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Chapter 1 Introduction

1.1 Motivation

In this dissertation, I attack several problems relating to the general theme of loco-

motion in a fluid by a shape-changing body. The underlying motivation is to better

understand the propulsion and control of biomimetic underwater vehicles.

Not surprisingly, many aquatic creatures are impressive swimmers, and observers

have argued that the locomotion of various biological swimmers, from fish to cetaceans

to penguins, must be exceptionally efficient. Such proposals date at least back to 1936

when Gray estimated the muscle power available to a dolphin and how much power

should be required to propel a dolphin-shaped object through the water at delphinine

speeds [Gra36]. “Gray’s Paradox” is that the latter estimate was seven times higher

than the former estimate, implying that dolphins should not be able to swim as fast as

they do. Over the decades various flaws have been exposed in Gray’s calculations, but

the idea persists that dolphins and other biological swimmers may be unexpectedly

efficient, having evolved to exploit some unusual fluid mechanics.

More recently, Triantafyllou et al. have proposed that fast-swimming fish use tail

motion as a means of vorticity control, minimizing energy lost in the wake and recov-

ering energy from vortices originating ahead of the tail. A flexible body utilizing these

energy recovery methods could have an apparent drag less than that of a rigid body

of the same size and baseline shape. There is experimental support for this theory:

notably, the MIT “RoboTuna” [Bar96, BGT96] was able to achieve significant drag

reduction with a flexible oscillating body, suggesting not only that fish-like propul-

sion can be efficient but that the effect can be reproduced by macroscopic motions

of a mechanical device. Since non-nuclear underwater vehicles are often significantly

constrained by the battery energy available to them, any mechanism for increasing

their efficiency which could be copied from the biological world would be a significant
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benefit.

A variation on the idea of wake control is that if a biomimetic robot swimmer

recaptures energy from its wake, it will make less noise in the water. Also, whatever

noise it does make will presumably sound more like a fish (or cetacean, et cetera) and

not like an ordinary vehicle. So fish-like robots may be useful in stealthy approach or

surveillance applications.

Biological swimmers are also impressive in being notably more maneuverable than

ordinary watercraft. Water vehicles with conventional propulsors and control surfaces

typically require several body lengths to make a turn and have low maneuverability

at low speeds. The addition of multiple propulsors along lateral axes can improve

low-speed maneuverability but at a serious cost in weight, volume, and complexity.

Meanwhile, some fish can make a 180-degree turn in a single body length, while

predatory fish are capable of accelerations on the order of 100m2/s2 from a dead stop.

There may be a role for high-manueverability vehicles which work in the same way.

For all these reasons, in the last decade there has been wide interest in biomimetic

swimming robots, which propel themselves through a fluid not by conventional thrusters,

but by undulations or quasi-periodic changes in shape. Experimental efforts have

included attempts to imitate the action of a “disembodied” fish tailfin [AHB+91,

ACS+97, SLD00] and tow tank models of entire fish such as the MIT RoboTuna

[Bar96, BGT96]. Free-swimming biomimetic robots include the Vorticity Control Un-

manned Undersea Vehicle built at the Charles Stark Draper Laboratory [AK99]; the

MIT RoboPike project; an eel-like robot at the University of Pennsylvania [CMOM01];

a fish robot at the Ship Research Institute in Tokyo [HTT00]; a dolphin robot at the

Tokyo Institute of Technology [NKO00]; an underwater vehicle with paired mechan-

ical pectoral fins at Tokai University [KWS00]; and ongoing efforts to develop robot

lampreys [AWO00] and robot penguins [Ban00].

In this thesis I will suggest some modelling and planning techniques relevant to

these and future biomimetic vehicles, and also describe an experimental platform

constructed at Caltech.
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1.2 Summary and Relation to Previous Work

In Chapter 2, I examine the self-propulsion of a smooth body changing shape in a

quiescent irrotational potential flow, a problem previously studied by Saffman [Saf67]

and by Miloh and Galper [Mil91, MG93, GM94]. I specialize to a body with a finite

number of modes of deformation and derive the equations of motion emphasizing

the “connection” from geometric mechanics: this may be considered an extension

of Ostrowksi and Burdick’s work on undulatory locomotion [OB98, Ost95] to fluid

mechanical systems. I then focus on the particular example of the squirming circle,

which was introduced in the case of one-dimensional motion by Kelly and Murray

[KM96], and which bears comparison to the experimental amoebot built by Chen

[CLC98]. I extend the example to motion in the plane and provide optimal control

results for following a kinematic trajectory in fixed time while minimizing control

effort.

In Chapter 3, I present general closed-form expressions for the force and moment

on a deformable Joukowski foil executing arbitrary translation and rotation while

also undergoing an arbitrary time-dependent change in its shape parameters. My

motivation is to model the forces on a bending flexible fin or flexible streamlined

body: however, I leave open the possibility that the foil has not only time-varying

camber but also time-varying thickness, chord length, and/or area. I assume inviscid

flow with a finite number of point vortices, including wake vortices shed from the

trailing edge of the foil over time. These results may be considered a generalization

of the closed-form expressions found by Streitlien [Str94, ST95] for a rigid Joukowski

foil undergoing arbitrary rigid-body motion.

Of course, my results include the rigid-body case as a subset. In particular, I

provide closed-form expressions for the added inertia coefficients of a rigid Joukowski

foil. Previously published closed-form expressions for the added inertia [Str94, ST95,

Sed65] suffer from typographical and other elementary errors such as dropped terms

and dropped factors of two. This thesis corrects the historical record, while extending

results to the deformable case.
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In Chapter 4, I describe an experimental three-link robot fish, built by myself

and others, which propels both itself and an attached gantry suspended above the

water. The differences between this experimental platform and previous robot fish

efforts are as follows:

• Our platform is fully mobile in the plane and genuinely self-propelled, as op-

posed to being statically mounted or towed through the water as in [Bar96,

BGT96, AHB+91, ACS+97]. This makes it a better model of free swimming.

In particular, the fact that our fish body is free to sideslip or rotate in the plane

has a dramatic impact on swimming motions. Useful thrust provided by a tail-

stroke can be much greater when the body is fixed, towed, or constrained to one

dimension than when it yaws freely. Also, we were able to consider problems of

turning and yaw stability.

• On the other hand, the restriction to planar motions simplifies analysis of the

system to a planar problem. The attached gantry enables us to have much more

precise telemetry of the fish’s motion than is feasible for a truly free-swimming

platform such as [AK99], enabling us to make more precise comparisons between

theory and experiment. This has also enabled feedback control experiments.

I compare the experimental results from the platform to the results from theory

and computer simulation. It turns out that a relatively simple model incorporating

quasi-static lift and added-mass effects is good enough to make qualitative predictions

about the platform’s swimming behavior. I show that for swimmers executing certain

types of maneuvers, lift forces dominate added mass forces, and vice versa.

InChapter 5, I consider the equations of motion for the three-link swimmer in the

limit where added mass forces dominate, and how to find solutions to these equations

which are optimal according to a plausible performance index. Once found, these

optimal solutions to short-time-horizon planning problems can be pieced together to

form larger trajectories.

In Chapter 6, I examine the problem of trajectory planning for a mobile robot

restricted to a set of finite motions, which can be iterated and concatenated to form
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larger trajectories. This is a reasonable model for shape-changing robots, which (a)

locomote through repeated periodic undulations; (b) will likely have a finite number

of gaits or periodic motions which are understood or deemed optimal; and (c) may

not be small-time locally controllable.

I suggest three planning methods based on the density of points in configuration

space reachable by the robot in a certain number of steps. The first algorithm pro-

posed is directly inspired by the density-based Ebert-Uphoff algorithm for inverse

kinematics of a discrete manipulator, as outlined by Chirikijian and Kyatkin [CK01].

I adapt the Ebert-Uphoff algorithm to the domain of mobile robots, notionally re-

placing the links of a discrete manipulator with segments of a path. One important

change is that unlike the number of links in an existing manipulator, the number of

steps in a mobile robot’s path can be freely increased or decreased as necessary on a

task-by-task basis. I discuss how the mobile robot can make task-by-task trade-offs

between path length and the precision with which the goal is reached, and illustrate

with an example using a model system. I also enhance the Ebert-Uphoff algorithm by

evaluating each density function on several length scales instead of just one, since dif-

ferent length scales are appropriate depending on whether solutions near the desired

goal are dense or sparse.

The second density-based planning algorithm uses a divide-and-conquer strategy

instead of the essentially linear method of the Ebert-Uphoff algorithm. The divide-

and-conquer algorithm requires exponentially less memory than the Ebert-Uphoff

algorithm, and is exponentially faster during the expensive mapping/pre-computation

phase. At run time, when a goal is provided and a trajectory is planned using the

pre-computed map, the divide-and-conquer strategy may be either faster or slower

than the linear strategy, depending on how well-behaved the mobile system’s density

functions are, and whether the divide-and-conquer algorithm can take advantage of

parallel processing.

Finally, I suggest a way to use density functions to help search for a path through

a field of static obstacles.

When compared to existing trajectory-planning methods based on Dijkstra’s al-
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gorithm [Lat90], the density-based methods have the following advantages:

• Path length is a fully controllable parameter. The method can be used to find

not just the shortest path, but a path with any specified acceptable length.

This facilitates trade-offs between path length and goal accuracy, as mentioned

earlier, and could also be valuable in rendezvous problems.

• Because the density function represents all feasible paths, instead of recording

only the “best” path to each location like Dijkstra-based methods, the density-

based methods are more robust in some ways. If the “best” path is unexpectedly

unusable, the density-based methods are able to plan an alternative trajectory

without starting from scratch.

• It is possible for Dijkstra-based methods to find a suboptimal solution, or no

solution at all, because the correct solution was lost to “round-off error.” This

problem may be especially acute for robots, such as fish robots, which are

not small-time locally controllable. The density-based planning methods can

also lose solutions to round-off error, but because the density functions can

be found by convolution of sets of large motions, instead of by incrementally

adding small motions, the problem is less severe. This makes the density-

based methods better suited for problems involving either long trajectories or

a coarsely discretized configuration space.
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Chapter 2 Smooth Deformable Bodies in

an Ideal Fluid

2.1 Potential Flow Around a Smooth Deformable

Body

Real amoebae are microscopically small. They operate at a very low Reynolds number

and the relevant fluid equations are those of creeping flow [SW89]. However, if we

were to build a macroscopic “robot amoeba” and expect it to swim through water,

the Reynolds number of its ambient flow would be much higher and inertial forces

will dominate instead of viscous ones. I thus make the reasonable idealization that

the robot amoeba is a connected deformable body swimming through an inviscid and

incompressible fluid. I also assume that the fluid is irrotational everywhere, and that

the amoeba cannot generate vorticity in the fluid. Unless the amoeba grows sharp

fins, this too is a reasonable assumption.

Any “amoeba” robot which we might actually construct would have a finite num-

ber of actuators. Indeed, we would like to use as few actuators as possible. Therefore,

rather than allow the boundary of the amoeba to be infinitely variable, I assume that

its shape can be described by a finite number, ns, of shape variables, s. The space of

all possible shapes, denoted by S, is a finite-dimensional manifold.

I fix a frame, FB, to the body of the swimmer and let FW denote a fixed reference

frame. (See Figure 2.1.) The location of the FB is given by g(t) ∈ SE(d), d = 2, 3.

In coordinates, elements of SE(d) can be represented by homogeneous matrices, g.

g =





R ~p

~0T 1



 (2.1)
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Figure 2.1: Schematic of deformable swimming body

The matrix R ∈ SO(d) describes the orientation of FB with respect to FW , while

~p ∈ IRd is the position of FB’s origin. The velocity of the moving reference frame, as

seen by an observer in FB, is g
−1ġ:

g−1ġ =





ω̂ ~ξ

~0T 0



 (2.2)

where ω̂ is a d × d skew symmetric matrix and ~ξ ∈ IRd. The quantity g−1ġ is an

element of the Lie algebra of SE(d), se(d). I shall denote by “∨” the identification

of se(d) with IR
d(d+1)
2 : (g−1ġ)∨ = [ξT ωT ]T , where ξ and ω are the linear and angular

body velocities.

The swimmer’s smooth surface, Σ, is parameterized by a coordinate chart that is

a function of (d− 1) parameters σ1, . . . , σ(d−1), or by an atlas of (d− 1)-dimensional

charts. The surface parameters themselves are functions of the shape variables,

s1, · · · , sns .
Given the assumptions described above, the fluid motion around the swimmer is

described by potential flow, and its domain, D, is assumed to be unbounded. In the

most general case, the ambient fluid undergoes non-uniform motion. I will assume

that the ambient flow is quiescent. The Kirchoff principle for potential flow around a

rigid body [VVP73] can be extended to show that the general fluid potential, φ, for

an irrotational fluid surrounding a deformable body will take the form:

φ =
3
∑

i=1

(ξiφ
g
i + ωiφ

g
i+3) +

ns
∑

j=1

φsj ṡj. (2.3)
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The terms {φgi } are the standard Kirchoff potentials for a rigid body—in this case, for

the deformable body at a fixed shape, s. The term φs terms represent the contribution

to the total potential due to body deformations.

Let F (~σ, s) denote the location of a surface point with respect to a body fixed

frame. The normal vector to the surface at that point is denoted n(~σ, s). Then

the instantaneous velocity, in the body frame, of the surface point parameterized

by ~σ is ~ξ + ~ω × F (~σ, s) + ∂
∂si
F (~σ, s)ṡi. At the body surface, the fluid velocity and

surface velocity in the normal direction must match, leading to the following boundary

conditions.

∇φgi · ~n(~σ, s) = ni(~σ, s) i = 1, 2, 3

∇φgi · ~n(~σ, s) = (F (~σ, s)× ~n(~σ, s))i i = 4, 5, 6

−∇φsi · n(~σ, s) =
∂

∂si
F (~σ, s) · n(~σ, s) ∀si (2.4)

These form separate Neumann problems for the Laplace equation (∇2φ = 0) for each

term φgi or φsi . A unique solution (up to a constant) exists for each term [NS82]. 1

The total kinetic energy of the constant density fluid and deformable body system

is

Ttotal = Tbody + Tfluid =
1
2
q̇TΛ(q)q̇ +

ρ0
2

∫

D
||∇φ||2 dV

= 1
2
(ġT ṡT )





Λgg(q) Λgs(q)

(Λgs)T (q) Λss(q)









ġ

ṡ



 − ρ0
2

∫

Σ

φ(∇φ · n) dΣ, (2.5)

where ρ0 is the fluid density, and Λ(q) is the kinetic energy metric (or mass matrix)

of the deformable body (in the absence of surrounding fluid). Because the potentials

1If the fluid external to the swimmer is considered to be an unbounded domain, D, then a
unique solution (up to an overall constant) is only guaranteed if the velocity of the fluid drops off
sufficiently quickly (at least as fast as r−2) at infinity–but this requirement is physically reasonable.
Alternatively, one could adopt the “common-sense” position that the fluid really occupies a large
but bounded domain.
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take the form of Equation (2.3), the total kinetic energy can be put in the form

Ttotal =
1
2
q̇TM(q)q̇.

For the moment I will ignore any additional potential forces acting on the deformable

body, and hence the system’s Lagrangian is equivalent to Ttotal. One could next derive

the governing mechanics from the Euler-Lagrange equations. Instead I take a more

abstract approach.

2.2 Ideas from Geometric Mechanics

New insight can be obtained by applying methods of geometric mechanics to the

system described in the previous section. In particular I wish to find symmetries that

lead to reduction. This section provides a brief summary of relevant ideas. More

extensive background can be found in [MR94, MS93a].

2.2.1 Principal Fiber Bundles

Let Q denote the configuration space of the deformable swimmer, which consists of

its position, g ∈ SE(d), and its shape, s ∈ S. Hence, the configuration space is

SE(d)× S, and a configuration q ∈ Q can be given local coordinates q = (g, s). This

configuration space has a surprisingly rich structure due to the fact that SE(d) is a

Lie group. Recall that every Lie group, G, has an associated Lie algebra, denoted g.

In our context, the Lie algebra of SE(d), denoted by se(d), consists of the velocities

of FB relative to FW , as seen by a body fixed observer. Elements of se(d) can be

represented by matrices of the form g−1ġ, as seen in Equation (2.2).

If the swimmer’s initial body fixed frame position is h ∈ G, and it is displaced by

an amount g, then its final position is gh. This left translation can be thought of as a

map Lg : G→ G given by Lg(h) = gh. The left translation induces a left action of G

on Q. A left action is a smooth mapping Φ : G×Q→ Q such that: (1) Φe(q) = q for

all q ∈ Q; and (2) Φg(Φh(q)) = ΦLgh(q) for all g, h ∈ G and q ∈ Q. The configuration
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space Q endowed with such an action is a principal fiber bundle. Q is called the total

space, S the base space (or shape space), and G the structure group. The canonical

projection π : Q→ S = Q/G is a differentiable projection onto the second coordinate

factor: π(q) = π(g, s) = s. The sets π−1(s) ⊂ Q for s ∈ S are the fibers, and Q is the

union over S of its fibers. The usefulness of this structure will become more apparant

in Section 2.2.3.

2.2.2 Symmetries

In Lagrangian mechanics, symmetries result in conservation laws. By a symmetry,

we mean an invariance of the Lagrangian with respect to some operation.

Definition 1. The lifted action is the map TΦg : TqQ→ TΦ(q)Q : (q, v) 7→ (Φg(q), TqΦg(v))

for all g ∈ G and q ∈ Q. I.e., TqΦg is the Jacobian of the group action. For left trans-

lation on G, TΦg has the coordinate form:

TqΦhq̇ =





TgLhġ

ṡ



 =





hġ

ṡ



 . (2.6)

Based on the group action and lifted action, we can introduce the following notions

of symmetry, or invariance.

Definition 2. A Lagrangian function, L : TQ → IR, is said to be G-invariant if it

is invariant with respect to the lifted action, i.e., if

L(q, vq) = L(Φh(q), TqΦhvq)

for all h ∈ G and all vq ∈ TqQ.

2.2.3 Connections

To analyze and control propulsion of a deformable body, one would like to systemat-

ically derive an expression that answers the question: “If I wiggle the body’s surface,
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how does the body move?” The relationship between shape and position changes

can be formalized in terms of a connection, an intrinsic mathematical structure that

is associated with a principal fiber bundle. I begin with some necessary technical

definitions.

Definition 3. If ξ ∈ g, the vector field on Q denoted by ξQ and given by

ξQ(q) =
d

dt
Φexp(tξ)(q)

∣

∣

t=0
(2.7)

is called the infinitesimal generator of the action corresponding to ξ. The vertical

space, VqQ ⊂ TqQ, is defined as

VqQ = ker(Tqπ) = {v| v = ξQ(q) ∀ ξ ∈ g}.

Definition 4. The connection one-form, Γ(q) : TqQ → g, is a Lie-algebra valued

one-form having the following properties:

(i) Γ(q) is linear in its action on TqQ.

(ii) Γ(q)ξQ = ξ for ξ ∈ g.

(iii) Γ(q)q̇ is equivariant, i.e., it transforms as Γ(Φh(q))TqΦh(q)q̇ = Adh Γ(q)q̇, where

the adjoint action Adh : g → g is defined as Adh ξ = Th−1Lh(TeRh−1ξ) for ξ ∈ g.

The infinitesimal generator of the adjoint representation is given by

adξ η = ξgη = [ξ, η] for η, ξ ∈ g. (2.8)

The horizontal space is the kernel of the connection one-form, HqQ = {z | Γ(q)z =

0}, and is complementary to VqQ. It can be shown that the connection one-form can

be expressed in local coordinates q = (g, s) as follows:

Γ(q)q̇ = Adg(A(s)ṡ+ g−1ġ), (2.9)

where A : TS → g is termed the “local” form of the connection. Hence, any

q̇ = (ġ, ṡ) which lies in HqQ must satisfy a constraint of the following form:

g−1ġ = −A(s)ṡ. (2.10)
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Note that the local connection plays a central role in the ensuing analysis.

For Lagrangian systems with symmetries, such as the one studied here, the con-

servation laws that arise from symmetries constrain the overall system motion. This

constraint can be expressed as a connection, called the mechanical connection [MR94].

It can be shown that the mechanical connection is given by the expression

Γ(q)vq = I−1(q)J(vq), (2.11)

where the momentum map, J : TQ→ g∗, satisfies:

〈J(vq); ξ〉 = 〈〈vq, ξQ〉〉,

for all ξ ∈ g and vq ∈ TqQ. The expression 〈〈·, ·〉〉 denotes inner produce with respect

to the kinetic energy metric. The locked inertia tensor is the map, I(q) : g → g∗

which satisfies

〈I(q)ξ; η〉 = 〈〈ξQ, ηQ〉〉 for all ξ, η ∈ g.

2.3 The Fluid Mechanical Connection

I now revisit the mechanics of the deformable swimmer in light of the ideas presented

in the last section. I first show that a Lagrangian that is invariant with respect to

a group action Φh induces a reduced Lagrangian. This is a general result that is

independent of the particular fluid mechanical model that is studied in this paper.

Proposition 2.3.1. [Ost95] If L(q, q̇) is a G-invariant Lagrangian, i.e., it satisfies

Definition 2, then the reduced Lagrangian, l : TQ/G→ IR, can be expressed as

l(s, ṡ, ξ) =
(

ξT ṡT
)





I(s) IA(s)

AT I(s) m(s)









ξ

ṡ



− V (s), (2.12)

where ξ = g−1ġ ∈ g, ṡ ∈ TrS, I(s) is the locked inertia tensor, and A(s) is the local

form of the mechanical connection.
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Proof. The Lagrangian of a mechanical system can be written as

L(g, s, ġ, ṡ) =
1

2
(ġT , ṡT )





G11 G12
GT12 G22









ġ

ṡ



− V (g, s).

Making use of (2.9) and (2.11), we see that

ġTG11ġ = 〈〈(ġ, 0), (ġ, 0)〉〉 = 〈J(ġ, 0); Adg ξ〉 = 〈IΓ(ġ, 0); Adg ξ〉

= 〈I Adg ξ; Adg ξ〉 = 〈Ad∗g I Adg ξ; ξ〉

ṡTGT12ġ = 〈〈(0, ṡ), (ġ, 0)〉〉 = 〈J(0, ṡ); Adg ξ〉 = 〈IΓ(0, ṡ); Adg ξ〉

= 〈I Adg A(s)ṡ; Adg ξ〉 = 〈Ad∗g I Adg A(s)ṡ; ξ〉.

Because of the G-invariance of L we can define m(s) = G22(e, s) and V (s) = V (q). If

we also define I(s) = Ad∗g I Adg then the truth of the proposition follows.

To apply Proposition 2.3.1 to our particular fluid mechanical problem, I must show

that the fluid mechanical Lagrangian is invariant with respect to a group action. As

seen in Section 2.1, the Lagrangian is a function of φ and ∇φ. Hence, invariance is

based on the invariance of φ and ∇φ. Note that the potential, φ, is defined with

respect to FB. Straightforward calculations based on this fact and an analysis of the

boundary conditions can be used to prove the following fact.

Proposition 2.3.2. In the case of quiescent ambient flow, the potential, φ, defined by

Equation (2.3) and subject to boundary conditions (2.4) is SE(d)-invariant. Similarly,

∇φ is SE(d)-invariant.

This proposition cannot in general be extended to the case of a non-quiescent

ambient flow. The following is a direct consequence of Proposition 2.3.2.

Proposition 2.3.3. The fluid’s kinetic energy, considered as the Lagrangian Tfluid : TQ→
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IR and given by

Tfluid =
ρ0
2

∫

D
||∇φ||2 dV = −ρ0

2

∫

Σ

φ(∇φ · n) dS,

is invariant with respect to a left SE(d)-action.

As a corollary to Prop. 2.3.1 and Prop. 2.3.3, I can state that the kinetic energy

of a deformable swimmer in an inviscid irrotational fluid takes the following special

form.

Proposition 2.3.4. The kinetic energy of the deformable swimmer, Equation (2.5),

assumes the reduced form:

Ttotal(s, ṡ, ξ) =
1

2
(ξT , ṡT )





Id IdAd

ATd Id md









ξ

ṡ



 , (2.13)

where Id is the 6× 6 “locked added inertia” tensor, with entries:

(Id)ij = Λggij (s)−
ρ0
2

∫

Σ

(φgi (∇φgj · n) + φgj (∇φgi · n)) dS, (2.14)

where Λgg(s) is the locked inertia tensor of the deformable body system (considered in

the absence of the fluid) and the second term is the classical added fluid mass/inertia.

Meanwhile, IdAd is a (6× nr) matrix with entries:

(IdAd)ij = Λgsij (s)−
ρ0
2

∫

Σ

(φgi (∇φsj · n) + φsj(∇φgi · n)) dS. (2.15)

Hence, the local form of the fluid mechanical connection, Ad, can be computed as

Ad(s) = I−1d (s)(IdAd)(s). (2.16)

When the symmetry principles are taken into account, the governing equations of

motion that one derives from the Euler-Lagrange mechanical equations reduce to this
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form:

g−1ġ = −Ad(s)ṡ+ I−1d (s)µ (2.17)

µ̇ = ad∗ξ µ (2.18)

M(s)s̈ = T (s)τ −B(s, ṡ)− C(s), (2.19)

where µ is the system’s momentum, in body coordinates. The variable τ represents

the “shape forces.” The first equation is the connection, modified to include the

possibility that the swimmer starts with nonzero momentum. The second equation

describes the evolution of the momentum, as seen in body coordinates. In spatial

coordinates, this momentum is constant since it is a conserved quantity. We will

hereafter assume that the swimmer starts with zero momentum, thereby eliminating

the second equation and simplifying the first to the form of Equation (2.10). The

third equation is known as the “shape” dynamics and is only a function of the shape

varibles. For the purposes of control analysis and trajectory generation, I need only

focus on the connection.

So, the infinitesimal relationship between shape changes and body velocity is

described by the local form of the connection:

ġ = −gA(s)ṡ = −gAi(s)ṡ
i, (2.20)

where the index i implies summation. I would like to find a solution for this equation

that will aid in designing or evaluating motions that arise from shape variations.

Because SE(d) is a Lie group, the solution to Equation (2.20) will generally have the

form

g(t) = g(0)ez(t),

where z ∈ se(d). An expansion for the Lie algebra valued function z(t) has been given

by Magnus [Mag54].

z = A+
1

2
[A,A] +

1

3
[[A,A], A] +

1

12
[A, [A,A]] + · · ·
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A(t) ≡
∫ t

0

A(τ)ṡ(τ)dτ,

where [·, ·] is the Jacobi-Lie bracket on g.

To obtain useful results, examine the group displacement resulting from a periodic

path α : [0, T ] → M such that α(0) = α(T ). Taylor expand Ai about α(0) and then

judiciously regroup, simplify, apply integration by parts, and use the fact that the

path is cyclic [RB98].

z(α) = −1

2
Fij(0)

∫

α

dsi dsj (2.21)

+
1

3
(Fij,k − [Ai, Fjk])(0)

∫

α

dsi dsj dsk + · · · ,

where

Fij ≡ Aj,i − Ai,j − [Ai, Aj] (2.22)

is termed the curvature of the connection, the notation “,j” indicates differentiation

with respect to sj, and the following shorthand notation is used

∫

α

dsidsjdsk ≡
∫ T

0

∫ tk

0

∫ tj

0

ṡi(ti)dti ṡ
j(tj)dtj ṡ

k(tk)dtk.

Summation over indices is implied. The connection, A, and its curvature, F , are

evaluated at α(0) so that the coefficients of the integrals are constants. For a complete

discussion of this series, see [RB98].

Thus, our geometric analysis shows that for small boundary deformations, the

displacement of the body over one period of shape deformation is proportional to the

curvature of the connection. The curvature is an excellent measure of the effectiveness

of the swimmer. This result further bolsters the central role of the fluid mechanical

connection in the analysis of deformable swimmers.

For proportionally small deformations, the displacement experienced during one
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Figure 2.2: The variables s1(t), s2(t), s3(t) correspond to 3 deformation modes. The
1st and 2nd modes together yield motion in the x-direction. The 1st and 1st modes
together yield motion in the y-direction.

deformation cycle is

gdisp = ez(α) ≈ exp

(

−1
2
Fij

∫

α

dsi dsj
)

. (2.23)

The term −1
2

∑

i,j Fij
∫

α
dsi dsj is Lie-algebra valued, and therefore it will take the

form of g−1ġ in Equation (2.2). The exponential of such a matrix is





eω̂ (I − eω̂)(ω̂ξ) + (~ω · ξ)~ω
~0T 1



 . (2.24)

2.4 Planar Amoeba Example

As an example, I consider the propulsive movements of a roughly circular device whose

boundary shape is modulated by a “small” amount. Bearing in mind that a practical

robot amoeba should have as few actuators as possible, I restrict the possible defor-

mations of its boundary to a set parameterized by three variables s1(t), s2(t), s3(t) as

follows. Fix a frame in the body of the amoeba, and let the shape of the amoeba be

described in polar coordinates in the body frame by the equation (see Figure 2.2):

F (σ, s) = r0[1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ))].

(Note that the centroid C of the deformed amoeba is not, in general, located at

the origin of the body frame; I will return to this point later.) Under this time-varying
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deformation the area A of the amoeba is

A(t) = πr20[1 +
1

2
ε2(s1(t)

2 + s2(t)
2 + s3(t)

2)].

The perfectly irrotational fluid surrounding the amoeba has density ρ. The potential

φ is determined by the surface boundary conditions, by the requirement that u = ∇φ
go to zero as r approaches infinity, and by the requirement that there be no circulation

around the amoeba. The surface boundary condition in polar coordinates is

(∇φ · ~n)|Σ =
[

ẋ cos σ + ẏ sin σ −ẋ sin σ + ẏ cos σ
]T

· ~n

+ εr0

[

ṡ1 cos(2σ) + ṡ2 cos(3σ) + ṡ3 sin(3σ) 0
]T

· ~n.

The unit normal to the surface at any point is

n(s) =





1− 1
2
ε2β2

β (ε− (s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)) ε
2)



+O(ε3),

where β = −3 s3 cos(3σ) + 2 s1 sin(2σ) + 3 s2 sin(3σ). Solving Laplace’s equation by

separation of variables, I find

φ = φ1ẋ+ φ2ẏ + φ3ω + φs1ṡ1 + φs2ṡ2 + φs3ṡ3 +O(ε3),

where, using the notation c(σ) = cos(σ), s(σ) = sin(σ),

φ1 = −
r20
r
c(σ) + ε

(

r20
r
s1c(σ) +

r30
r2
s2c(2σ)−

r40
r3
s1c(3σ)−

r50
r4
s2c(4σ)

+
r30
r2
s3s(2σ)−

r50
r4
s3s(4σ)

)

+ ε2
(

− r
2
0

2r
(3s21 + 5s22 + 5s23)c(σ)

−2r
3
0

r2
s1s2c(2σ) +

r40
4r3

s21c(3σ) +
r50
r4
s1s2c(4σ)−

r60
4r5

(5s21 − 3s22 + 3s23)c(5σ)

−3r
7
0

r6
s1s2c(6σ)−

7r80
4r7

(s22 − s23)c(7σ)−
2r30
r2
s1s3s(2σ) +

r50
r4
s1s3s(4σ)

+
3r60
2r5

s2s3s(5σ)−
3r70
r6
s1s3s(6σ)−

7r80
2r7

s2s3s(7σ)

)
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φ2 = −
r20
r
s(σ) + ε

(

r30
r2
s3c(2σ) +

r50
r4
s3c(4σ)−

r20
r
s1s(σ)−

r30
r2
s2s(2σ)−

r50
r3
s1s(3σ)

−r
5
0

r4
s2s(4σ)

)

+ ε2
(

2r30
r2
s1s3c(2σ) +

r50
r4
s1s3c(4σ) +

3r60
2r5

s2s3c(5σ) +
3r70
r6
s1s3c(6σ)

+
7r80
2r7

s2s3c(7σ)−
r20
2r

(3s21 + 5s22 + 5s23)s(σ)−
2r30
r2
s1s2s(2σ)−

r40
4r3

s21s(3σ)

−r
5
0

r4
s1s2s(4σ)−

r60
4r5

(5s21 + 3s22 − 3s23)s(5σ)−
3r70
r6
s1s2s(6σ)−

7r80
4r7

(s22 − s23)s(7σ)

)

φ3 = ε

(

r50
r3
s3c(3σ)−

r40
r2
s1s(2σ)−

r50
r3
s2s(3σ)

)

+ ε2
(

3r30
r
s1s3c(σ) +

3r70
r5
s1s3c(5σ) +

7r80
2r6

s2s3c(6σ)−
3r30
r
s1s2s(σ)

−5r60
4r4

s21s(4σ)−
3r70
r5
s1s2s(5σ)−

7r80
4r6

(s22 − s23)s(6σ)

)

φs1 = ε

(

− r40
2r2

c(2σ)

)

+ ε2
(

r20
2
s1 ln(r)−

5r60
8r4

s1c(4σ)−
3r70
5r5

s2c(5σ)−
3r70
5r5

s3s(5σ)

)

φs2 = ε

(

− r50
3r3

c(3σ)

)

+ ε2
(

r20
2
s2 ln(r)−

r30
r
s1c(σ)−

3r70
5r5

s1c(5σ)

− 7r80
12r6

s2c(6σ)−
7r80
12r6

s3s(6σ)

)

φs3 = ε

(

− r50
3r3

s(3σ)

)

+ ε2
(

r20
2
s3 ln(r) +

7r80
12r6

s3c(6σ)−
r30
r
s1s(σ)

−3r70
5r5

s1s(5σ)−
7r80
12r6

s2s(6σ)

)

From φ I can readily find the rightmost terms of equations (2.14) and (2.15); it

remains to find Λgg and Λgs.

To compute Λgg and Λgs, I must make some assumptions regarding the amoeba’s

internal structure. For this example I assume that the amoeba is homogeneous (which
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implies that the center of mass is located at the centroid) and that it has the kinetic

energy of an instantaneously rigid body of mass M with the same center-of-mass

velocity and angular velocity. The velocity of the centroid is given by

Ċ =





ẋ

ẏ



+ ε2r0





s1ṡ2 + ṡ1s2 − s1s3ω

s1ṡ3 + ṡ1s3 + s1s2ω



+O(ε3),

while the moment of inertia around the centroid is

M

A(t)

∫ 2π

0

∫ r(t,θ)

0

∣

∣

∣

∣

∣

∣





r′ cos(θ)− ε2r0s1(t)s2(t)

r′ sin(θ)− ε2r0s1(t)s3(t)





∣

∣

∣

∣

∣

∣

2

r′ dr′ dθ

= M
1
2
πr40(1 + 3ε2(s21 + s22 + s23)) +O(ε3)

πr20(1 +
1
2
ε2(s1(t)2 + s2(t)2 + s3(t)2))

= Mr20

(

1

2
+

5

4
ε2(s21 + s22 + s23)

)

+O(ε3),

so the matrices Λgg and Λgs are given to order ε2 by

Λgg ≈M











1 0 −ε2r0s1s3
0 1 ε2r0s1s2

−ε2r0s1s3 ε2r0s1s2 r20(
1
2
+ 5

4
ε2(
∑3

i=1 s
2
i ))











Λgs =M











ε2r0s2 ε2r0s1 0

ε2r0s3 0 ε2r0s1

0 0 0











+O(ε3).

Using formulas (2.14) and (2.15), to find Id and IdAd, I end with a local connection

form Ad = (Id)
−1(IdAd).

Ad = ε2











r0(1− µ)s2 r0 s1 0

r0(1− µ)s3 0 r0 s1

0 −2π r02 ρ s3
M

2π r02 ρ s2
M











+O(ε3), (2.25)

where µ = (2πr20ρ)/(M + πr20ρ). After using the connection to derive the motion of
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Figure 2.3: Computer animation of a planar amoeba whose density equals that of the
surrounding fluid. There are roughly 15.3 oscillations between snapshots.

the frame, I may easily derive the velocity of the centroid:

Ċ = ε2r0



µ





ṡ1s2

ṡ1s3



+
2ρπr30
M

s1





ṡ2s
2
3 − ṡ3s2s3

ṡ3s
2
2 − ṡ2s2s3







+O(ε3).

As seen above, the abstract approach espoused here leads to a surprisingly succinct

description of the essential governing equations.

2.4.1 Displacement by Periodic Motion

Example (continued): Consider the case of our idealized planar amoeba. Since the

curvature F of the connection is a skew symmetric quantity, there are only three

independent nonzero curvature terms, F12, F13, and F23. Let us assume that the first

deformation mode is forced periodically by input s1 = cos(Ωt), while the second mode

is periodically forced by input s2 = sin(Ωt). For the chosen input forcing functions,

the integral terms associated with the F13 and F23 terms are zero. From Equations
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(2.25) and (2.22) we see that

Â1 = ε2r0
M − πr20ρ

M + πr20ρ











0 0 s2

0 0 s3

0 0 0











+O(ε3) (2.26)

Â2 = ε2r0











0 2πr0ρ
M

s3 s1

−2πr0ρ
M

s3 0 0

0 0 0











+O(ε3) (2.27)

F12 =
2πr30ρ

M + πr20ρ
ε2











0 0 1

0 0 0

0 0 0











+O(ε3). (2.28)

Therefore, the displacement over one period of forcing is

gdisp ≈ exp

(

−1
2
F12(0)

∫ 2π
Ω

0

(∫ t

0

ṡ1(τ)dτ

)

ṡ2(t)dt

−1
2
F21(0)

∫ 2π
Ω

0

(∫ t

0

ṡ2(τ)dτ

)

ṡ1(t)dt

)

= exp(−πF12(0)). (2.29)

If I discard the high-order terms in F12 and exponentiate only the curvature propor-

tional to ε2, we find

gdisp ≈











1 0
−2ε2π2r30ρ

M+πr20ρ

0 1 0

0 0 1











. (2.30)

Thus, to O(ε2), each oscillation results in a displacement of (−2πε2r0 πr20ρ

M+πr20ρ
) along

the x-axis. The simplicity with which this result can be obtained is a direct result of

the geometric approach outlined in Sections 2.2 and 2.3.
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2.4.2 Rectilinear Motion Planning

The series expansion outlined in Section 2.4.1 can be used as a basis for developing

motion planning algorithms, as it directly relates control inputs to net displacement.

Interested readers are referred to [RB98] for more details. Here I take a simplified

approach to our example.

Consider the two-degree-of-freedom problem where we do not wish the amoeba to

rotate, but wish the centroid to follow a path in the plane. Suppose that I choose

sinusoidal inputs with time-varying amplitude, as follows: s1(t) = cos(Ωt), s2(t) =

−a(t) sin(Ωt), s3(t) = −b(t) sin(Ωt). Then

Ċ = ε2r0
2ρπr20

ρπr20 +M





a(t)Ω sin2(Ωt)

b(t)Ω sin2(Ωt)



+O(ε3).

Thus, moving the centroid of the amoeba along a given curve in the plane is remark-

ably easy. (By contrast, moving the body frame origin along a given curve, using this

form of input, would be more complicated, since the velocity of the body frame origin

depends on the derivatives ȧ(t) and ḃ(t) to leading order.) At any point along the

curve, I make the velocity of the centroid tangent to the curve by appropriate choice

of a and b (b/a is the slope of the curve). As long as the curve is smooth, a and b are

smooth functions of time.

This method steers the centroid along a path in the plane, but not necessarily

at a desired speed at any given instant. In particular, the velocity of the centroid

will periodically vanish (when sin2(Ωt) vanishes). Figure 2.3 shows snapshots of a

computer simulation of this model as it tracks a straight line with unit slope.

I must also note that the average velocity of the centroid is disappointingly low,

on the order of ε2r0Ω (which is the norm of the connection’s curvature!). Each shape

change cycle moves the amoeba a distance on the order of ε2r0. Thus if ε = 0.1,

then 100 oscillations are required to move the amoeba one body radius. Mechanically

feasible amoeba will be relatively slow swimmers.
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2.4.3 Optimal Control Analysis for Amoeba

I now demonstrate that the sinusoidal inputs used in the last two sections are “op-

timal” inputs, according to one natural measure of performance. First I restrict the

problem to motion along the x-axis. Therefore I have one base variable Cx and two

shape variables, s1 and s2 (I can neglect s3). Assume that the control inputs are

u1 = ṡ1 and u2 = ṡ2, so Ċx = ε2r0µu1s2. Suppose I choose a minimum-control-effort

performance index:

J(0) =
1

2

∫ T

0

uTu dt =
1

2

∫ T

0

(u21 + u22) dt (2.31)

Assume that Cx(0) = 0 and for simplicity s2(0) = 0. At time T I require a final state

s1(T ) = s1(0), s2(T ) = s2(0), and Cx(0) = d. The Hamiltonian and costate equations

for this optimal control problem are

H =
1

2
(u21 + u22) + λ1u1 + λ2u2 + λ3ε

2r0µu1s2

−(λ̇1, λ̇2, λ̇3) = (0, λ3ε
2r0µu1, 0)

From this we see that λ1 and λ3 are constants, while

λ2(t) = λ2(T ) + λ3ε
2r0µ

∫ T

t

u1(t
′) dt′

The stationarity condition is





u1 + λ1 + λ3ε
2r0µs2

u2 + λ2



 =





0

0




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A solution to these equations is

s1 = a cos(Nπt/T )

s2 = a sin(Nπt/T )

Cx = −ε2r0µa2
Nπ

T
[
t

2
− sin((2Nπ/T )t)

(4Nπ/T )
]

where a = s1(0) and N = − 2d
ε2a2r0µπ

.

To summarize, optimal inputs for s1(t) and s2(t) are sinusoidal functions of time,

90 degrees out of phase. “Optimal” inputs are those which cause the amoeba to swim

a given distance along the x-axis in a given time, while minimizing control effort as

defined in (2.31). By symmetry, sinusoids 90 degrees out of phase in s1(t) and s3(t)

will cause optimal motion along the y-axis. Further, by making s2(t) and s3(t) each

oscillate 90 degrees out of phase with s1(t), I can drive the amoeba in any direction

in the plane, as seen in Section 2.4.2.
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Chapter 3 Deformable Joukowski Foils

I now consider another deformable body: a somewhat “fishlike” swimmer shaped like

a Joukowski foil with changeable shape parameters. The boundary Σ of a Joukowski

foil is the image in the physical z-plane of a circle C, centered on the origin in the ζ

plane, under the transformation

z = F (ζ) = ζ + ζc +
a2

ζ + ζc
. (3.1)

The size and shape of the foil are determined by the parameters a and ζc, and the

radius of C is rc = ‖a − ζc‖. The real number a always has the opposite sign of the

real part of ζc.

The inverse of the Joukowski map is given by:1

ζ = F−1(z) =
1

2

[

z +
√
z2 − 4a2

]

− ζc (3.2)

1The square root in Equation (3.2) is a multivalued function and it is important to choose the
correct branch, i.e., assuming z lies on or outside the foil, the sign of the square root should be chosen
so that ‖ζ‖ ≥ rc. Streitlien [Str94] suggests the expanded form ζ = 1

2

[

z +
√
z − 2a

√
z + 2a

]

−ζc.This
will yield the correct answer for most points in the z-plane but can still give the wrong branch for
points close to the concave surface of a cambered foil.
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Figure 3.1: The Joukowski map z = ζ + ζc + a2/(ζ + ζc) sends a circle to an airfoil
contour. Here a = 1, rc = 1.1, and ζc = (−0.0781 + 0.2185i).
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The area of the foil is given by

A =
1

2i

∫

Σ

z dz

=
1

2i

∫

C

(

ζ + ζc +
a2

ζ + ζc

)(

1− a2

(ζ + ζc)2

)

dζ

=
1

2i

∫

C

(

r2c
ζ

+ ζc +
a2ζ

r2c + ζcζ

)(

1− a2

(ζ + ζc)2

)

dζ

=
1

2i

∫

C

(

r2c
ζ

+ ζc +
a2ζ

r2c + ζcζ
− r2ca

2

ζ(ζ + ζc)2
− a2ζc

(ζ + ζc)2
− a4ζ

(r2c + ζcζ)(ζ + ζc)2

)

dζ

= π

(

r2c −
a4r2c

(r2c − δ2)2

)

= πr2c

(

1− a4

(r2c − δ2)2

)

where δ = ‖ζc‖ and where I have taken advantage of the fact that ζ = r2c/ζ on the

circle C.

The geometric center zc of the foil is given by [Str94]:

zcA =
−1
4i

∫

Σ

z2 dz (3.3)

=
−1
4π

∫ (

ζ + ζc +
a2

ζ + ζc

)2






−
(

rc
2

ζ2

)

+
a2 rc

2

ζ2
(

rc2

ζ
+ ζc

)2






dζ (3.4)

= πr2c

[

ζc +
a6ζc

(r2c − δ2)3

]

(3.5)

zc =
a6ζc + ζc(r

2
c − δ2)3

(r2c − δ2) ((r2c − δ2)2 − a4)
(3.6)

3.1 Allowed Deformations of the Foil

Suppose the Joukowski foil is translating with velocities U and V in the x and y

directions and rotating about the origin at rate Ω, and furthermore the foil shape

parameter ζc changes at a rate ζ̇c = ζ̇x + iζ̇y. Since ζc is varying in time, either rc or

a or both must also be time-varying so the relation rc = ‖a − ζc‖ is satisfied. I can



29

write:

r2c = (a− ζx)
2 + ζ2y (3.7)

ṙc =
1

rc

[

(a− ζx)ȧ− (a− ζx)ζ̇x + ζy ζ̇y

]

(3.8)

I will choose to regard ζx, ζy, and a as the controllable shape parameters, and treat

rc as a dependent quantity, although in principle any three of the four variables could

be taken as independent.

The velocity of the center of area zc is

żc = U + iV + iΩzc

+





a6

(

rc2 − ζc ζc
)

(

−a4 +
(

rc2 − ζc ζc
)2
) − a6 ζc

(

ζc + ζc
)

(

rc2 − ζc ζc
)2
(

a4 −
(

rc2 − ζc ζc
)2
)

+
2 a6 ζc

(

ζc + ζc
)

+
(

rc
2 − ζc ζc

)4 − a4
(

rc
2 − ζc ζc

) (

rc
2 − ζc

(

2 ζc + 3 ζc
))

(

a4 −
(

rc2 − ζc ζc
)2
)2






ζ̇x

+





i a6
(

ζc − ζc
)

ζc
(

rc2 − ζc ζc
)2
(

a4 −
(

rc2 − ζc ζc
)2
) +

i a6

(

rc2 − ζc ζc
)

(

a4 −
(

rc2 − ζc ζc
)2
)

−
i
(

2 a6
(

ζc − ζc
)

ζc + a4
(

rc
2 + ζc

(

2 ζc − 3 ζc
)) (

rc
2 − ζc ζc

)

−
(

rc
2 − ζc ζc

)4
)

(

a4 −
(

rc2 − ζc ζc
)2
)2






ζ̇y

+







2 a4 rc

(

a6 ζc −
(

rc
2 − ζc ζc

)2 (
3 a2 ζc + 2 ζc

(

rc
2 − ζc ζc

))

)

(

rc2 − ζc ζc
)2
(

a4 −
(

rc2 − ζc ζc
)2
)2






ṙc

+







6 a5 ζc
(

rc2 − ζc ζc
)

(

−a4 +
(

rc2 − ζc ζc
)2
) +

4 a3
(

a6 ζc + ζc
(

rc
2 − ζc ζc

)3
)

(

rc2 − ζc ζc
)

(

−a4 +
(

rc2 − ζc ζc
)2
)2






ȧ

(3.9)



30

The acceleration of the center of area zc is

z̈c = U̇ + iV̇ + iΩ̇zc + iΩżc

+
∂zc
∂ζx

ζ̈x +
∂zc
∂ζy

ζ̈y +
∂zc
∂a

ä+
∂zc
∂rc

r̈c

+
∂2zc
∂ζ2x

ζ̇x
2
+
∂2zc
∂ζ2y

ζ̇y
2
+
∂2zc
∂a2

ȧ2 +
∂2zc
∂r2c

ṙc
2

+2
∂2zc
∂ζx∂ζy

ζ̇xζ̇y+2
∂2zc
∂ζx∂a

ζ̇xȧ+2
∂2zc
∂ζy∂a

ζ̇yȧ+2
∂2zc
∂ζx∂rc

ζ̇xṙc+2
∂2zc
∂ζy∂rc

ζ̇yṙc+2
∂2zc
∂a∂rc

ȧṙc

(3.10)

A closed-form expression can be obtained by taking the appropriate partial deriva-

tives of Equation (3.6). The derivatives with respect to ζx and ζy are facilitated by

considering that if ζc and ζc are regarded as independent variables, then:

∂

∂ζx
=

∂

∂ζc
+

∂

∂ζc
(3.11)

∂

∂ζy
= i

∂

∂ζc
− i

∂

∂ζc
(3.12)

For the time being I will not place any other constraints on what deformations of

the foil are allowed. But if the deformations were required to preserve the area of the

foil, for example, then since the area A = πr2c (1− a4/(r2c − ζ2x − ζ2y )2), I would require

(

(r2c − δ2)3 + a4(r2c + δ2)
)

ṙc − 2a3rc(r
2
c − δ2)ȧ− 2a4rcζxζ̇x − 2a4rcζy ζ̇y = 0 (3.13)

which, combined with Equation (3.8), yields

ȧ
[

(a− ζx)
(

(r2c − δ2)3 + a4(r2c + δ2)
)

− 2a3r2c (r
2
c − δ2)

]

− ζ̇x
[

(a− ζx)(r
2
c − δ2)3 + a5(r2c + δ2) + a4ζx(r

2
c − δ2)

]

+ ζ̇y
[

(r2c − δ2)
(

(r2c − δ2)2 − a4
)

ζy
]

= 0 (3.14)
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If the area A is held constant then the velocity of the center of area simplifies to

żc = U + iV + iΩzc

+





π rc
2
(

(

rc
2 − ζc ζc

)4
+ a6

(

rc
2 + ζc

(

2 ζc + 3 ζc
))

)

A
(

rc2 − ζc ζc
)4



 ζ̇x

+





i π rc
2
(

(

rc
2 − ζc ζc

)4 − a6
(

rc
2 +

(

2 ζc − 3 ζc
)

ζc
)

)

A
(

rc2 − ζc ζc
)4



 ζ̇y

+





2π rc

(

rc
8 ζc − 4 rc

6 ζc
2 ζc − a6 ζc ζc

2
+ 6 rc

4 ζc
3 ζc

2
+ ζc

5 ζc
4 − 2 rc

2 ζc

(

a6 + 2 ζc
4 ζc

2
))

A
(

rc2 − ζc ζc
)4



 ṙc

+

(

6 a5 π rc
2 ζc

A
(

rc2 − ζc ζc
)3

)

ȧ (3.15)

A requirement of constant area is not the only reasonable choice of constraint.

One alternative, non-area-preserving approach would be to allow ζc to vary while

keeping rc and a fixed. This would be equivalent to varying the camber of the foil

while keeping its thickness and chord length approximately constant.

3.2 The Potential Function

Suppose the fluid around the foil is at rest at infinity, and allow for the presence of

a central vortex with strength γc at the origin and a certain number of free vortices

(k = 1, . . . , nv) with strengths γk at locations zk = F (ζk) in the flow. Then the fluid

flow in the z plane is described by the complex potential w = φ + iψ made up of

generalized Kirchoff potentials:

w = Uw1(ζ)+V w2(ζ)+Ωw3(ζ)+γcw4(ζ)+
∑

k

γkw
k
5(ζ; ζk)+ζ̇xw

s
1(ζ)+ζ̇yw

s
2(ζ)+ȧw

s
3(ζ)

(3.16)

where wk5 is the portion of the potential associated with the kth wake vortex, and

ws1, w
s
2, w

s
3 are the parts of the potential associated with deformations of the shape of
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the foil.

First I find w1, w2, w3 by considering motion of the rigid foil in the absence of

deformation. As in Equation (2.4), at the surface of the foil Σ undergoing rigid

motion, the flow must match the boundary condition:

(∇φ · n)Σ =
∂ψ

∂σ
|Σ = (

∂ψ

∂x

dx

ds
+
∂ψ

∂y

dy

ds
)|Σ = −(V + xΩ)

dx

ds
+ (U − yΩ)

dy

ds
(3.17)

where I use the same notation as above: n is a unit vector normal to the foil boundary,

and σ is a coordinate parameterizing the surface. I use the subscript Σ to mean “at

the surface Σ.” From this one can conclude that

∂ψ

∂x
|Σ = −V − xΩ (3.18)

∂ψ

∂y
|Σ = U − yΩ (3.19)

So a sufficient condition to satisfy the boundary condition at the surface of the foil is

Im {w}Σ = ψ|Σ
=

(

Uy − V x− 1

2
Ω(x2 + y2)

)

Σ

= Im

{

(U − iV )z − i

2
Ωzz

}

Σ

(3.20)

By substituting Equation (3.16) into the left-hand side of Equation (3.20), we see

that the boundary condition for the w1 component of the potential is

Im {w1}Σ = Im {z}Σ
= Im

{

ζ + ζc +
a2

ζ + ζc

}

C

= Im

{

r2c
ζ

+ ζc +
a2

ζ + ζc

}

C

= Im

{

−r
2
c

ζ
+ ζc +

a2

ζ + ζc

}

C

(3.21)
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(recalling that ζ = r2c/ζ on C) and so an acceptable solution for w1 is:

w1 = −
r2c
ζ

+ ζc +
a2

ζ + ζc
(3.22)

Note that this solution for w1 satisfies not only the boundary condition at the surface

of the foil, but also the requirement that the fluid be at rest at infinity. The quantity

ζ + ζc +
a2

ζ+ζc
, for example, would have satisfied the boundary condition at the foil,

but not at infinity—this is why the modification of Equation (3.21) was necessary.

Similarly:

Im {w2}Σ = Im {−iz}Σ
= Im

{

−iζ − iζc − i
a2

ζ + ζc

}

C

= Im

{

−ir
2
c

ζ
− iζc − i

a2

ζ + ζc

}

C

= Im

{

−ir
2
c

ζ
− iζc − i

a2

ζ + ζc

}

C

(3.23)

and an acceptable solution for w2 is

w2 = −i
r2c
ζ
− iζc − i

a2

ζ + ζc
(3.24)
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Meanwhile:

Im {w3}Σ = Im

{−i
2
zz

}

Σ

= Im

{−i
2
(ζ + ζc +

a2

ζ + ζc
)(ζ + ζc +

a2

ζ + ζc
)

}

C

= Im

{−i
2

[

ζζ + ζcζ + ζcζ + δ2 + a2(
ζ + ζc
ζ + ζc

+
ζ + ζc

ζ + ζc
) +

a4

(ζ + ζc)(ζ + ζc)

]}

C

= Im

{−i
2

[

ζζ + ζcζ + ζcζ + δ2 + 2a2(
ζ + ζc
ζ + ζc

) +
a4

(ζ + ζc)(ζ + ζc)

]}

C

= Im

{−i
2

[

r2c + 2ζcζ + δ2 + 2a2(
ζ + ζc
ζ + ζc

) +
a4

(ζ + ζc)(ζ + ζc)

]}

C

= Im

{−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4

(ζ + ζc)(r2c/ζ + ζc)

]}

C

= Im

{−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4ζ

ζc(ζ + ζc)(ζ + r2c/ζc)

]}

C

(3.25)

The expression inside the curly brackets satisfies the boundary conditions at the foil

and at infinity, but the last term has a singularity at ζ = −r2c/ζc, which is outside

the boundary of C. To cancel this singularity, I add another singularity of opposite

strength at −r2c/ζc, and use the Milne-Thomson circle theorem [MT68] to preserve

the surface boundary condition. The term to be added is

i

2

a4r2c
ζc(r2c − δ2)(ζ + r2c/ζc)

− i

2

a4r2c
ζc(r2c − δ2)(r2c/ζ + r2c/ζc)

By inspection this corrective term is purely real on the circle C, so:

Im {w3}Σ = Im

{−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4ζ

ζc(ζ + ζc)(ζ + r2c/ζc)

− a4r2c
ζc(r2c − δ2)(ζ + r2c/ζc)

+
a4r2c

ζc(r2c − δ2)(r2c/ζ + r2c/ζc)

]}

C

= Im

{−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4(ζ − ζc)

(ζ + ζc)(r2c − δ2)

]}

C

(3.26)

The quantity inside the curly brackets now has no singularities outside the circle
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C, and still approaches a constant at infinity. So we have a solution for w3 which

satisfies all boundary conditions:2

w3 =
−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4(ζ − ζc)

(ζ + ζc)(r2c − δ2)

]

. (3.27)

The potential components due to vortices are straightforward:

w4 = i log(
ζ

rc
) (3.28)

wk5 = i log

(

− rc
ζk

ζ − ζk

ζ − r2c/ζk

)

. (3.29)

Notice that wk5 , the unit potential for a free vortex located at zk = F (ζk), represents

both the vortex itself and its image at the inverse point. The wk
5 terms do not create

any net circulation around a large contour encircling the foil and all vortices; any

such circulation is presumed to be folded into the w4 central vortex term.

To find the potential component associated with changes of the foil shape param-

eters ζx, recall Equation (2.4) and observe that the boundary condition at the surface

of the deforming foil is

Re

{

−idw
s
1

dζ
dζ

}

C

= Re

{

∂F (ζ; ζc)

∂ζc
(−i dz)

}

Σ

(3.30)

= Re

{

−i
(

1− a2

(ζ + ζc)2

)(

1− a2

(ζ + ζc)2

)

dζ

}

C

= Re

{

−i
(

1− a2

(r2c/ζ + ζc)2

)(

1− a2

(ζ + ζc)2

)

dζ

}

C

2Streitlien [Str94, ST95] prescribes this same method of deriving the potential but, apparently
in error, arrives at

w3 = −i
[

ζcr
2
c

ζ
+ a2 r

2
c/ζ + ζc
ζ + ζc

+
a4ζc

(ζ + ζc)(r2
c + δ2)

+
a4 + r4

c − δ4

2(r2
c − δ2)

]

.

This is not equivalent to the correct answer and does not satisfy the boundary condition at the
surface of the foil.
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Integrating both sides with respect to ζ, we find

Re {−iws1}C = Re

{

(−i)
(

ζ − a2ζ

ζc
2 −

a2r4c (−r4c + 2r2cζcζc + (a2 − ζ2c )ζc
2
)

ζc
3
(r2c + ζζc)(r2c − ζcζc)2

−a
2(−r4c + 2r2cζcζc + ζ2c (a

2 − ζc
2
))

(ζ + ζc)(r2c − ζcζc)2
− 2a4r2cζc log((ζ + ζc)/rc)

(r2c − ζcζc)3
(3.31)

+2a2r2c (r
6
c − 3r4cζcζc + 3r2cζ

2
c ζc

2
+ ζc(a

2 − ζ2c )ζc
3
)
log((r2c + ζζc)/r

2
c )

ζc
3
(r2c − ζcζc)3

)}

C

where I have chosen the constant of integration in order to make the arguments of

the logarithms dimensionless.

Im {ws1}C = Im

{

ζ − a2ζ

ζc
2 +

a2r4c (r
4
c − 2r2cδ

2 − a2ζc
2
+ δ4)

ζc
3
(r2c + ζζc)(r2c − δ2)2

+
a2(r4c − 2r2cδ

2 − ζ2c a
2 + δ4)

(ζ + ζc)(r2c − δ2)2
− 2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3

+2a2r2c (r
6
c − 3r4cδ

2 + 3r2cδ
4 + ζca

2ζc
3 − δ6)

log((r2c + ζζc)/r
2
c )

ζc
3
(r2c − δ2)3

}

C

(3.32)

Im {ws1}C = Im

{

r2c
ζ
− a2r2c

ζc
2
ζ
+
a2r4c ((r

2
c − δ2)2 − a2ζc

2
)

ζc
3
(r2c + ζζc)(r2c − δ2)2

+
a2((r2c − δ2)2 − ζ2c a

2)

(ζ + ζc)(r2c − δ2)2
− 2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3

+2a2r2c ((r
2
c − δ2)3 + ζca

2ζc
3
)
log((r2c + ζζc)/r

2
c )

ζc
3
(r2c − δ2)3

}

C

(3.33)

Im {ws1}C = Im

{

−r
2
c

ζ
+
a2r2c
ζζ2c

+
a2r4c

ζc
3
(r2c + ζζc)

− a4r4c
ζc(r2c + ζζc)(r2c − δ2)2

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2
− 2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3

+2a2r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

log((r2c + ζζc)/r
2
c )

}

C

(3.34)
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The quantity inside the curly brackets is prevented from being a valid solution for ws
1

by the singular behavior at ζ = −r2c/ζc. As before, I will construct a corrective term

which removes the singularity while preserving the other boundary conditions via the

Milne-Thomson circle theorem. The corrective term is

−
(

a2r4c

ζc
3 −

a4r4c
ζc(r2c − δ2)2

)

1

r2c + ζζc
− 2a2r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

log((r2c + ζζc)/r
2
c )

−
(

a2r4c
ζ3c

− a4r4c
ζc(r2c − δ2)2

)

1

r2c + (r2c/ζ)ζc
−2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log((r2c+(r2c/ζ)ζc)/r
2
c )

Since this expression is purely real on C, it follows that

Im {ws1}C = Im

{

−r
2
c

ζ
+
a2r2c
ζζ2c

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

−2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3
−
(

a2r4c
ζ3c

− a4r4c
ζc(r2c − δ2)2

)

1

r2c + (r2c/ζ)ζc

−2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log((r2c + (r2c/ζ)ζc)/r
2
c )

}

C

(3.35)

Im {ws1}C = Im

{

−r
2
c

ζ
+
a2r2c
ζζ2c

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

log((ζ + ζc)/rc)−
(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

−2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

)

}

C

(3.36)

If I were now to use the quantity inside the curly brackets as a trial solution for ws
1,

we would find that it resulted in a nonzero amount of circulation around a closed

contour surrounding the foil, which would vary with ζ̇x. But Kelvin’s circulation

theorem states that the circulation around a closed material curve lying entirely in

the fluid is an invariant of the motion, even if the curve is non-reducible [Saf92].

To satisfy this theorem and avoid producing changing circulation around a curve



38

enclosing both the foil and any shed vortices, I add a central vortex term:

(

2a4r2c (iζy)

(r2c − δ2)3
log(

ζ

rc
)

)

This is plainly real on C so that

Im {ws1}C = Im

{

−r
2
c

ζ
+
a2r2c
ζζ2c

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

log((ζ + ζc)/rc)−
(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

−2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2c (iζy)

(r2c − δ2)3
log(

ζ

rc
)

}

C

(3.37)

So a valid solution for ws1 is:

ws1 = −r
2
c

ζ
+
a2r2c
ζζ2c

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

log(
ζ + ζc
rc

)−
(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

−2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2c (iζy)

(r2c − δ2)3
log(

ζ

rc
) (3.38)

By a similar development we find that

Im {ws2}C = Im

{

(−i)
(

r2c
ζ
− a2r2c

ζζ2c
+

a2r4c

ζc
3
(r2c + ζζc)

− a4r4c
ζc(r2c + ζζc)(r2c − δ2)2

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2
− 2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3

+2a2r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

log((r2c + ζζc)/r
2
c )

)}

C

(3.39)

To which I add this corrective term, real on C, to remove singular behavior outside
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the foil boundary:

(

a2r4c

ζc
3 −

a4r4c
ζc(r2c − δ2)2

)

i

r2c + ζζc
+ 2ia2r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

log((r2c + ζζc)/r
2
c )

−
(

a2r4c
ζ3c

− a4r4c
ζc(r2c − δ2)2

)

i

r2c + (r2c/ζ)ζc
−2ia2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log((r2c+(r2c/ζ)ζc)/r
2
c )

And another term, also real on C, to cancel any circulation produced around the foil,

(−i) 2a4r2cζx
(r2c − δ2)3

log(
ζ

rc
)

to find

Im {ws2}C = Im

{

(−i)
(

r2c
ζ
− a2r2c

ζζ2c
+

a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

−2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3
+

(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

+2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2cζx

(r2c − δ2)3
log(

ζ

rc
)

)}

C

(3.40)

Thus:

ws2 = (−i)
(

r2c
ζ
− a2r2c

ζζ2c
+

a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

−2a4r2cζc log((ζ + ζc)/rc)

(r2c − δ2)3
+

(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

+2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2cζx

(r2c − δ2)3
log(

ζ

rc
)

)

(3.41)

Finally,

Re

{

−idw
s
3

dζ
dζ

}

C

= Re

{

∂F (ζ; ζc)

∂a
(−i dz)

}

Σ

= Re

{

−i
(

2a

ζ + ζc

)(

1− a2

(ζ + ζc)2

)

dζ

}

C

= Re

{

−i
(

2a

r2c/ζ + ζc

)(

1− a2

(ζ + ζc)2

)

dζ

}

C

(3.42)
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Integrating both sides with respect to ζ, we find

Re {−iws3}C = Re

{

(−i)2a
(

ζ

ζc
− a2ζc

(ζ + ζc)(r2c − δ2)
− a2r2c log((ζ + ζc)/rc)

(r2c − δ2)2

−r
2
c ((r

2
c − δ2)2 − a2ζc

2
) log((r2c + ζζc)/r

2
c )

ζc
2
(r2c − δ2)2

)}

C

(3.43)

Im {ws3}C = Im

{

2a

(

ζ

ζc
− a2ζc

(ζ + ζc)(r2c − δ2)
− a2r2c log((ζ + ζc)/rc)

(r2c − δ2)2

−r
2
c ((r

2
c − δ2)2 − a2ζc

2
)

ζc
2
(r2c − δ2)2

log((r2c + ζζc)/r
2
c )

)}

C

(3.44)

Im {ws3}C = Im

{

2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

− a2r2c log((ζ + ζc)/rc)

(r2c − δ2)2

−r
2
c ((r

2
c − δ2)2 − a2ζc

2
)

ζc
2
(r2c − δ2)2

log((r2c + ζζc)/r
2
c )

)}

C

(3.45)

The corrective term to remove the logarithmic singularity at ζ = −r2c/ζc is

r2c ((r
2
c − δ2)2 − a2ζc

2
)

ζc
2
(r2c − δ2)2

log((r2c+ζζc)/r
2
c )+

r2c ((r
2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

log((r2c+(r2c/ζ)ζc)/r
2
c )

So we find

Im {ws3}C = Im

{

2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

− a2r2c log((ζ + ζc)/rc)

(r2c − δ2)2

+
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

log(
(ζ + ζc)

ζ
)

)}

C

(3.46)

And a valid solution for ws
3 is

ws3 = 2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

− a2r2c log((ζ + ζc)/rc)

(r2c − δ2)2

+
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

log(
(ζ + ζc)

ζ
)

)

(3.47)
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Figure 3.2: Fluid velocity resulting from the unit potentials w1, w2, and w3 (top to
bottom.) Here a = 1, rc = 1.1, and ζc = (−0.0781 + 0.2185i). Note that I took U
to be negative in the first figure. Negative U , or velocity in the negative x-direction,
corresponds to “forward” motion when ζx is negative, as here.
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Figure 3.3: Fluid velocity resulting from the shape deformation unit potentials ws
1,

ws2, and w
s
3 (top to bottom.) Here a = 1, rc = 1.1, and ζc = (−0.0781 + 0.2185i).
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w = Uw1(ζ) + V w2(ζ) + Ωw3(ζ) + γcw4(ζ) +
∑

k

γkw
k
5(ζ; ζk) + ζ̇xw

s
1(ζ) + ζ̇yw

s
2(ζ) + ȧws3(ζ)

w1 = −r
2
c

ζ
+ ζc +

a2

ζ + ζc

w2 = −ir
2
c

ζ
− iζc − i

a2

ζ + ζc

w3 =
−i
2

[

r2c + 2ζc
r2c
ζ

+ δ2 + 2a2(
r2c/ζ + ζc
ζ + ζc

) +
a4(ζ − ζc)

(ζ + ζc)(r2c − δ2)

]

w4 = i log(
ζ

rc
)

wk5 = i log

(

− rc
ζk

ζ − ζk

ζ − r2c/ζk

)

ws1 =

[

−r
2
c

ζ
+
a2r2c
ζζ2c

+
a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

log(
ζ + ζc
rc

)−
(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

−2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2c (iζy)

(r2c − δ2)3
log(

ζ

rc
)

]

ws2 = (−i)
[

r2c
ζ
− a2r2c

ζζ2c
+

a2

(ζ + ζc)
− a4ζ2c

(ζ + ζc)(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

log(
ζ + ζc
rc

) +

(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζ

(ζ + ζc)

+2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

log(
ζ + ζc
ζ

) +
2a4r2cζx

(r2c − δ2)3
log(

ζ

rc
)

]

ws3 = 2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

− a2r2c
(r2c − δ2)2

log(
ζ + ζc
rc

)

+
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

log(
(ζ + ζc)

ζ
)

)

Table 3.1: Solution for the deformable Joukowski foil potential function.
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dw1
dζ

=
r2c
ζ2
− a2

(ζ + ζc)2

dw2
dζ

= i
r2c
ζ2

+ i
a2

(ζ + ζc)2

dw3
dζ

= i

[

ζcr
2
c

ζ2
+

a2r2c
ζ2(ζ + ζc)

+
a2r2c

ζ(ζ + ζc)2
+

a2ζc
(ζ + ζc)2

− a4ζc
(ζ + ζc)2(r2c − δ2)

]

dw4
dζ

=
i

ζ

dwk5
dζ

= i

(

1

ζ − ζk
− 1

ζ − r2c/ζk

)

dws1
dζ

=

[

r2c
ζ2
− a2r2c
ζ2ζ2c

− a2

(ζ + ζc)2
+

a4ζ2c
(ζ + ζc)2(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

1

ζ + ζc
+

2a4r2c iζy
(r2c − δ2)3

1

ζ

−
(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζc
(ζ + ζc)2

+ 2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

ζc
(ζ + ζc)(ζ)

]

dws2
dζ

= (−i)
[

−r
2
c

ζ2
+
a2r2c
ζ2ζ2c

− a2

(ζ + ζc)2
+

a4ζ2c
(ζ + ζc)2(r2c − δ2)2

− 2a4r2cζc
(r2c − δ2)3

1

ζ + ζc
+

2a4r2cζx
(r2c − δ2)3

1

ζ

+

(

a2r2c
ζ3c

− a4r2c
ζc(r2c − δ2)2

)

ζc
(ζ + ζc)2

− 2a2r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)

ζc
(ζ + ζc)(ζ)

]

dws3
dζ

= 2a

[

r2c
ζ2ζc

+
a2ζc

(ζ + ζc)2(r2c − δ2)
− a2r2c

(ζ + ζc)(r2c − δ2)2
− r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

ζc
ζ(ζ + ζc)

]

Table 3.2: Derivatives with respect to ζ of the deformable Joukowski foil potentials.
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3.3 The Locked Added Inertia

The virtual inertia tensor of a rigid Joukowski foil ought to be well known. However,

while the necessary integrals are conceptually straightforward, they are somewhat

tedious, and perhaps for this reason, the existing literature [Str94, ST95, Sed65] is

plagued with typographical and other elementary errors. So as I develop the equations

of motion for a deformable foil, I will also have the incidental goal of producing an

error-free treatment of the rigid foil’s added inertia.

As I said in Proposition (2.3.4), the kinetic energy of the system is

T =
1

2
q̇TΛq̇ + Tf (3.48)

where the first term is the kinetic energy of the foil itself, and Tf is the kinetic energy

of the fluid:

Tf = −ρ
2

∫

Σ

φ(∇φ · n) dσ (3.49)

Since

φ = Re{w} (3.50)

(∇φ · n) dσ = Re
{

−idw
dz
dz
}

(3.51)

it follows that

Tf = −ρ
2

∫

Σ

Re{w}Re
{

−idw
dz
dz
}

= −ρ
2

∫

C

Re{w}Re
{

−idw
dζ
dζ
}

= −ρ
2
Re
{

∫

C
wRe

{

−idw
dζ
dζ
}}

= −ρ
4
Re
{

∫

C
w(−idw

dζ
dζ + idw

dζ
dζ)
}

= −ρ
4
Re
{

−i
∫

C
w dw
dζ
dζ + i

∫

C
w dw
dζ
dζ
}

=
ρ

4
Re
{

i
∫

C
w dw
dζ
dζ − i

∫

C
w dw
dζ
dζ
}

(3.52)
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Considering the foil to be rigid, and disregarding any effects of vorticity, we see that

Tf will be a quadratic function of body velocity ξ̇.

Tf =
1

2

[

U V Ω
]

I











U

V

Ω











(3.53)

where I is the locked added inertia matrix and its components are

I11 =
ρ

2
Re
{

i
∫

C
w1

dw1
dζ
dζ − i

∫

C
w1

dw1
dζ
dζ
}

=
ρ

2
Re
{

−i
∫

C
−r4c

ζζ
2 + a2r2c

(ζ+ζc)ζ
2 +

r2ca
2

ζ(ζ+ζc)2
− a4

(ζ+ζc)(ζ+ζc)2
dζ
}

=
ρ

2
Re
{

(−i)
(

r4c (2πi)
1
r2c

+ a2r2c
r2c

(−2πi) + r2ca
2

r2c
(−2πi) + (2πi)a4 r2c

(r2c−δ
2)2

)}

= πρ

(

r2c − 2a2 + a4
r2c

(r2c − δ2)2

)

(3.54)

I12 =
ρ

4
Re
{

i
∫

C
w1

dw2
dζ

+ w2
dw1
dζ
dζ − i

∫

C
w1

dw2
dζ

+ w2
dw1
dζ
dζ
}

=
ρ

4
Re
{

(−i)
∫

C
2ir2ca

2

ζ(ζ+ζc)2
− 2ir2ca

2

(ζ+ζc)ζ
2 dζ

}

=
ρ

4
Re
{

(−i)
(

2ir2ca
2(−2πi

r2c
)− 2ir2ca

2(−2πi
r2c

)
)}

= 0 (3.55)

I22 =
ρ

2
Re
{

i
∫

C
w2

dw2
dζ
dζ − i

∫

C
w2

dw2
dζ
dζ
}

=
ρ

4
Re
{

i
∫

C
r4c

ζζ
2 +

r2ca
2

ζ(ζ+ζc)2
+ a2r2c

(ζ+ζc)ζ
2 +

a4

(ζ+ζc)(ζ+ζc)2
dζ
}

=
ρ

2
Re

{

2πr2c + 2πa2 + 2πa2 + 2πa4
(

rc
r2c−δ

2

)2
}

= πρ

(

r2c + 2a2 + a4
r2c

(r2c − δ2)2

)

(3.56)
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I13 =
ρ

4
Re
{

−i
∫

C
w3

dw1
dζ
dζ − i

∫

C
w1

dw3
dζ
dζ
}

=
ρ

4
Re

{

−
∫

C

(
ζcr

2
c

ζ
+

a2r2c
ζ(ζ + ζc)

+
a2ζc

(ζ + ζc)
+

a4(ζ − ζc)

2(ζ + ζc)(r2c − δ2)
)(
r2c

ζ
2 −

a2

(ζ + ζc)2
) dζ

+

∫

C

(
r2c
ζ
− a2

(ζ + ζc)
)(
ζcr

2
c

ζ
2 +

a2r2c

ζ
2
(ζ + ζc)

+
a2r2c

ζ(ζ + ζc)2
+

a2ζc

(ζ + ζc)2
− a4ζc

(ζ + ζc)2(r2c − δ2)
) dζ

}

=
ρ

4
Re

{

2πi

(

r2cζc + a2ζc −
a4ζc

(r2c − δ2)
− ζca

2 − a4

ζc
+

a4r4c
ζc(r2c − δ2)2

− a4r2cζc
(r2c − δ2)2

+
a6r2cζc

(r2c − δ2)3

)

+

∫

C

(
r2c
ζ
− a2

(ζ + ζc)
)(
ζcr

2
c

ζ
2 +

a2r2c

ζ
2
(ζ + ζc)

+
a2r2c

ζ(ζ + ζc)2
+

a2ζc

(ζ + ζc)2
− a4ζc

(ζ + ζc)2(r2c − δ2)
) dζ

}

=
ρ

4
Re

{

2πi

(

r2cζc −
a4ζc
r2c − δ2

+ a2(ζc − ζc) +
a4δ2

ζc(r2c − δ2)
+

a6r2cζc
(r2c − δ2)3

−r2cζc + a2ζc −
a4ζc
r2c − δ2

− a4r2cζc
(r2c − δ2)2

− a2ζc +
a4r2cζc

(r2c − δ2)2
+

a4ζc
r2c − δ2

− a6ζcr
2
c

(r2c − δ2)3

)}

=
πρ

2
Re

{

i

(

r2c (ζc − ζc)−
2a4(ζc − ζc)

r2c − δ2
− 2a2(ζc − ζc) +

a6r2c
(r2c − δ2)3

(ζc − ζc)

)}

= πρRe

{

i

(

r2cζc −
2a4ζc
r2c − δ2

− 2a2ζc +
a6r2cζc

(r2c − δ2)3

)}

(3.57)

where in the final step I have made use of the fact that Re {iζc} = −Re
{

iζc
}

.
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I23 =
ρ

4
Re
{

−i
∫

C
w3

dw2
dζ
dζ − i

∫

C
w2

dw3
dζ
dζ
}

=
ρ

4
Re

{

i

∫

C

(

ζcr
2
c

ζ
+

a2r2c
ζ(ζ + ζc)

+
a2ζc

(ζ + ζc)
+

a4(ζ − ζc)

2(ζ + ζc)(r2c − δ2)

)

(

r2c

ζ
2 +

a2

(ζ + ζc)2

)

dζ

+i

∫

C

(
r2c
ζ

+
a2

(ζ + ζc)
)(
ζcr

2
c

ζ
2 +

a2r2c

ζ
2
(ζ + ζc)

+
a2r2c

ζ(ζ + ζc)2
+

a2ζc

(ζ + ζc)2
− a4ζc

(ζ + ζc)2(r2c − δ2)
) dζ

}

=
ρ

4
Re

{

2π

(

ζcr
2
c + ζca

2 +
a4

ζc
− a4r4c
ζc(r2c − δ2)2

+ a2ζc +
a4ζcr

2
c

(r2c − δ2)2
− a4ζc

(r2c − δ2)
− a6r2cζc

(r2c − δ2)3

+r2cζc + a2ζc −
a4ζc
r2c − δ2

− a4ζcr
2
c

(r2c − δ2)2
+ a2ζc +

a4ζcr
2
c

(r2c − δ2)2
− a4ζc
r2c − δ2

− a6ζcr
2
c

(r2c − δ2)3

)}

=
πρ

2
Re

{

(r2c + 2a2)(ζc + ζc)−
2a4(ζc + ζc)

r2c − δ2
− a6r2c (ζc + ζc)

(r2c − δ2)3

}

= πρRe

{

r2cζc + 2a2ζc −
2a4ζc
r2c − δ2

− a6r2cζc
(r2c − δ2)3

}

(3.58)

These expressions for the locked inertia terms are in agreement with the results

of Streitlien [Str94, ST95] and with those of Sedov [Sed65], after correcting some

typographical and other elementary errors.3

3In Sedov [Sed65], his expression λxy for the arbitrary Joukowski foil in Table 1 should read:

λxy =
ρπa2

2
sin(2α)

The expression λω in the same table should read:

λω =
ρπa4

8
r2R2

(

8r2R2 cos4(α)− 2rR sin2(2α) + cos(4α)
)

The transformation formula in Sedov’s equation (4.11) should read in part:

λy′ω′ = −(λxη − λxyξ + λxω) sin(β) + (λxyη − λyξ + λyω) cos(β)

In Streitlien, equation (41) in [ST95] and equation (49) in [Str94] should read:

∫

S

w3z dz = 2π

[

a4 + a2ζ2
c + a4 δ

4 − 2r2
cδ

2

(r2
c − δ2)2

+ a6 ζc
2

(r2
c − δ2)2

+
2a8r2

cδ
2

(r2
c − δ2)4

− r2
c

a4 + r4
c − δ4

2(r2
c − δ2)

+ a4r2
c

a4 + r4
c − δ4

2(r2
c − δ2)3

]

Finally, the pure-rotational added inertia, m66 in Streitlien’s notation, should consist not only of the
real part of the above integral, but also of an added term equal to twice the real part of the foil’s
polar moment of inertia. So Streitlien’s equation (48) in [ST95] and equation (59) in [Str94] should
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I33 =
ρ

2
Re
{

i
∫

C
w3

dw3
dζ
dζ − i

∫

C
w3

dw3
dζ
dζ
}

=
ρ

2
Re

{

i

∫

C

[

ζcr
2
c

ζ
+

a2r2c
ζ(ζ + ζc)

+
a2ζc

(ζ + ζc)
+

a4(ζ − ζc)

2(ζ + ζc)(r2c − δ2)

]

×
[

ζcr
2
c

ζ
2 +

a2r2c

ζ
2
(ζ + ζc)

+
a2r2c

ζ(ζ + ζc)2
+

a2ζc

(ζ + ζc)2
− a4ζc

(ζ + ζc)2(r2c − δ2)

]

dζ

}

=
ρ

2
Re

{

2π

(

δ2r2c + a2ζc
2 − a4

δ2

r2c − δ2
+ a4

r2c
r2c − δ2

− a4
δ2

r2c − δ2
+ a6

ζ2c
(r2c − δ2)2

+a4
r4c

(r2c − δ2)2
− a4

r2cδ
2

(r2c − δ2)2
+ a6

r2cζ
2
c

(r2c − δ2)3

+a2ζ2c + a4 − a4
r4c

(r2c − δ2)2
+ a4

δ2r2c
(r2c − δ2)2

− a6
r2cζ

2
c

(r2c − δ2)3

)

−i
∫

C

[

ζcr
2
c

ζ
+

a2r2c
ζ(ζ + ζc)

+
a2ζc

(ζ + ζc)
+

a4(ζ − ζc)

2(ζ + ζc)(r2c − δ2)

]

a4ζc

(ζ + ζc)2(r2c − δ2)
dζ

}

=
ρ

2
Re

{

2π

(

r2cδ
2 + a2(ζ2c + ζc

2
) + a4(2− δ2

(r2c − δ2)
) + a6

ζ2c
(r2c − δ2)2

−a4 δ2

(r2c − δ2)
− a6

ζc
ζc(r2c − δ2)

+ a6
r4cζc

ζc(r2c − δ2)3
− a6

r2cζc
2

(r2c − δ2)3
+ a8

r2cδ
2

(r2c − δ2)4

)}

= πρRe

{

2a4 + r2cδ
2 + a2(ζ2c + ζc

2
)− 2a4

δ2

(r2c − δ2)

+a6

(

ζ2c
(r2c − δ2)2

− ζc
2

δ2(r2c − δ2)
+

r4cζc
2

δ2(r2c − δ2)3
− r2cζc

2

(r2c − δ2)3

)

+ a8
r2cδ

2

(r2c − δ2)4

}

= πρRe

{

2a4 + r2cδ
2 + a2(ζ2c + ζc

2
)− 2a4

δ2

(r2c − δ2)
+ a6

ζ2c + ζc
2

(r2c − δ2)2
+ a8

r2cδ
2

(r2c − δ2)4

}

= πρRe

{

2a4 + r2cδ
2 + 2a2ζ2c − 2a4

δ2

(r2c − δ2)
+ 2a6

ζ2c
(r2c − δ2)2

+ a8
r2cδ

2

(r2c − δ2)4

}

(3.59)

In Figures 3.4–3.5, I plot the added mass components for a variety of foil shapes

read:

m66 = 2πRe

[

a4 + a2ζ2
c + a4 δ

4 − 2r2
cδ

2

(r2
c − δ2)2

+ a6 ζc
2

(r2
c − δ2)2

+
2a8r2

cδ
2

(r2
c − δ2)4

− r2
c

a4 + r4
c − δ4

2(r2
c − δ2)

+a4r2
c

a4 + r4
c − δ4

2(r2
c − δ2)3

+
r2
c

2

(

r2
c + 2δ

2 − a8 r2
c + 2δ

2

(r2
c − δ2)4

)]
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Figure 3.4: Plots of locked added inertia coefficients for a variety of Joukowski foils.
In each plot, rc and arg(ζc) are held constant while ‖ζc‖ is varied. The coefficients
I11, I12, I13 are given in units of r2c , while I13, I23 are given in units of r3c and I33 has
units of r4c .
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Figure 3.5: More plots of locked added inertia coefficients for a variety of Joukowski
foils. In each plot, rc and arg(ζc) are held constant while ‖ζc‖ is varied. The coeffi-
cients I11, I12, I13 are given in units of r2c , while I13, I23 are given in units of r3c and I33
has units of r4c .
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sampled from the (ζc, a) parameter space. Specifically, I let ζc vary along each of

several different rays emanating from the origin, while always choosing a so as to

keep rc = 1. In other words, in each plot, ‖ζc‖ is the independent variable, while

arg(ζc) is constant (but a different constant in each pair of figures.) The closed form

results for the added inertia were compared against results from numerical integration

of the potential for these particular foil shapes, and found to be in agreement.



53

I11 = πρ

(

r2c − 2a2 + a4
r2c

(r2c − δ2)2

)

I12 = 0

I22 = πρ

(

r2c + 2a2 + a4
r2c

(r2c − δ2)2

)

I13 = πρRe

{

i

(

r2cζc − 2a2ζc −
2a4ζc
r2c − δ2

+
a6r2cζc

(r2c − δ2)3

)}

= πρ

(

−r2cζy + 2a2ζy +
2a4ζy
r2c − δ2

− a6r2cζy
(r2c − δ2)3

)

I23 = πρRe

{

r2cζc + 2a2ζc −
2a4ζc
r2c − δ2

− a6r2cζc
(r2c − δ2)3

}

= πρ

(

r2cζx + 2a2ζx −
2a4ζx
r2c − δ2

− a6r2cζx
(r2c − δ2)3

)

I33 = πρRe

{

2a4 + r2cδ
2 + 2a2ζ2c − 2a4

δ2

(r2c − δ2)
+ 2a6

ζ2c
(r2c − δ2)2

+ a8
r2cδ

2

(r2c − δ2)4

}

= πρ

(

2a4 + r2cδ
2 + 2a2(ζ2x − ζ2y )− 2a4

δ2

(r2c − δ2)
+ 2a6

(ζ2x − ζ2y )

(r2c − δ2)2
+ a8

r2cδ
2

(r2c − δ2)4

)

Table 3.3: Components of the locked added inertia for the Joukowski foil.
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3.4 Vortex Shedding

The wake from an airfoil moving in a potential flow may be computationally mod-

elled as a trail of discrete point vortices. At each of a series of time steps, a new

point vortex is shed from the airfoil, with strength chosen so as to satisfy the Kutta

condition at that time step [Str94, ST95, Gie68]. The Kutta condition requires that

the fluid velocities on the trailing-edge upper surface and lower surface be equal in

magnitude but opposite in tangential direction [Gie68]. To satisfy this requirement,

the component of dw/dζ tangential to the surface C must vanish at ζ = (a − ζc),

the point corresponding to the trailing edge. Since the shed vortex generates a fluid

velocity tangential to C on C, it is always possible to choose a strength γk for the

vortex to satisfy the Kutta condition. (In fact, we must have dw/dζ = 0 at ζ = a− ζc
in order for the physical velocity dw/dz at the trailing edge to be bounded. But the

normal component of dw/dζ must vanish naturally from the form of the potential: it

cannot be made to vanish by choosing the strength of the shed vortex.)

Before solving for the strength γk, the vortex must be placed at some location near

the trailing edge of the airfoil. There is no obvious unique way to choose the exact

starting location of the vortex. I adapt a scheme from Streitlien [Str94], interpolating

between the trailing edge and the last vortex shed. The idea, illustrated in Figure 3.6,

is that each discrete vortex represents a segment of a continuous vortex sheet which

departs the trailing edge parallel to it. Close to the trailing edge the sheet can be

approximated by a circular arc (or in the degenerate case, a straight line) tangent to

the trailing edge and intersecting the discrete vortex shed in the previous time step.

The trailing edge is located at z = 2a. If a > 0, the angle of the cusped trailing edge

is χ = −2β where β = arctan((ζy)/(a− ζx). If a < 0, the angle of the cusped trailing

edge is χ = −2β + π.

I place the new discrete vortex one-third of the way along this arc, so that each

vortex is approximately at the midpoint of the wake segment that it represents.4

4Streitlien [Str94] also seeks to place the vortex at the midpoint of its wake segment, but uses θ
4

instead of θ3 ! This seems to be a miscalculation. However, for small ∆t the behavior of the simulation
should not strongly depend on this detail.
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Figure 3.6: At each time step a new vortex is placed at the one-third point on a
circular arc tangent to the trailing edge and intersecting the last vortex shed. The
‘×’ marks are the discrete vortices while the ‘+’ marks delimit the wake segments
which the vortices represent.
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From examination of Figure 3.6, I have the following relations:

z0 − zk−1 = rei(π/2+χ+θ) (3.60)

z0 − 2a = rei(π/2+χ) (3.61)

z0 − zk = rei(π/2+χ+θ/3) (3.62)

from which it follows that

zk−1 − 2a = rei(π/2+χ)(1− eiθ) (3.63)

zk − 2a = rei(π/2+χ)(1− eiθ/3) (3.64)

From the known location of the last shed vortex zk−1, I can solve for θ:

eiθ = e−i2χ
(zk−1 − 2a)2

‖zk−1 − 2a‖2
(3.65)

and then for zk:

zk − 2a = (zk−1 − 2a)
1− eiθ/3

1− eiθ
=

(zk−1 − 2a)

1 + eiθ/3 + ei2θ/3
(3.66)

In general, there are two circular arcs which intersect zk−1 and are tangent to the

trailing edge of the foil. (Together they make up the circle which intersects zk−1 and

is tangent to the trailing edge.) Note that θ±2π is also a solution to Equation (3.65).

I must make sure to pick the correct arc, i.e., the one that departs the trailing edge

in the correct direction (not necessarily the shorter of the two arcs.) What I want is

to choose the branch of θ (i.e., add or subtract 2π from θ as necessary) so that θ is

positive if arg(zk−1−2a) ∈ (χ, χ+ π), and θ is negative if arg(zk−1−2a) ∈ (χ− π, χ).

Importantly, these equations give sensible results in the degenerate case, when the

arc is a straight line and θ = 0.

As a consequence of Kelvin’s theorem, each one of the shed vortices subsequently

moves with the same velocity as a fluid particle at the same location zk = F (ζk).
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That is, the vortices convect according to Routh’s rule:

dzk
dt

=
d

dz
[w − iγk log(z − zk)]z=zk

=

{

dζ

dz

d

dζ
[w − iγk log(ζ − ζk)]

}

ζ=ζk

+ iγk

{

dζ

dz

d

dζ
[log(ζ − ζk)− log(z − zk)]

}

ζ=ζk

=

{

dζ

dz

d

dζ
[w − iγk log(ζ − ζk)]

}

ζ=ζk

+ iγk lim
ζ→ζk

{

dζ

dz

[

1

ζ − ζk
− dz/dζ

z − zk

]}

=

{

dζ

dz

d

dζ
[w − iγk log(ζ − ζk)]

}

ζ=ζk

+ iγk

{[−(d2z/dζ2)
2(dz/dζ)2

]}

ζ=ζk

=

{

dζ

dz

d

dζ
[w − iγk log(ζ − ζk)]

}

ζ=ζk

− iγk

(

a2 (ζc + ζk)
(

a2 − (ζc + ζk)
2)2

)

. (3.67)

The velocities ζ̇k can be recovered using

dzk
dt

=
dζk
dt

+
dζc
dt
− a2

(ζk + ζc)2

(

dζk
dt

+
dζc
dt

)

(3.68)

dζk
dt

=

(

1− a2

(ζk + ζc)2

)−1
dzk
dt
− dζc

dt
. (3.69)

In each time step the new vortex positions and velocities are found using a fourth-

and fifth-order Runge-Kutta integration method. Since the location of each vortex

exerts an influence in determining the velocity of every other vortex, the difficulty

of integrating these differential equations forward in time grows as O (n2v) where nv

is the number of vortices. One way to keep the computational burden from growing

too large is to coalesce clusters of vortices which are more than a few chord lengths

from the foil, and replace each cluster by a single point vortex at the cluster’s center

of vorticity. Sarpkaya [Sar75] employed this procedure in simulating vortex shedding

from an inclined flat plate, and found that vortex clusters more than eight chord

lengths from the plate could be coalesced without a material effect on the simulation.

Carrying this process to its logical conclusion, a vortex which is sufficiently far away

may be regarded as infinitely distant and removed from the set of wake vortices, while

the strength (−γk) of its image is added to the central vortex strength γc.

The size of the time step ∆t between shed vortices should obviously be chosen
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sufficiently small that the system’s behavior is no longer sensitive to the size of ∆t.

For the flat plate, Sarpkaya [Sar75] found that a time step of ∆t = 0.04a/U was

sufficiently small (with the results for ∆t = 0.02a/U and ∆t = 0.08a/U not being

materially different, but with ∆t = 0.16a/U being too large.) For various motions

of the deformable foil with U/a about unity and with the critical frequency of the

deformations also being of order unity, I found time steps as large as ∆t = 0.12 were

adequate to qualitatively capture the wake structure and the forces on the foil, but

not to reliably estimate the magnitude of the forces, for which a time step as small

as ∆t = 0.04 was required. Figure 3.7 shows a particular deformable foil simulation

performed with a range of choices of ∆t.

3.5 Forces on the Foil

In an inertial frame instantaneously aligned with the z coordinate frame, in which

the fluid at infinity is at rest, the pressure p at each point in the fluid is given by

[MT68]:

p = −∂φ
∂t
− 1

2
(u2 + v2)

= −
(

∂

∂t

w + w

2

)

− 1

2

(

dw

dz

dw

dz

)

(3.70)

Using X and Y to represent the forces on the foil along the x- and y-axes respectively,

we see that

X =

∫

Σ

p (−dy) (3.71)

Y =

∫

Σ

p dx (3.72)

or equivalently

X + iY = i

∫

Σ

p dz (3.73)
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Figure 3.7: Wake from a heaving and flexing deformable Joukowski foil. The foil
began its motion with its centroid at the origin. The centroid then translated with
uniform velocity Ucm = −1 in the x-direction while heaving in the y-direction with
velocity Vcm = (−0.4 sin t). Meanwhile the foil shape underwent a sinusoidal flexing
motion with (ζx, ζy) = (−0.05, 0.4 sin t). The modelled wake behavior at t = 12
is shown with the time step ∆t between shed vortex points being (top to bottom)
∆t = 0.12, ∆t = 0.06, ∆t = 0.04.
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so:

X + iY = − i
2

∫

Σ

(

∂w

∂t
+
∂w

∂t
+
dw

dz

dw

dz

)

dz. (3.74)

This expression captures all the forces on the foil, including the added mass forces.

Therefore in evaluating this integral I will, among other things, rediscover the locked

inertia coefficients already derived in Section 3.3.

3.5.1 Unsteady Flow Force Terms

First I consider the part of integral (3.74) which is due to the time-varying potential.

∫

Σ

∂

∂t
(w+w) dz = U̇

(∫

Σ

(w1 + w1) dz

)

+V̇

(∫

Σ

(w2 + w2) dz

)

+Ω̇

(∫

Σ

(w3 + w3) dz

)

+ γ̇c

(∫

Σ

(w4 + w4 dz

)

+
∑

k

γ̇k

(

2

∫

Σ

wk5 dz

)

+ ζ̈x

(∫

Σ

(ws1 + ws1 dz

)

+ ζ̈y

(∫

Σ

(ws2 + ws2 dz

)

+ ä

(∫

Σ

(ws3 + ws3 dz

)

+ U

(∫

Σ

(
∂w1
∂t

+
∂w1
∂t

)

+ V

(∫

Σ

(
∂w2
∂t

+
∂w2
∂t

)

+ Ω

(∫

Σ

(
∂w3
∂t

+
∂w3
∂t

)

+ γc

(

2

∫

Σ

∂w4
∂t

)

+
∑

k

γk

(

2

∫

Σ

∂wk5
∂t

dz

)

+ ζ̇x

(∫

Σ

(
∂ws1
∂t

+
∂ws1
∂t

)

+ ζ̇y

(∫

Σ

(
∂ws2
∂t

+
∂ws2
∂t

)

+ ȧ

(∫

Σ

(
∂ws3
∂t

+
∂ws3
∂t

)

(3.75)

where I have used the fact that w4 and w
k
5 are real on Σ by construction.

Some elements of the integral can be evaluated using Cauchy’s integral formula

and the fact that ζ = r2c/ζ on C. The results are presented below with more details

in Appendix A.
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∫

Σ

w1 dz = 2πi(a2 − r2c ) (3.76)

∫

Σ

w1 dz = 2πi(a2 − a4r2c
(r2c − δ2)2

) (3.77)

∫

Σ

w2 dz = 2π(a2 + r2c ) (3.78)

∫

Σ

w2 dz = 2π(a2 +
a4r2c

(r2c − δ2)2
) (3.79)

∫

Σ

w3 dz = 2π

(

r2cζc + a2ζc −
a4ζc

(r2c − δ2)

)

(3.80)

∫

Σ

w3 dz = 2π

(

ζca
2 − a4ζc

(r2c − δ2)
− a6ζcr

2
c

(r2c − δ2)3

)

(3.81)

In order to perform the integrals involving logarithmic terms in w4 and w
s
1, w

s
2, w

s
3,

I do integration by parts, in each case choosing the branch cut associated with the

logarithmic potential to pass through the point zcut = 2a, i.e., the trailing edge of

the foil. More details are given in Appendix A.

∫

Σ

w4 dz = −2π(2a− ζc) (3.82)
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∫

Σ

ws1 dz = 2πi

[

−r2c + a2 +
2a2r2c
ζ2c

− a4(ζ2c + r2c )

(r2c − δ2)2
− 4a5r2cζc

(r2c − δ2)3

+
2a4r2c (iζy)

(r2c − δ2)3
(2a− ζc)− 2a2r2c

(

1

ζ2c
+

δ2a2

(r2c − δ2)3

)]

(3.83)

∫

Σ

ws1 dz = 2πi

[

a2 − a4

ζc
2 −

a4r2c
(r2c − δ2)2

+
a6r2cζc

2

(r2c − δ2)4
− a4r4c

ζc
2
(r2c − δ2)2

+
a6r4c

(r2c − δ2)4

+
2a4r2cζc

(r2c − δ2)3

(

2a− ζc +
a2ζc

(r2c − δ2)

)

+
2a4r2c (iζy)

(r2c − δ2)3
(2a− ζc)

+2a4r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

(

ζc
(r2c − δ2)

)

]

(3.84)

∫

Σ

ws2 dz = 2π

[

r2c + a2 − 2a2r2c
ζ2c

− a4(ζ2c − r2c )

(r2c − δ2)2
− 4a5r2cζc

(r2c − δ2)3

+
2a4r2cζx

(r2c − δ2)3
(2a− ζc) + 2a2r2c

(

1

ζ2c
+

δ2a2

(r2c − δ2)3

)]

(3.85)

∫

Σ

ws2 dz = 2π

[

a2 − a4

ζc
2 +

a4r2c
(r2c − δ2)2

− a6r2cζc
2

(r2c − δ2)4
− a4r4c

ζc
2
(r2c − δ2)2

+
a6r4c

(r2c − δ2)4

− 2a4r2cζc
(r2c − δ2)3

(

2a− ζc +
a2ζc

(r2c − δ2)

)

+
2a4r2cζx

(r2c − δ2)3
(2a− ζc)

+2a4r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

(

ζc
(r2c − δ2)

)

]

(3.86)

∫

Σ

ws3 dz = 4πia

(

−r
2
c

ζc
− a2ζc

(r2c − δ2)
− 2a3r2c

(r2c − δ2)2
+
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζc(r2c − δ2)2

)

(3.87)
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Σ
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∫
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.

∫

Σ

ws3 dz = 4πai

(

a2

ζc
+

a4r2cζc
(r2c − δ2)3

)

+4πi
a3r2c

(r2c − δ2)2

(

2a− ζc +
a2ζc

(r2c − δ2)

)

−4πia3 r
2
c ((r

2
c − δ2)2 − a2ζc

2
)

ζc(r2c − δ2)3
(3.88)

Instead of evaluating wk5 directly on Σ, we consider another contour of integration

illustrated in Figure 3.8. The contour segment Sv encircles the vortex at z = zk.

The branch cut between that vortex and its image vortex inside the foil is chosen to

pass through the trailing edge of the foil at z = 2a. The contour segment Sb encloses

the branch cut between the wake vortex and the trailing edge. Since the contour

S∞ − Sx − Σ − Sb − Sv encloses a space with no singularities or branch cuts of wk
5 ,

the integral of wk5 over that contour must be zero.

∫

Σ

wk5 dz =

∫

S∞

wk5 dz −
∫

Sx

wk5 dz −
∫

Sv

wk5 dz −
∫

Sb

wk5 dz (3.89)

Since wk5 is continuous in the vicinity of Sx, that integral vanishes. The integral
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around Sv also vanishes in the limit as the radius of Sv approaches zero. The value

of wk5 is 2π higher on the lower side of Sb than on the upper side, so

∫

Sb

wk5 dz =

∫ z=zk

z=2a

2π dz

= 2π(zk − 2a) (3.90)

Finally, in the limit of large ζ,

wk5 = i

[

log(
−rc
ζk

) + log(ζ − ζk)− log(ζ − r2c
ζk
)

]

= i log(
−rc
ζk

) + i log(ζ)− i
∞
∑

n=1

ζnk
1

nζn
−
(

i log(ζ)− i
∞
∑

n=1

(

r2c
ζk

)n
1

nζn

)

(3.91)

Identifying the terms that go as 1/ζ, we see that

∫

S∞

wk5 dz =

∫

S∞

wk5

(

1− a2

(ζ + ζc)2

)

dζ

= 2π

(

ζk −
r2c
ζk

)

(3.92)

So,
∫

Σ

wk5 dz = 2π

(

ζk −
r2c
ζk
− zk + 2a

)

(3.93)

The integrals involving time derivatives of the Kirchoff potentials can all be eval-

uated using Cauchy’s integral formula.

∫

Σ

∂w1
∂t

dz = 4πi ( a ȧ− rc ṙc) = 2πi
d

dt

(

a2 − r2c
)

(3.94)

∫

Σ

∂w1
∂t

dz =
4 a2 i π

(

ṙc (rc
2 − δ2)

3
+ a ȧ (−rc5 + rc

3 δ2) + a2 rc
3 ζc

(

−ζ̇x + i ζ̇y

))

rc (rc2 − δ2)3

(3.95)
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∫

Σ

∂w2
∂t

dz = 4π ( a ȧ+ rc ṙc) = 2π
d

dt

(

a2 + rc
2
)

(3.96)

∫

Σ

∂w2
∂t

dz =
4a2π

(

aȧrc
3 (rc

2 − δ2) + ṙc(rc
2 − δ2)

3
+ a2rc

3ζc

(

ζ̇x − iζ̇y

))

rc(rc2 − δ2)3
(3.97)

∫

Σ

∂w3
∂t

dz = 2π

[

2rcṙcζc + 2aȧζc +
2a4rcṙcζc

(rc2 − δ2)2
− 4a3ȧζc
rc2 − δ2

+ rc
2ζ̇x

− a4δ2ζ̇x

(rc2 − δ2)2
− a4ζ̇x
rc2 − δ2

+ irc
2ζ̇y −

a4iδ2ζ̇y

(rc2 − δ2)2
− a4iζ̇y
rc2 − δ2

]

(3.98)

∫

Σ

∂w3
∂t

dz =
2 a2 π

rc (rc2 − δ2)4

(

−4 a3 ȧ rc3 ζc
(

rc
2 − δ2

)

− 2 a ȧ rc ζc
(

rc
2 − δ2

)3

+
(

rc
2 − δ2

)4
(

2 ṙc ζc + rc

(

ζ̇x − i ζ̇y

))

−a2 ζc
(

rc
2 − δ2

)2
(

4 rc
2 ṙc − 2 ṙc δ

2 + rc ζc

(

ζ̇x − i ζ̇y

))

+a4 rc
3
(

2 rc ṙc ζc − 2 δ2
(

ζ̇x − i ζ̇y

)

+ rc
2
(

−ζ̇x + i ζ̇y

)))

(3.99)

∫

Σ

∂w4
∂t

dz = 0 (3.100)

∫

Σ

∂wk5
∂t

dz = 2π





rc

(

−2 ṙc ζk + rc ζ̇k

)

ζk
2 +

a2 ζ̇k

(ζc + ζk)
2



 (3.101)

∫

Σ

∂ws1
∂t

dz = ζ̇c

∫

Σ

∂ws1
∂ζc

dz + ȧ

∫

Σ

∂ws1
∂a

dz + ṙc

∫

Σ

∂ws1
∂rc

dz (3.102)
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∫

Σ

∂ws1
∂ζc

dz =

[

4a4π

( −2 a i rc4
(rc2 − δ2)4

− 2 i rc
4 ζc

(rc2 − δ2)4
− 2 i rc

4 ζc

(rc2 − δ2)4
− 4 a i rc

2 δ2

(rc2 − δ2)4

+
2 i rc

2 ζc
2 ζc

(rc2 − δ2)4
− i rc

2 ζc ζc
2

(rc2 − δ2)4
− 6 a rc

2 ζc ζy

(rc2 − δ2)4
+

3 rc
2 δ2 ζy

(rc2 − δ2)4

)]

(3.103)

∫

Σ

∂ws1
∂a

dz =

[

4π

(

a i− 8 a4 i rc
2 ζc

(rc2 − δ2)3
− 4 a3 i rc

2 δ2

(rc2 − δ2)3
− 2 a3 i rc

2

(rc2 − δ2)2

− 2 a3 i ζc
2

(rc2 − δ2)2
− 8 a4 rc

2 ζy

(rc2 − δ2)3
+

4 a3 rc
2 ζc ζy

(rc2 − δ2)3

)]

(3.104)

∫

Σ

∂ws1
∂rc

dz =

[

4π

(

− (i rc) +
2 a2 i rc

ζc
2 − 2 a2 i rc

9

ζc
2 (rc2 − δ2)4

+
8 a5 i rc

3 ζc

(rc2 − δ2)4

+
8 a2 i rc

7 ζc

ζc (rc2 − δ2)4
+

4 a4 i rc
3 δ2

(rc2 − δ2)4
+

4 a5 i rc ζc
2 ζc

(rc2 − δ2)4

−12 a2 i rc
5 ζc

2

(rc2 − δ2)4
+

2 a4 i rc ζc
2 ζc

2

(rc2 − δ2)4
+

8 a2 i rc
3 ζc ζc

3

(rc2 − δ2)4

−2 a2 i rc ζc
2 ζc

4

(rc2 − δ2)4
+

a4 i rc
3

(rc2 − δ2)3
+

2 a4 i rc ζc
2

(rc2 − δ2)3

+
a4 i rc δ

2

(rc2 − δ2)3
+

8 a5 rc
3 ζy

(rc2 − δ2)4
− 4 a4 rc

3 ζc ζy

(rc2 − δ2)4

+
4 a5 rc δ

2 ζy

(rc2 − δ2)4
− 2 a4 rc ζc

2 ζc ζy

(rc2 − δ2)4

)]

(3.105)



67

∫

Σ

∂ws1
∂ζc

dz =
4a4π

(r2c − δ2)5
[

−2 a rc6 + 3 a2 i rc
4 ζc + rc

6 ζc − i rc
6 ζc

−i rc4 ζc3 − a2 rc
4 ζc + 2 a2 i rc

4 ζc − 2 a rc
4 δ2 + 3 a2 i rc

2 ζc
2 ζc

+rc
4 ζc

2 ζc + 2 i rc
4 ζc

2 ζc

+2 i rc
2 ζc

4 ζc − 2 a2 rc
2 ζc ζc

2
+ a2 i rc

2 ζc ζc
2
+ 4 a rc

2 ζc
2 ζc

2

−2 rc2 ζc3 ζc
2 − i rc

2 ζc
3 ζc

2 − i ζc
5 ζc

2 − 6 a rc
4 ζc ζy

+3 rc
4 ζc

2 ζy + 6 a rc
2 ζc

2 ζc ζy − 3 rc
2 ζc

3 ζc ζy
]

(3.106)

∫

Σ

∂ws1
∂a

dz =
−4a3π

(r2c − δ2)4

[

−2 a2 rc2
(

−2 ζc
2
+ i

(

rc
2 + 2 δ2 + ζc

2
))

+ 8 a rc
2
(

rc
2 − δ2

) (

ζc + ζy
)

+
(

rc
2 − δ2

) (

i
(

rc
2 + ζc

2
) (

rc
2 − δ2

)

− 4 rc
2 ζc

(

ζc + ζy
))]

(3.107)

∫

Σ

∂ws1
∂rc

dz =
−4a2π

rc(r2c − δ2)5
[

a4 i rc
6 − i rc

10 + a2 i rc
6 ζc

2 − 8 a3 rc
6 ζc + 5 a4 i rc

4 δ2

+4 a2 rc
6 δ2 + 5 i rc

8 δ2 − 3 a2 i rc
4 ζc

3 ζc − 4 a4 rc
4 ζc

2
+ 2 a4 i rc

4 ζc
2

+4 a3 rc
4 ζc ζc

2
+ 2 a4 i rc

2 ζc
2 ζc

2 − 2 a2 rc
4 ζc

2 ζc
2 − 10 i rc

6 ζc
2 ζc

2
+ 3 a2 i rc

2 ζc
4 ζc

2

−2 a4 rc2 ζc ζc
3
+ 4 a3 rc

2 ζc
2 ζc

3 − 2 a2 rc
2 ζc

3 ζc
3

+10 i rc
4 ζc

3 ζc
3 − a2 i ζc

5 ζc
3 − 5 i rc

2 ζc
4 ζc

4
+ i ζc

5 ζc
5 − 8 a3 rc

6 ζy + 4 a2 rc
6 ζc ζy

+4 a3 rc
4 δ2 ζy − 2 a2 rc

4 ζc
2 ζc ζy + 4 a3 rc

2 ζc
2 ζc

2
ζy − 2 a2 rc

2 ζc
3 ζc

2
ζy

]

(3.108)

∫

Σ

∂ws2
∂ζc

dz =
4a4πr2c

(r2c − δ2)4
[

−2 rc2
(

ζc − ζc
)

+ δ2
(

2 ζc + ζc − 3 i ζy
)

− 2 a
(

rc
2 + 2 δ2 − 3 i ζc ζy

)]

(3.109)
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∫

Σ

∂ws2
∂a

dz = 4 a π − 32 a4 π rc
2 ζc

(rc2 − δ2)3
+

16 a3 π rc
2 δ2

(rc2 − δ2)3

+
8 a3 π rc

2

(rc2 − δ2)2
− 8 a3 π ζc

2

(rc2 − δ2)2
+

16 a3 i π rc
2 (2 a− ζc) ζy

(rc2 − δ2)3
(3.110)

∫

Σ

∂ws2
∂rc

dz = 4πrc

[

1 +
12 a5 rc

2 ζc

(rc2 − δ2)4
− 6 a4 rc

2 δ2

(rc2 − δ2)4
− 2 a4 rc

2

(rc2 − δ2)3
− 4 a5 ζc

(rc2 − δ2)3
+

2 a4 ζc
2

(rc2 − δ2)3

+
2 a4 δ2

(rc2 − δ2)3
+

a4

(rc2 − δ2)2
− 12 a5 i rc

2 ζy

(rc2 − δ2)4
+

6 a4 i rc
2 ζc ζy

(rc2 − δ2)4

+
4 a5 i ζy

(rc2 − δ2)3
− 2 a4 i ζc ζy

(rc2 − δ2)3

]

(3.111)

∫

Σ

∂ws2
∂ζc

dz =
−4a4π

(r2c − δ2)5
[

a2 rc
2
(

δ2
(

−3 ζc + ζc + 2 i ζc
)

+ rc
2
(

−3 ζc + (2 + i) ζc
))

+2 a i rc
2
(

rc
2 − δ2

) (

rc
2 + 2 δ2 + 3 ζc ζy

)

−ζc
(

rc
2 − δ2

) (

(1 + i) rc
4 + ζc

3 ζc − rc
2 ζc

(

ζc + ζc − 2 i ζc − 3 i ζy
))]

(3.112)

∫

Σ

∂ws2
∂a

dz =
4a3π

(r2c − δ2)4
[

2 a2 rc
2
(

rc
2 − ζc

(

−2 ζc + ζc + 2 i ζc
))

−8 a i rc2
(

rc
2 − δ2

) (

ζc + ζy
)

+
(

rc
2 − δ2

) (

rc
4 + ζc

3 ζc − rc
2 ζc

(

ζc + ζc − 4 i ζc − 4 i ζy
))]

(3.113)
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∫

Σ

∂ws2
∂rc

dz = 4a2π

[

1

rc
− a2

rc ζc
2 −

a4 rc
5

(rc2 − δ2)5
+

12 a2 rc
5 ζc

2

(rc2 − δ2)5

+
2 a2 rc

9

ζc
2
(rc2 − δ2)5

− 8 a2 rc
7 ζc

ζc (rc2 − δ2)5
− 5 a4 rc

3 δ2

(rc2 − δ2)5

−8 a2 rc
3 ζc

3 ζc

(rc2 − δ2)5
+

4 a4 i rc
3 ζc

2

(rc2 − δ2)5
− 2 a4 rc ζc

2 ζc
2

(rc2 − δ2)5

+
2 a2 rc ζc

4 ζc
2

(rc2 − δ2)5
+

2 a4 i rc ζc ζc
3

(rc2 − δ2)5
+

8 a3 i rc
3 ζc

(rc2 − δ2)4

−4 a2 i rc
3 δ2

(rc2 − δ2)4
+

4 a3 i rc ζc ζc
2

(rc2 − δ2)4
− 2 a2 i rc ζc

2 ζc
2

(rc2 − δ2)4

− a2 rc
3

ζc
2
(rc2 − δ2)2

− 2 a4 rc
3 ζc

2

(rc2 − δ2)2 (−rc2 + δ2)3
+

8 a3 i rc
3 ζy

(rc2 − δ2)4

−4 a2 i rc
3 ζc ζy

(rc2 − δ2)4
+

4 a3 i rc δ
2 ζy

(rc2 − δ2)4
− 2 a2 i rc ζc

2 ζc ζy

(rc2 − δ2)4

]

(3.114)

∫

Σ

∂ws3
∂ζc

dz =
−4 a3 i π rc2

(

3 rc
2 + 4 a ζc − ζc ζc

)

(

rc2 − ζc ζc
)3 (3.115)

∫

Σ

∂ws3
∂a

dz =
−12 a2 i π

(

2 a rc
2 + ζc

(

2 rc
2 − ζc ζc

))

(

rc2 − ζc ζc
)2 (3.116)

∫

Σ

∂ws3
∂rc

dz =
16 a3 i π rc

(

rc
2 ζc + a

(

rc
2 + ζc ζc

))

(

rc2 − ζc ζc
)3 (3.117)

∫

Σ

∂ws3
∂ζc

dz =
4a3π

(r2c − δ2)4

[

−4 a rc2 ζc
(

rc
2 − δ2

)

+ ζc
2 (
rc
2 − δ2

) (

(2 + i) rc
2 − i δ2

)

−a2 rc2
(

3 i rc
2 + 2 δ2 + 4 i δ2

)]

(3.118)
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∫

Σ

∂ws3
∂a

dz =
4a2π

(r2c − δ2)3
[

−6 a rc4 + 3 rc
4 ζc − i rc

4 ζc − 3 a2 rc
2 ζc + 6 a2 i rc

2 ζc

+6 a rc
2 δ2 − 3 rc

2 ζc
2 ζc + 2 i rc

2 ζc
2 ζc − i ζc

3 ζc
2
]

(3.119)

∫

Σ

∂ws3
∂rc

dz =
−8a3π

rc(r2c − δ2)4
[

a2 rc
2 ζc

(

(−1 + 2 i) rc
2 + (−1 + i) δ2

)

+ζc
(

rc
2 − δ2

)

(

(1 + i) rc
4 + (1− 2 i) rc

2 δ2 + i ζc
2 ζc

2
)

−2 a
(

rc
6 − rc

2 ζc
2 ζc

2
)]

(3.120)

3.5.2 Bernoulli Effect Force Terms

Now I turn to the last term in Equation (3.74), involving cross-terms between the

Kirchoff potentials. In order to evaluate this integral, I first consider its complex

conjugate.

∫

Σ

dw

dz

dw

dz
dz =

∫

Σ

dw

dz

dw

dz
dz (3.121)

∫

Σ

dw

dz

dw

dz
dz =

∫

Σ

dw

dζ

dζ

dz

dw

dζ

dζ

dz
dz

=

∫

C

dw

dζ

dw

dζ

dζ

dz
dζ

=

∫

C

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ

=

∫

C

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)(ζ − a+ ζc)

)(−r2c
ζ2

)

dζ (3.122)

The factors apart from dw/dζ and dw/dζ introduce poles at ζ = 0; at ζ =

(−a− ζc); and at ζ = (a− ζc). The former two poles lie inside C, and the third lies

exactly on C.
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Figure 3.9: I consider a small excursion around the pole at ζ = a− ζc.

Now consider the contour C+ = C + Sa illustrated in Figure 3.9. The integral

around the small semicircle Sa will be equal to the residue of the integrand at ζ = a−ζc
times πi. Therefore:

∫

Σ

dw

dz

dw

dz
dz =

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)(ζ − a+ ζc)

)(−r2c
ζ2

)

dζ

−
∫

Sa

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)(ζ − a+ ζc)

)(−r2c
ζ2

)

dζ

=

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)(ζ − a+ ζc)

)(−r2c
ζ2

)

dζ

−iπ
[

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)

)(−r2c
ζ2

)]

ζ=a−ζc

=

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + a+ ζc)(ζ − a+ ζc)

)(−r2c
ζ2

)

dζ

+iπ
ar2c

2(a− ζc)2

[

dw

dζ

dw

dζ

]

ζ=a−ζc

(3.123)

As long as the Kutta condition is satisfied, dw/dζ will equal zero at ζ = a − ζc,

and the final term in Equation (3.123) vanishes.

Through the substitution ζ → r2c/ζ, I can replace dw/dζ with a function of ζ

which takes on the same values on C+. Then we can evaluate all terms of the integral
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on C+ by the theory of residues. The results are given in Appendix B.

3.6 Moments on the Foil

The moment about the point z = 0 is given by

M =

∫

Σ

x p dx+ y p dy

=

∫

Σ

pRe
{

z dz
}

= Re

{∫

Σ

p z dz

}

(3.124)

So employing Equation (3.70), we have

M = −1

2
Re

{∫

Σ

∂w

∂t
z dz +

∫

Σ

∂w

∂t
z dz +

∫

Σ

dw

dz

dw

dz
z dz

}

(3.125)

I have to make the replacements z = F (ζ) and dz = −(r2c/ζ2)(1− a2/((r2c/ζ) + ζc)
2).

Then the following integrals can be readily evaluated in the ζ-plane using the theory

of residues:

∫

Σ

w1z dz = −2 a2 i π
(

rc
6 ζc − rc

4
(

2 a2 + 3 ζc
2
)

ζc − ζc
2
(

a2 + ζc
2
)

ζc
3

+rc
2 ζc

(

2 a4 + 3 ζc
(

a2 + ζc
2
)

ζc
))

/
(

rc
2 − ζc ζc

)3
(3.126)

∫

Σ

w1z dz =

∫

Σ

w1z dz

= −2 i π
(

a6 rc
2 ζc + a2 ζc

(

rc
2 − ζc ζc

)3 − rc
2 ζc
(

rc
2 − ζc ζc

)3

−a4
(

rc
2 − ζc ζc

)

(

−
(

ζc ζc
2
)

+ rc
2
(

ζc + ζc
)

))

/
(

rc
2 − ζc ζc

)3
(3.127)
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∫

Σ

w2z dz = −2 a2 π
(

−
(

rc
6 ζc
)

+ rc
4
(

2 a2 + 3 ζc
2
)

ζc + ζc
2
(

a2 + ζc
2
)

ζc
3

+rc
2 ζc

(

2 a4 − 3 ζc
(

a2 + ζc
2
)

ζc
))

/
(

rc
2 − ζc ζc

)3
(3.128)

∫

Σ

w2z dz =

∫

Σ

w2z dz

= 2π
(

a6 rc
2 ζc + a2 ζc

(

rc
2 − ζc ζc

)3
+ rc

2 ζc
(

rc
2 − ζc ζc

)3

−a4
(

rc
2 − ζc ζc

)

(

rc
2 ζc − ζc

(

rc
2 + ζc

2
)))

/
(

rc
2 − ζc ζc

)3
(3.129)

∫

Σ

w3z dz = a2 π
(

2 a4 ζc
2 (
rc
2 − ζc ζc

)2
+ 2 ζc

2
(

rc
2 − ζc ζc

)4
+ a6

(

rc
4 + 3 rc

2 ζc ζc
)

+a2
(

rc
2 − ζc ζc

)2
(

rc
4 − 7 rc

2 ζc ζc + 4 ζc
2 ζc

2
))

/
(

rc
2 − ζc ζc

)4
(3.130)

∫

Σ

w3z dz =

∫

Σ

w3z dz

= π
(

2 a6 ζc
2 (
rc
2 − ζc ζc

)2
+ 2 a2 ζc

2
(

rc
2 − ζc ζc

)4
+ 2 rc

2 ζc ζc
(

rc
2 − ζc ζc

)4 − a8
(

rc
4 + rc

2 ζc ζc
)

+a4
(

rc
2 − ζc ζc

)2
(

3 rc
4 − 5 rc

2 ζc ζc + 4 ζc
2 ζc

2
) )

/
(

rc
2 − ζc ζc

)4
(3.131)

In order to evaluate the terms involving log(ζ/rc), I make the substitution ζ = rce
iθ

(and dζ = irce
iθ dθ) and integrate with respect to θ. The integration with respect to

θ must respect the branch cut at the trailing edge of the foil and therefore the limits

of integration must be θ = [−β, 2π − β] where β = arctan(ζy/(a− ζx)).
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∫

Σ

log(
ζ

rc
) z dz =

∫

C

log(
ζ

rc
)

(

ζ + ζc +
a2

(ζ + ζc)

)

(

−
(

rc
2

ζ2

)

+
a2 rc

2

(

rc2 + ζ ζc
)2

)

dζ

=
2π
(

2 i a3 − β rc
2 ζc + π rc

2 ζc + 2 i a ζc
2
)

ζc
− 2 (−i a2 π rc2 − a2 β π rc

2 + a2 π2 rc
2)

ζc
2

− 2 i (a π rc
2 + a2 π ζc)

ζc
− 2 i π

(

a2 + ζc
2
)

ζc

ζc
− 2 i (− (a3 π rc

2) + a4 π ζc)

ζc
(

−rc2 + ζc ζc
)

+ 2 i a2 π rc
2

(

ζc
−2 − a2

(

rc2 − ζc ζc
)2

)

log(
a

ζc
)

− 2 i a2 π rc
2

(

ζc
−2 − a2

(

rc2 − ζc ζc
)2

)

log(
rc
2 + a ζc − ζc ζc

rc2
) (3.132)

∫

Σ

log(
ζ

rc
)z dz =

∫

C

log(
ζ

rc
)

(

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

) (

1− a2

(ζ + ζc)
2

)

dζ

=
−2π rc2 (−a+ ζc) (i a− a β + a π − β ζc + π ζc)

ζc
2 +

2 i a3 π rc
2

(rc2 + a ζc) ζc
− 2 i a3 π rc

2

ζc
(

−rc2 + ζc ζc
)

− 2 i
(

−2 a3 π rc4 + a π rc
6 − 2 a4 π rc

2 ζc + 2 a2 π rc
4 ζc + 2 a3 π rc

2 ζc
2
)

ζc (rc2 + a ζc)
(

−rc2 − a ζc + ζc ζc
)

+ 2 i a2 π rc
2

(

ζc
−2 − a2

(

rc2 − ζc ζc
)2

)

log(
a

ζc
)

− 2 i a2 π rc
2

(

ζc
−2 − a2

(

rc2 − ζc ζc
)2

)

log(
rc
2 + a ζc − ζc ζc

rc2
) (3.133)

The integral of log((ζ + ζc)/ζ) z dz, which occurs in the shape deformation poten-

tials, can be best evaluated using the contour in Figure 3.10. I must account for the

pole at ζ = −r2c/ζc, which occurs in the factor replacing dz. The integrand drops

off as O (1/ζ2) for large ζ, so there is no contribution from C∞, and the integrand

is continuous in the vicinity of Cb2 and Cx, so there is no contribution there. The

only contribution comes from Cp, which can be evaluated by taking the residue of the
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integrand at ζ = −r2c/ζc.

∫

Σ

log(
ζ + ζc
ζ

) z dz =

∫

C

log(
ζ + ζc
ζ

)

(

ζ + ζc +
a2

(ζ + ζc)

)






−
(

rc
2

ζ2

)

+
a2 rc

2

ζ2
(

rc2

ζ
+ ζc

)2






dζ

= −
∫

Cp

log(
ζ + ζc
ζ

)

(

ζ + ζc +
a2

(ζ + ζc)

)






−
(

rc
2

ζ2

)

+
a2 rc

2

ζ2
(

rc2

ζ
+ ζc

)2






dζ

=
−2 a2 i π ζc

(

rc
4 − 2 rc

2 ζc ζc + a2 ζc
2
+ ζc

2 ζc
2
)

ζc
(

rc2 − ζc ζc
)2

+
2 a2 i π rc

2
(

rc
2 + a ζc − ζc ζc

) (

−rc2 + a ζc + ζc ζc
)

log
(

(rc
2 − ζc ζc)/r

2
c

)

ζc
2 (
rc2 − ζc ζc

)2 (3.134)

The following integral does have a nonvanishing contribution from C∞ as well as Cp.

∫

Σ

log(
ζ + ζc
ζ

) z dz =

∫

C

log(
ζ + ζc
ζ

)

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

=

∫

C∞

log(
ζ + ζc
ζ

)

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

−
∫

Cp

log(
ζ + ζc
ζ

)

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

= 2 i π ζc

(

a2

ζc
+ ζc

)

−
2 i a2 π rc

2
(

−rc4 + 2 rc
2 ζc ζc + a2 ζc

2 − ζc
2 ζc

2
)

log
(

(r2c − ζc ζc)/r
2
c

)

ζc
2 (
rc2 − ζc ζc

)2

(3.135)

Finally, I can conclude that

∫

Σ

log(
ζ + ζc
rc

) z dz =

∫

Σ

[

log(
ζ + ζc
ζ

) + log(
ζ

rc
)

]

z dz (3.136)

∫

Σ

log(
ζ + ζc
rc

) z dz =

∫

Σ

[

log(
ζ + ζc
ζ

) + log(
ζ

rc
)

]

z dz (3.137)

I now have the tools to evaluate the moments arising from the shape deformations
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and from the central vortex potential. It immediately follows that

∫

Σ

w4z dz =
2 i π

(

2 i a3 − β rc
2 ζc + π rc

2 ζc + 2 i a ζc
2
)

ζc
−2 i (−i a2 π rc2 − a2 β π rc

2 + a2 π2 rc
2)

ζc
2

+
2 (a π rc

2 + a2 π ζc)

ζc
+

2π
(

a2 + ζc
2
)

ζc

ζc
+

2 (− (a3 π rc
2) + a4 π ζc)

ζc
(

−rc2 + ζc ζc
)

+ 2 a2 π rc
2

(

−ζc
−2

+
a2

(

rc2 − ζc ζc
)2

)

log(
a

ζc
)

+ 2 a2 π rc
2

(

ζc
−2 − a2

(

rc2 − ζc ζc
)2

)

log(
rc
2 + a ζc − ζc ζc

rc2
) (3.138)

∫

Σ

ws1 z dz = 2 a2 π
(

−i (rc − ζc) (rc + ζc)
(

rc
2 + ζc

2
)

ζc
2 (
rc
2 − ζc ζc

)5

+a4
(

rc
2 − ζc ζc

)2
(

i rc
6 ζc

2
+ i ζc

3 ζc
5
+ rc

4 ζc

(

i ζc
3
+ 2 (i+ β − π) ζc

2 (ζc − i ζy)
)

−i rc2 ζc2 ζc
(

4 ζc
3 + 2 ζc

2
(

ζc − i ζy
)

+ ζc
2 (
ζc − 2 i ζy

)

))

−i a6 rc2 ζc2 ζc
2 (
rc
4 + 2 ζc

2 ζc
(

3 ζc + ζc − i ζy
)

+ rc
2 ζc

(

−2 ζc + ζc + 2 i ζy
))

+2 a5 rc
2 ζc

2 ζc
2 (
rc
2 − 2 ζc ζc

) (

rc
2 − ζc ζc

)

(i ζc + ζy)

+2 a3 ζc
3 ζc

(

−rc2 + 2 ζc ζc
) (

rc
3 − rc ζc ζc

)2
(i ζc + ζy)

+2 a2 rc
2 ζc ζc

(

rc
2 − ζc ζc

)2
(

−i
(

rc
2 − ζc ζc

)3
+ ζc

3 ζc
(

(−β + π) rc
2 − i ζc ζc

)

+i ζc
2 ζc

(

(β − π) rc
2 + i ζc ζc

)

ζy
)

−2 i a2 rc4
(

rc
2 + (a− ζc) ζc

) (

rc
2 − (a+ ζc) ζc

)

(

rc
6 − 3 rc

4 ζc ζc + 3 rc
2 ζc

2 ζc
2

+ζc
3
(

−ζc
3
+ a2

(

ζc + ζc
)

))

log(
rc
2 − ζc ζc
rc2

)

−2 i a4 rc4 ζc (ζc − i ζy)

(

−
(

ζc
2
(

rc
2 + (a− ζc) ζc

) (

rc
2 − (a+ ζc) ζc

)

log(
a

ζc
)

)

+
(

rc
2 + ζc

(

a− ζc
) )

ζc
2 (
rc
2 − ζc

(

a+ ζc
))

log(
rc
2 + a ζc − ζc ζc

rc2
)

))

/
(

ζc
3 ζc

2 (−rc2 + ζc ζc
)5
)

(3.139)



78

∫

Σ

ws1 z dz = 2π
(

ζc

(

i a rc
2 ζc

2 ζc
4 (
rc
2 − ζc ζc

)5
+ i rc

2 ζc
2 ζc

3 (
rc
2 − ζc ζc

)6

+i a3 ζc ζc
(

rc
2 − ζc ζc

)5
(

rc
4 − ζc ζc

3
)

+ i a2 ζc
(

rc
2 − ζc ζc

)6
(

rc
4 − ζc ζc

3
)

+i a9 rc
2 ζc ζc

3
(

rc
4 + ζc ζc

3
)

+ a6
(

rc
2 − ζc ζc

)3
(

−i rc6 ζc − i ζc ζc
6

+i rc
2 ζc

2
(

ζc
3 − ζc

2 ζc + ζc ζc
2
+ 2 ζc

3
)

+rc
4 ζc ζc

(

−i ζc + 2 (i+ β − π)
(

ζc + i ζy
)) )

+a7 ζc
(

rc
2 − ζc ζc

)2
(

−i rc6 ζc − i ζc ζc
6
+ i rc

2 ζc
2
(

ζc
3 − ζc

2 ζc + ζc ζc
2
+ 2 ζc

3
)

+rc
4 ζc

(

−i ζc2 + 2 (β − π) ζc
(

ζc + i ζy
)

+ 2 i ζc
(

ζc + i ζy
)) )

+i a8 rc
2 ζc ζc

2 (
rc
2 − ζc ζc

)

(

rc
4 + ζc ζc

3
+ 2 rc

2 ζc
(

ζc + i ζy
)

)

+a4 rc
2 ζc
(

rc
2 − ζc ζc

)3
(

2 (−β + π) rc
2 ζc ζc

3

+i
(

2 rc
6 − 6 rc

4 ζc ζc + ζc
2 ζc

3 (−ζc + ζc
)

+ rc
2 ζc ζc

2 (
7 ζc + ζc − 2 β ζy + 2π ζy

)

))

+a5 rc
2 ζc

2 (
rc
2 − ζc ζc

)2
(

−2 rc2 ζc ζc
(

(β − π) ζc
2
+ ζc ζy

)

+i
(

2 rc
6 − 6 rc

4 ζc ζc + ζc
2 ζc

3 (−ζc + ζc
)

+ rc
2 ζc ζc

2 (
9 ζc + ζc − 2 β ζy + 2π ζy

)

)))

+2 a6 rc
4 ζc

2 ζc
(

rc
2 + (a− ζc) ζc

)2 (−rc2 + (a+ ζc) ζc
) (

−i ζc + ζy
)

log(
a

ζc
)

+2 a4 rc
4
(

rc
2 + ζc

(

a− ζc
)) (

rc
2 + (a− ζc) ζc

) (

rc
2 − ζc

(

a+ ζc
)) (

i
(

rc
6 − 3 rc

4 ζc ζc

+3 rc
2 ζc

2 ζc
2
+ ζc

3 (−ζc3 + a2
(

ζc + ζc
))

)

log(
rc
2 − ζc ζc
rc2

)

+a2 ζc
3 (−i ζc + ζy

)

log(
rc
2 + a ζc − ζc ζc

rc2
)

))

/
(

ζc
2 ζc

3 (
rc
2 + (a− ζc) ζc

) (

rc
2 − ζc ζc

)5
)

(3.140)

The other shape deformation integrals can be evaluated similarly.

For the integrals involving the wake vortices:

∫

Σ

wk5z dz =

∫

C

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ (3.141)

I must consider the contour illustrated in Figure 3.11. Not only do I have to account
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Figure 3.11: The contour Cp encloses a pole at ζ = −r2c/ζc. If the direction of
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−
∫
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−
∫
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for the pole at ζ = −r2c/ζc, which occurs in the factor replacing dz, but I must also

allow for the branch cut between the wake vortex and its image.

Since the integral around the entire contour in Figure 3.11 must be zero, I have

∫

C

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

=

(

∫

C∞

−
∫

Cx

−
∫

Cp

−
∫

Cv

−
∫

Cb

)

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

(3.142)

Recalling the series expansion for wk
5 in Equation (3.91),

wk5 = i log(
−rc
ζk

)− i

∞
∑

n=1

ζnk
1

nζn
+

(

i

∞
∑

n=1

(

r2c
ζk

)n
1

nζn

)

(3.143)

I isolate the part of the integrand of Equation (3.141) that goes as 1/ζ and conclude

∫

C∞

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

= 2π log(− r

ζk
)

(

r2c −
a2r2c

ζc
2

)

(3.144)

The integrand is continuous on Cx and Cb, so there is no contribution from those

integrals. Since Cv encloses only a logarithmic singularity, it gives no contribution as

the radius of Cv approaches zero. On Cb, w
k
5 is larger by the amount 2π on the lower

side than on the upper side. So,

∫

Cb

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

= 2π

∫ ζk

a−ζc

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ (3.145)
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This is an elementary line integral in ζ which equals

∫

Cb

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

= −2π



 rc
2





−a2 − ζc
2

ζ ζc
+
a2
(

rc
4 − 2 rc

2 ζc ζc + a2 ζc
2
+ ζc

2 ζc
2
)

ζc
2 (
rc2 + ζ ζc

) (

−rc2 + ζc ζc
)

+

(

−a2 + ζc
2
)

log(ζ)

ζc
2

+

(

a2 rc
4 − a4 ζc

2 − 2 a2 rc
2 ζc ζc + a2 ζc

2 ζc
2
)

log(ζ + ζc)

ζc
2
(

−rc2 + ζc ζc
)2

+

(

− (a2 rc
4) + 2 a2 rc

2 ζc ζc + a4 ζc
2 − a2 ζc

2 ζc
2
)

log(rc
2 + ζ ζc)

ζc
2 (
rc2 − ζc ζc

)2









ζ=ζk

ζ=(a−ζc)

(3.146)

Finally, the contribution from Cp is just 2πi times the residue of the integrand at

ζ = −r2c/ζc.

∫

Cp

wk5

(

ζ + ζc +
a2

(ζ + ζc)

)(−r2c
ζ2

+
a2r2c

(r2c + ζζc)2

)

dζ

= 2 a2 π
(

ζc
(

−rc2 + ζc ζc
)

(

rc
4 − 2 rc

2 ζc ζc +
(

a2 + ζc
2
)

ζc
2
)

(

rc
2 − ζk ζk

)

−rc2
(

rc
2 + (a− ζc) ζc

) (

rc
2 − (a+ ζc) ζc

) (

rc
2 + ζc ζk

) (

ζc + ζk
)

log

(

−
(

rc
2 + ζc ζk

)

ζk

rc ζk
(

ζc + ζk
)

))

/
(

ζc
2 (
rc
2 − ζc ζc

)2 (
rc
2 + ζc ζk

) (

ζc + ζk
)

)

(3.147)

Collecting all the terms, I find

∫

Σ

wk5 z dz =

2π

[

A+ B log(− rc
ζk
) + B log(

ζk
a− ζc

) + C log(−(r2c + aζc − δ2)ζk

rcζk(ζc + ζk)
) + C log(ζc + ζk

a
)

]

(3.148)
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where

A = −



rc
2





a2 + ζc
2

− (a ζc) + ζc
2 +

a2
(

rc
4 − 2 rc

2 ζc ζc +
(

a2 + ζc
2
)

ζc
2
)

ζc
2 (
rc2 + (a− ζc) ζc

) (

−rc2 + ζc ζc
)









+rc
2



−
(

a2 + ζc
2

ζc ζk

)

+
a2
(

rc
4 − 2 rc

2 ζc ζc +
(

a2 + ζc
2
)

ζc
2
)

ζc
2 (−rc2 + ζc ζc

) (

rc2 + ζc ζk
)





−
a2
(

rc
4 − 2 rc

2 ζc ζc +
(

a2 + ζc
2
)

ζc
2
)

(

rc
2 − ζk ζk

)

ζc
(

−rc2 + ζc ζc
) (

rc2 + ζc ζk
) (

ζc + ζk
)

B =

(

r2c −
a2r2c

ζc
2

)

C =
a2 rc

2
(

rc
4 − 2 rc

2 ζc ζc +
(

−a2 + ζc
2
)

ζc
2
)

ζc
2 (
rc2 − ζc ζc

)2

Only the leading term in Equation (3.148) will actually appear after I take the

real part to find the moment in Equation (3.125). To see this, I evaluate this integral

on the contour of Figure 3.11:

∫

Σ

wk5 z dz =

∫

Σ

wk5 z dz =

∫

Σ

wk5 z dz (3.149)

∫

Σ

wk5z dz =

∫

C

wk5

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

=

∫

C

wk5

(

rc
2

ζ
− a2 rc

2

ζ (ζ + ζc)
2 + ζc −

a2 ζc

(ζ + ζc)
2 +

a2 ζ

rc2 + ζ ζc
− a4 ζ

(ζ + ζc)
2 (rc2 + ζ ζc

)

)

dζ

(3.150)

Since wk5 ≈ i log(−rc/ζk) − iζk/ζ + ir2c/(ζkζ) for large ζ, I can identify the terms of
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the integrand that go as 1/ζ and find

∫

C∞

wk5

(

rc
2

ζ
− a2 rc

2

ζ (ζ + ζc)
2 + ζc −

a2 ζc

(ζ + ζc)
2 +

a2 ζ

rc2 + ζ ζc
− a4 ζ

(ζ + ζc)
2 (rc2 + ζ ζc

)

)

dζ

= −2π
(

(

a2

ζc
+ ζc

) (

−ζk +
rc
2

ζk

)

+

(

rc
2 − a2 rc

2

ζc
2

)

log

(−rc
ζk

)

)

(3.151)

The integral cancels around all the linear parts of the contour except for Cb.

∫

Cb

wk5

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

= 2π

∫ ζk

a−ζc

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

= 2π





ζ
(

a2 + ζc
2
)

ζc
+
a2
(

rc
4 + a2 ζc

2 − 2 rc
2 ζc ζc + ζc

2 ζc
2
)

ζc (ζ + ζc)
(

−rc2 + ζc ζc
) +

(

− (a2 rc
2) + rc

2 ζc
2
)

log(ζ)

ζc
2

+

(

a2 rc
6 − a4 rc

2 ζc
2 − 2 a2 rc

4 ζc ζc + a2 rc
2 ζc

2 ζc
2
)

log(ζ + ζc)

ζc
2
(

−rc2 + ζc ζc
)2

+

(

− (a2 rc
6) + 2 a2 rc

4 ζc ζc + a4 rc
2 ζc

2 − a2 rc
2 ζc

2 ζc
2
)

log(rc
2 + ζ ζc)

ζc
2 (
rc2 − ζc ζc

)2





ζ=ζk

ζ=a−ζc

(3.152)

Finally, the contribution from Cp is found by taking the residue at ζ = −r2c/ζc.

∫

Cp

wk5

(

1− a2

(ζ + ζc)
2

) (

rc
2

ζ
+ ζc +

a2 ζ

rc2 + ζ ζc

)

dζ

= −2 a2 π rc2
(

−rc4 + 2 rc
2 ζc ζc + (a− ζc) (a+ ζc) ζc

2
)

× log

(

−
(

rc
2 + ζc ζk

)

ζk

rc ζk
(

ζc + ζk
)

)

/
(

ζc
2 (
rc
2 − ζc ζc

)2
)

(3.153)
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So collecting all terms and taking the complex conjugate, I find

∫

Σ

wk5 z dz =

∫

Σ

wk5z dz =

2π

[

A∗ − B log(
ζk

a− ζc
)− B log(− rc

ζk
)− C log(ζc + ζk

a
)− C log(−(r2c + aζc − δ2)ζk

rcζk(ζc + ζk)
)

]

(3.154)

where

A∗ = a

(

2 ζc −
rc
2

ζc

)

+ a3
(

1

ζc
+

ζc

−rc2 + ζc ζc

)

−ζc
(

rc
2 + ζc ζk

)

ζk
− a4 ζc
(

−rc2 + ζc ζc
) (

ζc + ζk
)

−
a2
(

rc
2
(

ζc
2 − ζc ζk + ζc ζk

)

+ ζc ζk
(

ζc
2 + ζc

(

ζc + ζk
))

)

ζc ζc ζk
(

ζc + ζk
)

The log terms in Equation (3.154) are negative complex conjugates of the log

terms in Equation (3.148). This shows that all the log terms taken together are

pure imaginary and will be discarded in Equation (3.125). So only the leading terms

A+A∗ are actually significant in determining the moment on the foil.

The Bernoulli pressure terms can again be dealt with by using the contours illus-
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trated in Figure 3.9.

∫

Σ

dw

dz

dw

dz
z dz

=

∫

C

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)

dζ

=

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)

dζ

−
∫

Sa

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)

dζ

=

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)

dζ

− iπ

[

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc + a)

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)]

ζ=a−ζc

=

∫

C+

dw

dζ

dw

dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(

ζ + ζc +
a2

ζ + ζc

)(

−r
2
c

ζ2

)

dζ

+ iπ
a2r2c

(a− ζc)2

[

dw

dζ

dw

dζ

]

ζ=a−ζc

(3.155)

where the last term vanishes due to the Kutta condition.
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3.7 Equations of Motion

Collecting terms, we see that the force on the foil is

X + iY = −U̇ A1 − V̇ A2 − Ω̇A3 + ζ̈x B1 + ζ̈y B2 + äB3
+U 2 C1+UV C2+V 2 C3+UΩ C4+V Ω C5+Ω2 C6+Uζ̇xD1+Uζ̇y D2+UȧD3+UṙcD4

+ V ζ̇xD5 + V ζ̇y D6 + V ȧD7 + V ṙcD8 + Ωζ̇xD9 + Ωζ̇y D10 + ΩȧD11 + ΩṙcD12
+ ζ̇x

2 E1 + ζ̇xζ̇y E2 + ζ̇y
2 E3 + ζ̇xȧ E4 + ζ̇yȧ E5 + ȧ2 E6 + ζ̇xṙc E7 + ζ̇yṙc E8 + ȧṙc E9

+ UγcF1 + V γcF2 + ΩγcF3 + ζ̇xγcF4 + ζ̇yγcF5 + ȧγcF6
+
∑

k

γk

(

U Gk1 + V Gk2 + ΩGk3 + ζ̇x Gk4 + ζ̇y Gk5 + ȧGk6 + ṙc Gk7 + ζ̇k Gk8 + ζ̇k Gk9 + γc Gk10
)

+
∑

k

∑

j 6=k

γkγj Gk11 +
∑

k

γ2k Gk12 + γ̇cH1 +
∑

k

γ̇kHk
2 +

πar2c
4(a− ζc)2

∥

∥

∥

∥

dw

ds

∥

∥

∥

∥

2

ζ=a−ζc

(3.156)

where the final term vanishes as long as the Kutta condition is satisfied, and where

A1 = π

(

−2 a2 + rc
2 +

a4 rc
2

(rc2 − δ2)2

)

A2 = i π

(

2 a2 + rc
2 +

a4 rc
2

(rc2 − δ2)2

)

A3 = −





i π
(

a6 rc
2 ζc + 2 a4 ζc (rc

2 − δ2)
2 − rc

2 ζc (rc
2 − δ2)

3
+ 2 a2 ζc (−rc2 + δ2)

3
)

(rc2 − δ2)3





I can relate some of the coefficients in Equation (3.156) to the locked inertia coeffi-

cients found in Section 3.3 as follows:

A1 = I11 + iI12 (3.157)

A2 = I12 + iI22 (3.158)

A3 = I13 + iI23 (3.159)

The other coefficients are given in Appendix C.
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After creation, the wake vortices are assumed to have constant strength γk. The

central vortex strength γc is also normally assumed to be constant. Nevertheless,

the terms in Equation (3.156) that are proportional to γ̇c and γ̇k can be significant

whenever vortices are introduced to or removed from the flow.

Whenever the kth vortex is shed from the foil into the wake, its strength may be

considered to rise from zero to γk in the time step of creation, and the Hk
2 term will

exert some force on the foil (with γ̇k = γk/(∆t)). Streitlien [Str94] noted that if this

effect is neglected in simulation of a rigid foil, the force calculations will still converge

to the correct result as the time step ∆t approaches zero, but only at a rate
√
∆t.

On the other hand, in order to reduce the computational burden and avoid tracking

the location of all shed wake vortices indefinitely, we may wish to remove some vortices

distant from the foil, and either combine them into a single vortex at their center of

vorticity, or stop tracking them altogether and assume they have moved permanently

to infinity. In the latter case, the images of the “infinitely distant” vortices move to

the origin and the central vortex strength γc is changed by an amount (−γk), the
strength of the images. During the time step in which such simplification of the wake

occurs, we should have force contributions from the Hk
2 and possibly the H1 terms,

which should substantially cancel if the wake simplification is justified.
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The moment on the foil is given by

M = −U̇ J 1 − V̇ J 2 − Ω̇J 3 + ζ̈xK1 + ζ̈y K2 + äK3
+U 2 L1+UV L2+V 2 L3+UΩL4+V ΩL5+Ω2 L6+Uζ̇xM1+Uζ̇yM2+UȧM3+UṙcM4

+ V ζ̇xM5+ V ζ̇yM6+ V ȧM7+ V ṙcM8+Ωζ̇xM9+Ωζ̇yM10+ΩȧM11+ΩṙcM12

+ ζ̇x
2N 1+ ζ̇xζ̇yN 2+ ζ̇y

2N 3+ ζ̇xȧN 4+ ζ̇yȧN 5+ ȧ2N 6+ ζ̇xṙcN 7+ ζ̇yṙcN 8+ ȧṙcN 9

+ UγcP1 + V γcP2 + ΩγcP3 + ζ̇xγcP4 + ζ̇yγcP5 + ȧγcP6 + ṙcγcP7
+
∑

k

γk

(

U Qk
1 + V Qk

2 + ΩQk
3 + ζ̇xQk

4 + ζ̇yQk
5 + ȧQk

6 + ṙcQk
7 + ζ̇kQk

8 + ζ̇kQk
9 + γcQk

10

)

+
∑

k

∑

j 6=k

γkγj Qk
11 +

∑

k

γ2k Qk
12 + γ̇cR1 +

∑

k

γ̇kRk
2 +

πa2ζy(a− ζx)

r2c

∥

∥

∥

∥

dw

ds

∥

∥

∥

∥

2

ζ=a−ζc

(3.160)

where the final term vanishes as long as the Kutta condition is satisfied. The coeffi-

cients are given in Appendix D.

As an example, I calculate the forces and moments on a foil executing the following

particular motion: the centroid of the foil moves with uniform velocity (Ucm, Vcm) =

(1, 0) while the foil pitches with Ω = 0.3 cos(t) and deforms with (ζx, ζy) = (0.15, 0.3 sin(t)),

while rc = 1. This trajectory, illustrated in Figures 3.12-3.13, is intended to be sugges-

tive of a swimming fish, since the pitching and flexing deformation are countervailing,

leaving the “nose” of the foil pointed in approximately the same direction while the

rear part flaps back and forth. The forces and moments experienced by the foil are

plotted in Figure 3.14. The motion generates a positive forward thrust and also a

positive average moment, while the lateral forces settle into a symmetrical oscillation

with zero mean. There is a transient spike in the lateral force in the first few time

steps but otherwise the system displays periodic behavior immediately, i.e., there is

little noticeable secular change in force on the foil as the wake evolves in time.
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Figure 3.12: Flapping motion of a foil with (Ucm, Vcm) = (1, 0), Ω = 0.3 cos(t),
(ζx, ζy) = (0.15, 0.3 sin(t)), rc = 1. The point vortices are being shed at intervals of
∆t = 2π/100 = 0.0628. The snapshots shown are at intervals of 10∆t = 2π/10.
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Figure 3.13: Continuation of Figure 3.12. Flapping motion of a foil with
(Ucm, Vcm) = (1, 0), Ω = 0.3 cos(t), (ζx, ζy) = (0.15, 0.3 sin(t)), rc = 1. The point
vortices are being shed at intervals of ∆t = 2π/100 = 0.0628. The snapshots are at
intervals of 10∆t = 2π/10.
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Figure 3.14: Forces and moments on the flapping foil of Figures 3.12-3.13, in a station-
ary frame oriented with the reader. While the oscillating force in the y-direction has
an average approaching zero, the oscillating thrust in the x-direction has a positive
mean value of 0.23. The moment also has a significantly positive mean value.
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3.8 Self-Propulsion of a Deformable Foil

Equations (3.156) and (3.160) can be used to find the force and moment on a de-

formable foil undergoing any prescribed motion and deformation. They are also very

broadly applicable without requiring any assumptions about the internal structure of

the foil. A prescribed trajectory might arise in a practical sense if the deformable foil

is attached to an external body which can move the foil through a given trajectory

independent of the fluid forces experienced by the foil. In particular, if the flapping

foil of Figure 3.14 were attached as a tailfin propulsor to another body, we can see how

the tailfin could provide forward thrust to the body while inertial or internal forces

provided by the body “absorbed” the lateral forces. By using stabilizing forward fins,

or by using paired propulsors, the body could manage the moments generated by the

tailfin and maintain the desired orientation.

Suppose, on the other hand, that instead of attaching the deformable foil as an

appendage to another body, we are interested in its ability to swim as an isolated

body in its own right. In order to find which motions (if any) generate self-propulsion,

I have to make some assumption about the mass distribution ρ(z).

The linear momentum of the foil, expressed as a complex number, is

Px + iPy =

∫ ∫

ρ(z)

(

U + iV + iΩz +
∂F

∂ζc
ζ̇c +

∂F

∂a
ȧ

)

dA, (3.161)

while the angular momentum is

L = Re
{

−i
∫ ∫

ρ(z)
(

U + iV + iΩz + ∂F
∂ζc
ζ̇c +

∂F
∂a
ȧ
)

z dA
}

. (3.162)

As a consequence of Stokes’s theorem, for an arbitrary function f(z, z) on a region

R bounded by ∂R:
∫

∂R

f dz = −2i
∫ ∫

R

∂f

∂z
dA (3.163)

So if the function ρ(z) is sufficiently congenial (for example, a polynomial of z and

z) I can transform the momentum expressions into contour integrals around the foil
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boundary, then make the usual transformations and evaluate the integrals using the

theory of residues in the ζ-plane.

3.8.1 Uniform Foil Density

As an example, I assume that the foil is homogeneous with uniform density ρ(z) = ρ.

(The density may, however, be time-dependent if the foil undergoes area-changing

deformations.) Then:

Px + iPy =
−1
2i

∫

Σ

ρ

(

Uz + iV z + iΩz2/2 + ζ̇c
∂

∂ζc
F 2/2 + ȧ

∂

∂a
F 2/2

)

dz (3.164)

or

Px + iPy =

∫

C

−ir2cρ
2ζ2






1− a2

(

rc2

ζ
+ ζc

)2











2 a ȧ
(

ζ + ζc +
a2

ζ+ζc

)

ζ + ζc

+
i

2
Ω

(

ζ + ζc +
a2

ζ + ζc

)2

+

(

1− a2

(ζ + ζc)
2

) (

ζ + ζc +
a2

ζ + ζc

)

ζ̇c

+

(

ζ + ζc +
a2

ζ + ζc

)

U + i

(

ζ + ζc +
a2

ζ + ζc

)

V

)

dζ (3.165)

The integral can be evaluated by finding the residues of the integrand at ζ = 0 and

ζ = −ζc, yielding

Px + iPy = π rc
2 ρ

[

ȧ

(

−4 a5 rc2

ζc
(

−rc2 + ζc ζc
)3 −

4 a5

ζc
(

−rc2 + ζc ζc
)2

)

+Ω

(

i ζc −
i a6 rc

2

ζc
(

−rc2 + ζc ζc
)3 −

i a6

ζc
(

−rc2 + ζc ζc
)2

)

+

(

1 +
3 a6 rc

4

ζc
2
(

−rc2 + ζc ζc
)4 +

6 a6 rc
2

ζc
2
(

−rc2 + ζc ζc
)3 +

3 a6

ζc
2
(

−rc2 + ζc ζc
)2

)

ζ̇c

+

(

1− a4
(

−rc2 + ζc ζc
)2

)

U +

(

i− i a4
(

−rc2 + ζc ζc
)2

)

V

]

(3.166)
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If the total mass m = ρA of the body is conserved, then:

Px + iPy = m



U + i V +
4 a5 ȧ ζc

(

rc2 − ζc ζc
)

(

−a4 +
(

rc2 − ζc ζc
)2
)

+
iΩ
(

a6 ζc + ζc
(

rc
2 − ζc ζc

)3
)

(

rc2 − ζc ζc
)

(

−a4 +
(

rc2 − ζc ζc
)2
)

+

(

rc
8 − 4 rc

6 ζc ζc + 3
(

a6 + 2 rc
4 ζc

2
)

ζc
2 − 4 rc

2 ζc
3 ζc

3
+ ζc

4 ζc
4
)

ζ̇c
(

rc2 − ζc ζc
)2
(

−a4 +
(

rc2 − ζc ζc
)2
)



 . (3.167)

Meanwhile the angular momentum equals

L =
1

2
Re
{

∫

Σ
ρ
(

Uz + iV z + iΩz2/2 + ζ̇c
∂
∂ζc
F 2/2 + ȧ ∂

∂a
F 2/2

)

z dz
}

. (3.168)

Evaluating the integral by the method of residues I find that

L = mRe

(

−2 i a7 ȧ
(

rc
2 + 2 ζc ζc

)

(

rc2 − ζc ζc
)2 (

a2 + rc2 − ζc ζc
) (

a2 − rc2 + ζc ζc
)

+
Ω
(

rc
2 + 2 ζc ζc

)

(

a4 +
(

rc
2 − ζc ζc

)2
)

2
(

rc2 − ζc ζc
)2

+
i ζc

(

−
(

rc
2 − ζc ζc

)5
+ 3 a8

(

rc
2 + ζc ζc

)

)

ζ̇c
(

rc2 − ζc ζc
)3
(

−a4 +
(

rc2 − ζc ζc
)2
)

−
i
(

a6 ζc + ζc
(

rc
2 − ζc ζc

)3
)

U
(

rc2 − ζc ζc
) (

−a2 + rc2 − ζc ζc
) (

a2 + rc2 − ζc ζc
)

+

(

a6 ζc + ζc
(

rc
2 − ζc ζc

)3
)

V
(

rc2 − ζc ζc
) (

−a2 + rc2 − ζc ζc
) (

a2 + rc2 − ζc ζc
)



 . (3.169)
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Taking the real part, I find that

L = m





Ω
(

rc
2 + 2 ζc ζc

)

(

a4 +
(

−rc2 + ζc ζc
)2
)

2
(

−rc2 + ζc ζc
)2

−

(

−
(

rc
2 − ζc ζc

)5
+ 3 a8

(

rc
2 + ζc ζc

)

)

ζ̇y ζx
(

rc2 − ζc ζc
)3
(

−a4 +
(

−rc2 + ζc ζc
)2
)

+

(

−
(

rc
2 − ζc ζc

)5
+ 3 a8

(

rc
2 + ζc ζc

)

)

ζ̇x ζy
(

rc2 − ζc ζc
)3
(

−a4 +
(

−rc2 + ζc ζc
)2
)

+

(

−1 + a2
(

1

a2 + rc2 − ζc ζc
+

1

−rc2 + ζc ζc

))

ζy U

+

(

1 + a2
(

1

−rc2 + ζc ζc
− 1

a2 − rc2 + ζc ζc

))

ζx V

)

. (3.170)

By setting

d

dt
(Px + iPy) = X + iY (3.171)

d

dt
L = M (3.172)

and using Equations (3.156) and (3.160) and (3.167) and (3.170), I can solve for

(U̇ , V̇ , Ω̇) in terms of (U, V,Ω) and known quantities such as the prescribed defor-

mation of the foil and the state of the wake vortices. I can then find the position

(x, y, θ) of the z-frame attached to the foil, with respect to a stationary world frame,

by observing that











ẋ

ẏ

θ̇











=











cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1





















U

V

Ω











(3.173)











ẍ

ÿ

θ̈










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
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Figure 3.15: A foil starting from rest executes a turn by making the deformation
(ζx, ζy) = (0.15, 0.3 sin(t)).

and integrating as necessary. It is important to note that our force and moment

equations were derived in an inertial frame instantaneously aligned with the rotating

z-coordinate frame, not in the rotating frame itself.

Efforts to find useful self-propulsion inputs for an isolated deformable foil are

ongoing, but I can make some preliminary observations. For “typical” motions of

the deformable foil, the angular accelerations that are generated by oscillating shape

deformations appear large relative to the linear accelerations, so it is easy to discover

inputs which yield large turns with a small amount of displacement5, such as the turn

illustrated in Figure 3.15. It is not so easy to generate the converse: steady swimming

in a particular direction while keeping the orientation within tight bounds.

In further study of the issue, it may be useful to consider nonuniform mass dis-

tributions ρ(z, z). The classic vertical silhouette of a fish with wide body, narrow

peduncle, and wide tail means that when the planar silhouette is considered, the for-

ward body and the tail have more inertia (both in actual mass and in added mass)

that may be fairly represented by the uniform treatment I have tried in this section.

5Of course, the possibility of such maneuvers is part of the motivation for studying fishlike
swimming [ACS+97, Wei72].
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Figure 3.16: The continued progress of the oscillating foil from Figure 3.15. When
the foil drives through its own wake, I assume that any vortices which come too close
to the foil are annihilated.

To further stabilize the orientation, it may help to appeal to empirical dissipative or

damping forces which do not arise naturally in the ideal fluid model.

When the foil executes general maneuvers in the fluid, it is possible for previously

shed point vortices to come near the surface of the foil, as can be seen in Figure 3.15.

In principle, if the vortex comes too close to the surface, it can attain very high

velocities (because it is under powerful influence from its own counter-rotating image

vortex), causing numerical difficulties in the integration of the simulation equations,

but in reality such a vortex would probably be destroyed by the action of viscous

effects [Sar75]. In simulations of flow over an inclined flat plate, Sarpkaya simply

removed from the calculation any vortices which came closer than 0.1a to the surface

of the plate, justifying the distance 0.1a in part by reference to the likely radius of

the vortices in a real flow. I established a similar zone around the deformable foil

when carrying out the simulation illustrated in Figure 3.16.
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Chapter 4 Robot Carangiform Fish

4.1 Review of Carangiform Swimming

There are a wide variety of fish morphologies and at least a few different types of

fish locomotion. This chapter focuses on a robot model of carangiform1 fishes, fast-

swimming fishes which resemble tuna and mackerel. Carangiform fishes typically have

large, high-aspect-ratio tails, and they swim using primarily motions of the rear and

tail, while the forward part of the body remains relatively immobile.2

To leading order, the geometry of carangiform swimming and the forces related

to propulsion can be described as follows. First, I can roughly idealize the main body

of the fish as a rigid body. The body is connected to the tail by a peduncle—a slen-

der region of generally negligible hydrodynamic influence. Though three-dimensional

effects may be important for some fish maneuvers, for purposes of modelling the

gross thrust generation process, I simplify the geometry to the two dimensions of the

horizontal plane, and our robot model moves in the plane.

As the tail moves, nonzero circulation is generated in the surrounding fluid so

that the Kutta-Joukowski condition is satisfied. This vorticity is shed into the fish’s

wake, and the pattern of vortices left behind by the passing of the fish is roughly a

reverse Karman vortex street (Figure 4.1). This shed vorticity is a source of energy

loss [Lig75]. Biological studies [AHB+91] suggest that flapping motions of the fish

tails are optimized to recapture some of the energy lost in the wake. A vortex is

shed near the extremum of the tail’s sideways motion. The tail motion as it reverses

direction can then be roughly interpreted as “pushing off” of the shed vortex. As a

1Latin for “mackerel-shaped.”
2Some researchers use the additional category thunniform (Latin for “tuna-shaped”) to refer to

fish in which propulsive force is even more concentrated in a high-aspect-ratio tail, which is often
lunate in shape. In their terminology our robot might resemble a thunniform rather than carangiform
fish. However, I will use the more general term, since the distinction is primarily one of degree, and
our experimental tailfin was typically a rectangular flat plate rather than lunate.
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Figure 4.1: Schematic (side and top view) of Carangiform fish propulsion.

benefit, the counterrotating vortex generated by this secondary stroke helps to cancel

the primary shed vortex, making the wake less detectable by predators. The shed

vorticity may also influence the stability of the fish’s motion, though there have not

yet been significant studies of this effect. Finally, a fluid boundary layer along the

fish’s body induces drag, and sheds vorticity into the fish’s wake. There is some

evidence that a fish’s geometry and tails motions may be adapted to recapture some

of this lost energy, thereby improving efficiency.

In general, fish tails have a degree of flexibility,3 but the caudal fins of carangiform

swimmers are quite stiff and therefore it is a reasonable simplification to treat the

tail as a rigid lifting surface.

Figure 4.2 gives an idea of how carangiform swimming can generate thrust without

the benefit of a flexible tailfin. The tail of a fish is shown pitching and heaving up and

down as the fish moves from right to left. The basic idea is that the tail maintains

a negative angle of attack on the upstroke, and a positive angle of attack on the

downstroke, with the result that the lift force on the hydrofoil/tail is always oriented

so as to propel the fish forward [Lig75].
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Figure 4.2: A “cartoon” of carangiform swimming consisting of snapshots of the tail
as the fish swims from left to right. The arrows indicate lift forces acting on the tail.
The fish body is removed for clarity.

peduncle tailfin

φ 1
φ 2

φ 1

φ 2

Figure 4.3: A two-jointed fish model. Our experiment replaces the three links with
flat plates.
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4.2 Description of the Experiment

My colleagues and I built an experimental “fish” as a test-bed for our models. The

experiment is intended to resemble an idealized carangiform fish that consists of only

three links: a rigid body in front, a large wing-like tail at the rear, and a slender

stem, or peduncle, which connects the two. The three rigid links are connected by

rotational joints with joint angles θ1 and θ2. See Figure 4.3. I continue to idealize

the model by supposing that I can neglect three-dimensional effects and regard the

problem as essentially planar.

Figures 4.4 and 4.5 show schematic diagrams and photographs of the side and

top views of the apparatus, while Figure 4.6 shows a photograph from beneath of an

earlier prototype. The tailfin is a thin flat plate with a chord of 15.2 cm and a typical

depth in the water of 38 cm. The peduncle is a thin supporting arm, 13 cm in length,

which I believe experiences only negligible hydrodynamic forces. The body is a thick

flat plate, intended to provide a degree of rotational inertia and rotational damping

to help stabilize the fish during planar swimming.

The entire “fish” is suspended in a 4-foot-wide by 4-foot-deep by 36-foot-long water

tank from a passive gantry-like multi-degree-of-freedom carriage. The supporting

infrastructure consists of two orthogonal sets of rails and a rotating platform, all

supported on low friction bearings. By flapping its tail, this mechanism allows the

fish to propel itself and its supporting carriage around the tank. The frictional drag

on the rails is sufficiently low that this carriage system is a reasonable approximation

to untethered swimming. The system can move with three degrees of freedom in

the plane: forward, sideways, and rotationally. Furthermore, the gantry suspension

allows buoyancy effects to be ignored, thereby keeping the experiment focus on thrust

generation and maneuvering. The carriage also simplifies the experiment by keeping

the motors, electronics, etc. out of the water.

The tail and peduncle degrees of freedom are independently driven by two DC

motors (Escap model 35 NT2 R82), each of which is capable of 75 W of power and

3Flexible tails might be considered deformable foils, as in Chapter 3.
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Figure 4.4: Side view schematic and photograph of experiment.
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Figure 4.5: Top view schematic and rear top photo of experiment.
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Figure 4.6: Bottom view of an earlier version of experiment.

110 mNm of torque. Timing belts and two coaxial shafts transmit power from the

motors to the submerged joints of the fish. Also mounted on the carriage are optical

shaft encoders (Hewlett-Packard HEDS-5500), which record the fish’s joint angles at

each instant and enable feedback control of the tail. The encoders are accurate to

within about forty minutes of arc. Finally, a Polhemus position/orientation sensor is

rigidly attached to the last stage of the carriage. In this way, the absolute position and

orientation of the fish can be determined. Since every aspect of the fish’s movement

is instrumented, I may accurately compare experimental results with theory for the

purposes of assessing the validity of simplified models.

For purposes of determining the center of mass or center of rotation of the system,

the gantry carriage elements, which do not rotate with the submerged links but

are connected to the three-link fish by a rotational bearing, can be regarded as a

point mass located at the central axis of the rotational bearing. Since this mass

is a significant fraction of the actual mass (if not the added mass) of the system,

the location of the rotational bearing has a substantial impact on the location of

the system’s center of rotation. In an earlier version of the apparatus, the rotational

bearing axis was located relatively far back on the body link and close to the peduncle.

This setup could have been taken as equivalent to a free-floating swimmer with a short

body or unusually massive hindquarters. This configuration had poor yaw stability.
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Figure 4.7: The idealized model.

Subsequently the experiment was modified to move the rotational axis forward relative

to the body link. This resulted in dynamics more nearly comparable to those of a

biological fish or a plausible free-swimming robot, and also improved the passive

“weathervane” stability of the system with respect to yaw.

The mass of the entire robot and gantry system is m = 35 kg, and the moment of

inertia of the body with the tail fully extended is IΘ = 0.5038 kg ·m2.

4.3 Model with Added Mass and Quasi-Steady Lift

In an effort to model the three-link experimental system in a relatively simple way,

I treated the first link (body) as a source of drag, to be calculated empirically from

measurements; the second link (peduncle) as hydrodynamically negligible; and the

third link (tailfin) as a flat plate, generating lift and drag according to quasi-static

two-dimensional wing theory. Figure 4.7 shows the geometry obtained by further

idealizing the system in Figure 4.1. Let lb be the distance between the body’s center

of rotation and the location of the body/peduncle connector. Let the total length of

the body be l. The peduncle has length lp. The tailfin has chord lf and span d. Let ~le

be a unit vector pointing in the direction of the leading edge of the tailfin hydrofoil.

~le = −











cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1





















cos(φ2)

sin(φ2)

0











, (4.1)

where θ is the orientation of the body in an inertial frame and φ1, φ2 are joint angles

with respect to the body’s longitudinal axis. Using the Kutta-Joukowski theorem and
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assuming that the tail hydrofoil is in a quasi-steady uniform flow with the velocity

implied by the instantaneous velocity of the foil’s quarter-chord point, I arrive at the

following lift force on the hydrofoil:

L = πρf lf d(~vqc ×~le)× ~vqc, (4.2)

where ρf is the density of the fluid, lf is the chord of the tailfin plate, d is depth or

span, and ~vqc is the velocity of the quarter-chord point of the tailfin.4

From Lanchester-Prandtl wing theory, I estimate the drag on the tailfin at [AD59]:

Df = −2πρf l2f ~vqc
‖vqc‖2 − (~vqc ·~le)2

‖vqc‖
(4.3)

Meanwhile the quasi-static torque generated around the midpoint of the tail is:

τf = −πρfd
l2f
4

(

ẋmẏm cos(2θ + 2φ2) +
(ẏ2m − ẋ2m)

2
sin(2θ + 2φ2)

)

, (4.4)

where (ẋm, ẏm) is the velocity of the tail’s midpoint.

The body of the fish has instantaneous translational velocity ~vb = (ẋ, ẏ, 0); it also

has instantaneous rotational velocity θ̇. The velocity of the hydrofoil’s quarter-chord

point and midpoint are respectively:

~vqc =











ẋ− lb sin(θ)θ̇ − lp(θ̇ + φ̇1) sin(θ + φ1)− (lf/4)(θ̇ + φ̇2) sin(θ + φ2)

ẏ + lb cos(θ)θ̇ + lp(θ̇ + φ̇1) cos(θ + φ1) + (lf/4)(θ̇ + φ̇2) cos(θ + φ2)

0





















ẋm

ẏm

0











=











ẋ− lb sin(θ)θ̇ − lp(θ̇ + φ̇1) sin(θ + φ1)− (lf/2)(θ̇ + φ̇2) sin(θ + φ2)

ẏ + lb cos(θ)θ̇ + lp(θ̇ + φ̇1) cos(θ + φ1) + (lf/2)(θ̇ + φ̇2) cos(θ + φ2)

0











.

The drag acting on the body of the fish was empirically measured by towing

4This implicitly assigns the wing a coefficient of lift CL = 2π sin(α). Then the drag estimate

follows from the relationship CD =
C2

L

π(d/lf ) , where d/lf is the aspect ratio of the tailfin.
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the apparatus through the water with a variety of falling weights and measuring

the terminal velocity reached for a given amount of applied force. The drag force

was found to be approximately quadratic with velocity. Figure 4.8 shows the drag

force on the body moving straight forward at zero angle of attack. The drag, about

17.8Ns2/m2, can be normalized by the water density and the area of the body:

D =
1

2
CD ρf l d U

2, (4.5)

where ρf = 1000 kg/m3, l = 46 cm, and d = 31 cm, to yield a normalized coefficient

of drag CD = 0.25 at α = 0. However, the measured drag includes not only the

various forms of hydrodynamical drag, but also any resistance due to the rail bearings.

Figure 4.9 shows the experimentally measured coefficient of drag CD for the fish body

at a variety of different angles of attack α.

Dissipative forces acting against rotation were not measured explicitly, but they

can be estimated if I suppose that the measured coefficients of drag CD can be applied

to incremental elements of the plate, each of which moves with a different velocity as

the body rotates.

The total drag force acting on the body is

Db = −1

2
ρf d

∫ lb

lb−l

CD‖v(s)‖2
v(s)

‖v(s)‖ ds

= −1

2
ρf d

∫ lb

lb−l

CD‖v(s)‖v(s) ds, (4.6)

where

v(s) =





ẋ− sin(θ) s θ̇

ẏ + cos(θ) s θ̇



 . (4.7)
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The total drag moment acting on the body is

τb = −1

2
ρf d

∫ lb

lb−l

CD‖v(s)‖2
(s cos(θ), s sin(θ))× v(s)

‖v(s)‖ ds

= −1

2
ρf d

∫ lb

lb−l

CD‖v(s)‖(cos(θ)ẏ − sin(θ)ẋ+ sθ̇) s ds. (4.8)

Finally, I consider the added inertia from the fluid surrounding the body. The

planar added mass coefficients for a flat plate of length l in a frame aligned with the

plate at its midpoint are5

I11 = 0 (4.9)

I12 = 0 (4.10)

I13 = 0 (4.11)

I22 = πρfd(l/2)
2 (4.12)

I23 = 0 (4.13)

I33 = 2πρfd(l/4)
4. (4.14)

In another frame whose origin is located at (ξ, η) in the plate frame, and rotated by

angle β, the transformed added mass coefficients are [Sed65]

I ′11 = I11 cos
2(β) + I22 sin

2(β) + I12 sin(2β)

I ′12 =
1

2
(I22 − I11) sin(2β) + I12 cos(2β)

I ′13 = (I11η − I12ξ + I13) cos(β) + (I12η − I22ξ + I23) sin(β)

I ′22 = I11 sin
2(β) + I22 cos

2(β)− I12 sin(2β)

I ′23 = −(I11η − I12ξ + I13) sin(β) + (I12η − I22ξ + I23) cos(β)

I ′33 = I11η
2 + I22ξ

2 − 2I12ξη + 2(I13η − I23ξ) + I33. (4.15)

5These can be obtained from the results for the locked added inertia of a Joukowski foil, presented
in Section 3.3, with the substitutions ζc = δ = 0 and rc = a = (l/4).



110

So at the center of rotation of the body, the added inertia due to the body plate is

I
body
11 = πρfd(l/2)

2 sin2(θ)

I
body
12 = −1

2
πρfd(l/2)

2 sin(2θ)

I
body
13 = 0

I
body
22 = πρfd(l/2)

2 cos2(θ)

I
body
23 = 0

I
body
33 = 2πρfd(l/4)

4, (4.16)

while the added inertia due to the tailfin plate is

Itail11 = πρfd(lf/2)
2 sin2(θ + φ2)

Itail12 = −1

2
πρfd(lf/2)

2 sin(2θ + 2φ2)

Itail13 = πρfd(lf/2)
2 sin(θ + φ2) [(x− xm) cos(θ + φ2) + (y − ym) sin(θ + φ2)]

Itail22 = πρfd(lf/2)
2 cos2(θ + φ2)

Itail23 = −πρfd(lf/2)2 cos(θ + φ2) [(x− xm) cos(θ + φ2) + (y − ym) sin(θ + φ2)]

Itail33 = πρfd(lf/2)
2
[

(x− xm)
2 cos2(θ + φ2) + (y − ym)

2 sin2(θ + φ2)

+(x− xm)(y − ym) sin(2θ + 2φ2)] + 2πρfd(lf/4)
4, (4.17)

where the tailfin midpoint (xm, ym) is





xm

ym



 =





x+ lb cos(θ) + lp cos(θ + φ1) + (lf/2) cos(θ + φ2)

y + lb sin(θ) + lp sin(θ + φ1) + (lf/2) sin(θ + φ2)



 . (4.18)

These virtual inertias are added to the ordinary inertia of the system.

I =











m 0 0

0 m 0

0 0 Iθ











(4.19)
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Itotal = I + Ibody + Itail (4.20)

Finally, the tailfin sees an additional added mass force and moment fam and τam

due to the acceleration component of the tailfin which is independent of (ẍ, ÿ, θ̈).

fam = −πρfd
(

lf
2

)2




sin2(θ + φ2) −1
2
sin(2θ + 2φ2)

−1
2
sin(2θ + 2φ2) cos2(θ + φ2)









ẍ′m

ÿ′m



 (4.21)

ẍ′m = (−lb cos(θ)− lp cos(θ + φ1)− (lf/2) cos(θ + φ2))θ̇
2 − lp cos(θ + φ1)φ̇1

2

−(lf/2) cos(θ + φ2)φ̇2
2 − lp sin(θ + φ1)φ̈1 − (lf/2) sin(θ + φ2)φ̈2 (4.22)

ÿ′m = (−lb sin(θ)− lp sin(θ + φ1)− (lf/2) sin(θ + φ2))θ̇
2 − lp sin(θ + φ1)φ̇1

2

−(lf/2) sin(θ + φ2)φ̇2
2
+ lp cos(θ + φ1)φ̈1 + (lf/2) cos(θ + φ2)φ̈2 (4.23)

τam = −2πρfd(lf/4)4φ̈2 (4.24)

At last, then, the equation of motion for the system is

Itotal











ẍ

ÿ

θ̈











=





L+Df +Db + fam

τf + τb + τam + (xm − x, ym − y)× (L+ fam)



 (4.25)

Some things neglected in this model: By taking a quasi-static approximation

to the lift force, I am disregarding any special spatial structure of the wake—roughly

speaking, I am treating any vorticity shed from the tailfin as if it were swept away

and immediately became very distant. The actual, as opposed to virtual, mass of the

tailfin is considered small enough that I neglect any changes in Iθ due to changes in

joint angle. I treat the bodies in isolation and ignore any hydrodynamical interactions

between them, as well as any forces whatsoever acting on the peduncle. I also neglect

some mundane details of the experimental apparatus: I ignore the presence of the tank

walls, surface wave effects, and any stiction or resistance from the gantry bearings,

except insofar as they may have influenced our empirical measurement of drag forces.
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Figure 4.10: Experiment and simulation for the forward gait with φ1 = 0.6 sin(4.0t),
φ2 = 0.3 sin(4.0t + π/3). A PD controller drives the joints to follow the desired
trajectory. The simulation slightly overpredicts thrust (or underpredicts drag.)
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Figure 4.11: Forward thrust generated by the gait φ1 = 0.6 sin(4.0t), φ2 =
0.3 sin(4.0t + π/3), from Figure 4.10. Almost immediately the fish enters a peri-
odic cycle where lift is the dominant source of thrust, but added mass forces on the
tailfin are significant at the very start of thrust.
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Despite these omissions, this model does a fairly good job of describing the qual-

itative behavior of the system. To compare the experiment to the simulation model,

the computer simulation received as input the actual joint angle trajectories for each

gait as reported by the optical shaft encoders. Based on these inputs, the model

equations of motion were integrated by a Runge-Kutta method, and the simulated

fish’s displacement is superimposed on the analogous graph of experimental data. I

carried out these comparisons for a large number of forward-swimming gaits with in-

puts sinusoidal in φ1 and φ2. Examples are shown in Figures 4.10 and 4.12. See also

Figures 4.17-4.18. For most of these large-amplitude gaits, lift forces acting on the

tailfin are the predominant source of thrust, except for the very beginning of motion

when added mass forces on the tailfin are significant. See Figure 4.11. Occasionally

both lift forces and added mass forces will be significant in the steady state, as in

Figure 4.12.

These large-amplitude gaits would have generated large angular oscillations, if I

had allowed it: for these gaits, the fish was only allowed to swim forward longitu-

dinally. The lateral and yaw degrees of freedom were removed, so stability of the

gait with respect to those degrees of freedom was not an issue. The practical utility

of this propulsion in one dimension is that it is the limiting case of a biomimetic

swimmer with a large moment of inertia, e.g., a boat with a flapping propulsor small

relative to the boat. These gaits could also be used by a set of paired propulsors, or

by a biomimetic swimmer with some other means of stabilization. Our fish robot as

currently configured, however, does not have a large enough moment of inertia to use

these gaits effectively in full planar motion.

Instead, to propel itself in the plane while keeping a stable heading, the robot

fish must use small-amplitude high-frequency strokes. Presumably this will also hold

true for future small free-swimming robots. A successful gait for forward propulsion

of a small robot that is free to rotate or deviate from its heading is illustrated in

Figure 4.13. The inputs shown are φ1 = 0.4 sin(8t), φ2 = 0.4 sin(8t+ π/3). Note that

I have centered the heading θ around θ = π so that positive motion in the x-direction is

forward motion. The achievable speeds are notably lower than for the large-amplitude
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Since θ is near π, the forward direction is along the positive x-axis.
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Figure 4.14: Lateral forces and moment generated by the gait in Figure 4.13.
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gaits constrained to one dimension. Interestingly, for this free-swimming gait, added

mass forces, not lift forces, are the predominant source of thrust.

Also, added mass forces play a vital role in turning maneuvers. Morgansen

[MDM+01] suggested the turning gait illustrated in Figure 4.15 with φ1 = 0.4 sin(3.5t)

and φ2 = 0.4 sin(7t).

The reasonably good validation of the model by experiment suggests that this

simple set of ODEs can be used as a design tool in biomimetic swimming without

necessarily having to resort to computationally intensive fluid models. Perhaps most

importantly, Morgansen, Duindam, Vela, and Burdick [MDM+01, MVB02] were able

to use this platform and model to perform feedback control experiments: to our

knowledge the first instance of a robot fish maintaining a trajectory by feedback

control.

4.4 Miscellaneous Experimental Observations

I experimented with a large number of possible joint trajectories, especially sinusoidal

inputs of varying amplitude, frequency, and phase, to discover the “best” gaits, which

I usually defined as being those with the highest acceleration and forward speed,

although I was also interested to note especially smooth or jerky gaits, and later gaits

with turning behavior. Figures 4.17–4.18 show steady-state velocities for some of the

gaits tested.

Triantafyllou et al. [TTG93] emphasized the importance of the dimensionless

Strouhal number, defined as St = fA
V
, where f is the frequency of the tailfin oscillation,

A is the double amplitude of the tail-to-tip excursion, and V is the average forward

swimming velocity. Triantafyllou et al. advanced arguments that the Strouhal number

of an oscillating foil system should be in the range 0.25–0.35 for optimum thrust. They

also cited biological observations suggesting that a wide range of fish and cetaceans

actually do operate in this range. In Figure 4.20, I plot the Strouhal number for

the same set of sinusoidal gaits represented in Figure 4.19. It will be seen that the

Strouhal number for our system is precisely in the optimum range, particularly for
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the fastest gaits. (Note that the horizontal axes in Figures 4.20 and 4.19 are reversed,

to increase visibility of the surfaces.) This tends to further support Triantafyllou’s

observations and also suggests that our system is operating in a fluid mechanical

regime fairly representative of biological fish swimming.

After identifying successful gaits for forward swimming, we began to experiment

with unconstrained maneuvers such as turns. Some early turning gaits were found

by trial and error (see Figure 4.21), and later some were derived more formally from

the model [MDM+01] (see Figure 4.15.) However to date, turning maneuvers are

relatively awkward and disappointing relative to the dramatic turning performance of

biological fish [Wei72], although the robot’s ability to turn in place may be competitive

relative to other artificial vehicles of similar power and complexity. Biological fish

curve their whole spines during turns, including significant motion of the head, and it

might be that a three-link model with rigid head and body is insufficient to properly

capture this aspect of fish swimming.

Changes in the stroke’s range of motion to cause turns should be synchronized

to the periodic motion of the tail, so probably the tail should only be re-oriented to

a new range of motion in between propulsive tail beats. This suggests a planning

method. If a variety of strokes are each known, through simulation or experiment,

to produce a given impulse and angular impulse per beat, then the fish could choose

individual beats as necessary to add a quantized amount of momentum or angular

momentum. Maneuvers could then be built up of series of such individual strokes.

We could draw an analogy between these quantized strokes and the “impulse bits” of

thrusters used to orient spacecraft.



122

Figure 4.17: Steady-state velocities for single-frequency sinusoidal gaits. In each sub-
plot, frequency and peduncle amplitude are held constant while steady-state velocity
is shown as a function of the tailfin amplitude and phase.
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Figure 4.18: Steady-state velocities of another set of gaits with higher amplitude of
peduncle oscillation.
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Figure 4.19: Distance traveled by the fish in eight seconds, for gaits of the form θ1 =
1.3 sin(3.5t) and θ2 = A sin(3.5t + ψ). The horizontal axes represent the parameters
A and ψ.
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Chapter 5 Optimal Control

As was illustrated in Figures 4.13 and Figures 4.15, our experience with the robot

carangiform fish indicates that for orientational stability, small biomimetic swimmers

may have to operate in a low-speed, high-frequency regime where added mass forces

dominate lift and drag forces. Turns and low-speed maneuvers, the operations where

fishlike vehicles are most likely to outperform conventional watercraft, also seem to

fall into this regime.

With this in mind, in this chapter I will look at the equations of motion for

the three-link fish if only added mass effects are retained and lift and drag forces

are neglected, and briefly consider how trajectories under these equations of motion

could be designed using optimal control. If lift and drag forces are assumed negligible

relative to added mass forces, the carangiform fish’s equation of motion becomes:

Itotal











ẍ

ÿ

θ̈











=





fam

τam + (xm − x, ym − y)× fam



 , (5.1)

where fam, τam, xm, ym, and I
total are as defined in Equations (4.18)-(4.24).

Taking the state of the system to be specified by

q = (x, y, θ, ẋ, ẏ, θ̇, φ1, φ2, φ̇1, φ̇2) (5.2)

and regarding the joint accelerations as inputs:

u1 = φ̈1 (5.3)

u2 = φ̈2 (5.4)
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I find that the state equation of the system is

d

dt
(x, y, θ, ẋ, ẏ, θ̇, φ1, φ2, φ̇1, φ̇2) = fT = (ẋ, ẏ, θ̇, f4, f5, f6, φ̇1, φ̇2, u1, u2)

T , (5.5)

where:

f6 = θ̈ = {lf 2 π ρf
(

−512 lp2m2 φ̈1 − 128 l2 lp
2mπ ρf φ̈1 − 288 lf

2m2 φ̈2 − 72 l2 lf
2mπ ρf φ̈2

−8 lf 4mπ ρf φ̈2 − l2 lf
4 π2 ρf

2 φ̈2 − 128 lb lpm
(

4m+ l2 π ρf
)

φ̈1 cos(φ1)

−128 lb lpm
(

4m+ l2 π ρf
)

φ̈1 cos(φ1 − 2φ2)− 512 lf lpm
2 φ̈1 cos(φ1 − φ2)

−128 l2 lf lpmπ ρf φ̈1 cos(φ1 − φ2)− 512 lf lpm
2 φ̈2 cos(φ1 − φ2)

−128 l2 lf lpmπ ρf φ̈2 cos(φ1 − φ2)− 512 lp
2m2 φ̈1 cos(2 (φ1 − φ2))

−128 l2 lp2mπ ρf φ̈1 cos(2 (φ1 − φ2))− 512 lb lf m
2 φ̈2 cos(φ2)

−128 l2 lb lf mπ ρf φ̈2 cos(φ2) + l2 lf
4 π2 ρf

2 φ̈2 cos(2φ2)

+512 lb lpm
2 φ̇21 sin(φ1) + 128 l2 lb lpmφ̇21 π ρf sin(φ1)

+1024 lb lpm
2 φ̇1 θ̇ sin(φ1) + 256 l2 lb lpmφ̇1 π ρf θ̇ sin(φ1)

+512 lb lpm
2 φ̇21 sin(φ1 − 2φ2) + 128 l2 lb lpmφ̇21 π ρf sin(φ1 − 2φ2)

+1024 lb lpm
2 φ̇1 θ̇ sin(φ1 − 2φ2) + 256 l2 lb lpmφ̇1 π ρf θ̇ sin(φ1 − 2φ2)

+1024 lb lpm
2 θ̇2 sin(φ1 − 2φ2) + 256 l2 lb lpmπ ρf θ̇

2 sin(φ1 − 2φ2)

+512 lf lpm
2 φ̇21 sin(φ1 − φ2) + 128 l2 lf lpmφ̇21 π ρf sin(φ1 − φ2)

+1024 lf lpm
2 φ̇1 θ̇ sin(φ1 − φ2) + 256 l2 lf lpmφ̇1 π ρf θ̇ sin(φ1 − φ2)

+512 lf lpm
2 θ̇2 sin(φ1 − φ2) + 128 l2 lf lpmπ ρf θ̇

2 sin(φ1 − φ2)

+512 lp
2m2 φ̇21 sin(2 (φ1 − φ2)) + 128 l2 lp

2mφ̇21 π ρf sin(2 (φ1 − φ2))

+1024 lp
2m2 φ̇1 θ̇ sin(2 (φ1 − φ2)) + 256 l2 lp

2mφ̇1 π ρf θ̇ sin(2 (φ1 − φ2))

+512 lp
2m2 θ̇2 sin(2 (φ1 − φ2)) + 128 l2 lp

2mπ ρf θ̇
2 sin(2 (φ1 − φ2))

−512 lb lf m2 θ̇2 sin(φ2)− 128 l2 lb lf mπ ρf θ̇
2 sin(φ2)

−512 lb2m2 θ̇2 sin(2φ2)− 128 l2 lb
2mπ ρf θ̇

2 sin(2φ2)
)

}/{Υ} (5.6)
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and:

f4 = ẍ = {lf 2 π ρf
(

128 Iθ lf φ̈2 + l4 lf π ρf φ̈2 − lf
5 π ρf φ̈2 + lf

5 π2 ρf
2 φ̈2

+2 lp

(

128 Iθ φ̈1 + π ρf

(

l4 φ̈1 + lf
4
(

π ρf φ̈1 − φ̈2

)) )

cos(φ1 − φ2)− 2 lb lf
4 π ρf φ̈2 cos(φ2)

−256 Iθ lp φ̇21 sin(φ1 − φ2)− 2 l4 lp φ̇
2
1 π ρf sin(φ1 − φ2)− 2 lf

4 lp φ̇
2
1 π

2 ρf
2 sin(φ1 − φ2)

−512 Iθ lp φ̇1 θ̇ sin(φ1 − φ2)− 4 l4 lp φ̇1 π ρf θ̇ sin(φ1 − φ2)− 4 lf
4 lp φ̇1 π

2 ρf
2 θ̇ sin(φ1 − φ2)

−256 Iθ lp θ̇2 sin(φ1 − φ2)− 2 l4 lp π ρf θ̇
2 sin(φ1 − φ2)− 2 lf

4 lp π
2 ρf

2 θ̇2 sin(φ1 − φ2)

+256 Iθ lb θ̇
2 sin(φ2) + 2 l4 lb π ρf θ̇

2 sin(φ2) + 2 lb lf
4 π2 ρf

2 θ̇2 sin(φ2)
)

×
(

2
(

4m+ l2 π ρf
)

cos(θ) sin(φ2) + 8m cos(φ2) sin(θ)
)

}/({2Υ}) (5.7)

and:

f5 = ÿ = {−
(

lf
2 π ρf

(

128 Iθ lf φ̈2 + l4 lf π ρf φ̈2 − lf
5 π ρf φ̈2 + lf

5 π2 ρf
2 φ̈2

+2 lp

(

128 Iθ φ̈1 + π ρf

(

l4 φ̈1 + lf
4
(

π ρf φ̈1 − φ̈2

) ))

cos(φ1 − φ2)

−2 lb lf 4 π ρf φ̈2 cos(φ2)− 256 Iθ lp φ̇
2
1 sin(φ1 − φ2)− 2 l4 lp φ̇

2
1 π ρf sin(φ1 − φ2)

−2 lf 4 lp φ̇21 π2 ρf 2 sin(φ1 − φ2)− 512 Iθ lp φ̇1 θ̇ sin(φ1 − φ2)− 4 l4 lp φ̇1 π ρf θ̇ sin(φ1 − φ2)

−4 lf 4 lp φ̇1 π2 ρf 2 θ̇ sin(φ1 − φ2)− 256 Iθ lp θ̇
2 sin(φ1 − φ2)− 2 l4 lp π ρf θ̇

2 sin(φ1 − φ2)

−2 lf 4 lp π2 ρf 2 θ̇2 sin(φ1 − φ2) + 256 Iθ lb θ̇
2 sin(φ2)

+2 l4 lb π ρf θ̇
2 sin(φ2) + 2 lb lf

4 π2 ρf
2 θ̇2 sin(φ2)

)

×
(

8m cos(φ2) cos(θ)− 2
(

4m+ l2 π ρf
)

sin(φ2) sin(θ)
))

}/{2Υ} (5.8)
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and:

Υ = 4096 Iθm
2 + 1024 Iθ l

2mπ ρf + 1024 Iθ lf
2mπ ρf + 32 l4m2 π ρf

+ 512 lb
2 lf

2m2 π ρf + 256 lf
4m2 π ρf + 512 lf

2 lp
2m2 π ρf + 128 Iθ l

2 lf
2 π2 ρf

2

+ 8 l6mπ2 ρf
2 + 8 l4 lf

2mπ2 ρf
2 + 128 l2 lb

2 lf
2mπ2 ρf

2 + 64 l2 lf
4mπ2 ρf

2

+ 128 l2 lf
2 lp

2mπ2 ρf
2 + 32 lf

4m2 π2 ρf
2 + l6 lf

2 π3 ρf
3 + 8 l2 lf

4mπ3 ρf
3

+ 8 lf
6mπ3 ρf

3 + l2 lf
6 π4 ρf

4 + 256 lb lf
2 lpmπ ρf

(

4m+ l2 π ρf
)

cos(φ1)

+ 256 lb lf
2 lpmπ ρf

(

4m+ l2 π ρf
)

cos(φ1 − 2φ2) + 1024 lf
3 lpm

2 π ρf cos(φ1 − φ2)

+ 256 l2 lf
3 lpmπ2 ρf

2 cos(φ1 − φ2) + 512 lf
2 lp

2m2 π ρf cos(2 (φ1 − φ2))

+ 128 l2 lf
2 lp

2mπ2 ρf
2 cos(2 (φ1 − φ2)) + 1024 lb lf

3m2 π ρf cos(φ2)

+256 l2 lb lf
3mπ2 ρf

2 cos(φ2)+512 lb
2 lf

2m2 π ρf cos(2φ2)−128 Iθ l2 lf 2 π2 ρf 2 cos(2φ2)

+ 128 l2 lb
2 lf

2mπ2 ρf
2 cos(2φ2)− l6 lf

2 π3 ρf
3 cos(2φ2)− l2 lf

6 π4 ρf
4 cos(2φ2)

(5.9)

There are, of course, many ways in which “optimality” of a trajectory between

two points could be defined or quantified by the engineer. For the sake of the cur-

rent example, I will assume that the trajectories being sought are minimum-time

trajectories, subject to the constraint that the joint accelerations are bounded:

‖φ̈1‖ ≤ 2π (5.10)

‖φ̈2‖ ≤ 2π (5.11)

In the language of optimal control, then, I am seeking to minimize the performance

index:

J =

∫ T

0

1 dt (5.12)

and the appropriate Hamiltonian for the problem is [LS95]:

H = 1 + λTf (5.13)
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The costate equations are given by

λ̇ = −∂H
∂q

(5.14)

and these could readily be written in closed (if slightly cumbersome) form. I also

have Pontryagin’s minimum principle:

H(q∗, u∗, λ∗, t) ≤ H(q∗, u, λ∗) (5.15)

which says that the optimal joint accelerations ui = φ̈i minimize the Hamiltonian,

not just relative to alternative functions for the joint acceleration and the alternative

positions and velocities resulting from the state equation, but also relative to other

values for the acceleration while keeping the optimal position and velocity functions

fixed, consistent with the acceleration bounds but not consistent with the state equa-

tion. This implies that the joint accelerations must be at their maximum or minimum

allowed limits at all times, unless the value of the joint accelerations has no influence

on the Hamiltonian H at all.

φ̈1 = −2π sign(∂H
∂φ̈1

)

= −2π sign(λ9 + λ4
∂ẍ

∂φ̈1
+ λ5

∂ÿ

∂φ̈1
+ λ6

∂θ̈

∂φ̈1
)

= −2π sign
(

λ9 +
λ4
Υ
{lf 2 lp π ρf

(

128 Iθ + π ρf
(

l4 + lf
4 π ρf

))

cos(φ1 − φ2)

×
(

2
(

4m+ l2 π ρf
)

cos(θ) sin(φ2) + 8m cos(φ2) sin(θ)
)

}

+
λ5
Υ
{−
(

lf
2 lp π ρf

(

128 Iθ + π ρf
(

l4 + lf
4 π ρf

))

cos(φ1 − φ2)

(

8m cos(φ2) cos(θ)− 2
(

4m+ l2 π ρf
)

sin(φ2) sin(θ)
))

}

+
λ6
Υ
{lf 2 π ρf

(

−512 lp2m2 − 128 l2 lp
2mπ ρf − 128 lb lpm

(

4m+ l2 π ρf
)

cos(φ1)

−128 lb lpm
(

4m+ l2 π ρf
)

cos(φ1 − 2φ2)− 512 lf lpm
2 cos(φ1 − φ2)

−128 l2 lf lpmπ ρf cos(φ1 − φ2)− 512 lp
2m2 cos(2 (φ1 − φ2))

−128 l2 lp2mπ ρf cos(2 (φ1 − φ2))
)

}
)

(5.16)
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φ̈2 = −2π sign(∂H
∂φ̈2

)

= −2π sign(λ10 + λ4
∂ẍ

∂φ̈2
+ λ5

∂ÿ

∂φ̈2
+ λ6

∂θ̈

∂φ̈2
)

= −2π sign (λ10
+
λ4
2Υ
{lf 2 π ρf

(

128 Iθ lf + l4 lf π ρf − lf
5 π ρf + lf

5 π2 ρf
2 − 2 lf

4 lp π ρf cos(φ1 − φ2)

−2 lb lf 4 π ρf cos(φ2)
) (

2
(

4m+ l2 π ρf
)

cos(θ) sin(φ2) + 8m cos(φ2) sin(θ)
)

}

+
λ5
2Υ
{−
(

lf
2 π ρf

(

128 Iθ lf + l4 lf π ρf − lf
5 π ρf + lf

5 π2 ρf
2 − 2 lf

4 lp π ρf cos(φ1 − φ2)

−2 lb lf 4 π ρf cos(φ2)
) (

8m cos(φ2) cos(θ)− 2
(

4m+ l2 π ρf
)

sin(φ2) sin(θ)
))

}

+
λ6
Υ
{lf 2 π ρf

(

−288 lf 2m2 − 72 l2 lf
2mπ ρf − 8 lf

4mπ ρf − l2 lf
4 π2 ρf

2

−512 lf lpm2 cos(φ1 − φ2)− 128 l2 lf lpmπ ρf cos(φ1 − φ2)− 512 lb lf m
2 cos(φ2)

−128 l2 lb lf mπ ρf cos(φ2) + l2 lf
4 π2 ρf

2 cos(2φ2)
)

}
)

(5.17)

Thus I can explore the space of configurations reachable in a given time by the

fish by systematically choosing trial values of λ at t = 0, and shooting forward using

the state and costate equations and Equations (5.16)–(5.17) to arrive at some final

state at t = T . After shooting forward, we will have determined the minimum-time

trajectory to whatever point I arrive at. In this way I could build up a catalog

of reachable points. Of particular interest will be any pair of trajectories, one of

which reaches final values of φ1, φ2, φ̇1, φ̇2, θ̇, which are the same or approximately

the same as the starting values for the other trajectory. These trajectories could be

concatenated together to form a larger trajectory, since the equations of motion are

invariant with respect to transformations in x, y, θ, and the values of ẋ and ẏ are

not significant either unless they become large enough to invalidate the assumption

of added-mass dominance.

Figure 5.1 shows one minimum-time maneuver found by numerical optimization

of bang-bang trajectories, which could plausibly be concatenated with itself.

Although I could have used a different model of the system, a different definition
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Figure 5.1: A bang-bang maneuver, starting from rest, that produces both accel-
eration and displacement in the x-direction, while producing less acceleration and
almost no displacement in the y- and θ− directions. The joint accelerations (φ̈1, φ̈2)
are (2π, 2π) from t = 0 to t = 0.29, then (−2π,−2π) to t = 0.97 The values of φ̈1, φ̈2
oscillate rapidly just before the end of the trajectory.
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of optimality, or a different scheme for searching through the space of trajectories, the

broader point is that in the lab, relatively ample computational power can be used to

optimize the feasible trajectories of a swimmer over short time horizons. A suitable

set of such feasible trajectories can then be used as motion primitives and pieced

together to form larger trajectories. This will be the subject of the next chapter.
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Chapter 6 Trajectory Planning Using

Density Functions

6.1 Motivation

Many mobile robots operate under nonholonomic or other kinodynamic constraints

which complicate the task of planning their motions. In this chapter I present an

algorithm for planning the gross motion of many types of mobile robots in the presence

of such constraints.

There is a large literature on the subject of nonholonomic and kinodynamic mo-

tion planning. Many approaches to this problem are based on a decomposition of

the planning problem into two parts. In the first step, the kinematic and dynamic

constraints are ignored, and the gross path of the system that avoids obstacles is de-

termined. This “holonomic” path can be chosen manually, or by a conventional rigid

body holonomic motion planner. Next, the actual control inputs that respect the

constraints are determined so that the system approximately tracks the holonomic

path. Based on differential geometric concepts, there are many local motion planners

that compute the controls inputs which cause the vehicle to approximately track the

specified trajectory (e.g., [LS93, MS93b, Gur92, MS91]). Implicitly, this approach

assumes that the vehicle is small-time locally controllable (STLC), so that it is capa-

ble of locally approximating any trajectory. When this criterion is not satisfied, the

success of these methods is uncertain.

The successful probabilistic roadmap motion planning paradigm [KSLO96] has

also been adapted to nonholonomic motion planning (e.g., [SO95]). Unfortunately, a

local nonholonomic motion planning problem must be solved each time a candidate

node is considered for addition to the roadmap. Lavalle and Kuffner [LK00] have also

developed a probabilistic kinodynamic planning approach that is based on an incre-
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mental simulation of the system’s dynamics. A forward simulation of the system’s

dynamics is used to expand a search tree. This approach circumvents the small time

local controllability assumption of many other techniques, and has produced excellent

simulation results. However, its probabilistic convergence may require an exponential

number of computations.

Here I introduce a different type of algorithm for approximately solving this class

of motion planning problems. My deterministic approach is based on constructing an

approximation to the vehicle’s reachable set of states. I use techniques of fast Fourier

transforms on Lie groups to efficiently compute these sets. This approach is moti-

vated by the Ebert-Uphoff algorithm for solving the inverse kinematics of discretely

actuated manipulators [CK01]. A solution path can then be constructed from knowl-

edge of the reachable set. Like [LK00], this technique does not require small-time

local controllability, and I show that the algorithm has an attractive computational

complexity. Because I use a finite set approximation to the continuous mechanics, my

technique can also be used to plan the motions of “discrete” nonholonomic systems

[CMPB00].

Section 6.2 provides an intuitive overview of the approach, focusing on the vehicle’s

reachable set of states. Sections 6.3 and 6.5 describe the density of reachable states

concept, and algorithms for its computation. Section 6.6 then describes the planning

method, and the algorithm is illustrated by an example. Another variation of the

algorithm with tighter time and space bounds is summarized in Section 6.6.5. Finally,

a third variation of the algorithm to be used in the presence of static obstacles is

presented in Section 6.6.6.

6.2 Summary of the Approach

Most nonholonomically constrained wheeled vehicles move by the influence of periodic

or quasi-periodic controls. Hopping, walking, and swimming robots move by periodic

oscillations of their driving actuators. A common theme among these systems is

that their gross trajectories can be naturally broken into individual hops, steps, or
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Figure 6.1: This fish robot can reach any of four positions in one tail stroke.

undulations. The trajectories of such robots can therefore often be considered as a

sequence of quasi-periodic steps, each one of which causes some change in the robot’s

position while returning the robot’s actuators to approximately the same state at

the end of the step as at the beginning. Furthermore, different combinations of the

periodic inputs can be interpreted as different vehicle “gaits” that move the vehicle

in different directions [OB98]. Individual steps or gaits can be designed using optimal

control techniques.

Based on these observations, my approach discretizes the motion group SE(D)

(D=2 or 3) in which the robot operates, and plans a trajectory to any given volume

element in SE(D) by considering the number of reachable endpoints in that volume

element and in intermediate volume elements along the trajectory. My algorithm is

largely inspired by the Ebert-Uphoff algorithm for solving the inverse kinematics of

discrete multistage manipulators [CK01]. I adapt this algorithm to motion planning

purposes, and improve upon its computational complexity. I also draw on ideas from

Dijkstra’s algorithm, as applied to path planning in a discretized configuration space

by Barraquand and Latombe [BL89]. Like those algorithms, my method requires

a memory-intensive mapping of the workspace, but generates trajectories to chosen

goal points very quickly once the map is constructed.

I consider a mobile robot which moves by discrete steps, transforming its location
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Figure 6.2: Positions reachable in five or fewer tail strokes.

in SE(D) by any one of K motions in the finite set A ⊂ SE(D). This discreteness of

movement may arise because the robot’s actuators are actually discrete, or because

it is convenient to consider a restricted set of “optimal” motions at each step (e.g., a

carlike robot whose optimal motions are either straight ahead, left arcs, or right arcs

[RS90]), or solely for the sake of approximating the reachable set of states. In the case

of complex kinodynamic constraints, the finite set of motions can be crafted from a

forward simulation of the system for each of a finite set of inputs. This procedure

avoids the need for small-time local controllability. For example, Figure 6.1 depicts

a hypothetical robot fish which can stroke its tail to make one of four motions: turn

left, move forward and sideslip left, move forward and sideslip right, or turn right.

These motions are consistent with its complex hydrodynamics.

For a sequence of P such steps, the robot can follow KP potential trajectories

to KP endpoints in SE(D), with some of the endpoints possibly being duplicates.

Figure 6.2 shows how the reachable configurations of the robot fish grow quickly.

Figure 6.3 shows the same set of configurations as points in (x, y, θ) configuration

space.



137

−1

0

1

−1

0

1

−3

−2

−1

0

1

2

3

xy

θ

Figure 6.3: States in Figure 6.2 viewed as a density function in configuration space.
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6.3 Density Functions

I will be concerned with functions expressing the density of a cloud of points in a

continuous group. Like any nonuniform density, this density function is not well-

defined unless I specify the volume elements over which the density is measured.

More precisely, let F be a Lie group, and G ⊆ F be a relevant subset of the group.

I begin with the concept of a disjoint discretization V0 of G. This is a collection

of disjoint, finite, connected subsets (or “volume elements”) of G which covers G,

together with a function which associates points in G with volume elements. I will

call the set of volume elements V0(G). The elements in V0(G) are chosen a priori and

might, for example, form a regular grid covering G. The associated function V0(x) :

G → V0(G) maps any element x ∈ G to the unique volume element V0(x) ∈ V0(G)

which contains x.

For reasons to be made clear below, I also need the more general concept of

a non-disjoint discretization V of G. This again involves an arbitrarily chosen set

V (G) of finite, connected subsets of G. The elements of V (G) cover G but are not

necessarily disjoint. The function V (x) : G→ V (G) is chosen to associate one volume

element V (x) with each element x ∈ G. The function V (x) must be chosen so that

x ∈ V (x)∀x ∈ G. However, since x may lie in more than one element of V (G), this

requirement is not enough to wholly determine the function V (x) (as it was in the

disjoint case). There is, therefore, an element of freedom in choosing the function

V (x).

A non-disjoint discretization V can be thought of as “built up” from a disjoint

discretization V0, if for any x ∈ G, V (x) consists of the connected union of V0(x) with

a number of neighboring elements of V0(G). Again, V may be “designed” in one way

or another by the choice of different sets of neighboring elements to form the union.

Once I have a set of volume elements, I can proceed to define a density function.

Let n(H) for any subset H ⊂ G be the number of discrete points that lie in H. And

let ‖H‖ ∈ R be a measure of the volume of H. The density function ρ(x) : G→ R is
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defined as

ρ(x) =
n(V (x))

‖V (x)‖ . (6.1)

How large should the volume elements that define the density function be? The

infinitesimal limit of the smallest possible volume element is not necessarily the most

useful scale to choose. It is not useful to take the volume elements small relative

to the spacing of the discrete points and then say that the density is zero almost

everywhere.

I wish to find a reachable configuration close to a specified group element (i.e. the

goal). Consequently, the volume elements should be sufficiently large so that each

one contains one or more reachable points. Figure 6.4 shows the density function of

Figure 6.3, but considered with a coarser discretization so that more volume elements

are perceived to have nonzero density. But if the volume elements are both large

and disjoint, the discretization of G is coarse, and the resulting paths will be corre-

spondingly imprecise. I can partly avoid this problem by using non-disjoint volume

elements.

To use a geographic analogy, a census taker might define the population density

“at” each location, x, as the number of people within a one kilometer radius of x,

and then measure and record the population density at locations spaced ten meters

apart. In this case the range of V would consist of overlapping one-kilometer-radius

circles with centers ten meters apart.

The choice of V determines two different kinds of spatial resolution. The first

resolution involves the number of volume elements in a particular volume of G. The

second resolution is the size of the volume elements. If the volume elements are

disjoint, these two resolutions are essentially the same. The main virtue of non-

disjoint volume elements is that the first resolution can remain fine while the second

one is made coarse.1

1Another advantage of using non-disjoint volume elements is that their shape can be chosen
freely. For example, one could make a good case for using volume elements whose projection on RD

was spherical. A spherical volume element would treat translational distance isotropically, unlike
a rectangular volume element which contains more points in some directions (the corners) than in
others. But RD cannot be covered by disjoint spherical volume elements of the same size.
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I start with a discretization V0 where the volume elements are disjoint, and then

construct coarser discretizations as necessary. For example a coarser discretization

V1 on G can be defined as follows. (See Figure 6.5.) Let V0(G) be the range of V .

Then for any x ∈ G,

V1(x) =
⋃

{H ∈ V0(G)|H ∩ V0(x) 6= ∅}.

Note that if H borders V0(x), then the intersection of H with V0(x) is nonempty. We

can iterate this coarsening procedure. For k > 1,

Vk(x) =
⋃

{H ∈ Vk−1(G)|H ∩ Vk−1(x) 6= ∅}. (6.2)

If the volume elements in the range of V0 have uniform volume, then the volume of

the elements in the range of Vk will increase exponentially with k.

6.4 Order Notation

In measuring the computational cost of various algorithms, I will use the following

order notation. If g(n) is a function from N to <, then O (g(n)) means the set of all

functions f(n) from N to < such that for some constants c > 0 and n0 ≥ 0,

f(n) ≤ c g(n) for all n ≥ n0. (6.3)

So if a function is in O (g(n)), then that function is bounded from above by a fixed

multiple of g(n) for sufficiently large values of n. Conversely, to speak of bounds from

below I use Ω(g(n)), which is the set of all functions f(n) from N to < such that for

some constants c > 0 and n0 ≥ 0,

f(n) ≥ c g(n) for all n ≥ n0. (6.4)

The set Θ(g(n)) is the intersection of O (g(n)) and Ω(g(n)) [LD91].
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Figure 6.4: Density from Figure 6.3 using a coarser discretization.



142

x

y

z

(a) Points x, y, z ∈ G.

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

(b) Sets V0(x), V0(y), V0(z) ⊂ G.
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(c) Sets V1(x), V1(y), V1(z) ⊂ G.

Figure 6.5: Discretization V0 and coarser discretization V1.
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6.5 Computing the Density of Reachable States

Recall the premise that the robot transforms its location in SE(D) by one of K

possible motions. There are KP sequences of P steps which will take the robot to

as many as KP endpoints in SE(D). I write ρP to designate the function such that

ρP (g) for a configuration g ∈ SE(D) is the number of endpoints in the volume element

V (g) centered on g divided by the volume of V (g). (See Figure 6.3.) In other words,

ρP (g) is proportional to the number of different ways in which the robot can reach

the volume element V (g) in P steps.

For small P , I can compute ρP by simply enumerating the KP points that can be

reached. Obviously this method becomes unfeasible as P grows large. For larger P ,

the density function ρP can be found by taking the convolution of two known density

functions representing smaller numbers of steps.

ρP (H) = (ρQ ∗ ρR) (H) (6.5)

=

∫

SE(D)

ρQ (H) ρR
(

H−1H
)

d(H), (6.6)

where H,H ∈ SE(D) and Q + R = P . Since ρk ∗ ρk = ρ2k, I can produce ρP with a

number of convolutions in O (logP ) operations.

Since ρ1 has at most K nonzero elements, straightforward convolution of ρ1 with

any other function can be performed in O (NK) time. If K is not large2, this may

actually be the most sensible way in which to proceed. However even if K is not large,

this method has the drawback that ρP can only be computed by serially convolving

ρ1 with ρ1, ρ2, . . . , ρ(P−1), requiring O (P ) convolutions.

Performing a convolution by numerical integration of Equation (6.6) should re-

quire O (N 2) operations, where N is the total number of volume elements in the

discretization of SE(D). For approximation error to be kept low, N must be quite

2If K is large, in particular if K is an appreciable fraction of N , then this method may be
computationally prohibitive. The more sophisticated methods of convolution described later will
definitely be superior if K is in Θ(Nγ) where γ > 1

3 .
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N Total number of samples on SE(2) O(S3)
Nr Number of samples on SO(2) O (S)
NR Number of samples on IR2 O (S2)
Np Number of samples on p interval O (S)
Nu Number of samples on [0, 2π) O (S)
NF Total number of harmonics O (S2)

Table 6.1: Resolution measurements in SE(2).

large, even for D = 2 and especially for D = 3, so naive convolution becomes pro-

hibitively expensive. Fortunately, a faster method of convolution is available.

6.5.1 The Fourier Transform

It is common knowledge that in IRn, the Fourier transform of two convolved functions

is simply the product of their individual Fourier transforms.

F(f1 ∗ f2) = F(f1)F(f2) (6.7)

The fast Fourier transform (FFT) algorithm provides an efficient way to numeri-

cally approximate a function’s Fourier transform. Since the FFT, the multiplication

of the resulting Fourier transforms, and the inverse FFT can each be performed in

subquadratic time, this is fast way to perform convolution in IRn. To generalize these

concepts to SE(D), we apply concepts from the field of noncommutative harmonic

analysis. The remainder of this section summarizes material from [CK01].

I can express the matrix elements of the Fourier transform of a function f(r, θ)

on SE(2) by [CK01]

f̂mn(p) =

∫

r∈IR2

∫ 2π

θ=0

∫ 2π

ψ=0

f(r, θ)× einψei(p·r)e−im(ψ−θ) d2r dθ dψ. (6.8)

In practice I use a band-limited approximation of the Fourier transform and only

compute elements with |m|, |n| < S for some S ∈ Z+. The group SE(2) is discretized

with the number of samples described in Table 6.1. The Fourier transform can be

carried out numerically in the following way. First, assuming that f(r, θ) is sampled
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on a Cartesian grid of r ∈ IR2 values, the integration over IR2 is

f1(p, θ) =

∫

IR2
f(r, θ)ei(p·r) d2r (6.9)

using the usual FFT in O (NRNr log(Nr)) time. Then I interpolate from the Cartesian

grid to sample f1(p, θ) on a polar-coordinate grid of p values. This set of f1(p, ψ, θ)

values can be found in O (NRNr) = O (N) time assuming that the interpolation of

each individual grid point can be done in constant time. (See Table 6.1 for definitions

of N , NR, et cetera.) Then the usual one-dimensional FFT can be used to integrate,

first along the θ dimension in O (NrNR log(NR)) time

f
(m)
2 (p, ψ) =

∫

SO(2)

f1(p, ψ, θ)e
imθ dθ (6.10)

and along the ψ dimension in O (NRNpNu log(Nu)) time

f̂mn(p) =

∫ 2π

0

[

f
(m)
2 (p, ψ)e−imψ

]

einψ dψ. (6.11)

The entire process takes O (N log(N)) time. The recovery of a function from its

band-limited Fourier transform also takes O (N log(N)) time.

f(r, θ) =
1

2π

∫ ∞

0

p dp
S
∑

m,n=−S

[

f̂mn(p)×
∫ 2π

0

ei(m−n)ψe−ir·pe−imθ dψ

]

(6.12)

The Fourier transform on SE(2) has the crucial convolution property [KC99]

F(f ∗ g) = F(g)F(f), (6.13)

F(f ∗ g)mn(p) =
S
∑

k=−S

ĝmk(p)f̂kn(p). (6.14)

Thus, the convolution of functions f and g on SE(2) can be performed by finding

the Fourier transforms in O (N log(N)) time, multiplying the Fourier matrices, and

performing the inverse Fourier transform in O (N log(N)) time. The most computa-
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tionally expensive step is matrix multiplication, which takes O (NNR) = O
(

N4/3
)

time if the “obvious” method of matrix multiplication is used. This bound can be

slightly improved by using more advanced matrix multiplication algorithms.3 In any

case, for large N this method is clearly a drastic improvement over O (N 2) straight-

forward numerical convolution.

6.6 Trajectory Planning

6.6.1 Dijkstra’s Algorithm in Trajectory Planning

I begin by reviewing a well-known mobile robot planning method discussed in [Lat90],

based on Dijsktra’s algorithm. By comparing this algorithm to the density-based

methods to be introduced in this chapter, I will show the advantages (and disadvan-

tages) of density-based planning relative to existing methods. Later, in Section 6.6.6,

we will show how ideas from this algorithm can be combined with density-based

planning to obtain some of the advantages of both.

The Dijkstra-based idea is to divide the configuration space into N cells in a

disjoint discretization V0, then construct a directed graph whose edges are feasible

paths between configurations, and whose nodes are configurations with no more than

one configuration per cell. Once constructed, the graph serves as a “map”: a feasible

path from the start cell to any cell reached by the graph can be recovered from the

graph in O (P ) time, where P is the number of steps in the path. The graph is a

tree and only contains one path to one configuration in any given cell. This one path

is intended to be the “best” path according to some cost function (possibly, but not

necessarily, distance or number of steps) used to guide construction of the path.

The graph is constructed according to the following well-known procedure [Lat90].

Maintain a list OPEN of configurations which have been reached but whose successors

have not yet been considered. Also maintain a list CLOSED of configurations whose

successors have been considered, and mark each cell in V0 which contains a CLOSED

3The matrix multiplication step will require O
(

N (γ+1)/3
)

computations, where γ = 3 for “stan-
dard” matrix multiplication, but γ = log2 7 ≈ 2.81 using Strassen’s algorithm [CK01].
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configuration. Initially OPEN will only contain the start configuration and CLOSED

will be empty. Given a cell in V0, it can be determined in constant time whether it

contains a CLOSED configuration (and if so what the configuration is.) The OPEN

list is maintained as a balanced tree ordered by cost and can be accessed in at most

logarithmic time.4

Select the node in OPEN with the lowest cost to reach, transfer it to CLOSED,

and compute its K successors. For each successor, if it lies in a cell which already

contains a CLOSED configuration, discard it. Otherwise, add it to OPEN. Keep a

record of the immediate ancestor of every node which is not discarded. The algorithm

terminates when every cell that the planner desired to map a path to is marked

CLOSED, or when OPEN is empty and no more cells can be reached. Because the

algorithm explores the successors of at most one configuration per cell, the time to

construct the graph is in O (KN log(N)), or O (KN) if OPEN can be accessed in

constant time.

The complete path to a CLOSED cell can be recovered from the graph by finding

the reached configuration in that cell and then recursively tracing the ancestry of that

configuration backwards.

Limitations of the Latombe-Barraquand-Dijkstra Algorithm

A drawback of the Latombe-Barraquand-Dijkstra (LBD) algorithm is that, since it

prunes what would otherwise be an exponentially growing tree of possible paths by

recording at most one configuration per cell, there is a danger that it will prune away

a desirable solution.

Suppose that the system is capable of reaching configurations g1 and g2, where

g2 = g1(I +
∑D(D+1)

i=1 εiXi) for some small scalars εi and Xi are elements of se(D).

4If the cost function used to select nodes for exploration is sufficiently simple, then OPEN can
be accessed in constant time. Three examples of sufficiently simple cost functions are (a) number of
steps along the path; (b) number of steps along the path which require any change of steering from
the previous step; (c) number of steps along the path which require a specific change of steering
from the previous step, e.g., a change from forward to reverse for a robot car. The relevant facts
about these cost functions are that they take integer values and the value changes by at most one
between a configuration and it successors. In each of these cases, OPEN should be maintained not
as a tree but as a collection of linked lists, each linked list containing OPEN nodes of equal cost.
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Since g1 and g2 are in the same cell V (g1) = V (g2), and g2 requires an equal or greater

cost to reach, the LBD algorithm will not record g2 or explore its successors. This

means that if the precise desired goal is g2, the LBD algorithm will only return the

approximate solution g1. But more importantly, after a further transformation h,

corresponding to one or more additional steps, the successor of g2 would have been:

g2 h = g1(I +

D(D+1)
∑

i=1

εiXi)h = g1 h+

D(D+1)
∑

i=1

εiXih (6.15)

Even if ε is small, for h sufficiently large the error between successors of g1 and g2

will grow large compared to the size of the cells V0(g1h) and V0(g2h) and therefore

the successors will lie in different cells. It is possible, therefore, that the successors of

g1 reach V0(g2h) only at higher cost than g2h, or that they never reach V0(g2h) at all.

The LBD algorithm, which aims to find the lowest-cost path to each cell, may thus

lose the desired solution, particularly if the system is not STLC.

This problem is aggravated as h grows large, suggesting that the optimality of

solutions found by the LBD algorithm becomes more suspect as the total path length

grows larger. The problem also grows worse as the size of the cells of V0 increases,

so it may not be possible to use the LBD algorithm on a very coarse scale: past a

certain point of coarseness I may get, not just a more approximate solution, but no

solution at all.

I will now suggest another planning algorithm, using density functions. Part of

this algorithm’s appeal is that (a) the density function represents all solutions and

not just the ones nominally with lowest cost; and (b) a density function constructed

by convolution can represent long paths formed by the concatenation of two large

motions rather than by the incremental addition of many smaller motions; and for

these two reasons the density-based algorithm is less likely to “lose” solutions due

to round-off error. The density-based algorithm should also function at a variety of

scales, both fine and coarse. Informally speaking, it can be applied not only to the

parking problem for a car-like robot, but also to the cross-country trip problem.
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6.6.2 The Ebert-Uphoff Algorithm

Let V j
0 denote the discretization of SE(D) chosen for a j step density function5.

Suppose that the density functions ρj and their associated discretizations V j
0 for

1 ≤ j ≤ P are known. To find a trajectory which ends as closely as possible to the goal

gdes ∈ SE(D) in P steps, one sequentially chooses the jth motion step to maximize

the reachable state density function of the remaining P − j steps around the goal.

That is, the first step g1 is chosen from the set of K allowable motions in SE(D) to

maximize ρ(P−1)(g−11 gdes). With g1 fixed, g2 is chosen to maximize ρ(P−2)(g−12 g−11 gdes).

One goes on to choose the jth step gj to maximize ρ(P−k)(g−1j · · · g−12 g−11 gdes). After

P − 1 steps, the final step gP is chosen in order to minimize a distance measure

e = d(gdes, g1g2 · · · gP ) (6.16)

This scheme for finding a trajectory that approximately reaches the goal in P steps

is identical to the Ebert-Uphoff algorithm for solving the inverse kinematics of a

discretely actuated P -link manipulator [CK01]. It returns an approximate solution

in O (KP ) time.

6.6.3 Implicit Storage of Paths in Graph

Because this algorithm starts with a goal reachable in P steps, makes a transforma-

tion to a point reachable in P − 1 steps, then P − 2 steps and so on, it is vaguely

reminiscent of the BLD algorithm [BL89]. I can increase the resemblance by explicitly

constructing a tree connecting reached volume elements.

For every configuration g0 where ρj(g0) is nonzero, let v = {g| V j(g) = V j(g0)}.
To construct the graph, search for the g ∈ v and h ∈ A which maximize ρj−1(h−1g),

then store a pointer between V (g) and V (h−1g). This step requires O
(

2DKNP
)

time for P density functions. Alternatively, instead of searching over both g and h,

one can specify a “representative” value of g ∈ v; in this case, the graph construction

5Generally, the discretizations V0 and V j
0 are the same. However, I allow for the option that one

may choose to resample SE(D) for purposes of refining the density function ρj .
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takes O (KNP ) time. In either case, by following edges of the constructed graph

instead of explicitly checking K density values at each step of the trajectory, paths

can be found in O (P ) rather than O (KP ).
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Figure 6.6: The density ρP in the vicinity of a particular goal, as a function of P .
The path length P can be chosen so that ρP is sufficiently high. Often, ρP increases
with increasing P , so a longer path may yield a better approximation to the goal.

When such an explicit graph is used, the method is still distinct from the tradi-

tional application of Dijkstra’s algorithm in at least two ways. Dijkstra’s algorithm

chooses steps backwards from the goal to the trajectory, whereas this method chooses

steps in a forward fashion. This means inter alia that while both methods require

O (P ) time to construct the whole path, if only the next step in the path is required

then this method can find it in O (1) time. Also, instead of associating a single

pointer with each volume element and implicitly storing only the shortest path to

each volume element, up to P pointers and implicitly up to P successful trajectories

are stored for every volume element. With this construction, one can either choose

the shortest path which approximately reaches the goal, or possibly choose a longer

path which reaches the goal more exactly.

Example. Figures 6.6–6.9 show the output from an implementation of this al-

gorithm as applied to the fish robot of Figure 6.1 trying to reach the goal (x, y, θ) =
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Figure 6.7: The algorithm finds a 10-step path to the goal. While the final heading
is not quite right, this is roughly the shortest path with possibly acceptable error.

(0.51, 0.8, 0). Figures 6.7–6.9 illustrate the trade-off between path length and final

goal accuracy.

6.6.4 Multiscale Densities

This section introduces a multiscale extension of the basic algorithm. Recall that

ρjk denotes the density function ρj defined at the coarser scale V j
k . To motivate the

multiscale approach, note that each density function ρj is associated to a discretization

V j. The different discretizations V 1, · · · , V P need not be identical. The algorithm, as

described so far, neglects the possibility that at the j th step gj, the density function

ρ(P−j)(g−1j · · · g−12 g−11 gdes) is zero for all K possible choices of gj. In this case the goal

gdes lies in a volume element which is not considered reachable.

It might then be said that the resolution of V j was chosen too fine. Since I wish

to reach the closest configuration to gdes, I should have chosen the volume elements

big enough so that the one which contains gdes also contains some reachable point.

Unfortunately, in advance of knowing gdes, it is not necessarily possible to know how
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Figure 6.8: Higher accuracy can be obtained by varying P to obtain a more dense
ρP . This 14-step path ends in a better approximation to the goal.

fine a resolution is too fine.

I will now adapt the algorithm to use density functions at a coarser resolution

when necessary. Recall that according to the coarsening scheme outlined earlier, for

k ≥ 1,

V j
k (x) =

⋃

{

H ∈ V j
k−1(G)|H ∩ V j

k−1(x) 6= ∅
}

. (6.17)

I want to find the smallest k such that ρ
(P−j)
k (g−1j · · · g−12 g−11 gdes) is nonzero for some

valid choice of gj. Then I choose gj to maximize this value.

In the worst case, it might be necessary to consider O (log(N)) scales.6 All

O (log(N)) scales can be constructed from the finest scale in O (N log(N)) time,

which is dominated by the time required to construct the density function at the

finest scale in the first place. To store the density function at all O (log(N)) scales

would require O (N log(N)) space. But not all of this information need be retained.

6I have defined a series of scales whose individual volume elements increase geometrically in size.
Only O (log(N)) scales can be defined before reaching the coarsest scale, where the density function
is uniform across the whole environment. I could instead have coarsened the scale more gradually,
say linearly, and defined the density function at O (N) different scales. But the complexity of this
multiscale algorithm would rise to O (KNP ) in time, and the time required to construct the different
density functions in the first place would be Ω(N 2).



153

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

Figure 6.9: A 16-step path reaches the goal configuration almost perfectly.

The construction of the density functions at coarser scales only requires knowledge

of the next finer scale. I only need to record for each volume element the finest scale

at which the density function assumes nonzero value there, and that nonzero value.

Consequently, the multiscale algorithm requires O (N) space.

Assume that the multiscale density functions are precomputed, and that the finest

scale at which each volume element has a nonzero density is known. Then the algo-

rithm can be employed as before, with the proviso that arguments are evaluated at

the finest scale which displays nonzero density. Since this can be done in constant

time for each argument, the worst-case performance of the modified algorithm is still

O (KP ), or O (P ) if a graph is used to store trajectories.

Error Bounds

The worst-case error can be bounded at the outset by the size of the volume element

V P
k (gdes) for the smallest value of k such that ρPk (gdes) is nonzero. After j steps

have already been taken, the remaining expected error is bounded by the size of

V
(P−j)
k (g−1j · · · g−12 g−11 gdes) for the smallest k such that ρ

(P−j)
k (g−1j · · · g−12 g−11 gdes) is
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nonzero. And of course, when the algorithm is complete the actual error is e =

d(gdes, g1g2 · · · gP ).

Limitations of Ebert-Uphoff Methods

At this point, I should acknowledge some advantages which the Dijkstra-based BLD

algorithm retains over the density-based Ebert-Uphoff method.

• For single-processor implementations, the time requirements of the BLD algo-

rithm are somewhat lower.

• The BLD algorithm has more flexibility to assign different costs to different

allowed motions. The density-based method treats all steps equally and cannot

easily account for path cost if the cost function cannot be related to “number

of steps.”

• The Dijkstra-based methods can take account of world-fixed constraints like

static obstacles and space-dependent currents, provided these are known at the

precomputation/mapping stage.

In Section 6.6.5, I will present a different density-based algorithm with different

computational bounds, offering the potential for faster performance over long paths

if the system’s density functions are reasonably well-behaved.

Adjusting density functions to account for obstacles and other conditions located

at particular points in space is problematic. Both the concept of constructing density

functions from convolution, and the Ebert-Uphoff planning algorithm, rely on the

idea that the density of allowed transformations is invariant under transformations

of the origin in SE(D). This clearly does not hold for the density of solutions in the

presence of obstacles which destroy the symmetry of the configuration space.

Nevertheless, the unaltered density functions for the “open-space” problem, with-

out obstacles, can be used to aid a BLD-like attack on the problem with obstacles.

In Section 6.6.6, I describe how to use density functions to navigate around obstacles

in this way.
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Method Time to Construct Map Time to Plan Path

Barraquand and Latombe O (NK) O (P )

Ebert-Uphoff O
(

N (γ+1)/3P
)

or O (NKP ) O (KP )

Multiscale Ebert-Uphoff O
(

N (γ+1)/3P
)

or O (NKP +NP logN) O (KP )

Multiscale E-U plus graph O
(

N (γ+1)/3P +NKP
)

O (P )

Log method O
(

N (γ+1)/3 logP
)

O (τP )

Log method plus graph O
(

N (γ+1)/3 logP +Nτ logP
)

O (P )

Log method with O (P ) processors O
(

N (γ+1)/3(logP )/P
)

O (τ logP )

Log method, graph, O (P ) processors O
(

N (γ+1)/3(logP )/P +Nτ(logP )/P
)

O (logP )

Method Space

Barraquand and Latombe O (N)
Ebert-Uphoff O (NP )
Multiscale Ebert-Uphoff O (NP )
Multiscale E-U plus graph O (NP )
D&C method O (N logP )
D&C method plus graph O (N logP )
D&C method with O (P ) processors O (N logP )
D&C method, graph, O (P ) processors O (N logP )

Table 6.2: Time and space bounds, where N is the number of volume elements, P is
the number of trajectory steps, K is the number of possible motions at each step, and
the constants τ and γ depend upon the chosen methods of function maximization and
matrix multiplication. Although the Barraquand/Latombe algorithm has the lowest
time and space requirements, it does not have all the same utility as the algorithms
presented here; notably it does not allow task-by-task trade-offs between path length
and accuracy.

6.6.5 A Divide-and-Conquer Algorithm

I now present a variation of the algorithm with logarithmic time complexity. This

version is based on the observation that if the densities ρj, ρj+1, · · · , ρ2j are known,

then simple addition yields the function ρ[j,2j−1], which is the density of endpoints

reachable by trajectories of at least j but no more than 2j − 1 steps. Convolving

ρ[j,2j−1] with ρj yields the function ρ[2j,3j−1], and convolution of ρ[j,2j−1] with ρ2j re-

sults in ρ[3j,4j−1]. The functions ρ[2j,3j−1] and ρ[3j,4j−1] can be added to find ρ[2j,4j−1].

Finally convolution of ρ2j with itself produces ρ4j. Thus, three convolutions and one

addition extends our knowledge of ρj, ρ2j, and ρ[j,2j−1], to ρ4j and ρ[2j,4j−1]. A further

addition obtains ρ[2j,4j]. Iteration of this procedure produces the sequence of functions

ρ[1,2], ρ[2,4], ρ[4,8], ρ[8,16], · · · , ρ[P/2,P ] in time and space logarithmic in P .

Armed with these functions, a trajectory to gdes ∈ SE(D) is planned as follows.
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Choose a trajectory length P large enough so that the density ρ[P/2,P ](gdes) is suffi-

ciently high; the higher it is, the more closely the goal is likely to be reached. Using a

function maximization algorithm, search for an element h ∈ SE(D) which maximizes

the product ρ[P/4,P/2](h)ρ[P/4,P/2](h−1gdes). Having found such an element h, search

for a path of no more than P/2 steps which approximates h, and another path of

no more than P/2 steps which approximates h−1gdes. In this manner, by recursively

finding the midpoint of each unknown path segment, I eventually find P points along

the path, which describe an entire trajectory which approximately reaches gdes.

This approach exploits the exponential properties of convolution better than the

“linear” Ebert-Uphoff algorithm, and therefore only requires the computation and

storage of O (logP ) density functions. The main drawback is the use of the function-

maximization search. Depending on the details of the system, it may be difficult to

predict the time τ required by this step. In the theoretical worst case, if it is necessary

to check every possible volume element to find the maximum product of densities,

then τ could be O (N). But if the density functions of the system are fairly well-

behaved, then in practice τ will be manageably small. For example, if direction set

maximization methods are usable, then τ should only be quadratic in the dimension

of the configuration space.

Using a single processor, the path-finding procedure takes O (τP ) time to find a

trajectory. However, the algorithm lends itself to parallelization. If O (P ) processors

are available, then the trajectory can be found in O (τ log(P )) time.

6.6.6 Obstacle Navigation with Density Functions

Suppose that the density functions ρP for the system in the absence of obstacles are

already computed for a wide range of P . Then the goal gdes is provided but a certain

number of the cells in the discretization V0 are now occupied by obstacles and may not

be entered. Paths to gdes which would succeed in the absence of obstacles may now

be blocked. Here I will describe an algorithm—a sort of fusion of the BLD algorithm

and the linear Ebert-Uphoff algorithm—which uses the density functions to inform a
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search for a path through the obstacles.

Begin by finding the lowest value of P such that ρP (gdes) is nonzero (or acceptably

high.) That is, there is known to be an acceptable path of length P to the goal in

the absence of obstacles, but there is no path of length P − 1 in either the absence

or presence of obstacles.

Maintain three lists:

• A list OPEN of configurations which have been reached, and which lie on a

path of length P to the goal in the absence of obstacles, but whose successors

have not all yet been considered;

• A list DEFERRED of configurations which have been reached, and whose suc-

cessors have not been considered, but which does not lie on a path of length P to

the goal, even in the absence of obstacles. (These configurations are “deferred”

because they may still lie on a path of length greater than P which reaches the

goal.)

• A list CLOSED of configurations whose successors have all been considered.

For every configuration c = g1g2 · · · gj which is in OPEN, DEFERRED, or CLOSED,

I record the integer j(c), which is the number of steps j by which c was reached,

and also the configuration cg−1j which was the immediate ancestor of c. Every cell

in V0 that contains a configuration in either OPEN, DEFERRED, or CLOSED, has

a pointer to that configuration. Thus, given any cell in V0, it can be determined in

constant time if it has been reached, and if so the path to the cell can be recovered in

O (j) time. Both the OPEN and DEFERRED lists are maintained as a collection of

linked lists ordered by j. Initially OPEN contains only the start configuration (with

j = 0) and DEFERRED and CLOSED are empty.

Then proceed as follows:

1. Take the configuration c in OPEN with maximum j(c).
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2. Find the allowable transformation g ∈ A such that cg does not intersect an

OPEN or DEFERRED or CLOSED cell, which maximizes7 ρ(P−(j(cg))(g−1c−1gdes).

3. If there is no such g (i.e., all K successors of c lie in obstacles or cells that have

already been reached) then remove c from OPEN and place it in CLOSED.

4. If ρ(P−j−1)(g−1c−1gdes) is zero, then there is no path of length P from the origin

to the goal which passes through c. Remove c from OPEN and place it in

DEFERRED.

5. Otherwise, ρ(P−j−1)(g−1c−1gdes) is greater than zero. Add cg to OPEN. Leave c

in OPEN. Since j(cg) = j(c) + 1, the configuration cg is now at the top of the

OPEN list and will be considered next.

6. Go back to step 1 and repeat until the goal is reached or until OPEN is empty.

If the goal is reached, the algorithm terminates (success.)

7. If OPEN is empty, then there is no path of length P from origin to goal in

the presence of the obstacles. If DEFERRED is also empty, then the algorithm

terminates (failure.) If DEFERRED is not empty, there may be a longer path

from the origin to the goal. Increment P by one. Move all the configurations

in DEFERRED back into OPEN. Return to step 1.

With two caveats, this algorithm will find the minimum length path to the goal

if one exists. Proof: Whenever a given cell is reached for the first time, and a

configuration c in the cell is added to OPEN, the path of length j to c is known to

be part of a path of length P that would reach the goal in the absence of obstacles.

Furthermore, all paths of length less than P that would reach the goal in the absence

of obstacles have been explored until they either collided with an obstacle or began

retracing a previously explored path of length less than P (which in turn was explored

7Finding the maximizing successor once takes only O (K) time, but if the node c is revisited
K times and must produce K unexplored successors in order of decreasing solution density, this
could take O

(

K2
)

time. For better asymptotic performance, the successors should all be sorted by
solution density when c is first considered, in O (K logK) time. Of course, K may be small enough
that this is a niggling distinction.
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until it collided with an obstacle). Therefore, there cannot be a feasible path of length

k < j to the cell containing c, because if so the cell containing c would have been

previously entered while the algorithm was searching for paths of length P − (j − k).
So in particular, when the goal cell is reached the path to the goal cell will be of

minimum length. Since every reachable cell will eventually be reached, the minimum

length path to the goal will be found if a path exists.

The two caveats or holes in the proof concern the possibility of numerical error.

First, the proof assumes that the information in the density functions is reliable, and in

particular, that the density function will be nonzero when there is a solution and zero

when there is no solution. Obviously, to the extent that there is approximation error or

any other kind of error in the density functions, the path search may be misdirected

accordingly. Second, and perhaps more importantly, the algorithm assumes that

multiple configurations in the same cell do not have to be retained, because further

motion starting from those similar configurations will reach substantially similar cells.

But as we have seen, over long paths even tiny differences in starting orientation can

lead to large differences in the final destination. This algorithm thus inherits the same

vulnerability to “round-off” error as the original BLD algorithm. In the absence of

small time local controllability, there is no obvious remedy except to keep the cell

resolution as high as computationally feasible.

Time Bounds

In the worst case, this algorithm does not perform any better than the BLD algorithm,

because there is no guarantee that searching where solutions disregarding obstacles

are known to be dense will yield a solution which accounts for obstacles. In the best

case, however, when the obstacles turn out not to obstruct the standard Ebert-Uphoff

path from the origin to gdes, this algorithm will find the path in O (KP ), while the

conservative breadth-first search of the BLD algorithm may still take a long time (in

O (NK)) to complete even in this optimistic case.

The information provided by the density functions ρ provides this algorithm with

two advantages relative to the uninformed BLD algorithm.
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• The density-based algorithm can deduce in O (P ) time that the length of the

path to the goal must be at least P , considering only motion constraints and not

the effect of obstacles. This algorithm can therefore immediately begin a depth-

first search for a path of length P . The BLD algorithm, with no “knowledge”

of the constraints placed on path length by the allowed motion set, will perform

a breadth-first search to avoid missing a (nonexistent) path of length less than

P .

• If exploration from a given node cannot possibly result in a successful path of

length P (because of motion constraints), then the density-based algorithm will

not explore from that node until after it has checked all nodes that possibly

could result in a path of length P . The uninformed BLD algorithm will explore

equally from all nodes equally distant from the origin.

So I expect that the density-based algorithm will typically be faster than the

uninformed BLD algorithm, because it avoids checking fruitless paths that the BLD

algorithm will check before finding a solution. On the other hand, the density-based

algorithm will never perform significantly worse than the BLD, because the density-

based algorithm never explores any path longer than the path actually required to

reach the goal, but the BLD in general will search every path of length less than

or equal to the solution path before finding the solution. In the worst case, where

there is no solution, the BLD algorithm will take O (NK) time and the density based

algorithm will take O (NK logK) time. The additional factor of log(K) arises from

the need to sort paths by solution density—obviously, it is of no real significance

unless K is unusually large.
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Chapter 7 Conclusions and Future Work

I have presented general closed-form expressions for the force and moment on a de-

formable Joukowski foil, and the equations of motion for a few examples of deformable

swimming bodies. I have built and modelled a three-link planar robot fish—the robot

fish itself is the first such platform to be well suited for feedback control experiments,

while the model is useful insofar as it assists feedback control and path planning, and

gives insight into what physical processes are dominant during any particular fish ma-

neuver. I have outlined how sets of reachable points, and the trajectories necessary

to reach them in a minimum time, could be computed for the three-link fish. And

I have shown how the density of these sets of reachable points can be convolved to

obtain the density of endpoints of longer trajectories, and how these functions can be

used as tools in plotting motions for the fish, or for many other mobile robots, with

or without the presence of obstacles.

There are still many directions in which this work should proceed. Numerical op-

timization of desirable trajectories for the three-link robot, and for the self-propelled

deformable Joukowski foil, is still unfinished. It would probably be possible to extend

the treatment given to the deformable Joukowski foil and apply it to more general

kinds of deformable foil shapes. More ambitiously, it would be interesting to evaluate

the potential around multiple foil shapes, so that a fish, for example, could be mod-

elled as a collection of hydrodynamically interacting fins and streamlined body parts.

(This contrasts with my current treatment of the the three-link robot in which the

three links are assumed to by hydrodynamically separate.)

In the realm of path-planning using density functions, the ideas suggested here

remain untested on real-world problems. The divide-and-conquer algorithm for chart-

ing a path with a logarithmic number of density functions, in particular, requires that

the system’s density functions, and their products, be reasonably well-behaved and

amenable to standard searching techniques. It would be interesting to see whether
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this holds true of the density functions for a real system of interest (as opposed to an

elementary model constructed to illustrate the algorithm).
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Appendix A Integrals for Unsteady Flow

Forces

These integrals arise in determining the force on a deformable Joukowski foil due to

the time-varying potential.

∫

Σ

∂

∂t
(w+w) dz = U̇

(∫

Σ

(w1 + w1) dz

)

+V̇

(∫

Σ

(w2 + w2) dz

)

+Ω̇

(∫

Σ

(w3 + w3) dz

)

+ γ̇c

(∫
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(w4 + w4 dz
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+
∑

k
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(

2
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Σ

wk5 dz
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+ Ω
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(A.1)

∫

Σ

w1 dz =
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C
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−r
2
c

ζ
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a2

ζ + ζc

)(
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(ζ + ζc)2
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∫
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In order to perform the integrals involving logarithmic terms in w4 and w
s
1, w

s
2, w

s
3,

we do integration by parts, in each case choosing the branch cut associated with the

logarithmic potential to pass through the point zcut = 2a, i.e., the trailing edge of

the foil.
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∫

Σ

log(
ζ + ζc
rc

) dz − i
2a4r2cζx
(r2c − δ2)3

∫

Σ

log(
ζ

rc
) dz

−i2a2r2c
(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)∫

Σ

log(
ζ + ζc
ζ

) dz

= 2π

[

a2 − a4

ζ2c
+

a4r2c
(r2c − δ2)2

− a6r2cζ
2
c

(r2c − δ2)4
− a4r4c
ζ2c (r

2
c − δ2)2

+
a6r4c

(r2c − δ2)4

− 2a4r2cζc
(r2c − δ2)3

(

zcut − ζc +
a2ζc

(r2c − δ2)

)

+
2a4r2cζx

(r2c − δ2)3
(

zcut − ζc
)

+2a4r2c

(

1

ζ3c
+

ζca
2

(r2c − δ2)3

)(

ζc
(r2c − δ2)

)]

(A.16)
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∫

Σ

ws2 dz = 2π

[

a2 − a4

ζc
2 +

a4r2c
(r2c − δ2)2

− a6r2cζc
2

(r2c − δ2)4
− a4r4c

ζc
2
(r2c − δ2)2

+
a6r4c

(r2c − δ2)4

− 2a4r2cζc
(r2c − δ2)3

(

2a− ζc +
a2ζc

(r2c − δ2)

)

+
2a4r2cζx

(r2c − δ2)3
(2a− ζc)

+2a4r2c

(

1

ζc
3 +

ζca
2

(r2c − δ2)3

)

(

ζc
(r2c − δ2)

)

]

(A.17)

∫

Σ

ws3 dz =

∫

C

2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

)(

1− a2

(ζ + ζc)2

)

dζ

−2 a3r2c
(r2c − δ2)2

∫

Σ

log((ζ + ζc)/rc) dz

+2a
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

∫

Σ

log(
(ζ + ζc)

ζ
) dz

= 4πai

(

−r
2
c

ζc
− a2ζc

(r2c − δ2)
− a2r2c

(r2c − δ2)2
zcut +

r2c ((r
2
c − δ2)2 − a2ζ2c )

ζc(r2c − δ2)2

)

= 4πai

(

−r
2
c

ζc
− a2ζc

(r2c − δ2)
− 2a3r2c

(r2c − δ2)2
+
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζc(r2c − δ2)2

)

(A.18)

∫

Σ

ws3 dz =

∫

C

2a

(

− r2c
ζζc

− a2ζc
(ζ + ζc)(r2c − δ2)

)[

−r
2
c

ζ2
+

a2r2c
(r2c + ζcζ)2

]

dζ

−2 a3r2c
(r2c − δ2)2

∫

Σ

log((ζ + ζc)/rc) dz

+2a
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

∫

Σ

log(
(ζ + ζc)

ζ
) dz

= 4πai

(

−a
2

ζc
− a4r2cζc

(r2c − δ2)3

)

−4πi a3r2c
(r2c − δ2)2

(

zcut − ζc +
a2ζc

(r2c − δ2)

)

+4πia3
r2c ((r

2
c − δ2)2 − a2ζ2c )

ζ2c (r
2
c − δ2)2

(

ζc
(r2c − δ2)

)

(A.19)
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∫

Σ

ws3 dz = 4πai

(

a2

ζc
+

a4r2cζc
(r2c − δ2)3

)

+4πi
a3r2c

(r2c − δ2)2

(

2a− ζc +
a2ζc

(r2c − δ2)

)

−4πia3 r
2
c ((r

2
c − δ2)2 − a2ζc

2
)

ζc
2
(r2c − δ2)2

(

ζc
(r2c − δ2)

)

(A.20)

Now we evaluate the integrals involving time derivatives of the Kirchoff potentials.

∫

Σ

∂w1
∂t

dz =

∫

Σ

(

−2 rc ṙc
ζ

+
2 a ȧ

ζ + ζc
− a2 ζ̇x

(ζ + ζc)
2 −

a2 i ζ̇y

(ζ + ζc)
2

)

dz

= 4πi ( a ȧ− rc ṙc)

= 2πi
d

dt

(

a2 − r2c
)

(A.21)

∫

Σ

∂w1
∂t

dz =

∫

Σ

2 a ȧ rc
2 ζ

(

rc2 + ζ ζc
)2 −

2 rc
3 ṙc ζ

(

rc2 + ζ ζc
)2 +

2 a ȧ ζ2 ζc
(

rc2 + ζ ζc
)2 −

4 rc ṙc ζ
2 ζc

(

rc2 + ζ ζc
)2 −

2 ṙc ζ
3 ζc

2

rc
(

rc2 + ζ ζc
)2

− a2 ζ2 ζ̇x
(

rc2 + ζ ζc
)2 +

a2 i ζ2 ζ̇y
(

rc2 + ζ ζc
)2 dz

=
4 a2 i π

(

ṙc (rc
2 − δ2)

3
+ a ȧ (−rc5 + rc

3 δ2) + a2 rc
3 ζc

(

−ζ̇x + i ζ̇y

))

rc (rc2 − δ2)3
(A.22)

∫

Σ

∂w2
∂t

dz = 4π ( a ȧ+ rc ṙc)

= 2π
d

dt

(

a2 + rc
2
)

(A.23)

∫

Σ

∂w2
∂t

dz =
4a2π

(

aȧrc
3 (rc

2 − δ2) + ṙc(rc
2 − δ2)

3
+ a2rc

3ζc

(

ζ̇x − iζ̇y

))

rc(rc2 − δ2)3
(A.24)
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∫

Σ

∂w3
∂t

dz = 2π

[

2rcṙcζc + 2aȧζc +
2a4rcṙcζc

(rc2 − δ2)2
− 4a3ȧζc
rc2 − δ2

+ rc
2ζ̇x

− a4δ2ζ̇x

(rc2 − δ2)2
− a4ζ̇x
rc2 − δ2

+ irc
2ζ̇y −

a4iδ2ζ̇y

(rc2 − δ2)2
− a4iζ̇y
rc2 − δ2

]

(A.25)

∫

Σ

∂w3
∂t

dz =
2 a2 π

rc (rc2 − δ2)4

(

−4 a3 ȧ rc3 ζc
(

rc
2 − δ2

)

− 2 a ȧ rc ζc
(

rc
2 − δ2

)3

+
(

rc
2 − δ2

)4
(

2 ṙc ζc + rc

(

ζ̇x − i ζ̇y

))

−a2 ζc
(

rc
2 − δ2

)2
(

4 rc
2 ṙc − 2 ṙc δ

2 + rc ζc

(

ζ̇x − i ζ̇y

))

+a4 rc
3
(

2 rc ṙc ζc − 2 δ2
(

ζ̇x − i ζ̇y

)

+ rc
2
(

−ζ̇x + i ζ̇y

)))

(A.26)

∫

Σ

∂w4
∂t

dz =

∫

Σ

i

(

rc
ζ

)(−ζ
r2c

)

ṙc dz = 0

∫

Σ

∂wk5
∂t

dz = i

∫

Σ

[

−ζk
r2c

(

−2rcṙc
ζk

+
r2c ζ̇k
ζ2k

)

− 1

ζ − ζk
ζ̇k

− 1

ζ − r2c/ζk

(

−2rcṙc
ζk

+
r2c ζ̇k

ζk
2

)]

dz

= 2π





rc

(

−2 ṙc ζk + rc ζ̇k

)

ζk
2 +

a2 ζ̇k

(ζc + ζk)
2



 (A.27)

∫

Σ

∂ws1
∂t

dz = ζ̇c

∫

Σ

∂ws1
∂ζc

dz + ȧ

∫

Σ

∂ws1
∂a

dz + ṙc

∫

Σ

∂ws1
∂rc

dz (A.28)
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∫

Σ

∂ws1
∂ζc

dz =

[

4a4π

( −2 a i rc4
(rc2 − δ2)4

− 2 i rc
4 ζc

(rc2 − δ2)4
− 2 i rc

4 ζc

(rc2 − δ2)4
− 4 a i rc

2 δ2

(rc2 − δ2)4

+
2 i rc

2 ζc
2 ζc

(rc2 − δ2)4
− i rc

2 ζc ζc
2

(rc2 − δ2)4
− 6 a rc

2 ζc ζy

(rc2 − δ2)4
+

3 rc
2 δ2 ζy

(rc2 − δ2)4

)]

(A.29)

∫

Σ

∂ws1
∂a

dz =

[

4π

(

a i− 8 a4 i rc
2 ζc

(rc2 − δ2)3
− 4 a3 i rc

2 δ2

(rc2 − δ2)3
− 2 a3 i rc

2

(rc2 − δ2)2

− 2 a3 i ζc
2

(rc2 − δ2)2
− 8 a4 rc

2 ζy

(rc2 − δ2)3
+

4 a3 rc
2 ζc ζy

(rc2 − δ2)3

)]

(A.30)

∫

Σ

∂ws1
∂rc

dz =

[

4π

(

− (i rc) +
2 a2 i rc

ζc
2 − 2 a2 i rc

9

ζc
2 (rc2 − δ2)4

+
8 a5 i rc

3 ζc

(rc2 − δ2)4

+
8 a2 i rc

7 ζc

ζc (rc2 − δ2)4
+

4 a4 i rc
3 δ2

(rc2 − δ2)4
+

4 a5 i rc ζc
2 ζc

(rc2 − δ2)4

−12 a2 i rc
5 ζc

2

(rc2 − δ2)4
+

2 a4 i rc ζc
2 ζc

2

(rc2 − δ2)4
+

8 a2 i rc
3 ζc ζc

3

(rc2 − δ2)4

−2 a2 i rc ζc
2 ζc

4

(rc2 − δ2)4
+

a4 i rc
3

(rc2 − δ2)3
+

2 a4 i rc ζc
2

(rc2 − δ2)3

+
a4 i rc δ

2

(rc2 − δ2)3
+

8 a5 rc
3 ζy

(rc2 − δ2)4
− 4 a4 rc

3 ζc ζy

(rc2 − δ2)4

+
4 a5 rc δ

2 ζy

(rc2 − δ2)4
− 2 a4 rc ζc

2 ζc ζy

(rc2 − δ2)4

)]

(A.31)
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∫

Σ

∂ws1
∂ζc

dz =
4a4π

(r2c − δ2)5
[

−2 a rc6 + 3 a2 i rc
4 ζc + rc

6 ζc − i rc
6 ζc

−i rc4 ζc3 − a2 rc
4 ζc + 2 a2 i rc

4 ζc − 2 a rc
4 δ2 + 3 a2 i rc

2 ζc
2 ζc

+rc
4 ζc

2 ζc + 2 i rc
4 ζc

2 ζc

+2 i rc
2 ζc

4 ζc − 2 a2 rc
2 ζc ζc

2
+ a2 i rc

2 ζc ζc
2
+ 4 a rc

2 ζc
2 ζc

2

−2 rc2 ζc3 ζc
2 − i rc

2 ζc
3 ζc

2 − i ζc
5 ζc

2 − 6 a rc
4 ζc ζy

+3 rc
4 ζc

2 ζy + 6 a rc
2 ζc

2 ζc ζy − 3 rc
2 ζc

3 ζc ζy
]

(A.32)

∫

Σ

∂ws1
∂a

dz =
−4a3π

(r2c − δ2)4

[

−2 a2 rc2
(

−2 ζc
2
+ i

(

rc
2 + 2 δ2 + ζc

2
))

+ 8 a rc
2
(

rc
2 − δ2

) (

ζc + ζy
)

+
(

rc
2 − δ2

) (

i
(

rc
2 + ζc

2
) (

rc
2 − δ2

)

− 4 rc
2 ζc

(

ζc + ζy
))]

(A.33)

∫

Σ

∂ws1
∂rc

dz =
−4a2π

rc(r2c − δ2)5
[

a4 i rc
6 − i rc

10 + a2 i rc
6 ζc

2 − 8 a3 rc
6 ζc + 5 a4 i rc

4 δ2

+4 a2 rc
6 δ2 + 5 i rc

8 δ2 − 3 a2 i rc
4 ζc

3 ζc − 4 a4 rc
4 ζc

2
+ 2 a4 i rc

4 ζc
2

+4 a3 rc
4 ζc ζc

2
+ 2 a4 i rc

2 ζc
2 ζc

2 − 2 a2 rc
4 ζc

2 ζc
2 − 10 i rc

6 ζc
2 ζc

2
+ 3 a2 i rc

2 ζc
4 ζc

2

−2 a4 rc2 ζc ζc
3
+ 4 a3 rc

2 ζc
2 ζc

3 − 2 a2 rc
2 ζc

3 ζc
3

+10 i rc
4 ζc

3 ζc
3 − a2 i ζc

5 ζc
3 − 5 i rc

2 ζc
4 ζc

4
+ i ζc

5 ζc
5 − 8 a3 rc

6 ζy + 4 a2 rc
6 ζc ζy

+4 a3 rc
4 δ2 ζy − 2 a2 rc

4 ζc
2 ζc ζy + 4 a3 rc

2 ζc
2 ζc

2
ζy − 2 a2 rc

2 ζc
3 ζc

2
ζy

]

(A.34)

∫

Σ

∂ws2
∂ζc

dz =
4a4πr2c

(r2c − δ2)4
[

−2 rc2
(

ζc − ζc
)

+ δ2
(

2 ζc + ζc − 3 i ζy
)

− 2 a
(

rc
2 + 2 δ2 − 3 i ζc ζy

)]

(A.35)
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∫

Σ

∂ws2
∂a

dz = 4 a π − 32 a4 π rc
2 ζc

(rc2 − δ2)3
+

16 a3 π rc
2 δ2

(rc2 − δ2)3

+
8 a3 π rc

2

(rc2 − δ2)2
− 8 a3 π ζc

2

(rc2 − δ2)2
+

16 a3 i π rc
2 (2 a− ζc) ζy

(rc2 − δ2)3
(A.36)

∫

Σ

∂ws2
∂rc

dz = 4πrc

[

1 +
12 a5 rc

2 ζc

(rc2 − δ2)4
− 6 a4 rc

2 δ2

(rc2 − δ2)4
− 2 a4 rc

2

(rc2 − δ2)3
− 4 a5 ζc

(rc2 − δ2)3
+

2 a4 ζc
2

(rc2 − δ2)3

+
2 a4 δ2

(rc2 − δ2)3
+

a4

(rc2 − δ2)2
− 12 a5 i rc

2 ζy

(rc2 − δ2)4
+

6 a4 i rc
2 ζc ζy

(rc2 − δ2)4

+
4 a5 i ζy

(rc2 − δ2)3
− 2 a4 i ζc ζy

(rc2 − δ2)3

]

(A.37)

∫

Σ

∂ws2
∂ζc

dz =
−4a4π

(r2c − δ2)5
[

a2 rc
2
(

δ2
(

−3 ζc + ζc + 2 i ζc
)

+ rc
2
(

−3 ζc + (2 + i) ζc
))

+2 a i rc
2
(

rc
2 − δ2

) (

rc
2 + 2 δ2 + 3 ζc ζy

)

−ζc
(

rc
2 − δ2

) (

(1 + i) rc
4 + ζc

3 ζc − rc
2 ζc

(

ζc + ζc − 2 i ζc − 3 i ζy
))]

(A.38)

∫

Σ

∂ws2
∂a

dz =
4a3π

(r2c − δ2)4
[

2 a2 rc
2
(

rc
2 − ζc

(

−2 ζc + ζc + 2 i ζc
))

−8 a i rc2
(

rc
2 − δ2

) (

ζc + ζy
)

+
(

rc
2 − δ2

) (

rc
4 + ζc

3 ζc − rc
2 ζc

(

ζc + ζc − 4 i ζc − 4 i ζy
))]

(A.39)
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∫

Σ

∂ws2
∂rc

dz = 4a2π

[

1

rc
− a2

rc ζc
2 −

a4 rc
5

(rc2 − δ2)5
+

12 a2 rc
5 ζc

2

(rc2 − δ2)5

+
2 a2 rc

9

ζc
2
(rc2 − δ2)5

− 8 a2 rc
7 ζc

ζc (rc2 − δ2)5
− 5 a4 rc

3 δ2

(rc2 − δ2)5

−8 a2 rc
3 ζc

3 ζc

(rc2 − δ2)5
+

4 a4 i rc
3 ζc

2

(rc2 − δ2)5
− 2 a4 rc ζc

2 ζc
2

(rc2 − δ2)5

+
2 a2 rc ζc

4 ζc
2

(rc2 − δ2)5
+

2 a4 i rc ζc ζc
3

(rc2 − δ2)5
+

8 a3 i rc
3 ζc

(rc2 − δ2)4

−4 a2 i rc
3 δ2

(rc2 − δ2)4
+

4 a3 i rc ζc ζc
2

(rc2 − δ2)4

−2 a2 i rc ζc
2 ζc

2

(rc2 − δ2)4
− a2 rc

3

ζc
2
(rc2 − δ2)2

− 2 a4 rc
3 ζc

2

(rc2 − δ2)2 (−rc2 + δ2)3
+

8 a3 i rc
3 ζy

(rc2 − δ2)4

−4 a2 i rc
3 ζc ζy

(rc2 − δ2)4
+

4 a3 i rc δ
2 ζy

(rc2 − δ2)4

−2 a2 i rc ζc
2 ζc ζy

(rc2 − δ2)4

]

(A.40)

∫

Σ

∂ws3
∂ζc

dz =
−4 a3 i π rc2

(

3 rc
2 + 4 a ζc − ζc ζc

)

(

rc2 − ζc ζc
)3 (A.41)

∫

Σ

∂ws3
∂a

dz =
−12 a2 i π

(

2 a rc
2 + ζc

(

2 rc
2 − ζc ζc

))

(

rc2 − ζc ζc
)2 (A.42)

∫

Σ

∂ws3
∂rc

dz =
16 a3 i π rc

(

rc
2 ζc + a

(

rc
2 + ζc ζc

))

(

rc2 − ζc ζc
)3 (A.43)

∫

Σ

∂ws3
∂ζc

dz =
4a3π

(r2c − δ2)4

[

−4 a rc2 ζc
(

rc
2 − δ2

)

+ ζc
2 (
rc
2 − δ2

) (

(2 + i) rc
2 − i δ2

)

−a2 rc2
(

3 i rc
2 + 2 δ2 + 4 i δ2

)]

(A.44)
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∫

Σ

∂ws3
∂a

dz =
4a2π

(r2c − δ2)3
[

−6 a rc4 + 3 rc
4 ζc − i rc

4 ζc − 3 a2 rc
2 ζc + 6 a2 i rc

2 ζc

+6 a rc
2 δ2 − 3 rc

2 ζc
2 ζc + 2 i rc

2 ζc
2 ζc − i ζc

3 ζc
2
]

(A.45)

∫

Σ

∂ws3
∂rc

dz =
−8a3π

rc(r2c − δ2)4
[

a2 rc
2 ζc

(

(−1 + 2 i) rc
2 + (−1 + i) δ2

)

+ζc
(

rc
2 − δ2

)

(

(1 + i) rc
4 + (1− 2 i) rc

2 δ2 + i ζc
2 ζc

2
)

−2 a
(

rc
6 − rc

2 ζc
2 ζc

2
)]

(A.46)
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Appendix B Integrals for Bernoulli

Effect Forces

These integrals arise in the force on a deformable Joukowski foil due to the Bernoulli

effect.

∫

C+

dw1
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π ζc (rc2 − δ2)
(

(rc
2 − δ2)

3
+ a2

(

−rc4 + ζc ζc
3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.1)

∫

C+

dw1
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π ζc (rc
2 − δ2)

(

(rc
2 − δ2)

3
+ a2

(

−rc4 + ζc ζc
3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.2)

∫

C+

dw2
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π ζc (rc
2 − δ2)

(

(rc
2 − δ2)

3
+ a2

(

rc
4 + ζc ζc

3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.3)



184

∫

C+

dw2
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π ζc (rc
2 − δ2)

(

(rc
2 − δ2)

3
+ a2

(

rc
4 + ζc ζc

3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.4)

∫

C+

dw1
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π
(

rc
4 − 2 rc

2 δ2 +
(

a2 + ζc
2
)

ζc
2
) (

−(rc2 − δ2)
3
+ a2

(

rc
4 − ζc ζc

3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.5)

∫

C+

dw3
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 π ζc
(

a2 rc
2 ζc (2 rc

2 − 3 δ2) (rc
2 − δ2)− ζc (rc

2 − δ2)
4
+ a4

(

rc
4 ζc − rc

2 ζc
3
+ ζc ζc

4
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2

(B.6)

∫

C+

dw2
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π
(

rc
4 − 2 rc

2 δ2 +
(

a2 + ζc
2
)

ζc
2
) (

(rc
2 − δ2)

3
+ a2

(

rc
4 + ζc ζc

3
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.7)
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∫

C+

dw3
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π ζc
(

a2 rc
2 ζc (2 rc

2 − 3 δ2) (rc
2 − δ2)− ζc (rc

2 − δ2)
4
+ a4

(

rc
4 ζc − rc

2 ζc
3
+ ζc ζc

4
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2

(B.8)

∫

C+

dw3
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π
(

rc
4 − 2 rc

2 δ2 +
(

a2 + ζc
2
)

ζc
2
)

×
(

a2 rc
2 ζc (2 rc

2 − 3 δ2) (rc
2 − δ2)− ζc (rc

2 − δ2)
4
+ a4

(

rc
4 ζc − rc

2 ζc
3
+ ζc ζc

4
))

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)
(

rc2 − (a+ ζc) ζc
)2

(B.9)

∫

C+

dw1
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.10)

∫

C+

dw4
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−π
r2c

(

2 rc
2 ζc

2 − 2 a2
(

rc
2 + ζc

2
)

(a− ζc) (a+ ζc)

+
a3 rc

4

(a− ζc)
(

rc2 + (a− ζc) ζc
)2 +

a3 rc
4

(a+ ζc)
(

rc2 − (a+ ζc) ζc
)2

)

(B.11)

∫

C+

dw2
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.12)
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∫

C+

dw4
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−2 i π
(

rc
2 (rc

2 − δ2)
4
+ a4

(

rc
4 ζc

2
+ (rc − ζc) (rc + ζc) ζc

4
))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2

− 2iπ

(

a2 (rc
2 − δ2)

2
(

rc
4 + ζc

2 ζc
2 − 2 rc

2 ζc
(

ζc + ζc
)

))

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.13)

∫

C+

dw3
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.14)

∫

C+

dw4
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = −2 i π
(

−
(

a2 ζc
(

a2 + ζc
2
)

rc2
(

a2 − ζc
2
)

)

+ζc +
a4 rc

2

(a− ζc)
(

rc2 + (a− ζc) ζc
)2 −

a4 rc
2

(a+ ζc)
(

rc2 − (a+ ζc) ζc
)2

)

(B.15)

∫

C+

dw4
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.16)

∫

C+

dw1
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−2π

(

−
(

a2 ζk
2
)

+ rc
2
(

ζc + ζk
)2
)

(

a− ζc − ζk
)

ζk
2 (
a+ ζc + ζk

)

(B.17)
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∫

C+

dwk5
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2π
(

rc
2
(

rc
2 − δ2

)4
(ζc + ζk)

2 (ζc + ζk
)2 − a6 ζc

4 (
rc
2 + ζc ζk

)2

−a2
(

rc
2 − δ2

)2
(ζc + ζk)

2
(

rc
4 ζk

2
+ ζc

2 ζc
2
ζk
2
+ 2 rc

2 ζc

(

ζc
3
+ 2 ζc

2
ζk − ζc ζk

2
+ ζc ζk

2
))

+a4 ζc

(

ζc
2 ζc

3 (
2 ζc

2 + 2 ζc ζk + ζk
2
)

ζk
2 − rc

8
(

ζc + 2 ζk
)

+2 rc
6
(

ζk
(

ζc + ζk
)2

+ 2 ζc ζc
(

ζc + 2 ζk
)

)

−rc4 ζc
(

ζk
2 ζk

(

2 ζc + ζk
)

+ ζc
2
(

3 ζc
2
+ 8 ζc ζk − 2 ζk

2
)

+ 2 ζc ζk

(

ζc
2
+ 4 ζc ζk + 2 ζk

2
))

+rc
2 ζc

2
(

2 ζc
3
(

ζc − 2 ζk
)

ζk + ζc ζk
2
(

ζc + ζk
)2

+ 2 ζc ζc ζk

(

ζc
2
+ 2 ζc ζk + ζk

(

ζk + ζk
)

)

+ζc
2 ζc

(

ζc
2
+ 2 ζc ζk + ζk

(

4 ζk + ζk
)

))))

/
(

rc
2
(

rc
2 + (a− ζc) ζc

)2 (
rc
2 − (a+ ζc) ζc

)2
(a− ζc − ζk) (a+ ζc + ζk)

(

ζc + ζk
)2
)

(B.18)

∫

C+

dw2
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−2 i π

(

a2 ζk
2
+ rc

2
(

ζc + ζk
)2
)

(

a− ζc − ζk
)

ζk
2 (
a+ ζc + ζk

)

(B.19)
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∫

C+

dwk5
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

(

−2 i π
rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2

(a− ζc − ζk) (a+ ζc + ζk)
(

ζc + ζk
)2

)

×
{

rc
2
(

rc
2 − ζc ζc

)4
(ζc + ζk)

2 (ζc + ζk
)2

+ a6 ζc
4 (
rc
2 + ζc ζk

)2

+a2
(

rc
2 − ζc ζc

)2
(ζc + ζk)

2
(

rc
4 ζk

2
+ ζc

2 ζc
2
ζk
2 − 2 rc

2
(

ζc
4
+ 2 ζc

3
ζk + ζc

(

ζc + ζc
)

ζk
2
))

+a4 ζc

(

−
(

ζc
2 ζc

3 (
2 ζc

2 + 2 ζc ζk + ζk
2
)

ζk
2
)

+ rc
8
(

ζc + 2 ζk
)

+rc
4 ζc

(

ζc ζc
2
(3 ζc + 2 ζk) + 2 ζc (2 ζc + ζk)

2 ζk +
(

−2 ζc2 + 4 ζc ζk + ζk
2
)

ζk
2
)

+rc
2 ζc

2
(

ζc
3
(ζc + ζk)

2 + 2 ζc
(

−ζc + ζc
)

(ζc + ζk)
2 ζk +

(

ζc
2
(

4 ζc + ζc
)

+ 2 ζc ζc ζk + ζc ζk
2
)

ζk
2
)

−2 rc6
(

ζk
(

ζc + ζk
)2

+ 2 ζc ζc
(

ζc + 2 ζk
)

))}

(B.20)

∫

C+

dw3
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−2 i π
(

a4 ζc ζk
2 − rc

2 ζc
(

rc
2 − ζc ζc

) (

ζc + ζk
)2 − a2

(

rc
2 − ζc ζc

)

(

ζc ζk
2
+ rc

2
(

ζc + 2 ζk
)

))

(

rc2 − ζc ζc
)

ζk
2 (−a+ ζc + ζk

) (

a+ ζc + ζk
)

(B.21)
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∫

C+

dwk5
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2 i π

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − ζc ζc
) (

rc2 − (a+ ζc) ζc
)2

(−a+ ζc + ζk) (a+ ζc + ζk)
(

ζc + ζk
)2

×
{

rc
2 ζc
(

rc
2 − ζc ζc

)5
(ζc + ζk)

2 (ζc + ζk
)2 − a8 ζc

5 (
rc
2 + ζc ζk

)2

−a6 ζc
2 (
rc
2 − ζc ζc

)

(

ζc ζc
2
(ζc + ζk)

2 ζk
2
+ 2 rc

6
(

ζc + ζk
)

−rc2 ζc
(

ζc
2
(ζc + ζk)

2 + 2 ζc
2 ζc ζk + 2 ζc

2 ζk
2
)

− 2 rc
4
(

ζc + ζk
) (

2 ζc ζc + ζk
(

ζc + ζk
))

)

+a2
(

rc
2 − ζc ζc

)3
(ζc + ζk)

2
(

ζc
3 ζc

2
ζk
2
+ rc

6
(

ζc + 2 ζk
)

+ rc
4 ζc

(

−2 ζc
2 − 4 ζc ζk + ζk

2
)

+rc
2 ζc

(

−2 ζc
2 (
ζc + ζk

)2
+ ζc

2
(

ζc
2
+ 2 ζc ζk − 2 ζk

2
)))

−a4
(

rc
2 − ζc ζc

)

(

ζc
5 ζc

4
ζk
2
+ rc

10
(

ζc + 2 ζk
)

−rc2 ζc
3
(

ζc
2
(

−2 ζc2 + ζc
2
)

(ζc + ζk)
2 + 2 ζc

(

−3 ζc2 + ζc
2
)

(ζc + ζk)
2 ζk

+
(

ζc
4 − 8 ζc

3 ζk + 2 ζc ζc
2
ζk + ζc

2
ζk
2 + ζc

2
(

ζc
2 − 4 ζk

2
))

ζk
2
)

−rc8
(

2 ζk
(

ζc + ζk
)2

+ 5 ζc ζc
(

ζc + 2 ζk
)

)

− rc
4 ζc ζc

2 (
4 ζk

2
(

ζc + ζk
) (

ζc + 2 ζk
)

+2 ζc ζk
(

ζc + ζk
) (

5 ζc + 9 ζk
)

+ ζc
2
(

7 ζc
2
+ 18 ζc ζk + ζk

2
))

+rc
6 ζc

(

2 ζk
2
(

ζc + ζk
) (

ζc + 2 ζk
)

+ 4 ζc ζk
(

ζc + ζk
) (

2 ζc + 3 ζk
)

+ζc
2
(

9 ζc
2
+ 20 ζc ζk + ζk

2
)))}

(B.22)

∫

C+

dw4
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
2 i π

(

ζc + ζk
)2

ζk
(

−a+ ζc + ζk
) (

a+ ζc + ζk
)

(B.23)

∫

C+

dwk5
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
2 i π (ζc + ζk)

2

ζk (−a+ ζc + ζk) (a+ ζc + ζk)
(B.24)
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∫

C+

dwk5
dζ

dwj5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2 i π
(

a− ζc − ζj
) (

a+ ζc + ζj
)

(a− ζc − ζk) (a+ ζc + ζk) (−rc2 + ζj ζk)
(

−rc2 + ζj ζk
)

×
{

(

ζc + ζj
)2

(ζc + ζk)
2 (−

(

ζj
(

ζj + ζk
)

ζk
)

+ rc
2
(

ζj + ζk
))

+a2
(

−
(

rc
4
(

2 ζc + ζj + ζk
))

+ ζc ζj
(

2 ζj ζk + ζc
(

ζj + ζk
))

ζk − rc
2
(

ζc
2 − ζj ζk

) (

ζj + ζk
))}

(B.25)

∫

C+

dwk5
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 2 i π
(

r2c − ζk ζk
)

×
(

−
(

(ζc + ζk)
2 (ζc + ζk

)2 (
ζk + ζk

)

)

+ a2
(

rc
2
(

2 ζc + ζk + ζk
)

+ ζc
(

2 ζk ζk + ζc
(

ζk + ζk
)))

)

(a− ζc − ζk) (a+ ζc + ζk)
(

−rc2 + ζk
2
) (

a− ζc − ζk
) (

a+ ζc + ζk
)

(

rc2 − ζk
2
)

(B.26)

∫

C+

dw1
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π
(

a2 rc
4
(

ζc + ζc
)

+ ζc (−rc2 + δ2)
3
)

rc2 (rc2 − δ2)3
(B.27)
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∫

C+

dws1
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2

×
(

ζc
(

−rc2 + δ2
)7

+ a2
(

rc
2 − δ2

)4
(

2 rc
2 ζc

3 − 2 ζc ζc
4
+ rc

4
(

ζc + ζc − i ζy
)

)

−a6 rc2 ζc
2
(

rc
4 (ζc − i ζy) + rc

2 ζc
2
(−ζc + i ζy) + ζc

2 ζc
2 (
ζc + i ζy

)

)

−a4
(

rc
2 − δ2

)2
(

−
(

ζc ζc
6
)

+ rc
6
(

ζc + ζc − i ζy
)

+ rc
4 ζc

(

ζc
(

ζc + 4 ζc
)

+ 2 i
(

ζc − ζc
)

ζy
)

+rc
2 ζc

2
(

ζc
3 − ζc

2
(

ζc + i ζy
)

)))

(B.28)

∫

C+

dw2
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π
(

a2 rc
4
(

ζc + ζc
)

+ ζc (rc
2 − δ2)

3
)

rc2 (rc2 − δ2)3
(B.29)

∫

C+

dws1
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2 ×

(

ζc
(

−rc2 + δ2
)7

+a6 rc
2 ζc

2
(

−
(

ζc

(

rc
4 + rc

2 ζc
2
+ ζc ζc

3
))

+ i
(

rc
4 + (rc − ζc) (rc + ζc) ζc

2
)

ζy

)

+a2
(

rc
2 − δ2

)4
(

2 rc
2 ζc

3 − 2 ζc ζc
4
+ rc

4
(

−ζc + ζc + i ζy
)

)

+a4
(

rc
2 − δ2

)2
(

ζc ζc
6 − rc

6
(

ζc + ζc − i ζy
)

+ rc
4 ζc

(

−ζc2 − 2 i
(

ζc + ζc
)

ζy
)

+rc
2 ζc

2
(

−ζc
3
+ ζc

2
(

ζc + i ζy
)

)))

(B.30)
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∫

C+

dw3
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 π
(

a4 rc
4 ζc

(

ζc + ζc
)

− ζc ζc (rc
2 − δ2)

4
+ a2 (rc

2 − δ2)
2
(

rc
4 + 2 rc

2 ζc
2 − ζc ζc

3
))

rc2 (rc2 − δ2)4

(B.31)

∫

C+

dws1
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)4
(

rc2 − (a+ ζc) ζc
)2

×
(

(

rc
2 − δ2

)9 − a2
(

rc
2 − δ2

)5
(

rc
6 − 2 rc

2 ζc ζc
3
+ ζc

2 ζc
4
+ rc

4 ζc
(

ζc − i ζy
)

)

+a8 rc
2 ζc ζc

4 (
rc
2 (ζc − i ζy) + ζc ζc

(

ζc + i ζy
))

+a4
(

rc
2 − δ2

)3
(

rc
8 − ζc

2 ζc
6 − rc

4 ζc

(

2 ζc
3 + 3 ζc

2 ζc − 3 ζc ζc
2
+ ζc

3
+ 2 i

(

ζc
2 + ζc

2
)

ζy

)

+rc
6
(

2 ζc
2 − ζc

2
+ ζc

(

ζc + i ζy
)

)

+ rc
2 ζc ζc

2
(

2 ζc
3
+ ζc

2
(

ζc + i ζy
)

))

+a6 ζc
(

rc
2 − δ2

)

(

−2 rc2 ζc ζc
6
+ ζc

2 ζc
7
+ rc

8
(

4 ζc + ζc − 4 i ζy
)

+ rc
6 ζc ζc

(

−5 ζc + ζc + 8 i ζy
)

+rc
4 ζc

2
(

ζc
3 − ζc ζc

2
+ ζc

2 (
ζc + i ζy

)

− 2 ζc
2
(

ζc + 2 i ζy
)

)))

(B.32)

∫

C+

dw4
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−2π (a− rc) (a+ rc)

rc2
(B.33)

∫

C+

dws1
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.34)
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∫

C+

dwk5
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

{

rc
2
(

rc
2 − ζc ζc

)3
ζk (ζc + ζk)

2 (ζc + ζk
)2 − a2

(

rc
2 − ζc ζc

)3
ζk (ζc + ζk)

2
(

rc
2 + ζk

2
)

−a4
(

−
(

rc
8 ζk
)

+ ζc
3 ζc

3
ζk ζk

2
+ rc

6 ζc ζk
(

3 ζc + ζc + 2 ζk
)

−rc2 ζc2 ζc ζk ζk
(

2 ζc ζc + ζc ζk + 3 ζc ζk
)

+rc
4
(

ζc

(

ζc
2 (
ζc − 2 ζk

)

(2 ζc + ζk) + 2 ζc
(

2 ζc ζc − ζc ζk + ζc ζk − 2 ζk
2
)

ζk

+
(

2 ζc − ζk
)

(ζc + 2 ζk) ζk
2
)

+ 2 i (ζc + ζk)
2 (ζc + ζk

)2
ζy

))}

× −2π
rc2
(

rc2 − ζc ζc
)3
ζk (−a+ ζc + ζk) (a+ ζc + ζk)

(

ζc + ζk
)2 (B.35)

∫

C+

dws1
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2π
(

rc2 − ζc ζc
)3
ζk
2 (−a+ ζc + ζk

) (

a+ ζc + ζk
)

×
{

rc
2
(

rc
2 − ζc ζc

)3 (
ζc + ζk

)2 − a2
(

rc
2 − ζc ζc

)3
(

rc
2 + ζk

2
)

+a4 ζk

(

rc
4 ζk − ζc

3 ζc ζk + rc
2
(

ζc

(

2 ζc ζc − ζc ζk + ζc ζk − 2 ζk
2
)

+ 2 i
(

ζc + ζk
)2
ζy

))}

(B.36)

∫

C+

dw1
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π
(

a2 rc
4
(

ζc − ζc
)

+ ζc (rc
2 − δ2)

3
)

rc2 (rc2 − δ2)3
(B.37)
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∫

C+

dws2
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2 ×

{

ζc
(

rc
2 − δ2

)7

+a2
(

rc
2 − δ2

)4
(

−2 rc2 ζc
3
+ 2 ζc ζc

4
+ rc

4
(

ζc + ζc − i ζy
)

)

+a6 rc
2 ζc

2
(

rc
2 ζc

2
(ζc − i ζy) + ζc

2 ζc
2 (
ζc − i ζy

)

+ rc
4 (−ζc + i ζy)

)

+a4
(

rc
2 − δ2

)2
(

−
(

ζc ζc
6
)

+ rc
6
(

−ζc + ζc + i ζy
)

−rc4 ζc
(

ζc
2 + 2 i

(

ζc − ζc
)

ζy
)

+ rc
2 ζc

2
(

ζc
3
+ ζc

2
(

−ζc + i ζy
)

))}

(B.38)

∫

C+

dw2
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π
(

a2 rc
4
(

ζc − ζc
)

+ ζc (−rc2 + δ2)
3
)

rc2 (rc2 − δ2)3
(B.39)

∫

C+

dws2
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2 ×

(

ζc
(

rc
2 − δ2

)7

+a6 rc
2 ζc

2
(

ζc
2 ζc

2 (
ζc − i ζy

)

+ rc
4 (−ζc + i ζy) + rc

2 ζc
2
(−ζc + i ζy)

)

+a2
(

rc
2 − δ2

)4
(

−2 rc2 ζc
3
+ 2 ζc ζc

4
+ rc

4
(

−ζc + ζc + i ζy
)

)

+a4
(

rc
2 − δ2

)2
(

−
(

ζc ζc
6
)

+ rc
6
(

−ζc + ζc + i ζy
)

+ rc
4 ζc

(

−
(

ζc
(

ζc − 4 ζc
))

−2 i
(

ζc + ζc
)

ζy
)

+ rc
2 ζc

2
(

ζc
3
+ ζc

2
(

−ζc + i ζy
)

)))

(B.40)
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∫

C+

dw3
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a2 i π
(

a4 rc
4 ζc

(

ζc − ζc
)

+ ζc ζc (rc
2 − δ2)

4
+ a2 (rc

2 − δ2)
2
(

rc
4 − 2 rc

2 ζc
2
+ ζc ζc

3
))

rc2 (rc2 − δ2)4

(B.41)

∫

C+

dws2
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)4
(

rc2 − (a+ ζc) ζc
)2 ×

{

(

rc
2 − δ2

)9

+a8 rc
2 ζc ζc

4 (
ζc ζc

(

ζc − i ζy
)

+ rc
2 (−ζc + i ζy)

)

+a2
(

rc
2 − δ2

)5
(

rc
6 + 2 rc

2 ζc ζc
3 − ζc

2 ζc
4 − rc

4 ζc
(

ζc + i ζy
)

)

+a4
(

rc
2 − δ2

)3
(

rc
8 − ζc

2 ζc
6 − rc

4 ζc

(

−2 ζc3 + 3 ζc
2 ζc + 3 ζc ζc

2
+ ζc

3 − 2 i
(

ζc
2 + ζc

2
)

ζy

)

+rc
6
(

−2 ζc2 + ζc
2
+ ζc

(

ζc − i ζy
)

)

+ rc
2 ζc ζc

2
(

2 ζc
3
+ ζc

2
(

ζc − i ζy
)

))

−a6 ζc
(

rc
2 − δ2

)

(

2 rc
2 ζc ζc

6 − ζc
2 ζc

7 − rc
6 ζc ζc

(

5 ζc + ζc − 8 i ζy
)

+rc
8
(

4 ζc − ζc − 4 i ζy
)

+ rc
4 ζc

2
(

ζc
3 − ζc ζc

2
+ 2 ζc

2
(

ζc − 2 i ζy
)

+ ζc
2 (−ζc + i ζy

)

))}

(B.42)

∫

C+

dw4
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−2 i π (a2 + rc

2)

rc2
(B.43)

∫

C+

dws2
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.44)
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∫

C+

dwk5
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2 i π

rc2
(

rc2 − ζc ζc
)3
ζk (−a+ ζc + ζk) (a+ ζc + ζk)

(

ζc + ζk
)2

×
{

rc
2
(

rc
2 − ζc ζc

)3
ζk (ζc + ζk)

2 (ζc + ζk
)2

+ a2
(

rc
2 − ζc ζc

)3
ζk (ζc + ζk)

2
(

−rc2 + ζk
2
)

+a4
(

rc
8 ζk + ζc

3 ζc
3
ζk ζk

2
+ rc

6 ζc ζk
(

−3 ζc + ζc + 2 ζk
)

+ rc
2 ζc

2 ζc ζk ζk
(

2 ζc ζc + ζc ζk − 3 ζc ζk
)

+rc
4
(

ζc

(

ζc
2
(2 ζc + ζk)

(

ζc + 2 ζk
)

+ 2 ζc
(

2 ζc ζc +
(

ζc + ζc
)

ζk + 2 ζk
2
)

ζk

+
(

2 ζc + ζk
)

(ζc + 2 ζk) ζk
2
)

+ 2 i (ζc + ζk)
2 (ζc + ζk

)2
ζy

))}

(B.45)

∫

C+

dws2
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

2 i π
(

rc2 − ζc ζc
)3
ζk
2 (−a+ ζc + ζk

) (

a+ ζc + ζk
)

×
{

rc
2
(

rc
2 − ζc ζc

)3 (
ζc + ζk

)2
+ a2

(

rc
2 − ζc ζc

)3
(

−rc2 + ζk
2
)

+a4 ζk

(

rc
4 ζk + ζc

3 ζc ζk + rc
2
(

ζc

(

2 ζc ζc +
(

ζc + ζc
)

ζk + 2 ζk
2
)

− 2 i
(

ζc + ζk
)2
ζy

))}

(B.46)

∫

C+

dw1
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a i π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)2
(

rc2 − (a+ ζc) ζc
)2 ×

{

2 a6 rc
4 ζc

4

−rc2
(

rc
2 − δ2

)6
+ a2

(

rc
2 − δ2

)4
(

rc
4 + 5 rc

2 ζc
2 − 2 ζc ζc

3
)

+a4 ζc
2 (
rc
2 − δ2

)2
(

−5 rc4 − 2 rc
2 ζc

2
+ 2 ζc ζc

3
)}

(B.47)



197

∫

C+

dws3
dζ

dw1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a3 i π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)2
(

rc2 − (a+ ζc) ζc
)2×

{

a4 rc
2 ζc

2
(

rc
4 − rc

2 ζc
2
+ ζc

2 ζc
2
)

−
(

rc
2 − δ2

)4
(

rc
4 + 3 rc

2 ζc
2 − 2 ζc ζc

3
)

+a2
(

rc
2 − δ2

)2
(

rc
6 − 2 ζc ζc

5
+ 2 rc

4 ζc
(

2 ζc + ζc
)

+ rc
2
(

−
(

ζc
2 ζc

2
)

+ ζc
4
))}

(B.48)

∫

C+

dw2
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)2
(

rc2 − (a+ ζc) ζc
)2 ×

{

2 a6 rc
4 ζc

4

+rc
2
(

rc
2 − δ2

)6
+ a2

(

rc
2 − δ2

)4
(

rc
4 − 5 rc

2 ζc
2
+ 2 ζc ζc

3
)

−a4 ζc
2 (
rc
2 − δ2

)2
(

5 rc
4 − 2 rc

2 ζc
2
+ 2 ζc ζc

3
)}

(B.49)

∫

C+

dws3
dζ

dw2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a3 π

rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)2
(

rc2 − (a+ ζc) ζc
)2×

(

a4 rc
2 ζc

2
(

rc
4 +

(

rc
2 + ζc

2
)

ζc
2
)

+
(

rc
2 − δ2

)4
(

rc
4 − 3 rc

2 ζc
2
+ 2 ζc ζc

3
)

+a2
(

rc
2 − δ2

)2
(

rc
6 + 2 rc

4
(

2 ζc − ζc
)

ζc − 2 ζc ζc
5
+ rc

2
(

−
(

ζc
2 ζc

2
)

+ ζc
4
)))

(B.50)
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∫

C+

dw3
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2 ×

{

2 a8 rc
4 ζc ζc

4−

rc
2 ζc
(

rc
2 − δ2

)7
+ a2 ζc

(

rc
2 − δ2

)5
(

rc
4 + 4 rc

2 δ2 − 2 ζc
2 ζc

2
)

+a4 rc
2
(

rc
2 − δ2

)4
(

rc
2 ζc − 7 ζc

3
)

− a6 ζc
2 (
rc
2 − δ2

)2
(

5 rc
4 ζc − 4 rc

2 ζc
3
+ 2 ζc ζc

4
)}

(B.51)

∫

C+

dws3
dζ

dw3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a3 π
rc2
(

rc2 + (a− ζc) ζc
)2

(rc2 − δ2)3
(

rc2 − (a+ ζc) ζc
)2 ×

{

a6 rc
2 ζc ζc

4 (
rc
2 + δ2

)

+ζc
(

−rc2 + δ2
)5
(

4 rc
4 − 5 rc

2 δ2 + 2 ζc
2 ζc

2
)

+a2 rc
2 ζc
(

rc
2 − δ2

)3
(

5 rc
4 − 6 rc

2 δ2 + ζc
2 ζc

2
+ 2 ζc

4
)

+a4 ζc
(

rc
2 − δ2

)

(

4 rc
8 − 2 rc

6 δ2 − 2 rc
4 ζc

2 ζc
2 − 3 rc

2 ζc ζc
5
+ 2 ζc

2 ζc
6
)}

(B.52)

∫

C+

dw4
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a3 π ζc

(

2 rc
6 − 5 rc

4 δ2 + 4 rc
2 ζc

2 ζc
2
+ (a− ζc) ζc (a+ ζc) ζc

3
)

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − (a+ ζc) ζc
)2 (B.53)

∫

C+

dws3
dζ

dw4
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ = 0 (B.54)
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∫

C+

dwk5
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a π
rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − ζc ζc
)2 (

rc2 − (a+ ζc) ζc
)2
ζk (−a+ ζc + ζk) (a+ ζc + ζk)

(

ζc + ζk
)2

×
{

rc
2
(

rc
2 − ζc ζc

)6
ζk (ζc + ζk)

2 (ζc + ζk
)

− a2
(

rc
2 − ζc ζc

)4
(

ζc ζc
2
ζk (ζc + ζk)

2 ζk
2

+rc
6 ζk

(

ζc + ζk
)

+ rc
2 ζc ζk

(

2 ζc
2
(ζc + ζk)

2 + ζc ζk (2 ζc + ζk) ζk −
(

3 ζc
2 + 4 ζc ζk + 2 ζk

2
)

ζk
2
)

+rc
4 ζc

(

ζc + ζk
) (

2 ζk ζk + ζc
(

ζc + ζk
)))

− a6 ζc
4
(

−3 rc2 ζc2 ζc ζk ζk
2
+ ζc

3 ζc
2
ζk ζk

2

+rc
6 ζk

(

ζc + 2 ζk
)

+ rc
4
(

ζc
2
(

ζc + ζk
)2 − ζk

2
(

ζc + ζk
)2 − ζc ζk

(

ζc
2
+ 2 ζc ζk − 2 ζk

2
)))

+a4 ζc
2 (
rc
2 − ζc ζc

)2
(

ζc ζc
2
ζk
(

2 ζc
2 + 2 ζc ζk + ζk

2
)

ζk
2
+ rc

6 ζk
(

4 ζc + 5 ζk
)

+rc
2 ζc ζk

(

ζc + 2 ζk
) (

ζc (ζc + ζk)
2 − 3 ζc

2 ζk
)

+rc
4
(

2 ζc
2
(

ζc + ζk
)2 − 3 ζk

2
(

ζc + ζk
)2

+ ζc ζk

(

−5 ζc
2 − 4 ζc ζk + 4 ζk

2
)))}

(B.55)

∫

C+

dws3
dζ

dwk5
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a π
(

ζc
(

rc
3 − rc ζc ζc

)2
+ rc

2
(

a2 ζc
2 +

(

rc
2 − ζc ζc

)2
)

ζk + a2 ζc
(

rc
2 − ζc ζc

)

ζk
2 − a2 rc

2 ζk
3
)

(

rc2 − ζc ζc
)2
ζk
2 (−a+ ζc + ζk

) (

a+ ζc + ζk
)

(B.56)

∫

C+

dws1
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a2 i π
rc2
(

rc2 − ζc ζc
)5 ×

(

ζc
(

rc
2 − ζc ζc

)5
+ a2

(

rc
2 − ζc ζc

)2
(

−2 rc2 ζc
3
+ ζc ζc

4

+rc
4
(

−2
(

ζc + ζc
)

+ i ζy
))

+ a4 rc
2
(

rc
4
(

2 ζc + ζc − i ζy
)

− ζc
2 ζc

2 (
ζc + i ζy

)

+2 rc
2 ζc

(

ζc
2 + ζc ζc + ζc

2
+ i ζc ζy

)))

(B.57)



200

∫

C+

dws1
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−4 a2 π

rc2
(

rc2 − ζc ζc
)5

×
(

ζc
(

−rc2 + ζc ζc
)5

+ a2
(

rc
2 − ζc ζc

)2
(

2 rc
2 ζc

3 − ζc ζc
4
+ rc

4 (−2 ζc + i ζy)
)

+a4 rc
2
(

rc
4
(

−ζc + i ζy
)

+ ζc
2 ζc

2 (
ζc + i ζy

)

+ 2 rc
2 ζc

(

ζc
2 − ζc

(

ζc + i ζy
))

))

(B.58)

∫

C+

dws2
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
4 a2 π

rc2
(

rc2 − ζc ζc
)5

×
(

ζc
(

rc
2 − ζc ζc

)5
+ a2

(

rc
2 − ζc ζc

)2
(

−2 rc2 ζc
3
+ ζc ζc

4
+ rc

4 (2 ζc − i ζy)
)

+a4 rc
2
(

ζc
2 ζc

2 (−ζc + i ζy
)

+ rc
4
(

ζc + i ζy
)

− 2 rc
2 ζc

(

ζc
2 − ζc

2
+ i ζc ζy

)))

(B.59)

∫

C+

dws2
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
4 a2 i π

rc2
(

rc2 − ζc ζc
)5

×
(

ζc
(

rc
2 − ζc ζc

)5
+ a2

(

rc
2 − ζc ζc

)2
(

−2 rc2 ζc
3
+ ζc ζc

4
+ rc

4
(

−2 ζc + 2 ζc + i ζy
)

)

+a4 rc
2
(

ζc
2 ζc

2 (−ζc + i ζy
)

+ rc
4
(

−2 ζc + ζc + i ζy
)

+ 2 rc
2 ζc

(

ζc
2 − ζc ζc + ζc

2 − i ζc ζy

)))

(B.60)



201

∫

C+

dws1
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

−4 a i π
rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − ζc ζc
)4 (

rc2 − (a+ ζc) ζc
)2

×
(

rc
2
(

rc
2 − ζc ζc

)8 − a2
(

rc
2 − ζc ζc

)6
(

rc
4 + 6 rc

2 ζc
2 − 2 ζc ζc

3
)

+a4
(

rc
2 − ζc ζc

)4
(

rc
6 + 9 rc

2 ζc
4 − 4 ζc ζc

5
+ rc

4
(

3 ζc
2 + 2 ζc ζc + 5 ζc

2
))

+2 a8 rc
2 ζc

4 (
rc
4 − ζc

2 ζc
(

ζc + i ζy
)

+ rc
2 ζc

(

2
(

ζc + ζc
)

+ i ζy
))

+a6 ζc
(

rc
2 − ζc ζc

)2
(

2 ζc ζc
6
+ rc

6
(

−4 ζc − 5 ζc + 4 i ζy
)

− rc
4 ζc

(

9 ζc
2 + 10 ζc ζc + 2 ζc

2
+ 6 i ζc ζy

)

+2 rc
2 ζc

2
(

−2 ζc
3
+ ζc

2
(

ζc + i ζy
)

)))

(B.61)

∫

C+

dws3
dζ

dws1
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
−4 a3 i π

rc2
(

rc2 − ζc ζc
)4

×
(

−
(

(

rc
2 − ζc ζc

)2
(

2 rc
4 + 3 rc

2 ζc
2 − 2 ζc ζc

3
))

+ a2
(

rc
6 − rc

2 ζc
2 ζc

2
+ 4 rc

4 ζc
(

ζc + ζc
)

))

(B.62)

∫

C+

dws2
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

4 a π

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − ζc ζc
)4 (

rc2 − (a+ ζc) ζc
)2

×
(

rc
2
(

rc
2 − ζc ζc

)8
+ a2

(

rc
2 − ζc ζc

)6
(

rc
4 − 6 rc

2 ζc
2
+ 2 ζc ζc

3
)

+a4
(

rc
2 − ζc ζc

)4
(

rc
6 + 9 rc

2 ζc
4 − 4 ζc ζc

5
+ rc

4
(

−3 ζc2 + 2 ζc ζc − 5 ζc
2
))

+2 a8 rc
2 ζc

4 (
rc
4 − rc

2 ζc
(

2 ζc − 2 ζc + i ζy
)

+ ζc
2 ζc

(

−ζc + i ζy
))

+a6 ζc
(

rc
2 − ζc ζc

)2
(

2 ζc ζc
6
+ rc

6
(

4 ζc − 5 ζc − 4 i ζy
)

+ rc
4 ζc

(

9 ζc
2 − 10 ζc ζc + 2 ζc

2
+ 6 i ζc ζy

)

+2 rc
2 ζc

2
(

−2 ζc
3
+ ζc

2
(

ζc − i ζy
)

)))

(B.63)
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∫

C+

dws3
dζ

dws2
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =
4 a3 π

rc2
(

rc2 − ζc ζc
)4

×
(

a2
(

rc
6 − 4 rc

4 ζc
(

ζc − ζc
)

− rc
2 ζc

2 ζc
2
)

+
(

rc
2 − ζc ζc

)2
(

2 rc
4 − 3 rc

2 ζc
2
+ 2 ζc ζc

3
))

(B.64)

∫

C+

dws3
dζ

dws3
dζ

(

(ζ + ζc)
2

(ζ + ζc)2 − a2

)(−r2c
ζ2

)

dζ =

8 a2 i π

rc2
(

rc2 + (a− ζc) ζc
)2 (

rc2 − ζc ζc
)3 (

rc2 − (a+ ζc) ζc
)2

×
(

rc
2 ζc
(

rc
2 − ζc ζc

)6
+ a6 rc

2 ζc ζc
4 (−5 rc2 + ζc ζc

)

−a2
(

rc
2 − ζc ζc

)4
(

3 rc
4 ζc + 6 rc

2 ζc
3 − 2 ζc ζc

4
)

+a4 ζc
(

rc
2 − ζc ζc

)2
(

2 rc
6 + 12 rc

4 ζc ζc − 2 ζc ζc
5
+ rc

2
(

−
(

ζc
2 ζc

2
)

+ 3 ζc
4
)))

(B.65)
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Appendix C Coefficients in

Equation (3.156)

B1 =
π

(r2c − δ2)4

[

2 a2
(

rc
2 − δ2

)4 − rc
2
(

rc
2 − δ2

)4
+ a6 rc

2
(

rc
2 + ζc

(

2 ζc + ζc + 2 i ζc
))

−4 a5 rc2
(

rc
2 − δ2

) (

ζc − i ζc − i ζy − i ζy
)

−2 a4
(

rc
2 − δ2

) (

rc
4 − ζc

3 ζc + rc
2 ζc

(

ζc + i
(

ζc + 2 ζy
)))]

B2 =
π

(r2c − δ2)4

[

4 a5 rc
2
(

i ζc − ζc
) (

rc
2 − δ2

)

− 2 a2 i
(

rc
2 − δ2

)4 − i rc
2
(

rc
2 − δ2

)4

−2 a4
(

rc
2 − δ2

) (

−
(

rc
2 δ2
)

+ i
(

rc
4 − rc

2 ζc
2 + ζc

3 ζc
))

−a6 rc2
(

2 ζc
2
+ i

(

rc
2 +

(

2 ζc − ζc
)

ζc
)

)]

B3 =
2a3π

(r2c − δ2)3
[

a2 (2 + i) rc
2 ζc + 2 a (−1 + i) rc

2
(

rc
2 − δ2

)

−ζc
(

(3 + i) rc
2 − 2 δ2

) (

rc
2 − δ2

)]
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C1 =
2 a2 π ζc (rc

2 − δ2)
(

(rc
2 − δ2)

3
+ a2

(

−rc4 + ζc
3 ζc
)

)

rc2
(

rc2 + ζc
(

a− ζc
))2 (

rc2 − ζc
(

a+ ζc
))2

C2 =
−4 a2 i π ζc (rc2 − δ2)

(

rc
6 − 3 rc

4 δ2 + 3 rc
2 ζc

2 ζc
2
+ ζc

3 ζc

(

a2 − ζc
2
))

rc2
(

rc2 + ζc
(

a− ζc
))2 (

rc2 − ζc
(

a+ ζc
))2

C3 =
−2 a2 π ζc (rc2 − δ2)

(

(rc
2 − δ2)

3
+ a2

(

rc
4 + ζc

3 ζc
)

)

rc2
(

rc2 + ζc
(

a− ζc
))2 (

rc2 − ζc
(

a+ ζc
))2

C4 = −2 a2 i π
(

−
(

(

rc
2 − 2 δ2

) (

rc
2 − δ2

)4
)

+ a4 ζc
(

rc
2 ζc

3 + rc
4
(

ζc − ζc
)

−2 ζc4 ζc
)

+ a2
(

rc
8 − 4 rc

2 ζc
4 ζc

2
+ rc

4 ζc
2 ζc

(

7 ζc + ζc
)

− rc
6 ζc

(

3 ζc + 2 ζc
)

))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − ζc

(

a+ ζc
))2
)

C5 = 2 a2 π
(

(

rc
2 − 2 δ2

) (

rc
2 − δ2

)4

+a2
(

rc
8 + rc

6 ζc
(

3 ζc − 2 ζc
)

+ 4 rc
2 ζc

4 ζc
2
+ rc

4 ζc
2 ζc

(

−7 ζc + ζc
)

)

+a4 ζc
(

−
(

rc
2 ζc

3
)

+ 2 ζc
4 ζc + rc

4
(

ζc + ζc
)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − ζc

(

a+ ζc
))2
)

C6 = −2 a2 π
(

−
(

ζc
(

rc
2 − δ2

)6
)

+ a6
(

−
(

rc
2 ζc

5
)

+ rc
4 ζc

2 ζc + ζc
6 ζc
)

+a2 ζc
(

rc
2 − δ2

)3
(

2 rc
4 − 4 rc

2 δ2 + ζc
2 ζc

2
)

+a4
(

rc
8 ζc + ζc

6 ζc
3
+ rc

6
(

ζc
3 − 2 ζc ζc

2
)

+ rc
4
(

−2 ζc4 ζc + ζc
2 ζc

3
)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

) (

rc
2 − ζc

(

a+ ζc
))2
)
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D1 = 2 a2 π
(

2 ζc
(

rc
2 − δ2

)7 − a2
(

rc
2 − δ2

)4 (
4 rc

2 ζc
3 − 4 ζc

4 ζc + rc
4
(

3 ζc + 2 ζc − i ζy
))

+a6 rc
2 ζc

2
(

rc
4
(

ζc − i ζy
)

+ ζc
2 ζc

2
(ζc − i ζy) + rc

2 ζc
2
(

−2 ζc − 2 ζc − i ζy
)

)

+a4
(

rc
2 − δ2

)2 (−2 ζc6 ζc + rc
6
(

ζc + ζc − i ζy
)

+rc
4 ζc

(

4 ζc
2 + 6 δ2 + ζc

2
+ 2 i ζc ζy − 2 i ζc ζy

)

+ rc
2 ζc

2
(

2 ζc
3 − ζc ζc

2
+ i ζc

2
ζy

)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)3 (
rc
2 − ζc

(

a+ ζc
))2
)

D2 = −2 a2 π
(

2 i ζc
(

rc
2 − δ2

)7
+ a2

(

rc
2 − δ2

)4 (−i rc4 ζc + 2 i
(

−2 rc2 ζc3 + rc
4 ζc + 2 ζc

4 ζc
)

−rc4 ζy
)

+ a6 rc
2 ζc

2
(

−i rc2 ζc3 + i
(

−
(

rc
2 ζc

2
(

ζc − 2 ζc
))

− rc
4 ζc + ζc

3 ζc
2
)

+
(

rc
4 − rc

2 ζc
2 − ζc

2 ζc
2
)

ζy

)

+ a4
(

rc
2 − δ2

)2 (
2 i rc

4 ζc
3 + i

(

rc
6
(

ζc − ζc
)

−2 ζc6 ζc + rc
4 ζc

(

2 ζc
2 − 2 δ2 − ζc

2
)

+ rc
2
(

2 ζc
5 − ζc

3 ζc
2
))

+rc
2
(

rc
4 + 2 rc

2 ζc
(

ζc − ζc
)

+ ζc
2 ζc

2
)

ζy

))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)3 (
rc
2 − ζc

(

a+ ζc
))2
)

D3 = 2 a π
(

2 rc
2
(

rc
2 − δ2

)6 − a2
(

rc
2 − δ2

)4 (
3 rc

4 + 10 rc
2 ζc

2 − 4 ζc
3 ζc
)

+a6 rc
2 ζc

2
(

rc
4 − 4 rc

2 ζc
2 + ζc

2 ζc
2
)

+a4
(

rc
2 − δ2

)2
(

rc
6 − 4 ζc

5 ζc + rc
4 ζc

(

9 ζc + 4 ζc
)

+ rc
2
(

4 ζc
4 − ζc

2 ζc
2
)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)2 (
rc
2 − ζc

(

a+ ζc
))2
)

D4 =
2 a2 π

rc
− 2π rc

D5 = −2 a2 π
(

2 i ζc
(

rc
2 − δ2

)7
+ a2

(

rc
2 − δ2

)4 (
i
(

−4 rc2 ζc3 + 4 ζc
4 ζc + rc

4
(

ζc + 2 ζc
))

−rc4 ζy
)

+ a6 rc
2 ζc

2
(

i
(

rc
4 ζc + ζc

3 ζc
2
+ 2 rc

2 ζc
2
(

ζc + ζc
)

)

−
(

rc
4 + rc

2 ζc
2 − ζc

2 ζc
2
)

ζy

)

+a4
(

rc
2 − δ2

)2
(

i
(

−2 ζc6 ζc + rc
6
(

ζc + ζc
)

+ rc
4 ζc

(

−4 ζc2 − 2 δ2 + ζc
2
)

+rc
2
(

2 ζc
5 − ζc

3 ζc
2
))

− rc
2
(

rc
4 + ζc

2 ζc
2 − 2 rc

2 ζc
(

ζc + ζc
)

)

ζy

))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)3 (
rc
2 − ζc

(

a+ ζc
))2
)
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D6 = −2 a2 π
(

2 ζc
(

rc
2 − δ2

)7
+ a2

(

rc
2 − δ2

)4 (−4 rc2 ζc3 + 4 ζc
4 ζc

+rc
4
(

3 ζc − 2 ζc − i ζy
))

+ a6 rc
2 ζc

2
(

ζc
2 ζc

2
(ζc − i ζy)

+rc
2 ζc

2
(

2 ζc − 2 ζc − i ζy
)

+ rc
4
(

−ζc − i ζy
))

+ a4
(

rc
2 − δ2

)2 (−2 ζc6 ζc
+rc

6
(

ζc − ζc − i ζy
)

− rc
4 ζc

(

4 ζc
2 − 6 δ2 + ζc

2 − 2 i ζc ζy − 2 i ζc ζy

)

+rc
2 ζc

2
(

2 ζc
3 − ζc ζc

2 − i ζc
2
ζy

)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)3 (
rc
2 − ζc

(

a+ ζc
))2
)

D7 = −2 a i π
(

2 rc
2
(

rc
2 − δ2

)6
+ a2

(

rc
2 − δ2

)4 (
3 rc

4 − 10 rc
2 ζc

2 + 4 ζc
3 ζc
)

+a6 rc
2 ζc

2
(

rc
4 + 4 rc

2 ζc
2 + ζc

2 ζc
2
)

+a4
(

rc
2 − δ2

)2
(

rc
6 − 4 ζc

5 ζc + rc
4 ζc

(

−9 ζc + 4 ζc
)

+ rc
2
(

4 ζc
4 − ζc

2 ζc
2
)))

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)2 (
rc
2 − ζc

(

a+ ζc
))2
)

D8 =
−2 i π (a2 + rc

2)

rc

D9 =
[

−
(

i π rc
4
(

rc
2 − δ2

)8
)

+ a2 i
(

rc
2 − δ2

)6
(

2π rc
4 ζc

2 + π
(

rc
2 − 4 δ2

) (

rc
2 − δ2

)2
)

+a4
(

rc
2 − δ2

)4
(

i
(

π rc
4
(

rc
4 − ζc

4 − 2 rc
2 δ2 + ζc

2 ζc
2
)

+ π ζc
(

rc
6
(

5 ζc − 2 ζc
)

−3 rc2 ζc3 ζc
2
+ 4 ζc

4 ζc
3
+ 2 rc

4 δ2
(

−3 ζc + ζc
)

))

+ 2π rc
4 ζc

(

rc
2 − δ2

)

ζy

)

+a10 π rc
2 ζc

4
(

i
(

rc
4 + 2 ζc

2 ζc
2
+ 4 rc

2 ζc
(

ζc + ζc
)

)

+ 2 ζc
(

−rc2 + δ2
)

ζy

)

+a8 ζc
(

rc
2 − δ2

)

(

i
(

π rc
4 ζc

3
(

rc
2 − δ2

)

+ π
(

8 rc
8 ζc − 11 rc

2 ζc
6 ζc + 4 ζc

7 ζc
2

+2 rc
6 ζc

(

ζc
2 − 2 δ2 − 7 ζc

2
)

+ rc
4 ζc

2
(

7 ζc
3 − 4 ζc

2 ζc + 4 ζc ζc
2
+ 6 ζc

3
)))

+2π rc
4
(

−4 rc4 + ζc
4 + 8 rc

2 δ2 − 4 ζc
2 ζc

2
)

ζy

)

+a6
(

rc
2 − δ2

)3
(

i
(

−2π rc4 ζc2
(

rc
2 − δ2

)

+ π
(

3 rc
8 − 4 ζc

6 ζc
2

+rc
6
(

−6 ζc2 + 5 δ2 + 6 ζc
2
)

− rc
4 ζc

(

13 ζc
3 − 10 ζc

2 ζc + 10 ζc ζc
2
+ 6 ζc

3
)

+rc
2
(

17 ζc
5 ζc + 2 ζc

3 ζc
3
)))

+ 2π rc
2
(

rc
4 ζc + ζc

2 ζc
3 − 2 rc

2 ζc

(

ζc
2 + ζc

2
))

ζy

)]

/
(

rc
2
(

rc
2 + ζc

(

a− ζc
))2 (

rc
2 − δ2

)4 (
rc
2 − ζc

(

a+ ζc
))2
)
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D10 =
[

π rc
4
(

rc
2 − δ2

)8
+ a2

(

rc
2 − δ2

)6
(

−2π rc4 ζc2 + π
(

rc
2 − 4 δ2

) (

rc
2 − δ2

)2
)

+a10 π rc
2 ζc

4
(

rc
4 + 2 ζc ζc

2
(ζc − i ζy) + 2 rc

2 ζc
(

2 ζc − 2 ζc − i ζy
)

)

−a4
(

rc
2 − δ2

)4
(
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Appendix D Coefficients in

Equation (3.160)
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4 − 2 a2 π rc

2 δ2 + a4 π ζc
2
+ a2 π ζc

2 ζc
2
)

rc (rc2 − δ2)
(

ζc + ζk
)2

−
4
(

−
(

a2 π rc
4 ζc
)

+ 2 a4 π rc
2 ζc + 2 a

2 π rc
2 ζc

2 ζc − a4 π ζc ζc
2 − a2 π ζc

3 ζc
2
)

rc (rc2 − δ2)
2 (

ζc + ζk
)



 (D.113)

Q8 = Re





−2π rc2
(

a2
(

rc
2 − δ2

)2
+ a4 ζc ζk + ζc

(

rc
2 − δ2

)2
(ζc + ζk)

)

(rc2 − δ2)
2
ζk

2 (ζc + ζk)



 (D.114)

Q9 = Re





−2 a2 π
(

rc
6 + ζc

(

a2 + ζc
2
)

ζc
2
ζk + rc

4 ζc
(

−2 ζc + ζk
)

+ rc
2 ζc

(

ζc
2
(

ζc − 2 ζk
)

− a2
(

ζc + 2 ζk
))

)

(rc2 − δ2)
2
ζk
(

ζc + ζk
)2





(D.115)

Q10 = 0 (D.116)

Q11 = Re
(

i π
(

a4
(

−rc4 + ζj
(

ζc ζj +
(

ζc + ζj
)

ζk
)

ζk − rc
2 ζc

(

ζj + ζk
))

+
(

ζc + ζj
)2
(ζc + ζk)

2 (
rc

4 − ζj
(

ζc ζj +
(

ζc + ζj
)

ζk
)

ζk + rc
2 ζc

(

ζj + ζk
))

+a2
(

2 ζc + ζj + ζk
)

(

−
(

rc
4
(

2 ζc + ζj + ζk
))

− ζj

(

ζj ζk
(

ζj + ζk
)

+ ζc

(

ζj
2
+ ζk

2
))

ζk

+rc
2
(

2 ζj ζk + ζc
(

ζj + ζk
) ) (

ζj + ζk
)))

/
((

a− ζc − ζj
) (

a+ ζc + ζj
)

(a− ζc − ζk) (a+ ζc + ζk)
(

−rc2 + ζj ζk
) (

−rc2 + ζj ζk
)))
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Q12 = Re





i π
(

4 a2 (ζc + ζk)
2 (

rc
2 − ζk ζk

)

+ a4
(

rc
2 + (2 ζc + ζk) ζk

)

− (ζc + ζk)
4 (

rc
2 + (2 ζc + ζk) ζk

)

)

(−a+ ζc + ζk)
2
(a+ ζc + ζk)

2 (−rc2 + ζk ζk
)





(D.118)
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R1 = Re

{(

−2 a2 π rc
2

ζc
2 +

2 a4 π rc
2

(rc2 − δ2)
2

)

log(
rc

2 + a ζc − δ2

rc2
) +

(

2 a2 π rc
2

ζc
2 − 2 a4 π rc

2

(rc2 − δ2)
2

)

log(
a

ζc
)

+
2π

(

2 a3 + i β rc
2 ζc − i π rc

2 ζc + 2 a ζc
2
)

ζc
+
2 i
(

−i a2 π rc
2 − a2 β π rc

2 + a2 π2 rc
2
)

ζc
2 − 2

(

a π rc
2 + a2 π ζc

)

ζc

−2π
(

a2 + ζc
2
)

ζc

ζc
− 2

(

−
(

a3 π rc
2
)

+ a4 π ζc
)

ζc (−rc2 + δ2)

}
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R2 = Re
(

a6 ζc ζc
2
ζk
(

ζc − ζk
)

+ ζc
2 ζc

(

rc
2 − δ2

)2 (
δ2 ζk + rc

2 (2 ζc + ζk)
) (

ζc + ζk
)

−a ζc2
(

−rc2 + δ2
)

(

rc
2 δ2

(

4 ζc − 3 ζk
)

+ 2 ζc ζc
2 (

ζc + ζc
)

ζk + rc
4
(

−2 ζc + ζk
)

)

(

ζc + ζk
)

+2 a3
(

rc
2 − δ2

)

(

δ2 ζk

(

ζc
(

ζc + ζc
)2
+
(

−ζc2 + 2 δ2 + ζc
2
)

ζk

)

+rc
2 ζc

(

2 ζc
3 − ζc

2 (
ζk − 2 ζk

)

+ ζc ζk ζk − ζc ζk
(

2 ζc + ζk
)

)

− rc
4
(

− (ζc ζk) + ζc
(

ζc + ζk
))

)

+a5 ζc
2
ζk
(

rc
2
(

2 ζc + ζc + ζk
)

− 2 ζc
(

ζc
(

ζc − ζk
)

+ ζc
(

ζc + ζk
)))

+a2
(

rc
2 − δ2

)

(

−
(

ζc
2 ζc ζk

(

ζc
2
(

ζc − ζk
)

+ 4 δ2
(

ζc + ζk
)

+ 2 ζc
2 (

ζc + ζk
)

))

+rc
4
(

−2 ζc2 ζk + ζc
(

2 ζc − ζk
) (

ζc + ζk
)

+ ζc ζk
(

ζc + ζk
))

+rc
2 ζc

2
(

−4 ζc
3
+ 4 ζc

2 (
ζk − ζk

)

− ζc ζk ζk + ζc ζk
(

3 ζc + 4 ζk
)

))

+a4
(

rc
4
(

−2 ζc
3
+ ζc

2 (
ζk − 2 ζk

)

− ζc ζk ζk + ζc ζk
(

ζc + ζk
)

)

+ζc ζc
2
ζk

(

2 ζc
2
(

ζc − ζk
)

+ 4 δ2
(

ζc + ζk
)

+ ζc
2 (

ζc + ζk
)

)

−rc2 ζc
(

−2 δ2
(

ζc − 2 ζk
) (

ζc + ζk
)

+ ζc
2
ζk
(

ζc + ζk
)

+ ζc
2
(

4 ζc ζk − 2 ζk ζk
)

))

/
(

2 (a− ζc) δ
2
(

rc
2 + (a− ζc) ζc

) (

−rc2 + δ2
)

ζk
(

ζc + ζk
)))

(D.120)


