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Abstract 

This thesis describes a new method of magnetic resonance detection based 

on mechanical displacements caused by magnetic forces, which is general with 

respect to sample and pulse sequence. A spin-bearing sample placed inside a 

flexible magnet assembly distorts that assembly in proportion to the sample’s 

magnetization. Radio-frequency fields that modulate the sample’s spin 

magnetization at this detector’s mechanical resonance frequency encode magnetic 

resonance spectra into the detector’s trajectory. A key insight is that such 

mechanical detection can be performed within optimized detectors with no need for 

field gradients inside the sample volume, circumventing the deleterious 

consequences of such gradients for sensitivity and resolution. The new method is 

called Better Observation of Magnetization, Enhanced Resolution, and No Gradient 

(BOOMERANG), and its sensitivity is predicted to exceed that of inductive detection 

at microscopic size scales. 

A prototype BOOMERANG spectrometer optimized for 3 mm diameter liquid 

and solid samples is described. The device uses direct digital synthesis of radio-

frequency waveforms in its operation and fiber-optic interferometry to detect 

picometer-scale motions of a detector magnet. This magnet is bound to a tuned 

mechanical oscillator inside a magnet assembly designed for homogeneity of the 

magnetic field in the sample. Several types of time-domain FT-NMR spectra on test 

samples are presented. The data confirm theory and design principles. 



  vi 

The favorable scaling of BOOMERANG’s sensitivity and the numerous 

potential uses for NMR at reduced size scales motivate construction of 

spectrometers optimized for microscopic samples. Geometric concerns in scaling 

down BOOMERANG are addressed quantitatively. At size scales where the number 

of spins is such that mean magnetization is smaller than fluctuations, such 

fluctuations, if not accounted for, can dominate the noise regardless of the physical 

detection method used. A measurement paradigm using correlations of these 

fluctuations to encode spectra is proposed to suppress this quantum noise, and the 

sensitivity of this method, which we call Correlated Observations Narrow Quantum 

Uncertainty, Enhancing Spectroscopic Transients (CONQUEST), is analyzed. 

BOOMERANG and CONQUEST promise to extend the applicability of nuclear 

magnetic resonance (NMR) for chemical analysis to samples and problems that are 

currently inaccessible by NMR due to poor sensitivity. 
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