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Abstract

This thesis studies sequential change-point detection problems in different contexts.

Our main results are as follows:

• We present a new formulation of the problem of detecting a change of the

parameter value in a one-parameter exponential family. Asymptotically optimal

procedures are obtained.

• We propose a new and useful definition of “asymptotically optimal to first-

order” procedures in change-point problems when both the pre-change distri-

bution and the post-change distribution involve unknown parameters. In a gen-

eral setting, we define such procedures and prove that they are asymptotically

optimal.

• We develop asymptotic theory for sequential hypothesis testing and change-

point problems in decentralized decision systems and prove the asymptotic op-

timality of our proposed procedures under certain conditions.

• We show that a published proof that the so-called modified Shiryayev-Roberts

procedure is exactly optimal is incorrect. We also clarify the issues involved by

both mathematical arguments and a simulation study. The correctness of the

theorem remains in doubt.

• We construct a simple counterexample to a conjecture of Pollak that states

that certain procedures based on likelihood ratios are asymptotically optimal

in change-point problems even for dependent observations.
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Chapter 1

Introduction

Sequential change-point detection problems have many important applications, in-

cluding industrial quality control, reliability, fault detection, clinical trials, finance,

signal detection, surveillance and security systems. Extensive research has been done

in this field during the last few decades. For recent reviews, we refer readers to

Basseville and Nikiforov [1] and Lai [10], and the references therein.

In change-point problems, one observes a sequence of independent observations

X1, X2, . . . from some process. Initially, the process is “in control,” i.e., the X’s have

some distribution f. At some unknown time ν, the process may go “out of control”

and the X’s have another distribution g. The problem is to detect the occurrence of

the change as soon as possible while keeping false alarms as infrequent as possible.

When both the pre-change distribution f and the post-change distribution g are

completely specified, the problem is well understood and has been solved under a

variety of criteria. Some popular procedures are Shewhart’s “control chart,” Moving

Average control charts, Page’s CUSUM procedure, and the Shiryayev-Roberts proce-

dure. The first asymptotic theory, using a minimax approach, was provided in Lorden

[16].

In practice, the assumption of known pre-change distribution f and post-change

distribution g is too restrictive. Motivated by applications in statistical quality con-

trol, the standard formulation of a more flexible model assumes that the pre-change

distribution f is given and the post-change distribution g involves unknown parame-

ters.
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However, as shown by several examples in Chapter 3, there are many situations in

practice in which the pre-change distribution intrinsically involves unknown parame-

ters. Chapter 3 proposes a different formulation for such change-point problems and

provides asymptotically optimal procedures.

As an example, consider the problem of detecting shifts in the mean µ of inde-

pendent normal observations with known variance. Suppose µ0 < µ1. The standard

formulation is to specify a required frequency of false alarms when µ = µ0 before

a change occurs, and to minimize detection delay if µ changes to some value larger

than µ1, see, e.g., Lai [10], Lorden [16], Pollak [25], Siegmund and Venkatraman [34].

In Chapter 3, we assume that µ is partially specified before the change, say µ ≤ µ0.

Our formulation specifies a required detection delay if µ changes to µ1 and seeks to

minimize the frequency of false alarms for all possible µ less than µ0.

It is natural to combine the standard formulation with our formulation by con-

sidering change-point problems when both the pre-change distribution and the post-

change distribution involve unknown parameters. Ideally we want to optimize all

possible false alarm rates and all possible detection delays. Unfortunately this can-

not be done, and there is no attractive definition of optimality in the literature for this

problem. In Chapter 3, we propose a useful definition of “asymptotically optimal to

first-order” procedures, thereby generalizing Lorden’s asymptotic theory, and prove

the optimality of our proposed procedures.

Recently change-point problems have been applied in so-called “decentralized” or

“distributed” decision systems, which have many important applications, including

multi-sensor data fusion, mobile and wireless communication, surveillance systems,

and economic theory of teams (see Blum, Kassam, and Poor [2], and Veeravalli [38],

and the many references therein). Figure 1.1 illustrates the general setting of decen-

tralized decision systems. In such a system, at time n, each of a set of sensors Sl

receives an observation X l
n , and then sends a message to a central processor, called

the fusion center, which makes a final decision when observations are stopped. In

order to reduce the communication costs, it is required that the sensor messages be-

long to a finite alphabet. This limitation is dictated in practice by the need for data
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Figure 1.1: General setting for decentralized decision systems

compression and limitations of channel bandwidth. In decentralized change-point

problems, it is assumed that at some unknown time, the distributions of the sensor

observations X l
n change abruptly and simultaneously at all sensors. The goal is to

detect the change as soon as possible over all possible protocols for generating sensor

messages and over all possible decision rules at the fusion center, under a restriction

on the frequency of false alarms.

Even if it is assumed that the observations are independent in time as well as

from sensor to sensor and the pre-change distributions and post-change distributions

are completely specified, little research has been done on optimality theory under

a minimax criterion. Veeravalli, Basar, and Poor [40] and Veeravalli [38] pointed

out that there are five possible information structures depending on how the local

information and possible “feedback” are used at the sensors. Crow and Schwartz [6]

and Tartakovsky and Veeravalli [36] have studied the simplest information structure

using a minimax approach, but both have restrictions on the class of sensor message

protocols. Chapter 4 develops optimality theory for all five information structures

in decentralized change-point problems and offers asymptotically optimal procedures

which are easy to implement. For that purpose, we develop an asymptotic theory of

sequential hypothesis testing in decentralized decision systems, which is of interest
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on its own.

The problem of detecting a change in distribution for dependent observations

is an important topic in the literature, for example, see Lai [11]. It is natural to

extend Page’s CUSUM procedure or the Shiryayev-Roberts procedure, both of which

are based on likelihood ratios, to dependent observations by simply replacing the

probability densities with the corresponding conditional densities. Pollak conjectured

([24], [44]) that such procedures are asymptotically optimal under general conditions.

In Chapter 5, we disprove this conjecture by constructing a counterexample where

the pre-change distribution is a so-called “mixture distribution” and the post-change

distribution is fully specified.

In the change-point literature, as in sequential analysis more generally, theorems

establishing exact optimality of statistical procedures are quite rare. Moustakides [21]

and Ritov [27] showed that for the simplest problem where both pre-change distribu-

tion f and post-change distribution g are fully specified, Page’s CUSUM procedure is

exactly optimal in the following sense: It minimizes the “worst case” detection delay

defined in Chapter 2, subject to a specified frequency of false alarms. Besides Page’s

CUSUM procedure and its generalizations, the most commonly used and studied ap-

proach to define change-point procedures is that of Shiryayev [30] and Roberts [28].

Yakir ([43], 1997) published a proof that when both f and g are fully specified, a

modification of the Shiryayev-Roberts procedure is exactly optimal with respect to a

slightly different measure of quickness of detection. In Chapter 5 we show that Yakir’s

proof is wrong. It is still an open problem whether the modified Shiryayev-Roberts

procedure is in fact optimal, although its asymptotic optimality was proved in Pollak

[24].
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Chapter 2

Preliminaries

This chapter covers certain preliminaries to the thesis results. We briefly discuss

sequential statistical hypothesis testing and then we discuss the simplest change-

point problems. Here we put emphasis on what we will need in later chapters. For

a more general setting and background, we refer interested readers to Basseville and

Nikiforov [1], Govindarajulu [8], and Siegmund [33].

2.1 Sequential Hypotheses Testing

For the usual statistical tests the sample size is fixed before the data are taken, but

for a sequential test the total sample size depends on the data and is thus a random

variable. We are interested in sequential tests because they are economical in the sense

that we may reach a decision earlier via a sequential test than via a fixed sample size

test. The criteria for the choice of sequential tests are the operating characteristic

(OC) and the average sample number (ASN) functions which will be defined in the

following.

Suppose X1, X2, . . . are independent and identically distributed random variables

observed sequentially, i.e., one at a time, and let p be their density function. Suppose

we want to test the null hypothesis H0 : p = fθ for some θ ∈ Θ against the alternative

hypothesis H1 : p = gλ for some λ ∈ Λ. Here {fθ, θ ∈ Θ} and {gλ, λ ∈ Λ} are

two disjoint subsets of probability densities. Denote by Pθ and Pλ respectively the

distribution when X1, X2, . . . are independent and identically distributed with density
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fθ and gλ. Let Eθ and Eλ be the corresponding expectations.

The operating characteristic (OC) function of a sequential test is determined by

(i) the probability of type I error, Pθ(test rejects H0); and

(ii) the probability of type II error, Pλ(test accepts H0).

It is desirable that these error probabilities should be as small as possible. A

typical requirement for a sequential test is that Pθ(Reject H0) ≤ α for all possible θ

and Pλ(Accept H0) ≤ β for all possible λ, where α and β are given error probability

bounds.

As noted earlier, the number of observations, say N, required by a sequential test

is random, and so the distribution of N must be considered. It is usually characterized

by the expected value of N when fθ or gλ is the true underlying density. Thus, we

can define the average sample number (ASN) functions as

(i) EθN ; and

(ii) EλN.

Another desirable property of a sequential test is to have small ASN functions, e.g.,

small subject to the error probability bounds α and β.

Note that N can also be thought of as the time at which the test decides to stop

taking observations since we observe X’s one at a time. Since the decision to stop at

time N is only based on the first N observations, N is called a stopping time:

Definition 2.1. (Stopping time). An integer-valued (or possibly ∞) random vari-

able N is said to be a stopping time with respect to the sequence X1, X2, . . . if for

every 1 ≤ n < ∞, the event {N = n} depends only on X1, X2, . . . , Xn.

Let us first consider the simplest case. Suppose X1, X2, . . . are independent and

identically distributed with probability density function p, and we are interested in

testing a simple hypothesis H0 : p = fθ against a simple alternative hypothesis

H1 : p = gλ, where both θ and λ are given.
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The best procedure, in a certain sense, is the following sequential probability ratio

test (SPRT), which was developed by Abraham Wald during World War II. Choose

two constants A and B such that 0 < A < B < ∞, and define the likelihood ratio

Ln =
n∏

i=1

gλ(Xi)

fθ(Xi)
.

Define a stopping time N = first n ≥ 1 such that Ln 6∈ (A,B). In other words,

N = inf{n ≥ 1 : Ln 6∈ (A,B)}. (2.1)

The SPRT will stop sampling at time N and

reject H0 if LN ≥ B,

accept H0 if LN ≤ A.

Theorem 2.2. (Wald and Wolfowitz [41], 1948). Among all tests (sequential or

not) for which

Pθ( Reject H0) ≤ α, and Pλ( Accept H0) ≤ β

and for which EθN and EλN are finite, the sequential probability ratio test (SPRT)

with error probability α and β minimizes both EθN and EλN simultaneously.

Remark: Lorden [19] showed that the condition that the expected sample sizes

are finite is not needed.

In order to determine the OC and ASN functions of the SPRT, Wald developed

the following two important propositions which will also be useful in later chapters.

Proposition 2.3. (Wald’s Equation). Let X1, X2, . . . be independent and identi-

cally distributed with mean µ = EX1. For any stopping time N with EN < ∞,

E(
N∑

i=1

Xi) = µ EN. (2.2)



8

Proposition 2.4. (Wald’s Likelihood Ratio Identity). Suppose X1, X2, . . . are

independent and identically distributed with density f and g under Pf and Pg respec-

tively. Define the likelihood ratio sequence

Ln =
n∏

i=1

g(Xi)

f(Xi)
.

For any stopping time N

Pf (N < ∞) = Eg(L
−1
N ; N < ∞). (2.3)

In the above we consider SPRTs to test a simple null hypothesis against a simple

alternative hypothesis. For the problem of testing a composite hypothesis against a

composite alternative, we refer interested readers to Govindarajulu [8], Kiefer and

Sacks [9], and Siegmund [33].

2.2 Change-Point Problems

Suppose there is a process that produces a sequence of independent observations

X1, X2, . . . . Initially the process is “in control” and the true distribution of the X’s is

fθ for some θ ∈ Θ. At some unknown time ν, the process goes “out of control” in the

sense that the distribution of Xν , Xν+1, . . . is gλ for some λ ∈ Λ. It is desired to raise an

alarm as soon as the process is out of control so that we can take appropriate action.

This is known as a change-point problem, or quickest change detection problem.

Denote by Pν
θ,λ the probability measure under which X1, . . . , Xν−1 are distributed

according to a “pre-change” distribution fθ for some θ ∈ Θ and Xν , Xν+1, . . . are

distributed according to a “post-change” distribution gλ for some λ ∈ Λ. We shall

also use Pθ to denote the probability measure under which X1, X2, . . . are independent

and identically distributed with density fθ (corresponding to ν = ∞). By analogy

with hypothesis testing terminology, we will refer to Θ (Λ) as a “simple” pre-change

(post-change) hypothesis if it contains a single point and as a “composite” pre-change
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(post-change) hypotheses if it contains more than one point.

In change-point problems, a procedure for detecting that a change has occurred is

defined as a stopping time N. The interpretation of N is that, when N = n, we stop

at n and declare that a change has occurred somewhere in the first n observations.

We want to find a stopping time N which will stop as soon as possible after a change

occurs but will continue sampling as long as possible if no change occurs. Thus, the

performance of a stopping time N is evaluated by two criteria: the detection delay,

and the frequency of false alarms, which we next define.

The detection delay can be evaluated by the following “worst case” detection delay

defined in Lorden [16],

EλN = sup
ν≥1

(
ess supEν

θ,λ

[
(N − ν + 1)+|X1, . . . , Xν−1

])
. (2.4)

Note that the definition of EλN does not depend upon the pre-change distribution

fθ by virtue of the essential superum, which takes the “worst possible X’s before the

change.” The detection delay is also called the short Average Run Length (ARL).

It turns out that if EλN is finite, then Pθ(N < ∞) = 1, which means that we will

have a false alarm with probability 1 even when there are no changes. The false alarm

rate is usually measured by 1/EθN, where EθN is often called the long Average Run

Length (ARL). Imagining repeated application of such procedures, practitioners refer

to the frequency of false alarms as 1/EθN and the mean time between false alarms as

EθN.

A good procedure N should have EθN large for all θ ∈ Θ while keeping EλN small

for all λ ∈ Λ. In general, however, it is harder to find any sort of optimal procedures

when Θ (or Λ) is composite because there are no procedures which simultaneously

optimize over Θ (or Λ). The problem of finding an optimal procedure is solvable in

the simplest case where both Θ and Λ are simple, i.e., the pre-change distribution fθ

and the post-change distribution gλ are given. The (exactly) optimal procedures are
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given by Page’s CUSUM method, which uses the stopping times

Ta = inf
{
n ≥ 1 : max

1≤k≤n

n∑

i=k

log
gλ(Xi)

fθ(Xi)
≥ a

}
. (2.5)

Theorem 2.5. (Moustakides [21], 1986). For any a > 0, Page’s CUSUM proce-

dure Ta minimizes the worst-case detection delay EλN among all stopping times N

satisfying EθN ≥ EθTa.

Unfortunately, in hypothesis testing and change-point problems, exact optimality

theorems such as Theorems 2.2 and 2.5 are limited to the simplest case where both

Θ and Λ are simple. In more practical problems where Θ or Λ is composite, no pro-

cedure can exactly and simultaneously optimize over Θ and Λ, and only “asymptotic

optimality” theorems have been established. In the asymptotic optimality approach,

we typically first construct an (asymptotic) lower bound as the ASN functions goes

to ∞ in hypothesis testing problems or as the mean time between false alarms EθN

goes to ∞ in change-point problems. Then we show that a given class of statisti-

cal procedures attains the lower bound asymptotically. In this thesis, we establish

asymptotic optimality theorems in various contexts.
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Chapter 3

Composite Pre-Change Hypotheses

In this chapter we study change-point problems when unknown parameters are present

in the pre-change distribution. First, we study the case where all distributions are

from a one-parameter exponential family of densities and the post-change distribution

is completely specified. Then we consider the general case where both the pre-change

distribution and the post-change distribution involve unknown parameters.

3.1 Simple Post-Change Hypotheses

Assume that the probability density of the data is indexed by θ and written as fθ(x).

In parametric change-point problems, standard formulations assume that θ is equal

to some known value θ0 before a change occurs. When the true θ is unknown before

a change occurs, it is typical to assume that a training sample is available so that

one can use the method of “point estimation” to obtain a value θ0. However, it is

well known that the performance of such procedures is very sensitive to the error

in estimating θ. (See Stoumbos, Reynolds, Ryan and Woodall [35]). Thus we need

to study change-point problems for composite pre-change hypotheses, which allow a

range of “acceptable” values of θ.

There are many practical situations where the need to take action in response to a

change in a parameter θ is definable by a fixed threshold value. For example, suppose

we are interested in monitoring water quality and that a contaminant A is considered

unacceptable if it reaches or exceeds level b. Another example occurs when one is
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monitoring or tracking a weak signal in a noisy environment. If the signal disappears,

one wants to detect the disappearance as quickly as possible. Parameters θ associated

with the signal, e.g. its strength, are described by a composite hypothesis before it

disappears, but by a simple hypothesis (strength equal to zero) afterwards.

In this section we consider the problem of detecting a change in distribution from

fθ to fλ where θ ∈ Θ, an interval on the real line, and λ is a given value outside the

interval Θ. The problem is to find a stopping time N such that the mean time between

false alarms, EθN, is as large as possible for all θ ∈ Θ subject to the constraint

EλN ≤ γ, (3.1)

where γ > 0 is a given constant and λ 6∈ Θ.

One cannot maximize EθN for all θ ∈ Θ subject to (3.1) since the maximum for

each θ is uniquely attained by Page’s CUSUM procedure for detecting a change in

distribution from fθ to fλ. A natural idea is to maximize EθN asymptotically for all

θ ∈ Θ. Lorden [16] showed that for each pair (θ, λ)

EλN ≥ (1 + o(1))
log EθN

I(λ, θ)
, (3.2)

as EθN →∞. This suggests defining the asymptotic efficiency of a family {N(a)} as

e(θ, λ) = lim inf
a→∞

log EθN(a)

I(λ, θ)EλN(a)
, (3.3)

where {N(a)} is required to satisfy EθN(a) →∞ as a →∞. Then e(θ, λ) ≤ 1 for all

families, so we can define

Definition 3.1. {N(a)} is asymptotically efficient at (θ, λ) if e(θ, λ) = 1.

The problem in this section is to find a family of stopping times that is asymp-

totically efficient at (θ, λ) for all θ ∈ Θ.

In this section, it will be assumed that {fξ}ξ∈Ω are the densities of a one-parameter

exponential family with natural parameter space Ω with respect to a sigma-finite
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measure F . Denote

fξ(x) = exp(ξx− b(ξ)), −∞ < x < ∞, ξ ∈ Ω, (3.4)

and assume Ω = (ξ, ξ̄) is the natural parameter space of ξ. Let Pξ,Eξ denote the prob-

ability measure and expectation, respectively, when X1, X2, . . . are independent and

identically distributed with density fξ. Differentiating the identity
∫

eξx−b(ξ)dF (x) = 1

gives us

EξXi = b′(ξ) and Varξ(Xi) = b′′(ξ) ≥ 0.

In particular, b is strictly convex (unless F is degenerate at a point).

Before studying change-point problems in Section 3.2.2, we first consider the cor-

responding open-ended hypothesis testing problems in Section 3.2.1, since the basic

arguments are clearer for hypothesis testing problems and are readily extendable to

change-point problems.

3.1.1 Open-Ended Hypothesis Testing

Suppose X1, X2, . . . are independent and identically distributed random variables with

probability density fξ of the form (3.4) on the natural parameter space Ω = (ξ, ξ̄).

Suppose we are interested in testing the null hypothesis

H0 : ξ ∈ Θ = [θ0, θ1]

against the alternative hypothesis

H1 : ξ ∈ Λ = {λ},

where ξ < θ0 < θ1 < λ < ξ̄.

Motivated by applications to change-point problems, we consider the following

“open-ended” hypothesis testing problems. Assume that if H0 is true, sampling costs

nothing and our preferred action is just to observe X1, X2, . . . without stopping. On
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the other hand, if H1 is true, each observation costs a fixed amount and we want to

stop sampling as soon as possible and reject the null hypothesis H0.

Since there is only one terminal decision, a statistical procedure for an open-ended

hypothesis testing problem is a stopping time N. The null hypothesis H0 is rejected

if and only if N < ∞. A good procedure N should keep the error probabilities

Pθ(N < ∞) small for all θ ∈ Θ while keeping EλN small.

The problem in this subsection is to find a stopping time N such that Pθ(N < ∞)

will be as small as possible for all θ ∈ Θ = [θ0, θ1] subject to the constraint

EλN ≤ γ, (3.5)

where γ > 0 is a given constant.

Unfortunately we cannot minimize all error probabilities simultaneously. A natu-

ral approach is to employ an asymptotic formulation. By Proposition 3.2 below, for

any stopping time N,

| log Pθ(N < ∞)|
I(λ, θ)

≤ γ (3.6)

for all θ ∈ Θ = [θ0, θ1]. This suggests choosing a family of stopping times which

asymptotically maximizes

| log Pθ(N < ∞)|
I(λ, θ)

(3.7)

for all θ ∈ Θ subject to (3.5), as γ →∞.

Proposition 3.2. For any stopping time N, relation (3.5) implies (3.6).
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Proof.

I(λ, θ) EλN = Eλ

( N∑
i=1

log
fλ(Xi)

fθ(Xi)

)
by Proposition 2.3

= Eλ

(
− log

N∏
i=1

fθ(Xi)

fλ(Xi)

)

≥ − log Eλ

( N∏
i=1

fθ(Xi)

fλ(Xi)

)
by Jensen’s inequality

= − log Pθ(N < ∞) by Proposition 2.4

Relation (3.6) follows at once from the fact that Pθ(N < ∞) ≤ 1.

Next, we propose a class of stopping times which is asymptotically optimal. Our

proposed open-ended tests of H0 : θ0 ≤ ξ ≤ θ1 versus H1 : ξ = λ (> θ1) are defined

by the stopping times

M(a) = inf
{

n ≥ 1 : inf
θ0≤θ≤θ1

( n∑
i=1

log
fλ(Xi)

fθ(Xi)
− I(λ, θ)a

)
> 0

}
. (3.8)

Theorem 3.3. Suppose {N(a)} are stopping times such that EλN(a) ≤ EλM(a).

For all θ0 ≤ θ ≤ θ1 as a →∞

| log Pθ(N(a) < ∞)|
I(λ, θ)

≤ a + (C + o(1))
√

a, (3.9)

and

| log Pθ(M(a) < ∞)|
I(λ, θ)

≥ a, (3.10)

where

C =
( λ− θ1

I(λ, θ1)
− λ− θ0

I(λ, θ0)

)
·
√

b′′(λ)

2π
. (3.11)

The proof is based on the following lemmas.
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Lemma 3.4. For θ ∈ [θ0, θ1], define

Mθ(a) = inf
{

n ≥ 1 :
n∑

i=1

log
fλ(Xi)

fθ(Xi)
− I(λ, θ)a > 0

}
. (3.12)

Then

Pθ(M(a) < ∞) ≤ Pθ(Mθ(a) < ∞) ≤ exp(−I(λ, θ)a), (3.13)

and hence (3.10) holds.

Proof. The first inequality in (3.13) follows at once from the fact that M(a) ≥ Mθ(a)

for all θ ∈ [θ0, θ1]. By Wald’s likelihood ratio identity,

Pθ(N < ∞) = Eλ(exp(−lN); N < ∞)

where ln =
∑n

i=1 log(fλ(Xi)/fθ(Xi)). The second inequality in (3.13) follows from the

fact that lMθ(a) ≥ I(λ, θ)a.

We now derive approximations for EλM(a). Observe that the log-likelihood ratios

n∑
i=1

log
fλ(Xi)

fθ(Xi)
= (λ− θ)Sn − n(b(λ)− b(θ)),

where Sn = X1 + · · · + Xn. Thus the Kullback-Leibler information numbers can be

written

I(λ, θ) = Eλ log(fλ(X)/fθ(X)) = (λ− θ)b′(λ)− (b(λ)− b(θ)),

while

Varλ

(
log(fλ(X)/fθ(X))

)
= (λ− θ)2b′′(λ).

Hence, for any θ ∈ [θ0, θ1],

n∑
i=1

log
fλ(Xi)

fθ(Xi)
− I(λ, θ)a = (λ− θ)

[
Sn − b′(λ)a− (n− a)

b(λ)− b(θ)

λ− θ

]
.
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Define

φ(θ) =
b(λ)− b(θ)

λ− θ
. (3.14)

Then for θ ∈ [θ0, θ1], the stopping time Mθ(a) defined in (3.12) can be written as

Mθ(a) = inf
{

n ≥ 1 : Sn ≥ b′(λ)a + (n− a)φ(θ)
}

, (3.15)

since λ > θ1 ≥ θ. Similarly, the stopping time M(a) can be written as

M(a) = inf
{

n ≥ 1 : Sn ≥ b′(λ)a + sup
θ0≤θ≤θ1

[
(n− a)φ(θ)

]}
. (3.16)

Since b(θ) is convex, φ(θ) is a strictly increasing function of θ and b′(λ) > φ(θ1).

Hence the supremum in (3.16) is attained at θ = θ0 if n ≤ a, and at θ = θ1 if n > a,

so that

{M(a) = m} = {M(a) = Mθ0(a) = m} for all m ≤ a. (3.17)

For simplicity, we omit a and θ, writing M = M(a) and Mi = Mθi
(a) for i = 0, 1.

Lemma 3.5. For a > 0,

EλM(a) ≥ a +
φ(θ1)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(a−M0; M0 ≤ a). (3.18)

Proof. Since EλXi = b′(λ), by Wald’s equation, b′(λ)EλM = EλSM . By (3.16), for all

θ ∈ [θ0, θ1], SM − b′(λ)a ≥ (M − a)φ(θ). In particular, it holds for θ = θ0 or θ1. Thus

b′(λ)EλM = EλSM = b′(λ)a + Eλ(SM − b′(λ)a; M ≤ a) + Eλ(SM − b′(λ)a; M > a)

≥ b′(λ)a + Eλ

(
(M − a)φ(θ0); M ≤ a

)
+ Eλ

(
(M − a)φ(θ1); M > a

)

= b′(λ)a + φ(θ0)Eλ(M − a; M ≤ a) + φ(θ1)Eλ(M − a; M > a)
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Plugging in Eλ(M − a; M > a) = EλM − a− Eλ(M − a; M ≤ a), we get

EλM ≥ a +
φ(θ1)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(a−M ; M ≤ a). (3.19)

Relation (3.18) follows at once from (3.17) and (3.19).

Lemma 3.6. For a > 0,

EλM < a +
φ(θ1)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(a−M0; M0 ≤ a) + C1, (3.20)

where C1 depends on θ0, θ1 and λ but not on a.

Proof. Observe that

EλM = a− Eλ(a−M ; M ≤ a) + Eλ(M − a; M > a),

and Eλ(M − a; M ≤ a) = Eλ(M0 − a; M0 ≤ a). Thus it suffices to show that

Eλ(M − a; M > a) <
b′(λ)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(a−M0; M0 ≤ a) + C1. (3.21)

To prove this inequality, define a stopping time

Ni(a) = inf
{
n ≥ 1 :

n∑
i=1

(Xi − φ(θi)) ≥ a
}
,

for i = 0, 1. Assume a is an integer. (For general a, using [a], the largest integer ≤ a,

permits one to carry through the following argument with minor modifications). By

(3.17), we have

Eλ

(
M − a

∣∣M > a
)

=

∫ 0

−∞
Eλ

(
M − a

∣∣∣Sa − b′(λ)a = x,M0 > a
)

Pλ

(
Sa − b′(λ)a ∈ dx

∣∣∣M0 > a
)
.
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Conditioned on the event {Sa − b′(λ)a = x,M0 > a},

M − a = inf
{

m ≥ 1 : Xa+1 + · · ·+ Xa+m + Sa ≥ b′(λ)a + mφ(θ1)
}

= inf
{

m ≥ 1 :
m∑

i=1

(Xa+i − φ(θ1)) ≥ b′(λ)a− Sa = −x
}

,

which is equivalent to N1(−x) since X1, X2, . . . are independent and identically dis-

tributed. Thus

Eλ

(
M − a

∣∣M > a
)

=

∫ 0

−∞
EλN1(−x) Pλ

(
Sa − b′(λ)a ∈ dx

∣∣∣M0 > a
)
. (3.22)

Similarly,

Eλ

(
M0 − a

∣∣∣M0 > a
)

=

∫ 0

−∞
EλN0(−x) Pλ

(
Sa − b′(λ)a ∈ dx

∣∣∣M0 > a
)
. (3.23)

Now for i = 0, 1 and any a > 0, define

Ri(a) =

Ni(a)∑
i=1

(Xi − φ(θi))− a.

Then by Theorem 1 in Lorden [15]

sup
a≥0

EλRi(a) ≤ Eλ(Xi − φ(θi))
2/(b′(λ)− φ(θi)) < ∞.

By Wald’s equation, (b′(λ)− φ(θi))EλNi(a) = a + EλRi(a), so that

sup
a≥0

Eλ

(
Ni(a)− a

b′(λ)− φ(θi)

)
< ∞,

for i = 0, 1. Hence, there exists a constant C2 such that for all a > 0,

EλN1(a) ≤ b′(λ)− φ(θ0)

b′(λ)− φ(θ1)
EλN0(a) + C2.
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Plugging into (3.22), and comparing it with (3.23), we have

Eλ

(
M − a

∣∣∣M > a
)

<
b′(λ)− φ(θ0)

b′(λ)− φ(θ1)
Eλ

(
M0 − a

∣∣∣M0 > a
)

+ C2.

Since {M > a} = {M0 > a}, we have

Eλ(M − a; M > a) <
b′(λ)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(M0 − a; M0 > a) + C2Pλ(M0 > a). (3.24)

Again, using Theorem 1 in Lorden [15] and Wald’s equation, we have

sup
a≥0

(EλM0 − a) < C3

for some constant C3. Thus

Eλ(M0 − a; M0 > a) = EλM0 − a + Eλ(a−M0; M0 ≤ a)

≤ C3 + Eλ(a−M0; M0 ≤ a).

Relation (3.21) follows at once from (3.24) and the fact that Pλ(M0 > a) ≤ 1. Hence,

the lemma holds.

Lemma 3.7. Suppose Y1, Y2, . . . are independent and identically distributed with mean

µ > 0 and finite variance σ2. Define

Na = inf
{

n ≥ 1 :
n∑

i=1

Yi ≥ a
}

.

Then as a →∞.

E(
a

µ
−Na; Na ≤ a

µ
) =

√
a
( σ√

2πµ3
+ o(1)

)
.

Proof. It is well known that as a →∞,

ENa =
a

µ
+ O(1) and Var(Na) = (1 + o(1))

aσ2

µ3
, (3.25)
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and that

N̂a =
Na − a/µ√

aσ2/µ3

is asymptotically standard normal. (See page 372 in Feller [7], and equation (5) in

Siegmund [32]).

The asymptotic normality of N̂a suggests that, letting Z denote a standard normal

random variable,

E
(
N̂a; N̂a ≤ 0

)
= E

(
Z; Z ≤ 0

)
+ o(1) (3.26)

= − 1√
2π

+ o(1),

and thus

E
(a

µ
−Na; Na ≤ a

µ

)
= −

√
aσ2/µ3 E

(
N̂a; N̂a ≤ 0

)
=

√
aσ2/µ3

( 1√
2π

+ o(1)
)
,

which would prove the lemma.

To prove (3.26) note that by (3.25),

EN̂a = O(
1√
a
) and Var(N̂a) = 1 + o(1),

and hence EN̂2
a = (EN̂a)

2 +Var(N̂a) = 1+ o(1), as a →∞. Pick η > 0 and note that

0 ≥ E
(
N̂a; N̂a ≤ −η

) ≥ −E
(N̂2

a

η
; N̂a ≤ −η

) ≥ −1

η
E

(
N̂2

a

)
= −1 + o(1)

η
.

Since E
(
N̂a; N̂a ≤ 0

)
= E

(
N̂a;−η ≤ N̂a ≤ 0

)
+ E

(
N̂a; N̂a ≤ −η

)
, we have

0 ≥ E
(
N̂a; N̂a ≤ 0

)− E
(
N̂a;−η ≤ N̂a ≤ 0

) ≥ −1 + o(1)

η
.

Now the bounded convergence theorem implies that

E
(
N̂a;−η ≤ N̂a ≤ 0

) → E
(
Z;−η ≤ Z ≤ 0

)
, as a →∞.
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Thus,

0 ≥ lim sup
a→∞

E
(
N̂a; N̂a ≤ 0

)− E
(
Z;−η ≤ Z ≤ 0

)

≥ lim inf
a→∞

E
(
N̂a; N̂a ≤ 0

)− E
(
Z;−η ≤ Z ≤ 0

) ≥ −1 + o(1)

η
.

Relation (3.26) follows by letting η →∞.

Proof of Theorem 3.3: Relation (3.10) is proved in Lemma 3.4, so it suffices to

prove (3.9). By (3.12), M0 = Mθ0(a) can be written as

M0 = inf
{

n ≥ 1 :
n∑

i=1

1

I(λ, θ0)
log

fλ(Xi)

fθ0(Xi)
> a

}
.

Note that

Eλ

( 1

I(λ, θ0)
log

fλ(X)

fθ0(X)

)
= 1,

and

Varλ

( 1

I(λ, θ0)
log

fλ(X)

fθ0(X)

)
=

b′′(λ)

(b′(λ)− φ(θ0))2
,

which we denote by σ2
0. Thus by Lemma 3.7,

Eλ

(
a−M0; M0 ≤ a

)
=
√

a
( σ0√

2π
+ o(1)

)
. (3.27)

Using Lemma 3.5 and Lemma 3.6, we have

EλM = a +
φ(θ1)− φ(θ0)

b′(λ)− φ(θ1)
Eλ(a−M0; M0 ≤ a) + O(1).

By (3.27) and the definition of φ(θ) in (3.14), we have

EλM = a + (C + o(1))
√

a, (3.28)



23

as a →∞, where C is defined in (3.11).

It follows that for all θ ∈ [θ0, θ1],

| log Pθ(N(a) < ∞)|
I(λ, θ)

≤ EλN(a) ≤ EλM(a) = a + (C + o(1))
√

a,

The first inequality is from Proposition 3.2. The second one is the condition of the

theorem. Thus (3.9) holds, and the theorem is proved.

3.1.2 Change-Point Problems

Now let us consider the problem of detecting a change in distribution from fθ for

some θ ∈ Θ = [θ0, θ1] to fλ. As described earlier, we seek a family of stopping times

that is asymptotically efficient at (θ, λ) for all θ ∈ Θ.

A method to find such a family is suggested by the following result, which indicates

the relationship between open-ended hypothesis testing and change-point problems.

Theorem 3.8. (Lorden [16]). Let N be a stopping time with respect to X1, X2, . . .

such that Pθ(N < ∞) ≤ α. For k = 1, 2, . . . , let Nk denote the stopping time obtained

by applying N to Xk, Xk+1, . . . and define

N∗ = min
k≥1

(Nk + k − 1),

Then N∗ is a stopping time with

EθN
∗ ≥ 1

α
,

and for any λ,

EλN
∗ ≤ EλN.

Let M(a) be the stopping time defined in (3.8), and let Mk(a) be the stopping time

obtained by applying M(a) to the observations Xk, Xk+1, . . . . Define a new stopping
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time by M∗(a) = mink≥1

(
Mk(a) + k − 1

)
. In other words,

M∗(a) = inf
{

n ≥ 1 : max
1≤k≤n

inf
θ0≤θ≤θ1

( n∑

i=k

log
fλ(Xi)

fθ(Xi)
− I(λ, θ)a

)
> 0

}
. (3.29)

The next theorem shows that the family {M∗(a)} is asymptotically efficient at

(θ, λ) for all θ ∈ Θ.

Theorem 3.9. For any a > 0 and θ0 ≤ θ ≤ θ1,

EθM
∗(a) ≥ exp(I(λ, θ)a), (3.30)

and as a →∞

EλM
∗(a) ≤ a + (C + o(1))

√
a, (3.31)

where C is as defined in (3.11). Moreover, if {N(a)} is a family of stopping times

such that (3.30) holds for some θ, then

EλN(a) ≥ a + O(1), as a →∞. (3.32)

Proof. By Theorem 3.8 and Lemma 3.4, for all θ ∈ [θ0, θ1], we have

EθM
∗(a) ≥ 1

Pθ(M(a) < ∞)
≥ exp(I(λ, θ)a),

which establishes (3.30). Theorem 3.8 and equation (3.28) imply that

EλM
∗(a) ≤ Eλ(M(a)) = a + (C + o(1))

√
a.

Relation (3.32) follows from the following proposition, which improves Lorden’s lower

bound in (3.2).

Proposition 3.10. Given θ and λ 6= θ, there exists an M = M(θ, λ) > 0 such that
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for any stopping time N

log EθN ≤ I(λ, θ)EλN + M. (3.33)

Proof. By equation (2.53) on page 26 of Siegmund [33], there exist C1 and C2 such

that for Page’s CUSUM procedure Ta defined in (2.5),

EθTa ≤ C1e
a, and I(λ, θ)EλTa ≥ a− C2,

for all a > 0. Let a = log EθN − log C1. Then

EθN = C1e
a ≥ EθTa.

The optimality property of Ta (Moustakides [21]) implies that

I(λ, θ) log EλN ≥ I(λ, θ) log EλTa ≥ a− C2 = log EθN − log C1 − C2.

The following corollary follows at once from Theorem 3.9.

Corollary 3.11. Suppose {N(a)} is a family of stopping times such that

EλN(a) ≤ EλM
∗(a).

Then for all θ0 ≤ θ ≤ θ1 and a > 0

log EθM
∗(a)

I(λ, θ)
≥ a,

and as a →∞,

log EθN(a)

I(λ, θ)
≤ a + (C + o(1))

√
a,

where C is as defined in (3.11).
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For computer implementation, by (3.17),

M∗(a) = inf
{

n ≥ 1 : max
n−b≤k≤n

n∑

i=k

log
fλ(Xi)

fθ0(Xi)
≥ I(λ, θ0)a, or

max
1≤k≤n−b−1

n∑

i=k

log
fλ(Xi)

fθ1(Xi)
≥ I(λ, θ1)a

}
,

where b = [a]. Let Wk = max{Wk−1, 0} + log(fλ(Xk)/fθ1(Xk)) and W0 = 0. Then

M∗(a) can be written in the following convenient form

M∗(a) = inf
{

n ≥ 1 : max
n−b≤k≤n

n∑

i=k

log
fλ(Xi)

fθ0(Xi)
≥ I(λ, θ0)a, or

Wn−b−1 +
n∑

i=n−b

log
fλ(Xi)

fθ1(Xi)
≥ I(λ, θ1)a

}
. (3.34)

Since Wk can be calculated recursively, this form reduces the memory requirements

at every stage n from the full data set {X1, . . . , Xn} to the data set of size b +

2, i.e., {Xn−b−1, Xn−b, . . . , Xn}. It is easy to see that this form involves only O(a)

computations at every stage n.

3.1.3 Extension to Half-Open Interval

Suppose X1, X2, . . . are independent and identically distributed random variables with

probability density fξ of the form (3.4) and suppose we are interested in testing the

null hypothesis

H0 : ξ ∈ Θ = (ξ, θ1]

against the alternative hypothesis

H1 : ξ ∈ Λ = {λ},

where θ1 < λ. Recall that Ω = (ξ, ξ̄) is the natural parameter space of ξ. Assume

lim
θ→ξ

EθX = −∞. (3.35)
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This condition is equivalent to limθ→ξ b′(θ) = −∞ since b′(θ) = EθX. Many distri-

butions satisfy this condition. For example, (3.35) holds for the normal distributions

since EθX = θ and ξ = −∞. It also holds for the negative exponential density since

b(θ) = − log θ, ξ = 0 and EθX = b′(θ) = −1/θ.

As in (3.8), our proposed open-ended test M(a) of H0 : ξ ∈ Θ = (ξ, θ1] against

H1 : ξ = λ is defined by

M̂(a) = inf
{

n ≥ 1 : inf
ξ<θ≤θ1

( n∑
i=1

log
fλ(Xi)

fθ(Xi)
− I(λ, θ)a

) ≥ 0
}

.

As in (3.16), M̂(a) can be written as

M̂(a) = inf
{

n ≥ 1 :
n∑

i=1

Xi ≥ b′(λ)a + sup
ξ<θ≤θ1

[
(n− a)φ(θ)

]}
, (3.36)

where φ(θ) is defined in (3.14). By L’Hôptial’s rule and the condition in (3.35),

lim
θ→ξ

φ(θ) = lim
θ→ξ

b(λ)− b(θ)

λ− θ
= lim

θ→ξ
b′(θ) = lim

θ→ξ
EθX = −∞.

Thus for any n < a,
∑n

i=1 Xi is finite but supξ<θ≤θ1

[
(n− a)φ(θ)

]
= ∞. So M̂(a) will

never stop at time n < a. Recall that φ(θ) is an increasing function of θ, hence the

supremum in (3.36) is attained at θ = θ1 if n ≥ a. Therefore,

M̂(a) = inf
{
n ≥ a :

n∑
i=1

Xi ≥ b′(λ)a + (n− a)φ(θ1)
}

= inf
{
n ≥ a :

n∑
i=1

log
fλ(Xi)

fθ1(Xi)
≥ I(λ, θ1)a

}
. (3.37)

Using arguments similar to the proofs of (3.28) and Lemma 3.4, we have

Lemma 3.12. For a > 0,

Pθ(M̂(a) < ∞) ≤ exp(−I(λ, θ)a), (3.38)
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for any θ ∈ (ξ, θ1]. Moreover, as a →∞,

EλM̂(a) = a + (Ĉ + o(1))
√

a, (3.39)

and

Ĉ =
λ− θ1

I(λ, θ1)
·
√

b′′(λ)

2π
, (3.40)

For the problem of detecting a change in distribution from some fθ with θ ∈ Θ =

(ξ, θ1] to fλ, define M̂∗(a) from M̂(a) as before, so that

M̂∗(a) = inf
{
n ≥ a : max

1≤k≤n−a

n∑

i=k

log
fλ(Xi)

fθ1(Xi)
≥ I(λ, θ1)a

}
. (3.41)

By Theorem 3.8 and Lemma 3.12, we have

Lemma 3.13. For a > 0 and θ ∈ (ξ, θ1],

EθM̂
∗(a) ≥ exp(I(λ, θ)a), (3.42)

and as a →∞

EλM̂
∗(a) ≤ a + (Ĉ + o(1))

√
a, (3.43)

where Ĉ is defined in (3.40).

Thus the analogs of Theorems 3.3 and 3.9 hold.

3.1.4 Numerical Examples

In this subsection we describe the results of a Monte Carlo experiment designed to

check the insights obtained from the asymptotic theory of Sections 3.1.2 and 3.1.3.

The simulations considered the problem of detecting a change in distribution from

fθ to gλ, where fθ = N(θ, 1) with θ ∈ Θ = [−1,−0.5], and gλ = N(λ, 1) with
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Table 3.1: EθN for different procedures
(The best possible values are obtained from optimal envelope of

Page’s CUSUM procedures)

θ best possible M∗(a) T (−0.5, a) T (−1.0, a)
(a = 18.50) (a = 2.92) (a = 9.88)

−0.5 233± 7 206± 6 233± 7 125± 3
−0.6 523± 15 501± 15 518± 15 297± 8
−0.7 1, 384± 43 1, 324± 43 1, 227± 37 938± 29
−0.8 5, 157± 165 4, 688± 148 3, 580± 113 4, 148± 129
−0.9 22, 942± 699 19, 217± 606 10, 613± 343 21, 617± 658
-1.0 118, 223± 3, 711 83, 619± 2, 566 31, 641± 1, 036 118, 223± 3, 711

λ ∈ Λ = {0}. In this case our procedure M∗(a) reduces to the form

M∗(a) = inf
{

n ≥ 1 : max
1≤k≤n

inf
θ∈[−1,−0.5]

[ n∑

i=k

(Xi − θ

2
) +

θ

2
a
]

> 0
}

= inf
{

n ≥ 1 : max
n−[a]≤k≤n

n∑

i=k

(Xi +
1

2
) ≥ 1

2
a, or

max
1≤k≤n−[a]−1

n∑

i=k

(Xi +
1

4
) ≥ 1

4
a
}

.

Table 3.1 compares our procedure M∗(a) and two versions of Page’s CUSUM

procedure T (θ0, a) over a range of θ values. Here

T (θ0, a) = inf{n ≥ 1 : max
1≤k≤n

n∑

i=k

log
gλ(Xi)

fθ0(Xi)
≥ a}

= inf{n ≥ 1 : max
1≤k≤n

n∑

i=k

(−θ0)[Xi − θ0

2
] ≥ a}.

The threshold value a for Page’s CUSUM procedure T (θ0, a) and our procedure M∗(a)

is determined from the criterion EλN ≈ 20. A 10,000-repetition Monte Carlo simula-

tion was then performed to determine the appropriate values of a to yield the desired

detection delay to within the range of sampling error. Moreover, with the thresholds

used, the detection delay EλN is close enough to 20 so that the difference is negligi-
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ble, i.e., correcting the threshold to get exactly 20 (if we knew how to do that) would

change EθN by an amount that would make little difference in light of the simulation

errors EθN already has.

Table 3.1 also reports the best possible EθN at each of the values of θ subject to

EλN ≈ 20. Note that they are obtained from an optimal envelope of Page’s CUSUM

procedures, and therefore not possible in practice. Each result in Table 3.1 is based

on 1000 simulations and is recorded as the Monte Carlo estimate ± standard error.

Table 3.1 shows that M∗(a) performs well over a broad range of θ, which is con-

sistent with the asymptotic theory of M∗(a) developed in Sections 3.1.2 and 3.1.3

showing that M∗(a) attains (up to O(
√

a)) the asymptotic upper bounds for log EθN

in Corollary 3.11 as a →∞.

3.2 Composite Post-Change Hypotheses

Let Θ and Λ be two compact disjoint subsets of some Euclidean space. Let {fθ; θ ∈ Θ}
and {gλ; λ ∈ Λ} be two sets of densities, absolutely continuous with respect to the

same non-degenerate σ-finite measure. In this section, we are interested in detecting

a change in distribution from fθ for some θ ∈ Θ to gλ for some λ ∈ Λ. Here we no

longer assume the densities belong to exponential families, and we assume that both

Θ and Λ are composite. We require that Θ is compact.

Ideally we would like a stopping time N which minimizes the detection delay EλN

for all λ ∈ Λ and maximizes EθN for all θ ∈ Θ, i.e., seek a family {N(a)} which is

asymptotically efficient for all (θ, λ) ∈ Θ×Λ. However, in general such a family does

not exist. For example, for Λ = {λ1, λ2}, it is easy to see from (3.3) that there exists

a family that is asymptotically efficient at both (θ, λ1) and (θ, λ2) for all θ ∈ Θ only

if
I(λ2, θ)

I(λ1, θ)
is constant in θ ∈ Θ.

This fails in general when Θ is composite. For example, if fθ and gλ belong to a

one-parameter exponential family and Θ is an interval, a simple argument shows that
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I(λ2, θ)/I(λ1, θ) is a constant if and only if λ1 = λ2.

It is natural to consider the following definition:

Definition 3.14. A family of stopping times {N(a)} is asymptotically optimal to

first-order if

(i) for each θ ∈ Θ, there exists at least one λθ ∈ Λ such that the family is asymp-

totically efficient at (θ, λθ); and

(ii) for each λ ∈ Λ, there exists at least one θλ ∈ Θ such that the family is

asymptotically efficient at (θλ, λ).

It turns out that such asymptotically optimal procedures can be obtained from

the problem of finding a stopping time N such that EθN is as large as possible for

all θ ∈ Θ, subject to a constraint of the form

sup
λ∈Λ

(
q0(λ)EλN

) ≤ a, (3.44)

where a > 0 is given. Here q0(λ) > 0 can be thought of as the cost per observation

of delay if the post-change observations have distribution gλ. Our Theorem 3.15 uses

a weaker, asymptotic version of (3.44).

Our proposed procedures T ∗(a) and T ∗
1 (a) are defined as follows. First, define

p(θ) = inf
λ∈Λ

I(λ, θ)

q0(λ)
. (3.45)

Next, let η be an a priori distribution fully supported on Λ. Define an open-ended

test T (a) by

T (a) = inf
{

n ≥ 1 : inf
θ∈Θ

[ 1

p(θ)
log

∫
Λ
[gλ(X1) · · · gλ(Xn)] η(dλ)

fθ(X1) · · · fθ(Xn)

]
≥ a

}
, (3.46)

Finally, define

T ∗(a) = min
k≥1

(Tk(a) + k − 1),
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where Tk(a) is obtained by applying T (a) to Xk, Xk+1, . . . . Equivalently,

T ∗(a) = inf
{

n ≥ 1 : max
1≤k≤n

inf
θ∈Θ

[ 1

p(θ)
log

∫
Λ
[gλ(Xk) · · · gλ(Xn)] η(dλ)

fθ(Xk) · · · fθ(Xn)

]
≥ a

}
. (3.47)

We also define a slightly different procedure

T ∗
1 (a) = inf

{
n ≥ 1 : inf

θ∈Θ
max
1≤k≤n

[ 1

p(θ)
log

∫
Λ
[gλ(Xk) · · · gλ(Xn)] η(dλ)

fθ(Xk) · · · fθ(Xn)

]
≥ a

}
. (3.48)

The next theorem and its corollaries, whose proofs are given in Section 3.2.1, show

that T ∗(a) and T ∗
1 (a) are asymptotically optimal to first-order.

Theorem 3.15. Assume that A1 - A3 below hold.

(i) If Λ is compact and {N(a)} is a family of stopping times such that (3.44)

holds. Then for all θ ∈ Θ

log EθN(a) ≤ (1 + o(1))p(θ)a (3.49)

as a →∞.

(ii) For all a > 0 and θ ∈ Θ,

EθT
∗(a) ≥ exp(p(θ)a). (3.50)

If Θ is compact, then

EλT
∗(a) ≤ (1 + o(1))

a

q(λ)
as a →∞ (3.51)

for all λ ∈ Λ, where

q(λ) = inf
θ∈Θ

I(λ, θ)

p(θ)
, (3.52)

and q(λ) ≥ q0(λ).

(iii) Relations (3.50) and (3.51) still hold if T ∗(a) is replaced by T ∗
1 (a).
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Corollary 3.16. Assume that A1-A3 hold and Θ and Λ are compact. Then both

T ∗(a) and T ∗
1 (a) are asymptotically optimal to first-order.

Corollary 3.17. Under the assumptions of Corollary 3.16, if {N(a)} is a family of

procedures such that

lim sup
a→∞

EλN(a)

EλT ∗(a)
≤ 1 for all λ ∈ Λ,

then

lim sup
a→∞

log EθN(a)

log EθT ∗(a)
≤ 1 for all θ ∈ Θ.

Similarly, if

lim inf
a→∞

log EθN(a)

log EθT ∗(a)
≥ 1 for all θ ∈ Θ,

then

lim inf
a→∞

EλN(a)

EλT ∗(a)
≥ 1 for all λ ∈ Λ.

The same assertions are true if T ∗(a) is replaced by T ∗
1 (a).

Remark: Corollary 3.17 shows that our procedures T ∗(a) and T ∗
1 (a) are also

asymptotically optimal in the following sense: If a family of procedures {N(a)} per-

forms asymptotically as well as our procedures (or better) uniformly over Θ, then our

procedures perform asymptotically as well as {N(a)} (or better) uniformly over Λ,

and the same is true if the roles of Θ and Λ are reversed.

Throughout this section, we impose the following assumptions on the densities fθ

and gλ as well as on p(θ).

A1. p(θ) is continuous and p0 = infθ∈Θ p(θ) > 0.

A2. The Kullback-Leibler information numbers I(λ, θ) = Eλ log(gλ(X)/fθ(X)) are

finite. Furthermore,

(a) I0 = infλ infθ I(λ, θ) > 0

(b) I(λ, θ) and I(λ) = infθ I(λ, θ) are both continuous in λ.
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A3. For all θ, λ

(a) Eλ[log(gλ(X)/fθ(X))]2 < ∞

(b) limρ→0 Eλ[log sup|θ′−θ|≤ρ fθ′(X)− log fθ(X)]2 = 0

(c) limλ′→λ Eλ[log gλ′(X)− log gλ(X)]2 = 0.

Assumptions A2 and A3 are part of the assumptions 2 and 3 in Kiefer and Sacks

[9]. Assumption A2 guarantees that Θ and Λ are “separated.”

3.2.1 Asymptotic Optimality

First we establish the lower bound (3.50) on the mean times between false alarms for

our procedures T ∗(a) and T ∗
1 (a).

Lemma 3.18. For all a > 0 and θ ∈ Θ, T ∗(a) and T ∗
1 (a) satisfy (3.50).

Proof. Define

t(θ, a) = inf
{

n ≥ 1 :
1

p(θ)
log

∫
Λ
[gλ(X1) · · · gλ(Xn)] η(dλ)

fθ(X1) · · · fθ(Xn)
≥ a

}

and

t∗(θ, a) = min
k≥1

(tk(θ, a) + k − 1), (3.53)

where tk(θ, a) is obtained by applying t(θ, a) to Xk, Xk+1, . . . . Then it is clear that

T ∗(a) ≥ T ∗
1 (a) ≥ t∗(θ, a), and hence

EθT
∗(a) ≥ EθT

∗
1 (a) ≥ Eθ

[
t∗(θ, a)

]

Using Theorem 3.8, we have

Eθ

[
t∗(θ, a)

]
≥ 1

Pθ(t(θ, a) < ∞)
,
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and it suffices to show that

Pθ(T (a) < ∞) ≤ exp(−p(θ)a).

Define

Ln =

∫
Λ
[gλ(X1) · · · gλ(Xn)] η(dλ)

fθ(X1) · · · fθ(Xn)
.

For any stopping time N,

Pθ(N < ∞) =
∞∑
1

Pθ{N = n}

=
∞∑
1

∫

{N=n}

[
fθ(X1) · · · fθ(Xn)

]
dξ1 · · · dξn

=
∞∑
1

∫

{N=n}

[
L−1

n

∫

Λ

[gλ(X1) · · · gλ(Xn)] η(dλ)
]
dξ1 · · · dξn

=

∫

Λ

( ∞∑
1

∫

{N=n}

[
L−1

n gλ(X1) · · · gλ(Xn)
]
dξ1 · · · dξn

)
η(dλ)

=

∫

Λ

Eλ(L
−1
N ; N < ∞) η(dλ).

By definition, Lt(θ,a) ≥ exp(p(θ)a). Thus,

Pθ(t(θ, a) < ∞) ≤
∫

Λ

Eλ

(
exp(−p(θ)a); t(θ, a) < ∞)

η(dλ)

= exp(−p(θ)a)

∫

Λ

Pλ

(
t(θ, a) < ∞)

η(dλ)

≤ exp(−p(θ)a),

which proves the lemma.

Next we derive an upper bound on the detection delay for our procedures.

Lemma 3.19. Suppose that A1-A3 hold and Θ is compact. Then (3.51) holds for all

λ ∈ Λ.
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Proof. By definition, EλT
∗
a (a) ≤ EλT

∗(a) ≤ EλT (a), so it suffices to show that

EλT (a) ≤ (1 + o(1))
a

q(λ)

for any λ ∈ Λ, where q(λ) is defined in (3.52). We’ll use the method in Kiefer and

Sacks [9] to prove this inequality. Fix λ0 ∈ Λ. Let {εa; a > 0} be a set of positive

numbers with εa → 0 as a →∞. By assumption A1 - A3 and the compactness of Θ,

there exist a finite covering {Ui, 1 ≤ i ≤ ka} of Θ (with θi ∈ Ui) and positive numbers

δa such that for all λ ∈ Va = {λ | |λ− λ0| < δa}, and i = 1, · · · , ka,

Eλ0

[
log gλ(X)− log sup

θ∈Ui

fθ(X)
] ≥ I(λ0, θi)− εa, (3.54)

and

sup
θ∈Ui

|p(θ)− p(θi)| < εa.

Let N1(a) be the smallest n such that

log

∫

Va

[
gλ(X1) · · · gλ(Xn)

]
η(dλ) ≥ sup

θ∈Θ

[
p(θ)a +

n∑
j=1

log fθ(Xj)
]
. (3.55)

Clearly N1(a) ≥ T (a). By Jensen’s inequality, the left-hand side of (3.55) is greater

than or equal to

∫

Va

log
[
gλ(X1) · · · gλ(Xn)

]η(dλ)

η(Va)
+ log η(Va)

=
n∑

j=1

∫

Va

log gλ(Xj)
η(dλ)

η(Va)
− | log η(Va)| (3.56)

since η(Va) ≤ 1. Since {Ui} covers Θ, the right-hand side of (3.55) is less than or

equal to

sup
1≤i≤ka

sup
θ∈Ui

[
p(θ)a +

n∑
j=1

log fθ(Xj)
]
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≤ sup
1≤i≤ka

[
(p(θi) + εa)a + sup

θ∈Ui

n∑
j=1

log fθ(Xj)
]

≤ sup
1≤i≤ka

[
(p(θi) + εa)a +

n∑
j=1

log sup
θ∈Ui

fθ(Xj)
]
. (3.57)

For j = 1, 2, · · · , put

Yj =

∫

Va

log gλ(Xj)
η(dλ)

η(Va)
, and Zi

j = log sup
θ∈Ui

fθ(Xj) for i = 1, · · · , ka.

Let N2(a) be the smallest n such that

n∑
j=1

Yj − max
1≤i≤ka

[ n∑
j=1

Zi
j +

(
p(θi) + εa

)
a
]
≥ | log η(Va)|,

or, equivalently, the smallest n such that for all 1 ≤ i ≤ ka,

n∑
j=1

Yj − Zi
j

p(θi)
≥ a

[
1 +

ε

p(θi)
+
| log η(Va)|

ap(θi)

]
.

Using (3.56) and (3.57), it is clear that N2(a) ≥ N1(a). Recall that p0 = infθ∈Θ p(θ),

and define

τa =
εa

p0

+
| log η(Va)|

ap0

.

Let N3(a) be the smallest n such that

min
1≤i≤ka

n∑
j=1

Yj − Zi
j

p(θi)
≥ a(1 + τa),

or equivalently

n∑
j=1

[Yj − Z1
j

p(θ1)
− εa

]
+ min

1≤i≤ka

n∑
j=1

[Yj − Zi
j

p(θi)
− Yj − Z1

j

p(θ1)
+ εa

]
≥ a(1 + τa).

Clearly N3(a) ≥ N2(a). From (3.54), we have

Eλ0

[Yj − Zi
j

p(θi)
− εa

]
≥ I(λ0, θi)

p(θi)
− εa(1 +

1

p0

) for i = 1, . . . , ka. (3.58)
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Suppose that {Ui} are indexed so that the minimum (over i) of the left-hand side of

(3.58) occurs when i = 1. For n = 1, 2, . . . , define

Sn =
n∑

j=1

[Yj − Z1
j

p(θ1)
− εa

]
,

and

Bi
n =

n∑
j=1

[Yj − Z1
j

p(θ1)
− Yj − Zi

j

p(θi)
+ εa

]
for i = 1, . . . , ka.

Let N∗(a) be the smallest n such that, simultaneously,

Sn > a(1 + τa), and min
1≤i≤ka

Bi
n ≥ 0.

Clearly, N∗(a) ≥ N3(a). Now it suffices to show that as a →∞

Eλ0N
∗(a) ≤ (1 + o(1))

a

q(λ0)
. (3.59)

The proof of (3.59) relies mainly on two facts. First, the last time min1≤i≤ka Bi
n < 0

has finite expectation under Pλ0 because the summands in Bi
n have positive (≥ εa)

mean and finite variance. Second, by (3.52) and (3.58),

Eλ0

[Yj − Z1
j

p(θ1)
− εa

]
≥ q(λ0)− εa(1 +

1

p0

).

The detail of the proof is omitted as it is identical to the proof of Lemma 2 in Kiefer

and Sacks [9].

Proof of Theorem 3.15: To prove (i), use Lorden’s lower bound (see (3.2)) to

obtain

log EθN(a) ≤ inf
λ∈Λ

(
(1 + o(1))I(λ, θ)EλN(a)

)
≤ inf

λ∈Λ

(
(1 + o(1))I(λ, θ)

a

q0(λ)

)
,

so that (3.49) follows from the compactness of Λ.
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To prove (ii) and (iii), use Lemmas 3.18 and 3.19, so that it suffices to show that

q(λ) ≥ q0(λ) for all λ ∈ Λ. Fix λ0 ∈ Λ. By (3.45), we have p(θ) ≤ I(λ0, θ)/q0(λ0) and

hence I(λ0, θ)/p(θ) ≥ q0(λ0) for any θ ∈ Θ. Thus q(λ0) ≥ q0(λ0) by the definition in

(3.52). This complete the proof of the theorem.

Proof of Corollaries 3.16 and 3.17: First note that

p(θ) = inf
λ∈Λ

I(λ, θ)

q(λ)
, (3.60)

where p(θ) and q(λ) are defined in (3.45) and (3.52), respectively.

To prove (3.60), fix θ0 ∈ Θ. On the one hand, recall that q(λ) ≥ q0(λ) for all

λ ∈ Λ, so that

inf
λ∈Λ

I(λ, θ0)

q(λ)
≤ inf

λ∈Λ

I(λ, θ0)

q0(λ)
= p(θ0),

by the definition of p(θ) in (3.45).

On the other hand, (3.52) implies that q(λ) ≤ I(λ, θ0)/p(θ0) for all λ ∈ Λ, so

p(θ0) ≤ I(λ, θ0)/q(λ) for all λ ∈ Λ. Thus

p(θ0) ≤ inf
λ∈Λ

I(λ, θ0)

q0(λ)
,

and hence (3.60) holds.

To prove Corollary 3.16, note that the asymptotic efficiency of T ∗(a) and T ∗
1 (a)

at (θ, λ) is

e(θ, λ) =
p(θ)q(λ)

I(λ, θ)
,

and so they are asymptotically optimal to first-order by virtue of the compactness of

Θ and Λ and relations (3.52) and (3.60).

Applying Lorden’s lower bound, we can prove Corollary 3.17 in the same way as

part (i) of Theorem 3.15.

Remark: Instead of T (a) in (3.46), we can also define the following stopping time
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in open-ended hypothesis testing problems:

T̂ (a) = inf
{

n ≥ 1 : inf
θ∈Θ

[ 1

p(θ)
log

supλ[gλ(X1) · · · gλ(Xn)]

fθ(X1) · · · fθ(Xn)

]
≥ a

}
, (3.61)

and then use it to construct the corresponding procedures in change-point problems.

When fθ and gλ are from the same exponential family, we can obtain an upper bound

on Pθ(T̂ (a) < ∞) by equation (13) on page 636 in Lorden [17], and so we get a

lower bound on the mean time between false alarms. The upper bound on detection

delay follows from Lemma 3.19 and the fact that T̂ (a) ≤ T (a). These procedures are

therefore also asymptotically optimal to first-order if fθ and gλ belong to exponential

families.

3.2.2 p(θ) and q(λ)

Here are some examples of choices of p(θ) and q(λ) and the corresponding procedures

provided by our theorem.

Example 1: If there exists I0 such that for all θ ∈ Θ, infλ∈Λ I(λ, θ) = I0, then

q0(λ) ≡ I0 yields

p(θ) = 1, and q(λ) = inf
θ∈Θ

I(λ, θ).

This is even true for composite Θ and Λ. In particular, if Θ is simple, say {θ0}, then

the considerations of Section 3.2 reduce to the standard formulation where the pre-

change distribution is completely specified. Moreover, Pollak [23] proved that T (a),

defined in (3.46), has a second-order optimality property in the context of open-ended

hypothesis testing if fθ and gλ belong to exponential families.

Example 2: If there exists I0 such that for all λ ∈ Λ, infθ∈Θ I(λ, θ) = I0, then

q0(λ) ≡ 1 yields

p(θ) = inf
λ∈Λ

I(λ, θ), and q(λ) = 1,

even for composite Θ and Λ. In particular, if Λ is simple, say {λ}, then the consider-

ations of Section 3.2 reduce to those of the problem in Section 3.1.
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Example 3: Suppose fθ and gλ are exponentially distributed with unknown means

1/θ and 1/λ, respectively. Assume Θ = {θ : θ ∈ [θ0, θ1]}, and Λ = {λ : λ ∈ [λ0, λ1]},
where θ0 < θ1 < λ0 < λ1. Then the pairs (p(θ), q(λ)) defined in (3.45) and (3.52) are

not unique. For example, the following two pairs are non-equivalent:





p1(θ) = I(λ0, θ)

q1(λ) = I(λ, θ0)/I(λ0, θ0)
and





p2(θ) = I(λ1, θ)I(λ0, θ1)/I(λ1, θ1)

q2(λ) = I(λ, θ1)/I(λ0, θ1)

Suppose t∗1(a) and t∗2(a) are the procedures defined by (3.47) for the pairs (p1(θ), q1(λ))

and (p2(θ), q2(λ)), respectively. Even though both t∗1(a) and t∗2(a) are asymptotically

optimal to first-order, it is easy to see that t∗1(a) has larger mean times between false

alarms uniformly over Θ while t∗2(a) has smaller detection delays uniformly over Λ.

In our theorems, we require that Θ and Λ are compact. If they are not compact,

then our procedures may or may not be asymptotically optimal. However, we can

still sometimes apply our ideas in these situations, as shown in the following example.

Example 4: Suppose we want to detect a change from negative to positive in the

mean of independent normally distributed random variables with variance 1.

In the context of open-ended hypothesis testing, we want to test

H0 : θ ∈ Θ = (−∞, 0] against H1 : λ ∈ Λ = (0,∞).

Let us examine the procedures T̂ (a) defined in (3.61) for different choices of q0(λ).

(I) q0(λ) = 1 leads to

p(θ) =
θ2

2
, and q(λ) = 1,

and

t̂0(a) = inf{n ≥ a : Sn ≥ 0}, where Sn =
n∑

i=1

Xi.

Hence we use the following stopping time to detect a change in mean from
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negative to positive:

t̂∗0(a) = inf
{

n ≥ a : max
0≤k≤n−a

(
Sn − Sk

) ≥ 0
}

.

Note that the maximum is taken over 0 ≤ k ≤ n− a.

(II) Assume q0(λ) = λ1/β with β ≥ 1/2. Then we have

p(θ) = kβ|θ|2−(1/β) and q(λ) = λ1/β, with kβ = 2β2(2β − 1)(1/β)−2,

(we assume 00 = 1) and thus

t̂β(a) = inf
{

n ≥ 1 : Sn ≥ aβn1−β
}

.

This suggests using a stopping time of the form

t̂∗β(a) = inf
{

n ≥ 1 : max
0≤k≤n

[
(Sn − Sk)(n− k)β−1

] ≥ aβ
}

to detect a change in mean from negative to positive. Observe that for β = 1,

t̂β(a) is just the one-sided SPRT and t̂∗β(a) is just a special form of Page’s

CUSUM procedures. For β = 1/2, t̂β(a) and t̂∗β(a) have also been studied

extensively in the literature, since they are based on the generalized likelihood

ratio. Different motivation to obtain these two procedures can be found for t̂β(a)

in Chapter IV of Siegmund [33], which is from the viewpoint of the repeated

significant test, and for t̂∗β(a) in Siegmund and Venkatraman [34], which is from

the viewpoint of the generalized likelihood ratio. For t̂β(a) with 0 < β ≤ 1, see

Chow, Hsiung and Lai [5] and equation (9.2) on page 188 in Siegmund [33].

Though one cannot use our theorems directly to analyze the properties of t̂∗0(a)

and t̂∗β(a), I conjecture that they are indeed asymptotically optimal to first-order.

I believe that a proof can be based on an asymptotic expression for the mean time

between false alarms and the detection delay. I plan to study the asymptotic behavior
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of these procedures in future research.

3.2.3 Numerical Examples

In this subsection we report some simulation studies comparing the performance of

our procedures in Section 3.2.1 with a commonly used procedure in the literature.

The simulations considered the problem of detecting a change in distribution from

fθ to gλ, where fθ and gλ are exponentially distributed with unknown means 1/θ and

1/λ, respectively, and θ ∈ Θ = [0.8, 1] and λ ∈ Λ = [2, 3].

By (3.45), q0(λ) ≡ 1 leads to p(θ) = I(2, θ) where I(λ, θ) = θ
λ
− 1− log θ

λ
, and so

our procedure based on (3.61) is defined by

T̂ ∗(a) = inf
{

n ≥ 1 : max
1≤k≤n

inf
0.8≤θ≤1

sup
2≤λ≤3

1

p(θ)

n∑

i=k

(
log

λ

θ
− (λ− θ)Xi

)
≥ a

}
.

A commonly used procedure in the literature is so-called generalized likelihood

ratio procedure, see Lorden [16], Siegmund and Venkatraman [34]. The procedure

requires specification of the nominal value θ0 (of the parameter of the pre-change

distribution), and it is defined by the stopping time

τ(θ0, a) = inf{n ≥ 1 : max
1≤k≤n

sup
λ∈Λ

n∑

i=k

log
gλ(Xi)

fθ0(Xi)
≥ a}

= inf{n ≥ 1 : max
1≤k≤n

sup
2≤λ≤3

n∑

i=k

(
log

λ

θ0

− (λ− θ0)Xi

) ≥ a}.

Note that τ(θ0, a) can be thought of as our procedure T̂ ∗(a) whose Θ contains the sin-

gle point θ0. The choice of θ0 can be made by considering the pre-change distribution

which is closest to the post-change distributions because it is always more difficult to

detect a smaller change. For our example, θ0 = 1.

An effective method to implement τ(θ0, a) numerically can be found in Lorden

[16]. Similarly, we can perform T̂ ∗(a) as follows. Compute Vn and Wn recursively

by Vn = max(Vn−1 + log 2
0.8
− (2 − 0.8)Xn, 0) and Wn = max(Wn−1 + log 2 −Xn, 0).

Stop whenever Wn ≥ p(0.8)a/(2− 0.8). In addition, whenever Vn = 0 one can begin
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a new cycle, discarding all previous observations and starting fresh on the incoming

observations. Moreover, each time a new cycle begins compute at each stage n =

1, 2, . . . ,

Q
(n)
k = Xn + · · ·+ Xn−k+1, k = 1, . . . , n.

If p(1)a/(3−1) ≤ Wn ≤ p(0.8)a/1.2, we will also stop at the first n such that Q
(n)
k < ck

for some k, where

ck = inf
0.8≤θ≤1

sup
2≤λ≤3

[
k
log λ− log θ

λ− θ
− p(θ)a

λ− θ

]
.

Table 3.2 provides a comparison of the performances for our procedure T̂ ∗(a) with

τ(θ0, a). The threshold a for each of these two procedures is determined from the

criterion Eθ=1N(a) ≈ 600. The results in Table 3.2 are based on 1000 simulations

for EθN and 10000 simulations for EλN. Note that for these two procedures, the

detection delay EλN = EλN. Table 3.2 shows that at a small additional cost of

detection delay, T̂ ∗(a) can significantly improve the mean times between false alarms

compared to τ(1, a). This is consistent with the asymptotic theory in Sections 3.2.1.

Table 3.2: Comparison of two procedures in change-point problems with composite
pre-change and composite post-change hypotheses

T̂ ∗(a) τ(1, a)
a 22.50 5.02
θ = 1 601± 18 606± 19

EθN θ = 0.9 1, 448± 43 1, 207± 36
θ = 0.8 3, 772± 116 2, 749± 90

λ = 2 21.41± 0.10 21.92± 0.11
λ = 2.2 18.09± 0.07 18.18± 0.09

EλN λ = 2.5 15.08± 0.05 14.76± 0.06
λ = 2.7 13.75± 0.04 13.22± 0.05
λ = 3 12.29± 0.04 11.62± 0.04
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Chapter 4

Sequential Decentralized Decision
Systems

In this chapter we discuss sequential hypothesis testing and change-point problems in

the context of decentralized decision systems. See Figure 1.1 for the general setting.

Suppose there are L sensors in a system. At time n, an observation X l
n is made at

each sensor Sl. Based on the information available at Sl at time n, a message U l
n is

chosen from a finite list or alphabet and is sent to a fusion center. The fusion center

uses the stream of messages from the sensors as inputs to a sequential hypothesis test

or change-point detection procedure. Without loss of generality, we assume that U l
n

takes a value in {0, 1, . . . , Dl − 1}.
In Veeravalli [38] and Veeravalli, Basar, and Poor [40], the authors considered five

different cases, depending on how “feedback” and “local information” is used at the

sensors.

Case A) System with Neither Feedback from the Fusion Center nor Local Mem-

ory:

U l
n = φl

n(X l
n).

Case B) System with no Feedback and Full Local Memory:

U l
n = φl

n(X l
[1,n]), where X l

[1,n] = (X l
1, . . . , X

l
n).
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Case C) System with no Feedback and Local Memory Restricted to Past Decisions:

U l
n = φl

n(X l
n, UL

[1,n−1]), where UL
[1,n−1] = (U l

1, . . . , U
l
n−1).

Case D) System with Full Feedback and Full Local Memory:

U l
n = φl

n(X l
[1,n]; U

l
[1,n−1], . . . , U

L
[1,n−1]).

Case E) System with Full Feedback, but Local Memory Restricted to Past Deci-

sions:

U l
n = φl

n(X l
n; U l

[1,n−1], . . . , U
L
[1,n−1]).

This chapter develops an asymptotic theory of decentralized change-point prob-

lems, giving in all cases procedures that are asymptotically optimal and easy to

implement. For decentralized change-point problems, we assume that at time ν the

change affects all sensor simultaneously. Like previous authors, we consider only the

case of simple hypotheses, both pre-change and post-change. The problem is to min-

imize detection delay in cases A - E over all possible sensor message functions and

fusion center decision procedures, subject to a constraint on the mean time between

false alarms. Crow and Schwartz [6] and Tartakovsky and Veeravalli [36] studied this

problem for case A, but both imposed restrictions on the sensors’ message functions.

Our theory involves no such restrictions.

Section 4.1 provides an asymptotic theory of decentralized sequential hypothesis

testing problems. We develop bounds on the expected sample sizes of hypothesis tests

and find asymptotically optimal procedures. In Section 4.2 we provide asymptotic

theory and asymptotically optimal procedures in change-point problems. Section 4.3

establishes a sufficient condition for our theorems to be applied. Section 4.4 gives

simulation results for examples in both open-ended hypothesis testing problems and

change-point problems.

Throughout this chapter, we make the following assumptions, which are standard:

(A1) The sensor observations are independent over time as well as from sensor to
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sensor.

(A2) The densities of the sensor observations are either f 1, . . . , fL or g1, . . . , gL,

where the f ’s and g’s are given. For each l, the Kullback-Leibler information number

I(gl, f l) =

∫
log

( gl(x)

f l(x)

)
gl(x)dx (4.1)

is finite and positive, and

∫ (
log

gl(x)

f l(x)

)2

gl(x)dx < ∞. (4.2)

We now introduce some notations. Let D be a positive integer. Consider a

random variable Y whose density function is either f or g with respect to a measure

µ, and assume that the Kullback-Leibler information number I(g, f) is finite. For

a (deterministic or random) measurable function φ from the range of Y to a finite

alphabet of size D, say {0, 1, . . . , D−1}, denote by fφ and gφ respectively the density

of φ(Y ) when the density of Y is f or g. Let

Zφ = log
gφ(φ(Y ))

fφ(φ(Y ))
,

and define

ID(g, f) = sup
φ

EgZφ (4.3)

and

VD(g, f) = sup
φ

Eg(Zφ)
2. (4.4)

It is well known (Tsitsiklis [37]) that ID(g, f) ≤ I(g, f), i.e., that reduction of the

datat from Y to φ(Y ) cannot increase the information. Tsitsiklis [37] showed that the

supremum ID(g, f) is achieved by a Monotone Likelihood Ratio Quantizer (MLRQ)
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ϕ of the form

ϕ(Y ) = d if and only if λd ≤ g(Y )

f(Y )
< λd+1, (4.5)

where 0 = λ0 ≤ λ1 ≤ · · · ≤ λD−1 ≤ λD = ∞ are constants. These optimal MLRQ’s

are not easy calculated, but we follow the standard practice in the literature of de-

veloping procedures that assume sensor messages are constructed optimally in the

sensor. Some of our theorems assume that VD(g, f) < ∞. A sufficient condition for

finiteness of V2(g, f) is given in Section 4.3.

Using these notations, define the information numbers

ID =
L∑

l=1

IDl(gl, f l), (4.6)

where D = (D1, D2, · · · , DL), and

Itot =
L∑

l=1

I(gl, f l). (4.7)

These two information numbers are key to our theorems.

4.1 Sequential Hypothesis Testing

In this section we consider the problem of decentralized sequential hypothesis testing.

As stated in (A1) and (A2), there are two possible probability measures, P0 and P1.

Under P0, the observations at sensor Sl, X l
1, X

l
2, · · · , are independent and identically

distributed with density function f l, and under P1, they have density gl. The problem

is to test the simple null hypothesis

H0 : P0 is true
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against the simple alternative hypothesis

H1 : P1 is true.

A sequential procedure consists of a rule to determine the sensor messages, a stopping

time τ used by the fusion center and a final decision rule that chooses P0 or P1 based

on the information up to time τ at the fusion center. We first establish information

bounds and then find asymptotically optimal procedures for open-ended hypothesis

testing problems in all cases and for two-decision hypothesis testing problems in cases

B and D.

4.1.1 Information Bounds for Open-Ended Tests

Motivated by applications to change-point problems, we first consider “open-ended,”

or “one-sided” tests of the null hypothesis H0, i.e., tests defined by a stopping time

τ that stop sampling only to reject H0 and must satisfy

P0(τ < ∞) ≤ α. (4.8)

Lemma 4.1. For any stopping time τ satisfying (4.8),

(i) In cases A, C and E, if VDl(gl, f l), defined in (4.4), is finite for all 1 ≤ l ≤ L,

then we have

E1τ ≥ (1 + o(1))
| log α|

ID

, (4.9)

where ID is defined in (4.6).

(ii) In cases B and D, we have

E1τ ≥ | log α|
Itot

, (4.10)

where Itot is defined in (4.7).
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Proof. Using Wald’s equation and Jensen’s inequality, it is straightforward to prove

(4.10). We next prove (4.9) in cases A, C and E. Note that we can write

U l
n = ψl

n(X l
n),

where ψl
n are allowed to depend on U1

[1,n−1], . . . , U
L
[1,n−1]. Denote by f l

ψ,n and gl
ψ,n

respectively the conditional density induced on U l
n given U1

[1,n−1], . . . , U
L
[1,n−1] when the

density of X l
n is f l or gl. Denote by Z l

n the conditional log-likelihood ratio function

of U l
n, log

(
gl

ψ,n(U l
n)/f l

ψ,n(U l
n)

)
.

Since X1
n, . . . , XL

n are independent, so are U1
n, . . . , UL

n given U1
[1,n−1], . . . , U

L
[1,n−1].

Thus in the fusion center the conditional log-likelihood ratio of (U1
n, . . . , UL

n ) given

U1
[1,n−1], . . . , U

L
[1,n−1] is

Zn =
L∑

l=1

Z l
n.

By Theorem 1 (or Theorem 3) in Lai [12], to prove (4.9) it suffices to show that

for any δ > 0,

lim sup
n→∞

P1

{
max
t≤n

t∑

k=1

Zk ≥ ID(1 + δ)n
}

= 0. (4.11)

Since

E1Zk =
L∑

l=1

E1Z
l
k ≤

L∑

l=1

IDl(gl, f l) = ID,

the left-hand side of (4.11) is less than or equal to

lim sup
n→∞

P1

{
max
t≤n

t∑

k=1

L∑

l=1

(
Z l

k − E1Z
l
k

)
≥ IDδn

}

≤
L∑

l=1

lim sup
n→∞

P1

{
max
t≤n

t∑

k=1

(
Z l

k − E1Z
l
k

)
≥ δ1n

}
,

where δ1 = IDδ/L.

Note that
∑n

k=1

(
Z l

k − E1Z
l
k

)
is a martingale. Doob’s submartingale inequality
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(Theorem 14.6 of Williams [42]) implies that

P1

{
max
t≤n

t∑

k=1

(
Z l

k − E1Z
l
k

) ≥ δ1n
}
≤

∑n
k=1 E1(Z

l
k)

2

δ2
1n

2
.

Note that for any k, E1(Z
l
k)

2 ≤ VDl(gl, f l) by definition, and hence

P1

{
max
t≤n

t∑

k=1

(
Z l

k − E1Z
l
k

)
≥ δ1n

}
≤ VDl(gl, f l)

δ2
1n

,

which implies (4.11) since VDl(gl, f l) is finite. Relation (4.9) follows.

4.1.2 Asymptotically Optimal Open-Ended Tests

We now propose asymptotically optimal procedures satisfying (4.8) for all cases in

open-ended hypothesis testing problems.

In cases A, C and E, we propose the following open-ended tests, denoted by

M(a) :

Each sensor uses the optimal monotone likelihood ratio quantizer ϕl. Namely,

U l
n = ϕl(X l

n) = d if and only if λl
d ≤

gl(X l
n)

f l(X l
n)

< λl
d+1,

where 0 = λl
0 ≤ λl

1 ≤ · · · ≤ λl
D−1 ≤ λl

D = ∞ are optimally chosen in the sense that

the Kullback-Leibler information number I(gl
ϕ, f l

ϕ) achieves the supremum IDl(gl, f l).

Here f l
ϕ and gl

ϕ are the densities induced on U l
n when the observations X l

n are dis-

tributed as f l and gl, respectively.

Based on the independent, identically distributed observations Un = (U1
n, . . . , UL

n ),

the fusion center then uses the one-sided sequential probability ratio test (SPRT) with

log-likelihood ratio boundary a, i.e., our stopping time M(a) is given by

M(a) = inf
{

n ≥ 1 :
n∑

k=1

( L∑

l=1

log
gl

ϕ(U l
k)

f l
ϕ(U l

k)

)
≥ a

}
. (4.12)
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Lemma 4.2. For α < 1 let a = | log α|, then M(a) satisfies (4.8) and

E1M(a) =
a

ID

+ O(1), (4.13)

as a →∞, where ID is defined in (4.6).

Remark: This lemma and part (i) of Lemma 4.1 establish the asymptotic optimal-

ity of our procedures M(a) in open-ended hypothesis testing problems in cases A, C

and E.

Proof. Applying standard asymptotic theory for one-sided SPRTs to the sensor mes-

sages Un = (U1
n, . . . , UL

n ), the proof of (4.13) is straightforward.

In cases B and D, our proposed procedure T (a) in the open-ended testing problem

is as follows:

For each sensor Sl, one considers whether or not the log-likelihood ratio of f l

versus gl exceeds the boundary πla, where

πl =
I(gl, f l)∑L
l=1 I(gl, f l)

=
I(gl, f l)

Itot

. (4.14)

That is, for l = 1, 2, . . . , L and n = 1, 2, . . . , letting

Sl
n =

n∑
i=1

log
gl(X l

i)

f l(X l
i)

, (4.15)

define the sensor messages

U l
n = 1{Sl

n ≥ πla},

where 1{A} is the indicator of the event A. The fusion center will stop and reject P0

if U l
n = 1 for all l = 1, 2, . . . , L, i.e., our stopping time T (a) is

T (a) = inf
{

n ≥ 1 : Sl
n ≥ πla for all l = 1, 2, . . . , L

}
. (4.16)
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Lemma 4.3. For α < 1 let a = | log α|, then T (a) satisfies (4.8) and

E1T (a) =
a

Itot

+ O(
√

a), (4.17)

as a →∞, where Itot is defined in (4.7).

Remark: This lemma and part (ii) of Lemma 4.1 establish the asymptotic opti-

mality of our procedures T (a) in open-ended hypothesis testing problems in cases B

and D. Moreover, it is interesting to note that our policy T (a) only uses binary sensor

messages, but it is asymptotically optimal for general Dl(≥ 2).

Proof. For any stopping time τ, using Wald’s likelihood ratio identity, we have

P0(τ < ∞) = E1 exp
(−

L∑

l=1

Sl
τ ; τ < ∞)

.

Since Sl
T (a) ≥ πla for all l and

∑L
l=1 πl = 1, we have

P0(T (a) < ∞) ≤ E1 exp
(−

L∑

l=1

πla; T (a) < ∞)

= E1(e
−a; T (a) < ∞)

≤ e−a = α.

Thus T (a) satisfies (4.8).

To prove (4.17), for 1 ≤ l ≤ L, let

Tl = inf
{

n ≥ 1 : Sl
n ≥ πla

}
,

and

τl(Tl) = sup
{

n ≥ 1 :

Tl+n∑
i=Tl+1

log
gl(X l

i)

f l(X l
i)
≤ 0

}
.

For simplicity, denote τl = τl(0). It is well known (e.g., Theorem D in Kiefer and
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Sacks [9]) that for any 1 ≤ l ≤ L,

E1τl < ∞ (4.18)

since log
(
gl(X)/f l(X)

)
has positive mean and finite variance under P1 by assumption

(A2).

By definition of Tl and τl(Tl), we have

T (a) ≥ max
1≤l≤L

Tl,

and

T (a) ≤ max
1≤l≤L

(
Tl + τl(Tl)

)
≤ max

1≤l≤L
Tl +

L∑

l=1

τl(Tl).

Now since X l
1, X

l
2, . . . are independent and identically distributed under P1, we have

E1τ1(Tl) = E1τ1, and thus

E1 max
1≤l≤L

Tl ≤ E1T (a) ≤ E1 max
1≤l≤L

Tl +
L∑

l=1

E1τl. (4.19)

Now Tl can be written in the form

Tl = inf
{

n ≥ 1 :
n∑

i=1

( 1

I(gl, f l)
log

gl(X l
i)

f l(X l
i)

)
≥ a

Itot

}
,

and hence Lemma 3.7 leads to

E1

(
Tl − a

Itot

)+
= O(

√
a).

Thus

E1 max
1≤l≤L

Tl ≤ a

Itot

+
L∑

l=1

E1

(
Tl − a

Itot

)+

=
a

Itot

+ O(
√

a).
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Relation (4.17) follows at once from (4.18) and (4.19).

Remark: A heuristic argument indicates that, as a →∞,

E1T (a) = E1 max
1≤l≤L

Tl + O(1) =
a

Itot

+ (C + o(1))
√

a, (4.20)

where

C = E max
1≤l≤L

( σl

I(gl, f l)
Zl

)
/
√

Itot

and Z1, . . . , ZL are independent standard normal random variables.

4.1.3 Two-Decision Hypothesis Testing

Suppose that we want to decide which of P0 and P1 is true. That is, we want to find

two-decision sequential tests such that

P0(Accept H1) ≤ α, P1(Accept H0) ≤ β. (4.21)

Applying the lower bounds in Lemma 4.1, it is easy to find asymptotic lower

bounds for the expected sample sizes τ.

Theorem 4.4. If τ is the sample size of a test satisfying (4.21), then as α + β → 0,

(i) In cases A, C and E, if VDl(gl, f l), defined in (4.4), is finite for all 1 ≤ l ≤ L,

then we have

E1τ ≥ (1− o(1))
| log α|

ID

, (4.22)

where ID is defined in (4.6). Moreover, if VDl(f l, gl) is also finite for all l, then we

have

E0τ ≥ (1− o(1))
| log β|

JD

, (4.23)

where JD =
∑L

l=1 IDl(f l, gl).
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(ii) In cases B and D,

E1τ ≥ (1− o(1))
| log α|

Itot

, E0τ ≥ (1− o(1))
| log β|
Jtot

, (4.24)

where Itot is defined in (4.7), and Jtot =
∑L

l=1 I(f l, gl).

Proof. Wald’s inequalities (Theorem 2.39 of Siegmund [33]) imply

ItotE1τ ≥ (1− β) log
1− β

α
+ β log

β

1− α
,

JtotE0τ ≥ (1− α) log
1− α

β
+ α log

α

1− β
. (4.25)

Relation (4.24) in part (ii) of the theorem follows at once from these inequalities and

the fact that (1−x) log(1−x)+x log x attains its minimum value − log 2 when x = 1
2
.

To prove (4.22) in part (i) of the theorem, define a new stopping time τ ′ by

τ ′ =





τ if τ chooses P1

τ + M1 if τ chooses P0

,

where M1 is the stopping time obtained by applying M(a), defined in (4.12) with a =

| log α|, to all sensors observations from time τ on, i.e., X l
τ+1, X

l
τ+2, . . . for 1 ≤ l ≤ L.

It is obvious that τ ′ is also a procedure in cases A, C and E.

Note that M1 is independent of τ, and by Lemma 4.2,

P0

(
M1 < ∞) ≤ α, and E1M1 =

| log α|
ID

+ O(1).

Thus

P0

(
τ ′ < ∞

)
≤ P0

(
τ chooses P1

)
+ P0

(
M1 < ∞; τ chooses P0

)

≤ α + P0

(
M1 < ∞) ≤ 2α,
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and

E1τ
′ ≤ E1τ + E1

(
M1; τ chooses P0

) ≤ E1τ + β E1M1

= E1τ + β
( | log α|

ID

+ O(1)
)
.

Now using the results in Lemma 4.2 for τ ′, we have

E1τ
′ ≥ (1 + o(1))

| log(2α)|
ID

,

and thus

E1τ ≥ (1 + o(1))
| log(2α)|

ID

− β
( | log α|

ID

+ O(1)
)

= (1− o(1))
| log α|

ID

,

as α + β → 0. Therefore (4.22) holds. The proof of (4.23) is identical.

It is easy to see that the asymptotic lower bounds in Theorem 4.4 are sharp. For

example, the following test achieves the asymptotic lower bound in (4.22) in cases A,

C and E.

Each sensor uses the optimal MLRQ ϕl so that the Kullback-Leibler information

number I(gl
ϕ, f l

ϕ) achieves the supremum IDl(gl, f l). Based on the independent ob-

servations Un = (U1
n, . . . , UL

n ), the fusion center uses the sequential probability ratio

test (SPRT) with log-likelihood ratio boundaries a < 0 < b, so that the corresponding

error probabilities are at most α and β. In other words, the stopping time of our test

is

M̂(a, b) = inf
{

n ≥ 1 :
n∑

k=1

L̂k 6∈ (a, b)
}

, where L̂k =
L∑

l=1

log
gl

ϕ(U l
k)

f l
ϕ(U l

k)
. (4.26)

We stop sampling at time M̂(a, b), and if M̂(a, b) < ∞




decide H0 if
∑n

k=1 L̂k ≤ a,

decide H1 if
∑n

k=1 L̂k ≥ b.
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Note that L̂1, L̂2, . . . are independent and identically distributed with

E1L̂k =
L∑

l=1

IDl(gl, f l) = Itot, and E0L̂k ≤ Jtot.

Applying well known properties of the SPRT (Section 2.2 of Siegmund [33]), we can

choose a and b so that our test satisfies (4.21) and achieves the asymptotic lower

bound in (4.22).

In cases A, C and E, I have not been able to find procedures to achieve the lower

bounds in (4.22) and (4.23) simultaneously. I believe that such a procedure does not

exist in case A in general, but I have not been able to devise a proof.

In cases B and D when Dl ≥ 3 for each l, we propose the following asymptotically

optimal procedures, using a combination of open-ended tests.

Define πl as in (4.14), and

ρl =
I(f l, gl)∑L
l=1 I(f l, gl)

=
I(f l, gl)

Jtot

.

For each sensor Sl,

U l
n =





0 if Sl
n ≤ −ρlb,

1 if Sl
n ≥ πla,

2 otherwise

, (4.27)

where Sl
n is defined in (4.15). Finally, the fusion center will





stop and decide H1 if U l
n = 1 for all 1 ≤ l ≤ L,

stop and decide H0 if U l
n = 0 for all 1 ≤ l ≤ L,

continue sampling otherwise.

(4.28)

Thus our stopping time is T̂ (a, b) = min
(
T (a), T ′(b)

)
, where T (a) is given by (4.16)
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and analogously

T ′(b) = inf
{

n ≥ 1 : Sl
n ≤ −ρl b for all 1 ≤ l ≤ L

}
. (4.29)

We decide H1 if T̂ (a, b) = T (a) and decide H0 if T̂ (a, b) = T ′(b).

Theorem 4.5. Assume α + β < 1 let a = | log α| and b = | log β|. Then

P0

(
T̂ (a, b) accepts H1

) ≤ α,

P1

(
T̂ (a, b) accepts H0

) ≤ β. (4.30)

As α + β → 0, we have

E1T̂ (a, b) ≤ E1T (a) ≤ (1 + o(1))a/Itot. (4.31)

Similarly, if (4.2) holds with f and g interchanged, then

E0T̂ (a, b) ≤ E0T
′(b) ≤ (1 + o(1))b/Jtot, (4.32)

as α + β → 0.

Remark: Based on the lower bound in (4.24), under the conditions of this theorem

T̂ (a, b) is asymptotically optimal in cases B and D in the sense of minimizing both

E0T̂ (a, b) and E1T̂ (a, b) asymptotically subject to (4.21).

Proof. Note that P0

(
T ′(b) < ∞)

= 1. By the definition of T̂ (a, b), we have

P0

(
T̂ (a, b) accepts H1

)
= P0

(
T (a) < T ′(b)

) ≤ P0

(
T (a) < ∞)

.

The first inequality in (4.30) follows at once from the property of T (a) established in

Lemma 4.3. The second inequality in (4.30) is proved similarly.

Relation (4.31) follows from the definition of T̂ (a, b) and (4.17). The proof of

(4.32) is identical.
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4.2 Change-Point Problems

Assume that at some unknown time ν, the density function of the sensor observations

{X l
n} changes simultaneously for all 1 ≤ l ≤ L from f l to gl. That is, for each 1 ≤

l ≤ L, the observations at sensor Sl, X l
1, X

l
2, . . . , are independent random variables

such that X l
1, . . . , X

l
ν−1 are independent and identically distributed with density f l

and X l
ν , X

l
ν+1, . . . are independent and identically distributed with density gl. Recall

that we also assume that the observations are independent from sensor to sensor. Let

Pν and Eν denote the probability measure and expectation, when the change occurs

at time ν. Let P∞ and E∞ denote the probability measure and expectation, when

there is no change, i.e., ν = ∞.

As in the classical change-point problems, we want to design the sensors’ message

function φl
n and seek a stopping time τ at the fusion center that minimizes the “worst

case” detection delay, as defined by Lorden [16],

E1(τ) = sup
ν≥1

(
ess supEν

[
(τ − ν + 1)+

∣∣X1
[1,ν−1], . . . , X

L
[1,ν−1]

])

subject to

E∞τ ≥ γ. (4.33)

The worst-case detection delay E1(τ) can be replaced by the “average” detection

delay, proposed by Shiryayev [31] and Pollak [24],

D(τ) = sup
ν≥1

Eν(τ − ν|τ ≥ ν).

Although the worst-case detection delay E1(τ) is always greater than the average

detection delay D(τ), they are asymptotically equivalent. Either one can be used in

our theorems.

We will study this problems in two different cases: limited local memory (cases

A, C and E) and full local memory (cases B and D).
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4.2.1 Limited Local Memory

In cases A, C and E, the following procedure M∗(a) has been studied in the literature:

Each sensor uses the optimal MLRQ, ϕl, that achieves the supremum IDl(gl, f l),

just as in the definition of M(a) in the open-ended hypothesis testing problem. Based

on the independent observations Un = (U1
n, . . . , UL

n ), the fusion center uses Page’s

CUSUM with log-likelihood ratio boundary a to detect whether or not a change has

occurred, i.e., the stopping time is given by

M∗(a) = inf
{

n ≥ 1 : max
1≤k≤n

n∑

i=k

( L∑

l=1

log
gl

ϕ(U l
i )

f l
ϕ(U l

i )

)
≥ a

}
. (4.34)

Crow and Schwartz [6] showed that M∗(a) is optimal in the sense that the MLRQ is

optimized at each sensor. Later Tartakovsky and Veeravalli [36] proved the asymptotic

optimality property of M∗(a) in case A under the restriction that the sensor message

functions {φ1, . . . , φL} satisfy the following condition: For all ν = 1, 2, . . . , as n goes

to ∞, n−1
∑ν+n

i=ν

∑L
l=1 Z l

i converges in probability under Pν to some positive constant

I, where Z l
i = log

(
gl

φ(U
l
i )/f

l
φ(U

l
i )

)
. Veeravalli [39] conjectured that M∗(a) is also

asymptotically optimal in case E because it has performance similar to the Bayes

solutions in case E. The following theorem shows that under a condition on second

moments, M∗(a) is asymptotically optimal without any restriction on the sensors’

message functions or the fusion center decision rule in cases A, C and E.

Theorem 4.6. Assume VDl(gl, f l), defined in (4.4), is finite for all 1 ≤ l ≤ L. If

{τ(γ)} is a family of procedures in cases A, C and E satisfying (4.33), then

E1τ(γ) ≥ (1 + o(1))
log γ

ID

, (4.35)

as γ →∞, where ID is defined in (4.6). For γ > 1 let a = log γ. Then M∗(a) satisfies

(4.33) and

E1M
∗(a) ≤ log γ

ID

+ O(1),
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so that it asymptotically minimizes the detection delay E1M
∗(a) as γ → ∞ in cases

A, C and E.

Proof. To prove (4.35), we use a result of Lai [11], which generalizes Lorden’s asymp-

totic theory. Lai [11] showed that

E1τ ≥ (1 + o(1))
log E∞τ

I

as E∞τ →∞, provided that for all δ > 0,

lim
n→∞

sup
ν≥1

ess supP(ν)
{

max
t≤n

ν+t∑
i=ν

log
g
(
Xi|X1, · · · , Xi−1

)

f
(
Xi|X1, · · · , Xi−1

) ≥ I(1 + δ)n

∣∣∣X1, · · · , Xν−1

}
= 0.

Thus it suffices to verify that this condition holds for the fusion center observations

Xi = (U1
i , . . . , UL

i ) and I = ID. The remainder of the proof is similar to that of part

(i) of Lemma 4.1.

Observe that M∗(a), defined in (4.34), is Page’s CUSUM procedure, so that by

applying the standard bounds,

E∞M∗(a) ≥ ea

and

E1M
∗(a) ≤ a

ID

+ O(1),

where ID is defined in (4.6). Thus M∗(a) achieves the lower bound in (4.35), and

therefore it is asymptotically optimal in cases A, C and E.

4.2.2 Full Local Memory

It has been an open problem also to find asymptotically optimal procedures (including

both the sensor and fusion center decision rules) in cases B and D. We propose the
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following asymptotically optimal procedures T ∗(a) in these cases.

In cases B and D,define the CUSUM statistic

W l
n = max

1≤k≤n

n∑

i=k

log
gl(X l

i)

f l(X l
i)

(4.36)

for each l = 1, . . . , L, and n = 1, 2, . . . . Each sensor Sl sends a local summary message

based on whether or not the CUSUM statistic exceeds a constant threshold:

U l
n =





1 if W l
n ≥ πla

0 otherwise
, (4.37)

where πl is defined in (4.14). Then the fusion center will stop and declare a change

has occurred if and only if U l
n = 1 for all 1 ≤ l ≤ L.

This stopping time T ∗(a) can be written as

T ∗(a) = inf
{

n ≥ 1 : W l
n ≥ πla for all 1 ≤ l ≤ L

}
. (4.38)

Theorem 4.7. As a →∞,

E1T
∗(a) ≤ a

Itot

+ O(
√

a), (4.39)

where Itot is defined in (4.7). Furthermore, if we assume

∫
gl(x)

∣∣∣ log
gl(x)

f l(x)

∣∣∣
3

dx < ∞, (4.40)

for 1 ≤ l ≤ L, then as a →∞,

E∞T ∗(a) ≥ (1 + o(1))ea, (4.41)

Moreover, if {τ(a)} is a family of procedures in cases B and D such that (4.41) holds,
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then

E1τ(a) ≥ a

Itot

+ O(1), as a →∞. (4.42)

Remarks:

(1) It is essential that each sensor continue sending the local messages to the fusion

center even after the CUSUM statistic for that sensor exceeds the local threshold.

(2) For each sensor, the mean time between false alarms is exp(πla). By the renewal

property of the CUSUM statistics, the mean time between false alarms for the fusion

center is of order
∏L

l=1 exp(πla) = exp(a) since we continue sending local messages.

(See the proof below. As in Siegmund and Venkatraman [34], the key idea is Lemma

4.11).

(3) It is interesting to note that at the sensors, we cannot replace the CUSUM statis-

tics by the Shiryayev-Roberts statistics defined in (5.2): in that case the mean time

between false alarms in the fusion center is roughly exp((maxL
l=1 πl)a), which is much

smaller than exp(a) as a →∞.

(4) This theorem shows that the procedure T ∗(a) minimizes the detection delay up

to O(
√

a) among all procedures in cases B and D such that (4.41) holds.

Proof. The inequality (4.39) follows from the definition of T ∗(a) and T (a) and the

property of T (a) in (4.17) of Lemma 4.3.

To prove (4.41), let A = exp(a) and note that

E∞N =
∞∑

n=1

P∞(N ≥ n) =
∞∑

n=1

∫ n+1

n

P∞(N ≥ n)dx

≥
∞∑

n=1

∫ n+1

n

P∞(N ≥ x)d x =

∫ ∞

1

P∞(N ≥ x)dx

= A

∫ ∞

1/A

P∞(N ≥ tA)dt.
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Thus by Lemma 4.11 below and Fatou’s Lemma,

lim inf
a→∞

(
E∞T ∗(a)/A

) ≥ lim inf
a→∞

∫ ∞

0

P∞(T ∗(a) ≥ tA)1{t ≥ 1

A
}dt

≥
∫ ∞

0

lim inf
a→∞

[
P∞(T ∗(a) ≥ tA)1{t ≥ 1

A
}
]
dt

=

∫ ∞

0

exp(−t)dt = 1,

and hence (4.41) holds. The asymptotic lower bound in (4.42) follows at once from

Proposition 3.10 in Chapter 3.

To complete the proof, we need to prove the following lemmas.

Lemma 4.8. Let W l
n be the CUSUM statistic defined in (4.36). For l = 1, . . . , L,

n = 1, 2, . . . , and b > 0,

P∞
(
W l

n ≥ b
)
≤ exp(−b).

Proof. Let Sl
n denote the log-likelihood ratio

∑n
i=1 log

(
gl(X l

i)/f
l(X l

i)
)
, and define

Sl
0 = 0. Then the CUSUM statistic takes the form

W l
n = max

0≤k<n

(
Sl

n − Sl
k

)
. (4.43)

Since (X l
1, . . . , X

l
n) have the same joint distribution as (X l

n, . . . , X
l
1), W l

n has the same

distribution as max1≤i≤n Sl
i. Thus,

P∞
(
W l

n ≥ b
)

= P∞
(

max
1≤i≤n

Sl
i ≥ b

)
= P∞(Nl(b) ≤ n),

where

Nl(b) = inf
{

n ≥ 1 : Sl
n ≥ b

}
.

Lemma 4.8 follows from the fact that

P∞(Nl(b) ≤ n) ≤ P∞(Nl(b) < ∞) ≤ exp(−b).
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Lemma 4.9. For k = 1, 2, . . . ,

P∞(T ∗(a) = k) ≤ 1

A
.

Proof. Note that, since the observations are independent from sensor to sensor, ap-

plication of lemma 4.8 yields

P∞(T ∗(a) = k) ≤ P∞
(
W l

k ≥ πla for 1 ≤ l ≤ L
)

=
L∏

l=1

P∞(W l
k ≥ πla)

≤
L∏

l=1

exp(−πla) = exp(−a) =
1

A
.

Using Lemma 4.9, it is easy to derive

Lemma 4.10. For m = 1, 2, . . . ,

P∞(T ∗(a) ≤ m) ≤ m

A
.

Lemma 4.11. For t > 0,

lim sup
a→∞

P∞(N ≤ tA) ≤ 1− exp(−t). (4.44)

Proof. For simplicity, we consider only the case L = 2. The same idea can be applied

to the cases L = 1 and L ≥ 3. Choose m = m(a) such that m/a2 → ∞, and

log m/a → 0. Note that

P∞(N ≤ tA) = P∞
(

max
0≤k<tA/m

max
km+1≤j≤(k+1)m

[
min
1≤l≤2

W l
j

πl

]
> a

)

= P∞
(

max
k

max
j

[
min
1≤l≤2

max
il

Sl
j − Sl

il

πl

]
> a

)
, (4.45)
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where the maximum is taken over 0 ≤ k < tA/m, km + 1 ≤ j ≤ (k + 1)m and

1 ≤ il ≤ j for l = 1, 2. For all such k, define

C1(k) = {i1 : km + 1 ≤ i1 ≤ j ≤ (k + 1)m}, C2(k) = {i1 : 1 ≤ i1 ≤ km},
D1(k) = {i2 : km + 1 ≤ i2 ≤ j ≤ (k + 1)m}, D2(k) = {i2 : 1 ≤ i2 ≤ km}.

For simplicity, omit k — e.g. write C1 for C1(k), and define

B1 = C1 ∩D1, B2 = C2 ∩D1, B3 = C1 ∩D2, B4 = C2 ∩D2.

For r = 1, 2, 3, 4, define

Qr = P∞
(

max
k

max
j

[
min
1≤l≤2

max
Br

Sl
j − Sl

il

πl

]
> a

)
,

where the maximum is taken over 0 ≤ k < tA/m, km + 1 ≤ j ≤ (k + 1)m and

(i1, i2) ∈ Br. Note that the right-hand side of (4.45) is less than
∑4

r=1 Qr, and hence

it suffices to show that

lim sup
a→∞

4∑
r=1

Qr ≤ 1− exp(−t).

It is easy to see that

Q1 = 1−
∏

k

P∞
(

max
j

[
min
1≤l≤2

max
il

Sl
j − Sl

il

πl

]
≤ a

)
,

where the product is taken over 0 ≤ k < tA/m, and the maximum is taken over

km + 1 ≤ il ≤ j ≤ (k + 1)m for l = 1, 2. Thus

Q1 = 1−
(
P∞(T ∗(a) > m)

)tA/m

.

By Lemma 4.10 we have

Q1 ≤ 1−
(
1− m

A

)tA/m

.
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Note that since m/A → 0 as a →∞, for given δ > 0, once a is sufficiently large,

1− m

A
≥ exp(−(1 + δ)

m

A
),

and thus Q1 ≤ 1− exp(−(1 + δ)t). Letting δ → 0, we obtain

lim sup
a→∞

Q1 ≤ 1− exp(−t).

To complete the proof of Lemma 4.11, it suffices to show that for all ε > 0, Q2, Q3

and Q4 are smaller than ε for sufficiently large a. We will prove this fact for Q2 in

Lemma 4.12. The proofs for Q3 and Q4 are similar.

Lemma 4.12. Under the condition (4.40) of Theorem 4.7, for all ε > 0, once a is

sufficiently large,

Q2 = P∞
(

max
k

max
j

[
min
1≤l≤2

max
il

Sl
j − Sl

il

πl

]
> a

)
≤ ε,

where the maximum is taken over 0 ≤ k < tA/m, km + 1 ≤ j ≤ (k + 1)m, 1 ≤ i1 ≤
km, and km + 1 ≤ i2 ≤ j ≤ (k + 1)m.

Proof. Note that j − i1 = j − km + km − i1 and {S1
j − S1

i1
} equals the sum of the

independent random walks {S1
j − S1

km} and {S1
km − S1

i1
}. Hence,

Q2 ≤ tA

m

m∑
j=1

P∞
(

max
1≤i≤tA

S
1

i + S1
j > π1a and W 2

j > π2a
)

≤ tA

m

m∑
j=1

P∞
(

max
1≤i≤tA

S
1

i + S1
j > π1a

)
P∞

(
W 2

j > π2a
)

≤ t exp(π1a)

m

m∑
j=1

P∞
(

max
1≤i≤tA

S
1

i + S1
j > π1 a

)
,

using Lemma 4.8 for W 2
j .
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Now using Wald’s likelihood ratio identity,

P∞
(

max
1≤i≤tA

S
1

i + S1
j > π1a

)

≤ P∞(S1
j > π1a) + P∞

(
max

1≤i≤tA
S

1

i > π1a− S1
j > 0

)

≤ P∞(S1
j > π1a) + E∞

(
exp(S1

j − π1a); π1a− S1
j > 0

)

= E∞ exp
(

min(0, S1
j − π1a)

)

= E1 exp
(

min(−S1
j ,−π1a)

)
.

Thus,

Q2 ≤ t

m

m∑
j=1

E1 exp
(

min(π1a− S1
j , 0)

)
.

Applying Lemma 4.13 (below) for S1
j under P1, and letting m1 = a2, we have for

sufficiently large a

sup
j≥m1

E1 exp
(

min(π1a− S1
j , 0)

)
≤ ε1.

Therefore,

Q2 ≤ t

m

(
m1 · 1 + (m−m1)ε1

) ≤ t(
m1

m
+ ε1).

and the lemma follows, since the right-hand side goes to 0 as a goes to ∞.

Lemma 4.13. Suppose X1, X2, . . . are independent and identically distributed with

EXi = µ > 0, Var(Xi) = σ2, and E|Xi|3 = ρ < ∞. Let Sn = X1 + . . . + Xn and

m1 = b2. Then

sup
n≥m1

E exp
(

min(b− Sn, 0)
)
→ 0,

as b →∞.

Proof. First we establish

E exp
(

min(b− Sn, 0)
)
≤ 3ρ

σ3
√

n
+ Φ

(b− nµ

σ
√

n

)
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+A
(b− nµ

σ
√

n
+ σ

√
n
)

exp
(
b +

(σ2

2
− µ

)
n
)
, (4.46)

where Φ(x) is the standard normal distribution and A(x) = 1− Φ(x) = Φ(−x).

Let Fn(x) denote the distribution function of Sn. Then

∣∣∣Fn(x)− Φ
(x− nµ

σ
√

n

)∣∣∣ ≤ 3ρ

σ3
√

n

for all x by the Berry-Esseen Theorem. Now

E exp
(
min(b− Sn, 0)

)
= Fn(b) +

∫ ∞

b

exp(b− x)dFn(x)

=

∫ ∞

b

Fn(x) exp(b− x)dx

≤
∫ ∞

b

( 3ρ

σ3
√

n
+ Φ

(x− nµ

σ
√

n

))
exp(−x + b)dx

=
3ρ

σ3
√

n
+ Φ

(x− nµ

σ
√

n

)
+

∫ ∞

b

φ(
x− nµ

σ
√

n
) exp(−x + b)

1

σ
√

n
dx,

and hence (4.46) holds.

We next bound each term on the right-hand side of (4.46). For n ≥ m1, the first

two terms are uniformly bounded by

3ρ

σ3b
+ Φ

(1− µb

σ

)
,

which goes to 0 as b →∞.

For the third term on the right-hand side of (4.46), we need to consider two cases:

(1) µ > σ2/2; and (2) µ ≤ σ2/2. In case (1), note that A(x) ≤ 1, and so for all

n ≥ m1, the third term is smaller than

exp
(
b− (µ− σ2

2
)b2

)
,
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which goes to 0 as b → ∞. In case (2), note that A(x) ≤ φ(x)/x for all x > 0,

where φ(x) is the density function of the standard normal distribution (see page 141

of Williams [42]). Thus the third term is smaller than

σ
√

n

b + (σ2 − µ)n
φ
(b− µn

σ
√

n

)
,

which also goes to 0 uniformly for all n ≥ m1 as b →∞.

Therefore, Lemma 4.13 holds.

4.3 Finiteness of V2(g, f )

In Lemma 4.1 and Theorems 4.4 and 4.7, we assume VD(g, f) < ∞, which is difficult

to verify in general. In this section, we give some sufficient conditions to verify it

when D = 2.

Theorem 4.14. Suppose f(y) and g(y) are two densities such that

Eg

(
log

g(Y )

f(Y )

)2

=

∫
log

( g(y)

f(y)

)2

g(y)dy < ∞.

Define

A(t) = Pf

(
g(Y ) > tf(Y )

)
, B(t) = Pg

(
g(Y ) > tf(Y )

)
.

Assume that A(t) and B(t) are continuous functions of t on (0,∞) and take values

0 and 1 for the same t. Moreover, assume that

lim sup
t→∞

√
B(t)

∣∣ log A(t)
∣∣ < ∞, (4.47)

and

lim sup
t→0

√
1− A(t)

∣∣ log(1−B(t))
∣∣ < ∞, (4.48)
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where
√

0| log 0| is interpreted as 0. Then V2(g, f) < ∞.

Proof. Assume that φ(Y ) is a measurable function taking values in {0, 1}. Denote by

fφ and gφ respectively the density of φ(Y ) when the density of Y is f or g. Let

Zφ = log
gφ(φ(Y ))

fφ(φ(Y ))
.

Note that when D = 2,

Eg(Zφ)
2 = βφ

(
log

βφ

αφ

)2
+ (1− βφ)

(
log

1− βφ

1− αφ

)2
,

where αφ = Pf (φ(Y ) = 1) and βφ = Pg(φ(Y ) = 1). Define

D(r, s) = r
(
log

r

s

)2
+ (1− r)

(
log

1− r

1− s

)2
,

for 0 < r, s < 1 and D(0, 0) = D(1, 1) = 0. To prove V2(g, f) < ∞, it suffices to show

that there exists a constant M such that for all φ,

D(βφ, αφ) < M.

If one of αφ and βφ is 0 or 1, it is easy to see that Zφ is 0 with probability 1 under

g, and hence D(βφ, αφ) = 0. So it suffices to consider the case where 0 < αφ, βφ < 1.

Since D(b, a) = D(1−b, 1−a), assume without loss of generality that 0 < αφ ≤ βφ < 1.

(Otherwise consider 1 − φ(Y ) and use (4.48) instead of (4.47)). Since 1 − B(t) is a

cumulative distribution function and B(t) is continuous, there exists t0 ∈ (0,∞) such

that

B(t0) = βφ.

Now define γ∗ by

γ∗ =





1 if g(X) > t0f(X);

0 otherwise.

Then Pf (γ
∗ = 1) = A(t0) and Pg(γ

∗ = 1) = B(t0).
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The proof of the Neyman-Pearson lemma (page 65 of Lehmann [14]) shows that

∫
(γ∗ − γ)

(
g(y)− t0f(y)

)
dµ ≥ 0,

so that
(
B(t)− βφ

)− t0
(
A(t)− αφ

) ≥ 0.

Since B(t0) = βφ by our choice of t0, we have

A(t0) ≤ αφ.

Note that for fixed r,

∂D(r, s)

∂s
= 2

[1− r

1− s
log

1− r

1− s
− r

s
log

r

s

]
,

which is positive for all s ≤ r. Thus D(r, s) is a decreasing function of s in the interval

[0, r]. In particular,

D(βφ, αφ) ≤ D(βφ, A(t0)) = D
(
B(t0), A(t0)

)
.

Therefore, it suffices to show that there exists a constant M such that for all t,

D
(
B(t), A(t)

)
< M.

Since A(t) and B(t) are continuous functions of t, it suffices to show that D
(
B(t), A(t)

)

is bounded as t goes to 0 or ∞. It is easy to see that if the likelihood ratio g(y)/f(y)

has a positive lower bound b0 > 0, then D
(
B(t), A(t)

)
is 0 if b < b0. So it suffices to

consider the case when such a lower bound does not exist.

Now B(t) and A(t) go to 1 as t goes to 0, so

lim
t→0

√
B(t)

∣∣∣ log
B(t)

A(t)

∣∣∣ = 0.
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By Wald’s likelihood ratio identity, we have

1−B(t) = Pg

(
g(Y ) ≤ tf(Y )

)
= Ef

( g(Y )

f(Y )
; g(Y ) ≤ tf(Y )

)

≤ t Pf

(
g(Y ) ≤ tf(Y )

)
= t(1− A(t)).

Using the fact that 1− A(t) ≤ 1, we know that
√

1−B(t)
∣∣ log 1−B(t)

1−A(t)

∣∣ is less than

max
{√

1−B(t)
∣∣ log(1−B(t))

∣∣,
√

1−B(t)
∣∣ log t

∣∣
}

(4.49)

As t → 0, B(t) → 1, so that the first term in equation (4.49) goes to 0. By Chebyshev’s

inequality the square of the second term is

(log t)2Pg

((− log
g(Y )

f(Y )

)
> | log t|

)
≤ Eg

(
− log

g(Y )

f(Y )

)2

,

which is finite by the assumption. Hence

lim sup
t→0

D
(
B(t), A(t)

)
< ∞

Similarly, it is clear that

lim
t→∞

√
1−B(t)

∣∣∣ log
1−B(t)

1− A(t)

∣∣∣ = 0,

and

lim sup
t→∞

√
B(t)

∣∣∣ log
B(t)

A(t)

∣∣∣ = lim sup
t→∞

√
B(t)

∣∣ log A(t)
∣∣

is finite by the assumption in (4.47). Hence

lim sup
t→∞

D
(
B(t), A(t)

)
< ∞,

and Theorem 4.14 is proved.
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Corollary 4.15. Suppose the distribution of the random variable Y belongs to a one-

parameter exponential family having the continuous densities

fθ(y) = exp{θy − b(θ)}, −∞ < y < ∞, θ ∈ Ω

with respect to a σ-finite measure µ, where Ω is an open interval on the real line

and b(θ) is twice differentiable with respect to θ. Let Fθ(y) denote the distribution

function of Y. Consider θ0 < θ1 in Ω, and let fi = fθi
and Fi = Fθi

for i = 0, 1.

Define y0 = sup{y : F0(y) = 0} and y1 = inf{y : F1(y) = 1}. If

lim
y→y0

(F0(y))3/2

f0(y)
< ∞, and lim

y→y1

(1− F1(y))3/2

f1(y)
< ∞,

then both V2(f0, f1) and V2(f1, f0) are finite.

Proof. Since f1(y)/f0(y) is a monotonically increasing function of y, it suffices for

V2(f1, f0) < ∞ to show that equations (4.47) and (4.48) hold for A(t) = 1−F0(log t)

and B(t) = 1− F1(log t), which is straightforward using L’Hôpital’s Rule. The proof

is identical for V2(f0, f1).

Remark: It is easy to check that two normal distributions with the same variance

satisfy the conditions in Corollary 4.15, and so do two exponential distributions.

4.4 Numerical Examples

Suppose there are three sensors sending binary messages to the fusion center, i.e.,

L = 3 and Dl = 2. Assume that the observations at sensor Sl are independent and

identically distributed normal random variables with mean 0 and variance 1 under

H0 and with mean µl and variance 1 under H1.

If µl > 0, then in cases A, C and E, the likelihood ratio at sensor Sl is a mono-

tonically increasing function of the observation, and hence the MLRQ at each sensor
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Sl can be written as

U l
k =





1 X l
k ≥ λl;

0 otherwise.

Thus the Kullback-Leibler information number for U l
k is

I(λl) = h
(
Φ(λl − µl), Φ(λl)

)
,

where Φ(·) is the distribution function of a standard normal random variable and

h(a, b) = a log(a/b) + (1 − a) log((1 − a)/(1 − b)). Since the function I(λl) has a

unique maximum value over [0,∞], it is easy to find the optimal λl.

Let us consider the case of three nonidentical sensors: µ1 = 0.4, µ2 = 0.8 and

µ3 = 1. The optimal thresholds λl are 0.3169, 0.6347 and 0.7941, respectively, and the

corresponding optimal Kullback-Leibler information numbers I(λl) are 0.0509, 0.2038

and 0.3186, respectively. Therefore,

ID = 0.5733, and Itot =
3∑

l=1

(µl)
2

2
= 0.9.

Consider the following three optimal procedures: (i) M(a) defined by (4.12) in

cases A, C and E; (ii) T (a) defined by (4.16) in cases B and D, and (iii) N(a), the

optimal one-sided SPRT for the centralized problem, which is defined by

N(a) = inf{n ≥ 1 : Sn ≥ a}, where Sn =
n∑

k=1

L∑

l=1

log
gl(X l

k)

f l(X l
k)

. (4.50)

Since 1/ID = 1.7443 and 1/Itot = 1.1111, the asymptotic theory in Section 4.1 indi-

cates that

E1M = 1.7443 | log α|+ O(1);

E1T = 1.1111 | log α|+ O(
√
| log α|); (4.51)

E1N = 1.1111 | log α|+ O(1),
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where α is the error probability.

For each of these three stopping times τ(a) and a = 20 ∗ i, 1 ≤ i ≤ 100, we

simulated the expected sample size E1τ(a) directly and used importance sampling to

simulate the error probability α = P0(τ(a) < ∞). That is, the estimator of α is

α̂ =
1

m

m∑
j=1

exp(−Sτj
), (4.52)

based on m independent realization of (τ,Sτ ) under the probability P1. Fitting func-

tions of α of the same form as (4.51) to the simulation results based on 2500 repeti-

tions, we obtained

E1M = 1.7441 | log α|+ 0.3109;

E1T = 1.1150 | log α|+ 2.712
√
| log α| − 1.109;

E1N = 1.1112 | log α|+ 0.2217,

which agree well with the asymptotic expressions in (4.51).

Now consider the same examples for change-point problem, i.e., suppose there

are three sensors sending binary messages to the fusion center, so that L = 3 and

Dl = 2. Assume that the observations at sensor Sl are independent and identically

distributed normal random variables with mean 0 and variance 1 before the change

and independent and identically distributed with mean µl and variance 1 after the

change. Again, assume µ1 = 0.4, µ2 = 0.8 and µ3 = 1.

We compare the following three optimal procedures: (i) M∗(a), defined by (4.34)

in cases A, C and E; (ii) T ∗(a), defined by (4.38) in cases B and D, and (iii) N∗(a),

Page’s CUSUM procedure in the centralized problem, which is defined by

N∗(a) = inf{n ≥ 1 : max
0≤k≤n−1

(
Sn − Sk

) ≥ a},

where Sn is defined by (4.50) and S0 = 0. Now the asymptotic theory in Section 4.2
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indicates that

E1M
∗ = 1.7443 log γ + O(1);

E1T
∗ = 1.1111 log γ + O(

√
log γ); (4.53)

E1N
∗ = 1.1111 log γ + O(1),

where γ is the mean time between false alarms.

For these three procedures τ(a), the renewal property of CUSUM statistics implies

that the detection delay E1τ (or D(τ)) is just E1τ, the expected sample size when

the change happens at time ν = 1. It is therefore straightforward to simulate the

detection delay. However, it is very difficult to simulate E∞τ(a) directly if a is large.

As pointed out in Lai [10], if τ is a CUSUM procedure,

E∞τ ∼ n

P∞(τ ≤ n)
, (4.54)

provided that γ = E∞τ satisfies n/ log γ → ∞ and log n = o(log γ) as γ → ∞. It

can be shown that expression (4.54) also holds for these three asymptotically optimal

procedures. Thus, by importance sampling, a good estimator of E∞τ(a) for these

procedures is

n/
{ 1

m

m∑
j=1

(
exp(−Sτj

)1(τj ≤ n)
)}

,

based on m independent realization of (τ,Sτ ) up to the specified time n = a2 under

the probability P1.

For a = 20∗i, 1 ≤ i ≤ 100, Monte Carlo experiments with 2500 repetitions yielded

estimates for the detection delay E1τ and the mean time between false alarms for each

of these three optimal procedures. Fitting function of α of the same form as (4.53)
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to the simulation results, we obtained, with γ = E∞τ(a)

E1M
∗ = 1.7417 log γ − 7.423;

E1T
∗ = 1.1136 log γ + 2.6857

√
log γ − 8.9343;

E1N
∗ = 1.1091 log γ − 4.4063,

which agree well with the expression (4.53) obtained from the asymptotic theory in

Section 4.2.
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Chapter 5

Some Results Related to Classical
Change-Point Problems

In this chapter, we study classical change-point problems with given pre-change distri-

bution. We briefly introduce the Shiryayev-Roberts procedures. Then we show that

the proof of the optimality property of the randomized Shiryayev-Roberts procedure

in Yakir [43] is wrong. Finally we construct a counterexample to disprove Pollak’s

conjecture on change-point problems for dependent observations. In this chapter we

use the notations in Pollak [24] and Yakir [43], which are slightly different from those

in the previous chapters.

5.1 Shiryayev-Roberts Procedure

Given densities f and g, suppose that we observe a sequence of independent random

variables X1, X2, . . . whose density changes at some unknown time from f to g. Let

Pk denote the probability measure (with change time k) when X1, . . . , Xk−1 have

density f, while Xk, Xk+1, . . . have density g. Let P∞ denote the probability measure

when there is no change, i.e., X1, X2, . . . are independent and identically distributed

with density f. Then Page’s CUSUM procedure in (2.5) can be written as

TA = inf
{
n ≥ 1 : max

1≤k≤n

n∏

i=k

g(Xi)

f(Xi)
≥ A

}
.

The following alternative to Page’s CUSUM procedure TA has been suggested by
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Shiryayev [30] and Roberts [28]:

NA = inf
{
n ≥ 1 :

n∑

k=1

n∏

i=k

g(Xi)

f(Xi)
≥ A

}
. (5.1)

This so-called Shiryayev-Roberts procedure is a limit of Bayes solutions and its prop-

erties have been studied in Pollak [24, 25]. It is well known that the behaviors of

these two procedures are similar (see, e.g., Pollak and Siegmund [26]).

Note that if we define

Rn =
n∑

k=1

n∏

i=k

g(Xi)

f(Xi)
, (5.2)

then

Rn = (1 + Rn−1)
g(Xn)

f(Xn)
,

for n = 1, 2, . . . , where R0 = 0.

This inspired Pollak [24] to consider the following randomized Shiryayev-Roberts

procedure:

τ(A,ϕ) = inf{n ≥ 0 : R∗
n ≥ A}, (5.3)

where

R∗
n = (1 + R∗

n−1)
g(Xn)

f(Xn)
,

and R∗
0 ∈ [0,∞) has distribution ϕ chosen by the statistician.

For the right distribution ϕ0, the asymptotic optimality of τ(A,ϕ0) was proved

in Pollak [24]. Later Yakir [43] claimed that it is exactly optimal in the sense of

minimizing the “average” detection delay

Dg(N) = sup
1≤k<∞

Ek(N − k + 1|N ≥ k − 1) (5.4)

among all stopping time N satisfying E∞N ≥ E∞τ(A,ϕ0).
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In Section 5.2, we point out that the proof in Yakir [43] is wrong. Simulation

results support our conclusions. It is still an open problem whether τ(A,ϕ0) is exactly

optimal.

It is natural to extend the theory of change-point problems to the case of depen-

dent observations. Lai [11] showed that the analog of Page’s CUSUM procedure is still

asymptotically optimal under some conditions which are difficult to verify in general.

Pollak [25] showed that the analog of the Shiryayev-Roberts procedure is asymp-

totically optimal in change-point problems for post-change distributions that are a

certain type of mixture. Pollak conjectured that the analogs of the Shiryayev-Roberts

procedures are asymptotically optimal for dependent observations in a wide context

([24], [44]). In Section 5.3, we construct a simple counterexample to show that the

close relationship between open-ended hypothesis tests and change-point procedures

may fail and the analogs of Page’s CUSUM or the Shiryayev-Roberts procedures are

not in general asymptotically optimal for dependent observations.

5.2 On Yakir’s Optimality Proof

In this section, we explain what is wrong with Yakir’s proof of the exact optimality

of the randomized Shiryayev-Roberts procedure.

5.2.1 Theoretical Results

In order to prove optimality properties of N∗
A = τ(A,ϕ0) for the right distribution ϕ0,

Pollak [24] and Yakir [43] considered the following extended Bayes problem B(G, p, c).

Let G be a distribution over the interval [0, 1]. Suppose 0 < p < 1. Assume that a

random variable π0 is sampled from the distribution G before taking any observations.

Given the observed value of π0, suppose the prior distribution of the change-point ν

is given by P(ν = 1) = π0 and P(ν = n) = (1 − π0)p(1 − p)n−2 for n ≥ 2. Consider

the problem of minimizing the risk

P(N < ν − 1) + cE(N − ν + 1)+,
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where c > 0 can be thought of as the cost per observation of sampling after a change.

It is well known (Shiryayev [30]) that the Bayes solution of this extended Bayes

problem B(G, p, c) is of the form

M∗
G,p,c = inf{n ≥ 0 : R∗

q,n ≥ A},

where q = 1− p, and

R∗
q,0 =

π0q

p(1− π0)
− 1, R∗

q,n = (R∗
q,n−1 + 1)

g(Xn)

f(Xn)

1

q
for n ≥ 1,

where π0 has a distribution G. Yakir [43] showed that for some sequence of p → 0,

there exists a sequence of G = Gp and c = cp such that c → c∗ and π0/p → R∗
0 + 1 in

distribution, and so N∗
A is a limit of Bayes solutions M∗

G,p,c. Yakir [43] claimed that

the Bayes solution M∗
G,p,c satisfies

lim
p→0

1− {Expected loss using M∗
G,p,c for Problem B(G, p, c)}
p

= (1− c∗E1N
∗
A)(ER∗

0 + 1 + E∞N∗
A). (5.5)

The proof of the exact optimality of the randomized Shiryayev-Roberts procedure

in Yakir [43] is based on this equation. However, the next theorem shows that equation

(5.5) does not hold in general.

Theorem 5.1.

lim
p→0

1− {Expected loss using M∗
G,p,c for Problem B(G, p, c)}
p

= E1

(
(1− c∗N∗

A)(R∗
0 + 1)

)
+ (1− c∗E1N

∗
A)E∞N∗

A. (5.6)

Proof. For the extended Bayes problem B(G, p, c), any stopping rule N satisfies

1− {Expected loss using N for Problem B(G, p, c)}
p
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=
P(N ≥ ν − 1)

p

[
1− cE(N − ν + 1|N ≥ ν − 1)

]
. (5.7)

Note that

P(N ≥ ν − 1|π0)

p
=

π0

p
+

∞∑

k=2

(1− π0)(1− p)k−2P(N ≥ k − 1|v = k)

=
π0

p
+

∞∑

k=2

(1− π0)(1− p)k−2P∞(N ≥ k − 1).

Since π0/p → R∗
0 + 1 in distribution, and M∗

G,p,c → N∗
A as p → 0, we have

lim
p→0

P(M∗
G,p,c ≥ ν − 1)

p
= ER∗

0 + 1 + E∞N∗
A. (5.8)

Arguing as in lemma 13 of Pollak [24], we have

lim
p→0

E(M∗
G,p,c − ν + 1|M∗

G,p,c ≥ ν − 1) =

E1N
∗
A

E∞N∗
A

ER∗
0 + 1 + E∞N∗

A

+
ER∗

0 + 1

ER∗
0 + 1 + E∞N∗

A

lim
p→0

E(N∗
A|ν = 1), (5.9)

and the limiting distribution of R∗
0 conditional on {ν = 1} has the density dϕ1(x) =

(x + 1)dϕ0(x)/
∫

(x + 1)dϕ0(x). Since R∗
0 ≥ 0, by definition (5.3),

E(N∗
A|R∗

0, ν = 1) ≤ E(N∗
A|R∗

0 = 0, ν = 1) = E1NA,

where NA is defined in (5.1). It is well known (Pollak [24]) that E1NA < ∞. Thus,

by bounded converge theorem,

lim
p→0

E(N∗
A|ν = 1) = lim

p→0
E

(
E(N∗

A|R∗
0, ν = 1)

∣∣∣ν = 1
)

= E1τ(A, ϕ1), (5.10)

since the limiting distribution of R∗
0, given the event {ν = 1}, is ϕ1. Using the relation
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between ϕ0 and ϕ1, it is easy to see that

E1τ(A,ϕ1) =
E1

(
N∗

A(R∗
0 + 1)

)

ER∗
0 + 1

. (5.11)

The theorem follows at once from Equations (5.7) – (5.11).

Remark: It is interesting to note that N∗
A is a so-called equalizer rule, i.e., for all

k ≥ 1,

Ek(N
∗
A − k + 1|N∗

A ≥ k − 1) = E1N
∗
A.

Yakir [43] claimed that N∗
A is also an equalizer rule in the context of the extended

Bayes problem B(G, p, c), i.e., for all k ≥ 1,

lim
p→0

E(N∗
A − ν + 1|N∗

A ≥ ν − 1, ν = k) = E1N
∗
A.

However, although this is true for all k ≥ 2, it is false for k = 1 in general. Note that

(5.10) and (5.11) tell us that for k = 1,

lim
p→0

E(N∗
A − ν + 1|N∗

A ≥ ν − 1, ν = 1) = E1τ(A,ϕ1) 6= E1N
∗
A in general.

Thus, Yakir’s claim is wrong.

It is natural to do simulations to confirm that (5.5) fails while (5.6) is correct.

However, it is difficult to simulate the value of the left-hand side of these two equa-

tions. Now based on (5.5), Yakir [43] also showed that

E1N
∗
A =

(µ0 + 1)(1− p0)

p0(µ0 + 1) + 1
, (5.12)

where

p0 = P(R∗
0 ≥ A) and µ0 = E(R∗

0|R∗
0 < A).

Yakir is correct in deriving (5.12) as a consequence of (5.5). Our result (5.6) and the
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arguments in Yakir [43] lead to

E1N
∗
A = (µ0 + 1)(1− p0)− p0E1

(
R∗

0N
∗
A

)
. (5.13)

Thus, in order to confirm that Yakir’s proof is wrong, it suffices to show that (5.12)

fails while (5.13) is correct.

5.2.2 Numerical Examples

To illustrate that (5.13) is correct and (5.12) is not, we have performed simulations

for the following example, which is considered by Pollak [24] and Yakir [43].

Define f0(x) = exp{−x}1(x > 0) and f1(x) = θ exp{−θx}1(x > 0), where θ > 1,

and pick an A such that 0 < A < θ. Yakir [43] chose the randomized R∗
0 as follows.

Let the distribution of R∗ be ϕ0, where

ϕ0(x) =





0 if x ≤ 0;

(x/A)1/(θ−1) if 0 < x ≤ A;

1 if x > A.

Let the distribution of Z be the P∞ distribution of f1(X)/f0(X). Both R∗ and Z are

independent of the sequence of observations X1, X2, . . . . Then R∗
0 = (R∗ + 1)Z.

As shown in Yakir [43], in this example,

µ0 =

∫ A

0

x dφ0(x) =
A

θ
, and p0 = 1− 1

θ1/(θ−1)(θ − 1)

∫ A

0

x(2−θ)/(θ−1)

(x + 1)1/(θ−1)
dx.

If θ = 3, then p0 = 1 − (log(2A + 1 + 2
√

A2 + A))/(2
√

3), and if θ = 2, then p0 =

1− (log(A + 1))/2.

Table 5.1 compares the theoretical values of E1N
∗
A given by (5.12) and (5.13)

to Monte Carlo estimates. Our theoretical result (5.13) was based on Monte Carlo

estimates of E1(R
∗
0N

∗
A), while Yakir’s result (5.12) was calculated exactly. The number

of repetitions was 100, 000 in the Monte Carlo experiment.

The results in Table 5.1 suggest that (5.13) gives correct values for E1N
∗
A and
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Table 5.1: Approximations for E1N
∗
A

θ A Monte Carlo Our result (5.13) Yakir’s result (5.12)

3 2.9 1.2357 ± 0.0032 1.2382 ± 0.0010 0.9938
3 2.7 1.1652 ± 0.0031 1.1632 ± 0.0010 0.9268
3 2.5 1.0877 ± 0.0029 1.0927 ± 0.0009 0.8617
2 1.98 0.7779 ± 0.0027 0.7715 ± 0.0013 0.5708
2 1.8 0.7005 ± 0.0026 0.6993 ± 0.0012 0.5090
2 1.5 0.5798 ± 0.0023 0.5813 ± 0.0010 0.4115

(5.12) does not. These results support the claim that Yakir’s proof of exact optimality

of the randomized Shiryayev-Roberts procedures is flawed.

5.3 Pollak’s Conjecture on Problems with Depen-

dent Observations

In this section we construct an example to show that the close relationship between

open-ended hypothesis tests and change-point procedures no longer holds for depen-

dent observations. It also disproves the conjectures of Pollak [24] and Yakir, Krieger

and Pollak [44], which state that Page’s CUSUM and the Shiryayev-Roberts proce-

dures are asymptotically optimal for dependent observations. Our example illustrates

that in open-ended hypothesis testing problems in which the null hypothesis specifies

a mixture of distributions, the SPRT is asymptotically optimal, but Page’s CUSUM

and the Shiryayev-Roberts procedures are not asymptotically optimal in the corre-

sponding change-point problems.

Consider three given probability densities f1, f2 and g such that

Eg

(
log

g(X)

fj(X)

)2

< ∞ for j = 1, 2, and Ef1

(
log

f1(X)

f2(X)

)2

< ∞, (5.14)

and I1 > I2, where Ij = I(g, fj) = Eg log(g(X)/fj(X)) (j = 1, 2) are the Kullback-

Leibler information numbers. Denote by Pf1 ,Pf2 and Pg the probability measures

when X1, X2, · · · are independent and identically distributed with densities f1, f2 and
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g, respectively. Choose a constant π0 ∈ (0, 1), say π0 = 1/2. Define

Pf = π0Pf1 + (1− π0)Pf2 .

Under Pf , X1, X2, · · · , Xn have a “mixture” joint density

f(x1, · · · , xn) = π0

n∏
i=1

f1(xi) + (1− π0)
n∏

i=1

f2(xi). (5.15)

Suppose that X1, X2, . . . are sampled from a true distribution P, and we are in-

terested in testing the null hypothesis H0 : P = Pf against the alternative hypothesis

H1 : P = Pg. The one-sided SPRT is defined by

τA = inf
{

n ≥ 1 :
n∏

i=1

g(Xi|X1, · · · , Xi−1)

f(Xi|X1, · · · , Xi−1)
≥ A

}

= inf
{

n ≥ 1 :

∏n
i=1 g(Xi)

π0

∏n
i=1 f1(Xi) + (1− π0)

∏n
i=1 f2(Xi)

≥ A
}

In change-point problems, we are interested in detecting a change in distribution

from Pf to Pg. Page’s CUSUM procedure has stopping time

TA = inf
{

n ≥ 1 : max
1≤k≤n

n∏

i=k

g(Xi|X1, · · · , Xi−1)

f(Xi|X1, · · · , Xi−1)
≥ A

}

= inf
{

n ≥ 1 : max
1≤k≤n

∏n
i=k g(Xi)

πk−1

∏n
i=k f1(Xi) + (1− πk−1)

∏n
i=k f2(Xi)

≥ A
}

,

where

πk =
π0

∏n
i=1 f1(Xi)

π0

∏n
i=1 f1(Xi) + (1− π0)

∏n
i=1 f2(Xi)

.

Similarly, the Shiryayev-Roberts procedure has stopping time

NA = inf
{

n ≥ 1 :
n∑

k=1

n∏

i=k

g(Xi|X1, · · · , Xi−1)

f(Xi|X1, · · · , Xi−1)
≥ A

}

= inf
{

n ≥ 1 :
n∑

k=1

∏n
i=k g(Xi)

πk−1

∏n
i=k f1(Xi) + (1− πk−1)

∏n
i=k f2(Xi)

≥ A
}

.
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The purpose of this section is to establish the asymptotic optimality of τA, the

SPRT, and to show that TA and NA, Page’s CUSUM and the Shiryayev-Roberts pro-

cedures, are not first-order asymptotically optimal. As a consequence, the conjecture

in Pollak [24] and Yakir, Krieger and Pollak [44] is false for dependent observations.

5.3.1 Asymptotic Optimality of the SPRT

The next theorem shows that τA, the one-sided SPRT, is asymptotically optimal.

Theorem 5.2. For any A > 0,

Pf (τA < ∞) ≤ 1

A
, (5.16)

and as A →∞

EgτA =
log A

I2

+ O(1). (5.17)

Moreover, if {N(A)} is a family of stopping times such that (5.16) holds, then

EgN(A) ≥ log A

I2

+ O(1), as A →∞. (5.18)

Proof. Relation (5.16) follows at once from Wald’s likelihood ratio identity. Note that

τA can be written as

τA = inf
{

n ≥ 1 :
n∑

k=1

log
g(Xk)

f2(Xk)
+ log

1

π0γn + (1− π0)
≥ log A

}
,

where γn =
∏n

i=1(f1(Xi)/f2(Xi)). Since I1 > I2, we have Eg log γ1 = I2 − I1 < 0.

Thus γn → 0 with probability 1 under Pg. The proof of (5.17) is therefore a direct

application of the nonlinear renewal theorem (Theorem 9.28 of Siegmund [33]).

To prove (5.18), note that (5.16) is equivalent to

π0Pf1(N(A) < ∞) + (1− π0)Pf2(N(A) < ∞) ≤ 1

A
,
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so that we have

Pf2(N(A) < ∞) ≤ 1

1− π0

· 1

A
.

Relation (5.18) now follows at once from the well known fact that

EgN ≥ | log Pf2(N < ∞)|
I2

.

5.3.2 Suboptimal Properties in Change-Point Problems

For 1 ≤ ν < ∞, let Pν denote probability when the change in distribution from

Pf to Pg occurs at the νth observation, so that X1, . . . , Xν−1 have joint density

f and Xν , Xν+1, . . . are independent and identically distributed with density g. Let

Pf denote the probability measure when there is no change, i.e. ν = ∞, in which

case X1, X2, . . . are distributed with density f. As in the change-point problems for

independent observations, we seek a stopping time N which minimizes

EgN

subject to the constraint EfN ≥ γ.

We first consider the asymptotic behavior of TA and NA, Page’s CUSUM and the

Shiryayev-Robert procedure, and then propose a better procedure, which has much

smaller detection delay and roughly the same mean time between false alarms.

Lemma 5.3. As A →∞,

log EfNA ≤ log EfTA ≤ (1 + o(1)) log A, (5.19)

Proof. The first inequality holds by definition, and so it suffices to prove the second
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inequality. Define a new stopping time

t1(A) = inf
{

n ≥ 1 :
n∏

i=1

f2(Xi)

f1(Xi)
≤ log A, and max

1≤k≤n

n∏

i=k

g(Xi)

f1(Xi)
≥ KA

}
, (5.20)

where KA = A(1 + 1−π0

π0
log A). Note that

n∏

i=k

g(Xi|X1, · · · , Xi−1)

f(Xi|X1, · · · , Xi−1)
=

( n∏

i=k

g(Xi)

f1(Xi)

)(π0 + (1− π0)
∏k−1

i=1 (f2(Xi)/f1(Xi))

π0 + (1− π0)
∏n

i=1(f2(Xi)/f1(Xi))

)

≥
( n∏

i=k

g(Xi)

f1(Xi)

)(
1 +

1− π0

π0

n∏
i=1

f2(Xi)

f1(Xi)

)−1

,

and hence TA ≤ t1(A) by definition. By the following lemma, Ef1t1(A) = O(A log A),

and so Ef1TA ≤ O(A log A). Similarly, Ef2TA ≤ O(A log A). The lemma follows, since

EfN = π0Ef1N + (1− π0)Ef2N.

Lemma 5.4. As A →∞,

Ef1t1(A) = O(A log A), (5.21)

where t1(A) is defined in (5.20).

Proof. Let Sn =
∑n

i=1 log(f1(Xi)/f2(Xi)) and Vn =
∑n

i=1 log(g(Xi)/f1(Xi)) for n =

1, 2, . . . , and V0 = 0. Denote Wn = max0≤k≤n−1(Vn − Vk), then t1(A) can be written

as

t1(A) = inf{n ≥ 1 : Sn ≥ − log log A and Wn ≥ KA}.

Using an idea of Kiefer and Sacks [9], let v1 be the first n such that Wn ≥ KA, v2 the

second n such that Wn ≥ KA, etc. Let φt be the indicator function of the set where

Svt < − log log A, t = 1, 2, . . . . Then as shown on page 719 of Kiefer and Sacks [9],

t1(A) = v1 +
∞∑

j=1

(vj+1 − vj)

j∏
t=1

φt.

Let v∗j+1 − vj be the first m such that max1≤k≤m(Vm+vj
− Vk+vj

) ≥ KA. Evidently,
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v∗j+1 − vj ≥ vj+1 − vj. Since v∗j+1 − vj depends on X’s whose indices are greater than

vj, it follows that v∗j+1 − vj is independent of φ1, . . . , φj. Moreover, v∗j+1 − vj has the

same distribution as v1. Consequently

Ef1t1(A) ≤ (Ef1v1)
(
1 +

∞∑
j=1

Ef1

j∏
t=1

φt

)
.

Let σ be the last time Sn < − log log A. Since vj ≥ j, we have

∞∑
j=1

Ef1

j∏
t=1

φt ≤
∞∑

j=1

Pf1(σ ≥ vj) ≤
∞∑

j=1

Pf1(σ ≥ j) = Ef1σ.

Since the summands in Sn have mean I(f1, f2) > 0 and Var(S1) < ∞ by assumption

(5.14), it is well known that Ef1σ < ∞, (see, for example, Theorem D in Kiefer and

Sacks [9]). By a property of Page’s CUSUM procedure, we know Ef1v1 = O(KA).

Thus, Ef1t1(A) ≤ O(KA)O(1) = O(KA) = O(A log A).

Lemma 5.5. As A →∞,

EgTA ≥ EgNA ≥ EgNA ≥ 1 + o(1)

I2

log A, (5.22)

Proof. The first inequality holds by the definitions of TA and NA, and the second

inequality holds by the definition of EgN. So it suffices to prove the last inequality.

Rewrite NA as

NA = inf
{

n ≥ 1 :
n∑

i=1

log
g(Xi)

f2(Xi)
+ log

π0W
(1)
n + (1− π0)W

(2)
n

π0γn + (1− π0)
≥ log A

}
,

where

γn =
f1n

f2n

, and W (j)
n = 1 +

n−1∑
i=1

fj(X1) · · · fj(Xi)

g(X1) · · · g(Xi)
, j = 1, 2.

Since I1 > I2, Eg log γ1 = I2−I1 < 0. Thus, under Pg, γn → 0 with probability 1, and

W
(j)
n → W (j), a finite random variable (see Pollak [25]). By the nonlinear renewal



93

theorem, we have that

EgNA =
1 + o(1)

I2

log A

as A →∞.

Theorem 5.6. If N(γ) are stopping times such that EfN(γ) ≥ γ, then

EgN(γ) ≥ (1 + o(1))
log γ

I1

as γ →∞, and there exist stopping times for which equality holds. Thus TA and NA,

Page’s CUSUM and the Shiryayev-Roberts procedures, are asymptotically suboptimal.

Proof. For any stopping time N = N(γ) such that EfN ≥ γ, we have

π0Ef1N + (1− π0)Ef2N ≥ γ,

thus Ef1N ≥ γ or Ef2N ≥ γ. So by the optimality property of Page’s CUSUM

EgN ≥ (1 + o(1)) min(
log γ

I1

,
log γ

I2

) = (1 + o(1))
log γ

I1

, as γ →∞

since I1 > I2. Moreover, this bound is achieved by the CUSUM procedure T1(γ),

defined by

T1(γ) = inf
{

n ≥ 1 : max
1≤k≤n

n∏

i=k

g(Xi)

f1(Xi)
≥ γ

π0

}
. (5.23)

This is because Ef1T (γ) ≥ γ/π0 and so EfT (γ) = π0Ef1T (γ) + (1− π0)Ef2T (γ) ≥ γ,

while EgT (γ) = (1 + o(1))(log γ)/I1.

Now it is straightforward to show that TA and NA are asymptotically suboptimal.

Assume EfTA = γ. Then by Lemmas 5.3 and 5.5,

EgTA ≥ (1 + o(1))
log γ

I2

> (1 + o(1))
log γ

I1

,
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since I1 > I2. Thus TA is asymptotically suboptimal. The proof for NA is the

same.

Remarks:

1. The lower bound in the previous theorem can also be achieved by our procedures

defined in Chapter 3:

M∗(a) = inf
{

n ≥ 1 : min
1≤k≤n

min
j=1,2

n∑

i=k

(log
g(Xi)

fj(Xi)
− Ij · a) > 0

}
,

or

M∗
1 (a) = inf

{
n ≥ 1 : min

j=1,2
min

1≤k≤n

n∑

i=k

(log
g(Xi)

fj(Xi)
− Ij · a) > 0

}
. (5.24)

2. Page’s CUSUM and the Shiryayev-Roberts procedures can effectively detect a

change from f2 to g, but they perform poorly when detecting a change from f1 to g.

However, from the asymptotic viewpoint, the standard formulation is equivalent to

the problem of detecting a change from f1 to g. At a small additional cost of detection

delay, our procedures M∗(a) and M∗
1 (a) are able to detect both changes very well.

3. This counterexample can be extended to the case where

f(x1, · · · , xn) =

∫ θ1

ξ

fξ(x1) · · · fξ(xn)π(ξ)dξ,

and g = fλ, where {fξ}ξ∈Ω are the densities of a one-parameter exponential family, as

defined in (3.4), with natural parameter space Ω = (ξ, ξ̄) with respect to a sigma-finite

measure F , and θ1 < λ.

5.3.3 A Numerical Example

The purpose of this subsection is to give some indication of Theorem 5.6 and to

show that Page’s CUSUM procedure TA and the Shiryayev-Roberts procedure NA

are suboptimal.

Table 5.2 compares the results of a 2500-repetition Monte Carlo experiment in
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Table 5.2: Comparisons of four stopping times

Ef1τ Ef2τ Efτ Egτ
Page’s CUSUM, TA 6402± 129 14214± 289 11610 ≥ 51.9± 0.5
Shiryayev-Roberts, NA 1766± 35 1336± 27 1480 ≥ 34.9± 0.3
T1(γ) (γ = 2000) 37815± 776 9.4± 0.1 12612 17.3± 0.1
M∗

1 (a) (a = 17.3) 36102± 744 101± 2 12101 23.7± 0.2

MATLAB. In Table 5.2 we consider the change-point problem in this section with

f1 = N(1, 1), f2 = N(−0.5, 1), g = N(0, 1) and π0 = 1/3. Note that the expected

values of sample means are 0 under both the pre-change distribution f and the post-

change distribution g.

Four different procedures are considered in Table 5.2. The first is Page’s CUSUM

procedure TA. The second is the Shiryayev-Roberts procedure NA. For A = 1000, we

simulated Ef1τ,Ef2τ and Egτ for these two procedures, giving the mean time between

false alarms Efτ = π0Ef1τ + (1− π0)Ef2τ, and a lower bound of the detection delay

Egτ in Egτ.

The third procedure is T1(γ), defined by (5.23), and the fourth is M∗
1 (a), defined

by (5.24). We simulated Ef1τ,Ef2τ and Egτ for τ = T1(γ) with γ = 2000 and

τ = M∗
1 (a) with a = 17.3. It is easy to see that Efτ = π0Ef1τ + (1 − π0)Ef2τ, and

the detection delay Egτ equals to Egτ for T1(γ) and M∗
1 (a). The thresholds γ and a

are determined from the criterion Efτ ≥ EfTA ≈ 11610.

Table 5.2 indicates that T1(γ) performs better than both Page’s CUSUM proce-

dure TA and the Shiryayev-Roberts procedure NA in the sense that T1(γ) has a larger

mean time between false alarms and much smaller detection delay, reflecting that

Page’s CUSUM and the Shiryayev-Roberts procedures are asymptotically subopti-

mal. The conclusion still holds if T1(γ) is replaced by M∗
1 (a).
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