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Chapter 2 

Thermodynamics of pure metals and alloys 

 

2.1 Introduction 

Crucial to the design and processing of materials is a quantitative understanding 

of the phase-equilibrium information with respect to constraints such as temperature, 

pressure and composition.  This information is captured graphically in phase or 

equilibrium diagrams.  The determination of phase diagrams has been a largely empirical 

process.  So far, the phase diagrams for most binary alloy systems are known, but only 

limited information is available for phase diagrams of ternary or higher order systems.  

The lack of information for higher-order system causes many difficulties in developing 

alloys such as metallic glasses because much of the work has to be done by trial and error 

(Peker, 1994).  Therefore, it is instructive to consider phase diagrams from a simple 

thermodynamic point of view so that we can extend our knowledge to the phase behavior 

of higher order systems.   

In considering the general alloy case, each element can be characterized by 

atomic size, cohesive energy, bulk modulus, and other physical and chemical properties.  

Among theses, atomic size is known to be the dominant factor in determining the phase-

equilibrium properties (Hume-Rothery, 1969).  For example, solute solubility in 

crystalline solids is related to atomic size differences between the solute and solvent 

atoms and solubility becomes very limited (about 5%) when the atomic size of two 

metals differ by more than 15% (or 85% size ratio), which is called as the Hume-Rothery 
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rule.  Experimentally, a large number of binary alloys (about 90%) show agreement with 

this rule (Hume-Rothery, 1969).   

 In this chapter, we consider a model binary systems with differing atomic size 

ratios to qualitatively understand its effect on the phase equilibrium behavior.  

Thermodynamic properties are calculated using molecular dynamics (MD) simulations.  

Conventional empirical relations are initially employed to describe the thermodynamic 

functions of pure metals.  Then, a simple model is proposed to describe the 

thermodynamic properties of alloys as a function of alloy composition.  In particular, the 

excess vibrational entropy of solid solution is calculated using the elastic constants of the 

system.  Using this model, the polymorphic melting line T0(x) is determined.  In alloys 

with fixed composition, the polymorphic melting temperature decreases as the size ratio 

decreases.  Especially at the size ratio 0.85, T0(x) plunge sharply and crosses the glass 

transition line Tg(x), which is a favorable condition for the glass formation according to 

the T0 criterion of glass formation (Massalski, 1981).   

 

2.2 Simulation methods  

We use generalized binary alloy systems which are composed of atoms of 

different sizes (Cu* and Cu**).  The size ratio λ is defined as the ratio of size of Cu* atom 

to size of Cu** atom (see Chapter 3).  The λ value used in this study is 0.85, which is 

considered to be a critical size ratio for the solubility of a solid solution (Hume-Rothery, 

1969).  This study is then extended to systems of different atomic size ratios.   

To simulate Cu binary alloys, the Sutton-Chen (SC) type many-body force field 

was used (Sutton and Chen, 1990; Rafiitabar and Sutton, 1991).  The force-field 
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parameters for theses systems are summarized in Table 2-1.  As shown in the Table 2-1, 

we changed only the lattice parameter while keeping other parameters constant.  

Therefore, theses simulations only differ in the atomic size ratio and excess chemical 

effects are minimized.   

 The MD simulations were performed using systems with 500 atoms per periodic 

cell (single phase simulation).  To obtain thermodynamic data of solid and liquid phases 

at various temperatures, heating and cooling simulations are performed using TtN 

(constant temperature and constant stress) dynamics (Ray and Rahman, 1985).  During a 

heating simulation, a random FCC solid solution is raised from 100K to couple of 

hundred degrees above the melting temperature in increments of 100K for 25ps, which 

leads to a heating rate of 4×1012 K/s.  After the sample reaches an equilibrium liquid 

state, a cooling simulation is carried out to 100 K, again in decrements of 100K for 25ps.   

 Since MD with a high heating rate and PBC (no interface) results in the 

superheating of crystals, the equilibrium melting temperature Tm is determined using two 

phase simulations.  A two phase simulation is performed by combining equilibrium liquid 

(N=1000) and crystal (N=1000) atoms together in one cell under TtN conditions.  For 

example, the two phase simulation for the pure Cu** system is shown in Fig. 2-1(a) and 

(b).  At T<Tm, the portion in the crystalline state increases as the simulation time t 

increases due to the crystallization of the liquid phase.  For the same reason, the enthalpy 

H of the total system decreases until the system reaches an equilibrium state, which is the 

crystalline state in this case.  Conversely, at T>Tm, the portion of the liquid state increases 

with the simulation time t.  Therefore, the H of the total system increases until the system 

becomes completely the liquid state.  At T=Tm, the sample remains as half liquid and half 
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crystal, which is the same as the initial state.  Therefore, the H of the total system stays 

constant as a function of t at T=Tm.  For pure Cu* and Cu**, the melting temperature 

obtained from the single phase simulation is ~1300K but the equilibrium melting 

temperature Tm from two phase simulation is ~1100K.  Therefore, ~18% superheating 

was achieved in the single phase simulation with a heating rate of 4×1012 K/s, which 

agrees with the prediction based on homogeneous nucleation theory (Luo and Ahrens, 

2003).   

 In addition to the simple thermodynamic properties, the elastic constants Cij of the 

solid solutions were measured.  The elastic constants were calculated by averaging the 

statistical fluctuations for 25ps using EhN (constant energy and shape) dynamics.  Thus, 

the obtained elastic constants contain the Born term (Born, 1954) as well as contributions 

from the microscopic stress fluctuation and kinetic energy (Cagin and Ray, 1988a, d, b, 

c).  

 

2.3 Thermodynamic properties of pure metals 

 Above room temperature, the temperature dependence of the heat capacities (solid 

and liquid) can be described by an empirical equation, such as 

  2
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Here, A, B, C, and D are empirical constants and values for various substances can be 

found in references (J. M. Smith, 1987; O. Kubaschewski, 1993).  

 Subsequently, the enthalpy H and the entropy S can be obtained as:  
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where, E and F are constants.   

Since the enthalpy can be easily measured using MD simulations, the constants A, 

B, C, D, and E of Eq. 2-2 for model FCC solid and liquid systems can be obtained by data 

fitting (Fig. 2-2).  Using this method, the constants for FCC solids are found to be 

AX=0.0329042kJ/mol/K, BX=-1.88217×10-5kJ/mol/K2, CX=1.92954×10-8kJ/mol/K3, DX=-

228.536kJK/mol, and EX=-341.721kJ/mol.  And the constants for liquids are found to be 

AL=0.0469092kJ/mol/K, BL=-1.49059×10-5kJ/mol/K2, CL=3.97697×10-9kJ/mol/K3, 

DL=453.934kJK/mol, and EL=-341.002kJ/mol.  Here, the superscript X and L represent 

crystal and liquid, respectively.  In addition, the heat capacities of the crystal and liquid 

states are obtained from Eq. 2-1 using the constants obtained from Eq. 2-2 and the result 

is shown in Fig. 2-3.  Near room temperature, the heat capacity of a crystal (Cp
X) is 

approximately 27J/mol/K, which agrees with the Dulong-Petit rule (Cp
X ~26.942J/mol/K) 

(Swalin, 1972).  And at T~Tm, the Turnbull approximation (Cp
X~Cp

L at T~Tm) is also 

valid (Turnbull, 1950).    

 For convenience, the differences of the thermodynamic properties between liquids 

and solids can be defined as: 
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where XL AAa −= , XL BBb −= , XL CCc −= , XL DDd −= , XL EEe −= .  The first 

term in Eq. 2-6 can be obtained using the relationship 
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The calculated entropy of fusion ∆SLX(Tm) from MD simulations is 10.175±0.1J/mol/K, 

which agrees with the Richard’s rule for FCC metals (Gordon, 1983).  ∆HLX(T) and 

∆SLX(T) are shown in Fig. 2-4.  The temperature at which ∆SLX=0 is the Kauzmann 

temperature Tk (Kauzmann, 1948) and Tk is the lower bound for crystallization or the 

glass transition.  From Fig. 2-4, Tk is found to be 413 K, which is 0.38Tm.  There is no 

experimental Tk data available for pure metals, but theoretically it is predicted to be 

approximately 0.3Tm~0.4Tm (Mezard and Parisi, 2000).   

 

2.4 Thermodynamic properties of alloys 

 Consider the Cu*
1-xCu**

x model binary alloy system with λ=0.85.  The enthalpy H 

of random FCC solid solutions and the enthalpy of liquid mixtures are shown in Fig. 2-

5(a) and (b), respectively.  We assume that the enthalpy of mixing (or excess enthalpy) 

can be described by a parabolic equation, such as the regular solution model (J. M. 

Prausnitz, 1986).   

)1(),( xxTxH mix −Ω=∆        (2-8) 

Here, x is a mole fraction of Cu** and Ω is an empirical constant.  As shown in Fig. 2-5, 

this provides an excellent description of the enthalpy of mixing in both solid and liquid 

states.  As a result, the enthalpy of random FCC solid solutions can be expresses as 

)1(),0(),( xxTHTxH XXX −Ω+= ,      (2-9) 
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and the enthalpy of liquid mixtures can be expressed as 

 )1(),0(),( xxTHTxH LLL −Ω+= .      (2-10) 

Ηere, the H(0,T) term represents the enthalpy of the pure system.  Note that 

H(0,T)=H(1,T) because pure Cu* and Cu** have the same thermodynamic properties. 

The calculated Ω values at different temperatures are shown in Fig. 2-6.  ΩL 

seems independent of temperature; however,  ΩX shows a strong temperature 

dependence.  Therefore, we assume that ΩL is constant as 5.38938 kJ/mol and ΩX is a 

linear function of T: 

XXX TT βα +=Ω )( ,        (2-11) 

where, αX=0.0134455kJ/mol/K and βX=24.6167kJ/mol.  Subsequently, the difference in 

enthalpy, heat capacity, and entropy between liquids and solids are derived: 

)1()(),0(),( xxTTHTxH XXLLXLX −−−Ω+∆=∆ βα ,   (2-12) 

)1()(),0(),( xxTCTxC XLX
p

LX
p −−+∆=∆ α ,     (2-13) 
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where, 0.0)1()0( == ff .  The measured ∆HLX(x,T) MD data and Eq. 2-12 are plotted 

together in Figure 2-7 and show good agreement.   

 Consider now ∆SLX(x,T).  The functional form of ∆SLX(x,T) in Eq. 2-14 contains 

the unknown term f(x).  Since f(x) should be symmetric around x=0.5 and the boundary 

conditions are 0.0)1()0( == ff , the form )1()( xxxf −= γ  can be assumed, where γ is a 

constant.  Then, Eq. 2-14 can be rewritten 

)1()ln(),0(),( xxTTSTxS XLXLX −−+∆=∆ αγ .    (2-15) 
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Now, using ∆HLX(x,T) and ∆SLX(x,T), the Gibbs free energy difference between the liquid 

and solid can be derived as 

),(),(),( TxSTTxHTxG LXLXLX ∆−∆=∆ .     (2-16) 

Since ∆GLX(x)=0 at the polymorphic melting temperature T0(x), the parameter γ can be 

determined if T0(x) is known.  For this purpose, the two phase simulation is carried out to 

obtain T0 at x=0.5.  It is reasonable to use the two phase simulation method to find T0(x) 

because the two phase simulation prohibits long range diffusion between the liquid and 

solid phases due to its geometric confinement (Fig. 2-1(a)).  At x=0.5, we obtain 

T0<500K.  However, further simulation is impossible because the liquid phase becomes a 

glass at T<500K.  Subsequently, the additional points x=0.4 and x=0.6 are tried to 

determine T0.  Again, the situation T0< Tg is encountered.  Finally, the points x=0.3 and 

x=0.7 are tried and T0=650K±50K is found.  From this result, γ is determined to be 72.9 

J/mol/K.  Using this value, ∆SLX(x,T) and ∆GLX(x,T) are calculated and shown in Fig. 2-8 

and Fig. 2-9, respectively.  Also, the polymorphic melting line T0(x) is calculated and 

shown in Fig. 2-10.  According to the T0(x) criterion of glass formation, the glass forming 

zone is the concentration range that satisfies T0(x)<Tg(x), where Tg(x) is the glass 

transition temperature line (Baker and Cahn, 1971; Massalski, 1981).  This is because, 

thermodynamically, polymorphic crystallization needs to be avoided to form glasses.  

Using the measured Tg=500K±50K at x=0.5 and assuming the constant Tg around x=0.5, 

we find that the glass forming regime is 0.36<x<0.64 (Fig. 2-10).  Since the concentration 

dependency of Tg is smaller than that of T0, the constant Tg assumption at around x=0.5 is 

reasonable, especially in a relatively narrow concentration range. 
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So far, we have used the simple model to describe the thermodynamic properties 

of alloy systems and predicted the glass forming region using the T0 criterion of glass 

formation.  To obtain the complete phase diagram information including solidus, 

liquidus, and miscibility gaps in different phases, the accurate entropies of each phase are 

required.  Therefore, the entropic properties of alloy phases are studied.   

 

2.4.1 The entropy of solid solutions  

 In general, the entropy of mixing ∆Smix of solid solutions can be expressed as the 

sum of four contributions, 

elmagvibconf
mix SSSSS ∆+∆+∆+∆=∆ ,      (2-17) 

where ∆Sconf is configurational entropy of mixing, ∆Svib is vibrational entropy of mixing, 

∆Smag is magnetic entropy of mixing, and ∆Sel is electronic entropy of mixing (Swalin, 

1972).  While the configurational and vibrational contributions are generally important, 

the magnetic and electronic contributions are present only in a system that contains 

strong chemical interactions, such as transition metal alloys.  In the simple model binary 

solid solution, where magnetic and electronic contributions can be ignored, ∆Smix is only 

the sum of ∆Sconf and ∆Svib.   

First, let’s consider the configurational entropy of mixing.  ∆Sconf is the sum of the 

ideal and excess configurational entropies of mixing: 

   EX
confconf SxxxxRS ∆+−−+−=∆ )}1ln()1()ln({ .    (2-18) 

The excess term EX
confS∆  is present if the constituent atoms of the mixture differ in size or 

if the heat of mixing is nonzero.  Previously, EX
confS∆  has been described using 
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thermodynamic properties, such as the atomic volume, the thermal expansion coefficient, 

and the isothermal compressibility (Sommer et al., 2001).  However, this model assumed 

that the coordination number is infinite, which is clearly not true for the crystalline 

materials.  As of yet, there has been no direct comparison between this model and 

experiments to validate the model for crystalline materials.   

The vibrational entropy can be derived using Einstein’s formula at above the 

Debye temperature θD.  In this temperature range, most vibrational frequencies are close 

to the Debye frequency ωD.  Therefore, the vibrational entropy Svib per mole is 









+= 1ln3

D

B
vib

Tk
RS

ωh
,       (2-19) 

where, 
π2
h

=h  and h is Planck’s constant.  Consider now an alloy formation 

CBxxA →−+ )1( .  If ωA, ωB, and ωC are the Debye frequency of pure A, pure B and 

pure C, respectively, the change in vibrational entropy due to the alloy formation can be 

expressed as  

 
C

x
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x
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vib RS
ω
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ln3
−⋅

=∆ .       (2-20) 

The Debye frequency ωD is only a function of the velocity of sound in the solid and on 

the number of atoms N per unit volume V,  

3/1
26 






=

V
N

cSD πω ,        (2-21) 

where cS is the effective sound velocity defined by 

333

213

TLS ccc
+≡ .         (2-22) 



2-11 

Note that cS reduces simply to the velocity of sound if the longitudinal sound velodity cL 

is equal to the transverse sound velocity cT.  Further, cL and cT can be expressed in terms 

of the elastic constants of the medium by the relations: 
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where ρ is the density of the medium, GL is the effective elastic constant in the 

longitudinal mode and GT is the effective elastic constant in the transverse mode.   

With the exception of isotropic materials (where )(
2
1

121144 CCC −= ), GL and GT 

vary according to the direction of the elastic waves in the system.  Since no simple 

expression for GL and GT is available for the general wave vector, we use the geometric 

average of the effective elastic constants in the three principle propagation directions to 

represent the average effective elastic constants in the cubic crystal.  The geometric 

average of the elastic constants was previously used to find the dependence of the Debye 

temperature on the elastic constants for cubic crystals and showed a good agreement with 

experiments (Blackman, 1951; Siethoff and Ahlborn, 1995). 

 For the three principle propagation directions [100], [110], and [111] in cubic 

crystals, effective elastic constants are expressed as (Kittel, 1996): 

11]100[ CGL =  and 44]100[ CGT =  (in the [100] direction),    (2-26) 

)2(
2
1

441211]110[ CCCGL ⋅++= , 44
1

]110[ CGT = , and )(
2
1

1211
2

]110[ CCGT −=    (2-27)  

(in the [110] direction),  

)42(
3
1

441211]111[ CCCGL ⋅+⋅+=  and )(
3
1

441211]111[ CCCGT +−=   (2-28) 
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(in the [111] direction). 

Then, the effective elastic constants are 

( ) 3/1

]111[]110[]100[
LLLL GGGG =  and      (2-29) 

( ) 3/1

]111[
2/12

]110[
1

]110[]100[ )( TTTTT GGGGG = .      (2-30) 

In Fig. 2-11, the elastic constant is shown as a function of x for binary FCC solid 

solution.  Subsequently, GL and GT (Fig. 2-12) and cT, cL and cS (Fig. 2-13) are calculated.  

Using the calculated cS and Eq. 2-21, ωD is calculated.  In addition, θD is calculated as a 

function of x using the relationship D
B

D k
ωθ

h
=  (Fig. 2-14).  Note that θD is dependent 

on the temperature, which is non-physical.  We attribute this to the Debye approximation 

(Reif, 1985), which is used in deriving Eq. 2-21.  However, the temperature dependency 

of θD is considerably small (40K over 400K simulation temperature range), therefore, we 

conclude that the Debye approximation is still reasonable for T=300K.  Finally, the 

excess vibrational entropy is calculated using Eq. 2-20 and ωD.  As shown in Fig. 2-15, 

the vibrational entropy of mixing shows very small temperature dependency, which 

agrees with Eq. 2-20.    

 

2.5 The effect of size ratio on thermodynamic properties 

 The same procedures as described in the Section 2.3 and 2.4 are performed to 

determine the thermodynamic properties of alloys with different λ.  Since H, S, and G of 

pure metals with λ=0.90 and 0.95 are the same as λ=0.85, we focus on the 

thermodynamic properties of alloys.  The obtained ΩX and ΩL are shown in Fig. 2-16.  

The ΩX are fitted to the Eq. 2-11.  We find αX=0.877145J/mol/K and βX=2.894KJ/mol for 
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the λ=0.95 system and αX=2.90975J/mol/K and βX=12.8856kJ/mol/K for the λ=0.90 

system.  ΩL are fitted to a constant as 0.625923kJ/mol for the system of λ=0.95 and 

2.32862kJ/mol for the system of λ=0.90.   

To determine the γ for each system, the polymorphic melting temperature at x=0.5 

is determined.  T0 at x=0.5 is found to be 1038±13K for λ=0.95 and T0=913±13K for 

λ=0.90.  Corresponding γ values are 5.0J/mol/K for λ=0.95 and 13.0J/mol/K for λ=0.90.  

Subsequently, the T0(x) lines are obtained and plotted in Fig. 2-17.  When compared to 

Fig.1-3 in Chapter 1, it is clear that the glass forming ability increases as λ decreases.  

Also, the excess vibrational entropy as a function of λ and x are calculated using the 

elastic constant of alloys.  We find that the excess vibrational entropy increases as λ 

decreases (Fig. 2-18). 

   

2.6 The Lindermann melting formula and Debye temperature  

The Lindemann melting formula describes the melting temperature of the solid as  

   22
2

2

9 SDB
m

m rMk
r

T θ
h

= ,        (2-31) 

where M is the atomic mass and rm is the mean square amplitude of the vibration of each 

atom divided by the mean radius of a unit cell rS (Ziman, 1972).  In most solids, rm is in 

the range of 0.2-0.25.  Previously, we obtained the Tm of pure Cu* and Cu** at 1088K.  

Based on the Tm , θD can be calculated using Eq. 2-31 if rS is known.  The rS for pure Cu** 

is calculated using the atomic volume at T=1088K and found to be 0.247nm.  

Subsequently, θD of pure Cu** is calculated and found to be 140K (if rm=0.25)-170K (if 

rm=0.20), which are one half of the θD calculated using the elastic constants (Fig. 2-14).  
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Therefore, Eq. 2-31 significantly underestimates θD.  This is because Eq. 2-31 is derived 

based on the assumption that cT=cL, which is not true in this case (Fig. 2-13).  The factor 

9 in Eq. 2-31 should be modified if cT is not equal to cL.   

Ignoring the pre-factors in Eq. 2-31 and considering only the material properties,  

22
SDm rMT θ∝ .         (2-32) 

Because pure Cu* and Cu** have the same melting temperature and atomic mass, Eq. 2-31 

can be reduced to 

 
S

D r
1

∝θ .         (2-33) 

In addition, rS is proportional to the lattice constant α (Table 2-1), so Eq. 2-33 can be 

further reduced to 

 
α

θ
1

∝D .         (2-34) 

In Fig. 2-19, θD and 1/α are plotted for pure Cu* and Cu** at λ=0.85, 0.90, and 0.95.  θD 

is calculated from the elastic constants at T=300K using the method described in Section 

2.4.1.  The results show good agreement with Eq. 2-34, giving the correlation constant 

R2=0.9987.  Therefore, we conclude that the θD calculated from the elastic constants in 

this work is reasonably accurate based on the prediction of the Lindemann melting 

formula. 

 

2.7 Conclusion 

 The thermodynamic properties of pure metals and alloys are calculated using 

molecular dynamics simulations.  A simple model is proposed to describe the 

thermodynamic properties of alloys as a function of alloy composition.  In particular, the 
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excess vibrational entropy of solid solution is calculated using the elastic constants of the 

system.  Using this model, the polymorphic melting line T0(x) is determined.  In alloys 

with fixed composition, the polymorphic melting temperature decreases as λ decreases.  

Especially at λ=0.85, T0(x) plunge sharply and crosses the glass transition line Tg(x), 

which is a favorable condition for the glass formation according to the T0 criterion of 

glass formation.   
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Table 2-1. Atom size parameters for the Sutton-Chen (SC) many-body potential.  Other 

parameters, such as ε, c, m, and n, are kept the same as in Table 1-1.  The parameter λ is 

defined as the size ratio of Cu* to Cu**.  These size parameters were chosen to keep 

constant the geometric mean of the size parameters for Cu* and Cu**, jjiiij ααα = .   

      

λ   α of Cu* α of Cu**    

0.85  3.32180 3.90800  

0.90  3.41811 3.79790  

0.95  3.51177 3.69660   
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Figure 2-1(a).  Snapshots of the two phase simulations are shown.  At each temperature, 

the initial structure (t=0) is prepared by putting the equilibrium liquid and crystal together 

in one unit cell (top figure).  If T<Tm, the crystal phase grows.  If T>Tm, the liquid phase 

grows.  If T=Tm, the two phases remain at equilibrium. 
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Figure 2-1(b). The enthalpy H of the two phase simulation as a function of time t at 

different temperatures.  If T>Tm, the crystalline phase melts, therefore, H increases 

because of the heat of fusion.  If T<Tm, the liquid phase crystallizes, therefore, H 

decreases.  From this, the melting temperature is estimated to be 1075K<Tm<1100K. 
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Figure 2-2. The enthalpy of pure metal (solid and liquid states) as a function of 

temperature of the solid and liquid phases.  Due to the fast heating/cooling rate 

( 12104 × K/s) and PBC (no surface effects), the system tends to be easily 

superheated/supercooled.  Therefore, MD can provide the thermodynamic data in a broad 

temperature range thus makes the use of Eq. 2-2 more accurate.  The lines are fit to the 

data using Eq. 2-2. 
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Figure 2-3. The heat capacity Cp of pure metal (solid and liquid states) as a function of 

temperature.  The lines are fit to the data using Eq. 2-1. 
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Figure 2-4. The enthalpy (top) and entropy (bottom) differences between the liquid and 

solid states of pure metal as a function of temperature. 
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Figure 2-5. The enthalpy H of the solid (top) and the liquid (bottom) as a function of 

concentration x at different temperatures.  The temperature interval is 100K and the lines 

are fit to the parabolic equation )1()( xxxy −Ω=  (Eq. 2-8). 
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Figure 2-6.  ΩX and ΩL as a function of temperature at λ=0.85.  ΩX is fitted to 

XXTxy βα +=)( , where αX=0.0134455kJ/mol/K and βX=24.6167kJ/mol.  ΩL is fitted to 

y=5.38938 kJ/mol. 
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Figure 2-7. The enthalpy difference between the liquid and solid phases ∆HLX as a 

function of temperature for the concentrations x=0, 0.1, 0.2, 0.3, 0.4, and 0.5.  The 

symbols are data points obtained directly from MD and the lines are from Eq. 2-12.  
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Figure 2-8. The entropy difference between the liquid and solid phases ∆SLX as a 

function of temperature for the concentrations (from top to bottom) x=0, 0.1, 0.2, 0.3, 0.4, 

and 0.5.   
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Figure 2-9. The Gibbs free energy difference between the liquid and solid phases ∆GLX 

as a function of temperature for the concentrations (from top to bottom) x=0, 0.1, 0.2, 0.3, 

0.4, and 0.5.   
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Figure 2-10. The polymorphic melting line T0(x) as a function of concentration x.   
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Figure 2-11. The elastic constants for the Cu*
1-xCu**

x system at T=300K.  The size ratio 

of Cu* to Cu** is 0.85.  The dotted lines are drawn empirically as a guide. 
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Figure 2-12. The effective elastic constants in the longitudinal mode GL (top) and the 

transverse mode GT (bottom) as a function of concentration x.  The dotted lines are drawn 

empirically as a guide. 
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Figure 2-13. The velocity of propagation as a function of Cu** concentration x.  Here, cL 

and cT are the velocities of propagation in the longitudinal and transverse directions, 

respectively.  cS is the effective sound velocity as defined by Eq. 2-22. 

 

 

x

0.0 0.2 0.4 0.6 0.8 1.0

V
el

oc
ity

 o
f p

ro
pa

ga
tio

n 
[m

/s
]

1000

1500

2000

2500

3000

3500

4000

4500

5000

cT 

cL 

cS 



2-33 

 

 

Figure 2-14. The Debye temperature as a function of Cu** concentration x calculated 

from the elastic constants at different temperatures.  At T=700K and x=0.4, the effective 

elastic constant in the transverse mode becomes negative, resulting in a non-physical θD. 
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Figure 2-15.  The excess vibrational entropy ∆Svib as a function of Cu** concentration x 

calculated using the elastic constants.  The data point at T=700K and x=0.4 is omitted 

because the effective elastic constant in the transverse mode becomes negative. 
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Figure 2-16. ΩX (top) and ΩL (bottom) as a function of temperature at different size ratio 

λ.  ΩX is fitted to XXTxy βα +=)(  while ΩL is fitted to y=constant. 
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Figure 2-17. The polymorphic melting line T0(x) as a function of concentration x for 

different λ. 
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Figure 2-18. The vibrational entropy of mixing ∆Svib as a function of Cu** concentration 

x for different size ratio λ.  The data are fitted to the parabolic equation )1()( xxxy −= η  

(dotted lines).  Corresponding η values are 29.43 for λ=0.85, 13.98 for λ=0.90, and 3.17 

for λ=0.95 in units of J/mol/K.   
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Figure 2-19.  The Debye temperature versus inverse of the lattice constant in pure 

metals.  The line is y(x)=1193.5748x-4.7352, where correlation constant R2=0.9987.   
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