Appendix D: Partition Function, Polarization, and Moment Generating Function for N Isochronous Spins

D. 1 Partition Function

The thermal-equilibrium density operator for a system of N isochronous spins $1 / 2$ at temperature T is given by

$$
\begin{equation*}
\rho_{0}=\frac{1}{Q} e^{-H / k_{B} T}, \tag{D.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q \equiv \operatorname{Tr}\left\{e^{-H / k_{B} T}\right\} \tag{D.2}
\end{equation*}
$$

denotes the partition function, and

$$
\begin{equation*}
H=-\hbar \omega_{0} I_{z} \tag{D.3}
\end{equation*}
$$

denotes the Hamiltonian, with ω_{0} the Larmor frequency of the spins and

$$
\begin{equation*}
I_{z}=\sum_{j=1}^{N} I_{z, j} \tag{D.4}
\end{equation*}
$$

the z-component of the total dimensionless angular momentum. Let

$$
\begin{equation*}
x \equiv \frac{\hbar \omega_{0}}{k_{B} T} . \tag{D.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
Q=\operatorname{Tr}\left\{e^{x z_{z}}\right\}=\operatorname{Tr}\left\{\prod_{j=1}^{N} e^{x l_{z, j}}\right\} \tag{D.6}
\end{equation*}
$$

If we expand each exponential in powers of $\ell_{z, j}$ and note that, for spin $1 / 2$ operators, $I_{z, j}^{2}=\frac{1}{4} \mathbf{1}$, we find that

$$
\begin{equation*}
Q=\operatorname{Tr}\left\{\prod_{j=1}^{N}\left(\mathbf{1} \cosh \left(\frac{x}{2}\right)+2 I_{z, j} \sinh \left(\frac{x}{2}\right)\right)\right\} . \tag{D.7}
\end{equation*}
$$

Expansion of the product yields a sum of operators, only one of which, 1, has nonzero trace $\left(\operatorname{Tr}\{\mathbf{1}\}=2^{N}\right)$. Thus,

$$
\begin{equation*}
Q=2^{N}\left(\cosh \frac{x}{2}\right)^{N} \tag{D.8}
\end{equation*}
$$

D. 2 Polarization

Let us consider a Boltzmann distribution of spins $1 / 2$ in two energy levels $\varepsilon_{ \pm}= \pm \frac{1}{2} \hbar \omega_{0}$. We define the polarization, p, as the difference in the populations of the energy levels, normalized to unity:

$$
\begin{equation*}
p \equiv \frac{n_{-}-n_{+}}{n_{-}+n_{+}}=\frac{e^{+\frac{1}{2} x}-e^{-\frac{1}{2} x}}{e^{+\frac{1}{2} x}+e^{-\frac{1}{2} x}}=\tanh \frac{x}{2} \tag{D.9}
\end{equation*}
$$

D. 3 Moment generating function

The moment generating function, defined by

$$
\begin{equation*}
G(s)=\left\langle e^{i s l_{2}}\right\rangle, \tag{D.10}
\end{equation*}
$$

is used in Chapter 5 to calculate expectation values of powers of I_{2}. With the equilibrium density operator ρ_{0} and the parameter x defined as above, we have

$$
\begin{equation*}
G(s)=\frac{1}{Q} \operatorname{Tr}\left\{e^{x l_{z}} e^{i s I_{z}}\right\}=\frac{1}{Q} \operatorname{Tr}\left\{e^{(x+i s) /_{2}}\right\} \tag{D.11}
\end{equation*}
$$

In correspondence with Equations D.6-D.8, this may be written

$$
\begin{equation*}
G(s)=\frac{1}{Q} \operatorname{Tr}\left\{e^{(x+i s) / z}\right\}=\frac{1}{Q} 2^{N} \cosh ^{N}\left(\frac{x+i s}{2}\right)=\frac{\cosh ^{N}\left(\frac{x+i s}{2}\right)}{\cosh ^{N}\left(\frac{x}{2}\right)}=\left(\frac{\cosh \left(\frac{x+i s}{2}\right)}{\cosh \left(\frac{x}{2}\right)}\right)^{N} .(\tag{D.12}
\end{equation*}
$$

The hyperbolic cosine in the numerator may be expanded:

$$
\begin{equation*}
\cosh \left(\frac{x+i s}{2}\right)=\cosh \left(\frac{x}{2}\right) \cos \left(\frac{s}{2}\right)+i \sinh \left(\frac{x}{2}\right) \sin \left(\frac{s}{2}\right) \tag{D.13}
\end{equation*}
$$

Substitution of Equations D. 9 and D. 13 into Equation D. 12 yields the moment generating function in terms of the number of spins N and the polarization p :

$$
\begin{equation*}
G(s)=\left(\cos \frac{s}{2}+i p \sin \frac{s}{2}\right)^{N} \tag{D.14}
\end{equation*}
$$

