests 

that damping due to eddy currents induced in the conducting magnets by virtue of 

their relative motion makes the largest contribution to the damping rate τ=γ 2 . 

                                        

† We define the bandwidth as ( ) ( )2
max

0

2 fZdffZ∫
∞

for a system or process with 

impedance or transfer function Z(f) in accordance with theory3 that leads to (2.7). 
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Estimates of this damping rate for the case of cylindrical symmetry are made in 

Appendix C. The functional form of the damping rate is complicated and not 

particularly instructive, and it depends much more strongly on other factors, such 

as the size and shape of the gap between the sensor and annulus, than it does on a 

and h. For that reason we leave the explicit dependence of τ on a and h out of the 

present optimization. 

More importantly, we conclude in Appendix C that τ is scale-invariant. We 

write 

 ( ) τηπ=α ha22  (2.9) 

for the damping constant, in accordance with a motional mass dominated by a 

cylindrical magnet with density η. 

After appropriate substitutions, we 

then find the maximum of SNRBOOM in 

the usual way, by differentiating 

Equation (2.6) with respect to both a 

and h and setting derivatives equal to 

zero. The result is a set of dimensions 

( max59.0 Ra ≈ , max53.0 Rh ≈ , corres-

ponding to 072.0F −≈κ , the sign 

indicating a downward force) that 

maximize sensitivity. It should be 

noted, however, that the sensitivity 
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Figure 2.3. Signal-to-noise ratio ( ) 
versus scaled radius  and height  of the 
sensor magnet. The contours show  
relative to the  of the optimal design at 

=0.59 and =0.53. The  is 
not a sharply peaked function of either 
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figure of merit, as a function of a and h, is not sharply peaked (see Figure 2.3), and 

so some latitude exists in playing off sensitivity against homogeneity. The sensor 

magnet in Figure 2.2 is drawn with the above values for a and h relative to Rmax. 

We now turn to the scaling, relative to a linear dimension r of the sample-

plus-optimized-detector, of the signal-to-noise ratio. As regards the signal, the only 

scale-dependent parameters appearing in Equation (2.3) are the sample’s volume 

and Rmax. The signal force thus scales as r2. As regards noise, the conclusion of 

Appendix C, namely, the scale-invariance of the damping rate, makes α scale as r3, 

and so SNRBOOM is predicted to scale as r½. This conclusion is based on the 

experimentally observed dominance of eddy-current damping at the prototype size 

scale. As this damping rate is scale-invariant, the r½ law will hold as size scales are 

reduced until other mechanisms (for example, thermoelastic damping, surface 

losses, or so-called “anchor losses” due to phonon radiation out of mechanical 

supports) become more important. These damping mechanisms are the subject of 

much recent scrutiny in the nano-oscillator literature5-7, and they are treated in the 

context of BOOMERANG by Madsen4. The very favorable r½ scaling is in marked 

contrast to sensitivity scaling in inductive detection, to which we now turn. 

2.2 Inductive Detection 

For direct comparison to BOOMERANG, we assess sensitivity in inductive 

detection in the same way, by defining the signal-to-noise ratio, 

 NrmsINDUCT VVSNR = , (2.10) 
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in terms of a measured quantity, the rms electromotance Vrms in the coil, which is 

proportional to the magnetization of the sample. During detection, the sample’s 

magnetization drives an electrical oscillator (an LC circuit tuned near the Larmor 

frequency of the target spins). The time-average noise voltage, VN, is usually 

dominated by Johnson noise (thermal voltage fluctuations) in the resistive coil, but 

can also include contributions from dielectric losses in tuning capacitances and, for 

electrically lossy samples such as living tissue or solutions with electrolytes at 

physiological concentrations, induction losses in the sample. The average noise 

electromotance at a given temperature T is 

 fTRkV ∆= BN 4  (2.11) 

in the measurement bandwidth ∆f. Here, R denotes the total resistance of the circuit 

at the Larmor frequency. The ohmic resistance in a conductor can be substantially 

larger at radio frequencies than at dc due to the skin effect, the tendency of rapidly 

oscillating currents to flow only within a shallow depth near the surface of a 

conductor. As a point of reference, the skin depth in room-temperature copper coils 

(with conductivity -1-17 m 108.5 Ω×=σ  and permeability 0µ≈µ ) at MHz 2002 =πω  

is8 

 m7.42
21

µ≈






ωσµ=δ . (2.12) 

The bandwidth ∆f of the measurement can be maximized and VN minimized 

by prolonging the magnetization during detection with pulsed spin locking9, in 

which the NMR circuit is driven by the sample’s precessing magnetization during 
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the windows of a pulse sequence. Loss of magnetization then takes place 

exponentially with time constant T1ρ, the rotating-frame relaxation time, which can 

be substantially larger than T2, the transverse relaxation time. The bandwidth for 

the signal is then ρ×=∆ 141 Tbf , where the factor b, which accounts for the fact 

that the rf preamplifier is effectively decoupled from the signal for part of the time 

following pulses to avoid saturation and damage, can be substantially larger than 

unity. As a best case, b=1 is used in the numerical examples that follow. 

Since the detected signal is the electromotance induced in the detection coil 

by time-varying magnetization, the detector in this case is actually sampling the 

electric field induced by the sample. This fundamental detection process, the 

analogue of detecting the static force between two dipoles considered in section 

2.0, is shown in Figure 2.4. An element of a conductor is positioned in the field of 

the magnetic dipoles in the sample, 

which are sources of electric field 

when they reorient in response to 

applied magnetic fields (e.g., during 

precession). The electric field induced 

at r by the precessing magnetization 

may be obtained by taking the time 

derivative of the magnetic vector 

potential A(r) induced at r by a 

magnetic moment µµµµs: 

E

dl

z

time-derivative
of sample moment

detection
coil element

r µ ω= µ xzss

Figure 2.4.

dl

 Electric field near a sample 
dipole with time-varying moment  at the 
position of a detection coil element . The 
time-derivative vector is shown the 
moment vector 

µ 

— 
µ  is out of the plane of the 

page for samples containing spins with 
positive magnetogyric ratios.

s

s
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 ( ) ( ) ( )
2

0
2

0
2

0 ˆˆ
4

ˆ
4

ˆ
4 rrrtt

zrrr
rArE sss ××ωπ

µ=×
π

µ=




 ×

π
µ

∂
∂−=∂

∂−= µµµµµµµµµµµµ
. (2.13) 

The last equality is true for magnetic dipoles precessing in the xy-plane 

perpendicular to ẑ  at angular frequency ω. For a sample of finite size, we replace 

sµµµµ  by ( ) sss dVrM , where Ms is the sample’s magnetization at position rs within the 

sample, and integrate over the sample volume dVs. The result for a uniformly 

magnetized spherical sample with µµµµs along the y-axis is 

 
( ) 2ss

0 ˆˆ
4 r

VM xrrE ×ωπ
µ=

. (2.14) 

The electric field of Equation 

(2.14) can be viewed as a field of 

force, the analogue of the force field 

acting on magnetic dipoles in Figure 

2.1. Here, the electric field acts on 

point charges, which are the 

electrons in the conducting coil. 

Figure 2.5 shows a density plot of 

the force field, with its strength 

indicated by color. The picture 

strongly suggests that a solenoid 

wound around the sample is an ideal 

detector. 

time-derivative of
sample moment

a)

b)
z

x

Figure 2.5. a) Density plot of the electric 
field near a sample with time-varying 
magnetization. The time derivative of the 
magnetization is as shown. The electric field 
is perpendicular to the page for all points in 
the plane of the page. b) View of the electric 
field from the side, along the axis of  .µ s
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Figure 2.6 shows a solenoidal coil wound around a spherical sample with a 

distance of closest approach, Rmax, defined as shown. As in BOOMERANG, Rmax is 

ideally dominated by the sample’s radius, but technical considerations, such as the 

homogeneity of applied rf fields, can demand that Rmax exceed the sample’s radius 

by tens of percent and usually much more. The amplitude V of the oscillating 

electromotance is obtained by integrating Equation (2.14) over the coil. While the 

relevant integration was over a detector magnet volume in BOOMERANG, in this 

case, it is a line integral along a current path C: 

 ( )∫ ⋅=
C

V dlrE . (2.15) 

The result for any geometry can be written 

 maxss0V RMVV ωµκ= , (2.16) 

where 

 ∫ ⋅×
π

=κ
3

max
V

ˆ

4 r

R dlr ζζζζ
 (2.17) 

r R
a) b)

sample
volume

ζ

Figure 2.6.
r 

 Inductive detector model. a) Internal view 
with position of the coil element defined.   is a unit vector along the direction of the time 
derivative of the sample's magnetization.

ζ
Sample in an NMR induction coil. b) 

max
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is a shape factor for the coil, the analogue of κF, and ζζζζ̂  is the unit vector along sµµµµ . 

For a helical n-turn coil of length 2g and radius rc, the shape factor is 

 
22

c

max
V

gr

nR

+
=κ . (2.18) 

At sufficiently low frequencies, one could quantify resistive losses in the coil 

by setting 

 
A
dLdR ρ=         or        

δ
ρ=

p
dLdR , (2.19a,b) 

where ρ is the coil’s resistivity and A it’s 

cross-sectional area, and integrating over 

the length L of the unwound conductor. In 

Equation (2.19b), the cross-sectional area 

is replaced by an effective area pδ, the 

product of the skin depth δ and a cross-

sectional perimeter p. With appropriate 

substitutions, Equation (2.10) could then 

be used to optimize the dimensions of the 

solenoid. At commonly used radio frequencies, however, the situation is 

complicated by “proximity effects,” the inductive and capacitive effects of currents 

in one part of the coil on other parts. These can be accounted for with a 

phenomenological proximity-effect factor10-12 3≈σ . Optimization for the case of a 

(roughly spherical) human head yields an optimal winding geometry for a solenoid, 

as shown in Figure 2.7. While the size scale used in this optimization is far from the 

2g

2r

3s 2s

c

 

Figure 2.7. Dimensions for optimal 
NMR coil according to Hoult and 
Lauterbur10. 
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microcoil designs that are our present concern, the aspect ratio 7.0c =rg  turns out 

to be consistent with intuition from Figure 2.5 and with results of the simpler 

optimization suggested above, and we shall use the dimensions of Figure 2.7 in the 

numerical examples that follow. 

Using Equations (2.11) and (2.16), the latter reduced by the factor 2  as 

befits an rms electromotance, we may write Equation (2.10) as 

 
fTRk
RMV

SNR
∆

ωµκ=
B

maxss0V
INDUCT 8

, (2.20) 

This is to be compared to the expression for BOOMERANG, which can be written 

 
fTk
RMMVw

SNR
∆α

µκ=
B

maxdss0F
BOOM 8

. (2.21) 

As we have already remarked, SNRBOOM scales as r1/2. We can similarly 

analyze SNRINDUCT. The scale-dependent factors in the numerator of Equation (2.20) 

are the sample’s volume and Rmax, and so we find that the signal electromotance 

scales as r2. In the size regime where the coil’s windings are larger than the skin 

depth, the resistance R, which is proportional to the conductor’s total length divided 

by its cross-sectional perimeter, is scale-invariant. In accordance with 

Equation (2.20), in this regime SNRINDUCT scales as r2. At smaller scales, where 

current flows more uniformly through wires that are small in comparison to the skin 

depth, the resistance is proportional to total length and inversely proportional to 

cross-sectional area, and it therefore scales inversely with r. In that case SNRINDUCT 

scales as r5/2. These scaling relations are confirmed by the observations of Peck et  
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al., who report SNR per unit volume of r-1 and r-1/2 in NMR experiments in microcoils 

with diameters above and below ~250 µm at 200 MHz (4.7 T)13. 

This prediction that SNRBOOM decreases substantially more slowly with size 

than does SNRINDUCT suggests that BOOMERANG will have superior sensitivity at and 

below a sufficiently small size scale. In Figure 2.8, SNRBOOM and SNRINDUCT are 

estimated and plotted over 5 orders of magnitude in sample size for a 29Si NMR 

spectrum of the mineral scapolite. This example is motivated by a hypothetical 

mineralogical study with a low-power spectrometer transported to Mars on a space 

probe. The simulated device is optimized at each scale, and the parameters used in 

the simulation are listed the accompanying table. 
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Figure 2.8 SNR and scaling for inductive detection and BOOMERANG. Signal-to-noise ratios 
are estimated for natural-abundance (4%) 29Si NMR at 17 MHz in a 2T field at 150 K. The 
sample is scapolite, a siliceous mineral believed to be present in martian soil. The simulation 
is motivated by a study of low-power spectrometers for in-situ planetary exploration. The 
parameters at right are for the hypothetical optimized inductive and BOOMERANG detectors 
for a 60 µm sample, and the curves at left are based on the scaling relations described in 
the text. A one-second relaxation time is assumed for the magnetization, and two ring-down 
times are chosen for the BOOMERANG curves. The 80 ms time has been demonstrated 
experimentally at the millimeter scale, and, at fields higher than the 0.66 T of the prototype 
and with careful attention to eddy-current suppression, 1 s ring-down times are anticipated. 

Rmax 34 µm 
sample mass 0.3 µg 
# of spins 6x1013 

detector mass 0.2 µg 
magnetization 2 T/µ0 
frequency 500 Hz 
ring-down times 80 ms, 1 s 
coil x-section 15 µm 
coil diameter 83 µm 
coil length 58 µm 
# of turns 6 
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Figure 2.9 SNR and scaling in proton NMR. Signal-to-noise ratios are estimated for 1H NMR 
at 500 MHz and 310 K. The sample is a crystal of a hypothetical 50 kD protein, and the 
SNR is for a single proton site per molecule, or perhaps a 13C label which has been 
polarization-enhanced and indirectly detected. As in Figure 2.8, the parameters at right are 
for optimized inductive and BOOMERANG detectors for a 60 µm sample, and the curves at 
left are based on the scaling relations described in the text. A one-second relaxation time is 
assumed for the magnetization, and again 80 ms and 1 s are chosen for the oscillator ring-
down times. The graphs show that, even for this case that is most favorable for inductive 
detection, there is a useful size range where BOOMERANG methods are predicted to exhibit 
superior sensitivity. 

Rmax 34 µm 
sample mass 0.17 µg 
# of spins 2x1012 

detector mass 0.2 µg 
magnetization 2 T/µ0 
frequency 500 Hz 
ring-down times 80 ms, 1 s 
coil x-section 15 µm 
coil diameter 83 µm 
coil length 58 µm 
# of turns 6 

While the scaling relations apply to all nuclei, the size scale below which 

BOOMERANG’s sensitivity is predicted to exceed that of inductive detection will 

depend on the magnetogyric ratio of the target spin and on the strength of the field. 

The Larmor frequency ω, which appears in SNRINDUCT (2.20), is absent in SNRBOOM 

(2.21), and so the relative advantage of BOOMERANG is greater at a given scale for 

nuclei with small magnetogyric ratios at fixed field, or at lower fields for a given 

nuclide. The case most advantageous to inductive detection (with the exception of 

NMR of tritium, whose magnetogyric ratio exceeds the proton’s by 7%) is proton 

spectroscopy in high field. Figure 2.9 shows that, even in the 11.7 T field of a 

commercial 500 MHz superconducting magnet, BOOMERANG’s sensitivity is 

preferable in samples with Rmax below about 20-50 µm. 
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The foregoing motivates construction of a BOOMERANG spectrometer at the 

sub-millimeter scale, and efforts toward microfabrication of BOOMERANG 

spectrometers are detailed elsewhere4,14. But even with the r1/2 scaling of SNRBOOM, 

sensitivity is still a challenge at smaller scales, and so a proof-of-concept instrument 

optimized for 3 mm samples was constructed. That instrument is subject of 

Chapter 3. 

2.3 A Note About Reciprocity 

The integrand in Equation (2.15) may be interpreted in two ways. We have 

already used it to describe the electric field induced at the site of a conductor by a 

time-varying magnetic dipole. With the help of Equation (2.13), this integrand may 

be rewritten 

 ( ) ( )12
0

2
0 ~ˆ

4
ˆ

4
Bddlrdlr

dlrE ss
s ⋅

∂
∂−=





 ×′

π
µ

⋅
∂
∂+=




 ⋅×
π

µ
∂
∂−=⋅ µµµµµµµµ

µµµµ
trtrt

 (2.22) 

where rr ˆˆ −=′  is the unit vector pointing from the current element dl to the sample 

dipole µµµµs. 1
~
Bd  is the element of magnetic field induced at µµµµs per unit current flowing 

through dl. We can thus recast the equations that permit us to calculate the induced 

electromotance by exchanging the roles of the “source” and “observation point.” 

This is a reciprocity relationship8. The right-hand side of Equation (2.22) has been 

the standard means of calculating signal-to-noise ratios in NMR since Hoult and 

Richards introduced it in 197615. One can calculate (or measure) a local sensitivity 
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to magnetic moments by integrating 1
~Bd  over the NMR coil, and this can be useful 

in evaluating imaging apparatus. 

A similar analysis can be applied to force detection. For a differential sample 

moment dµµµµs, Equation (2.1) may be written in two ways: 

 ( ) ( ) ( )dsds3
0

s
~~1ˆ̂3

4
BddBdrrdBdF dsd ∇⋅−=⋅∇−=





 ⋅





 −⋅

π
µ

∇=⋅∇= µµµµµµµµµµµµµµµµµµµµ
r

,(2.23) 

which are related by the antisymmetry of the gradients (∇ and ∇~) of the dyadic 

( ) 31ˆ̂3 r−rr with respect to the coordinates of the detector and sample dipoles, 

respectively. The parameter ( )d
~BddG ∇=  is the change in the magnetic field at the 

sample (due to the detector element dµµµµd) per unit displacement of the flexible 

detector along the “detection coordinate,” z. That this reciprocity parameter dG, the 

equivalent of 1
~
Bd  in inductive detection, has units of magnetic field gradient (T/m) 

is an artifact of the detection coordinate’s units, which are length (m) in the case 

we have treated here. The displacement may also be an angle, as we shall see in 

Chapter 5 when the subject of torsional oscillators is taken up. 
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Chapter 3: BOOMERANG Prototype 

3.0 Overview 

This chapter details the construction of a prototype BOOMERANG 

spectrometer optimized for detection of NMR from solid and liquid samples 

contained in a 3 mm diameter sample volume. Figure 3.1 shows a block diagram of 

the prototype. The heart of the spectrometer is the magnet assembly, which is  

Figure 3.1. Block diagram of the BOOMERANG prototype.
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described in section 3.1. This assembly provides a homogeneous field for a sample 

that is placed inside a solenoid, which is situated underneath a sensor magnet (not 

shown) inside the assembly. The sensor magnet is bound to a single-crystal silicon 

suspension (also not shown), and this combination forms a mechanical oscillator, 

which is described in section 3.2. Picometer-scale motions of the oscillator are 

monitored with the fiber-optic interferometer system described in section 3.3. The 

oscillator’s resonance frequency is typically between 400 and 600 Hz. In order to 

suppress ambient acoustic noise, the magnet assembly is enclosed in a vacuum bell 

jar, which is pumped down to below 10-5 Torr. The vacuum also serves to suppress 

viscous damping of the oscillator. 

Typically, the effects of viscous damping are observed to become negligible 

relative to eddy-current damping when the pressure is below about 10-3 Torr at 

room temperature. Under these conditions, the mean free path of molecules in the 

air is about 76 mm, which is far larger than the dimensions of the sensor magnet. 

Thus, a continuum model of the rarified atmosphere, which would predict that the 

air viscosity is independent of pressure1, does not apply. We observe a modest 

increase in the ring-down time of the oscillator up to as much as 80 ms as the 

pressure is reduced below ambient pressure. 

The optical signal from the fiber-optic position sensor is filtered, amplified, 

and digitized (section 3.4). Rf pulses to reorient the sample’s magnetization, 

including the frequency-modulated pulses used to efficiently invert the 

magnetization during detection, are digitally synthesized, mixed up to the proton or 

fluorine Larmor frequency in the 25-30 MHz range, amplified, and delivered to an rf 
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coil (the solenoid containing the sample) inside the magnet assembly as described in 

section 3.5. Section 3.6 treats cyclic inversion, which is used to drive the detector 

oscillator in proportion to the sample’s magnetization. The chapter concludes with a 

detailed assessment of noise sources (section 3.7). 

3.1 Magnet Assembly 

The defining feature of the BOOMERANG magnetic resonance spectrometer 

is the magnet assembly, which is designed specifically for field homogeneity. Figure 

3.2 shows a schematic of the magnet assembly, which is to-scale. The aluminum 

base and supports used to hold the magnets in alignment are left out of the diagram 

for clarity. The “source” magnets (Magnetic Component Engineering, Inc., model 

N40) are made of neodymium iron boron (NdFeB) magnetized axially to a remanent 

source
magnets

annular
magnets

sensor
magnet

sensor magnet
complement

magnetization
axis

 

Figure 3.2 BOOMERANG prototype magnet assembly. The drawing is to scale, and 
magnetic elements, drawn in solid lines, are cylindrically symmetric about an axis that is 
vertical in the figure. All the magnets are magnetized along their common axis of 
symmetry. Square, brass brackets to hold the magnets are drawn in dotted lines. 
Magnetostatic calculations to specify exact magnet dimensions and spacings, as well as 
designs of bracket and alignment hardware, were performed by Lou Madsen2. 
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magnetization of 1.29 T/µ0. They are right circular cylinders 2.54 cm high and 5.08 

cm in diameter. Both have 1.6 mm holes drilled down the symmetry axis, the upper 

magnet to accommodate an optical fiber, the lower magnet to preserve reflection 

symmetry of the magnet assembly. 

These source magnets magnetize the four internal magnets, including the 

sensor magnet. The internal magnets are machined from mu metal (Carpenter 

Technology Corp. “HyMu 80” alloy). In the field of the source magnets, the internal 

magnets acquire a magnetization of 0.665 T/µ0. This value equalizes the normal 

component of the magnetic induction B across the boundary between the high-

permeability mu metal and the air gap for the known geometry of the magnet 

assembly. This estimate, which falls between the value calculated for an infinitely 

wide flat disk in the field of the source magnets (0.605 T/µ0) and the material’s 

saturation magnetization3 (0.75 T/µ0) is the result of an iterative magnetostatic self-

consistency calculation. 

Figure 3.3 shows a plot of the longitudinal component Bz of the static field 

along the symmetry axis in the 4.8 mm space below the sensor magnet and above 

its complement. The distance between the annular magnets is fixed, but the 

distance between the source magnets can be varied somewhat to provide a coarse 

shimming capability. This procedure also changes the static field, and we have 

observed fields across the range 0.59-0.73 T. (The magnetization of the sensor 

magnet changes accordingly.) The three curves in Figure 3.3 are for three positions 

of the sensor magnet, which is free not only to vibrate longitudinally, but also to 

come to rest slightly above or below its encircling annulus as a result of static 
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forces from the other magnets. By varying the distance between the source 

magnets with inserted brass shims, it is possible to align the sensor and annulus to 

within ~50 µm by careful visual inspection. 

The reflection symmetry of the magnet system makes all odd-order gradients 

(e.g., zBz ∂∂ , 33 zBz ∂∂ ) vanish. The principal design goal was therefore to null the 

second-order gradient 22 zBz ∂∂  as best as possible. As is shown in Figure 3.3, the 

linear term vanishes only when the sensor magnet is well aligned. Figure 3.4 shows 

three line shapes calculated for the three positions (perfect alignment and 25 µm 

above and below perfect alignment) of Figure 3.3. These line shapes are calculated 

by computing the field expected at randomly chosen points in a 3 mm spherical 

volume, binning the values, and graphing the resulting probability distributions. The 

simulations show that the total distribution of proton Larmor frequencies over the 

Figure 3.3. Calculation of the field at positions along the symmetry axis in the BOOMERANG 
prototype. When the sensor magnet is perfectly centered in the annulus, odd-order gradients 
in the field vanish.
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sample is on the order of 28 kHz (6.5x10-4 T x 42.6 MHz/T, with full width at half 

maximum (FWHM) 6 kHz) for a perfectly aligned sensor and that the line width can 

vary substantially depending on the sensor’s alignment. This distribution of Larmor 

frequencies is compatible with inversion of the entire sample magnetization for the 

~50 kHz Rabi frequencies we achieved with our rf system (section 3.5). 

Since the force coupling a given nuclear moment to the sensor magnet varies 

as a function of the moment’s position within the sample, the distribution of Larmor 

frequencies shown in Figure 3.4 must be weighted by a “local sensitivity” in order 

to properly model the NMR line shape. As shown in Figure 3.5, this weighting 

distorts the expected line shapes considerably more for spectra taken with the 

sensor magnet displaced from its most symmetric location. 

Figure 3.4. Distribution of fields within the sample for three positions of the sensor magnet.
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Figure 3.5. Simulated lineshapes adjusted for 
sensitivity variations in the sample volume. When the sensor is misaligned, extreme values of 
the field in the NMR line are weighted more significantly.

for three positions of the sensor magnet 
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Figure 3.6 shows a Fourier-transform (FT) 1H NMR spectrum of water taken 

with the prototype (see Chapter 4 for details). The line widths observed in 1H NMR 

of water were typically in the range 8-50 kHz, which are consistent with the above 

simulations. Most of the observed line width can be attributed to the field 

inhomogeneity due to the presence of the gap between the sensor and the annulus. 

Indeed, simulation of the distribution of Larmor frequencies for the particular 

geometry in Figure 3.2 with the sensor radius modified so as to have no gap 

between the sensor and annulus showed a line width of only 0.6 kHz. Detailed 

optimization of the homogeneity using the approximation of perfectly axial 

magnetization, as well as more exact finite-element analyses2 showed that this line 

width can be reduced, with careful placement of all the magnets, to well below 1 

ppm (28 Hz in the prototype) overall for such no-gap configurations. An important 
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Figure 3.6. FT-NMR spectrum of water measured with the BOOMERANG prototype. The 17 
kHz  line width is consistent with the model calculation of figure 3.5.
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improvement to next-generation BOOMERANG devices will be an active shimming 

capability based on movement of the magnets, which could be supplemented by a 

shim coil set as in ordinary NMR. Even at the demonstrated homogeneity (which is 

more than three orders of magnitude better than would be the case without using 

the BOOMERANG concept), the line width is sufficient to allow inversion of the 

entire sample magnetization. This is all that is really required. In the highest-

resolution BOOMERANG designs, spectroscopic evolution can take place with the 

sample placed at a separate location, which is away from the sensor magnet and its 

surrounding gap, such a location being separately optimized for strict homogeneity 

(perhaps with coil-based shimming measures), with the sample subsequently 

shuttled under the sensor magnet for optimal detection4. 
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Figure 3.7. BOOMERANG prototype oscillator assembly, with surrounding annular and 
complement magnets, silicon suspension, and NMR coil. a) Side view,  The sensor 
magnet, 3 mm in diameter and 1.5 mm high, is bound to a 0.22 mm thick rectangular silicon 
suspension. b) Top view, 1x scale.
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3.2 Oscillator 

Figure 3.7 shows the center of the magnet assembly with its oscillating 

silicon beam and sensor magnet. The sensor magnet is affixed to the beam so that 

it is free to oscillate along the symmetry axis. The sensor magnet’s counterpart in 

the lower half of the assembly is glued inside its annulus, its face flush with that of 

the annulus. The sensor magnet weighs 83.1 mg, and the silicon beam’s total mass 

is 36.7 mg. The total motional mass for this “fixed-fixed” beam configuration5 is 

therefore about mg7.92mg)7.3670.0375.01.83( =××+  accounting for the 

~30% of the silicon beam that is fixed to the annulus and not free to oscillate. 

When placed between the field magnets, the oscillator’s resonance frequency was 

typically between 400–600 Hz. The frequency of a given oscillator varied by tens 
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of hertz or more depending on the age of the oscillator, the temperature, and the 

thickness of the brass shims used to separate the source magnets. 

The total spring constant, ~897 N/m (for the particular case of the above 

motional mass and a 495 Hz resonance frequency), is the result of two offsetting 

effects: a positive elastic spring constant due to the restoring force of the silicon 

beam and a negative magnetic spring constant due to magnetic forces, primarily 

between the sensor magnet and its encircling annulus. In the absence of the 

restoring force of the silicon beam, the sensor magnet is at the “top of a hill” in 

potential energy when positioned at the center of the annulus2. A crude estimate of 

this contribution to the spring constant can be made by estimating the second 

derivative with respect to longitudinal displacements of this potential energy, with 

the sensor modeled as a simple dipole in the field of the annulus. The result is 

1380−  N/m, which indicates an elastic spring constant of about +2280 N/m. The 

negative magnetic contribution to the total spring constant is an important feature 

of the BOOMERANG method. While both the elastic and magnetic spring constants 

(and therefore their sum) should scale linearly with the size of the apparatus, 

variations in aspect ratios of the silicon suspension should allow some control in the 

adjustment of the mechanical resonance frequency at a given size scale. This will 

help to maintain a frequency low enough to permit inversion of the sample 

magnetization with practical rf power (see section 3.5) as BOOMERANG devices are 

scaled down. Active measures of controlling the spring constant2 may further 

enhance this capability. 
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The frequency and the ring-down time of the oscillator are experimentally 

measured by observing the steady-state response to acoustic or magnetic excitation 

as a function of input frequency. The oscillator is excited by magnetic coupling to 

the field generated by audio-frequency currents in a nearby excitation coil that is 

placed temporarily under the magnet. The mechanical response of the oscillator is 

maximized visually on an oscilloscope while the input frequency is tuned to find the 

resonance. The line width πγ 2  is obtained by recording those frequencies, one 

each on the high- and low-frequency sides of the resonance frequency, at which the 

mechanical response is 21  times the amplitude at resonance. In cases where the 

mechanical resonance is particularly sharp, the ring-down time γ=τ 2  of the 

oscillator can be measured directly by observing the transient response to an 

impulsive excitation. Typically, the line widths of the best oscillators used in our 

experiments were in the range 4–6 Hz (ring-down time τ=53–80 ms). 

The damping of the oscillator is probably dominated by eddy currents 

induced in both the annulus and sensor magnets by their relative motion. This 

conclusion is based on the observation that greatly widening the gap (by 0.5 cm or 

more) between the sensor and the annulus substantially lengthens the ring-down 

time2. Calculations in Appendix C show that these (azimuthal) eddy currents are 

primarily located very close to the edges of the sensor and annulus. Indeed, longer 

ring-down times are observed with sensor-ring combinations with slightly rounded 

edges in the sensor/annulus gap. This suggests that some tradeoff may be made 

between homogeneity and ring-down time. Another strategy for the reduction of 

eddy currents that we have used with some success is the introduction of radial 
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slits in the annulus to interrupt the currents. This approach is motivated by common 

practice in transformer design, in which laminated transformer cores are used to 

mitigate similar eddy current losses. 

The calculation of eddy current damping in Appendix C assumes uniform 

axial magnetization in both the sensor and the annulus, and it underestimates 

somewhat the eddy current damping that is actually observed. Radial components 

in the magnetization would make the calculated eddy currents larger. In magnetic 

fields that are substantially larger than the ~0.66 T field of the prototype, the 

magnetization of sensor and annulus may more strongly conform to an axial 

orientation, which may help to reduce eddy current damping. 

Another significant issue regarding the oscillator is the drift of its resonance 

frequency between iterations of the experiment. This is probably due to heating of 

the oscillator by the applied rf current. The drift over several shots of the 

experiment can be seen in the plot of Figure 3.8. This density plot records the 

Fourier transform of a time series, a record of the oscillator’s trajectory during 

driving by magnetization modulated with rf at a frequency (here 442 Hz) that is 

fixed shot-to-shot. The dark band is the frequency range over which the Brownian 

motion of the oscillator is strongest, which is within ~1 line width of the resonance 

frequency. This drift can be compensated for in practice by including several 

“dummy” applications of rf, which brings the oscillator to a steady-state 

temperature and frequency. 
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Of more concern is the drift of the oscillator during a given shot. This can 

cause phase variations in the signal when the time between the beginning of heat 

deposition from rf pulses to the onset of the detection period varies from shot to 

shot in the experiment. Frequency variations of the oscillator were observed in real 

time by applying an audio-frequency excitation to the oscillator at a fixed frequency 

slightly (~3 Hz) off resonance and observing the phase shift on an oscilloscope as 

the natural resonance frequency changed during application of the rf current. The  

Figure 3.8. Drift over time of the oscillator frequency. In this density plot, intensity in the 
Fourier transform of a mechanical transient is indicated by color for 150 iterations of the 
experiment. The broad band, which moves by ~10 Hz over the course of the experiment, is 
the ~7-Hz-wide signature of the Brownian-motion noise. The narrow, dark feature at 442 Hz 
is the NMR signal that results from rf frequency modulation during oscillator driving.
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frequency changed by ~4 Hz during 

application of rf currents that were 

typical of the experiments reported in 

Chapter 4. This is a very substantial 

fraction of the natural line width of 

the oscillator, and it was observed to 

cause significant aberrations in the 

phases of time-domain NMR signals. 

Figure 3.9 shows the result of a particularly bad nutation experiment. In this figure, 

deviations from the expected decaying cosine are far above the predicted (section 

3.7) and observed base noise level. Ways to account for this in the experiment are 

the subject of ongoing design efforts. A promising approach is to concurrently 

excite the oscillator slightly off resonance and observe the phase shift of this signal 

in real time. This signal can be used to estimate the instantaneous resonance 

frequency, which can subsequently be used in a fitting procedure. Alternatively, this 

estimate, or a temperature measurement, can be used in a thermal feedback 

scheme to stabilize the oscillator’s frequency in real time. 

3.3 Fiber-Optic Interferometer 

The picometer-scale motions of the sensor magnet are monitored with a 

fiber-optic interferometer6, which is shown schematically in Figure 3.10. Laser light 

at 780 nm from a pigtailed multimode diode laser (Sharp model LT023MD, from OZ 

Optics, Canada) is launched into one arm of a 2x2 fiber coupler (Gould Fiber Optics, 
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Inc.) through a single-mode optical fiber (5 µm core, 125 µm cladding). The laser is 

driven by a battery-powered current source for minimum intensity noise. The light is 

split 50/50 into the coupler’s two output arms. One arm goes into a light dump to 

attenuate destabilizing backscattered light that would otherwise return to the laser 

arm. Dumping the light in this arm also reduces an undesirable dc offset in the 

detected photocurrent. The light dump is simply a piece of black felt affixed to the 

end of the fiber and soaked with pump oil, which serves as an index-matching fluid 

to further reduce reflections off the fiber end. 

Dump

Figure 3.10. Fiber-optic interferometer. A laser diode launches light into one arm of a 2x2 
fiber coupler, where it is split between two single-mode fibers. Half of this light goes to a light 
dump to prevent unwanted reflections. The other half goes into the magnet array through a 
narrow hole drilled through the center of one NdFeB pole magnet. The end of this fiber is 
cleaved, and it is brought to within a few microns of the polished surface of the silicon 
oscillator. Reflections from the glass-air interface and from the polished surface scatter back 
into the fiber and travel back through the coupler to a photodiode. The displacement of the 
oscillator is registered as a variation of intensity of the light incident on the photodiode due to 
interference of these two scattered beams.
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Photo-
diode
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The light in the coupler’s interferometer arm goes through a vacuum-wall 

feedthrough, into the vacuum bell jar, and through the hole drilled along the 

symmetry axis of the upper field magnet. The fiber’s face is cleaved flat and 
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brought to within a few microns of the reflecting surface at the back of the silicon 

oscillator. The light is reflected from two surfaces — one, the glass-air interface at 

the fiber end, and the other, the silicon oscillator. If the distance between these two 

reflecting surfaces is smaller than the coherence length of the laser, then the light 

reflected back down the fiber toward the coupler is subject to modulation by the 

interference between these two reflected waves, which depends sinusoidally on the 

distance between the fiber face and the oscillator. This backscattered light goes 

back through the coupler, and it is again split 50/50. One half of this light is 

incident on a photodiode (Seastar model CP-120-20), which is fc-coupled to the 

fiber. The photodiode is reverse-biased with a 9V battery to improve response and 

linearity, and the photocurrent is amplified by a current (transimpedance) amplifier 

(Princeton Applied Research, Model 181). The resulting output voltage is 

subsequently filtered, amplified, and digitized (section 3.4). 

The interferometer-arm fiber is affixed above the source magnet to a clamp-

and-spring assembly, which allows the distance between the fiber end and the 

silicon oscillator to be regulated by applying a voltage to a piezoelectric stack under 

the clamp. The nominal distance is set to the center of a sinusoidal fringe, where 

the photocurrent varies linearly with small displacements. Since it is important to 

maintain this linearity throughout the duration of the experiment, a feedback circuit 

is used to keep the fiber face near the fringe center2. The fringe visibility of the 

interferometer, 
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where Imax and Imin are the maximum and minimum photocurrents, is typically 45-

75%. 

The sensitivity of the fiber-optic interferometer system is sufficient to 

observe the Brownian motion of the oscillator at room temperature, and so 

Brownian motion is the predominant noise source for room-temperature 

measurements. Figure 3.11 shows 

the observed noise spectral density 

over a 90 Hz range that includes the 

oscillator’s resonance. This resonance 

peak is fit to a Lorentzian line at 

Hz 4962 =πω  with full-width at half-

maximum Hz 0.52 =πγ . The silicon 

element of this particular oscillator 

was part of a structure more 

complicated than a single fixed-fixed 

beam, and so the motional mass is difficult to estimate from elementary solid 

mechanics. The noise spectral density shown is consistent with a motional mass of 

139 mg, which is somewhat larger than the 92.7 mg estimated for the simple fixed-

fixed beam.  Also included in the fit is a frequency-independent noise floor, which is 

about Hzpm80.03 2  ( Hzpm0.195 ). This exceeds estimates of white noise from 

the sum of several noise sources quantified in section 3.7 by a factor of four in 

power and two in amplitude. This excess noise may be due to intensity noise in the 

laser or possibly residual acoustic noise. 

Figure 3.11. Displacement noise spectral 
density. The peak at the oscillator frequency is 
due to Brownian motion. The frequency-
independent noise floor is somewhat larger 
than the prediction based on shot noise, 
Johnson noise in the photocurrent amp, etc., 
calculated in section 3.7.
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Figure 3.12. Signal acquisition and conditioning. See text of Section 3.4 for details.
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3.4 Signal Conditioning and Acquisition 

The output of the photocurrent (transimpedance) amplifier is the sum of an 

audiofrequency voltage due to vibrations of the oscillator and a near-dc level that 

depends on slow variations of the distance of the fiber face to the silicon oscillator.  

As shown in Figure 3.12, this output is split. One arm is low-pass filtered, and this 

near-dc component (below 0.1 Hz) is sent to the input of a feedback circuit, which 

is designed to maintain a setpoint voltage by driving a piezoelectric stack connected 

to the fiber support. In the other output arm, the audio-frequency component is 

high-pass filtered to remove the dc offset and to attenuate a large ~30 Hz 

interference that arises from acoustic noise exciting a spurious mechanical 

resonance in the apparatus. The resulting signal is amplified by a factor of 50 or 

100 by a preamplifier (Stanford Research, Inc. Model SR552) and then filtered by a 
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rack-mount bandpass filter (Wavetek Model 442 Dual HI/LO filter). This filter is 

convenient because its passband can be set with front-panel switches. However, 

since its output includes some high-frequency electronic noise, its output is filtered 

through a two-pole low-pass passive (LC) filter before digitization. Digitization takes 

place inside a Pentium-based computer at 2 or 4 kilosamples per second and 16 bits 

vertical resolution using an ISA-compatible digitization board (Computer Boards, Inc. 

model CIO-DAS1602). Typically a one- or two-second transient is recorded when 

the oscillator is driven resonantly by forces exerted by the sample’s modulated 

magnetization. 

3.5 Rf System 

Figure 3.13 shows the system of synthesizers, mixers, and amplifier that are 

used to deliver pulses of rf magnetic fields to the sample. The radio-frequency 

source for the experiments is a Signatec AWG502 arbitrary waveform generator 

board inside a Pentium-based IBM-PC-compatible computer. The board “clocks out” 

preprogrammed voltages on two channels at up to 50 megasamples per second, 

and it has a 64-kbyte data memory and a 256-byte program memory that allows 

some flexibility in looping of pulse programs. All the pulse sequences described in 

this thesis are computed and synthesized in real time by a C-language control 

program between iterations of rf application. These pulse programs are sent to the 

AWG board where they await a software trigger signal. The output of the AWG 

board is 8 V peak-to-peak at maximum in the frequency range 2-5 MHz (limited by 

the Nyquist frequency of the 10 MSample/s rate used in most of the experiments). 
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This 3 MHz range covers both the proton and fluorine Larmor frequencies in the 

0.66 T field when mixed up to the ~28 MHz region with a local oscillator 

(Programmed Test Sources, Inc. PTS500). 

Figure 3.13. A

B

 RF system as described in the text of section 3.5. At , the NMR coil, which 
receives filtered rf current from the amplifier during experiments, can also be disconnected 
from the rf and connected to an audio-frequency synthesizer. This allows application of 
current at the sensor oscillator's resonance frequency, which can be used to calibrate the 
interferometric measurement of the oscillator's displacements. At , a sinusoidal reference 
signal is sent from the AWG to a second channel on the digitizer. This timing channel acts as 
a phase reference for the detected interferometer signal.
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The mixer unit is a collection of Mini-Circuits, Inc., devices configured for 

single-sideband operation by Lou Madsen2. Its output is filtered and attenuated, 

followed by amplification by 50dB (ENI 3100L or 5100L-NMR). The output from the 

amplifier is again filtered and then transmitted through a floating-ground 

feedthrough to the interior of the vacuum bell jar, where it is transmitted through 
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~12 cm of micro-coax cable to an SMA connector on the NMR coil assembly 

shown in Figure 3.14. 

Both the live and rf-ground voltages are brought into the magnet array 

through shielded rigid coax. The rigid coax that is used has outer and inner 

conductors made of a non-magnetic, low-permeability copper to avoid distortion of 

the static magnetic field. The ends of the rigid coax connect to a 9-turn coil that is 

wound within a beryllia tube and protected by an electric-arc suppressing mixture 

(GC Electronics Red GLPT Insulating Varnish, diluted with a few drops of toluene for 

smoother flow around small conductors). In order to get the sample as close as 

Figure 3.14.  Therefore coil assembly. a) Top view. The sample is slid into the coil after the 
coil mount is installed as shown. b) Side view close-up showing coil underneath sensor 
magnet.  c) Photo of two coil mounts and a liquid sample glued to an insertion rod.
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possible to the moving sensor magnet, the wires of this coil (which are initially 32 

gauge) are flattened to 150 µm thick between metal rollers. The beryllia tube has a 

high thermal conductivity, and in combination with the aluminum support to which 

it is bonded, it serves to conduct away heat that can change the resonance 

frequency of the oscillator. The outside of the beryllia tube is covered with a 25 µm 

thick, grounded Faraday cage to suppress the direct electromagnetic interaction of 

the coil with the sensor oscillator. 

After the magnet assembly is put together2, the coil assembly is inserted 

into the magnets so that the coil is directly under the moving sensor magnet. Then 

the sample, which is typically a liquid in a spherical bulb or a powder packed into a 

cylindrical tube between magnetically inert plugs, is affixed to a wooden dowel and 

inserted from another side, along the coil axis (see Figure 3.14). 

The NMR coil is usually untuned. Our rf amplifier is strong enough to supply 

the necessary rf power into an untuned coil at the prototype size scale. This will 

also easily be the case for microfabricated BOOMERANG devices for low-power 

remote spectroscopy applications2,8. The lack of tuning capacitors, in combination 

with a direct-digital approach to rf synthesis, allows us to apply multiple pulses on 

two different nuclei simultaneously on the same channel and also to apply the 

broad-band frequency-swept pulses (cyclic adiabatic passage) that drive the 

oscillator during detection with minimal amplitude modulation of the rf current in the 

coil, which is important to suppress spurious driving of the oscillator. 



  55 

3.6 Cyclic Inversion with Phase-Cycled Efficient ARP 

We have repeatedly referred to cyclic inversion of the sample’s 

magnetization as the means by which oscillating forces are applied to the sensor 

oscillator in BOOMERANG. This inversion is so important to BOOMERANG that we 

shall consider it now in some detail. In order to drive the oscillator into mechanical 

resonance, the nuclear magnetization of the sample is inverted twice per oscillator 

period τ. This could be done with a train of π-pulses. However, even though the 

field is designed to be homogeneous, there is still a residual spread of Larmor 

frequencies, which as we have seen is of order 20 kHz. In order to optimize signal 

power, the oscillator driving procedure must repeatedly invert these 

inhomogeneously broadened spins with negligible loss in magnetization over and 

above losses due to unavoidable relaxation in a time period ~T1a. 

We may quantify the needed efficiency of a single inversion process by 

observing that if each pass loses a fraction ε of the magnetization (in addition to the 

fraction 1a2Tτ lost to relaxation), then the exponential relaxation time will be 

decreased from T1a to 
1

1a

12
−






 +τ

ε
T

. If this new relaxation time is to be more than 

half of T1a, then ε must be less than a12Tτ , which is 0.001 for s111 =≈ TT a  and 

ms2Hz5001 =≈τ . Thus we require that each pass be at least 99.9% efficient in 

inverting the entire sample magnetization. This limits use of the “sudden” approach 

of π-pulses (even composite pulses), which have limited spectral range given the 

required efficiency. 
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A better approach is adiabatic passage, which is known to be a more 

efficient means of inverting a population of inhomogeneously broadened spins. In 

adiabatic passage, the frequency ( ) ( )tt φ=ω  of the rf component of an applied field 

 ( ) ( ) ( )( )ttBBt φ−φ+= sinˆcosˆˆ 10 yxzB  (3.2) 

is swept through Larmor resonance in a time that is short compared to spin 

relaxation but long compared to a period of spin precession in the “effective field” 

(see below) in a coordinate frame rotating at the frequency of the applied field. In 

Equation (3.2) and the following, we leave out a counter-rotating component that is 

present when linearly polarized rf is used. Let { }kji ˆ,̂,̂  denote unit vectors in the 

rotating frame, with k̂  along the static field and î  along the instantaneous 

transverse rf field. These may be expressed in terms of laboratory-fixed unit vectors 

{ }zyx ˆ,̂,̂  as 
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. (3.3) 

The magnetization ( )tM  evolves according to the torque equation 

( )tBMM ×γ= ,which reads 

 
( )








γ
ω−ω

+×γ= kiMM ˆˆ 0
1

t
B  (3.4) 

in the rotating frame, with γ denoting the magnetogyric ratio of the spins. The 

equation of motion takes the form of Equation (3.4) even when the offset 



  57 

0ω−ω=∆  from the Larmor frequency 00 Bγ=ω  is time-varying9. The effective field 

in the rotating frame, 

 
( ) ( )








γ
∆+=







γ
ω−ω+≡ kikiB ˆˆˆˆ

1
0

1eff
tB

t
B , (3.5) 

is a vector that traverses a path in the 

i-k plane as the instantaneous 

frequency of the applied field is 

changed. This path is a line parallel to 

k̂  if the magnitude of the transverse 

field is held fixed, as shown in Figure 

3.15. If the angle ( )tθ  that the 

effective field makes with the 

transverse plane changes slowly 

compared to the precession rate: 

 22
1

2dd ∆+γ<<θ Bt , (3.6) 

then the approximate solution to Equation (3.4) is a magnetization vector ( )tM  that 

follows the effective field vector ( )teffB . This is the basis of the so-called adiabatic 

rapid passage (ARP): the transverse field is applied at a frequency which begins far 

off resonance and is swept through the resonance frequency to a point far on the 

other side, inverting the magnetization. 

Simple trigonometric considerations evident in Figure 3.15 make the rate of 

change in θ for a given change in ∆ maximum when ∆=0. This is also the condition 

∆ γ( )/t

( )t
B ef

f

B1

k

i

M
( )t

θ( )t

 

Figure 3.15. Efficient ARP. In the rotating 
frame, the offset frequency ∆(t) is swept 
so that the angle θ(t)=tan-1(∆(t)/γB1) 
changes linearly in time. 
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under which the adiabaticity condition (3.6) is most stringent. Therefore, both linear 

( ( ) tt ∝∆ ) and sinusoidal ( ( ) tt msin ω∝∆ ) sweeps in frequency place unnecessarily 

demanding constraints on the rate at which the magnetization can be efficiently 

swept through resonance, since in both these sweeps tddθ  is largest just when 

Beff is weakest. 

This was recognized by Hardy et al.10,11, who pointed out that since the 

precession rate is very large when the offset frequency ∆ is large, the sweep rate in 

ARP can be much faster at the beginning and end of the sweep, that is, when the rf 

is far from resonance. They demonstrated a far more efficient, tangent-based 

adiabatic rapid passage using a frequency sweep of the form 

 ( ) ( )tt αωω−ω=ω ss0 tan , (3.7) 

where sω  is a sweep shape parameter near 11 Bγ=ω  and where 

 






ω
Ω







ω=α −

s

1

0s
tan2

T
. (3.8) 

T0 is the total sweep time ( 22 00 TtT +≤≤− ), and 2Ω is the range of the angular 

frequency sweep. These pulses use far less rf power for given ranges of both offset 

frequency ∆ and rf field inhomogeneity ∆B1 for a given required inversion efficiency. 

Such frequency-modulated pulses are created by direct digital synthesis 

straightforwardly. To do this, one calculates the phase φ(t) as a function of a 

discrete time variable and then stores values proportional to ( )tφsin , which are 

“clocked out” to the waveform generator when needed. The required phase is the 

time integral of the frequency in Equation (3.7): 
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 ( ) ( ) ( )
2cos

cos
ln12d

0s

s
00

20
T

t
Ttttt

t

T αω
αω

α
++ω=ω=φ ∫−

. (3.9) 

The inversions could be 

done by sweeping back-and-forth 

through the NMR line. However, if 

there is any difference between 

back-and-forth sweeps in the non-

NMR response of the oscillator to 

the rf power in the coil (such as 

heating, mechanical expansion of 

the coil, etc.), then the predominant 

Fourier component of the resulting 

force will be exactly at the oscil-

lator frequency. This back-and-forth 

sweeping protocol can thus lead to spurious driving of the oscillator. We suppress 

these effects by sweeping from the same side of the NMR line on every inversion as 

shown in Figure 3.16. This ensures that such non-NMR forces are at multiples of 

twice the oscillator frequency instead of exactly on mechanical resonance. 

A possible complication with such same-side sweeping is that for finite 

sweep width, an individual inversion ends with the effective field (and therefore the 

magnetization) having a non-vanishing transverse component. In order to prevent 

loss of this magnetization between passes, a 180-degree phase shift is applied on 

every other sweep. Figure 3.17 details how this phase shift corrects for such 

ωrf

t

z

Mz

τ

ω0

Figure 3.16. 

M

Driving the oscillator with 
efficient ARP. The frequency of applied rf is 
swept according to equation 3.7, and there 
are two sweeps per oscillator period . Both 
sweeps begin on the high-frequency side of 
the center frequency  . The rate d  /dt is 
largest when the magnetization  is nearly 
along the static field direction. The oscillator 
amplitude ( ) is 90  out of phase with the 
driving force, which is proportional to .
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imperfect inversion and retains 

more of the magnetization. We 

have found empirically that such 

phase cycling can prolong the 

driving interval by as much as a 

factor of four2. 

Figure 3.18 shows the result 

of inverting proton magnetization in 

a 2.6 mm diameter liquid water 

sample over a 1-second interval 

with the phase-cycled tangent 

sweeps. By integrating the har-

monic-oscillator equation of motion 

with an exponentially damped sinusoidal driving force, we can find the expected 

trajectory of the oscillator. When the oscillator’s damping time τ is significantly 

shorter than the relaxation time T1a of the magnetization, the result is 

 ( ) ( ) teAetz tTt ω−= τ−− cos11a , (3.10) 

where ω is the oscillator’s resonance frequency, which is also the driving frequency 

(504 Hz for the transient in Figure 3.18). The amplitude A, which can be found 

using the theory of Chapter 2, is equal to the on-resonance steady-state amplitude 

were the magnetization not to decay. 

Figure 3.17.

M
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 Phase cycling for efficient ARP.  
After one pass through resonance, the mag-
netization  is nearly, but not exactly, inverted 
(1). If the effective field at the start of the next 
pass through resonance is applied at (2) in this 
rotating-frame picture, then  is not perfectly 
aligned with the effective field. A component 
of  transverse to the effective field will be 
dephased. The net effect on  is a fractional 
loss of =1-cos2 2 . A 180-degree phase 
shift of the rf, which places the effective field 
at (3), mitigates this loss.
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Figure 3.18. Driving the oscillator. a) Time series recorded during cyclic inversion of proton 
magnetization in a 2.6-mm diameter liquid water sample. b) Envelope of the signal in figure 
(a). Data from (a) were digitally mixed down to DC and then filtered in order to fit the data. 
The transient excitation was fit to equation (3.10) in order to find   (0.687 s),  (51 ms), and 
the amplitude (44.7 pm). The measured amplitude agrees with predictions from the theory 
in Chapter 2 (45.1 pm) to within about 1%.
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Figure 3.18 b shows the amplitude envelope of the transient in Figure 

3.18 a. A fit to Equation (3.10) yields τ=51 ms, T1a=0.687 s, and A=44.7 pm. 

Agreement of the amplitude with expectations (45.1 pm) using an estimate of the 

sensor’s magnetization from the observed Larmor frequency and the signal theory 

of Chapter 2 is remarkable (<1%). The measured T1a corresponds to about 693 

inversions by the time the magnetization decays by the factor e. This relaxation 

time is substantially shorter than the T1 of water2 (4.3 s) as measured by inversion-

recovery (see Chapter 4). These results indicate that the whole sample 

magnetization is being used to drive the oscillator, but that substantial relaxation of 

the magnetization is taking place as a result of the inversions. 
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3.7 System Noise Analysis 

3.7.0 Brownian motion revisited. Displacement calibration 

Even at the prototype size scale, the principal source of noise in the recorded 

transients is due to the Brownian motion of the oscillator. This can be quantified in 

two ways – as noise in the driving force or noise in a displacement measurement. 

On general thermodynamic grounds7,12, the rms fluctuation in the average force on 

the oscillator is predicted to be 

 fTkF ∆α= Brmsz, 4 . (3.10) 

This may be viewed as the square root of a force-noise spectral density 

 α= TkS B
1/2
F 4  (3.11) 

multiplied by the square root of a bandwidth, ∆f. If the bandwidth of the 

measurement is substantially less than the bandwidth τ=πγ 412  of the mechanical 

oscillator (which is true for the pointwise detection schemes of Chapter 4 when 

τ>>a1T ), then the oscillator is approximately in steady state during the time the 

oscillator is driven. In this case the square root of the corresponding displacement-

noise spectral density at mechanical resonance is obtained from (3.11) by 

multiplying 1/2
FS  by the quality factor γω=Q  and dividing by the spring constant 

2ωm : 

 γω=αωγ=α
ω

= 2
BBB2

1/2
x 4414 mTkTk

m
Tk

m
QS . (3.12) 
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With mg 139=m , Hz 4962 =πω , and Hz 0.52 =πγ , 1/2
FS  and 1/2

xS  are 

HzpN 4.8  and Hzfm 620  ( HzmÅ 2.6 ), respectively, at room temperature 

(293 K). As we shall see below, this contribution dominates other noise sources, 

but only by a small factor at the prototype size scale, and so some care was 

exercised in suppressing these other sources as much as possible. In smaller 

spectrometers, the Brownian-motion noise will be fractionally larger relative to these 

other sources of instrument noise. For direct comparison to Brownian-motion noise, 

each noise source is referred back to a displacement noise spectral density through 

multiplication by relevant gain factors, whose nominal values are shown in the 

signal path of Figure 3.19. 

 

Figure 3.19. Signal conditioning path. Selected gain factors are shown for important 
connections in the signal path.
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3.7.1 Photon shot noise 

When the interferometer is set to its most linear operating point, there is a 

dc component to the light incident on the detector. The dc level of the light 

intensity at the photodetector is the source of two kinds of noise. The first is shot 

noise, which is due to the Poisson statistics of independent “photon arrivals,” each 

with energy hν, from the light field13. If P denotes the optical power incident on the 

detector, then in a time interval ∆t, ν∆= htPN  photons arrive at the detector on 

average. The rms fluctuation in this average is N , and therefore the rms 

fluctuation in the optical power is 

 fPhtPhN
t

hP ∆ν=∆ν=
∆

ν= 2rms , (3.13) 

where explicit dependence on the the time interval ∆t has been suppressed in favor 

of the corresponding bandwidth tf ∆=∆ 21 . This allows convenient comparison of 

the square root of the corresponding noise spectral density, 

 ν=ν PhSh 22/1 , (3.14) 

to other noise sources, including Brownian motion. With W 1.7 µ=P  and 

nm 780c=ν , HzfW 9302/1 =νhS . We convert this value to the square root of the 

corresponding displacement-noise spectral density by multiplying (3.14) by the 

detector responsivity (0.58 A/W) to obtain the corresponding photocurrent noise, 

then by the transimpedance (107 Ω) to obtain the corresponding voltage noise out 

of the photocurrent amplifier, and finally by the displacement sensitivity (typically 

12 nm/V). The result is Hzfm6521
hx, =νS . 
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The displacement sensitivity, the proportionality constant relating 

displacement to observed voltage at the output of the photocurrent amplifier, is 

used here because it is readily measured in the following way. The oscillator is 

driven to an amplitude that is large enough to observe the “folding over” of the 

voltage-to-distance relation (see Figure 3.20). These nanometer-scale oscillations 

are well within the expected range of linearity of the silicon oscillator, and so the 

nonlinearity of the observed voltage is due entirely to “interferometer action.” The 

difference between the extrema of the oscilloscope trace corresponds to the voltage 

difference associated with a displacement of λ/4. Since the slope of the voltage-to-

displacement sine curve is greater than the ratio of voltage span to displacement by 

π/2 in the linear region (as shown in Figure 3.20), the displacement sensitivity is 

 
minmax

42
VV −

λ
×

π
. (3.16) 

Figure 3.20. Interferometer displacement calibration. a) Voltage at the output of the 
transimpedance amplifier observed on an oscilloscope registers the voltage span associated 
with the interferometer's trough-to-crest displacement change. b) The laser intensity goes 
from trough to crest when the fiber-to-oscillator gap increases by  because the 
wave must traverse the gap twice before it re-enters the fiber and mixes with the reference 
wave. The displacement sensitivity may thus be calculated using equation (3.16).
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3.7.2 Photon pressure fluctuations 

The second type of noise due to the Poisson statistics of the laser radiation 

is the result of fluctuations in radiation pressure. These can be estimated with a 

simple model that assumes that a single photon impact on the oscillator transfers 

chν2  to the oscillator’s momentum. Again, if in a time ∆t there are ν∆= htPN  

photon impacts, then the rms fluctuation in the transferred momentum is  

 2
rms 42 ctPhN

c
hp ∆ν=ν= . (3.17) 

If this momentum fluctuation takes place in a time ∆t, then it may be viewed as a 

random force tp ∆rms , which has the force spectral density 

 221
F, 8 cPhS hk ν=  (3.18) 

and, in analogy with Equation (3.12), the displacement-noise spectral density 

 221
x, 81 cPh

m
S hk νωγ= . (3.19) 

At the BOOMERANG prototype size scale, this contribution ( Hzfm105.4 7−× ) is 

totally negligible. While it will become more important in force-detected NMR at 

reduced size scales14, it is not a limiting factor in any proposed designs. 

3.7.3 Photocurrent shot noise 

Photocurrent shot noise is due to the Poisson statistics of discrete charge 

carriers in the electronic current through a diode. As this noise source is directly 
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correlated with the statistics of photon arrivals, we have already accounted for it in 

analyzing the photon shot noise. 

3.7.4 Johnson noise in the transimpedance 

The photocurrent amplifier uses a resistor at the input to convert the current 

to a voltage. The Johnson noise in this resistance forms the bulk of the noise added 

by this amplifier. The noise specification in the amplifier’s documentation15 is 

consistent with this fundamental physical argument, and the amplifier was found to 

behave according to specification. The square root of the voltage-noise spectral 

density due to Johnson noise in a resistance R is given by 

 TRkS B
21 4=Ω . (3.20) 

For a transimpedance of 107 Ω, this is HznV40021 =ΩS . This can be converted to 

the square root of a displacement-noise spectral density by multiplication by the 

displacement sensitivity. The result is Hzfm8.421
x, =ΩS . 

3.7.5 Electronic noise in the preamp 

The Stanford Research preamp documentation16 specifies the voltage noise 

of the preamp referred to the input as 

 HznV5.121
E =S . (3.21) 

Multiplying by the displacement sensitivity, we find Hzfm018.021
Ex, =S , 

which is negligible compared to Brownian motion. 
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3.7.6 Digitization noise 

When the analog signal is digitized, the discretization of the signal introduces 

noise into each sample of the recorded data. This is shown in Figure 3.21. The 

added noise in a given voltage 

sample will be distributed uniformly 

over the range +ε/2 to –ε/2, where 

ε is the step size of the digitization 

process. This corresponds to an 

rms average fluctuation of 12ε  in 

the bandwidth tf ∆=∆ 21 , where 

∆t is the sampling time. The 

relevant voltage-noise spectral density (at the digitizer) is 

 62
12

21
D ttS ∆ε=∆ε= . (3.22) 

For the prototype, a 16-bit digitizer was used, with full range –1.25V to 

+1.25V, corresponding to ε=38.1µV. For samples acquired every 500µs, 

HznV34821
D =S at the digitizer. To convert this to a corresponding displacement 

noise spectral density, this must be divided by the gain of the preamp (typically 50) 

and multiplied by the displacement sensitivity, yielding Hzfm084.021
Dx, =S . This 

estimate is for an otherwise noiseless digitizer. In the prototype experiments, it was 

observed that even with the inputs of the digitizer grounded, a frequency-

independent electrical noise corresponding to ~3 bits peak-to-peak (rms amplitude 

Figure 3.21. Digitization noise. In a given time 
slice, the requirement that the output of the 
digitizer be only one of a set of fixed values 
adds uncertainty to the measured value. This 
uncertainty is uniformly 
distributed over a range equal to the step size 
of the digitization process.

centered at zero and 
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2223ε ) is recorded in the data, probably caused by electrical noise inside the 

computer. Even with this factor, the digitizer added negligible noise compared to 

Brownian motion. 



  70 

References 

1 G. W. Castellan, Physical Chemistry, 3rd ed. (Addison-Wesley, Reading, MA, 1983). 

2 L. A. Madsen, Ph. D. Thesis, California Institute of Technology, 2002. 

3 Magnetic Alloys Catalog (Carpenter Technology Corp., 1995). 

4 G. M. Leskowitz, L. A. Madsen, and D. P. Weitekamp, Sol. St. Nucl. Magn. Reson. 
11, 73 (1998). 

5 W. D. Pilkey, Formulas for Stress, Strain, and Structural Matrices (John Wiley & 
Sons, Inc., New York, 1994). 

6 D. Rugar, H. J. Mamin, and P. Guethner, Appl. Phys. Lett. 55, 2588 (1989). 

7 C. W. McCombie, Rep. Prog. Phys. 16, 266 (1953). 

8 T. George, et al., in IEEE Aerospace Conference (Big Sky, Montana, 2001). 

9 C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer-Verlag, Berlin, 
1990). 

10 C. J. Hardy, W. A. Edelstein, and D. Vatis, J. Magn. Reson. 66, 470 (1986). 

11 C. J. Hardy and W. A. Edelstein, J. Magn. Reson. 69, 196 (1986). 

12 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 

13 C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the 
Natural Sciences, 2nd ed. (Springer, Berlin, 1985). 

14 J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. 
Yannoni, Rev. Mod. Phys. 67, 249 (1995). 

15  Model 181 Current Sensitive Preamplifier manual (Princeton Applied Research Corp., 
1978). 

16  Model SR530 Lock-In Amplifier manual (Stanford Research Systems, 1989). 



  71 

 

Chapter 4: Spectroscopy 

4.0 CW Spectroscopy 

The BOOMERANG apparatus described in the last chapter measures a 

mechanical transient proportional to the sample’s longitudinal magnetization. The 

oscillator-driving protocol used during this detection period relies on a nonlinear 

sweep in the frequency of an applied rf field. As we saw in Figure 3.16, the sweep 

has a center-band region during which the frequency change is slow. If this center-

band region is near the Larmor frequency of spins in the sample, then the spins are 

inverted, and forces on the oscillator drive it into resonance. If the slow part of the 

sweep is far off the spin resonance then the driving field either never sweeps 

through resonance or it sweeps so quickly as to violate the adiabatic condition 

(Equation 3.6). In this case the applied field is ineffective in inverting the spins, and 

so no oscillator driving is observed. This suggests a simple procedure for measuring 

the NMR spectrum: cyclic adiabatic passage is applied to the spins, and the 

amplitude of the oscillator’s trajectory is measured as a function of the frequency of 

the center-band, which is stepped on successive iterations of the experiment. 

Figure 4.1 shows a graph of oscillator amplitude integrated over the 

detection time versus the center-band frequency of the applied field. These 

amplitudes clearly map out the frequency spectrum of the spin resonance. This 
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method can be viewed as a pointwise 

version of continuous-wave (CW) 

NMR spectroscopy. The spectrum 

shown in Figure 4.1 is that of 

protons in liquid water at 0.638 T. 

The FWHM line width in this 

particular spectrum is 70 kHz, which 

is greater than the inhomogeneous 

linewidth of the liquid sample. This broadening is observed when the rf is strong 

enough to cyclically invert the spins even when the slow part of the sweep is 

somewhat off resonance. Because of this broadening effect, the cw spectrum is 

used only as a coarse measurement of the Larmor frequency. 

4.1 Inversion-Recovery 

Once the Larmor frequency is known, we can reproducibly measure the 

longitudinal magnetization of the sample by recording a transient and then fitting to 

find a signed amplitude. If the driving period follows a period during which this 

magnetization is modulated in some way, then one can measure relevant 

characteristics of the spin system. The simplest measurement that can be made in 

this way is of the longitudinal relaxation time, T1. This is done using an inversion-

recovery method. 

Figure 4.1.  H CW-NMR spectrum of liquid 
water.
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Figure 4.2 shows a graph of integrated amplitude vs. the length of a time 

interval that follows a single adiabatic 

inversion and precedes detection. This 

interval t1 is varied between iterations 

of the experiment, and on a given 

iteration the magnetization relaxes 

back toward equilibrium during t1. The 

magnetization that survives this re-

laxation varies according to an 

exponential function. A fit to the 

graph yields the longitudinal relaxation 

time T1=1.67 s for this sample, 

which is 1,1,1,3,3,3-hexafluoro-2-

propanol ((CF3)2CHOH) at room 

temperature. 

4.2 Time Sequencing – FT-NMR with Half-Passages 

This separation of a detection period from a time t1 during which information 

about the spin system is encoded for measurement during detection is a general 

method with wide applicability. The detected observable, Mz, is often (except in 

susceptometry1 and in inversion-recovery) not the one of interest. However, if one 

can apply pulses with well-defined flip angles to the sample, then it is a simple 

matter to use the detection of Mz to measure transverse magnetization. This is done 

Figure 4.2. Measurement of  F  by 
inversion-recovery. a) Pulse sequence. A 
single adiabatic inversion pulse is followed 
by an interval of variable length  . Then the 
oscillator's trajectory is measured during 
cyclic inversion. b) Integrated amplitude of 
the trajectory as a function of  . The sample 
is hexafluoroisopropanol. A fit to the expo-
nential yields  =1.67  s.
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in pointwise fashion with time sequencing, which is also useful in optically2 and 

inductively3 detected NMR. 

Figure 4.3 shows the most general scheme for encoding information about 

the magnetization into the oscillator’s trajectory. The principle is to use the 

evolution period as a way to systematically create nonequilibrium longitudinal 

magnetization for measurement 

during detection. We have already 

seen one example of the longitudinal 

case (Figure 4.3 b), where the 

nonequilibrium magnetization is the 

result of incomplete longitudinal 

relaxation. If the detection period 

follows a single “store pulse” (with 

flip angle π/2), then the detection 

period instead measures a single 

component of transverse mag-

netization. 

This is illustrated by a simple pulse sequence that can be used to measure 

FT-NMR, which is shown in Figure 4.3 c. The initial π/2 pulse creates transverse 

magnetization from equilibrium magnetization. This transverse magnetization 

precesses in the static field for a measured time t1. During this period, the spins 

evolve under the influence of the total spin Hamiltonian, whose dominant term is 

due to the static field, but which also includes chemical shift, field inhomogeneity, 

Figure 4.3. Time sequencing for pointwise 
acquisition of information from spin sys-
tems. The detection period is preceded by 
an evolution period during which 
information about the sample is encoded 
into non-equilibrium magnetization. 
Aspects of the evolution period are varied 
between iterations of the experiment.
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and spin-spin couplings. After t1 has elapsed, a second π/2 pulse is applied. This 

pulse selects one component of the transverse magnetization that survives the 

evolution interval for measurement during the detection period. The integrated 

amplitude of the detected transient is recorded as a function of t1, and the length of 

this interval is varied on successive iterations of the experiment. The resulting time-

domain signal is subject to Fourier transformation, yielding the spectrum. 

This protocol relies on pulses with well-defined flip angles. Such flip angles 

can be measured with a nutation pulse sequence as described in section 4.3. This 

nutation sequence in turn requires that an accurate Larmor frequency has already 

been established, so that the frequency offset used is small compared to the Rabi 

frequency. 

A simple way to circumvent this difficulty is to perform FT-NMR with the 

pulse sequence of Figure 4.3 b, but with the π/2 pulses replaced by adiabatic half-

passages. If an adiabatic sweep is terminated in the center of the NMR line (when 

0=∆ , see Figure 3.15) the sample’s magnetization is left in the transverse plane 

with a well-defined phase. The rf is turned off and then, after t1 has elapsed, it is 

turned back on again with the same frequency and phase. If the adiabatic sweep is 

resumed to completion, then this procedure selects one component of the 

transverse magnetization that survives evolution during t1 for subsequent detection. 

The size of the signal is relatively insensitive to the exact Larmor frequency (a 

previous measurement with CW spectroscopy suffices), and one requires only a 

very rough estimate of the Rabi frequency for use in selecting tangent sweep 

parameters. 
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Figure 4.4 shows an FT-NMR spectrum of liquid water obtained in this way. 

The observed spectrum is not subject to power-broadening as it is in CW 

spectroscopy, and so the NMR line is substantially narrower. The resulting better 

estimate of the Larmor frequency can be used in nutation and subsequently in 

multiple-pulse experiments. The line width is dominated by residual inhomogeneity 

in the static field. It is to be emphasized that this left-over inhomogeneity (which is 

about three orders of magnitude less than it would be were the annular magnets 

removed) is well within the range of compensation by mechanical or electrical 

shimming apparatus, which have not been included in the prototype. 
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Figure 4.4. FT-NMR with adiabatic half-passages. a) Pulse sequence. An adiabatic half-
passage creates transverse magnetization, which evolves during  . A store pulse selects 
one component of this magnetization, which is used to drive the oscillator during cyclic 
inversion. b) Integrated amplitude of the oscillator's trajectory as a function of . This time-
domain signal can be Fourier-transformed to yield a spectrum. c) The NMR spectrum. Data 
in (b) were fit to an exponentially decaying cosine, and this fitting function was used to 
extend the time-domain data (by a factor of four) in lieu of apodization in order to suppress 
noise and artifacts of the Fourier transform.  
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This method of encoding evolution of transverse magnetization (the single-

quantum spectrum) into pointwise evolution of Mz bears resemblance to how 

multiple-quantum coherences are encoded pointwise into observable transverse 

magnetization in two-dimensional NMR spectroscopies4. In principle, any NMR pulse 

sequence can be inserted into the evolution interval in BOOMERANG. The 

separation of encoding and detection into distinct time intervals in BOOMERANG 

allows the whole spectrum to be obtained even though the spectral bandwidth is 

orders of magnitude larger than the oscillator bandwidth. 

4.3 Nutation – t1 and t2 Noise 

Figure 4.5 a shows a pulse sequence that can be used to measure the Rabi 

frequency of spins in the applied rf field (by nutation of the magnetization). The 

Rabi frequency is obtained by fitting the data in Figure 4.5 b to a decaying 

exponential or by Fourier transformation. The signal-to-noise in this experiment is 

sufficient to obtain a Rabi frequency to within about 5% (standard error). Figure 4.5 

c shows residuals from the fit. The rms deviation in each time-domain point is about 

6.9 pm, which is substantially larger than the ~0.5 pm rms error one would predict 

from the observed statistics of the t2 transients given the ~0.5-Hz bandwidth of 

the measurement. The t1 noise is therefore about 15 times larger than the t2 noise. 

A similar analysis can be performed on data from the CW-NMR experiment shown in 

Figure 4.1. In that case, phases are not used at all in the fits, and the measured rms 

t1 noise in each point’s absolute value is about 0.3 pm. This shows that instabilities 

in the phase of the signal are at present our main noise source. Part of this phase 

instability comes from changes in the oscillator frequency during the driving interval, 
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as we observed in Chapter 3. But it was also observed that the software triggering 

of the data acquisition in the prototype was subject to considerable jitter. Indeed, 

removal of the single point in the nutation time-domain data at s 601 µ=t  reduces 

the rms errors by almost a factor of two. A look at the phase reference channel for 

this point shows substantial shift relative to other points. 

4.4 Spin Echo 

After relatively precise Larmor and Rabi frequencies are obtained from FT-

NMR and nutation, in principle any multiple-pulse NMR experiment is compatible  
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Figure 4.5. Nutation of proton magnetization in water. a) Pulse sequence. A single rf pulse of 
varied length is applied, followed by cyclic inversion and detection of the oscillator's 
trajectory. b) Integrated amplitude of the oscillator's trajectory as a function of . A fit to an 
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with BOOMERANG. Figure 4.6 shows an example, a spin-echo sequence applied to 

19F in hexafluoroisopropanol using a train of composite π pulses. The decay time of  

the echo transient (0.96 s) is comparable to but somewhat smaller than the T1 

observed in the same compound by inversion-recovery (1.67 s). Given that the 

intrinsic rotating-frame relaxation time (T1ρ) of the sample is likely near T1 for such a 

small molecule, there are at least three factors that might contribute to this 

increased decay time. Some dephasing is probably taking place due to imperfections 

in the pulses. Such dephasing was not refocused because limitations in the pulse-

programming hardware prevented phase-cycling the echo sequence. Another 
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Figure 4.6.  F spin echo in hexafluoroisopropanol. a) Pulse sequence. A train of 
compensated  pulses is applied between a preparatory /2 pulse and a "store pulse."   
b) Integrated amplitude of the oscillator's trajectory as a function of . A fit to an 
exponentially decaying cosine is used, and the decay time is 0.96  s. This fitting 
function is used to extend the time-domain data (by a factor of eight) in lieu of 
apodization in order to suppress artifacts of the Fourier transform. The resulting Fourier 
spectrum (c) exhibits a FWHM linewidth of 0.4 Hz.
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possibility is dephasing due to diffusion in the residual gradient. Finally, the 

apparent signal strength itself may also be decreasing due to changes in the 

oscillator or in the Larmor frequency due to a slight drift in the sensor’s 

magnetization. 

4.5 Heteronuclear J Spectroscopy 

Figure 4.7 shows an experiment with pulses on 2 nuclei (1H and 19F) in 

fluoroacetonitrile (FCH2CN). The composite π pulses that were used in the echo 

experiment of Figure 4.6 were applied to both 1H and 19F after a preparatory π/2 

pulse on 1H. The time delay is incremented iteration to iteration in the experiment as 

always. When composite π pulses 

are applied to both spins, chemical 

shift and field inhomogeneity terms 

in the Hamiltonian are refocused, 

but the heteronuclear scalar 

coupling is not. The scalar coupling 

is observed in the spectrum as a 

splitting. 
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Chapter 5: BOOMERANG at the Micron 

Scale and Below 

5.0 Introduction 

The availability of a general NMR method whose sensitivity persists down to 

size scales that are fundamentally inaccessible to inductive detection motivates 

speculation regarding applications. The observation of NMR from nanoliter samples 

with inductive detection in microcoils with moderately concentrated samples1,2 is 

near the lower size limit where inductive detection is predicted to be competitive 

with BOOMERANG for proton-bearing samples at conveniently available static field 

strengths. As we noted in Chapter 2, this crossover limit is at larger size scales for 

almost all other nuclei and for the lower (~2 T) field strengths that are practical 

with static fields generated by ferromagnets. Thus, BOOMERANG is being 

developed3,4 as the NMR method of choice for low-power, low-cost, portable 

devices for NMR in remote environments such as in space exploration. Portable 

NMR here on Earth is also of interest for convenience or for high-throughput tasks, 

and so inexpensive 2 T spectrometer units for laboratory glove boxes or dip-probes 

for use in industrial process streams are candidate applications for 

commercialization of BOOMERANG technology. 
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Just as interesting is NMR at the higher fields available in commercial 

superconducting magnets. There are many samples in the ~0.1-100 µm size range 

that, according to estimates in Chapter 2, would exhibit satisfactory signal-to-noise 

with acceptable signal averaging. The main motivation here is in cases where 

sample size is limited intrinsically, such as in forensics, or when it is desirable to 

examine systems one at a time rather than in ensemble average. For example, 

BOOMERANG might allow spectroscopy and imaging of individual cells or 

membranes in situ or rotation studies on individual protein or zeolite crystallites that 

may be too small for use in crystallography. Another area of application at 

somewhat smaller scales is quantum dots. 

The ability to measure NMR on a sample containing 109 –1012 spins would 

also enable NMR spectra of molecular monolayers and other surface species. There 

are special geometric considerations to be taken into account in surface studies and 

some of these are treated in section 5.3. An ultimate goal in designs for 

BOOMERANG at the micron scale is a microfabricated array of BOOMERANG 

spectrometers, which would allow massively parallel NMR analysis of sample 

libraries used in combinatorial-chemistry approaches to all kinds of problems in 

materials science, catalysis, and biochemistry. 

Clearly there is sufficient motivation for NMR devices at length scales where 

the sensitivity of BOOMERANG is adequate but that of inductive methods is not. 

We have predicted on grounds of sensitivity and resolution that BOOMERANG 

methods show great promise as the means of extending NMR into the realm of 

smaller samples in a general way. However, in our analysis of sensitivity in both 
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force and induction methods, we have considered only instrument noise due to 

thermal processes in the detector. We now consider a new noise source that comes 

from the sample itself: spin noise. 

Spin noise is uncertainty in the measured values of spectral parameters due 

to fluctuations in the sample’s initial magnetization. It is present, independent of 

detection method, whenever measurements must be repeated on a standard initial 

state, such as in signal averaging or in the time-sequencing methods described in 

Chapter 4. In the context of proposals for very high sensitivity MRFM of 

biomolecules5, (where, for more than one target spin, it may turn out to be a show-

stopper), it has been largely ignored. 

5.1 Spin Noise 

The problem is best illustrated by example. Suppose we have a 0.8 ml room-

temperature liquid sample 0.002 M in an organic compound and we wish to 

measure its single-quantum 13C NMR spectrum at 125 MHz. If we have a single 

carbon site of interest per molecule, this sample contains 1018 of the target spins. 

The sample’s magnetization can be calculated with the Curie law, which may be 

written 

 
Tk
BNM
B22

γγ=  (5.1) 

at high temperature T for spin-½ nuclei with magnetogyric ratio γ at spin density N  

in a static field B. This formula contains the polarization, 
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Tk
B

Tk
Bp

BB 22
tanh γ≈





 γ= , (5.2) 

which is 10-5 for the present case. Since the sample contains 1018 spins, and the 

equilibrium polarization is 10-5, the net magnetization available to drive the detection 

apparatus is that of only 1013 spins. 

The total magnetization is the sum of the magnetic moments of N spins per 

unit volume, each of which has a roughly but not exactly equal probability of 

contributing +1 or –1 nuclear moments to the magnetization when the polarization 

is much less than unity (we shall make this more precise later, but for now, the 

error statistics are nearly those of flipping a very slightly weighted coin). The 

uncertainty in the initial magnetization is proportional to N . For the 1018 spin 

sample, this fluctuation magnetization, which manifests as shot-to-shot variations in 

the initial magnetization, is that of 109 spins, only 0.01% of the signal. The 

distribution of values of initial magnetization is shown schematically in Figure 5.1 a. 

The situation is entirely different for the case of 105 spins (e.g., a moderately 

concentrated species coating a single 1 µm diameter cell). Here, the average signal 

magnetization at room temperature in a 125 MHz field corresponds to that of only 

one spin on average, while the shot-to-shot fluctuations in magnetization are 

proportional to 300≈N  spins. The distribution for this case is shown in Figure 

5.1 b. In a time-sequenced experiment, these fluctuations in initial magnetization 

manifest as so-called t1 noise, which in this case is 300 times larger than the signal 

per root shot, even in the case of no instrument noise. 
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Figure 5.1. (a) Probability distribution for the net magnetization of 10   spins at thermal 
equilibrium with polarization 10  . The distribution is very sharply peaked, as the polarization 
 is significantly larger than . (b) Probability distribution for the net magnetization of 
=10  spins. Here the variance of the (roughly binomial) distribution is substantially larger 

than the mean. Note also that values of opposite sign from the mean are about as probable as 
values having the same sign.
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The solution to the problem is in recognizing that in general we are interested 

in parameters in a spin Hamiltonian and not particularly in the magnetization per se. 

In fact, a look at the vast majority of published NMR spectra shows no units on the 

“y-axis” (or other ordinate axis if we are looking at multidimensional spectra). What 

we care about is a correlation function or its spectrum: the Bohr frequencies, 

relaxation times, coupling constants, and relative amplitudes in spectroscopy, or 

some kind of contrast observable in imaging. 

5.2 Correlated Observations Narrow Quantum Uncertainty, 

Enhancing Spectroscopic Transients (CONQUEST) 

Figure 5.2 shows the time sequence used in Chapter 4 to encode the single-

quantum FT-NMR spectrum, here modified to include a second detection period (an 
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oscillator-driving interval) that precedes the evolution period. Consider the time-

domain “second-order” signal 

 ( ) ( )1zz,012 tMMtS = , (5.3) 

which is formed on a given iteration by multiplying the result of the first 

measurement by the result of the second. What are the statistics of this signal 

compared to those of the ordinary (first-order) pointwise signal 

 ( ) ( )1z11 tMtS = ? (5.4) 

5.2.1 Mean and variance of the signals 

We shall consider the simplest case of a sample containing N isochronous 

spins ½ in a device with negligible instrument noise so that we may reveal the 

essential features of the spin noise and the method. We shall also drop the units 

from Equations (5.3) and (5.4), calculating instead with the dimensionless angular 

momentum expressions 

drive oscillator
with M

π/2 π/2evolve

t1

drive oscillator
with M0

Figure 5.2. Time sequence for the CONQUEST method of encoding spectra pointwise. As 
in the first-order method (figure 4.3), two /2 pulses are separated by a period , which is 
incremented on successive shots of the experiment. The magnetization that survives the 
evolution period is measured by cyclically inverting it to drive the oscillator. In CONQUEST, 
a second period of driving is included before the first pulse to measure the fluctuation 
magnetization at the start of the encoding period. The signal for a given value of  is defined 
as the product   (   ).
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 ( ) ( )1z11 tItS =       and      ( ) ( )1zz,012 tIItS = . (5.5a,b) 

With measurements of longitudinal magnetization that are perfectly devoid of 

instrument noise, the results are always eigenvalues of the operator Iz. The 

probability of measuring the value m on the first measurement is 

 ( ) { } { }00 ρ=ρ= mmm PTrPPTrmW . (5.6) 

Here, ρ0 is the thermal-equilibrium density operator and Pm is a projection 

operator associated with the eigenspace belonging to the eigenvalue m. Similarly, 

the joint probability of measuring the value m on the first measurement and k on the 

second measurement is 

 ( ) { } { }0
††

0, ρ=ρ= mkkmmk UPPUTrPUPUPPTrkmW , (5.7) 

where U is a time-evolution operator associated with the interval between the two 

measurements. The equilibrium density operator for this problem is 

 TkH Be
Q

−=ρ 1
0 , (5.8) 

where  

 zIH 0ω−=        and       { }TkH BeTrQ −≡  (5.9) 

denote the Hamiltonian and the partition function. 

In writing the last equalities in Equations (5.6) and (5.7), we have made use 

of the invariance of the trace to cyclic permutation of operators in a product, the 

idempotent property of projection operators ( mm PP =2 ), and the fact that the 



  89 

equilibrium density operator commutes with projections onto eigenspaces belonging 

to eigenvalues of the Hamiltonian, which is proportional to Iz. 

Equation (5.7) may be used to calculate expectation values and variances for 

the first- and second-order signals ( )11 tS  and ( )12 tS . For example, the expectation 

value of ( )12 tS  is found by multiplying the probability distribution ( )kmW ,  by m and 

k and then summing over all values of m and k: 

 ( ) ( ) { }∑∑ ρ==
km

mk

km

UmPkPUTrkmWkmtS
,

0
†

,

12 , . (5.10) 

We then recognize that mm PImP z=  and ∑ =
m

mP 1  (and similarly for k) and write 

 ( ) { } ( ){ } ( ) z1z0z1z0zz
†

12 ItIItITrUIIUTrtS =ρ=ρ= , (5.11) 

where 

 ( ) ( ) ( )1x1zz
†

1z sincos tItIUIUtI ω−ω==  (5.12) 

is the Heisenberg-representation operator associated with the second measurement 

of Iz and ω is the Larmor frequency. We procede similarly for the expectation value 

of the first-order signal ( )11 tS  and for the variances ( ) 2
1

2
11

2
1 SSt −≡σ  and 

( ) 2
2

2
21

2
2 SSt −≡σ  and find 

 ( ) 1z11 cos tItS ω= , (5.13) 

 ( ) 1
2
z12 cos tItS ω= , (5.14) 

 ( ) ( ) 1
22

x1
22

z
2
z1

2
1 sincos tItIIt ω+ω−=σ ,  (5.15) 
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 and ( ) 1
22

z
2
x1

222
z

4
z1

2
2 sincos tIItIIt ω+ω


 −=σ  (5.16) 

with the help of Equation (5.12). The expectation values on the right-hand sides of 

Equations (5.13–16) are with respect to the initial, thermal state ρ0. Terms 

proportional to xI , xzzx IIII + , and ( ) 2
zxzzx IIIII +  in Equations (5.13–16) are left 

out because they are easily shown to vanish. 

Expectation values of powers of Iz are calculated straightforwardly from a 

moment generating function, 

 ( ) zisIesG = . (5.17) 

Differentiation of G(s) with respect to the argument s yields the expectation values: 

 ( )
0=

−=
s

n

nnn
z ds

GdiI . (5.18) 

G(s) is evaluated in terms of the number of spins N and the polarization p in 

Appendix D. The result is 

 ( ) ( )NsipssG
2

sin
2

cos += . (5.19) 

In accordance with Equation 

(5.18), the expectation values of the 

necessary powers of Iz are listed in 

Table 5.1. Also necessary are the 

expectation values 2
xI  and 2

z
2
x II , 

Table 5.1. Expectation values of powers of Iz. 

m m
zI  

1 Np
2
1  

2 ( )( )211
4
1 pNN −+  

4 ( ) ( )( )
( )( )( ) 





−−−+

−−+−
4123

2143223
16
1

pNNN

pNNNN  
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which can be calculated from ( ) zisIeIsG 2
x≡′ . We recognize that in the expansion 

of the operator 
2

x,
2
x 


= ∑i

iII , cross-terms like z
x,x,

isI
jkj eII ≠  are traceless, and so 

we find that ( ) ( )sNGsG
4
1=′  and that 

 NI
4
12

x =       and      2
z

2
z

2
x 4

1 INII = . (5.20a,b) 

Results from Equations (5.13–20) are combined to compute the expectation 

values and variances of the first- and second-order signals, which are shown in 

Table 5.2. 

 

Table 5.2.  Expectation values and variances of the first- and second-order signals.  
a) Exact expressions. b) Expressions to leading order in the polarization when 

1<<Np . 

a) Expectation value Variance 
( )11 tS  

1cos
2
1 tNp ω  ( )1

22 cos1
4
1 tpN ω−  

( )12 tS  ( )( ) 1
2 cos11

4
1 tpNN ω−+  ( )

( ) ( )

( )( ) 
























ω−−−

−ω−++

ω−+

1
cos164

1
1

cos83

1
cos2

24

22

2

16
1

tpNN

pNtNN

tNN

N  

b) Expectation value Variance 
( )11 tS  

1cos
2
1 tNp ω  N

4
1  

( )12 tS  
1cos

4
1 tN ω  ( )( )1

2cos2
16
1 tNNN ω−+  

5.2.2 Remarks 

The signal-to-spin-noise ratio SNRspin may be defined as the ratio of the 

expectation value to the square root of the variance. This quantity falls below unity 

for the 1cos 1 =ωt  values of the first-order signal when 1<Np . Both the signal 
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and SNRspin are proportional to the polarization, and in the limit of zero polarization 

there is no first-order signal that can be built up pointwise. 

The signal-to-spin-noise ratio for the second-order signal is entirely different. 

In the limit of vanishing polarization, SNRspin is independent of the polarization, and 

it is approximately unity for N>1. A look at expectation values shows that the 

second-order signal has the same Fourier spectrum as the first-order signal. 

However, individual shots of the experiment for a given t1 value can be co-added in 

the second-order signal without the individual contributors cancelling out on average 

as they do in the first-order signal when p=0. The second order method can be 

used to measure a spectrum even with no spin order. 

It is interesting to note that one can look at the “before” and “after” time 

series ( )10z, tM  and ( )1z tM  individually, but, in the limit p=0, they separately 

contain no information whatsoever about the spin system. The information in the 

spectrum is entirely contained in correlations. Under the influence of the pulse 

sequence and detection protocol, the spin populations determining measurements of 

Iz exhibit second-order coherence. 

The “ring-down” aspect of the oscillator’s motion depicted in Figure 5.2 

during both the “before” and “after” detection periods may be somewhat 

misleading. In Figure 4.3, when a large mean magnetization is used to drive the 

oscillator on each shot, relaxation processes during the driving interval make the 

magnetization relax to near zero on average, and this causes a decrease in the 

oscillator amplitude with time t2 during detection as shown. When the mean 
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magnetization is essentially zero to begin with compared to fluctuations, the 

magnetization used to drive the oscillator can be very far from a value that is 

indicative of the mean, and in fact it can have the opposite sign. Also, the detector 

oscillator will have some nonzero thermal amplitude and random phase at the start 

of a given driving interval, and memory of this information decays in the oscillator 

on the timescale of its ring-down time τ. There may be no net decrease in the 

oscillator’s amplitude during driving on an individual shot “to zero” per se. The 

applied rf during the driving interval merely brings the state of the oscillator (its 

amplitude and phase) into correlation with the magnetization at a given time, with 

such time determined by the weighting of the oscillator’s measured trajectory. By 

properly weighting the resulting transient, an estimate of the state of the 

magnetization at a preferred time is obtained. It is this weighting that is meant to be 

suggested by the trajectories in both the before and after detection periods, and not 

a decay to zero amplitude of the oscillator. The possible effective length of the 

weighting function will be on the order of a few times T1a. 

A better way to view the detection period is that the applied inversion 

sequence brings the spin system into contact with the oscillator by providing a 

common spectral density at the oscillator frequency. Another interesting feature of 

the second-order method is that there is no need to restore an equilibrium 

magnetization. The SNR is independent of polarization, so the experiment’s 

repetition rate is not limited by waiting for spin order. We have called this method 

of encoding spectra into the second-order signal Correlated Observations Narrow 

Quantum Uncertainty, Enhancing Spectroscopic Transients (CONQUEST)6-8. 
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5.3 BOOMERANG for Surface-Bound Samples 

In Chapter 2 and in Appendix B, the expression for the force on a detector 

dipole (Equation (2.1)) exerted by a unit dipole of sample magnetization was used to 

find the sensor magnet shape that optimized the force signal-to-noise ratio for a 

sample contained in a spherical volume, and it was found that a right circular 

cylinder was nearly ideal and in fact 

the best shape given requirements of 

ease of manufacture and homogeneity. 

Consider now a circular “2-D” sample 

with given radius rs, which could be 

composed of sites at an interface or a 

molecular monolayer deposited on a 

crystal surface. We can use Equation 

(2.1) to construct a force map in the 

vicinity of this flat sample to guide our 

design of a suitable sensor for this 

sample’s magnetization. Figure 5.3 shows the force map. The picture suggests we 

use a circular cylinder with its radius approximately that of the sample. 

Substitution of differential dipole elements into Equation (2.1) and integration 

over both a flat sample of radius rs and surface magnetization density sM  and a 

cylindrical detector magnet of radius a, height h, magnetization Md, and distance 

from the sample Rmax yields the force  

Figure 5.3. Force map over a flat circular 
sample. The sample is in the transverse 
plane perpendicular to the axis at z=0, 
and both the sample and the detector 
moments are aligned along the z-axis. Each 
contour represents a factor of two increase 
in the magnitude of the vertical force on a 
detector dipole at that location. The force is 
directed oppositely in the region colored 
black. Numerical labels on the axes 
represent distance in units of the sample's 
radius.
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and where K and E are the complete elliptic integrals of the first and second kinds. 

When combined with the relevant expression for the force noise expected for a 

detector magnet attached to a massless suspension, the resulting signal-to-

(Brownian)-noise ratio diverges as the Rmax parameter goes to zero. This limit is 

unrealistic anyway, as space to accommodate NMR coil windings and to provide 

adequate field homogeneity is required, as is relaxation of the zero-inert-mass 

approximation. We thus optimize the detector magnet’s dimensions for a specific 

case only. 

Suppose the sample is a 100 µm diameter circle with a surface density of 

one 13C spin per square nanometer, and suppose we set Rmax equal to 10 µm. This 

might be the case were we to investigate chemical shift tensors at 125 MHz in an 

oriented monolayer of organic molecules deposited on an optical fiber, perhaps to 

see how the monolayer is modified by a covalently bound fluorophore in the 

fabrication of an immunosensor. In this case the optimal radius and height of the 

detector magnet are found to be 50.0 µm and 22.4 µm as shown in Figure 5.4. In 

that case the single-shot SNR is predicted to be about unity given an oscillator with 

a one-second ring-down time and T1a=1 s. In order to increase sensitivity, we have 

assumed that the polarization has been enhanced to 1% using optically polarized 
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3He or 129Xe. Polarization of solvents 

and of dissolved and surface species 

with noble gases are the subject of 

much recent interest9-12, and pola-

rization enhancements of 1000 have 

been reported at low fields in favorable 

cases. Whether enhancements to a 

few percent polarization can be made 

generally on surfaces is not clear, but surface species are likely to be particularly 

amenable to large and rapid enhancement. 

The selection of a sample region in surface studies poses an interesting 

problem. One solution is to deposit the samples into the desired circular shape using 

a mask or ink-jet printer method. This would be convenient, especially for rapidly 

depositing many samples, but then the spectra might suffer from “edge effects” 

under some circumstances, where the chemical conditions at the edges of the 

sample disk are not indicative of the bulk of a more homogeneous surface. In that 

case it would be desirable to select a sample magnetically from a larger, more 

uniform film. Figure 5.5 shows how this might be accomplished with dc field pulses 

from a coil included in the apparatus for this purpose. The activated region could 

then be shuttled into a highly homogeneous field for evolution and then 

subsequently under a sensor magnet for detection. 

sensor magnet

sensor magnet
complement

annuli

substrate
sample

suspension

Rmax

Figure 5.4. BOOMERANG for surface 
samples. The sensor magnet is drawn with 
dimensions that optimize sensitivity for the 
given sample radius and       .Rmax  
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a) b)
1)

2)

3)

4)

Figure 5.5. Magnetic selection of sample region. a) Substrate with sample film is slid into 
place over a coil that can produce a highly localized switched dc offset in the static field.     
b) Sample selection process. (1) Initial state. (2) /2 pulse is applied to entire sample. (3) 
localized field (" -pulse") is switched on long enough to advance the phase of the spins in the 
circular target area by  relative to surrounding spins. (4) /2 pulse is applied to entire sample 
to create localized longitudinal magnetization for use in BOOMERANG.

π

π π
z

" -pulse" coilz

target area

substrate

sample film

pulsed dc field

 

5.4 Torsional BOOMERANG for Nanoscopic Samples 

The analysis presented in Chapter 2 on scaling of the signal-to-noise ratio 

assumed that the frequency of the oscillator could be maintained in the 

audiofrequency range as the apparatus was scaled down for smaller samples. This 

can be done if the experimenter has independent control over the balance between 

elastic and magnetic spring constants or has other (active) means of control over 

the frequency3. However, this balance may become an increasingly difficult 

engineering challenge as the size scale of the detection apparatus is reduced into 

the sub-micron range. At higher frequencies, the increased rf power necessary to 

efficiently invert magnetization may cause other problems, such as heating of the 

sample or oscillator. It is therefore our concern in this section to address 

BOOMERANG with precessing or spin-locked transverse magnetization. 
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Figure 5.6 shows designs for 

BOOMERANG based on torsional 

resonance. The resonance frequencies 

of the moving parts coincide with the 

Larmor frequency of the spin system. 

The magnetic parts are all magnetized 

along the vertical in the figure as in 

longitudinal BOOMERANG, and this 

feature, perhaps in combination with 

external magnets not shown, provides 

a static field for the sample. However, 

the moving parts of the detector 

assembly are supported so as to make 

use of a net torque exerted by the sample’s transverse magnetization. 

It is known that torsional oscillators can have substantially better anchor 

losses13 than cantilevered or other longitudinal oscillators. The main reason is 

probably that the moving element’s center of mass remains fixed, and so there is no 

momentum transfer to the substrate. This is also a feature of the sound-bars in 

mallet-percussion instruments like the xylophone, which are fixed to their supports 

at nodes in their fundamental mode of vibration. Figure 5.7 shows a sensor magnet 

fixed to an oscillator suspension based on this idea. Such xylophone designs might 

be useful at size scales where longitudinal detection is still practical but where 

eddy-current damping has been suppressed, and so anchor losses are predominant. 

Figure 5.6. Force maps for design of 
torsional oscillators driven by transverse 
magnetization. Light and dark colors indi-
cate forces of opposite sign. 

a) -component of 
the force suggests a flat disk that undergoes 
torsional oscillations around the axis 
shown. b) -component of the force sug-
gests a pendulum-type oscil lator.  
Numerical labels on the axes represent 
distance in units of the sample volume's 
radius. The inset to figure (a) shows the 
sensor as part of a BOOMERANG assembly.

z

x

Each contour 
represents a factor of two increase in the 
magnitude of the force on a vertical detector 
dipole at that location. 

b)

a)

sample moment

x

x

x

 



  99 

Unfortunately, magnetic mate-

rials are typically much more dense 

than silicon and other structural 

materials used in microfabrication. 

Calculations using magnetic masses 

fixed to a xylophone-bar oscillator 

show that there would have to be 

rather large inert ballast masses on 

both ends of the xylophone-bar in 

order to satisfy the desired condition 

that the magnetic mass lies entirely 

between the oscillator supports. This 

inert mass lowers the detector’s sensitivity for the case of a single sensor and a 

single sample. However, the figure suggests the possibility that these masses are 

not inert, but are instead other magnets driven by other samples. 

5.5 Final Remarks – On Partitioning Samples and Microfabri-

cation of Advanced Analytical Instruments 

This chaining together of detector magnets each with its own sample is of 

far more than academic interest. One reason for such a composite detector is to 

improve sensitivity to average magnetization in a single sample that can be broken 

up into pieces. Suppose we have an NMR detection method whose SNR for a 

sample of linear dimension r is proportional to rn. If the sample is broken into N 

b)

a)

supports fixed
at nodes

siliconballast mass

sensor magnet

Figure 5.7. Xylophone-bar oscillators. a) 
Xylophone bar showing support points, 
which are nodes in the principal oscillatory 
mode by design. b) Silicon oscillator inspired 
by xylophone bar fixed to sensor magnet.  
Since magnet materials are so much more 
dense than silicon, substantial inert mass 
must be added to the oscillator. This sug-
gests than more than one sensor oscillator 
be mechanically coupled together to drive a 
mode of a composite oscillator, with each 
sensor separately forced by its own sample.
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equal pieces, then the length scale of each piece is r / N1/3 and the SNR from each 

piece will be proportional to (r / N1/3)n if its spectrum is measured with a detector 

optimized at the smaller size scale. An average of the signals from each piece 

should have a SNR N1/2 times larger — N1/2 (r / N1/3)n = N1/2-n/3 x rn . 

This SNR expression exhibits a cutoff scaling factor, n=3/2, below which it 

should be possible to increase the signal-to-noise ratio simply by breaking up the 

sample. For example, in BOOMERANG on 3-D samples (where n=1/2), breaking up 

the sample results in a modest increase in sensitivity (proportional to N1/3). As a flat 

sample’s area scales only quadratically with r, SNR in BOOMERANG on 2-D samples 

is easily shown to have a scaling factor n=-1/2, and so surface BOOMERANG is 

particularly compatible with sensitivity enhancement by breaking up the sample 

(proportional to N2/3). If it is possible to microfabricate massively parallel detectors 

at scales where instrument noise can be made negligible compared to spin noise, 

then a preferred approach for typical liquid samples would be to break each sample 

up as small as possible, as the SNR for second-order signals encoded with 

CONQUEST scales as r0 (resulting in a sensitivity advantage to breaking up the 

sample that goes as N1/2).† Designs, detailed microfabrication procedures, and 

preliminary results of microfabricated BOOMERANG devices are detailed by 

Madsen3. 

                                        

† Conversely, for inductive detection (n=2), there is actually a very slight 

(proportional to N1/6) advantage to combining samples (or merely putting them in the same 

NMR coil in different combinations). 
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The other reason for composite detectors brings up the much more general 

question of optimizing procedures and instrumentation to maximize extraction of 

information from a given set of samples. By combining microfabrication of detector 

arrays with micro-patterning of sample libraries, one could imagine building modes 

of a composite oscillator that are designed to be driven by specific characteristics of 

the whole library.  Suppose, for example, that a surface is coated with an oriented 

enzyme-bearing lipid bilayer and a substrate is deposited so that its concentration is 

proportional to the function kxcos
2
1

2
1 + , where x denotes distance along some 

axis tangent to the surface. Then, if the concentration of a reaction product grows 

as the square of the substrate concentration (as in a second-order reaction, for 

example), there will be a component to the driving force on a composite oscillator 

during a suitably designed detection period at the spatial frequency 2k, which will 

be absent if the reaction is first-order. Optimization procedures for such 

informational characteristics of sets of samples are an intriguing generalization of 

the theory of Chapter 2. 
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Appendix A: Connections to Other 

Mechanical Detection Methods 

The “ideal detection sphere” arguments leading up to the BOOMERANG 

detector of Figure 1.3 represent a significant break from the conceptual 

development of the several other force-detected magnetic resonance methods 

shown, with BOOMERANG, in Figure A.1. The more traditional line of thinking has 

Figure A.1. Force-detected magnetic resonance methods.
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been characterized by a “Stern-Gerlach” view, which has pervaded the field since 

the very first method of magnetic resonance, the Rabi molecular beam method1 

(which preceded by 8 years the observation of magnetic resonance in condensed 

phases using magnetic induction by Purcell2 and Bloch3). 

Rabi’s method makes use of the Stern-Gerlach effect, the state-dependent 

force F on a spin-magnetic dipole µµµµ in an inhomogeneous static field: 

 GF ⋅= µµµµ . (A.1) 

Here, rBG ∂∂=  is the gradient tensor of the static field B with respect to the spatial 

coordinates r. This force spatially separates populations of molecules in a beam by 

the eigenvalue of the projection of their spin angular momentum onto the static field 

direction. An applied rf field induces spin flips that reverse the initial deflections of 

the separate populations, modulating the intensity of the molecular beam at a 

detector in accordance with the spin-resonance condition. A Stern-Gerlach 

separation of eigenstates of precessing transverse angular momentum for magnetic 

resonance of molecular beams was later proposed4 and demonstrated5 by Bloom 

and coworkers. 

Both the spectroscopic resolution and sensitivity of these methods is limited 

by the residence time of the spins in the field. A key improvement in force-detected 

magnetic resonance is to keep the spins in the field for a longer time by confining 

them to a harmonic motion, applying the forcing fields at the mechanical resonance 

frequency of that motion. This is a feature of proposals by Pizarro and Weitekamp 

to detect electron spin resonance (ESR) and NMR of electromagnetically trapped 
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ions by way of a resonance-induced change in the amplitude of their orbits using 

switched field gradients6-8. 

Spin-dependent mechanical resonance is also a feature of a torque-detection 

method for magnetic resonance of condensed phases in homogeneous fields, which 

was introduced in the 1960’s by Gozzini and coworkers9-14. In those experiments, 

a spin-bearing solid sample (the solid free-radical diphenylpicrylhydrazyl, DPPH) 

suspended in a homogeneous magnetic field is made to absorb angular momentum 

from an rf field applied at the frequency of spin precession. The sample spins, 

which are bound to a torsional oscillator, transmit their acquired angular momentum 

via rapid thermalization with the lattice to the oscillator, which therefore 

experiences a torque. This absorption of angular momentum from the applied field is 

analogous to the absorption of power from the field attempted long ago by Gorter15 

and finally observed as a rise in temperature of the sample by Schmidt and 

Solomon16. While these methods may be used in a homogeneous field, the 

thermalization of angular momentum or of energy with the lattice, a necessary 

component of the methods, limits their use in the great majority of modern NMR 

pulse sequences, which rely on persistence of spin coherence through numerous rf 

pulses. 

Mechanical detection was revived in the context of condensed phases by 

Sidles, who proposed a “folded Stern-Gerlach effect”17 — the resonant driving of 

small oscillators, such as force-microscope cantilevers, with spin-dependent forces 

in accordance with Equation (A.1). The version of this proposal that has been 

implemented uses cyclic adiabatic rapid passage (ARP) or cyclic saturation to 
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modulate longitudinal magnetization at an audio frequency in the presence of a field 

gradient, driving the oscillator to which either the sample18,19 or a small 

ferromagnetic particle20, which provides the gradient, is attached. The 

ferromagnetic particle serves the dual purpose of providing a coupling force and 

varying the spin-resonance condition across the sample volume, which provides an 

imaging capability. The first experimental demonstration of this approach, which is 

now called magnetic resonance force microscopy (MRFM), was performed in Daniel 

Rugar’s laboratory at IBM Almaden18. This first demonstration was an ESR 

experiment with solid DPPH bound to the cantilever. Subsequently, MRFM as been 

extended to proton19, and fluorine21 NMR and to ferromagnetic resonance in cobalt 

thin films22. 

The sensitive-slice imaging capability of MRFM bears resemblance to 

Damadian’s magnetic resonance imaging method23,24. MRFM was also originally 

motivated by biological imaging — although at a dramatically reduced size scale. 

Rugar and Sidles have attempted to set the groundwork for a means of imaging 

biomolecules magnetically, angstrom-thick slice by angstrom-thick slice. A very 

challenging intermediate goal is detection of magnetic resonance from single 

electrons using MRFM, and to this end great strides have been made, particularly in 

Rugar’s laboratory, such that as of this writing it is now possible to observe 

magnetic forces with sub-attonewton per root hertz sensitivity at cryogenic 

temperatures25. This is in principle sufficient to observe resonance from single 

electrons, but so far efforts have been unsuccessful26. 
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In light of the history behind Equation (A.1), it is not surprising that authors 

describing molecular beam and MRFM-type force detection propose use of the 

highest gradients possible. The experimental trend in MRFM has been toward ever-

increasing gradients, and as of this writing MRFM has been performed with 

gradients as large as 250 kT/m27. But, as we have seen in Chapter 1, no gradients 

are in fact needed to observe magnetic resonance with force detection, and there 

are very good reasons for avoiding their use. What is going on here? 

The answer lies in the choice of a mathematical model for the sample. In 

Equation (A.1), the “sample” is a point dipole. 

The geometric optimization described in Chapter 2 takes into account the 

shape and size of a whole sample and asks the question of what detector provides 

optimal signal-to-noise for that sample.† Our choice of a sphere with a specified Rmax 

is based on computational simplicity and also on the fact that for powdered samples 

and fluids, one can arrange to pack the sample into a sphere. Often in solid-state 

magnetic resonance, even single crystals are shaped into spheres to mitigate 

susceptibility effects. In commercial (inductive) instruments for both solids and 

liquids, the effective sample volume is most often a cylinder with near-unit aspect 

                                        

† Specifically, the uncertainty in the measurement of the average magnetization of 
the sample is the observable that is optimized. This is not the only one that might be 
considered. For example, the “local sensitivity” alluded to in Chapter 3 varies over the 
sample volume by more than an order of magnitude. It might be of interest to optimally 
assess anisotropies in some heterogeneous sample. The information-theoretic question of 
how best to generalize the optimization given arbitrary constraints is well worth serious 
consideration. 
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ratio, a close match to a sphere mathematically. A sphere is in any case a first 

approximation to any 3-D sample. 

Which brings us back to the point dipole. This sample can be viewed as a 

sphere with vanishing Rmax. The theory of Chapter 2 is applicable, and in this special 

case, a moving sensor magnet designed for optimal detection is as small as possible 

and as close as possible to the sample dipole. In the absence of any compensation 

magnets this leads to the conclusion that higher gradients mean better sensitivity, 

as the detector would impose the largest possible gradient at the position of the 

sample dipole28. 

The difficulty of constructing nanoscopic BOOMERANG magnet assemblies 

with narrow gap spacings, relative to single magnet particles on cantilevers, is 

apparent. If the goal is to observe magnetic resonance from a single, isolated, fixed 

spin (nuclear or electronic), then the BOOMERANG concept is probably more trouble 

than it is worth. If the (single) spin is not in a fixed location, but instead is diffusing 

in a target volume or on a surface, then the elimination of field gradients is again 

relevant. It is almost always the case that the real information sought from an 

experiment is hidden in a volume that is at least as large as a molecule. Even 

imperfect composite magnet assemblies that allow a larger sample region with 

many spins during detection can extract information at a greater rate than can be 

had one spin at a time. 

Single-electron-spin sensitivity in MRFM may well be achieved in the very 

near future, and the very much more challenging observation of magnetic resonance 

from single nuclear spins may also be possible in theory. But the probable range of 
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superiority of force-detection over inductive detection (as regards sensitivity) is 

between 100 and 1012 or so spins in volumes of up to approximately 0.1 mm3. Such 

samples possess enormous information content that may best be extracted by 

whole-sample BOOMERANG methods, and we have proceeded accordingly in our 

efforts. 
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Appendix B: Sensor Optimization 

B.0  Global Optimization with Massless Support 

In this appendix, we calculate the shape of the detector magnet that 

optimizes sensitivity in a measurement of a spherical sample’s average 

magnetization given a condition of closest approach to the sample’s surface. The 

quantity to be optimized is the signal-to-noise ratio of the measurement, which we 

defined in Chapter 2 (Equation (2.6)): 

 Nrmsz,BOOM FFSNR = . (B.1) 

We begin by parameterizing the shape of the detector. Symmetry requires 

that the detector be a solid of revolution about the axis along which it will be 

displaced, which we take to be the z-

axis. Figure B.1 shows a detector 

magnet above a spherical sample, 

with a distance of closest approach, 

Rmax, defined along the z-axis relative 

to the center of the sample. We also 

take the center of the sample to be 

R

ρ( )z

ρ

z

sample

detector

Figure B.1. Curve defining the detector 
magnet, which is a solid of revolution.

max
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the origin of a cylindrical coordinate system. The most general parameterization of 

the sensor magnet’s shape given the symmetry restriction is a function, 

 ( )zρ=ρ , (B.2) 

that defines the surface of the sensor magnet. This function is single-valued, 

greater than or equal to zero everywhere, and defined on the interval 

{ }∞<≤ zRz max| , but is otherwise unrestricted. 

The total root-mean-squared (rms) force on the detector is the integral of the 

forces on dipole elements in the detector, 

 ∫ ⋅=

volume
detector

rmsz, ˆ
2

dFzwF , (B.3) 

reduced by the factor 2  relative to the static force and scaled by a factor w, which 

accounts for the amplitude of the Fourier component of the force for a specfic 

driving protocol (see Chapter 2). Due to the cylindrical symmetry of the system, 

only the z-components of the forces add in concert, and so, following Chapter 2, 

we sum up the contributions of the z components only. The integrand in Equation 

(B.3) may be written (see Chapter 2) 

 ( ) d
dssdFz dV

r
MMV θθ−π

µ=⋅ coscos159
4

ˆ 2
4

0 , (B.4) 

where Vs is the sample’s volume, Ms is its magnetization, Md is the magnetization of 

the detector magnet, 22 ρ+= zr  is the distance of the given detector dipole from 
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the origin, and θ is the polar angle at the location of the detector dipole. With the 

substitutions 222 ρ+= zr , 
r
z=θcos , and dzdddV φρρ=d , we may write 

 ( )
( )

∫∫∫
ρ∞π

ρρ
ρ+

−ρφ
π

µ
=

z

R

d
z

z
zdzdMMVwF

0

2722

22
2

0

0
rmsz,

69
42

max

dss  (B.5) 

for the rms force. Evaluating the integrals over ρ and the azimuthal angle φ, we find 

 ( )( )∫
∞

ρµ−=
max

sds

R

dzzzfVMMwF ,
22

3
0rmsz, , (B.6) 

where ( )( ) 5

2

,
r
zzzf ρ=ρ  (B.7) 

and ( ) ( )22 zzzrr ρ+== . (B.8) 

Equation (B.6) shows that the signal force Fz,rms is a functional whose value 

depends on the parameterizing relation ( )zρ=ρ . The noise force FN in the 

denominator of Equation (B.1) is also a functional of ρ. To find this functional, we 

first write 

 fTkF ∆α= BN 4 , (B.9) 

where T is the temperature of the detector oscillator, ∆f is the bandwidth of the 

measurement, and α is the oscillator’s damping constant (Equation (2.8)). α is 

proportional to the oscillator’s motional mass m, which we assume is dominated by 

the mass of the magnetic detector. (In section B.1 we relax this assumption for the 

simpler case of a right circular cylinder.) For a magnet with cylindrical symmetry, α 
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can be written in terms of the damping rate γ, the density η of the detector 

material, and the volume of the magnet: 

 ( )( )∫∫∫
∞∞

ρηγπ=πρηγ=ηγ=γ=α

maxmax

,2

volume
detector RR

dzzzvdzdVm . (B.10) 

where ( )( ) 2, ρ=ρ zzv . (B.11) 

The explicit definition of the symbols f and v for the integrands in Equations (B.7) 

and (B.11) will help simplify the notation in the discussion that follows. 

Now, let 

 
2

N

2
rmsz,2

BOOM
~

F

F
SNRJ == . (B.12) 

Substituting in the expressions for the signal and noise forces and collecting 

constant factors that do not depend on the shape function ρ, we write 

 J
fTk
VMMw

J 





∆ηγ

µ
π=

B

2
s

2
d

2
s

2
0

2

32
9~  (B.12) 

and 
V
FJ

2
= , (B.13) 

where ( )( )∫
∞

ρ=

max

,
R

dzzzfF     and    ( )( )∫
∞

ρ=

max

,
R

dzzzvV . (B.14a,b) 

The optimal sensor shape is defined by the function ( )zρ  that extremizes the 

signal-to-noise ratio. Since all we have done is to square SNRBOOM and remove 

constant factors in deriving Equation (B.13), a necessary and sufficient condition is 
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that J is extremized. To find the optimum function ( )zρ , we consider the variation 

δJ in J caused by arbitrary infinitesimal variations in ( )zρ  about its optimum. When 

( )zρ  is optimal, J is stationary with respect to these variations, and so in 

accordance with Equation (B.13) we write 

 ( ) 02
2

22

2

=δ−δ=
δ−δ

=δ VFFV
V
F

V

VFFVF
J . (B.15) 

Since neither of the integrals F nor V are zero, we must have 

 02 =δ−δ VFFV , (B.16) 

where, since the limits on the integrals are fixed, 

 ( )∫
∞

ρδ=δ

max

,
R

dzzfF     and    ( )∫
∞

ρδ=δ

max

,
R

dzzvV . (B.17a,b) 

The variations in the integrands are directly proportional to the functional 

variation δρ in ( )zρ=ρ : 

 δρρ∂
∂=δ ff ; δρρ∂

∂=δ vv , (B.18a,b) 

where ( ) ( )22
2722

32 ρ−
ρ+

ρ=
ρ∂

∂ z
z

zf  (B.19) 

and ρ=
ρ∂

∂ 2v . (B.20) 

Using Equations (B.17–18), we may rewrite Equation (B.16) as 

 02

maxmax

=δρρ∂
∂−δρρ∂

∂ ∫∫
∞∞

RR

dzvFdzfV  (B.21) 
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or, since V and F are just numbers (functionals of ( )zρ ), 

 02

max

=δρ






ρ∂
∂−

ρ∂
∂∫

∞

R

dzvFfV  (B.22) 

According to the fundamental theorem of the calculus of variations1, in order 

for this integral to vanish for arbitrary variations δρ in the shape function ( )zρ , we 

must have 

 02 =
ρ∂

∂−
ρ∂

∂ vFfV . (B.23) 

Equation (B.23) is analogous to the Euler-Lagrange equations that result from 

extremizing action in the Lagrangian formulation of mechanics. It is worth recalling 

that this equation is a prescription for solving for that function ( )zρ=ρ  which 

satisfies an extremum principle, in this case the optimal signal-to-noise ratio. Note 

that, in contrast to Euler-Lagrange equations (and other such equations as arise in 

the calculus of variations, like the so-called “brachistochrone” problem2), Equation 

(B.23) is not a differential equation, as the derivative ( )zρ′  appears nowhere in 

(B.23). It is in fact an integral equation that has in it the functionals ( )[ ]zF ρ  and 

( )[ ]zV ρ , which are numbers, and not functions of the variable z per se. 

With the help of equations (B.19, 20, and 8), we rewrite Equation (B.23) in 

the form: 

 ( )22
7

35
2
1

2
rz

r
z

v
f

V
F −=

ρ∂∂
ρ∂∂

= . (B.24) 
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The left-hand side of Equation (B.24) is a number, a functional of the whole 

function ( )zρ , and not an explicit function of z, and therefore the right-hand side 

may be set equal to a constant: 

 ( )22
7

4 35
2
1

2
rz

r
z

V
F −=≡λ− . (B.25) 

An even power of λ is allowed because the right hand side is never less than zero. 

The quartic exponent is chosen so that λ will have the dimensions of length (λ’s 

significance will become clear shortly). 

Equation (B.25) can be viewed as a relation that defines the function ( )zρ  

implicitly, but it is best solved as an equation for ( )( ) ( ) ( )( )22 θρ+θ=θ= zzzrr in 

terms of ( )rzarccos=θ : 

 ( ) ( )θ=θ−θ=



λ

coscos3cos5
2
1

3
3

4

Pr . (B.26) 

This is the shape that optimizes the 

signal-to-noise ratio given the condition 

of closest approach, and all that is left 

is to find the parameter λ in terms of 

Rmax. When 0=θ , we have λ=r , and 

so λ is the distance from the center of 

the sample (which is also the origin of 

the coordinate system) to the top of the sensor magnet. The optimal shape is 

shown in Figure B.2. 

θ

sample

Figure B.2. Optimal shape for the detector 
magnet.

optimal
detector

max

max

λ
R

 



  119 

To find λ, we recognize that, in Equation (B.25), we have both an integral 

equation, 

 

∫

∫
λ

λ

−

ρ

ρ

==λ

max

max

2

5

2

4

2
2

R

R

dz

dz
r
z

V
F , (B.27) 

and a functional form for r (and therefore z and ρ) as a function of θ (which we 

have already recast in the form of Equation (B.26)) that we can substitute directly 

into the integrands. Note also that the limits on z have been written 

{ }λ<≤ zRz max| , since the function ( )zρ=ρ  is zero for values of z greater than λ. 

We first multiply Equation (B.27) by λ times the denominator of the right-hand side, 

rearrange, and find 

 022

maxmaxmax

1
5

2
222

5

2
23 =λ




 ρλ−ρλ=ρλ−ρλ ∫∫∫
λ

−−

λλ

−

RRR

dz
r
z

dz
r
z

dz . (B.28) 

The latter integral (which is dimensionless in anticipation of a later substitution) may 

now be rewritten with the substitutions 

 ( ) θθ=ρ sinr ,   ( ) θθ= cosrz , 

and ( ) ( )( ) θθθ−θθ′= drrdz sincos . (B.29a,b,c) 

The result is 

 
( )

0sincossincossin2
0

2

22

2

22

max

=θ




 θ−θθ′

λ




 θθλ−

λ
θ∫

θ

d
r

rr
r

r . (B.30) 
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The limits Rmax and λ have been replaced by the corresponding θ values θmax 

and 0 (see Figure B.2). In combination with Equation (B.26), which expresses r/λ as 

a function of θ, Equation (B.30) is an integral equation for the angle θmax. To solve 

it, we implicitly differentiate Equation (B.26) and find that 

 ( ) θ
θ−θ

θ−=θ′
sin

cos3cos5
cos51

4
3

3

2

r
r . (B.31) 

Substituting Equations (B.26) and (B.31) into (B.30), we obtain 

 ( )( )( )
( ) 0sin

cos3cos5

coscos73cos14cos5
4
25

max

0

453

222241
=θθ

θ−θ
θθ−θ−−θ⋅ ∫

θ

d , (B.32) 

which can be solved numerically, yielding 84913.0cos max ≈θ  (or °≈θ 88.31max ). 

Now, maxRz =  when maxθ=θ , and so, substituting θ= seczr into Equation 

(B.26) we find 

 ( )maxmax
3

4
maxmax cos3cos5

2
1sec θ−θ=







λ
θR

, (B.33) 

whose solution is max6542.1 R≈λ . Figure B.2 is drawn consistent with this ratio. 

A sensor magnet shaped as in Figure B.2 is a global optimum as regards 

sensitivity (given that the motional mass is dominated by that of the magnetic 

material), but other considerations render it impractical for BOOMERANG. Large 

static forces would result from placing such a “mushroom-cap” magnet inside a 

suitable annulus, and homogeneity through the sample volume would be 

compromised were this shape used instead of the optimal right circular cylinder, or 

“hockey-puck” of Chapter 2. Fortunately, the sensitivity of the best hockey-puck 



  121 

design is about 72% of the globally 

optimal mushroom-cap design and 

about 36% better than an optimized 

spherical sensor magnet (all con-

strained by the same Rmax). The close 

match in size between the optimal 

cylinder and the global optimum is 

shown in Figure B.3. The near-optimal 

sensitivity of the hockey puck, in combination with its superior homogeneity and 

relative ease of manufacture at the millimeter size scale and below make it the best 

choice for the sensor magnet’s shape. 

B.1 Hockey-Puck Design with Added Inert Mass 

In the BOOMERANG prototype described in Chapter 3, the magnet material 

comprises 83.1mg/92.7mg=90% of the motional mass of the sensor oscillator. In 

practical microscopic designs, this ratio might vary substantially due to the realities 

of microfabrication, and so it is of interest to assess the effect of including inert 

mass (the silicon suspension) in the sensitivity optimizations for hockey-puck 

designs. 

Figure 2.3 of Chapter 2 showed that for the case of no inert mass, the 

signal-to-noise ratio is not a sharply peaked function of either the sensor magnet’s 

radius a or its height h. That figure is reproduced in Figure B.4 a with a larger range 

sample

global
optimum

optimal
right cylinder

θ0

Figure B.3. Optimal shape for the detector 
magnet compared to optimal right cylinder. 
The sensitivity of the cylinder is nearly 
(about 72%) the optimal sensitivity. The 
nodal surface at polar angle   described in 
Chapter 2 is also shown.

θ0
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of parameters. Figures B.4 b–d show contour plots of the SNR calculated for three 

other cases. In each case, the mass of the optimal sensor of Figure B.4 a is used as  

a fiducial mass. In Figure B.4 b, the effective mass of the silicon suspension is 

14.4% of this fiducial mass. This is the relative mass of the silicon suspension used 
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Figure B.4 Signal-to-noise ratio (SNR) vs. scaled radius a and height h of the sensor 
magnet. The contours show SNR relative to the SNR of the optimal design at 
a/Rmax=0.59 and h/Rmax=0.53 in Figure B.4 a, in which the suspension adds nothing 
to the oscillator’s motional mass. a) No added inert mass. b) Inert mass 14.4% of 
Figure a’s optimal mass, as in the BOOMERANG prototype. c) Inert mass equal to 
Figure a’s optimal mass. d) Inert mass equal to five times Figure a’s optimal mass.  
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in the BOOMERANG prototype. In Figure B.4 c, the case of an inert mass equal to 

the fiducial mass is shown, and in Figure B.4 d, the inert mass is five times the 

fiducial mass. The contours show that reasonably good SNR can be achieved over a 

wide range of design parameters when only mass and signal force are taken into 

account. A significant aspect of all of these graphs is that a ~30% change in the 

radius a about its optimal value causes less than 5% loss in SNR, indicating that a 

small sacrifice in sensitivity could yield gains in homogeneity (with concomitant 

reduction in required rf power and heating of the oscillator and sample). More 

importantly, a more refined optimization procedure, which accounts for improved 

oscillator ring-down times associated with better sensor-annulus gap placement and 

spacing, should therefore have sufficient leeway to improve the sensitivity of next-

generation BOOMERANG devices. 
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Appendix C: Damping Due to Eddy 

Currents 

Figure C.1 shows a cutaway 

view of the cylindrical sensor magnet 

moving inside an annular magnet. 

The relative motion of these magnets 

induces eddy currents in both the 

sensor and the annulus, with such 

currents being proportional to the 

material’s conductivity. The goal of this appendix is to calculate the oscillator’s 

damping rate τ=γ 2  due to eddy currents in the BOOMERANG prototype. 

We start by considering the electric field produced by the sensor magnet 

moving in the rest frame of the annular magnet. If a stationary magnetized body 

produces a magnetic field ( )rB , then it produces an electric field 

 ( ) ( )rBvrE ×−=  (C.1) 

in a coordinate frame in which its velocity is v. The same result is obtained by 

considering the time derivative of the local vector potential. This electric field 

induces eddy currents in the conducting annular magnet that are strictly azimuthal 

Figure C.1. Eddy currents due to relative 
motion of the magnets.

annulus

sensor magnet

eddy currents
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due to the symmetry of the magnets, as we shall see. We will neglect eddy currents 

in other metal parts due to the fact that these parts are far more distant from the 

sensor than the annulus is and because, as we will see, the eddy current density 

falls off very rapidly with distance. Eddy currents in the sensor (by virtue of its 

motion in the field of the other magnets) can also be calculated in the rest frame of 

the sensor magnet using Equation (C.1). 

Before we continue, an important point must be made. Our analysis will 

leave out the fact that the eddy currents themselves are time-varying. A given 

induced current element therefore gives rise to oscillating electromagnetic fields and 

secondary eddy currents in nearby conductors. A more rigorous analysis of the 

problem must therefore be cast in terms of field equations1, which are further 

complicated by moving media2. We shall continue with our more or less rough 

estimate of the eddy currents nonetheless. It will turn out that while the skin depth 

in the mu-metal magnets (which can be said to quantify the importance of this 

“self-consistent-field” issue), 

 m 77
)TmA 10450000)(m1072.1Hz)( 5002(

22
1-71-16 µ=

⋅π⋅Ω⋅⋅π
=ωσµ=δ −− , (C.2) 

is far smaller than the size of the magnets, it is about the same size as the range 

over which eddy currents are strong. So, the more rigorous analysis will not differ 

wildly from our simpler theory at the prototype size scale, and agreement between 

the theories will become closer as size scales are reduced. 
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The system of sensor magnet and annulus is symmetric with respect to 

rotation about the vertical axis. Consequently, the azimuthal component of the 

magnetic field  

 ( ) ( ) ( )zB ˆ,ˆ,, zBzBz z ρ+ρρ=ρ ρ  (C.3) 

vanishes, and we may work in a gauge in which the magnetic vector potential 

( ) ( )φρ=ρ φ
ˆ,, zAzA  is strictly azimuthal. Here and in what follows we make use of a 

cylindrical coordinate frame { }ẑ,ˆ,̂φρ , with z along the symmetry axis. The velocity 

of the sensor magnet zv ˆv=  is also along the symmetry axis, and since the 

symmetry is therefore not broken, we may write Equation (C.1) as 

 φ−= ρ̂BvE . (C.4) 

Since the boundaries of the cylindrical magnets are parallel to this azimuthal electric 

field, and since the conductivity σ is isotropic, the induced currents ( ) ( )rErJ σ=  at 

every position r are also strictly azimuthal. We then find that the local dissipated 

power density is 

 222
ρσ=σ=⋅= BvEW EJ . (C.5) 

The velocity ( ) tvtv ω= cos0  is a function of time, and we may write the 

total instantaneous power dissipation as an integral over the volume V of the 

conductor in terms of the radial field Bρ produced by the moving element, 

 ( ) ( ) ∫∫ ρσ==
VV

dVBtvWdVtP 22 . (C.6) 



  128 

The dissipated power is also the (negative) time derivative of the work done by the 

dissipative force vF α−= : 

 ( ) ( ) ( ) ( )2
00

d
d

d
d

d
d tvtdtt

tt
U

t
tP

tt

α=′′⋅′α=⋅−=−= ∫∫ vvdlF . (C.7) 

Setting Equations (C.6) and (C.7) equal, we find 

 ∫ ρ
σ=α=γ

V

dVB
mm

21 . (C.8) 

An important conclusion to be drawn from Equation (C.8) is that, since the 

conductivity σ and the field B are scale-invariant, and since m and V are both 

proportional to r3, the damping rate γ is scale-invariant. To evaluate the integral in 

(C.8), we must first know Bρ, which is itself the result of a volume integration over 

contributions from dipole elements in the moving magnet. It is convenient first to 

find the vector potential ( )rA , in terms of which we have 

 
z

A
B

∂
∂

−=×∇⋅= φ
ρ Aρ̂ . (C.9) 

If we assume that the magnetization is uniform, then the necessary volume 

integration, 

 ( ) ∫∫∫ ×
π

µ=
magnet

2
0 ˆˆ

4
dV

r
M rzrA , (C.10) 

is simplified by standard integral theorems. We obtain the well-known result3 that 

the field outside a cylindrical magnet with uniform axial magnetization is the same 
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as if the magnet were replaced by a solenoid of the same dimensions with the 

surface current density equal to the magnetization M: 

 ( ) ∫∫ φ
π

µ
=

side

0
ˆ

4
ds

r
M

rA . (C.11) 

The surface element in this integral, dzdds φρ=  includes the axial coordinate 

z, and so combination of Equations (C.9) and (C.11) is facilitated by the 

fundamental theorem of calculus, which offsets the axial derivative and integration. 

The result is 

 ( )


















φφ−φφ
π

µ
= ∫∫ρ

edge
bottom

edge
top

0
ˆˆ

4
d

r
a

d
r
aM

B r , (C.12) 

where a is the radius of the magnet. 

The integration paths for these 

integrals are as shown in Figure C.2. 

The line integrals in Equation 

(C.12) may be evaluated in terms of 

the complete elliptic integrals of the 

first and second kinds, K(m) and E(m). 

The result is 

 ( ) ( ) ( ) ( )
φ




 −−
ρ

=φφ≡ρ ∫ ˆ224ˆ
,

ring
edge

m

mEmKmad
r
a

zI , (C.13) 

Figure C.2. Integration paths for Equation 
(C.8) when the sensor magnet is considered 
the source of electric fields (in the other 
magnets).  

bottom edge

top edge
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where ( )22
4

az
am
+ρ+
ρ= , and where z is measured from the plane of the given edge 

ring (top or bottom). 

The same analysis applies to calculation of eddy currents in the sensor 

magnet if one calculates with the other magnets moving with velocity v in the rest 

frame of the sensor magnet. (Effects 

due to acceleration of the magnets 

are negligible and ignored.) Equations 

(C.12) and (C.13) may be used to 

calculate the integrand 2
ρB  in 

Equation (C.8). Figure C.3 shows a 

contour plot of this value (scaled by 

the Jacobian determinant for the 

integration, which is ρ). The picture is a detailed map of how the dissipated power 

density is distributed inside the magnets. The eddy currents are concentrated near 

the sharp edges of both the sensor magnet and annulus. 

Figure C.3 shows that the power density falls off approximately 

exponentially with distance from the sharp corners of the magnets. The calculated 

distance over which the power density decreases by e in this model is 110 µm, 

which is close to the skin depth (77 µm) calculated at 500 Hz for mu metal. This 

means that we are somewhat over-estimating the damping rate, which we calculate 

to be 0.93 Hz by numerically integrating (C.8). Were the skin depth much smaller 

(or the magnets larger), the conclusions drawn from our rough theory of eddy 

Figure C.3. Power dissipation in the 
magnets. Contours show where most of the 
power is dissipated. Each contour 
represents a factor of 2 decrease in power 
density. 

sensor magnet

symmetry axis

annulus
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currents would have to be changed. In particular, the effective conductivity, and 

therefore the damping rate, would be reduced. The effective size of the conductor 

would also scale as an area rather than a volume, and so, above the size scale of 

the BOOMERANG prototype, the damping rate γ scales inversely with size (as r-1). 

Again, because of the skin effect, we are slightly overestimating the eddy 

current damping with our simplified model relative to a more exact calculation with 

field equations. However, the observed damping rate is still somewhat larger than 

we’ve calculated. Empirically we find that introducing radial slits to interrupt and 

redirect the eddy currents reduces the damping rate, as does increasing the gap or 

rounding the edges of the magnets4. So it is likely that our assumption of perfectly 

uniform magnetization is an oversimplification. Indeed, allowing the magnetization 

to have a nonvanishing radial component would increase Bρ in Equation (C.8), and 

this would also increase our estimate of the damping rate. 
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Appendix D: Partition Function, 

Polarization, and Moment Generating 

Function for N Isochronous Spins 

D.1 Partition Function 

The thermal-equilibrium density operator for a system of N isochronous 

spins ½ at temperature T is given by 

 TkH Be
Q

−=ρ 1
0 , (D.1) 

where 

 { }TkH BeTrQ −≡  (D.2) 

denotes the partition function, and 

 zIH 0ω−=  (D.3) 

denotes the Hamiltonian, with ω0 the Larmor frequency of the spins and 

 ∑
=

=
N

j
jzz II

1
,  (D.4) 

the z-component of the total dimensionless angular momentum. Let 
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Tk

x
B

0ω
≡ . (D.5) 

Then 

 { }












== ∏
=

N

j

xIxI jzz eTreTrQ
1

, . (D.6) 

If we expand each exponential in powers of Iz,j and note that, for spin ½ operators, 

1
4
12

, =jzI , we find that 

 ( ) ( )( )












+= ∏
=

N

j
jz

xIxTrQ
1

, 2
sinh2

2
cosh1 . (D.7) 

Expansion of the product yields a sum of operators, only one of which, 1, has 

nonzero trace ( { } NTr 2=1 ). Thus, 

 ( )NN xQ
2

cosh2= . (D.8) 

D.2 Polarization 

Let us consider a Boltzmann distribution of spins ½ in two energy levels 

02
1 ω±=ε± . We define the polarization, p, as the difference in the populations of 

the energy levels, normalized to unity: 

 
2

tanh
2
1

2
1

2
1

2
1

x

ee

ee
nn
nn
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xx

xx

=
+
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−≡

−+

−+

+−

+− . (D.9) 
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D.3 Moment generating function 

The moment generating function, defined by 

 ( ) zisIesG = , (D.10) 

is used in Chapter 5 to calculate expectation values of powers of Iz. With the 

equilibrium density operator ρ0 and the parameter x defined as above, we have 

 ( ) { } ( ){ }zzz IisxisIxI eTr
Q

eeTr
Q

sG +== 11 . (D.11) 

In correspondence with Equations D.6–D.8, this may be written 

 ( ) ( ){ } ( ) ( )
( )

( )
( )

N

N
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NNIisx
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Q
eTr

Q
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

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2
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2
cosh

2
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2
cosh

2
cosh211 .(D.12) 

The hyperbolic cosine in the numerator may be expanded: 

 ( ) ( ) ( ) ( ) ( )
2

sin
2

sinh
2

cos
2

cosh
2

cosh sxisxisx +=+ . (D.13) 

Substitution of Equations D.9 and D.13 into Equation D.12 yields the moment 

generating function in terms of the number of spins N and the polarization p: 

 ( ) ( )NsipssG
2

sin
2

cos += . (D.14) 

 


