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Chapter 1 

Introduction 

1.1 Overview 

 Computer simulations have become a universal and indispensable tool in many 

fields of physics and chemistry, including materials science.  The effort to design, 

characterize, and optimize materials properties using computer simulations integrates 

various computational methods, such as quantum mechanics (QM), molecular dynamics 

(MD), and finite element methods (FEM).  In particular, MD in connection with 

statistical mechanics can provide useful thermodynamic and kinetic data as well as 

theoretical insights into complex systems.   

Among complex systems, glasses have been vigorously studied both 

experimentally and computationally, yet they are not completely understood.  The glass 

transition has been cited as one of the major unsolved problems in solid state physics 

(Anderson, 1995).  Theoretically, the simplest systems are metallic glasses because of 

their highly symmetric building blocks (atoms) and isotropic interactions (metallic 

bonding).  In this thesis, we use MD to investigate phase behavior and related 

thermodynamic as well as, structural, and mechanical properties of metals and alloys in 

both crystalline and glass states.  In addition, QM is incorporated with MD to describe 

properties of some realistic systems, such as Al, Ti, Ni, Cu, Zr, and their alloys.   

 

1.2 Metallic glasses 

The first discovery of a metallic glass was Au4Si and subsequently, many 

different types of metallic glass alloys have been produced and characterized (Klement  et 



1-2 

al., 1960; Duwez, 1978; Johnson, 1998).  Some of these metallic glasses exhibit desirable 

properties for industrial applications, such as low magnetic hysteresis losses (Fe or Co 

based alloy), high mechanical strength (high yield strength and high elastic strain limit), 

and high corrosion resistance relative to crystalline alloys with the same composition 

(Duwez, 1978).  However, practical applications have been limited by the high cooling 

rate (105-106 K/s) required to form the glass and the difficulty of making bulk (millimeter 

scale) sized samples (Johnson, 1998).   

Recently, new generations of alloys capable of forming a bulk metallic glass 

(BMG) have been developed by Peker and Johnson (1993).  The first family of BMG’s 

have compositions Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vitreloy 1) and form metallic glasses 

with critical cooling rates of only 1 K/s-sufficient to suppress crystallization (Kim et al., 

1994).  Thus Vitreloy 1 has been used to form fully glassy rods with diameters of 5 to 10 

cm (Johnson, 1998).   

 The discovery of these new generations of BMG’s was guided by qualitative 

reasoning regarding the relative melting and crystallization temperatures of various 

phases.  Earlier, Turnbull predicted that the homogeneous nucleation of crystals becomes 

very sluggish as the reduced glass transition temperature (Tr=Tg/Tm) increases (Turnbull, 

1969).  This is called Turnbull’s criterion, which is still one of the best rules of thumb for 

predicting the glass forming ability of any liquid.  Another thermodynamically interesting 

rule of thumb is the T0 criterion of glass formation (Baker, 1971; Massalski, 1981).  The 

T0 temperature is the temperature at which the free energies of the liquid and crystalline 

phase become identical.  The T0 line can be obtained by connecting the T0 points at 

different concentrations (x).  This  criterion states that glass formation is only possible if 
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both T0(x) lines of terminal solid solutions plunge deep enough to cross the Tg(x) lines 

(Fig. 1-3). 

In addition to the alloy development and characterization, modification and 

modeling mechanical properties have been actively studied in the field of metallic glass 

research.  Even though favorable properties, such as high yield strength and high elastic 

limit, make metallic glasses a good candidate for engineering materials, the unique 

catastrophic failure mechanism, due to the formation of shear bands, imposes a challenge.  

The localization of shear is associated with the absence of strain hardening (work 

hardening) mechanisms, possible strain softening mechanisms, and thermal softening 

during adiabatic heating of the material (Johnson, 1998).  In an effort to overcome the 

catastrophic failure mechanism, recent efforts have focused on fabrication of metallic 

glasses composites, either by direct introduction of crystalline reinforcements into the 

glass matrix (Choi-Yim, 1999) or by inducing the growth of ductile crystalline phase in 

the glass matrix (Kim, 2001).   

 

1.3 Phase transitions  

When a liquid is cooled and becomes a solid, two kinds of solidification may 

occur: crystallization or glass transition.  Crystallization is commonly observed when a 

liquid is cooled with a low cooling rate and is characterized by a sharp discontinuity in 

volume and energy as a function of temperature (Fig. 1-1. path 2→1).  This is 

characteristic of a first-order phase transition, defined by discontinuous first derivatives 

of the Gibbs free energy (dG/dT or dG/dP) at the transition point (Fig. 1-2(a)).  When a 
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solid melts, this is also a first-order phase transition.  At equilibrium, melting and 

crystallization will occur at the same temperature.  

When the cooling rate is sufficiently high, a liquid can bypass crystallization and 

becomes glass (Fig. 1-1. path 2→3).  By definition, a glass is a non-crystalline 

(amorphous) solid lacking long-range periodicity of the atomic arrangement.  Glass 

transition is homogeneous and occurs over a narrow temperature range near the glass 

transition temperature (Tg).  At Tg, there is no discontinuity in volume but V(T) acquires a 

small slope (similar to that of a crystal), characteristic of the low thermal expansion of a 

solid.  The continuous change in volume and energy around the glass transition point is 

similar to a second-order phase transition (Fig. 1-2(b)), defined by discontinuous second 

derivatives of the Gibbs free energy (d2G/dT2 or d2G/dP2).  In spite of the similarity, the 

glass transition is not a true thermodynamic phase transition.  The glass transition is 

generally associated with broken ergodicity on the time scale of experimental 

observation.  Thus, the phase space of the glass appears to be smaller than the 

corresponding liquid. 

Many theories for the glass transition have been proposed.  The two most studied 

theories are the free volume theory (Cohen and Turnbull, 1959; Turnbull and Cohen, 

1961, 1970; Cohen and Grest, 1979, 1981) and the mode coupling theory (Bengtzelius et 

al., 1984; Leutheusser, 1984; Gotze and Sjogren, 1992).  The former explains the glass 

transition from a thermodynamic viewpoint and the latter from a dynamic viewpoint.   

Free volume theory states that the glass transition occurs when the volume 

available for atomic motion (the free volume), becomes less than a critical value.  At high 

temperature, sufficient free volume is present to facilitate the configuraional 
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rearrangements of atoms.  However, as the temperature decreases, the available free 

volume decreases along with the total volume of the system.  At some point, the free 

volume is reduced to a critical level, below which the configuraional rearrangement of 

atoms becomes impossible.  This is the glass state and the temperature at which this 

happens is Tg.   

Mode coupling theory describes the glass transition as a transition from ergodic to 

nonerogic behavior in the relaxation dynamics, which are solely governed by density 

fluctuations.  This theory predicts that there exists two major relaxation modes, the so-

called α relaxation and β  relaxation processes.  α relaxation is associated with the 

exploration of deep configurational energy minima and β  relaxation is associated with the 

exploration of local minima in the vicinity of a given deep configurational minimum 

(Stillinger, 1995).  Therefore, at high temperatures, α and β  relaxation modes become 

indistinguishable.  However, as the temperature decreases, the α relaxation slows down 

and shows a singularity at T=Tc, while the β  relaxation remains finite.  Tc is the mode 

coupling temperature and is considered by mode coupling theory to be the ideal glass 

transition temperature.    

 
1.4 Molecular dynamics simulation 

Molecular dynamics (MD) is a useful technique for obtaining macroscopic 

properties of a system by calculating the Newtonian dynamics of individual atoms or 

molecules.  The dynamics describe how atomic coordinates rN and momenta pN change 

with time t and this phase space information {rN(t), pN(t)} is referred to as the trajectories 

of the system.  To generate the trajectories, the initial coordinates and momenta are 

assigned to the particles.  Then, their subsequent trajectories are calculated by numerical 
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integration of the classical Newtonian or Hamilton’s equations of motion.  Observable 

properties of the system, such as temperature, pressure and volume, are then obtained as 

time averages over the trajectories.     

 Due to limitations in computational power, MD simulations are usually performed 

on small systems containing several hundred to a few thousand atoms.  Such small 

systems have high surface to volume ratio, making surface effects important.  In 

simulations where surface effects are not of interest, such as bulk system simulations, 

surface effects can be removed by using periodic boundary conditions (PBC).  Under 

PBC, the system is composed of a single unit cell, which is replicated throughout space to 

form an infinite lattice.  PBC removes surface effects but introduces artificial periodicity.  

To eliminate effects from self- interactions, the primary cell dimension L should be larger 

than twice the atomic interaction range.  This makes it impossible to simulate long-range 

phenomena, where the range of critical fluctuations is macroscopic, for example, when a 

liquid is close to the gas- liquid critical point.  Despite this limitation, it has been shown 

that PBC have little effect on equilibrium thermodynamic properties and structures of 

fluids far form the critical point (Pratt and Haan, 1981a, b).  In addition to the size 

limitations, MD simulations are confined to short time scales.  Considering that one time 

step in a MD simulation is typically 10-15 s (1 fs), it is not practical to study long- lived 

phenomena, roughly, those requiring more than 10-9 s (1 ns).  To assure that the 

phenomenon of interest can be studied by MD, it is important to estimate the necessary 

relaxation time.  

In the following sections, the MD simulation methods are explained.  Also, 

various physical properties that can be obtained from MD simulations are introduced.  
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1.4.1 Molecular dynamics methods  

  In a conventional molecular dynamics simulation, the equations of motion are 

solved numerically while keeping the number of atoms N and volume V of the system 

constant.  In this case, the energy E and momentum p are conserved because there are no 

external perturbations.  In classical thermodynamics, this is referred to as an isolated 

system.  While an isolated system is easy to simulate using molecular dynamics 

techniques, it is rarely encountered in real experiments.  Hence, the conventional 

equations of motion need to be extended to describe experimentally interesting 

conditions, such as constant temperature T or constant pressure P.   

  To extend the equations of motion (Hamiltonian formulation), it is useful to 

define an ensemble.  Ensemble is a collection of all possible microstates that has the same 

macroscopic properties of a thermodynamic system in which we are interested.  

Depending on the experimental condition of interests, a relevant ensemble should be 

chosen.  For example, an isolated system and a closed isothermal system correspond to 

the microcanonical (constant N, V and E) and canonical (constant N, V and T) ensemble, 

respectively.   

  While there is no well-defined way to extend the Hamiltonian formulation, a 

successful approach has been to introduce additional degrees of freedom (Andersen, 

1980).  Andersen used V as an additional degree of freedom to achieve constant enthalpy 

and constant pressure (HPN) conditions.  Subsequently, Parinello and Rahman 

generalized Andersen’s formula by allowing fluctuations in shape h (Parrinello and 

Rahman, 1981).  By allowing fluctuations in shape (or equivalently, symmetry) and 
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volume, the stress and strain tensors were calculated to achieve the constant enthalpy and 

constant thermodynamic tension (HtN) condition.  This method is especially useful to 

study of structural phase transitions and the mechanical properties of a crystalline solid, 

where symmetry is important.  In practice, the constant temperature condition is more 

frequently used than the constant enthalpy condition in real experiments.  Therefore, 

there was incentive to develop methods to generate ensembles under the condition of 

constant temperature.  The most convenient one is introduced by Nose (Nose, 1984) and 

later generalized by Hoover (Hoover, 1985).  In this method, the constant temperature 

condition is achieved by coupling the momenta of the atoms to an external heat bath.  

Soon after the introduction of Nose’s ideas, Ray and Rahman (Ray and Rahman, 1984, 

1985) combined Nose’s ideas with the Parrinello-Rahman theory to achieve the constant 

temperature and constant thermodynamic tension (TtN) condition.  Much of the work in 

this thesis is based on Ray and Rahman’s single Hamiltonian formulation, which can 

generate EhN, ThN, HtN, and TtN ensembles.   

 

1.4.2 Hamiltonian formulation 

  The Hamiltonian for the TtN ensemble is expressed as: 
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Here, (si,π i) are the scaled coordinates and conjugate momentum of particle i.  (h,Π) are 

the shape and momentum tensor of the primary MD cell.  (f, P) are the Nose mass scaling 

variable and its conjugate momentum.  The metric tensor G is defined by hhG
~

=  and U 
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is the potential energy.  The parameters W, called “piston mass” and M, called “thermal 

inertia,” are introduced so that h and f satisfy dynamical equations.  V0 is the reference 

volume, defined by V0=det(h0), where h0 is the reference shape tensor at zero tension.  T0 

is the thermal reservoir temperature and ε is the strain matrix which is defined by 
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where the tilde indicates matrix transpose. 

 In this Hamiltonian formulation, the particle position and momentum (ri, pi) are 

related to the scaled particle variables (si,π i) by ii hsr = and fhp ii /
~ 1π−= , where si 

range from 0 to1.  Therefore, the kinetic energy (KE) is represented by the first term in 

Hamiltonian and the second term is internal energy (U).  The third and fourth terms are 

related to the elastic energy of the system.  Finally, the fifth and sixth terms are kinetic 

term and potential term for the Nose mass scaling variable f, to achieve constant 

temperature dynamics.  

 Using the Hamiltonian Eq. 1-1, equation of motion can be derived as:  
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Here, subscript α and β  represent x,y, and z direction.  Pαβ is the microscopic stress tensor 

can be expressed as: 
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Therefore, the Hamiltonian for TtN dynamics requires the solutions of 3N+9+1 equation 

of motions.  N is the number of atoms with 3 degrees of freedom, h matrix has 9 

independent components, and one more degree of motion of f.  

  Subsequently, Hamiltonians for EhN, ThN, and HtN dynamics can be obtained 

from the Hamiltonian for TtN dynamics with constraints (Ray and Rahman, 1984, 1985).  

If the Nose variable is constant as f=1 and the shape matrix h is constant, the Hamiltonian 

for TtN dynamics reduces to the Hamiltonian for the EhN dynamics.  If only h is constant, 

the Hamiltonian for the ThN dynamics is obtained.  If only the Nose variable is constant 

as f=1, the Hamiltonian for the HtN dynamics is obtained.  

  

1.4.3 Determination of thermodynamic properties 

 Provided any measurable property A in terms of the phase space trajectory 

{rN(t),pN(t)} of any ensemble, the experimentally observable macroscopic property can be 

expressed as the time average: 
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In general, τ should be long enough to include several multiples of the relaxation time for 

the corresponding property.  Using Eq. 1-7, the simple thermodynamic properties such as 

the potential energy U, the kinetic energy KE, the temperature T, the volume V and the 

pressure P can be calculated by averaging the corresponding properties over a time 

period.  However, several thermodynamic properties cannot be determined in the same 

way, such as the entropy S and properties related to entropy (the Helmholtz free energy 

F, the Gibbs free energy G, and the chemical potential µ).  This is because these 
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properties are not a function of the phase space trajectory {rN(t),pN(t)}, rather they are a 

function of the accessible phase space volume for the system.  Separate techniques are 

required to evaluate such thermodynamic quantities from MD (Frenkel, 1996).   

 Other thermodynamic properties, such as heat capacities and isothermal 

compressibility, are the thermodynamic response functions, which are derivatives of the 

simple thermodynamic quantities.  The response functions capture the response of simple 

thermodynamic quantities to changes in measurable quantities, typically either the 

pressure or temperature.  Since they are derivative quantities, they are analytically related 

to the thermodynamic fluctuations via statistical mechanics.  Thus, 
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Here, δA is the fluctuation of the dynamic value A about its average value <A> 

><−= AAAδ         (1-11) 

Therefore, <(δA)2> is the mean square fluctuation. 

2222 )()( ><−>>=<><−>=<< AAAAAδ      (1-12) 

All remaining response functions can be evaluated using the thermodynamic fluctuations 

combined with classical thermodynamic relations (Haile, 1997). 

 

1.4.4 Determination of structural properties 
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To describe structural properties, a statistical description of relative atomic 

configurations, such as radial distribution function (RDF or g(r)), is commonly used.  The 

g(r) is particularly useful because it can be obtained experimentally by applying a Fourier 

transform to X-ray diffraction data.  By definition, g(r) is the probability of finding a pair 

of atoms separated by a distance r, relative to the probability for a random distribution at 

the same density.  Eq. 1-13 shows the mathematical expression of g(r).   
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Here rij is the distance between atom i and j, δ(x) is the Dirac delta function, and the 

angular brackets represent the time average.  

Crystalline solids are structurally well defined.  Therefore, in this case, g(r) for 

crystalline solids are characterized by sharp peaks around each lattice site and the width 

of peak is correlated to the temperature of the system.  A typical g(r) for an FCC 

crystalline solid is shown in Fig. 1-4.  For liquids, g(r) is characterized by broad peaks 

that represent a shell of neighbors and an asymptotic value of g(r)=1 for large r.  g(r) is 

also useful in characterizing the structure of glasses (Finney, 1977).  In glasses, g(r) 

shows a unique second peak split and this is indicative of amorphous atomic packing. 

       

1.4.5 Determination of transport properties 

Transport properties are responses of a system that has not reached equilibrium.  

For example, diffusion is the atomic motion due to the concentration gradient and its 

macroscopic description is known as Fick’s law.  In this sense, transport properties can be 

calculated by non-equilibrium MD methods only.  In non-equilibrium MD, an external 

force is applied to the system to establish the non-equilibrium situations of interest, and 
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the system’s response to the force is then determined from the simulation.  However, the 

conventional MD (equilibrium MD) also can be used to obtain transport properties by 

measuring microscopic fluctuations in the system.  This is achieved by calculating time 

correlation functions C(t), which captures how a dynamic quantity A(t) is related to the 

other dynamic quantity B(t).  
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Some examples of the relation between microscopic fluctuations with transport properties 

are shown as below. 
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Here, vi(t) is the velocity of an atom i, Pαβ(t) is off diagonal (α≠β) term of the pressure 

tensor, and Pαα(t) or Pββ(t) are diagonal terms in the pressure tensor.   

 

1.4.6 Force-field and parameters  

To simulate material properties and processes using MD methods, a functional 

form for the interatomic potential U(rN) must be chosen.  Many studies of metallic 

glasses have used pair potentials such as Lennard-Jones potential (Woodcock et al., 1976; 

Abraham, 1980; Fox and Andersen, 1984; Jonsson and Andersen, 1988; Wahnstrom, 
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1991; Li and Johnson, 1993; Kob, 1999).  Such simulations provide an important 

theoretical means to study the properties of glasses, including the nature of the glass 

transition.  However, pair potentials have intrinsic limitations when applied to metallic 

systems.  For example, systems described with pair potentials always satisfy the Cauchy 

relation C12=C44 between elastic constants, whereas metallic systems typically strongly 

disobey the Cauchy relation (Thomas, 1971).  In addition, pair potentials cannot describe 

the volume dependency of potential energy in metallic systems, which is known to be 

important in metallic systems (Heine, 1970).  Thus, we believe that it is essential to 

include many-body interactions in studying the phase behavior of metals and metal 

alloys.   

In this thesis, the Sutton-Chen (SC) many-body potential is used, which has a 

simple power law form and relatively long-range character (Sutton and Chen, 1990).  The 

SC many-body potential has the form  

∑ ∑ ∑ 







−==

≠i i ij
iiiiijijitot crVUU 2/1)(

2
1

ρεε ,    (1-18) 

where 
n

ij

ij
ij r

rV 









=

α
)(         (1-19) 

and ∑ ∑
≠ ≠











==

ij ij

m

ij

ij
iji r

r
α

φρ )( .      (1-20) 

ijr  is the distance between atom i and j.  V( ijr ) is a repulsive pair potential between atoms 

i and j, accounting for the Pauli repulsion between the core electrons.  The cohesion 

associated with atom i is captured in a local energy density iρ .  ε  sets the overall energy 
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scale and ci is a dimensionless parameter scaling the attractive term.  α  is a length 

parameter leading to a dimensionless form for V and ρ.   

The force-field parameters for the SC potential were optimized to reproduce 

experimental properties such as density, cohesive energy, bulk modulus, elastic constants, 

phonon dispersion, vacancy formation energy, and surface energy (Kimura, 1998).  In 

calculating these properties, quantum corrections were included, leading to the quantum 

Sutton-Chen, or Q-SC force field (Yoshitaka Kimura, 1998).  The Q-SC parameter sets 

for Cu is presented in Table 1 and has been employed successfully in earlier studies 

(Cagin et al., 1999; Ikeda et al., 1999; Qi et al., 1999, 2002). 

For alloys, we use the following combination rules to describe the interaction 

between different types of atoms: 

jjiiij εεε = ,         (1-21) 
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and jjiiij ααα = .        (1-24) 

These combination rules describe the concentration dependencies of the lattice 

parameters and elastic constants of simple alloy systems with good accuracy (Rafiitabar 

and Sutton, 1991).  
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Table 1-1.  
(a) Parameters for the quantum Sutton-Chen (Q-SC) many-body potential for Cu 

(Kimura, 1998).  

ε(meV) c  m n α (A) 

Cu 5.7921  84.843  5 10 3.603 

 

(b) The lattice constant α, cohesive energy Ecoh, elastic constants Cij, and bulk modulus B 

calculated using the Q-SC force field parameters for TtN molecular dynamics 

calculations.  Unless otherwise indicated, the computed values are for the minimized 

structures.  These values are compared to experimental (Exp) values at T=0K, unless 

otherwise indicated (Kimura, 1998). 

 α(T=0K) α(T=300K) Ecoh  C11 C12 C44 B 

 [A]  [A]  [eV/atom] [GPa] [GPa] [GPa] [GPa] 

Exp 3.603  3.615  3.49  176.2 124.9 81.8 142.0 

Q-SC  3.603  3.622  3.49  164.5 114.5 71.0 131.2  



1-22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. A schematic illustration of volume as a function of temperature, 

demonstrating various phase behaviors.  Upon heating (1→2), a crystalline solid melts at 

the melting temperature Tm.  Upon cooling, with sufficiently low cooling rate (2→1), 

liquid crystallizes at Tm.  However, at sufficiently high cooling rate (2→3), a liquid may 

solidify into a glass in a narrow temperature range near the glass transition temperature 

Tg. 
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Figure 1-2. Thermodynamic characteristics of (a) first-order and (b) second-order phase 

transformations (reproduced from (Porter and Easterling, 1981)). 
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Figure 1-3.  Three possible T0 curves (polymorphic melting curves) for simple eutectic 

systems.  From top to bottom the glass forming ability increases (reproduced from 

(Peker, 1994)).  
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Figure 1-4. The radial distribution functions g(r) of a FCC, liquid, and glass system 

(from bottom to top).  The FCC g(r) peaks are at ,σ ,2σ ,3σ σ2 , ,5σ ,6σ ,7σ  

where σ  is the first nearest neighbor distance.  The liquid g(r) shows broad peaks that 

represent a shell of neighbors and an asymptotic value of g(r)=1 for large r.  The glass 

g(r) shows a splitting in a second peak, which is a characteristic of amorphous atomic 

packing. 
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