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A Limit on the Polarization of the Cosmic Microwave

Background Radiation

by
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Requirements for the Degree of

Doctor of Philosophy

Abstract

We describe polarization observations of the CMBR with the Cosmic Background

Imager, a 13-element interferometer which operates in the 26-36 GHz band and is

located on the Llano de Chajnantor in northern Chile. The array consists of 90

cm Cassegrain antennas mounted on a steerable platform which can be rotated

about the optical axis to facilitate polarization observations. The CBI employs

single-mode circularly polarized receivers and it samples multipoles from ` ∼ 400
to ` ∼ 4250. The instrumental polarization of the CBI was calibrated with 3C279,
a bright polarized point source which was monitored with the VLA. Observations

of two deep fields during the 2000 season yielded three limits (95% c.l.) for CEE`
under the assumption that CBB` = 0: 7.0 µK (` = 603); 12.8 µK (` = 1144); and

25.1 µK (` = 2048). The low-` limit approaches the levels of fluctuations predicted

by standard models.

This thesis also entailed the design and implementation of several major com-

ponents of the CBI signal chain including the downconverter, the noise calibration

system, and the low noise HEMT amplifiers. We discuss the design and perfor-

mance of these critical systems.
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Chapter 1

Introduction

1.1 Overview

The Cosmic Microwave Background has played a central role in our understanding

of the universe from nearly the moment of its discovery by Penzias and Wilson

in 1965 [68]. The CMB is a key component of the highly successful Standard Big

Bang Model, which states that the universe began as a hot, dense plasma which

expanded and cooled to its present state in the span of ∼ 14 Gy. The details of
the expansion—and in particular, the mechanisms by which the conditions at the

surface of last scattering gave rise to the structure in the universe today—remain

an area of debate which must await further observations, but all variations on the

Standard Model agree that the CMB is the redshifted radiation from this initial

plasma, and that as such it contains clues about the fundamental characteristics

of the universe: Ω0, Ωb, ΩΛ, h0, n, τ , T/S [10, 40, 34]. This information resides

in the minute spatial fluctuations of the intensity and polarization of the CMB.

Observations have established the existence of intensity anisotropies with δT
T ∼

10−5 on scales of θ ∼ 0.1-0.5◦, [27, 62, 58, 24, 83, 66, 50] although the polarization
anisotropies, which are the focus of this work, are sufficiently small to have eluded

detection until very recently [44]. The past decade has seen the emergence of

low-noise detector technologies which should propel us into a new era of precision

measurements of the temperature and polarization of the CMB, and the Cosmic
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Background Imager is at the vanguard of these efforts.

The CBI is a 13-element interferometer array which operates in the 26-36 GHz

band [63]. The array consists of 90 centimeter Cassegrain antennas mounted on a

single, fully steerable platform. The antenna platform can rotate about the optical

axis of the telescope, and as we will see in Chapter 2, this feature makes the CBI

a very attractive instrument for polarization observations. The platform allows a

range of positions for the telescopes, permitting observations of anisotropies on ` ∼
300→ 4250 scales; this range encompasses the scales over which standard models
predict the bulk of the CMB power is to be found for both the total intensity and

the polarization fluctuations. A downconverter that follows the receivers splits the

26-36 GHz band into 10 channels, and the spectral information in these channels

allows us to discriminate against foregrounds [11]. The low-noise HEMT amplifiers

in the receivers typically have Tsys ∼ 25 K [76], which permit detections of δT ∼
50 µK anisotropies with the entire array in a single night. Moreover, this sensitivity

puts a detection of the polarization predicted by standard models of δP ∼ 5 µK
within reach.

Figure 1.1 shows the state of our understanding of the temperature anisotropies

of the CMB. While initial observations of the CMBR focused on the low ` region

at the left of the figure, recent experiments have focused on the central region of

the spectrum (` ∼ 102) and the CBI is leading a handful of experiments which
are breaking new ground in the high ` region at the right. This trend is driven

primarily by sensitivity: cosmologists have adopted the convention of reporting

δT 2 ∼ `(` + 1)C`, whereas observers measure δT
2 ∼ (2` + 1)C`, so the sample

spectrum in Figure 1 overstates the size of the temperature anisotropies we measure

by a factor ∝
√
`. The CBI is the first experiment to attack the entire ` ∼ 300→

4000 region of the power spectrum. This region is critical because it breaks the

degeneracy of experiments which cover a narrow window and which must assume

a shape for the initial spectrum of density fluctuations.

The CBI has made significant contributions to our understanding of the to-

tal intensity spectrum across the entire 300 < ` < 4000 region. We produced
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Figure 1.1: This sample of points data points for CTT
` taken from [86]. Sample

CTT` shown for Ω0 = 1.0, ΩCDM = 0.257, ΩΛ = 0.7, Ωb = 0.043, and h = 0.68.
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the first clear measurement of the rolloff in the spectrum between ` ∼ 600 and
` ∼ 1200 which arises from photon diffusion and the thickness of the last scat-
tering region [62]. We have augmented this initial result with observations that

sample the ` ∼ 300 → 3000 region of the spectrum with resolution in ` of

∆` ∼ 200 [66], and these pioneering small angular scale measurements comple-
ment those of BOOMERANG [58], MAXIMA [27], DASI [24] and the VSA [83]

on larger scales. The CBI has detected excess power in the ` ∼ 2000 → 3500
region [50], and this detection has stimulated a considerable amount of interest in

the possibility of low level secondary anisotropies on small angular scales from the

Sunyaev-Zeldovich Effect (SZE) in clusters [8]. Our total intensity observations

allow us to constrain Ω0 to ∼ 15% and ns to ∼ 10%. When combined with data
from lower ` and priors from SNR and surveys of Large Scale Structure, we con-

strain the cosmological parameters with high precision [86]. In addition, CBI maps

of the SZE in resolved clusters, when combined with X-ray data, have produced

a measurement of the Hubble constant, which is independent of the cosmological

distance ladder [94]. Finally, the CBI’s sensitivity and flexibility make it ideal for

polarization observations of the CMBR, and these observations are the focus of

this thesis.

1.2 Polarization of the CMBR

Standard models predict that a small fraction of the CMB photons were polarized

by Thomson scattering during recombination. Rees proposed that CMBR is po-

larized in 1968 [79], and this initial work provided the foundation for increasingly

detailed predictions of the shape of the polarization spectrum [39]. The highly

evolved state of these predictions stands in stark contrast to the observational

results, which until very recently consisted of limits that do not achieve the sen-

sitivity required by standard models despite painstaking efforts [89]. Thomson

scattering imposes strict constraints on the conditions that can produce net po-

larization which do not exist until the very last moments of recombination, when



5

the number of free electrons that can serve as scattering centers is small. Thus

polarization anisotropies predicted by standard models are far weaker than total

intensity anisotropies on the same angular scales, typically δP ∼ 0.1δT .
In the Standard Model, the interaction of plasma physics and cosmology during

recombination generates small-scale (θ < 1◦) anisotropies in the CMB. Immedi-

ately prior to recombination, the universe is plasma in which causally connected

regions of the photon-baryon fluid undergo acoustic oscillations; spatial perturba-

tions in the gravitational potential attract the fluid, while photon pressure within

the potentials resists collapse. This interplay between pressure and gravity drives

the fluid through cycles of expansion and contraction, and in the absence of cos-

mological evolution, these oscillations would persist forever. The expansion of the

universe, however, redshifts the radiation; this redshift cools the plasma to such

an extent that the free electrons in the plasma combine, eliminating the coupling

between radiation and matter and thereby quenching the oscillations. The absence

of coupling after recombination frees the matter to collapse into the gravitational

potentials, and this infall seeds the nonlinear gravitational collapse which formed

the structures we see in the universe today. Recombination leaves the universe

optically thin, and in the absence of reionization, the θ < 1◦ scale features in the

CMB directly reflect the distribution of radiation at recombination.

This quick sketch of the physics of recombination suffices to explain the general

features of the total intensity power spectrum. The most striking characteristic

of the sample spectrum for CTT
` shown in Figure 1 is the sequence of oscillations

most clearly seen in the range 200 < ` < 1000. These features are due to the

acoustic oscillations in the photon-baryon fluid which were frozen into the CMB

at recombination. The peak on the largest angular scale represents the largest

volume which had time to undergo a single collapse before recombination, while

the second peak, found at half the angular size of the first, represents the largest

volume which had time for a complete collapse and rarefaction, and so on. Because

the matter outside the sound horizon at a particular time cannot undergo acoustic

oscillations, the angular size of the first acoustic peak sets the upper limit on the
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Figure 1.2: Sample spectra for CTT
` and CEE` for a generic flat cosmology (Ωb =

0.04, ΩΛ = 0.7).

volume contained in the sound horizon at recombination. This volume provides

a standard ruler at the surface of last scattering, so the position of the first peak

in ` reveals the geometry of the universe in a fairly model-independent manner:

`p ∼ 220/
√
Ω0. Figure 1.1 shows a sample of the large number of experiments that

have focused on this region, including Saskatoon [59], TOCO [93], BOOMERANG,

CBI, MAXIMA, DASI, and the VSA; these observations strongly favor Ω0 = 1

models.

Several effects damp the anisotropies on small angular scales (` ∼ 1000). First,
because the surface of last scattering is a shell of finite thickness (∆z ∼ 80), it
completely encompasses the anisotropies on the smallest scales, so a particular

line of sight pierces multiple hot and cold regions, and the resulting averaging

suppresses features from the small-scale fluctuations. Second, the diffusion of

photons between hot and cold regions erases anisotropies on scales comparable

to the photon mean free path [87]. The magnitude of this effect depends on Ωb;

larger Ωb increases the density of free electrons and therefore decreases the photon

mean free path. This translates into more power on small scales. The CBI targets
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this region, and our measurements of the damping tail provide a constraint on Ω0,

which is independent of the considerations that enter on larger (` ∼ 200) scales.
The polarization signal in the CMBR is generated by Thomson scattering of

CMB photons from the free electrons which remain during the final moments of

recombination [35]. The dependence of the Thomson scattering cross section on

the polarization of the incident (ε) and scattered (ε′) waves is

dσT
dΩ
∼ |ε̂ · ε̂′|2 (1.1)

The radiation environment surrounding a free electron can be expressed in terms

of spherical harmonics.1 The monopole component represents the mean ambient

radiation field seen by the electron, and it is clear that an isotropic distribution of

CMB photons incident on the scatterer fails to produce net polarization because

the scatterings from all directions cancel. Similar arguments apply to the local

dipole and higher harmonics except for the quadrupole component of the ambient

temperature anisotropy which gives rise to nonvanishing polarization [39].

The Ylm decomposition shows that the three components of the ` = 2 spherical

harmonic distinguish polarization generated by three distinct mechanisms. Scalar

modes (m=0) are generated by density fluctuations during recombination, while

vector modes (m=1) reflect the vortical motions of the fluid about the scatterer,

and tensor modes (m=2) are created by gravitational waves. Scalar modes are of

particular interest to this work because standard models predict that polarization

from scalar modes dwarfs the polarization from other modes on CBI angular scales.

Scalar polarization is generated by density perturbations at the surface of last

scattering. In adiabatic models, overdensities are associated with maxima in the

local gravitational potential, and in standard models the temperature fluctuations

trace the underlying density perturbations on small angular scales. We can express

the fluctuations in a volume as the superposition of plane wave temperature per-

1These spherical harmonics are not to be confused with the spherical harmonics with which

we characterize the CMB fluctuations on the sky.
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turbations which reflect the underlying density perturbations. Consider a plane

wave temperature perturbation with wavenumber k, and suppose the scatterer is

in the trough of the wave. Photons that flow to the scatterer from the neighboring

peaks (vγ||k) are blueshifted relative to photons that arrive at the scatterer from
within the trough (vγ ⊥ k). The resulting intensity distribution seen by the scat-
terer is a quadrupole, and the scattered radiation acquires net polarization which

is oriented perpendicular to k. Similar arguments apply to a scatterer which is

located at the peak, in which case the polarization is parallel to k. The peaks and

troughs, of course, are actually planes perpendicular to k in this three-dimensional

example, so the magnitude of this polarization has azimuthal symmetry about k;

this symmetry allows us to associate this scattering mechanism with them=0 com-

ponent of the temperature quadrupole viewed by the scatterer. The magnitude of

the polarization also depends on the line of sight n̂ to the observer; the observed

polarization has a maximum at n̂ ⊥ k and vanishes for n̂||k.
The surface of last scattering is a very complicated medium at the moment

when the polarization is generated; it is a superposition of density perturbations

which span a range of wavelengths and which are oriented in all possible directions.

On small angular scales, the amplitudes of features that we measure on the sky

reflect the amplitudes and coherence of the constituent modes at recombination.

Despite this complexity, we can extend the preceding discussion to predict the

scalar polarization patterns associated with the local temperature fluctuations at

the moment of scattering. Consider the case of a hot spot; we can treat it as the

coherent superposition of modes such that all are perpendicular to the observer’s

line of sight. We saw that the scalar polarization of radiation scattered from the

crest of a mode is directed perpendicular to the crest, which implies that the po-

larization associated with a hot spot is directed tangentially to the spot. Similarly,

the polarization associated with a cold spot is directed radially to the spot. As

a practical matter, the correlation between scalar polarization patterns and tem-

perature anisotropies is degraded by the fact that the temperature anisotropies we

see on the sky are the result of many processes during and after recombination,
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whereas the scalar polarization samples the density anisotropy only at the moment

the polarization was generated. As a result, the correlation between temperature

and scalar polarization is less than unity. The CBI measures both total intensity

and polarization and can therefore address this question, although we do not do

so in this work.

The sky polarization signal is a superposition of all three of the ` = 2 modes,

and as such we cannot distinguish between them. We can make some simplifica-

tions, however. Like any two-dimensional vector field, the polarization P(θ, φ) can

be expressed as the sum of gradient and curl components, which we refer to as E

and B modes:2

P(θ, φ) = ~∇E(θ, φ) + ~∇× ~B(θ, φ) (1.2)

Intuitively, E modes can be identified as the component of the polarization for

which the polarization vector is either parallel or perpendicular to the direction of

greatest polarization change, whereas B modes are the modes for which the po-

larization is oriented π/4 from the polarization gradient. The scalar polarization

around a hot spot, for example, is clearly E type; in this case, the polarization

is tangential to the hot spot and therefore normal to the direction towards the

center of the spot. The utility of the E/B distinction arises from the fact that

after the quadrupole at the origin of scattering has been modulated by the under-

lying perturbation—density, vorticity, or gravity wave—the scalar polarization is

exclusively E type, while vector polarization is almost entirely B type, and tensor

polarization is roughly an equal combination of both. In the absence of Faraday

rotation or gravitational lensing, the E and B modes are preserved, so a map of

the polarization field allows us to disentangle the origins of the polarization

We have seen that standard models predict that polarization is smaller than

temperature anisotropies on the same scales. The CMBFAST package computes

the spectra for several combinations total intensity and polarization—CTT
` , C

EE
` ,

CTE` , and C
BB
` —predicted by standard models for a range of cosmological para-

2These modes should not to be confused with the E and B of the underlying radiation.
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meters [84]. The sample spectra in Figure 1.2 show that the E modes are ∼ 10% of
the intensity anisotropies found on comparable angular scales, while the B modes

are smaller still. This characteristic of polarization is fairly inviolable; under the

Standard Model, no reasonable combination of fundamental parameters can sub-

stantially increase this signal, and in fact, at this time the shape of the CEE
` spec-

trum is fairly tightly constrained by our understanding of the Standard Model.

Because polarization is only generated during the final moments of recombination,

causality confines polarization anisotropies to regions smaller than the horizon at

that time. An inspection of Figure 1.2 reveals that this is indeed the case; the

spectra all show a sharp decrease on scales larger than horizon (` ∼ 200 for flat
models). In this regard, the CBI, which covers the 600 < ` < 1800 range, is

optimally suited to observe the polarization predicted by flat models.

1.3 Polarization Experiments

As with the total intensity of the CMBR, experimentalists’ emphasis on the po-

larization power spectrum began on large angular scales and is now moving to

higher ` as detector technology improves. Figure 3 shows the state of our under-

standing of the polarization power spectrum. The most striking feature of this

figure is the recent detection of CEE
` in the ` ∼ 200 → 800 range by the DASI

group [44]. The fact that this detection required two years of data reflects the chal-

lenges which accompany these deep polarization observations [46]. In addition, a

handful of recent experiments are notable because they achieve sensitivities that

approach cosmologically interesting levels. The POLAR experiment obtained lim-

its on large (` ∼ 10) angular scales [41], and the Saskatoon experiment produced
several limits on ` ∼ 20 scales [97, 59]. The PIQUE experiment obtained deep
limits on ` ∼ 200 scales [30, 29], the best of which is 8.4 µK; these authors also
obtained the first limit on CTE

` with the aid of the Saskatoon maps of the total

intensity of the CMBR which include their polarization fields. The best limit on

very small angular scales (` ∼ 4000) was obtained with the ATCA array [90]. See
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Figure 1.3 for details.

Efforts to detect CEE` continue apace. Many of the current polarization projects

evolved from experiments dedicated to measuring total intensity. Following the

conclusion of its highly successful total intensity observations, the DASI experi-

ment retooled for polarization observations, and this work recently produced the

detection discussed above; these observations will continue for at least one more

season. The CBI is now dedicated to polarization observations, and in September

2002 this system saw first light (Chapter 7). BOOMERANG will fly in Antarctica

with a polarized focal plane in December 2002 [49], and the MAXIPOL experi-

ment, an adaptation of MAXIMA, will fly from Texas in 2003 with a polarized

focal plane as well. In addition, the POLAR experiment has been modified to focus

on smaller angular scales [74]. QUEST will target the ` ∼ 300→ 1800 region [73].
Finally, two all-sky satellite missions will make polarization observations of the

CMBR. The MAP mission, which launched in the summer of 2001, has several

polarized channels whose sensitivity extends to ` ∼ 500 [1]. The Planck mission,
which is scheduled to launch in 2007, will probe scales down to ` ∼ 2000 in po-
larization [20, 95]. While these satellite missions promise to make the definitive

measurements of the polarization of the CMBR on these scales, they must compete

with smaller, more nimble ground based experiments which are better suited to

adapt their strategies as our understanding of the CMBR evolves.

1.4 Thesis Outline

The goal of this thesis is to obtain a measurement of the polarized signal, and

to this end we implemented a polarization detection effort in parallel with the

total intensity observations which constitute the CBI’s primary objective. Chapter

2 describes the general features of the CBI and highlights several components

which were developed and implemented as part of this thesis. Calibration is a

critical component of the polarization observations presented in this work; the CBI

derived its calibration from observations of the extragalactic source 3C279, which
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Figure 1.3: Previous data for CEE
` . All data are 95% upper limits except for the

DASI detection at ` = 321, whose error bars are 1σ.
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was monitored contemporaneously with the Very Large Array (VLA). Chapter

3 discusses the polarization calibration of the CBI, and Chapter 4 presents the

VLA observations. The CBI collected nearly 156 hours of polarization data on 99

nights; most of these data were obtained on deep fields which represent our best

hope for detecting the polarization, while the balance was dedicated to observations

of calibrators and supporting sources. Chapter 5 discusses these observations, and

Chapter 6 describes the analysis of the deep field data.
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Chapter 2

The Cosmic Background Imager

2.1 Introduction

This chapter describes the Cosmic Background Imager, which is shown in Fig-

ure 2.1. The platform accommodates baselines whose lengths range from 100 cm

to ∼ 550 cm; the minimum separation is set by the antenna diameter, and the
maximum separation is limited by the size of the deck. The platform accommo-

dates a wide range of positions for the dishes, and this flexibility allows us to

target a variety of cosmological problems. The CBI was designed and built on the

Caltech campus between August of 1995 and August of 1999, at which point it

was deployed to the Chajnantor site in the Chilean Andes. Routine observations

began in January 2000.

In Section 2 we discuss the response of an interferometer to fluctuations in the

CMBR. Section 3 describes the CBI. Section 4 focuses on several specific pieces

of instrumentation; a substantial component of this thesis entailed the design and

implementation of major components of the CBI, and this section discusses these

systems in detail. The CBI has a sister instrument, the Degree Angular Scale

Interferometer [47], which is sited at the South Pole; the systems described in

Section 4 were deployed with DASI as well.
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Figure 2.1: The Cosmic Background Imager at an altitude of 5080 m on the
Chajnantor site in northern Chile. The 13 Cassegrain antennas have cylindrical
shields which reduce crosstalk between the antennas. In this picture, the array is
in the initial sparse configuration (configuration 1); in April 2000, the array was
reconfigured to emphasize shorter baselines. The clamshell dome, seen open at the
base of the telescope, is surrounded by shipping containers which contain living
spaces, a control room, and laboratory and machine shop facilities. A pair of diesel
generators provides power for the facility, and a cell phone with an amplified link
ties the site to the project base camp in the nearby town of San Pedro de Atacama.
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CBI Signal Chain Overview
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Figure 2.2: CBI signal chain overview for a single baseline. The arrows at left note
the frequency changes through the signal chain. The shaded components are part
of this thesis; this work discussed in Section 2.4.
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2.2 Response of an Interferometer

We first review the response of an interferometer to fluctuations in the CMBR.

This problem has been widely discussed, e.g., [92, 32, 57, 77, 96], and this section

presents only the key results.

Our goal is to characterize the spatial fluctuations in the temperature and

polarization of the CMBR. The treatment which follows applies to total intensity

observations. It is conventional to express the temperature fluctuations in terms

of the spherical harmonics Y`m(θ, φ). The CBI operates on small angular scales

for which the flat sky approximation applies, however, so we may express the

fluctuations in terms of a simple two-dimensional Fourier transform:

δT (x)

T
∼
∫

a(u)e2πiu·xdu (2.1)

The Planck function B(ν, T ) relates the temperature fluctuations on the sky to

the intensity fluctuations measured by an interferometer:

δI(θ, φ) =
∂B(ν, T )

∂T
δT (θ, φ) (2.2)

where the partial derivative is evaluated at T = T0 = 2.726 K.

A single baseline interferometer measures components of the Fourier transform

of Iν(x), the brightness distribution on the sky. This quantity, called the visibility

and denoted by Vν(u), is the time average of the complex product of the voltages
(Vj, Vk) produced by the two antennas that form the interferometer. On average,

the product of the receiver outputs is in turn proportional to the complex product

of the E-fields that impinge on the receivers:

Vν(u) = 〈EjE∗k 〉 = G−1jk 〈VjV ∗k 〉 = κ
∫

4π
Ak(x− xk)

δT (x)

T0
e−2πiu·xdx (2.3)

The factor of κ is obtained from Equation 2.2; it relates the visibilities, which are

measured in Janskys, to the specific intensity Iν , or equivalently, to the bright-

ness temperature. The factor of G−1jk is a complex gain term which reflects the
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cumulative change in amplitude and phase of the signal as it passes through the

system; we will neglect this term until the calibration discussion in Chapter 3.

The visibility is a sample in the aperture domain whose size is set by the Fourier

transform of the primary beam and whose position u = (u, v) is determined by

the orientation and length of the baseline.1

The expression for the visibility immediately lends itself to interpretation: the

visibility is the superposition of two quantities—the primary beam pattern A(x)

centered at a point xk, and a corrugation whose pitch and orientation are given

by 2πiu · x—on the sky brightness distribution Iν(x). The coherence between
Iν(x) and 2πiu · x across A(x) determines the amplitude and phase of Vν(u). The
visibility encompasses two angular scales: the primary beam sets the field of view,

while the corrugation determines the resolution. The primary beam of the CBI

is approximated by a Gaussian of FWHM ap ∼ λ/D ∼ 47′ at 1 cm, so while
the integrand in Equation 2.3 is meant to be evaluated over the entire sky, in

practice the primary beam confines the integral to Ωp << 4π. The corrugation

is the effective pixel for the baseline; the superposition of many visibilities from

baselines at different orientations results in a synthesized beam.

The similarity between the visibility in Equation 2.3 and Fourier transform in

Equation 2.1 illustrates the power of interferometry as a tool for understanding the

CMBR. A visibility provides a matched filter that selects the CMBR fluctuations

which are coherent with the corrugation defined by 2πiu · x. By measuring many
visibilities we can estimate their variance, which in turn provides an estimate of

the underlying power spectrum of fluctuations.

Up to this point, we have regarded Iν(x) as a generalized brightness which

encompasses the full polarization characteristics of the celestial signal; we now

discuss polarization in detail. Polarization introduces considerations beyond those

which are necessary for total intensity [17, 54, 26, 82, 25]. In addition, unlike many

interferometers, the CBI is a single-mode system: each receiver responds to either

1Note that the autocorrelation functions of the primary beams for a pair of visibilities can

overlap in the aperture domain, and this overlap gives rise to correlations between the visibilities.
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right or left circular polarization (RCP or LCP), so under ideal circumstances each

receiver measures only one component of the radiation incident on the array: either

ER or EL. This characteristic of the CBI has consequences for how we acquire,
calibrate, and interpret the polarized visibility data.

Combinations of LCP and RCP antennas measure four types of visibilities,

which are in turn related to the four Stokes parameters. It can be shown that

(VRR VRL

VLR VLL

)

=

( 〈ERj ER∗k 〉 〈ERj EL∗k 〉
〈ELj ER∗k 〉 〈ELj EL∗k 〉

)

⇒
(

Ĩ + Ṽ [Q̃+ iŨ ]

[Q̃− iŨ ] Ĩ − Ṽ

)

(2.4)

The second correspondence is not an equality because the visibilities are integrated

over the primary beam, but the Stokes parameters are not. Since the CBI uses

single-mode receivers, each baseline measures either VLL or VLR. The data pre-
sented in this thesis were obtained with twelve of the CBI antennas configured for

LCP and one configured for RCP; this choice results in 12 cross polarized base-

lines (LR) and 66 total intensity (LL) baselines. Equation 2.4 suggests that these

visibilities do not suffice to measure both Q and U . Because of the CBI’s deck

rotation, however, this is not the case.

Under most circumstances, an interferometer which lacks one of LR and RL

at each (u, v) point would be unable to simultaneously isolate both Q̃ and Ũ ;2 the

Fourier transforms for Q and U are complex for extended sources, so both VLR

and VRL are required to solve for Q̃ and Ũ . The CBI’s deck rotation allows us to
circumvent this problem. The visibility measured by an LR baseline at a point u

is simply

VLR(u) =
∫

A(x)P ∗(x)e−2πiu·xdx (2.5)

with P ∗ = Q− iU . If we repeat the measurement at −u, we obtain

VLR(−u) =
∫

A(x)P ∗(x)e2πiu·xdx (2.6)

2This statement does not apply to point sources at the phase center. In this case, Q̃ and Ũ

are both real, and they are simply the real and imaginary parts of the complex vibility, so VLR

suffices.
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Conway and Kronberg note that [VLR(−u)]∗ = VRL(u), which is precisely the
quantity we seek [17]. With the CBI’s deck rotation, the mapping from u to

−u is trivial: we simply rotate the deck through 180◦. Thus, with the aid of
deck rotation, we can obtain near-simultaneous measurements of Q̃ and Ũ for

observations of extended sources with our single-mode system.

The visibilities measured by the CBI must be modified to reflect several addi-

tional considerations. We must include the effect of the rotation of the feeds about

the optical axis of the array [17]. The orientation of receiver advances or retards

the phase of a circularly polarized wave, so we augment the fields viewed by the re-

ceivers with a phase term to reflect this dependence: (ER, EL)→ (ERe−iθk , ELeiθk).
where θk = tan

−1(uk/vk) for visibility k. In addition, as noted in Chapter 1, the

polarization of the CMBR can be expressed in terms of scalar and pseudo-scalar

modes Ẽ and B̃. These assignments are convenient because the physical processes

which polarize the CMBR give rise to orthogonal signatures in this basis; scalar

fluctuations produce E-type polarization, while tensor fluctuations produce B-type.

Ẽ and B̃ are simply linear combinations of Q̃ and Ũ :

Q̃(v) = Ẽ(v) cos 2θv − B̃(v) sin 2θv (2.7)

Ũ(v) = Ẽ(v) sin 2θv + B̃(v) cos 2θv (2.8)

where v is the position in the aperture domain for the point of interest, which

can be expressed in polar coordinates: v = (|v|, θv). With these considerations in
mind, the Stokes representation takes the form

( 〈ERj ER∗k 〉 〈ERj EL∗k 〉
〈ELj ER∗k 〉 〈ELj EL∗k 〉

)

⇒
(

Ĩ + Ṽ [Ẽ + iB̃]e2i(θv−θk)

[Ẽ − iB̃]e−2i(θv−θk) Ĩ − Ṽ

)

(2.9)

This expression relates the visibilities measured by the interferometer to Ẽ and B̃,

the quantities of interest for cosmology. Although the CBI measures Q̃ and Ũ , it

cannot directly distinguish between Ẽ and B̃ because the finite extent of the pri-

mary beam mixes the two components [57]. Standard models predict vanishingly
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small circular polarization [18], so for the discussion that follows we assume V = 0.

Now consider the visibility. The visibility is a powerful tool for measuring

spatial fluctuations in the CMBR because it selects the fluctuations over the extent

of the primary beam that maximize the coherence with the corrugation defined by

2πiu · x. To compare observations to theory, however, we must use our sample of
visibilities to estimate the properties of the underlying distribution of fluctuations.

The natural starting point is the sample mean 〈Vp〉. This expectation vanishes,
however, because the boundary condition enforced by the spherical (closed) sky

requires that only the monopole can have a nonzero mean. The next moment is

the sample variance, of which there are two varieties: the variance of a visibility

〈VpV∗p 〉, and the covariance of two visibilities 〈VpV∗q 〉. These quantities form the
diagonal and off-diagonal elements of a covariance matrixMpq which characterizes

the correlation between visibilities measured at up and uq. We will assume that

the fluctuations are Gaussian, in which case the mean and the variance suffice to

fully characterize their distribution. Non-Gaussian fluctuations would require the

consideration of higher moments, but an analysis of the BOOMERANG and CBI

maps provides no evidence to support such a treatment [7].

The covariance matrix is a component of the maximum likelihood analysis

which we employ to test the LR visibility data for the presence of a celestial

signal. While the details of the likelihood calculation are deferred until Chapter

6, we present the calculation of the covariance matrix elementsMpq here because

this discussion demonstrates how the covariance matrix connects the visibilities

to the underlying power spectrum—and the ease with which the spectrum can be

extracted from the visibilities.

The convolution theorem provides a path to obtaining the elements of the co-

variance matrix from the visibilities. In the Fourier domain, the visibility measured

at a point up is convolution of the beam with the source brightness:

VLRp (up) = κpÃp(up) ∗ [Ẽ(v)− iB̃(v)]e−2i(θv−θp) (2.10)
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= κp

∫

4π
Ãp(up−v)[Ẽ(v)−iB̃(v)]e−2i(θv−θp)d2v (2.11)

The autocorrelation function of the aperture distribution weights the visibility’s

reponse in the aperture plane. To a good approximation, the antenna primary

beam can be modeled by a Gaussian of FWHM ∆x(ν) = 45.2
′ (31 GHz/ν), which

yields in the aperture domain:

Ãp(up − v) =
1

2πσ2p
e
−
(up−v)

2

2σ2p (2.12)

where σu(ν) = 30.3 (ν/31 GHz). The subscript of p reminds us that the auto-

correlation function depends on the frequency of the sample at up. In practice,

each visibility is accompanied by an uncertainty εp which reflects the noise in the

visibilities; the contributions to these uncertainties are considered in Chapter 6,

and we ignore them here.

Let Mpq denote the covariance between two LR visibilities V(up) and V(uq):

Mpq =
〈[

κpÃp(up) ∗ [Ẽ(v)− iB̃(v)]e−2i(θv−θp)
]

×
[

κqÃq(uq) ∗ [Ẽ(w)− iB̃(w)]e−2i(θw−θq)
]∗〉

(2.13)

We can decouple the effect of the spatial sampling function from the fluctuations

on the sky. Expand the expectation to find

Mpq =
〈

κp

∫

d2vÃp(up − v)[Ẽ(v)− iB̃(v)]e−2i(θv−θp)

× κq

∫

d2wÃ∗q(uq −w)[Ẽ∗(w) + iB̃∗(w)]e2i(θw−θq)
〉

(2.14)

The antenna beams remain constant for an ensemble of visibilities, so the expec-

tation comes into the integral;Mpq then takes the form

Mpq = κpκqe
2i(θp−θq)

∫

d2vÃp(up − v)e−2iθv

×
∫

d2wÃ∗q(uq −w)e−2iθw〈Ẽ(v)Ẽ∗(w) + B̃(v)B̃∗(w)〉
(2.15)
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which is accompanied by a pair of cross terms that cancel under the expectation.

This expression isolates the characteristics of the brightness on the sky in the

expectation.

Since the CMBR fluctuations are Gaussian and isotropic, the variance of fluc-

tuations on each scale depends only on the scale and the frequency of the observa-

tions. With this consideration in mind, we can express the expectations in terms

of coordinate-independent power specta C(v):

〈Ẽ(v)Ẽ∗(w)〉 = CEE(v)δ2(v −w) (2.16)

〈B̃(v)B̃∗(w)〉 = CBB(v)δ2(v −w) (2.17)

with v = |v|. The delta functions eliminate one integration in Equation 2.15, so
we have

Mpq = κpκqe
2i(θp−θq)

∫

Ãp(up − v)Ã∗q(uq − v)[CEE(v) + CBB(v)]d2v (2.18)

for a pair of LR visibilities. Standard practice calls for explicitly separating the

two components of Mpq:

Mpq = κpκqe
2i(θp−θq)

∫

∞

0
Wpq(v)[C

EE(v) + CBB(v)]vdv (2.19)

where Wpq(v) is the visibility window function:

Wpq(v) =

∫ 2π

0
Ãp(up − v)Ã∗q(uq − v)dθv (2.20)

In Chapter 6 we will see that the covariance matrix must incorporate the cor-

relation between V(up) and V(−uq) as well as that between V(up) and V(uq);
this additional correlation provides a means of separating CEE(v) and CBB(v)

in Equation 2.18. The window function provides an explicit measure of the in-

terferometer’s sensitivity to fluctuations as a function of `; it maps the response

of the visibility pair to `-space. For large `, the correspondence between the flat
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space radius v and the spherical harmonic ` is straightforward: ` = 2πv [77, 96].

The autocorrelation for a baseline of length 100 cm, for example, samples scales of

` = (100 cm)/(1 cm)× 2π ' 630 near the band center. The width of the primary
beam in the aperture plane—the factor of A2 in Equation 2.18—yields ∆` ' ±420.
Figure 6.2 shows a variety of window functions for the diagonal covariance matrix

elements.

We can now describe the temperature and polarization fluctuations in terms

of the spectra which scale the covariance matrix elements. Expressing the spatial

fluctuations in terms of δT/T , we have

(2πv)2Cαα(v) = `(`+ 1)Cαα` = 2π
(δT

T

)2
(2.21)

for αα = TT , TE, or EE. Other correlations yield CTB
` and CEB` , and while

standard models predict that these combinations should vanish, these spectra, like

CEE(v) and CTE(v), remain to be measured with the sensitivity required to ex-

plore cosmologically interesting levels. In addition to CTT
` and CEE` , the CBI

measures CTE` , but this spectrum is acutely susceptible to errors in the instrumen-

tal polarization calibration, and thus we do not consider it in this work [57].

2.3 The Cosmic Background Imager

We are particularly concerned with the aspects of the interferometer which af-

fect its polarization performance, so we emphasize the signal paths though the

system and their effects on the polarization response. We will see that imper-

fections in the signal chain hardware contaminate the cross polarized visibilities

with spurious instrmental polarization; in this section we derive a model for the

instrumental polarization and in Chapter 3 we compare the model to measure-

ments of the instrumental polarization derived from observations celestial sources

of known polarization. This section also discusses several aspects of the global

performance of the instrument—such as its sensitivity and its pointing—because

these considerations affect the polarization performance as well.
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2.3.1 Signal Path

The CBI signal chain converts the electric fields viewed by the antennas, Ej and
Ek, into DC levels 〈VjV ∗k 〉 at the correlator output. The signal chain consists of
three stages: the receivers, the downconverter, and the correlator; very simply,

the receivers and the downconverter condition the signals to be multiplied by the

correlator. Figure 2.2 shows the signal paths associated with a single baseline. The

shaded components are parts which represent work presented in this thesis, and

these components are discussed in detail in Section 2.4. The entire radiofrequency

signal path shown here is located in the CBI deck.

Receivers

In Figure 2.2 signals travel from the top to the bottom. Radiation incident on

the array enters the signal chain through receivers at the Cassegrain foci of the

antennas. A phase shifter assembly follows the horn; the phase shifter consists of

a rotating λ/2 plate, which modulates crosstalk between the receivers; and a fixed

λ/4 plate, which transforms circular polarization at the receiver inputs to linear

polarization for the backend system. The mode of circular polarization to which

the receiver responds is determined by the orientation of the quarter-wave plate

relative to the rectangular waveguide that follows it. The phase shifter assembly

is the dominant source of instrumental polarization (Section 2.3.4).

Downstream of the quarter-wave plates all thirteen signal paths are identical.

The components in the signal chain are susceptible to gain variations, so the CBI

has an internal calibration source which injects a signal into the signal chain to

monitor gain stability. This calibration system is a component of this thesis (Sec-

tion 2.4.2). The first stage of amplification is the most significant source of noise,

so the CBI employs low-noise HEMT3 amplifiers at the front end which typically

have Tsys ∼ 15 K and ∼ 30 dB of gain across the 26-36 GHz band. The produc-
tion of the HEMT amplifiers is also part of this work (Section 2.4.3). The HEMT

3High Electron Mobility Transistor
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is followed by a downconverter which combines a 38 GHz Local Oscillator (LO)

signal with the 26-36 GHz HEMT output to mix the receiver band down to 2-12

GHz. The phase of each LO is modulated by a Walsh function that is unique to

the antenna, and each visibility is demodulated at the correlator output by the

product of the corresponding Walsh functions; this modulation scheme rejects spu-

rious correlated signals from sources downstream of the LOs. The HEMTs require

cryogenic conditions to achieve this low noise performance, so a mechanical helium

gas cryocooler cools the cryostat to ∼ 10 K.

Warm Signal Path

The receiver outputs must undergo several additional transformations before they

can be multiplied by the correlator. The correlator has strict input requirements; it

requires +16 dBm signals because powers below this level will starve the correlator,

while levels above it will saturate it. The correlator operates in the 1-2 GHz band,

and the rejection outside of this bandpass must be good to avoid contaminating

the visibility with out-of-band power. The receivers, however, produce signals in

the 2-12 GHz band with a wide range of powers—the cold downconverter, for

example, can impart a slope as large as 10 dB to the signals which pass through

it. A significant degree of manipulation is required to bring the receiver outputs

into alignment with the correlator inputs; the warm downconverter accomplishes

this task. The downcownverter was designed for this thesis (Section 2.4.1).

A filter bank at the downconverter input splits the 2-12 GHz band into ten

bands with ∆ν=1 GHz and passes each band to the input of one of 130 identical

channels.4 A mixer at the input of each channel combines one of ten local oscillator

(LO) tones with the filter bank output to transform the signal to the 1-2 GHz band.

This signal passes to a series of amplifiers that provide the necessary ∼ 70 dB of
gain, and to several filters that improve the definition of the band. Each channel

has a variable attenuator that sets the output power to the level required by the

correlator with resolution of ∼ 1 dB.
413 antennas × 10 bands/antenna
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The downconverter outputs terminate in the correlator. The CBI employs an

analog complex correlator [61]. Each baseline has a pair of Gilbert cell multipliers

for each band that multiply the signals out of the receivers to obtain the real

(cosine) and imaginary (sine) correlation products. As Figure 2.2 shows, the real

and imaginary branches of each correlator channel are identical save a 90◦ offset in

one branch. The CBI requires 1560 multipliers: real and imaginary multipliers for

each of 78 baselines in each of the ten CBI bands. The multiplier outputs are DC

levels which are sampled, digitized, and written to the archive by the online control

system. In addition, each receiver output terminates at a detector which measures

the total power of the channel; the control system compares the 130 total powers

to the +16 dBm required by the correlator and commands the downconverter to

set the power levels for each channel accordingly.

2.3.2 Polarization Considerations for the Signal Path

We saw that the signals paths for the LCP and RCP antennas are largely identical;

only the phase shifters distinguish between them. The phase shifter plays a central

role in the CBI’s polarization performance because it defines the polarization of

the receivers and is a significant source of instrumental polarization contamination.

The phase shifter consists of a pair of teflon slabs inserted into the circu-

lar waveguide following the feed. The first slab resides in a section of rotating

waveguide; it is a rotating half-wave plate that was incorporated into the signal

path to modulate crosstalk between adjacent antennas. The second slab is a fixed

quarter-wave plate which selects the circular polarization of the receiver. Both

plates are solid teflon sections whose lengths and shapes are designed to produce

the desired phase delay at the center of the 26-36 GHz band. We have developed

a model for the plates which shows that the half-wave plates change the combi-

nation of the Stokes parameters to which a baseline responds; that the half-wave

plates modulate the instrumental polarization; and that the total intensity of a

∼ 10% polarized source is contaminated at the 1% level by instrumental polariza-
tion whose contribution varies with deck angle position. The model shows that
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all of the CBI’s large (∼ 10%) instrumental polarization can be attributed to the
phase shifter assembly, as discussed in Chapter 3.

The model considers three types of errors in the quarter and half-wave plates.

First, both plates contribute a complex insertion loss to the incident radiation.

The imaginary part of this loss corresponds to the insertion phase of the plate,

which we use to obtain the desired quarter and half-wave phase shifts. The plates

have substantial bandpass errors at the edges of the band; benchtop measurements

of a sample of quarter-wave plates show that its insertion phase departs from a

quarter wave by ∼ −2◦ at 26 GHz to ∼ +5◦ at 36 GHz. These bandpass errors are
a significant source of instrumental polarization contamination. Second, the real

part of the insertion loss attenuates the signal, so the model must also consider the

instrumental polarization which arises from degradation of the sky signal in the

phase shifter. Third, both plates can have orientation errors—for the rotating half-

wave plates these errors arise from the resolution of the feedback loop which sets

the plate position, while for the fixed quarter-wave plates, orientation errors were

introduced when the plates were installed. In the former case, the orientation error

contributes noise to the instrumental polarization, while the latter case introduces

a fixed systematic offset. In both cases, these orientation errors are a few degrees

peak to peak, or ∼ 1◦ rms.
The quarter-wave plate defines the polarization of the receiver, so we first focus

on this component. The quarter-wave plate is oriented at ±45◦ with respect to
the rectangular waveguide that follows it (Figure 2.3). To illustrate how the plate

determines the polarization of the receiver, consider an incident wave parallel to

the êx-axis which propagates in the +êz-direction. This analysis assumes that

the viewer is looking in the direction of propagation—into the feed, as well as

a standard right-handed coordinate system, so positive angles sweep from êx to

êy. Orient the quarter-wave plate at an angle of −45◦, and inject a test wave
parallel to the êx-axis into the quarter wave plate. The test signal can be expressed

in terms of components parallel to and perpendicular to the quarter-wave plate

(the ê′x and ê
′
y directions). An ideal quarter-wave plate imparts a π/2 lag to
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WR−28 rectangular waveguide

quarter wave plate;

8 mm dia. circular waveguide

follows the circular waveguide

orientation for LCP

Figure 2.3: Quarter-wave plate, view looking into the plate. The wave propagates

into the page (away from the reader).

the parallel component, while the perpendicular component passes unperturbed.5

Suppose that the E-field in the ê′y direction peaks at the output of the quarter-
wave plate, so that the parallel component, which lags, is at zero on its way to

its maximum in the +ê′x direction. As the test wave propagates, the resultant

vector sweeps counterclockwise from the +ê′y direction to the +ê
′
x direction: this

temporal evolution of the wave corresponds to left circular polarization according

to the IEEE definition adopted by the IAU [25]. By the same arguments, if the

quarter-wave plate is oriented at +45◦ with respect to the waveguide frame, the

resulting polarization is RCP.

We wish to characterize the effect of the phase shifter components on the

5In practice the plate contributes an insertion phase to the parallel component as well, but we

only require that the insertion phase difference between the two components is a quarter wave.
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polarization of the incident wave. Express the incident field in the Cartesion

basis: E = EX êx + EY êy, with the sign convention E ∼ ei(k·x−ωt). Subsume the

temporal modulation (e−iωt) into the field coefficients and neglect the êz term

(eikzz). We will consider a single cross polarized baseline; choose an LR baseline,

which requires that receiver j → LCP and receiver k → RCP. The voltages at the
correlator inputs, V L

j and V
R
k , are related to the E-fields at the receiver inputs by

complex gain factors:

V L
j = gjEj ; V R

k = gkEk (2.22)

where the E-terms contain both LCP and RCP components. The gain terms do
not affect the calculations that follow, so we will neglect them until the calibration

discussion of Chapter 3. The effects of the receiver components on the input field

E can be expressed as a series of matrix operations: E ′ = mn · · ·m0E = ME ,
and an understanding of the receivers permits the elements of the 2×2 transfer
matrices mi to be derived. We expect to find that in the absence of errors, this

visibility yields

VLR ∼ 〈V L
j V

R∗
k 〉 ∼ 〈E ′jE ′∗k 〉 ∼ 〈MEj(NEk)∗〉 ∼ Q− iU (2.23)

based on the standard representation of the Stokes parameters in terms of the

E-field coherence terms [92]. We will show that the half-wave plates change this
result.

The calculation consists of several steps. We first deriveM, the transfer matrix

for receiver j, and N, the transfer matrix for receiver k; we then compute the

complex product of the modified fields to obtain the visibility VLR. Rotations
form many of the building blocks for M and N; to derive the transfer matrix for

the half-wave plate, for example, we rotate into the frame of the half-wave plate,

add a complex insertion loss to the component parallel to the plate, and then

rotate back to the original frame. We repeat this procedure for the quarter-wave

plate. The algebra which leads to the visibility is quite complex—in the presence of

first order approximations to the errors discussed above, the elements ofM and N
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each have ∼ 102 terms, so the visibility has ∼ 104 terms; fortunately, Mathematica
can plow through the calculation to a concise solution. Appendix A discusses the

components of the calculation. The intermediate results, such asM andN, are far

too cumbersome to reproduce there, so this section considers several simple test

cases to verify that the model behaves as desired.

Appendix A introduces several terms to quantify the characteristics of the

quarter and half-wave plates. The half-wave plate for receiver j has an insertion

phase of αj = π + δαj , where δα represents the phase error. Similarly, the half-

wave plate for receiver j is attenuated; we quantify this loss by scaling the input

wave by Aj = 1 − δAj . Both terms are real. The half-wave plate orientation is
given by φj , which can take any value. The insertion errors for the quarter-wave

plate are similar; they are given by given by βj and Bj for the phase and loss,

respectively. For proper performance, the quarter-wave plate must be oriented at

±45◦ with respect to the rectangular waveguide which follows it; in the presence
of errors, θj = π/2 + δθj . We require a similar set of parameters for antenna k.

Several simple test cases follow below.

1. Neglect the half-wave plates, and let the error terms vanish. This case tests

our expectation that LR ∼ Q− iU . We find

VLR = (Q− iU)e2iψ (2.24)

This case yields exactly the result which we expect, with an additional factor

of ψ which modulates the response. The argument of the phase term scales

as twice the deck position ψ because a rotation which advances the phase

seen by an LCP antenna by an amount η will retard the phase seen by an

RCP antenna by the same amount, so the phase of the visibility doubles.

Equivalently, if a wave produces pure +Q radiation at a particular deck

position, a 180◦ rotation of the deck will also produce pure +Q.

2. Neglect the half-wave plates, include the quarter-wave plates, but align the

plates to the same angle (e.g., θ = −π/4), so that both receivers measure the
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same mode of circular polarization. In this case, we measure an LL visibility:

VLL = (I − V ) (2.25)

This is exactly the result that we expect.

3. Repeat case 2., but include the half-wave plates:

VLL = (I + V )e−2i(ψ1−ψ2) (2.26)

This result is a bit of a surprise: the visibility is proportional to VRR, not
VLL, and it is modulated by a phase factor. The half-wave plates in the
receivers cause this change; they convert an RCP component to LCP, and

an LCP component to RCP. A simple example illustrates this result; suppose

that the incident wave has a small RCP component, so that EX leads EY .
Insert a half-wave plate, and orient it to be parallel to êx; the half-wave

plate flips the êx component: (EX , EY ) ⇒ (−EX , EY ), causing EX to lag
EY (LCP). This is the first indication that the half-wave plates change the
outputs of the system, and this feature recurs in the results that follow. The

half-wave plates do not affect the CBI’s total intensity calibration because

we expect V = 0 for all sources.

4. Insert all the plates, assign the quarter-wave plates to their correct orienta-

tions, and ignore the errors to find

VLR = (Q+ iU)e−2i(ψ+φj+φk) (2.27)

As in case 2, the half-wave plates map VLR to what we conventionally regard
as VRL. Note that there is always an ambiguity between VLR and VRL; the
polarization assignments of the antennas are fixed, but for a given antenna

pair with (j, k) = (R,L), one can choose between assigning that baseline

to LR by identifying the correlator output as VLR or to RL by identify-
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ing the correlator output as VRL. The critical ingredient is that the same
assignments—the same complex gain factors—are used for calibrations and

for program observations.

5. For the purpose of illuminating the behavior of the plates in the presence of

errors, we will briefly assume that two half-wave plate orientations are the

same: φk → φj . Insert both the quarter and half-wave plates, and include

errors to find

VLR = I/2
[

−(ΣA+ i∆α)e−2iφj + i∆B − Σβ + 2iΣθ
]

Q/2 [2− ΣA− ΣB − i∆α− i∆β + 2iΣθ] e−2iψ−4iφj

iU/2 [2− ΣA− ΣB − i∆α− i∆β + 2iΣθ] e−2iψ−4iφj

V/2
[

−(∆A+ iΣα)e−2iφj + iΣB −∆β − 2i∆θ
]

(2.28)

where ΣA = δAj + δAk, ∆α = δαk − δαj , etc.

We can simplify this expression with some assumptions about the manufac-

turing and assembly tolerances for the phase shifter. The wave plates were

made from a single batch of teflon, so the insertion phase and the insertion

loss per unit volume should be uniform from part to part, and only variations

in the dimensions of the plates will produce variations in the electrical per-

formance. The machining tolerances of the quarter and half-wave plates are

on the order of thousandths of an inch, which corresponds to a few tenths of

a degree of insertion phase. Since the bandpass errors of a few degrees dom-

inate these machining errors, we may assume that the insertion phase errors

repeat with a high degree of accuracy from unit to unit: δαj ∼ δαk for the

half-wave plates, and δβj ∼ δβk for the quarter-wave plates. Similarly, since
the entire length of the half-wave plate attenuates the signal by only ∼ 5%,
variations in loss from machining errors may be neglected: δAj ∼ δAk, and

δBj ∼ δBk. We can therefore delete all of the ∆ terms in the visibility which
arise from the plate transfer matrices. Benchtop tests of the plates show that

δA ∼= 2δB, and δα ∼= 2δβ. Finally, the orientation errors for the half-wave
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plate φ and the quarter-wave plate θ are random from unit to unit, so these

terms do not cancel. Under these assumptions, Equation 2.28 becomes

VLR ∼= I
[

−δAe−2iφj − δβ + iΣθ
]

+ (Q+ iU)
[

1− 32δB − iΣθ
]

e−2iψ−4iφj
(2.29)

to first order in the errors. Since most astronomical sources have vanishingly

small circular polarization, we have neglected the V term in Equation 2.28.

Equation 2.29 has several interesting features. First, the half-wave plate

orientation φ modulates the contribution to the instrumental polarization

from the insertion loss of the half-wave plates. Since δA ∼ δβ ∼ 5%, this
effect can be significant: if we had rotated the half-wave plate throughout a

series of observations of the polarization calibrator, each observation would

be contaminated by a different amount of instrumental polarization. Dur-

ing the CBI observations, however, the half-wave plate orientation remained

constant, so this dependence is not a concern for the analysis of the data.

The origin of this contribution comes as no surprise; the half-wave plate at-

tenuates radiation parallel to the plate, so unpolarized radiation acquires a

linear polarization in the orthogonal direction, the magnitude of which is

proportional to the loss in the plate. Of course, the orientation of the plate

modulates the direction of the spurious linear polarization, so this component

varies with φ. Second, Equation 2.29 shows that the orientation errors of the

quarter-wave plates can cancel for the correct combination of orientation er-

rors: Σθ = δθk − δθj = 0. This result implies that under these contrived
circumstances, the orientation of the plates relative to the rectangular guide

does not matter—even if the error is large, the correct combination of offsets

can cancel under the first order approximation. Of course, it is unlikely that

the orientation errors for the quarter-wave plates for all 13 antennas will

combine to produce cancellation for all baselines. Finally, all of the errors in

this expression are on the order of 5%, so a net instrumental polarization of
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∼ 10% is not beyond reach.

6. Let φj 6= φk. After making the assumptions described in the preceding

section, the general expression for the leakage has the form

VLR = I
[

(−δA cos[∆φ] + δα sin[∆φ])e−iΣφ

−δB sin[2∆φ]− δβ cos[2∆φ]

+iΣθ cos[2∆φ] + ∆θ sin[2∆φ]
]

+ (Q+ iU)
[

1− δA− δB + iΣθ
]

e−2i(ψ+φj+φk)

(2.30)

The calibration procedure assumes that all spurious effects from the phase

shifter appear as leakage, so to compare Equation 2.30 with the measured

leakage, we first divide the expression by the coefficient of (Q + iU). We

will revisit this expression in Chapter 3 when we discuss measurements of

the CBI’s large instrumental polarization. Note that the coefficients for Q

and U are the same; were the coefficients to diverge, the leakage model

for the instrumental polarization—the model which forms the basis for the

calibration procedure—would fail.

2.3.3 Performance of the CBI

The CBI is a complex instrument, but its critical performance characteristics de-

pend on a few key factors. The sensitivity determines the time required to measure

the temperature and polarization signatures of the CMBR. The stability of the sys-

tem affects the sensitivity because noiselike gain variations augment the thermal

noise in the visibilities, and systematic gain variations can bias the results. Point-

ing errors can bias the phases. External sources of emission, such as spillover, the

sun, and the moon, can corrupt the visibilities, and any restrictions which these

sources place on our observational duty cycle degrades our effective sensitivity.

This section focuses on these factors.
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source T (K)

CMBR 3
atmosphere 1
ground spillover 2

optics 2
HEMT 18

cold downconverter 1

total 27

Table 2.1: CBI noise budget.

Sensitivity

The time τ required to achieve a particular noise level with a single baseline de-

pends on T0, the system temperature; and ∆ν, the bandwidth:

σV(Jy) =

√
2kBTsys

Aeffη
√
∆ντ

(2.31)

where Aeff (= 4860 cm
2) is the effective antenna collecting area and η (= 0.86)

is the correlator efficiency. The system temperature arises from all of the sources

which deposit power in the system, and since it forms the backdrop against which

we measure fluctuations in the CMBR, a key design goal is to make Tsys as small as

possible. While the contributions to Tsys can change, the bandwidth of the system

is fixed by the bandwidth of the HEMT amplifiers at the receiver inputs, and

the filters which follow are selected to match the input bandpass. It is important

to establish that the known sources of Tsys agree with the noise in the data.

Table 2.3.3 provides an a priori noise budget.

Several external sources contribute to Tsys. The CMB monopole contributes

∼ 3 K regardless of the telescope orientation. Atmospheric emission contributes
an additional ∼ 1 K which depends on elevation; NRAO’s site testing data suggest
low opacities (τ ∼ 0.004) [33] and these provided one of the motivations for siting
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the CBI on the Llano de Chajnantor. In contrast, gound spillover is source of

loading at all terrestrial sites; the far sidelobes of the primary beam illuminate

the ground, so ground spillover contributes another elevation dependent source of

emission to the array.6

The remaining sources of noise are found within the system. Benchtop tests

show that the optics which precede the receiver—the primary, the secondary, and

the antenna shields—contribute ∼ 1 K, while the phase shifter assembly con-
tributes another ∼ 1 K to the total power. The low-noise HEMT amplifiers domi-
nate the noise budget. As we see in Section 2.4, the HEMT noise across the 26-36

GHz band is meniscus-shaped; the noise has a broad minimum of ∼ 15 K and
rises sharply to more than 20 K at the band edges. The noise given in the table

represents the 26-36 GHz average for all of the receivers. The cold downconverter

is the first active component which follows the HEMT; it has T0 ∼ 103 K, but
the ∼ 30 dB of gain in the HEMT suppresses its contribution to ∼ 1 K. A cold
low-noise amplifier which follows provides sufficient gain to reduce the noise from

all of the downstream components to negligible levels. The external and internal

noise sources combine to produce T0 ∼ 27 K at the antenna inputs.
Several factors diminish the sensitivity given by Equation 2.23. The notch fil-

ters at the output of the downconverter (Section 2.3.1) reduce the effective band-

width of a single channel to 900 MHz, and the differencing strategy adopted to

eliminate ground spillover imposes a penalty of ∼
√
2.7 Taken together, these

considerations imply a sensitivity of 4.7 Jy in 1 s. In Chapter 5, we explore the

noise in detail; at that point we report that the mean noise for the LR visibilities

is ∼ 6.1 Jy, while that for the LL baselines is ∼ 5.8 Jy. Both values exceed the
expected noise by ∼ 20%. The excess for LL is not understood, and the additional
5-10% excess for LR is a consequence of higher noise in RX12 coupled with an

amplitude calibration error (Chapter 5).

6Ground emission can scatter from the insides of the antenna shields into the feeds as well.
7In practice we neglect the

√
2 and simply recompute the effective integration time to reflect

the penalty from differencing.
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Pointing

The CBI’s pointing affects the accuracy with which we can reconstruct the phases

of the visibilities. For total intensity visibilities, phase errors affect the inferred

position of the flux on the sky, while for cross polarized visibilities, phase errors can

corrupt the inferred polarization position angle as well. Consider an unpolarized

point source: let I(x) = S0δ(x0) in Equation 2.1 and assume that the pointing

error δx is small (A(x−x0) ∼ 1) to obtain VLL(u) = S0e2πiu·x0 . In the small error
approximation, pointing errors do not affect the amplitude, but they do affect the

phase of the visibility (δxVφ = 2πuδx). A pointing error of 20′′ produces a phase
error of ∼ 20◦ on a 500 cm baseline, for example. Now suppose the source is
polarized; in this case P (x) = mI(x)e2iχ, where m is the fractional polarization,

and VLR(u) = mS0e
2πiu·x0+2iχ. Since the phase of the cross polarized visibility

conveys information about the source’s position angle, a pointing error can transfer

power between Q and U .

Pointing errors are a concern for the CBI observations, but we have imple-

mented strategies to mitigate their effect on the data. To minimize its shipping

weight, the CBI was designed to operate without a counterweight about the el-

evation axis. The unbalanced mount introduces an elevation dependence to the

pointing errors; the raw pointing offsets can be as high as 40′′. Through a combina-

tion of enhanced telescope telemetry in parallel with improvements in the pointing

model, however, the pointing rms was reduced to ∼ 20′′, which is well within the
limit required to obtain a good phase calibration for the polarization observations.

The orientation of the deck about the pointing axis is an additional dimension of

the pointing which can have a deleterious effect on the polarization observations.

The deck position measurements are stable and accurate to better than 1◦, how-

ever, so these errors are well below the uncertainties in the position angle data

from the VLA observations (Chapter 4).
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Ground Spillover

Ground spillover is far more insidious than its 1 K contribution to the noise budget

suggests. The ground near the CBI contributes a uniform ∼ 300 K, but while these
patches of ground are a significant source of total power, the corrugations which

modulate the antenna sidelobes cancel their contributions to the visibilities. At

the horizon, however, the discontinuity between the ∼ 300 K ground and the ∼ 3 K
sky is an ideal source of structure, and while the CBI’s elevation limit of 45◦ keeps

the bulk of the power in the primary beam away from the horizon, the far sidelobes

are sufficiently high to permit ground spillover signals as large as a few Janskys.

This contamination can dominate the celestial contributions to the visibilities, so

it must be eliminated.

While the spillover signature changes from visibility to visibility, the conta-

mination conforms to a number of global characteristics. The amplitude of the

spillover falls sharply with increasing baseline length because longer baselines fit

more fringes into a fixed area on the horizon, thereby improving the cancellation—

in fact, we do not detect spillover on baselines longer than 104 cm. Similarly, since

the CBI has ∼ 30% bandwidth, the spillover is a strong function of frequency: the
channels near the high end of the CBI band squeeze ∼ 30% more fringes into a
given patch than do the low frequency channels, resulting in a discernible enhance-

ment in the cancellation.8 Spillover is also a strong function of the orientation of

the fringes relative to the horizon; the contamination peaks when the fringes are

parallel to the horizon and it decreases rapidly as the the fringes rotate through

90◦. This feature can be demonstrated by simply rotating the deck while viewing a

fixed point above the horizon. The observation that the spillover corrupts the cross

polarized baselines yielded an important insight about the paths through which

spillover enters the system; since the ground is unpolarized, the cross polarized

visibilities should be immune to spillover. In fact, we find that spillover conta-

minates the total intensity visibilities and cross polarized visibilities with nearly

8The change in beamsize with frequency does not affect this conclusion because we are con-

cerned with the far sidelobes.
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equal force, suggesting that the spillover enters the system along a path which

involves some reflections, and the obvious candidate is scattering from the insides

of the antenna shields. The fact that spillover persists as the boresight approaches

the zenith—well beyond the elevation at which the dishes have a direct view of

the horizon—supports this hypothesis.

Contamination from spillover with ∼ Jy amplitudes must be addressed before
any information about the CMBR can be extracted from the visibilities. The

snow and high winds at the CBI site precluded the installation of a ground shield

of the necessary size, so we modified our observing technique to reject the spillover.

We adopted a conservative subtraction strategy to cancel the spillover from the

visibilities: we observed the deep fields in pairs that were separated by 8m in right

ascension, and then differenced the pairs of matching visibilities offline. To a very

good approximation the temperature of the ground remains constant over the few

minutes which separate the matching samples in the lead and the trail, so the

constant spillover contribution cancels from the differenced visibilities. All tests of

the efficacy of this technique suggest that it performs as desired, but it comes at

a price: differencing requires that we effectively spend half of our time measuring

the ground, so it imposes a penalty of
√
2 on our sensitivity.

2.4 Instrumentation Projects Specific to this Thesis

We now turn to several hardware projects which constitute a significant component

of this thesis: the downconverter, the noise calibration system, and the low-noise

HEMT amplifiers. The benefits of this work extended beyond the CBI: DASI

implemented the CBI designs for the downconverter and the noise calibration

system, and two of the HEMT amplifiers were installed in the Owens Valley 40-

meter telescope for the point source monitoring campaign.
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2.4.1 Downconverter

The CBI downconverter performs two functions: it converts the 2-12 GHz output

from each of the 13 CBI receivers into ten 1-2 GHz (L-band) signals, and it sets

the power level of each of the 130 L-band channels to the +16 dBm required by

the correlator. The downconverter must accommodate a variety of inputs; the

receivers outputs can have tilts across their 2-12 GHz band which are as large as

∼ 10 dB, and have uniform offsets of several dB. The downconverter must fit in the
small volume of a standard 17×21×21 in3 electronics crate, and the packaging and
cooling challenges resulting from this requirement contribute a substantial degree

of complexity to the design. The downconverter is a major subsystem of the CBI;

it required ∼ 60 mechanical drawings, ∼ 700 machined parts, ∼ 600 circuit boards,
and costs ∼ $400k. This section describes the downconverter and its performance.
Figure 2.4 provides an overview of the downconverter, and Figure 2.5 shows a

picture of the downconverter installed on the underside of the CBI deck adjacent

to the correlator. The downconverter is divided vertically into three regions, by

function: the power supplies are on top; the local oscillators are in the middle;

and the downconverter modules are on the bottom. An aluminum plate between

the local oscillators (LO) and the modules provides an electrical, thermal, and

mechanical interface for the LOs and the modules. Each downconverter module

attaches to the underside of the plate with a single pair of bolts—this simple

mounting scheme allows the modules to be installed and removed quickly. The

plate contains quick release rf connectors for the 130 LO inputs, as well as a

custom backplane which supplies power and control to the 13 modules.

The downconverter operates in conjunction with the correlator and the control

system. Power levels measured by detectors in the correlator are used by the

control system to set the attenuators in the downconverter to provide +16 dBm at

the correlator input. The downconverter cannot eliminate amplitude slopes across

a single ∆ν ∼ 1 GHz band, although it can set the power levels of all of the bands
to +16 dBm with 1 dB precision. The process of setting the gains to the correct

level takes seconds; the procedure is performed at the beginning of each observing
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10x

13x

10x

control system

13 2−12 GHz inputs
from receivers

CBI Downconverter Overview

(10x)
(13x)

100 MHz

4−13 GHz

(10x)

10 MHz input

LO assembly

d/c module

10x13 1−2 GHz outputs to correlator

Figure 2.4: CBI downconverter overview. Many of the downconverter components
come in multiple quantities; there are 10 frequency synthesizer blocks in the LO
assembly, 10 L-band channels in each downconverter module, and 13 downcon-
verter modules. The LO assembly requires a 10 MHz source to set the frequencies
of the ten LO outputs.
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Figure 2.5: The CBI downconverter and correlator installed on the array.
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session, and the settings are left unchanged for the duration of the session. A

comparison of attenuator settings across periods spanning several weeks provides

a crude measure of the stability of the system; we should expect that the gains

remain constant from night to night to within the 1 dB (∼ 25%) resolution of the
system. Inspection of the attenuator settings across these timescales shows that

many of the gains remain constant at this level for these periods.

Downconverter Module

Each receiver is assigned to one of the thirteen identical downconverter modules.

Each module consists of a filter bank, ten downconverter circuits, and a control

board. Figure 2.6 provides a circuit diagram, and Figures 2.7 and 2.8 provide two

views of a single module. The receiver signal enters at the filter bank input, and the

ten module outputs pass directly to the correlator inputs. Each module dissipates

∼ 50 W, and since the dense packing of components precludes the use of forced air
for cooling, the bottom of the module contains a cooling loop which connects to

the chilled water supply for the downconverter through a pair of self-sealing quick

release connectors.

The filter bank at the module input splits the 2-12 GHz receiver output into ten

bands with ∆ν ∼ 1 GHz. The filter bank is a custom part, designed to satisfy the
insertion characteristics required for good correlator performance. In addition, the

rejection must increase rapidly outside of the desired band; we chose a rejection

limit of 20 dB at points 100 MHz beyond the band edges. To ensure uniform

bandpass characteristics from unit to unit, the vendor first made a master filter

bank and then adjusted the insertion characteristics of the production filters to

match the master unit.

The downconversion schematic is shown in Figure 2.6. The ten filter bank

outputs are centered on different frequencies, so a mixer at the input of each

channel combines one of ten LO signals with each filter output to mix the power to

L-band. The circuits which follow the mixers consist of a series of amplifiers, filters,

and a single variable attenuator. The amplifiers provide ∼ 65 dB of gain, and the
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CBI Downconverter L−band Circuit
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Figure 2.6: L-band schematic. Each module contains ten L-band circuits, so there
are 130 of these circuits in the downconverter.
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Figure 2.7: rf side of a downconverter module.

Figure 2.8: DC side of a downconverter module.
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variable attenuator provides up to 31 dB of attenuation with 1 dB resolution. The

gain in the downconverter channels is such that the correlator typically requires

∼ 8 dB of attenuation, although receivers roll the 35-36 GHz band off to such a
degree that the 35-36 GHz channel requires an additional stage of amplification

on all modules to avoid starving the correlator. The L-band circuits employ a

combination of surface mount and hybrid components, all mounted on thin alumina

(TMM10) boards. Alumina is fragile, so each circuit board is glued to a 1/16” thick

Al plate to provide the mechanical strength required for installation and removal.

Each L-band circuit occupies a machined slot in the module which isolates the

circuit from its neighbors.

The L-band circuits receive instructions and power from a control card mounted

on the opposite side of the module. The control board mates with the backplane

with a set of D connectors, and it connects to the L-band circuits with a set of

quick-release feedthrough connections which are capacitively coupled to ground.

The heart of the control circuit is a field-programmable gate array which decodes

and implements the commands sent to the 13 modules over the downconverter

backplane. The FPGA is a device which can be programmed to perform a wide

variety of logic functions; the user designs and compiles the logic for the FPGA

with Altera’s Max+II software, and then writes this command set to a memory

chip which is installed with the FPGA on the control board. The FPGA is designed

to set the attenuators to a benign low power state on startup to avoid saturating

the correlator before the attenuators can be set. The cards for all 13 receivers are

identical, and a set of jumpers on each card facilitates a unique mapping between

each receiver and each module.

The downconverter LO system radiates power which can enter the receivers at

their feeds and corrupt the visibilities. These signals arise from the harmonics of

the LO signals which fall in the 26-36 GHz band, and they appear at the down-

converter output as spikes at the edges of the output bandpass—the harmonics

produce spikes at exactly 1 and 2 GHz, with amplitudes as high as ∼ 20 dB. To
reject these signals, a notch filter was added to the downconverter output; it con-
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sists of a pair of stubs in series whose lengths are selected to short signals at 1

GHz and its harmonics (both stubs are λ/2 long). The filter is made from coiled

segments of semi-rigid coaxial cable, and it attaches to the outputs of each of the

130 downconverter channels. The filter required some tuning by hand to obtain

at least 40 dB of rejection at exactly 1 and 2 GHz. The filters decrease the effec-

tive bandwidth of the receivers by 100 MHz, or 10%, which in turn degrades the

sensitivity by 5%.

Local Oscillator Assembly

The LO assembly provides the ten LO signals required to map the ten filter bank

outputs to L-band. The LO system consists of ten frequency synthesizer modules

and a distribution network which routes each LO to the 13 downconverter modules.

Figure 2.9 shows a single frequency synthesizer module, and Figure 2.10 shows the

entire LO assembly. The synthesizer module consists of a frequency source, power

splitters, and amplifiers which raise the LO power to the +13 dBm required by

the mixers in the downconverter. Each frequency synthesizer requires a 100 MHz

reference, which is supplied by a single 100 MHz synthesizer located in the LO

assembly. The 100 MHz source in turn requires a 10 MHz reference, which is

supplied by the CBI.

Power Supply, Cooling, and LO Plate

The power supply assembly provides the -5V, 5V, and 15V levels required by the

amplifiers and synthesizers in the downconverter. The supplies consume ∼ 1 kW
of power, over half of which is dissipated as heat in the downconverter’s compo-

nents. Chilled water from the CBI supply circulates through the unit; a pair of

manifolds at the back of the downconverter, seen at the far right in Figure 2.10,

route the water to the LO/module interface plate and to each of the 13 downcon-

verter modules. The plumbing connections are made with self-sealing quick release

connectors which allow the modules to be removed without disabling the entire

cooling network.
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Figure 2.9: 4 GHz frequency synthesizer block.

Figure 2.10: Top view of the local oscillator assembly; all ten frequency synthesizer
blocks shown.
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Downconverter Performance

The performance requirements for the downconverter are simple: it must deliver

130 receiver signals with the appropriate power and bandpass to the correlator.

The loss of a channel, band, or module of the downconverter decreases the amount

of data through the system, which in turn degrades the CBI’s sensitivity, so the

downconverter must also have a high duty cycle. These requirements are difficult

to achieve, however, because the downconverter is a complex part; it has nearly a

thousand active rf components which are susceptible to electrostatic damage and

thousands of wirebonds which can be compromised by thermal and mechanical

stresses. In light of these concerns, the downconverter was designed to permit

easy access to the most fragile components for repair, but as we will see, the

components which caused persistent problems were among the least accessible.

We lost few nights to downconverter problems, but there were long periods during

which we operated with one or several damaged channels.

Variable Attenuator

The insertion loss of the variable attenuator was usually less than the amount

commanded by the system; the measured insertion loss could be as little as 27

dB, for example, for a requested value of 31 dB.9 This is not a problem, however,

because the channels typically require ∼ 10 dB of attenuation. Since the control
system simply searches for the combination of attenuator settings which set the

power at the correlator input to +16 dBm, the failure of the attenuator to insert

the required loss does not impair the performance of the system.

Downconverter Bandpass

The shape of the downconverter bandpass is the consequence of the individual

sources of gain and loss in the filter bank, mixer, and L-band circuit. High correla-

tor efficiency requires that the amplitude fluctuations in the circuits be as small as

9This may be a consequence of parasitic coupling on the attenuator.
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possible, and 2 dB ripple p-p was selected to be the design specification. Concerns

about flatness drove many of the component choices in the L-band circuits. The

Minicircuits amplifiers, for example, cost only a few dollars per unit, but since

they have a 2 dB slope across the 1-2 GHz band, we cannot use more than one

in the circuit. The more expensive FEI amplifiers have far better flatness char-

acteristics, and these devices provided most of the gain. Generally, although all

of the components are broadband in the sense that they have no sharp features

across the 1-2 GHz band, the net result of the sum of the components and all of

their small matching errors is to create variations on the order of 1-2 dB across the

band. All of the L-band circuits were tested for flatness at 1.0, 1.1, 1.5, 1.9, and

2.0 GHz before they were accepted for use on the array, and none were installed

if the flatness exceeded 2 dB p-p in the central 900 MHz of the band. Bandpass

errors which exceeded this level were often the result of poor assembly, and were

thus easily rectified. Larger variations at the band edges were tolerated because

the notch filters suppress power at those points.

Gain Stability

The amplifiers in the L-band circuits provide ∼ 65 dB of gain, and the small
volume in which this gain is developed fomented oscillations in some circuits.

One type of oscillation arose between the FEI and the Minicircuits amplifiers,

and it was eliminated by a single 3 dB surface mount attenuator between these

components (Figure 2.6). In other cases the power radiated by the circuit gave

rise to instabilities, and a strip of Eccosorb in each slot eliminated the resulting

oscillations.

Gain Compression

The gain of the L-band circuits must remain linear over the range of likely input

power. The gain departs from linearity when an amplifier ceases to provide the

output power necessary for a given level of input power; when this occurs, the am-

plifier has compressed. The L-band circuits were designed to compress well above
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the +16 dBm required at the output—the high power Cougar amplifier provides

the last stage of amplification. Direct measurements of the L-band gain with a

signal source show that the power compresses by 1 dB when Pout ∼ 27 dBm, which
is consistent with the expected performance from the last stage amplifier. This

result agrees with system temperature measurements on the array that show ∼ 3%
compression for load temperatures of ∼ 300 K. Since the antenna temperature of
∼ 30 K is 10 dB below the 1 dB compression point, the standard operating regime
is well below the range for which compression is a consideration.

Duty Cycle

Failures in the downconverter can degrade the CBI’s sensitivity though lost band-

width and observing time. Since the downconverter modules contain hundreds of

active components and thousands of wirebonds, they were designed to permit quick

removal for repair. Failures in the LO distribution network were not anticipated,

and these required disassembly of the downconverter. Nonetheless, problems with

the downconverter resulted in only a marginal loss of observing time.

During the first year of operations the downconverter suffered from several fail-

ures, most of which were confined to the LO assembly. First, several frequency

synthesizers and amplifiers in the LO assembly failed, so these parts were returned

to the vendor for warranty repairs. Second, the spring-loaded coaxial connectors

with which the LO assembly mates with the modules were a source of recurring

difficulties six of the connectors failed, thereby starving the mixers of power and

disabling the associated channels.10 These connectors are buried deep within the

downconverter, so for these repairs the downconverter was removed from the ar-

ray and disassembled. These connectors were a poor choice for this particular

application. These failures did not result in a significant loss in observing time.

10This type of connection is inferior to one in which the inner conductor is soldered in place. The

manufacturer’s suggested technique for assembling these connectors leaves the connector prone

to failure; the user solders the jacket of the coaxial cable to shell of the connector, and the inner

conductor of the cable mates with the inner conductor of the connector with a simple mechanical

(friction) fit.
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Summary

The downconverter, a key component of the CBI signal chain, was designed and

implemented for this thesis. It meets the size and performance requirements for

the CBI, although on a few occasions connector failures in the LO distribution

network precipitated major repairs. Very few nights were lost to downconverter

failures.

2.4.2 Noise Calibration System

The active components in the CBI signal chain can succumb to gain drifts which

introduce errors in the calibration over the course of an observing session. Gain

variations come in two flavors; if the variations are incoherent from baseline to

baseline, they give rise to scatter which augments the noise introduced by Tsys.

If the variations are coherent, they produce systematic errors in the measured

visibilities. In either case, good performance requires that these gain variations

are measured and eliminated. The CBI employs a system which injects a bright

calibration signal into each receiver; the resulting visibilities are recorded in the

data stream, and the offline calibration software uses these calibration source vis-

ibilities to correct the program data. During routine observations, the calibration

source is fired several times an hour, and the calibration software uses the source

visibilities to interpolate a correction for the intervening visibilities. The correlator

gain calibration (Section 3.2.2) also requires the internal noise source. This section

describes this calibration system.

The noise calibration system is very simple: it consists of a noise source, a

power meter, and a distribution network (Figures 2.11 and 2.12). A series of

amplifiers combine their intrinsic noise with that of a load to produce a bright

signal at the receiver inputs; the amplifier noise dominates the load, so the noise

source stability tracks that of the amplifiers, which are thermally coupled to the site

chilled water supply. Since the amplitude of the noise source can vary with time, a

power meter measures the noise and reports these values to the data stream, and
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the noise source visibilities are corrected for these variations before they are used

to interpolate the gain variations in the program data. The noise signal passes to

a 16-way power splitter and a series of switches. The power splitter was quickly

and inexpensively realized from a block of aluminum; it consists of a sequence of

four consecutive two-way splittings (Figure 2.13), and this design provides good

temperature stability. The shape of each division is based on a tangent curve,

which ensures that the derivatives at the boundries between successive divisions—

i.e., the shape of the waveguide—agree. The outputs of the splittings are not

matched. The splitter behaves as desired; the power out of all the ports is ∼ 1/16
of that at the input, and the input return loss—more than 20 dB—is well behaved

across the band.

The amplifier gain ramps up sharply when the amplifiers turn on, so the am-

plifiers run continuously during observations. We therefore require a considerable

degree of isolation between the amplifiers and the receivers, and two solid state

waveguide switches isolate each receiver from the source when it is not in use; one

switch is at the input of the 16-way power splitter, and the others are at 13 of

the 16 outputs. Together the switches provide 80 dB of isolation which ensures

that the correlator does not see the noise source during celestial observations, nor

that the receivers couple to each other through the noise calibration system. The

placement of the switches also provides some control over the choice of receivers

that see the source.

The 13 noise cal outputs are distributed to the receivers via coaxial cable. The

insertion characteristics of coaxial cable vary with temperature, so to maintain a

stable temperature the cables were enclosed in an insulated shroud with cooling

water which was fanned out to the receivers. In addition, a cooling manifold at-

tached to the amplifiers maintains the temperature of the active components to

within several degrees Celsius. Despite these efforts to control the temperature of

the noise cal, the system succumbed to temperature-dependent drifts which com-

plicated the application of the noise source visibilities. This problem is discussed

in the following section.
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Figure 2.11: Schematic of the CBI noise calibration system.
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Figure 2.12: Image of the noise cal system. The load, amplifiers, and power meter
are located on the other side of the plate on which the noise calibration system
resides.

Noise Source Performance

Figure 2.14 provides an example of the correction that the noise source applies to

real data. The night of 10mar00 was bracketed by two total intensity calibrators

which together provide a check on the efficacy of the noise calibration procedure;

Tau A was observed for 5m at the beginning of the night, and 3C274 for 5m at

the end. Gain drifts which occur over the course of the night will produce flux

errors for one source as calibrated on the other. For this demonstration, the flux

calibration was obtained from Tau A, and this scale was transferred to the 3C274

observation at the end of the night. Figure 2.14 shows the results of this test; the
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Figure 2.13: Autocad rendering of the 16-way waveguide power divider.

heavy solid line is the expected flux for 3C274, and the dashed line shows the flux

obtained with the noise source correction. In the absence of a correction to the

gain variations the derived flux differs from the expected values by ∼ 0.8 Jy, or
5%. The noise source correction improves the error to less than 0.3 Jy, or ∼ 2%.
Although this example provides a demonstration of the efficacy of the noise cal,

the performance of the system often fell short of desired specifications. First, on

some occasions the variations in the noise cal visibilities associated with individual

receivers exceeded the variations in the underlying receiver gains. An inspection

of the raw visibilities shows that on rare occasions the noise source amplitude can

vary by as much as 10% on timescales of an hour, and under these circumstances
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Figure 2.14: 3C274 flux densities with and without the noise source correction.

the application of the noise cal correction introduces more errors than it removes.

Second, the power measured by the power meter can diverge from the power in-

jected into the receivers by as much as 15% peak to peak. While this range is quite

large, changes of this magnitude are only observed over timescales spanning sev-

eral months; the discrepancies in a single night are much smaller. Observations of

supporting sources spanning many months suggest that these variations introduce

spurious variations in the measured flux densities which obviated the benefits of

the noise cal. As we will see, these discrepancies have a strong dependence on the

physical temperature of the system. Finally, the amplifier output has a downward

slope of 10 dB across the 26-36 GHz band, so the power read by the power meter

is dominated by the power at the low end of the band. These problems, and their

remedies, are discussed below.

Large Noise Cal Variations

On rare occasions the variations in the noise source visibilities exceeded the vari-

ations seen in the contemporaneous program data. The poor S/N in the CMBR

data on short timescales precludes its use as a proxy for the receiver gains, but on

several occasions we performed deep observations of the polarization calibrators at
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a variety of deck positions, and the individual scans have sufficient S/N in LL to

permit an assessment of the noise source stability. On some dates the noise source

flux variations exceeded the underlying gain changes; Figure 2.15 provides a par-

ticularly egregious example of this problem. In this case the noise source power

injected into RX10 is far more unstable than the underlying gain of the system;

the figure compares noise source and 3C279 visibilities for bands 2 and 7 on base-

line RX0-RX10. An inspection of all of the visibilities reveals that this problem is

confined to RX10, and since the 3C279 fluxes provide an upper limit on the gain

changes for RX10 which is well below the variations in the noise source, the prob-

lem probably resides in the noise source distribution network between the power

source and RX10—one possible candidate is a loose coaxial connection which suf-

fers from a microphonic response during the slews that separate the observations.

Errors of this sort are rare, and easily identified by eye in the data.

The observation of occasional pathologies such as these, coupled with tests of

the accuracy of the noise source correction for observations spanning timescales

of months or longer, prompted a modification to the calibration procedure for

which the noise source was designed. The original design called for the noise

source visibilities to be used to interpolate gain corrections for the program data.

These problems motivated a second procedure in which the amplitude correction

is derived from an average of all of the noise source visibilities during the session.

This procedure, discussed in detail in Chapter 3, applies a uniform correction to all

of the visibilities based on the mean of the noise source amplitude for the session;

this procedure effectively eliminates the noise cal from the calibration procedure.

While this second procedure was used for the total intensity observations, however,

the polarization program prevailed on the noise cal system on nights which lacked

a suitable observation of a polarization calibrator.

Power Meter Discrepancy

The noise source power measured by the power meter can depart from the power

which the system injects into the array, and these flux scale errors can complicate
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Figure 2.15: Internal noise source amplitude errors for two baselines. The points
denote 3C279 fluxes, and lines denote noise source fluxes where the boxes are the
actual noise source pulses. All data have been normalized to the mean for the
period. The standard noise source calibration would interpolate the 3C279 fluxes
to the noise source amplitudes, thereby exacerbating the noise in the data. An
inspection of other baselines suggests that this problem is confined to RX10; one
possible candidate is a microphonic response in the noise source connection to
RX10. Pathologies this extreme are rare, however.
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the application of the noise cal correction. Unlike the large noise source variations

discussed above, these errors escape a visual inspection of the data; they can only

be detected by using astrophysical sources of known flux density to track changes in

the noise source flux scale. The details of this technique require an understanding

of the CBI polarization calibration routine, which must await the discussion of

Chapter 3, but this section describes the results of this work. We show that the

power meter discrepancy has a quadratic dependence on the ambient temperature.

The two deep field observations both span at least three months, and these

periods provided the long baselines necessary to explore the temperature depen-

dence of the power meter discrepancy. Figure 2.16 shows the noise cal amplitude

error as a function of the temperature of the noise cal amplifiers for the 31-32 GHz

band during the 01aug00-03oct00 period;11 the error is a flat quadratic function

of temperature spanning ±10% for most amplifier temperatures in the vicinity of
−5◦. The other nine bands show the same quadratic behavior, although the fit co-
efficients differ. Intervals during the 08h field observations have the same quadratic

dependence, albeit with a different offset; the constant terms in the quadratic fit

depend on the date that provides the reference observation against which the cor-

rections are determined. We exploit the high correlation between the power meter

error and the amplifier temperature in Chapters 3 and 5.

Noise Cal Band Slope

The noise cal power suffers from ∼ 10 dB slope across the band. This steep slope
has a deleterious effect on the behavior of the noise calibration system; the power

meter measures the power across the entire 26-36 GHz band, and since the high

end of the band is much weaker than the lower end, the power measured by the

system does not accurately reflect the variations at the high-frequency end. To

remedy this problem, a pair of bandpass filters and a second power meter were

added to the system; the filters break the 26-36 GHz band into two 5 GHz wide

bands, and the two power meters report the noise in the two halves of the band to

11After 03oct00 the source underwent maintenance which changed the zero point of the fit.
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Figure 2.16: Temperature dependence of the noise source flux scale error for the
31jul00-03oct00 period.

the data stream. This modification provides some improvement, particularly for

the upper end of the band, but this addition is not part of the scope of this thesis,

nor were any thesis data collected after this modification was performed.

Summary

The noise calibration system is a subsystem of the signal chain that was designed

and implemented for this thesis. The noise cal suffered from a variety of problems

which compromised its efficacy for the total intensity observations; these problems

resulted primarily from poor control of the temperature of the system, and greater

attention to the thermal stability of the amplifiers, switches, and coaxial distribu-

tion network would improve its performance. The bandpass slope was addressed

by dividing the 26-36 GHz band into two adjacent bands, each of whose power was

measured separately; a filter at the amplifier output to flatten the signal seen by the

receivers would achieve the same result at a smaller cost. In Chapters 3 and 5 we

show that despite these problems, the noise cal aids the calibration of polarization

data for dates which lack direct observations of a polarization calibrator.
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2.4.3 HEMT Amplifiers

The CBI is among the first telecopes to employ a new generation of low-noise, high-

bandwidth Indium Phosphide HEMT amplifiers for the 26-36 GHz band. These

amplifiers provide the high bandwidth and the low noise which are necessary to

achieve the high sensitivity required for our science goals. The CBI HEMT design

was developed by at NRAO’s Central Development Laboratory [76], and the author

went to NRAO to learn how to build and optimize these critical components. Our

program requires 17 HEMT amplifiers: 13 + 2 spares for the CBI, and 1 + 1

spare for the Owens Valley 40-meter telescope.12 The amplifiers were assembled

at NRAO’s Central Development Laboratory in Charlottesville, VA, and in the

CBI labs on the Caltech campus. HEMT production requires several specialized

tools: a wirebonder and a microscope for assembly, and a network analyzer and

a cryostat for testing; both labs had these tools on hand. The Caltech lab was

shipped with the CBI to Chile to facilitate HEMT repairs at the Chajnantor site,

and since several HEMTs were damaged during the shipping of the instrument,

the CBI benefitted from having these facilities on site. On average, each HEMT

requires up to two days for assembly and two to four days for testing.

A HEMT amplifier consists of four Indium Phosphide Field-Effect Transistors

(FETs) in series (Figure 2.17). Each FET provides ∼ 8 dB of gain at wavelengths
of ∼ 1 cm, and when cooled to a physical temperature of ∼ 10 K, the devices
have a total noise temperature of ∼ 15 K near the band center and ∼ 20 K at
the band edges. The rf signal travels along the vertical stripline from the input at

top of the unit to the output at the bottom. The stripline couples to waveguide

(not shown) with probes that are soldered to the substrate; the silver tip of the

input probe can be seen at the top of Figure 2.17. The rf stripline is punctuated

by the FETs at the intersections of the rf channel and the four horizontal DC

bias channels. The bias channels accommodate the DC networks which set and

12The 40-meter telescope was an essential component of the point source strategy that was

necessary for the total intensity observations at high `. A Ka-band receiver was built for the

40-meter telescope for the CBI program.
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monitor the gains of the FETs. The FETs, stripline, and chip components in

the bias network are glued to the body of the amplifier with conductive epoxy and

connected with 0.7 mil (0.0007”) gold wire. The figure notes the physical scale; the

FETs are small, ∼ 10 mil on a side, and consistent electrical performance requires
that they are positioned to an accuracy of a few mil. The primary challenge to

producing these devices is satisfying these tight mechanical assembly requirements

with a production process in which components are installed by hand.

HEMT Tuning

All of the amplifiers required some tuning to achieve the noise and gain specifica-

tions of the CBI. The CBI requires 30-35 dB of gain and as little noise as possible

across the 26-36 GHz band. The gain and noise can vary dramatically across the

26-36 GHz band—the noise by 50% and the gain by 5 dB—so the tuning required

measurements across the band with at least 1 GHz resolution. There are four pri-

mary degrees of freedom for tuning at our disposal: the lengths of the gate bonds

for each of the four stages, which in turn determine the inductance and parasitic

capacitance looking into each device. The first stage, for example, requires a gate

bond which is 23 mil long; increasing the length of this bond increases the induc-

tance at the device input and thereby attenuates the power at the high end of the

band. Unfortunately, the tuning process is somewhat destructive; the FETs can

sustain only a few repeated bonds, so to avoid installing a new bond with each

tuning iteration, the first bonds are made ∼ 5 mil too long, and then shortened
by crimping the end of the bond to the rf stripline. The optimum set of tuning

parameters required to obtain good Tsys performance across the band is not the

same as that which is required for the gain; in practice we compromise between

the two contraints, with a bias in favor of flat Tsys across the 26-36 GHz band.

The time required to tune a HEMT is set by the cooling cycles that are required

to evaluate the HEMT performance under cryogenic conditions. Each cryogenic

cycle requires ∼ 7h, and while measurements at cryogenic temperatures provide
the best indicator of how the HEMT will perform on the array, the cost in time
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Figure 2.17: Closeup view of an NRAO HEMT. Signals enter from the top, pass
though the four stages at the junctions of the horizontal and vertical channels, and
exit at the bottom. The two holes accommodate two of several 2-56 screws which
hold the cover on the amplifier. The key at the bottom left shows the scale of the
device.
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for many cycles can be considerable. Fortunately, experience shows that there is a

mapping between the warm performance and that at cryogenic temperatures; most

importantly, the gain and noise bandpasses tend to shift ∼ 1 GHz lower when the
HEMT is cooled. This behavior was exploited for the tests during the latter part of

the CBI production run. For these HEMTs, warm measurements of the insertion

characteristics, combined with warm Tsys measurements, circumvented the initial

cryogenic testing cycles, and thereby dramatically reduced the production time.

The warm Tsys, which is typically ∼ 100 K, provides little guidance about the ab-
solute minimum noise under cryogenic conditions, but since the process of cooling

the HEMTs preserves the shape of the noise curve (to within a ∼ 1 GHz shift),
the warm Tsys curves retain some value for the purpose of tuning the HEMTs.

CBI HEMT Performance

The 17 CBI HEMT amplifiers showed minor variations in performance. Figure 2.18

shows the range of noise performance across the 26-36 GHz band for the CBI

HEMTs. The figure also provides a model prediction for comparison, as well as

Tsys values for a sample unit built by NRAO [75].
13 No HEMTs have demonstrated

the noise performance predicted by the model, although the NRAO prototype

comes within 2 K of achieving this spectacular performance near the center of the

band. The CBI HEMTs approximate the NRAO performance at the low end of

the band, and most of the CBI HEMTs occupy the lower half of the shaded region

in Figure 2.18; for the 15 best CBI amplifiers, for example, 〈Tsys〉 ∼ 16 K for the
central eight channels, while that for the NRAO sample is ∼ 12 K across the same
frequencies.

For a properly tuned HEMT, the noise performance is a strong function of the

quality of the FETs which are installed in the HEMT. The first stage device in

particular dominates the noise performance of the entire unit. A comparison of

gain and Tsys curves for the CBI HEMTs shows that the tuning is fairly consistent,

so in light of the iterations required to obtain the best Tsys performance, the range

13NRAO A23
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in Tsys seen in Figure 2.18 reflects the intrinsic noise characteristics of the first

stage devices.

Summary

Part of this thesis focused on the production and implementation of the HEMT

amplifiers based on an NRAO design. These components that are critical to the

performance of the CBI; their ∼ 15 K of noise dominates the noise budget. The
HEMT amplifiers achieved nearly the performance to be expected based on the

NRAO test unit; since most of the units have the same performance across the

band, the tuning is similar. Most of the difference arises from device variations for

the first stage FETs.

2.5 Conclusions

This chapter describes the Cosmic Background Imager. Section 2.2 reviews the

response of an interferometer; the main results of this discussion are that for

small scales a visibility measured by a baseline of length |b| samples a scale `
given by ` = 2π|b|/λ, and that the covariance of a pair of visibilities provides an
estimate of C`. Section 2.3 discusses the Cosmic Background Imager in detail. We

are particularly concerned with its polarization characteristics; the CBI employs

single-mode circularly polarized receivers, and we saw that the quarter-wave plates,

which are used to define the mode to which the receiver responds, are also a source

of instrumental polarization. Section 2.3.3 presents a model for the instrumental

polarization from the CBI signal chain, and in Chapter 3 we compare the model

to measurements of the instrumental polarization.

This thesis entailed design and implementation of a number of major systems

for the CBI, and the latter part of Chapter 2 focuses on these projects. The

downconverter was the largest of these efforts; it met the CBI’s requirements for

size and performance, and its occasional failures did not have a deleterious effect

on our observing time. The noise calibration system suffered from a variety of
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instabilities which precluded its use for the total intensity observations. One of

the major problems is a failure for the power meter in the system to accurately

report the power distributed to the receivers; we show that these errors are strongly

temperature dependent, and in Chapters 3 and 5 we exploit this temperature

dependence to improve the noise cal performance to a level that is acceptable

for the polarization observations. Finally, the low-noise HEMT amplifiers were

produced for this thesis; the HEMTs are critical components of the CBI because

they dominate the considerations which affect the CBI’s sensitivity. The CBI

benefitted from having the capacity to build and repair these parts on site.
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Figure 2.18: CBI HEMT results with NRAO model and data from single NRAO
sample amplifier.
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Chapter 3

Polarization Calibration

3.1 Introduction

The outcome of our polarization detection effort hinges on the quality of the po-

larization calibration, and the substantial amount of time reserved for calibration

observations—roughly 15% of each observing session—reflects the importance of

this concern. We incorporated a number of calibration procedures into each night

of observations. Each session began at sunset with an optical pointing procedure to

create a pointing model for the session; good pointing is a requirement for a good

phase calibration, and the models typically yielded pointing accuracy of ∼ 20′′

p-p. The pointing calibration was followed by a quadrature calibration, which is

necessary to measure the gains of the correlator’s real and imaginary channels.

The program observations—CMB fields, the SZ effect in clusters, and supporting

observations—followed the quadrature calibration. These observations were inter-

leaved with observations of the CBI’s internal calibration source, to assess receiver

gain variations; and astrophysical calibrators, to refer the internal amplitudes and

phases to an astronomical scale. The astronomical calibration is also necessary to

correct for the CBI’s instrumental polarization, or leakage.

This chapter discusses the considerations which affect the polarization cali-

bration of the CBI. Section 3.2 reviews the calibration procedures; this section

develops the leakage model for the instrumental polarization, which states that
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polarization observations of a source are contaminated by a fraction of its total

intensity. The CBI’s deck rotation about the pointing center plays a critical role in

the polarization calibration procedures; we will see that we can isolate the leakage

by observing a source of known polarization at a variety of deck positions. This

procedure also permits us to measure the gains of the receivers.

We observed 3C279, our primary polarization calibrator, under a range of

conditions to evaluate the polarization performance of the CBI, and Section 3.3

discusses these observations. We are particularly interested in the stability of the

instrumental polarization, as well as the off-axis behavior of the CBI’s polarization

response. Section 2.3 presents the results of tests of these characteristics; we show

that the instrumental polarization is somewhat less stable than the uncertainties

on the measurements would suggest, and that the off-axis polarization is consistent

with the instrumental polarization at the telescope boresight. We also compare

the measurements of the leakage with the leakage to be expected from the phase

shifter model developed in Chapter 2, and show that the model can account for

all of the leakage.

3C279 and Tau A were the primary polarization calibrators for the CBI po-

larization observations. While the 3C279 polarization was established from the

contemporaneous monitoring campaign with the VLA, we did not have indepen-

dent measurements of Tau A’s polarization of sufficient quality to calibrate the

CBI. Tau A is resolved by the CBI, so observations in band and with the CBI’s

resolution offer the best hope of obtaining an accurate model. Tau A and 3C279

overlapped briefly during the 2000 observing season, and Section 3.3 discusses ef-

forts to transfer the calibration from 3C279 to Tau A; the techniques discussed in

this section yield a model which is good to ∼ 10%.

3.2 Calibration Procedures

The CBI developed several custom software packages to calibrate the LL and LR

visibilities. Figure 3.2 provides an overview of the CBI polarization calibration
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pipeline. CBICAL reads the raw visibilities from the CBI archive, along with var-

ious pieces of housekeeping and telemetry data which aid the analysis. CBICAL

provides a suite of tools for inspecting and flagging visibilities, as well as algo-

rithms which correct some irregularities, such as pointing errors which escape the

pointing calibration. CBICAL performs the quad and ncal calibrations (described

below), and writes the partially calibrated data to .uvf (uv-fits) files.1 Most ob-

servations were accompanied by observations of trailing fields for the rejection of

spillover; UVSUB differences the lead and trail visibilities written by CBICAL, and

passes the subtracted data in the form of a uv-fits file to CBIPOLCAL. CBIPOLCAL

employs observations of sources of known polarization to isolate the instrumental

polarization, and it removes this spurious signal from the program data before

placing the visibilities on an astrophysical flux scale.

We deal with several different kinds of files. CBICAL reads the data from

the archive and writes the visibilities to .uvf files; this is the standard format for

visibility data. The polarization calibrator characteristics are stored in .par files,

which are read by CBIPOLCAL. The polarization calibration results—the gain and

leakage for each baseline and band—are saved by CBIPOLCAL in .cal files, where

they are stored for application to subsequent observations of program sources.

3.2.1 CBICAL: Quadrature Calibration

The quadrature calibration is necessary to balance the gains of the real and imag-

inary branches of each correlator channel. The CBI employs a complex correlator,

and under ideal circumstances the real and imaginary branches for each baseline

have identical amplitudes and a 90◦ phase offset. In practice, however, bandpass

errors and component variations give rise to mixing between the channels which

degrades their orthogonality, and these errors must be eliminated. The quadrature

calibration consists of a 5m procedure in which the CBI’s internal noise source

1CBICAL performs the astronomical calibration for the LL visibilities, but the LR visibilities

bypass this procedure because CBICAL does not isolate or eliminate the instrumental polarization.
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Figure 3.1: Polarization calibration flow chart. The upper half shows the procedure
which is required to derive the calibration factors—gain and leakage for each band
and channel—using the fractional polarization m and position angle χ data from
the VLA. The calibration factors are stored in the .cal file. The lower half shows
the application of these factors to the program data. The calibration procedure
for LL baselines in CBIPOLCAL differs in only one respect: no correction is made
for the leakage.
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injects a pair of orthogonal signals into each receiver in succession.2 In the offline

analysis, CBICAL’s quad task compares the real and imaginary visibilities at each

correlator output, computes the phase offset and amplitude mismatch between

the two branches, and adjusts all of the visibilities for the session accordingly.

The quadrature corrections are typically ∼ 5% in amplitude and ∼ 3◦ in phase,
and quadrature calibrations which bracket the observing sessions demonstrate that

these corrections are effectively constant (δA < 1%, δφ < 1◦) over the duration of

the observing sessions. Although the quad corrections can occasionally be quite

large—10% in amplitude, and 6◦ in phase—they are stable and easy to measure.

3.2.2 CBICAL: Internal Noise Source Calibration

The CBI employs an internal broadband noise source that provides a reference

against which changes in the receiver amplitude gains during an observing session

can be measured. The noise cal system distributes noise power from a thermal

load to the 13 receivers. The noise power can drift with time, so a power meter

at the amplifier output reports the amplitude of the signal to the data stream,

and CBICAL uses these readings to correct the noise source visibilities for the

amplitude variations which are intrinsic to the noise cal system. Temperature

probes on components in the noise source provide diagnostic data which are crucial

for characterizing the stability of the noise source.

The noise source observations were brief but frequent; all slews and deck ro-

tations for program and calibration sources were bracketed by 10s integrations on

the source. The noise cal flux is equivalent to a ∼2000 Jy source, so these short
observations suffice to obtain high S/N measurements of the noise cal visibilities.

The noise power is injected into the receivers immediately after the quarter-wave

plates which define the polarizations of the receivers, so both the noise calibration

2Figure 2.2 shows that a 38 GHz local oscillator is required to multiply the 26-36 GHz band

to the 2-12 GHz band; the phase shifts for the quad calibration are implemented by changing

the phase of this LO by 90◦. Since the LO is a single tone, passband errors do not degrade the

orthogonality of the 0◦ and 90◦ LO signals, and the signals seen by the correlator during the quad

routine are orthogonal to a high degree of accuracy.
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and the quadrature calibration apply to all baselines.

Noise Calibration Stability during Single Sessions

The utility of the noise cal system rests with its stability; the noise power injected

into the receivers must be at least as stable as the underlying receiver gains if

the system is to improve the raw data. As noted in Chapter 2, there is evidence

that the noise cal instabilities can exceed the gain instabilities in the receivers,

and there are two classes of problems which demonstrate the shortcomings in the

noise cal system. First, comparisons of total intensity calibrators which bracket an

observing session suggest that the noise cal procedure introduces spurious errors

in the flux calibration. Second, a comparison of noise cal fluxes with interleaved

observations of bright sources show that the noise cal does not always track the

intrinsic receiver gain variations.

In light of these problems, CBICAL provides two procedures for incorporating

the noise cal data: ncal and ncal1. The ncal task assumes that noise cal flux vari-

ations reflect real gain variations in the system, so it uses the noise cal visibilities

to interpolate a gain correction for the data between the noise cal pulses; this

is the mode in which the analysis was originally intended to proceed. The ncal1

task assumes that the variations in the noise source dominate the gain variations,

so it averages all of the noise visibilities in a session and computes a mean gain

correction for the entire session based on the averaged noise source flux; this pro-

cedure effectively removes the noise cal from the calibration procedure. Chapter

2 discusses the performance of the noise cal, and notes that although there are

nights for which ncal provides a superior correction to the data, on whole the data

suggest that ncal1 results in a slightly better solution. Based on this work, ncal1

was used for both the total intensity and the polarization data.

Noise Calibration Stability across Multiple Nights

The CBI polarization program differs from the intensity program in the extent to

which the polarization observations rely on the noise cal. The paucity of primary
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polarization calibrators often compelled us to transfer calibrations across many

observing sessions, and in these instances, the noise calibration system provided the

only guide to the gain stability of RX12. We must compensate for gain variations

during these intervals, and the precision with which we can do so is limited by the

stability of the noise cal.

We can estimate the stability of the noise source by comparing the noise cal

amplitudes to known total intensities for astronomical sources. An analysis of the

noise cal visibilities during the 01aug00 to 31oct00 period demonstrated that the

amplitude of the noise cal has a quadratic temperature dependence; for ambient

temperatures between -20 and 10 ◦C, the noise cal amplitude has a typical tem-

perature coefficient of -4%/◦C to first order, although the variations are best fit

by a quadratic. Figure 2.8 shows a sample of this temperature dependence for the

31-32 GHz channel; these data are representative of all of the channels. As dis-

cussed in Section 5.4.1, these coefficients are used to calibrate observations which

occured during a 2.5 week span in August-September 2000 during which there was

no primary polarization calibrator. The total intensity obervations never require

this approach because nearly all observations included at least one total intensity

calibrator.

3.2.3 UVSUB: Spillover Rejection

The presence of ground spillover in the visibilities forced us to incorporate a

spillover rejection strategy into our observing scheme. We implemented a pro-

cedure in which we tracked fields in pairs—a lead and a trail—and differenced

the two fields to reject the common spillover contamination. UVSUB performs the

subtraction; it matches (u, v) points in the lead with the corresponding points in

the trail, and differences the real and imaginary parts of the associated visibilities.

UVSUB also computes the errors on the visibilities from the scatter in the sub-

tracted data; a 5m observation, for example, permits an estimate of the noise from

the sample variance of ∼40 8s visibilities that constitute the scan. Since the cross
polarized visibilities arrive at UVSUB in correlator units, the errors computed by
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UVSUB cannot be compared to estimates based on the antenna Tsys; this com-

parison must await the flux calibration performed by CBIPOLCAL. In cases where

observations are not accompanied by trails, UVSUB simply averages the many 8.4s

visibilities in the scan, and estimates the visibility errors from the scatter in the

8.4s integrations.

3.2.4 CBIPOLCAL: Leakage and Flux Calibration

The CBI imparts artificial polarization to the visibilities, and since this instru-

mental polarization can compete with the intrinsic polarization of the sources of

interest, we require an additional calibration procedure. To complete the calibra-

tion, we must correct the cross polarized visibilities for instrumental polarization,

and refer all of the visibilities—VLL and VLR—to an astrophysical flux scale. These
tasks cannot be disentangled, so a new package, CBIPOLCAL, was written to per-

form both procedures [85]. These tasks are considered in detail below, beginning

with a model for the instrumental polarization.

CBIPOLCAL employs the leakage model for the instrumental polarization, which

assumes that the ideal pure polarization response of each receiver is corrupted by

a small contribution from the orthogonal mode.3 The derivation of the leakage

model is straightforward. The plane wave incident on the interferometer can be

expressed in terms of right circularly polarized (RCP) and left circularly polarized

(LCP) components:

E(x, ν; t) = ER(x, ν; t)eiφ + EL(x, ν; t)e−iφ (3.1)

The factor of e±iφ enters the expression because the baseline orientation advances

or retards the phase of the circularly polarized components of the wavefront, de-

pending on the mode. The position of the baseline in the aperture plane determines

the phase: φ = tan−1[v/u]. Because the baselines are fixed to the deck, the base-

3The leakage model ignores the loss in signal for the desired polarization which arises, for

example, from the attenuation in the wave plates in the CBI’s phase shifter assembly.



78

line orientation and the deck orientation are interchangeable to within an offset

determined by the array geometry.

An ideal circularly polarized receiver responds to only a single mode of circular

polarization. In practice, however, a variety of effects conspire to contaminate the

ideal response with a small contribution from the total intensity of the source.

Consider two imperfect receivers (j, k) which combine to form a cross polarized

baseline; configure receiver j for LCP and k for RCP. Instrumental polarization

allows one mode of polarization to leak into the receiver configured for the other;

we characterize this contamination with the complex leakage term ε. The signals

at the receiver outputs are simply voltages,

V L
j (x, ν; t) = gj

[

EL(x, ν; t)e−iφ + εjER(x, ν; t)eiφ
]

(3.2)

V R
k (x, ν; t) = gk

[

ER(x, ν; t)eiφ + εkEL(x, ν; t)e−iφ
]

(3.3)

which the correlator multiplies to obtain the visibility VLR = 〈V L
j V

R∗
k 〉:

VLR = gjg∗k
[

〈ELER∗〉e−2iφ + ε∗k〈ELEL∗〉+ εj〈ERER∗〉+ εjε∗k〈EREL∗〉e2iφ
]

(3.4)

Apply Equation 2.4 with V = 0 to find

VLR(u, ν) = gjg∗k
[

P̃ ∗(u, ν)e−2iφ + Ĩ(u, ν)(εj + ε
∗
k) + εjε

∗
kP̃ (u, ν)e

2iφ
]

(3.5)

with P ∗ = (Q− iU). We can make some assumptions to simplify this expression.
For typical sources, P ∼ 0.1I, and for the CBI, ε ∼ 10%, so that P :εI:ε2P ∗ scale
as 0.1:0.1:10−3. We therefore ignore the ε2P term. In addition, we have a leakage

term for each of the 13 antennas, but we have only 12 cross polarized baselines, so

we can never solve for each leakage—only the sum of the two terms associated with

each baseline.4 We therefore regard the leakages (εj ,εk) associated with a pair of

4In principle, we can use the instrumental polarization in the LL visibilities (see Equation

3.20) to solve for all 13 leakage terms to obtain an antenna-based solution, but the high S/N

necessary to do this is prohibitive.
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antennas as a baseline-based parameter εjk. For consistency we will do the same

with the gain, letting Gjk = gjg
∗
k, and although we have the S/N to determine the

antenna-based gains, we do not do so in this work. With these assumptions we

obtain the following:

VLR(u, ν) = Gjk;ν
[

P̃ ∗(u, ν)e−2iφ + εjk;ν Ĩ(u, ν)
]

(3.6)

The goal of polarization calibration is to determine the gains Gjk and the leakages

εjk for each of the ten bands and the twelve cross polarized baselines.

The polarization calibration procedure capitalizes on the fact that the CBI’s

deck rotation modulates the source polarization term P̃ ∗(u, ν)e−2iφ relative to

the instrumental polarization εĨ(u, ν). This relationship has a simple graphical

representation: as the deck angle φ changes, the cross polarized visibilities for

a polarized point source trace a circle in the (Q,U) plane, such that the circle

is centered on the instrumental polarization, and the radius is proportional to

the source polarization (Figure 3.2.4). As the instrumental polarization increases,

the circle develops ellipticity, although this ellipticity is negligible for the CBI.

CBIPOLCAL combines multi-deck angle observations of polarization calibrators

with values for Ĩ(u, ν) and P̃ ∗(u, ν) supplied by the user in the .par file to solve

for Gjk and εjk for each band.

Calibration: Two Visibility Example

It is illustrative to apply Equation 3.6 to a sample calibration observation. A

single observation of the calibrator suffices to determine the gain or the leakage,

but not both. Observations at three deck positions define a circle in the (Q,U)

plane, although two observations suffice if we know that the visibilities span the

diameter of the circle–i.e., the visibilities are measured at deck positions that are

90◦ apart. This case has an analytic solution, which is presented below.

CBIPOLCAL inspects the (u, v) points of the calibrator data and identifies pairs

of visibilities which correspond to deck angles that are separated by 90◦. CBIPOL-
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P*e −2iϕ=LR G( I)ε+
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G

Figure 3.2: In the presence of instrumental polarization, the cross polarized visi-
bilities measured at a variety of deck positions φ trace a circle in the (Q,U) plane
which is centered on the leakage ε and whose diameter provides a measurement of
the gain G.

CAL fits these points to a circle, the diameter of which is proportional to the

gain, and the center of which is proportional to the instrumental polarization.

For simplicity, assume that the calibrator is a point source, which means that its

characteristics are uniform across the (u, v) plane:

Ĩ(u, ν)⇒ Ĩν ; P̃ ∗(u, ν)⇒ P̃ ∗ν = mν Ĩνe
−2iχν (3.7)

where mν is the fractional polarization of the source, and χν is the position angle

of the source polarization on the sky. For notational clarity we will dispense with

the ν that denotes the channel, and bear in mind that the following discussion
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applies to each of the channels. For the same reason, we will also discard the

indices j and k that refer Gjk and εjk to a particular baseline.

CBIPOLCAL first uses the diameter of the circle to obtain the gain for the

baseline. In the absence of noise, the diameter is simply the vector difference of

two visibilities separated by a 90◦ deck rotation. Let the first visibility be at u1:

VLR(u1, ν, φ1) = G[P̃ ∗(u1, ν)e−2iφ1 + εĨ(u1, ν)] (3.8)

and let φ2 = φ1 + 90
◦:

VLR(u2, ν, φ2) = G[P̃ ∗(u2, ν)e−2i(φ1+90
◦) + εĨ(u2, ν)] (3.9)

Compute the vector difference of the two visibilities to cancel the instrumental

polarization terms, or equivalently, to isolate the diameter of the circle:

VLR(u2, ν)− VLR(u1, ν) = ∆VLR = 2GP̃ ∗e−2iφ1 ⇒ G =
1

2P̃ 2
P̃∆VLRe2iφ1

(3.10)

Explicitly,

Gr =
1

2mĨ

[

∆VLRr cos(2χ+ 2φ1)−∆VLRi sin(2χ+ 2φ1)
]

(3.11)

Gi =
1

2mĨ

[

∆VLRr sin(2χ+ 2φ1) + ∆VLRi cos(2χ+ 2φ1)
]

(3.12)

With G in hand, we can solve for the instrumental polarization. The instrumental

polarization can be isolated by computing the vector average of VLR(u2) and
VLR(u1), which forces the source polarization terms to cancel:

1

2
[VLR(u2) + VLR(u1)] =

1

2
ΣVLR = GĨε⇒ ε =

1

2Ĩ

G∗

G2
ΣVLR (3.13)

Express ε explicitly in terms of the gains G:

εr =
1

2ĨG2

[

GrΣVLRr +GiΣVLRi
]

(3.14)
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εi =
1

2ĨG2

[

GrΣVLRi −GiΣVLRr
]

(3.15)

with ΣVLRr = VLRr,1 + VLRr,2 , etc. Note that since G ∝ 1/I, the leakage terms do not
depend on the source intensity I. On the other hand, since G ∝ 1/m, ε ∝ m; if

we overestimate the fractional polarization of the calibrator, then we overestimate

the instrumental polarization.

The leakage terms vary with φ, the baseline orientation, through its influence

on G. This dependence becomes an important consideration when we reconfigure

the array; reconfiguration changes the orientations of the cross polarized baselines

with respect to their previous orientations, so a set of leakage terms measured in

one configuration acquires phase offsets relative to the same terms measured in a

different configuration. To compare leakage terms measured in different configu-

rations, we use the geometries of the arrays to refer one set of leakage terms to the

other. Reconfiguration does not change the leakage amplitudes.

The errors for G and ε follow directly from Equations 3.11, 3.12, 3.14, and 3.15.

Based on these expressions, we have

σ2Gr = 2
( 1

2mI

)2
σ2V +

(Gr
m

)2
σ2m +

(Gr
I

)2
σ2I (3.16)

σ2Gi = 2
( 1

2mI

)2
σ2V +

(Gi
m

)2
σ2m +

(Gi
I

)2
σ2I (3.17)

for the gains, and

σ2εr = 2
m2(∆V2 + ΣV2)

∆V4 σ2V +
( εr
m

)2
σ2m + 4ε

2
iσ
2
χ (3.18)

σ2εi = 2
m2(∆V2 + ΣV2)

∆V4 σ2V +
( εi
m

)2
σ2m + 4ε

2
rσ
2
χ (3.19)

for the leakages. σV denotes the error on the LR visibilities, which is assumed to

be the same for the real and imaginary visibilities, as well as for V1 and V2 if the
corresponding integration times are the same.
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Calibration with More than Two Visibilities

We occasionally observed the polarization calibrator at more than two deck posi-

tions. When the number of visibilities overdetermines a fit to a circle, CBIPOLCAL

employs a Levenberg-Marquardt algorithm to solve for the diameter and center,

both of which are nonlinear in the parameters of interest. The errors on the gain

and leakage are derived from the errors on the visibilities which go into the fit, and

they do not reflect the quality of the Levenberg-Marquardt solution. Figure 3.2.4

shows a fit for one band and one baseline which employs eight visibilities separated

by 45◦ deck steps. The factor of 2 in Equation 3.6 maps the 45◦ deck steps to 90◦

separations on the circle. The fit for this band and baseline has χ2ν = 0.6; the

mean for all 110 fits on 06feb00 is 〈χ2ν〉 = 1.06,5 and the other deep measurements
have similar results.

Total Intensity Calibration with CBIPOLCAL

CBIPOLCAL also calibrates the total intensity baselines. In this case, the instru-

mental polarization makes a negligible contribution to the visibilities, so we must

simply isolate the gain term.6 The arguments that lead to Equation 3.6 also yield

VLLjk (u, ν) = G
[

I(u, ν) + ε∗kP (u, ν)e
−2iφ + εjP

∗(u, ν)e2iφ +O(ε2)I
]

(3.20)

where εj and εk are the instrumental polarization factors associated with antennas

j and k. Since ε ∼ P ∼ 0.1, the instrumental polarization is a 1% effect for the to-
tal intensity observations, so both CBICAL and CBIPOLCAL neglect the last three

terms, and a single visibility suffices to obtain the LL calibration for both pro-

grams. The LL calibration precedes the LR calibration; CBIPOLCAL sorts the LL

baselines to find simultaneous or nearly simultaneous matches for the LR baselines

on the array, and performs the LL calibration to obtain the values for I which are

necessary to remove the instrumental polarization from the LR visibilities. If the

5ν = 10 bands × 11 LR baselines; RX5 was out for repair.
6δV ∼ 2% for ε ∼ 0.2 and P/I ∼ 0.1
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Figure 3.3: Circle fit example for RX11-RX12, 27-28 GHz on 23apr00

source total intensity flux density is known, the user can supply a model for that

flux in lieu of forcing CBIPOLCAL to perform the LL calibration with the imodel

flag. This feature suppresses the uncertainty in the leakage correction from the

LL contribution; it is particularly useful for observations of calibrators, because

we can simply use the CBI’s LL observations to obtain the model for imodel. Mod-

eling the LL distribution of visibilities for the deep fields is a significant challenge,

however, so we do not apply this feature to the calibration of the deep field data.
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Calibration with Extended Sources

At the outset of the CBI polarization campaign, 3C279 served as the primary cali-

brator. 3C279 is a point source, so its salient characteristics—its total intensity I,

fractional polarization m, and position angle χ—are all uniform across the (u, v)

plane, and the source can be completely characterized by these three quantities

for each of the CBI’s ten channels. Early in the 20h deep field observations 3C279

was no longer visible at night, but Tau A became visible 2.5 weeks later, at which

point it became our primary polarization calibrator. Tau A is bright, highly po-

larized supernova remnant which is slightly resolved by the CBI, so CBIPOLCAL

was modified to accommodate a model for Tau A’s morphology. Generally, any

extended source can serve as a calibrator provided that the user supplies a model

for I(x, ν), Q(x, ν), and U(x, ν) which CBIPOLCAL can invert for application in

the (u, v) plane. Sources which are comparable in size to the CBI’s ∼ 45′ primary
beam require an additional correction for the taper in the primary beam across

the source. Since Tau A is only 4-5′ across, however, failure to correct for the

beam introduces an amplitude error of less than 1%, so CBIPOLCAL neglects this

correction. The latter part of this chapter discusses efforts to derive a model for

Tau A and to apply the model to the uncalibrated data.

Application of Calibration Factors to the Program Data

CBIPOLCAL stores the gains for all baselines and leakage terms for the cross po-

larized baselines in a .cal file. To calibrate program visibilities, the user supplies

CBIPOLCAL with the program data and the appropriate .cal inputs. The program

data must be corrected for the presence of instrumental polarization, so CBIPOL-

CAL first uses the LL gains to calibrate the LL baselines which are parallel to

LR baselines. With Ĩ(u, ν) in hand, CBIPOLCAL employs the gains and leakages

for the cross polarized baselines from the .cal file to calibrate the cross polarized

baselines. CBIPOLCAL inserts the Gjk and εjk into Equation 3.6, and inverts the

expression to solve for the quantity of interest, P̃ (u, ν).

While we generally measure Ĩ(u, ν) with high S/N for the calibrator sources,
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the S/N per (u, v) point for the deep CMBR measurements is generally comparable

to unity, so even with perfect measurements of the leakage factors, the instrumental

polarization correction can introduce significant errors into the LR visibilities. We

can reduce the uncertainty in Ĩ(u, ν) by modelling the distribution of total intensity

visibilities for the deep fields; the size of the autocorrelation of the primary beam is

such that we generally oversample the aperture domain and this tends to mitigate

the poor S/N per (u, v) point. The (u, v) plane model for I would also provide

LL counterparts for the baselines which lack LL counterparts on the array, so we

could incorporate all of the LR baselines in the analysis. Although this approach

offers great promise, it was not applied to the data presented in this work.

3.3 Polarization Calibration Observations

We employed two primary polarization calibrators—3C279 and Tau A—during the

CBI polarization campaign. Figure 5.1 provides a timeline of the CBI polarization

calibration source observations. The 3C279 observations encompass the entire

08h deep field, as well as many supporting observations which demonstrated the

capabilities of the system. As noted above, during the 20h field observations 3C279

ceased to be in view at night, and Tau A rose following a 2.5 week gap during which

no primary polarization calibrator was visable.7 This section discusses the details

of the polarization calibration observations of 3C279 and Tau A.

3.3.1 3C279 Observations

3C279 provided the primary polarization calibration from 06feb00 until it set be-

low the CBI’s elevation limit on 21aug00. While this interval encompassed less

than half of the deep field data which go into the final result, this eight month

period spanned a number of important demonstrations of the CBI’s polarization

73C279 overlapped with Jupiter, and although we hoped to transfer the calibration to Jupiter,

our observations showed that Jupiter has less than 1 Jy of polarized emission at 1 cm; this flux

density falls well short of the level of polarization necessary to permit fast calibrations, so we did

not pursue this tack.
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capabilities. The length of this period sufficed to provide an understanding of the

long-term behavior of the instrumental polarization. This interval also included

several tests: cross polarized beammaps, and supporting observations of galactic

and extragalactic sources of known polarization.

3C279 has several qualities which make it a desirable calibrator; with I ∼
25 Jy and P ∼ 2 Jy, 3C279 permits relatively fast calibrations. A sequence of
5m observations suffices to obtain a several σ detection of ∼ 10% instrumental
polarization. In addition, the CBI cannot resolve 3C279, so uncertainties in the

source’s morphology do not undermine the calibration. The 3C279 observations

consisted of at least one 5m integration on the source followed by a trail to reject

spillover. On rare occasions the calibration consisted of single scans which allow

a measurement of either the gain or the leakage, but not both; on these occasions

leakage measurements from other dates were supplied to obtain a measurement of

the gain. Routine calibration observations were performed on a daily basis during

deep field observations; these observations usually consisted of two scans on the

source separated by 90◦, which together permit a fit to a circle in the (Q,U) plane

and thus a determination of the gain and the leakage. On several occasions we

performed extended observations of 3C279 which consisted of as many as twelve

integrations to obtain high S/N measurements of the instrumental polarization.

The reference polarization characteristics required by CBIPOLCAL were derived

from a combination of VLA and CBI data for 3C279. The VLA observation

campaign is described in Chapter 4 of this work; as discussed in that chapter,

these high-frequency observations were often severly hampered by factors such as

wind loading which reduced the efficiencies of the VLA antennas and ultimately

left the reliability of the absolute flux density measurements from VLA data open

to doubt. To first order, efficiency losses should affect I and P equally, so to

circumvent these problems, only m = P/I and χ = 1
2 tan

−1(U/Q) were transferred

to the CBI. The CBI’s excellent absolute flux density calibration for total intensity

aids the polarization effort at this juncture: the polarization flux density scale was

obtained from the total intensity observations of 3C279 with the CBI, and this
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flux scale, which is based on cm-wave observations of Jupiter, has an absolute

uncertainty of better than 5%.

The uncertainties for the VLA data are discussed in Section 5.3, at which point

the interpolations to the CBI observations are presented in detail. To summarize,

two interpolations are necessary to transfer the VLA values form and χ to the CBI.

First, the CBI observed 3C279 nearly every session during the 06feb00-10aug00

interval, while the VLA observations yielded only eight good measurements inter-

spersed throughout this period from which we can transfer the calibration.8 We

must therefore transfer the VLA calibration to the CBI calibration across spans

of ∼ 1 month. Second, the two frequencies at which the VLA observations were
performed—22.46 GHz (K band) and 43.34 GHz (Q band)—straddle the CBI’s

26-36 GHz band, so the values for m and χ from the VLA must be interpolated

to the CBI bands.

We merged themν and χν data for 3C279 from the VLA with values for Iν from

the CBI. There are several reasons for this approach. First, the CBI measures I(ν)

for 3C279 at the bands of interest, in contrast to the VLA, which provides only

IK and IQ. Second, the CBI is optimized to operate at centimeter wavelengths,

so the CBI observations are more reliable than those with the VLA. The absolute

uncertainties of the CBI and VLA flux density scales are ∼ 5%, and coupled with
the systematic errors from factors such as wind loading, the uncertainties which

accumulate while transfering the VLA total intensities to the CBI inflate the VLA

uncertainties to values much greater than those for the CBI.

Instrumental Polarization Measurements with 3C279

A solid understanding of the instrumental polarization is the keystone to a good

polarization calibration, so we performed a variety of measurements to better un-

derstand its behavior. These observations consisted of multiple scans—between

four and twelve—over a range of deck orientations separated by 45◦; Table 3.1

8A third of the VLA observations were lost to poor observing conditions and other site-specific

factors at the VLA (Chapter 4).
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lists the dates of these measurements and the interpolated characteristics that

were applied to the calibration; the changes in m and χ reflect intrinsic changes in

the source. The deep CBI observations do not necessarily coincide with the VLA

observations, so the VLA data were interpolated to the CBI dates with a simple

linear fit to the pair of VLA observations which straddle the CBI observations of

interest.9 The errors on the polarization characteristics in the table reflect the

uncertainties in the K and Q band data from the VLA, as well as the additional

uncertainties due to the interpolation of the VLA data to the CBI channels. The

deep observations yielded high S/N measurements of the CBI’s instrumental polar-

ization, a sample of which is shown in Figure 3.4. The leakage terms can be quite

large at the band edges—up to 20% in amplitude. We will see in the following

section that this large instrumental polarization can result from bandpass errors

in the phase shifter assembly.

The qualitative consistency between the sets of leakage terms shown in Fig-

ure 3.4 suggests a high degree of repeatability in the instrumental polarization. In

particular, the array reconfiguration in the middle of April 2000 did not signifi-

cantly change the leakage. The two week reconfiguration occured midway through

the observations of the 08h deep field, and the reconfiguration was bracketed by

careful measurements of the instrumental polarization: the observation on 10apr00

preceded the reconfiguration, and the observations on 23apr00 and 24apr00 fol-

lowed it. A comparison of these leakage terms, provided by the two middle points

in each cluster of points in Figure 3.4, demonstrates that the reconfiguration did

not have a significant effect on the instrumental polarization.

A χ2 analysis of the scatter in the leakages provides a test of the stability of

the leakage terms. To obtain χ2, the real and imaginary components of the leakage

for the eight deep observations in the 06feb00-17jun00 period were averaged with

weights to derive a set of mean leakages. The real and imaginary components are

9The deep observations on 06feb00 and 09feb00 were not preceded by a VLA observation,

so these dates use only the data from the VLA observation of 18feb00 with an assumed 5%

uncertainty for m and χ.
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date conf duration VLA observations m σm χ (◦) σχ (
◦)

06feb00 1 8×5m 18feb00 — 0.094 0.005 62.0 3.1
09feb00 1 8×5m 18feb00 — 0.094 0.005 62.0 3.1
10apr00 1 8×5m 12mar00 05apr00 0.089 0.002 54.6 0.9
23apr00 2 8×5m 23apr00 — 0.092 0.001 52.6 1.1
24apr00 2 13×5m 23apr00 — 0.092 0.001 52.4 1.1
15jun00 2 6×5m 02jun00 30jun00 0.114 0.004 52.8 3.6
16jun00 2 6×5m 02jun00 30jun00 0.113 0.003 52.7 3.4
17jun00 2 6×5m 02jun00 30jun00 0.113 0.003 52.6 3.2
13jul00 3 5×5m 30jun00 08aug00 0.113 0.003 50.2 1.4
10aug00 3 4×5m 08aug00 — 0.115 0.002 47.7 3.5
11aug00 3 3×5m 08aug00 — 0.115 0.002 47.6 3.6
12aug00 3 4×5m 08aug00 — 0.114 0.002 47.8 3.5

Table 3.1: Deep 3C279 observations. Columns 1, 2, and 3 list the dates, configu-
rations, and durations of the deep CBI observations of 3C279. Columns 4 and 5
list the bracketing VLA observations, and columns 6-9 list the interpolated values
for m and χ, with uncertainties. These errors reflect the uncertainties in the VLA
observations after the interpolation to 31 GHz on the date in question. The deep
observations of 15jun00-17jun00 were part of a series of beammap observations.

independent; we compute χ2 for the real and imaginary components separately as

χ2 =
8
∑

i=1

(〈εi〉 − εi
σεi

)2
(3.21)

for each baseline and each channel. Several antennas (RX5, RX11) were not oper-

ational for the entire period, and another (RX4) underwent many cryogenic cycles

which changed its instrumental polarization; these three antennas do not permit a

meaningful comparison, so they were culled from the analysis. We augmented the

uncertainties reported by CBIPOLCAL for the leakages with the errors on the VLA

data listed in Table 3.1 prior to computing the weighted average: σ2ε ⇒ σ2ε +σ
2
V LA.

The leakage measurement does not require a flux scale, so the CBI’s absolute flux

density calibration uncertainty of 5% does not contribute to the uncertainties.

Figure 3.5 shows a histogram of the results of the χ2 calculation. The χ2 analy-

sis provides strong, but perhaps not compelling, evidence for the repeatability of
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the instrumental polarization during the 06feb00-17jun00 period. The centroid of

the values of χ2 is shifted well past the peak of Pχ(χ
2; ν = 7); the data redistribute

power from the peak to the high-χ2 shoulder of the distribution. The mean value

of χ2 for the nine antennas is 77.8, or χ2ν ∼ 1.2 per antenna. The χ2 test shows that
the uncertainties cannot account for the scatter in the data. An inspection of the

leakage terms for the nine cross polarized baselines in this analysis does not reveal a

particularly offensive baseline or band. The excess in χ2 may reflect an error in the

interpolation of the VLA data; an error in the uncertainties on the interpolations

listed in Table 3.1; or a real systematic change in the instrumental polarization

over time. The first two uncertainties can be reduced by matching the dates of

the deep 3C279 observations with those of the VLA observations, although this

strategy requires the cooperation of the weather at both sites. Systematic changes

in the leakage can be better isolated with more deep observations.

The July and August deep observations listed in Table 3.1 are absent from the

comparisons of Figures 3.4 and 3.5. These two sets of leakage terms are marginally

discrepant with the means from the 06feb00-17jun00 period, and one possible

cause for this systematic change in the leakage is a thermal cycle of RX12 on

30jun00 due to a compressor failure. While we are very concerned about a putative

change in the leakage, this particular event does not directly affect the polarization

observations presented in this work; however, because it occured during a lull in the

polarization observations following the completion of the first deep field.10 When

the deep field observations resumed in August, we measured the leakage terms

with 3C279 on 10aug00-12aug00 and applied this set to the 20h observations. One

lesson from this experience is that thermal cycles should be followed by careful

measurements of the instrumental polarization; since the instrumental polarization

is treated as a baseline-based quantity by CBIPOLCAL—that is, we let (εj + ε
∗
k =

εjk)—this admonition applies to all of the receivers on the array, not just RX12.

10The maintenance history of the CBI during the 2000 season does not note any other thermal

cycles for RX12.
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Figure 3.4: Instrumental polarization comparison for deep observations of 3C279.
The ten clusters of points along the horizontal axis represent the CBI’s ten chan-
nels. The four points in each cluster denote the four sets of deep observations;
neighboring dates were averaged to simplify the presentation. The phases of the
latter two sets of leakages were adjusted to reference the factors to configuration 1.
The error bars include the additional uncertainties introduced by the VLA mea-
surements of m and χ. A visual inspection of the four points in each cluster shows
that they are in good agreement, and a χ2 analysis of the eight deep observations
provides some quantitative support for this conclusion.
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Figure 3.5: Histogram of χ2 for the eight deep instrumental polarization measure-
ments in the 06feb00-17jun00 interval. The real and imaginary components of ε
are independent and were treated separately but histogrammed together in this
figure. The histogram is compared to a plot of Pχ(χ

2; ν = 7).
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Comparison with Phase Shifter Model

The CBI’s high instrumental polarization is a concern for the polarization obser-

vations. The instrumental polarization is comparable to the polarization of our

calibrators and program sources, so small changes in the leakage can have a pro-

found effect on our results. The model for the instrumental polarization developed

in Chapter 2 guides our understanding. The model shows, for example, that the

leakage varies with the orientations of the half-wave plates in the two phase shifters

in each beaseline; during the 20h field observations, the orientation for the phase

shifter in RX9 changed, and this resulted in a significant change in the leakage for

baseline RX9-RX12. The model shows why we should expect this result.

Chapter 2 presented a model for the instrumental polarization which the phase

shifter assembly can generate. In Section 2.3.3, we showed that

VLR = I
[

(−δA cos[∆φ] + δα sin[∆φ])e−iΣφ − δB sin[2∆φ]

−δβ cos[2∆φ] + iΣθ cos[2∆φ]−∆θ sin[∆φ]
]

+ (Q+ iU)
[

1− δA− δB + iΣθ
]

e−2i(ψ+φj+φk)
(3.22)

The coefficient of the total intensity in Equation 3.22 shows the sources of the

leakage: it arises from errors in the quarter and half-wave plates. Instrumental

polarization is produced by insertion losses (δA, δB) and insertion phase errors

(δα, δβ) in the quarter and half-wave plates, respectively, as well as orientation

errors for the quarter-wave plates (∆θ,Σθ). These contributions are weighted by

the relative half-wave plate orientations (∆φ,Σφ). The insertion characteristics are

intrinsic to the plates and can be measured on the benchtop, while the quarter-

wave plate orientation errors arise from random, unknown assembly variations and

the half-wave plate positions are set by the control system. To assess the accuracy

of the model in Equation 3.22, we assume values for the insertion characteristics of

the plates derived from lab measurements, and fit the data for the four unknown

plate orientations. Since the leakage is nonlinear in the unknowns, a gradient search
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method was applied to find the best fit values for (φi, φj) and (θi, θj). The leakage

model used by CBIPOLCAL assumes that all spurious effects appear as leakage—it

does not isolate the degradation to the polarized signal from the insertion loss—so

to compare the model to real data we divide the coefficient of I in Equation 3.22

by the coefficient of (Q+ iU). The errors are on the order of a few percent, so this

factor is slightly less than unity.

The model requires accurate inputs for the wave plate insertion loss (δA, δB)

and insertion phase (δα, δβ). System temperature measurements provide an es-

timate of the loss: the phase shifter contributes ∼ 1 K to the ∼ 15 K of noise
seen in the receivers, so since the assembly has a physical temperature of ∼ 10 K,
its loss must be ∼ 4%. This loss is uniform across the band, and to first order
it is apportioned in a 2:1 ratio between the half wave plate and the quarter-wave

plate. The wave plate insertion phase contributes a frequency dependent error

which gives rise to the strong achromaticity seen in many of the measurements of

the instrumental polarization. Benchtop measurements of the quarter-wave plate

show that at room temperature its insertion phase varies roughly linearly from -5◦

to +4◦ across the 26-36 GHz band (Figure 3.6). As the plate cools to cryogenic

temperatures, two competing effects increase its insertion phase by ∼ 3%. Cool-
ing causes the plate to contract by ∼ 2%, which decreases the electrical length
encountered by the wave a similar amount. The contraction increases the density

of the plate, however, which in turn increases the effective dielectric constant by

∼ 5%. The net result is to increase the insertion phase by ∼ 2.5◦, so the values
in Figure 3.6 were adjusted accordingly for the calculation; this change can be

computed from the Kramers-Kronig relation [42, 60, 36].

Figure 3.7 provides a comparison between the phase shifter model and the

leakage data for two baselines. The two baselines shown in the figure represent the

extremes of the bandpass shapes seen in the data; RX3-RX12 has the shape seen

on many of the cross polarized baselines; the leakage rises sharply from nearly zero

at the low end to more than 20% at the high end, and in this regard it parallels the

shape of the insertion phase error seen in Figure 3.6. The leakage for RX7-RX12
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Figure 3.6: Insertion phase error for a quarter-wave plate at room and cryogenic
temperatures.

is one of several exceptions to this trend, however, but as Figure 3.7 shows, the

shifter model yields a good fit to the data for this baseline as well. The best-fit

values for the half-wave plate positions, φ1 and φ2, span a range of orientations

for both baselines, while the best-fit values for the quarter-wave plate orientation

δθ1 and δθ2 errors are all small, typically ∼ 1◦, with a rare maximum of ∼ 4◦.
The former values are all well within the assembly tolerances for the quarter-wave

plate sections, while the latter is perhaps slightly large. Nonetheless, the best fit

quarter-wave plate orientation errors are modest, and the fact that the model does

not require extreme values for the quarter-wave plate orientation errors provides

confidence in this treatment.

This exercise demonstrates that the measured instrumental polarization is well

within reach of the known phase shifter errors, so it provides insight into the fac-

tors which affect the repeatability of the instrumental polarization. If the shifter

characteristics—the plate lengths, orientations, and the complex insertion loss of

the teflon sections—remain constant, it is reasonable to assume that the instrumen-

tal polarization will as well.11 The preceding section notes that the instrumental

11The half-wave plate positions are archived with the CBI’s housekeeping data, and these

registers were inspected to confirm that the shifter positions remained constant for the entire
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polarization appears to have changed when RX12 warmed in late June 2000. The

change in the leakage may arise from a shift in the zero point of the half-wave

plate orientation during the thermal cycle.

Off-Axis Instrumental Polarization

The instrumental polarization measurements described in the preceding section

sample the response of the system at the boresight of the primary beam. Ob-

servations of extended polarized emission, however, require an understanding of

the response of the system across the entire primary beam; any departures from

uniform behavior would affect the interpretation of the cross polarized visibilities

for extended sources. These abnormalities might arise, for example, from the il-

lumination pattern of the feeds. We measured the off-axis characteristics of the

beams with a series of instrumental polarization observations of 3C279 at the beam

half-power points in the four cardinal directions and compared these values to the

instrumental polarization measured at the beam center. The initial incarnation of

CBIPOLCAL operated under the assumption that the calibrator is a point source

at the phase center, so we derived the leakages at the half-power points by forcing

CBIPOLCAL to assume that the calibrator is at the phase center. Under this as-

sumption, pointings at the beam half-power positions introduce phase errors in the

visibilities, so a new command, offset, was added to CBIPOLCAL which allows the

user to supply a position offset to correct the phases.12 No analogous correction is

required for the amplitude; since CBIPOLCAL employs the fractional polarization

rather than to absolute polarization, the rolloff in the primary beam should affect

P and I with equal force. In fact, the use of the fractional polarization eliminates

an additional layer of complication: it allows us to ignore the ∼ 30% change in
width of the primary beam across the 26-36 GHz band. This approach relegates

period between 11jan00 and 31oct00. During the 11sep00 to 31oct00 interval, an encoder error

in RX9 changed the orientation of the half-wave plate, so this baseline was excised from the 20h

data set.
12To confirm the positions of the off-axis pointings, the total intensity data for these observations

were mapped in DIFMAP.
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Figure 3.7: Comparison of the leakage model with the instrumental polarization
measured on 06feb00 for two baselines. For each of the two baselines, the upper
frame shows the leakage amplitude, while the lower shows the leakage phase. The
amplitude for the leakage for RX3-RX12 resembles the insertion phase error shown
in Figure 3.6, while that for RX7-RX12 does not. In both cases, however, the model
yields a good fit.
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postion 15jun00 16jun00 17jun00 total

center 7 8 3 17
north 7 — — 7
south 5 — — 5
west — 8 3 10
east — 7 3 10

Table 3.2: Off-axis polarization observations of 3C279 in June 2000. The table
summarizes the number of 4.5m integrations at each position; the integrations
were separated by 45◦ deck steps.

any variations in the polarization characteristics across the beam to the instru-

mental polarization; spurious polarization introduced by the beam will change the

leakage relative to that at the boresight.

We performed a series of beammap observations in the middle of June 2000.

The observations consisted of ∼ 4.5m pointings at the beam center for eight deck
steps followed by an identical sequence of observations at the half-power points;

the observations are listed in Table 3.2. To reject spillover, the north, south, and

east pointings were followed by trails, while the west pointing was preceded by

a lead. Figure 3.8 shows the off-axis instrumental polarization for a sample pair

of baselines, and Figure 3.9 presents a histogram of values of χ2 for the real and

imaginary parts of the leakage for all of the baselines. The data shown in Figure 3.8

are representative of all of the baselines; the leakage factors measured at the four

cardinal half-power points are in good agreement with the leakage measured at the

boresight. This conclusion is supported by the χ2 test: the values of χ2 agree with

Pχ(χ
2; ν = 4), which is shown in the figure for comparison. The errors in Figure 3.8

and in the χ2 analysis combine the measurement errors on the CBI observations

with the uncertainties on m and χ from the VLA data; the two sets of errors are

added in quadrature as shown in Equations 3.18 and 3.19. The measurement and

interpolation uncertainties for the VLA data on 15jun00-17jun00 are ∼ 3% for m
and ∼ 6◦ for χ (Table 3.1).
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The preceding approach interprets a change in the polarization response across

the beam as a change in the instrumental polarization. The beams are antenna-

based quantities while the leakages are baseline-based quantities, however, so this

is not a satisfactory approach for quantifying beam pattern anomalies. Changes

in the polarization characteristics of the primary beam would change the Aj(x −
x0)Ak(x−x0) term in Equation 2.5 from a simple product of Gaussians to a shape
which reflects deviations in amplitude and phase across the beams for antennas j

and k, although in the absence of very high S/N measurements of the beamshape

pathologies we would treat this quantity as a baseline-based correction. In the case

at hand, however, there are no significant anomalies in the off-axis polarization

characteristics of the beams, so we can avoid these complexities.

3.3.2 Tau A Observations

Tau A provided the primary polarization calibration for subsets of the 08h and

20h deep field observations. Tau A has the ingredients of an exceptional polariza-

tion calibrator; with I ∼ 350 Jy and P ∼ 28 Jy, Tau A permits fast calibration
observations, and the physical extent of the nebula ensures that the emission is

reliably constant at 1 cm. In spite of these advantages, however, the use of Tau

A is complicated by the fact that the source is slightly resolved by the CBI; total

intensity observations have shown that the spatial extent of Tau A’s total intensity

is roughly Gaussian with a FWHM of σ ∼ 3.7′ along its major axis. We might
initially assume that Tau A’s polarized emission tracks the underlying structure in

total intensity, but we will see that this is not the case—even at the CBI’s resolu-

tion limit. Since the accuracy of the gain and leakage calibration depends heavily

on the accuracy of the model for the calibrator, the Tau A model is a paramount

concern for the polarization calibration.

This section discusses the details of our efforts to obtain an accurate Tau A

model from the CBI data. The primary impediment to this effort is the limited

overlap between Tau A and 3C279; Figure 5.1 shows that on 11jan00 we performed

a deep observation of Tau A, while our first deep observation of 3C279 followed
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Figure 3.8: Off-axis instrumental polarization at four beam half-power points for
a pair of baselines. The error bars include the uncertainties for the VLA interpo-
lation.



102

Figure 3.9: Histogram of χ2 for the four off-axis beam half-power points.
Pχ(χ

2; ν = 4) is shown for comparison. Although χ2 was evaluated for the real and
imaginary components separately, the resulting values are plotted together in this
figure. The agreement with Pχ(χ

2; ν = 4) supports the hypothesis of a null change
in the polarization characteristics of the beam at the four half-power points.
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nearly a month later on 06feb00. There are several single integration observations

of Tau A after 06feb00 which coincide with 3C279, but we require the deep ob-

servation at multiple deck angles—that of 11jan00—to derive a model.13 In this

section we present the details of two techniques which were employed to trans-

fer the calibration from 06feb00 to 11jan00; the two techniques yield the models

shown in Table 3.6. The models agree in the polarization characteristics of the

source by ∼ 4%, and while tests of the model presented in the latter part of this
section suggest that the overall uncertainty is roughly the same, tests presented in

Chapter 5 suggest that the overall uncertainty is ∼ 10%, and we adopt the latter
uncertainty for the model. We begin this section with a discussion of changes to

CBIPOLCAL which were required to use Tau A as a calibrator.

The first incarnation of CBIPOLCAL accommodated only unresolved calibra-

tors such as 3C279, so our efforts to converge on an accurate Tau A model required

several modifications to the software to accommodate the increasing degrees of free-

dom for the model. The initial Tau A model required minor changes to CBIPOL-

CAL. This model augmented the single Gaussian component for total intensity

with a uniform fractional polarization m and a uniform position angle χ across the

source. The Gaussian model for Tau A’s total intensity which CBICAL employs

has seven degrees of freedom: integrated flux density (1), position (2: x and y),

Gaussian shape (3: width, axial ratio, and position angle), and spectral index (1),

to which we added m and χ. In practice we set the spectral index to α = −0.3
for the total intensity model [52], and we do the same for the polarization model.

This simple model for Tau A’s polarization failed spectacularly on two basic tests:

the polarization characteristics of cross-check sources and the instrumental polar-

ization inferred from the model both differed by as much as a factor of two from

the expected values. These errors arise because the model incorrectly assumes

13At the time of these observations, the expectation was that the CBI deep polarization ob-

servations would be complete well before 3C279 set, so no effort was made to transfer 3C279’s

calibration to Tau A. As it happened, however, poor weather pushed the schedule for the second

deep observation to the beginning of August, at which time 3C279 set below the CBI’s elevation

limits at night and Tau A was soon to rise.
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that the maxima of the total intensity and polarized emission coincide; as we will

see, observations at lower frequencies show that while the polarization is uniform

across much of the source, it is relatively disordered at the northwest corner of the

source, so the net polarization in that region is suppressed when averaged over the

CBI’s ∼ 4′ synthesized beam.
The effect of the position offset between the I and P centroids can be demon-

strated analytically. Consider a single component Gaussian with major and minor

axes a and b (a||x̂) with offsets of (δx, δy) for the polarized emission. In the pres-
ence of instrumental polarization ε, the visibility is the Fourier transform of the

model on the sky:

VLR(u) ∼ I0e[−π
2(u2a2+v2b2)][meiπ(uδx+vδy)e2iχe2iθ + ε] (3.23)

We can estimate the fractional change of a cross polarized visibility in the presence

of a typical offest. Subsume the deck orientation and field orientation into a single

term χ, and consider just the part of the visibility which is sensitive to a position

offset:

VLR∗ ∝ [me2iχeiφ + ε] with φ = π(uδx + vδy) (3.24)

= [m cos(2χ+ φ) + εr] + i[m sin(2χ+ φ) + εi] (3.25)

The length L and orientation ψ of this vector are

L = m2 + ε2r + ε
2
i + 2m[εr cos(2χ+ φ) + εi sin(2χ+ φ)] (3.26)

ψ = tan−1
[m sin(2χ+ φ) + εi
m cos(2χ+ φ) + εr

]

(3.27)

Insert some typical numbers to get a sense of the magnitude of this effect. Let

m=0.06, χ=30◦, εr=0.08, and εi=-0.02. Consider a baseline of intermediate length,

so let (u, v) = (250,−300), and assume that the position offset of the centroid of
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polarized emission is δx = 0.4
′, δy = −0.8′, so that φ = 0.311 rad. With these

inputs, we find L=0.010 and ψ=22.6◦. In the absence of a position offset (φ ≡
0), however, Lo=0.013 and ψo=16.2

◦. A typical position offset for the polarized

source can clearly introduce a substantial (∼ 30%) error—which translates into
a comparable error in the gain and the leakage—so the Tau A model requires

additional degrees of freedom.

In an early version of the Tau A model we tried shifting the polarized compo-

nent relative to the centroid of total intensity. Shifts suggested by the literature

failed to bring the leakage terms into agreement to better than ∼ 2σ,14 so this
approach was discarded in favor of a strategy which specified separate models for

each of I, Q, and U .15 This approach proved to be satisfactory (see below).

3.3.3 Tau A Model 1

Figure 5.1 shows that on 11jan00 we performed a deep observation of Tau A,

while our first deep observation of 3C279 followed nearly a month later on 06feb00.

After 06feb00 there are only eight other dates in February and March of 2000 for

which contemporaneous observations of Tau A and 3C279 permit a comparison of

visibilities on all baselines. And as we will see, the structure of these observations

is such that most are useful only for checking the calibration between the two

sources, however; the one date for which the calibration can be transferred between

the two sources is 06feb00, which also happens to be the date of the first deep

3C279 observation. The effort to reconcile Tau A with 3C279 hinges on this date,

but fortunately we can ascribe a high degree of confidence to that calibration;

because this is the date of a deep observation of 3C279, the uncertainty for the CBI

calibration is limited only by the extrapolation of the VLA data from 18feb00 (∼
5%). As we see below, a blind calibration of the 11jan00 data using the calibration

factors from 06feb00 yields a calibration which is surprisingly good in light of the

14In part because the beamshapes for the extant measurements did not match that for the CBI.
15While this strategy always loomed on the horizon, the modifications to CBIPOLCAL required

to accommodate separate models for each parameter were sufficiently draconian that simple

changes were explored exhaustively first.
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nearly one month interval that separates them.

The CBI is generally a fairly stable instrument: the gain changes from night to

night, as demonstrated by the evolution of the complex gains for the system, are

typically 15% in amplitude and 8◦ in phase. Figure 3.10 shows the amplitude and

phase corrections for a sample baseline for the 08h field observations; in this case,

the rms of the gain is ∼ 11%, while that for the phase is ∼ 6◦. These changes are
sufficiently small to permit the transfer of calibrations from one night to adjacent

nights within this accuracy; this is particularly true if the gain variations are

noiselike, in which case the errors add in quadrature. On long timescales, however,

such as periods of several weeks, the gains have been observed to drift, and a naive

application of calibration factors across these intervals will systematically corrupt

the visibilities.

To calibrate the 11jan00 data with the 06feb00 calibration we must correct

for the drifts in the gain during the intervening month; the noise calibration sys-

tem aids us in this regard. The noise cal system refers all flux measurements to

the power measured by the power meter, so under ideal circumstances, the noise

calibration system should enable us to eliminate gain drifts to the accuracy of

the power meter reading. In practice, however, the noise cal correction suffers

from additional errors; the power measurement reported to the data stream by the

power meter can diverge from the power which the system injects into the receivers

because the insertion characteristics of the components downstream of the power

meter change. These discrepancies force CBICAL to apply an erroneous correction

to the visibility amplitudes during the ncal and ncal1 procedures. These gain er-

rors, confined to the amplitude of the noise cal signal, must be rectified before the

calibration factors from a particular night can be transferred across long spans.16

The errors in the power meter response can be measured by applying a set of

16There are also phase errors which are induced by temperature changes—driven by changes in

the electrical lengths of cables with thermal expansion, for example—but these changes cannot

be measured by the power meter, which only reports total power to the data stream. CBICAL’s

ncal procedure cannot use the power meter reading to fine tune the noise source visibility phases.
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Figure 3.10: LR calibration factors for amplitude and gain for the 08h field. These
observations spanned many months, but for simplicity the dates have been con-
densed to chronologically increasing observation numbers which can be cross refer-
enced with the dates given in column 2 of Tables 5.4 and 5.5. The average change
in amplitude and phase for all baselines for this period is ∼ 15%. The break in
the phases at day 30 (08apr00) is due to the reconfiguration; the reconfiguration
changed the baseline length and orientation, and thus the phase.
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calibration factors derived from an absolute calibration on one night to another

night’s observations. This approach should suffice to produce a reliable calibration

after the ncal correction has been applied to both sets of data, but in practice

this is not the case. The extent to which the calibrated visibilities depart from

the correct values provides a direct measure of the error in the noise cal power

measurement, and in this regard, the observations of the total intensity calibrators

played a central role in isolating the noise cal errors. The scale factors deduced from

the noise cal errors are then used to correct the polarization calibration factors.

The initial experiments with the techniques which evolved from this insight

focused on a period in early August 2000 which suffered from a lack of polarization

calibrators. The CBI obtained its total intensity calibration from Jupiter and

Saturn during this interval until Tau A rose at the end of the month. Most of the

dates in August which lacked direct observations of a polarization calibrator had

a 5m observation of at least one of Jupiter and Saturn. The deep observations of

3C279 on 12aug00 were used to derive a benchmark calibration for LR and LL;

the factors for LL were applied backward to the Jupiter observations through the

beginning of the month, and forward to Jupiter observations through the end of

the month. The disparity between the total intensities for Jupiter as deduced from

the 12aug00 benchmark calibration and Jupiter’s true flux yields a correction to

be applied to the calibration factors for all baselines for that night—the implicit

assumption is that the error is confined to the noise cal power reported to the

data stream by the power meter. In other words, the 66 LL baselines are used to

measure the discrepancy between the noise source power injected into the system

and the power reported to the data stream, and this correction is then applied to

all 78 baselines.

Figure 3.11 shows the errors in the noise calibration system based on an LL

observation of Saturn in early August. In this case, contemporaneous LL obser-

vations of Jupiter were used to infer the error in the power meter reading, and the

resulting scale factors were applied to the Saturn observations. The two frames in

the figure show that the blind calibration yields fluxes which are a few Jy (∼ 10%)
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Figure 3.11: Calibration errors for 06aug00 LL visibilities. Errors are all ∼ 100
mJy; they were left off of the figure for clarity. This result is typical.

more than the expected values. The scaling technique brings the LL flux densities

into agreement at a level which is better than the errors on the observations; this is

precisely the result we expect because the total intensity flux densities were used to

infer the calibration error. The key feature of this analysis is that the scale factors

show a tight quadratic dependence on temperature; this dependence is shown in

Figure 3.12 for one channel during the 01aug00-03oct00 period. This dependence

on the ambient temperature—rather than on antenna-dependent factors—provides

confidence that the corrections to the LR gains will obey the same dependence.

Our goal is to recover the correct LR calibration. To test the scaling procedure

we require two dates with deep 3C279 observations which are separated by enough

time to allow the gains to drift. In the demonstration that follows, the deep

3C279 observation of 24apr00 is projected to the next deep observation, that of
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Figure 3.12: Temperature dependence of the noise cal amplitude errors for the
31jul00-03oct00 period.

15jun00.17 A blind application of the 24apr00 calibration to the 3C274 observation

of 15jun00 yields the total intensity flux densities shown in the first set of columns

of Table 3.3. The second set of columns of the table shows the correct flux densities

derived with CBICAL for comparison; the flux ratios show that the noise cal power

error has undergone a change of as much as ∼ 20% at the low end of the band.
We performed deep observations of 3C279 on 16jun00 and 17jun00 as well, and

the flux comparisons for these dates confirm these changes.

We are particularly concerned with the efficacy with which the scaling tech-

nique improves the polarization calibration. Upon applying the scale factors to all

of the gains—including those for RX12—we find that the procedure improves the

calibration for the band averaged values for I and |P |. Figure 3.13 shows these
results. The top frame demonstrates that the scaling rectifies the large drift in the

low end of the band, which in turn enables us to recover the total intensity to ∼ 0.5
Jy, or ∼ 2%.18 The second frame shows the result of scaling on the polarization
17One other candidate pair of dates is 06feb00-10apr00, but the uncertainties in the interpolation

of the 18feb00 VLA observations to the 06feb00 3C279 observations complicate the interpretation

of the result: the 06feb00 observation of 3C279 with the CBI is not bracketed by VLA observations.
18The 2% discrepancy results from gain drifts which occur between the observations of 3C274

and 3C279 on each night.
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∆ν (GHz) CBIPOLCAL (Jy) CBICAL (Jy) ratio

26-27 16.70 ± 0.07 18.45 ± 0.05 1.105 ± 0.005
27-28 15.78 ± 0.06 18.02 ± 0.06 1.142 ± 0.005
28-29 14.85 ± 0.07 17.57 ± 0.05 1.183 ± 0.007
29-30 14.31 ± 0.07 17.06 ± 0.05 1.192 ± 0.007
30-31 14.12 ± 0.06 16.70 ± 0.06 1.182 ± 0.006
31-32 14.14 ± 0.06 16.27 ± 0.06 1.151 ± 0.006
32-33 14.59 ± 0.08 15.93 ± 0.07 1.092 ± 0.008
33-34 14.68 ± 0.06 15.59 ± 0.09 1.062 ± 0.008
34-35 14.62 ± 0.07 15.22 ± 0.08 1.041 ± 0.007
35-36 14.63 ± 0.08 14.91 ± 0.06 1.019 ± 0.007

Table 3.3: Amplitude scale factors, by band, required to map the 24apr00 cali-
bration to 15jun00. First two sets of columns show the flux inferred for 3C274 by
CBIPOLCAL and CBICAL, while the last shows the ratio of the two, which provides
the scaling necessary to bring the two calibrations into agreement.

amplitude |P |; the scale factors bring the polarization into fair agreement with the
benchmark, although they introduce a marginally significant tilt across the band.

The virtue of the procedure is most pronounced in the band averaged quantities;

based on the VLA observations, the mean polarization for 3C279 on 15jun00 is

3.09 Jy. The CBI measures 2.78 ± 0.04 Jy and 3.10 ± 0.04 Jy before and after
scaling; the procedure reduces the band-averaged error from 11% to less than 1%.

The polarization position angle χ is not affected, of course, because the flux ratios

scale Q and U equally; the χ data are included in the figure as a cross-check, and

to highlight an important point: the small position angle change of ∼ 6◦ over a
span of nearly two months is remarkable because it suggests that the cumulative

phase drift over this time is of this size.

Tau A Model from Total Intensity Scaling

We now use the scaling technique to map the 06feb00 calibration on 3C279 to the

deep Tau A observation of 11jan00. Table 3.4 presents scaling factors deduced

from 3C274 observations on both dates; this table shows that the scale factors
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Figure 3.13: Scaling example. The scale factors were obtained from 3C274 ob-
servations on 24apr00 and 15jun00 and applied to the gains to map the 24apr00
calibration to 15jun00. The values for χ overlap because the scaling factors only
affect the amplitudes. The error bars do not reflect the uncertainty in the VLA
measurements, which are typically ∼ 5%.

required to bring the two calibrations into agreement are not large. Table 3.5

demonstrates the effect of the scaling on the total intensity component of the Tau

A model; the table shows that without the scaling, the 06feb00 calibration recovers

the total intensity to ∼ 3%, and that scaling reduces the error by half. While this
improvement is modest, a substantial benefit appears in the inferred spectral index,

which is shown in the last column of the table. In both cases the peak to peak span

of the flux in the residual map after fitting to a single Gaussian component is ∼ ±
2.5 Jy/beam, which suggests that the fits—independent of systematic errors—are

accurate to ∼ 1%. The first row of Table 3.6 shows the model components for
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∆ν (GHz) CBIPOLCAL (Jy) CBICAL (Jy) ratio

26-27 19.10 ± 0.09 18.98 ± 0.20 0.993 ± 0.012
27-82 18.46 ± 0.07 18.94 ± 0.11 1.026 ± 0.007
29-30 17.34 ± 0.08 17.78 ± 0.08 1.025 ± 0.006
30-31 16.97 ± 0.10 17.42 ± 0.10 1.026 ± 0.008
31-32 16.30 ± 0.06 16.84 ± 0.08 1.033 ± 0.007
32-33 15.87 ± 0.09 16.80 ± 0.13 1.058 ± 0.010
34-35 14.64 ± 0.10 15.94 ± 0.12 1.089 ± 0.011
35-36 13.80 ± 0.08 15.65 ± 0.11 1.134 ± 0.010

Table 3.4: Scale factors, by band, required to map the 06feb00 calibration to
11jan00. The first two columns show the flux densities inferred for 3C274 by
CBIPOLCAL (blind calibration) and CBICAL (correct calibration). The ratios of
these flux densities provide scale factors that have the tight quadratic temperature
dependence seen in Figure 3.12.

all three Stokes parameters for Tau A, after scaling all of the gains. This model,

Model 1, will be our working model for Tau A. We will focus on the errors in this

model after presenting a second approach to deriving the Tau A model. foop

3.3.4 Tau A Model 2

We have a second avenue for obtaining a model for Tau A from the CBI data. While

the only deep observation of Tau A occurs well prior to the deep observations of

3C279, we can use the handful of brief observations of Tau A early in the 08h

field campaign to infer the correct calibration for 11jan00. That we can even make

these comparisons is by no means a foregone conclusion, however; since Tau A is an

extended source, visibilities from different dates cannot be compared unless they

sample the same (u, v) points. The deep 11jan00 observation consisted of 19 scans,

starting at deck angle -95◦ and increasing in deck steps of 20◦. In contrast, the nine

subsequent Tau A observations consisted of single scans was performed at single

deck positions, and only one was performed at a deck angle which matched one of

the those on 11jan00. This exception is 06feb00, at which time Tau A was observed

at d.a. 145◦: a position which was sampled by the thirteenth scan on 11jan00.



114

component F0 (Jy) x0 (
′) y0 (

′) σ (′) b/a φ (◦) α

baseline 355.3 0.0 -102 3.58 0.66 -50.0 -0.30

before scaling 346.3 0.1 170 3.56 0.67 -49.8 -0.65
after scaling 360.8 0.1 83.9 3.55 0.66 -50.1 -0.28

Table 3.5: Gaussian model components for the total intensity of Tau A at 31 GHz
based on the observations of 11jan00. The top row (baseline) shows the model
deduced from the total intensity observations with the CBI; this model is accurate
to better than 5%. The third set of columns shows the position of the centroid of
the Gaussian (measured relative to the catalog position), while the fourth set of
columns shows the FWHM, axial ratio, and the orientation of the Gaussian, and
the fifth shows the spectral index of the component.

06feb00 is also the date of a deep 3C279 observation, so the polarization calibration

on that date is among the most reliable. We can use these visibilities to infer the

gain change for the cross polarized baselines between 06feb00 and 11jan00. These

changes will differ from those determined from 3C274 in the previous section, but

the results of the application of the inferred gain changes should be the same.

We would first like to assess the degree to which the 11jan00 visibilities for

scan 13 on Tau A agree with those for the single scan on Tau A on 06feb00; this

comparison will provide a sense of how much work is necessary to bring the 11jan00

calibration into agreement with that for 06feb00. The scaling procedure discussed

in the previous section provides a gross estimate which suggests a slope in the

power meter error across the band. Figure 3.14 shows a side-by-side comparison of

a sample of the Tau A visibilities;19 this figure compares the visibilities for RX1-

RX12, and the change between the two sets of visibilities reflects the evolution of

the gains during the 11jan00-06feb00 period. The changes are clearly small: at

19The blind calibration first requires a correction to the phase for the relative pointing offset

between the observations on 11jan00 and 06feb00, i.e., the two observations must be placed on

the same intrinsic pointing scale. This correction is obtained by applying the 06feb00 calibration

to 11jan00 to infer the relative position offset for I. The 11jan00 data are then exported from

cbical a second time after this correction has been applied with cbical’s shift command.
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Figure 3.14: Comparison of Tau A LR visibilities for 11jan00 (scan 13) and
06feb00, the former of which was calibrated with a simple application of the
06feb00 calibration. Channels 3 and 8 (29 and 33 GHz) were not installed during
the 11jan00 observations, so these points are missing from the figure. This figure
shows that on average, the blind calibration comes relatively close to the correct
calibration.

most ∼ 20% in amplitude and 10◦ in phase. They also depart from the scaling
suggested by the band-averaged scale factors presented in Table 3.4 for several

reasons: they do not employ 3C274 as an intermediate reference for the calibration;

the scaled noise cal correction cannot rectify gain errors downstream of the power

meter; the 06feb00 calibration has errors; and there is noise in the measurements

on both dates. The change shown in this figure is representative of the changes

seen on other baselines. Figure 3.15 compares the band-averaged visibilities for the

nine baselines which are common to the two sets of data20 plotted as a function

of (u, v) radius to provide a sense of the change in the visibilities between the

two dates. While the Gaussian shape of the visibilities is apparent, the points

do not trace out a single Gaussian because they represent samples at a variety of

20RX10 was added between the two dates, and thus is not included in the figure.
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Figure 3.15: Tau A visibility comparison, 11jan00 (scan 13) vs. 06feb00, band
ave. The upper frame shows the amplitude and the lower frame shows the phase.
This figure demonstrates that the blind application of the 06feb00 calibration to
the 11jan00 data comes within 15% of correct calibration for each baseline.

baseline orientations, and thus reflect different “slices” through the source; the two

points at |u|=200, for example, which correspond to RX5-RX12 and RX7-RX12,
were obtained from baselines which differ in orientation by 120◦. On average, the

11jan00 visibilities at deck angle 145◦ differ in amplitude from those on 06feb00

by ∼ 1 Jy, or ∼ 5%, and in phase by ∼ 2◦. This good agreement—in the absence
of any correction, apart from pointing—reflects the high stability of the CBI.

Tau A Model from Visibility Scaling

We can improve on the simple application of the 06feb00 calibration factors to

11jan00 by comparing the uncalibrated visibilities which sample identical (u, v)

points to obtain an estimate of the change in gain for each baseline and channel.
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In the notation which follows, we will let 11jan00 → V1 and 06feb00 → V2. Under
ordinary circumstances we have the gains for both dates—G1 and G2—and we can

solve for the two polarizations P1 and P2 separately for each (u, v) point:

V1 = G1(P1 + εI1); V2 = G2(P2 + εI2) (3.28)

By selecting visibilities which sample the same (u, v) points, we force (P1+ εI1) =

(P2 + εI2), and we can then solve for G1, the gain for 11jan00.
21 In the case of

interest, we do not know G1, but we have the raw correlator output for both dates

(V1,V2), and since the deep 3C279 observations on 06feb00 provide G2, we can
solve Equation 3.28 for G1:

G1 = G2
V1
V2

(3.29)

for each channel and each baseline. This approach transfers the noise in the raw

visibilities to G2, and while a ten channel average would suppress the noise and

thus provide a substantial improvement in the solution—to first order the gain

drifts are uniform across the entire band, so a piston correction can compensate

for much of the drift—in practice, the steep slope in the uncalibrated visibilities

across the band negates any improvement because the correction is dominated

by a few channels at the band edge. The slope across the band is such that the

visibilities at the band edges (|Vν=35.5 GHz| vs. |Vν=26.5 GHz|) differ in amplitude
by a factor of ∼10, and often more.22 As a consequence of working in correlator
units, the band averaged values for V prior to calibration are dominated by the
visibilities at the high-frequency end of the band. We are thus forced to perform

the scaling on a channel-by-channel basis.

The complex ratio of the 06feb00 and 11jan00 visibilities was used to scale the

21We assume that the instrumental polarization ε is constant, and that the total intensity which

shines through ε remains constant as well. The imodel command in CBIPOLCAL ensures that the

correct total intensity model is applied to the instrumental polarization subtraction.
22This steep slope is an artifact of the rolloff in the noise cal power; since the noise cal is much

weaker in the highest frequency band, the ncal correction in CBICAL boosts the highest frequency

amplitudes by a larger factor to set all of the noise cal visibility amplitudes to the same value.
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06feb00 gains. The mean ratios of the correct and incorrect gains for the reals

and imaginaries are 0.96 and 0.98, respectively. These ratios are qualitatively

inconsistent with the finding of the previous section that the gains had drifted

downward by 5% across the band; since these ratios focus on the baselines and

channels of interest, they are more precise than the band averages which were used

to obtain Model 1, but this precision is degraded by the higher noise in the single

channels. This approach offers an independent check on the results of the scaling

technique employed to obtain Model 1, so we pursue it below.

The calibration scaling procedure enables us to obtain a second Tau A model

from the deep 11jan00 observations. Upon fitting the I, Q, and U components of

the 11jan00 Tau A observation to single Gaussians in DIFMAP, we obtain the model

components for Model 2 shown in the second row of Table 3.6. The spectral index

was held to α = −0.3 for all the components, although relaxing this requirement
did not improve the fit substantially. The total intensity component shown in

the table is the model derived from the total intensity calibration for the CBI—

the fit to the total intensity obtained from the scaling has ∼ 3% less integrated
flux, and this discrepancy provides one measure of the accuracy of the scaling

procedure. The position offsets for the Q and U components (columns 3 and

4) are qualitatively consistent with each other as well as the inferred position

offsets which originally precipitated this exercise. The centroids for Q and U differ

because the position angle of the polarization changes across the source. The

model components for Q and U are essentially unresolved. Several types of models

were tried, including multiple Gaussians for each of Q and U , but these more

complicated models did not substantially improve the fit; this is to be expected,

as Tau A is just at the edge of the CBI’s resolution limit.

This section presented two models for Tau A, both of which were obtained

from different calibrations of the 11jan00 Tau A observations with the CBI. The

difference in the polarization of the two models is marginal; Model 1 has P ∼
√

Q2 + U2 ∼ 27.5 Jy and χ ∼ −28◦, while Model 2 has P ∼ 28.2 Jy and χ ∼ −29◦.
The two approaches share some of the same systematic errors; both approaches



119

model component S (Jy) x0 (
′) y0 (

′) σ (′) b/a φ (◦) α

1 I 355.3 0.0 -102 3.58 0.66 -50.0 -0.3
Q 15.5 -48.1 15.7 3.56 0.67 -49.8 -0.3
U -22.7 -29.8 25.5 3.55 0.66 -50.1 -0.3

2 I 355.3 0.1 -102.0 3.58 0.66 -50 -0.3
Q 14.9 -48.8 14.9 2.93 0 83 -0.3
U -23.9 -30.1 26.2 2.28 0.52 56 -0.3

Table 3.6: Gaussian model components for two Tau A models at 31 GHz based on
the observations of 11jan00.

hinge on the 3C279 calibration on 06feb00, which in turn is calibrated using the

18feb00 VLA observation, an observation whose extrapolated uncertainty we take

to be 5% at 31 GHz. The methods used to derive the calibrations on these dates

cause the errors to diverge, however, because the gain scaling technique (Model

1) relies on the extent to which the scale factors derived on LL observations can

be applied to the LR baselines, while the visibility scaling technique (Model 2) is

limited by the uncertainties in the visibilities. As a practical matter, the models

are very similar—smaller than the errors in the techniques—so we will use Model

1 as the working model for Tau A. Figure 3.16 shows the CBI’s map of Tau A

for the calibration which yielded Model 1. In the following section we explore the

errors in this model.

Tests of the Tau A Model

The magnitude of the scaling factors required to map the 06feb00 calibration to

11jan00—typically a few to 20%—suggests a rough upper limit on the uncertainty

of the Tau A model of ∼ 20%. We can refine the accuracy of this estimate of
the uncertainty by testing the Tau A model against known calibration metrics.

The best test of the model is to compare 3C279 observations calibrated on Tau A

with 3C279’s own calibration. The limited overlap of these two sources limits the
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Figure 3.16: Polarization map of Tau A based on the CBI data of 11jan00 (Model
1). The polarization at the peak of the total intensity is 22.3 Jy/beam (9.2%) and
the position angle is -30◦. The fractional polarization peaks at 12% 2′ south of the
centroid.
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application of this test, but there are nine dates early in the 08h field observations

which can be used.23 We can also use the measurements of the instrumental

polarization to estimate the error in the model; the deep Tau A observation of

11jan00 suffices to produce a very high S/N measurement of the instrumental

polarization, which can be compared to the careful leakage measurement with

3C279 on 06feb00. This section discusses these tests.

Nine nights early in the 08h field observations included both Tau A and 3C279,

and we used these observations to test the model. On these nights the Tau A obser-

vations consisted of single 5m scans at the beginning of each night, while the 3C279

observations consisted of two scans separated by a deck rotation of 90◦ at the end of

each night. The 3C279 data were extracted and calibrated in CBIPOLCAL with the

Tau A model;24 these data were compared to the polarization characteristics inter-

polated from the VLA observations. The total intensity calibration for the CBI is

accurate to 5%, so we focus on the the scale-free quantities m and χ. Figure 3.17

shows the results of the test on 3C279; the upper frame compares the fractional po-

larization amplitudes, while the bottom frame compares the position angles from

the two sets of data. The error bars on the data reflect only the uncertainties in

the polarization characteristics of the source; for the VLA data, the uncertainties

include raw measurement errors and additional uncertainties from the two inter-

polations necessary to reach the CBI channels on the dates in question. For the

CBI data calibrated with Tau A, the uncertainties are simply the measurement

uncertainties. For clarity, the global systematic uncertainty of the CBI’s Tau A

model—as deduced from the 11jan00 observation—has been neglected.

The figure shows that the Tau A model recovers the source polarization ob-

tained with the VLA to a very high degree of precision. The model recovers the

position angle to 〈δχ〉 ∼ 3◦, or ∼ 5% of a radian. The observations of Tau A were
all made at a variety of deck positions: at φ = 145◦ for 06feb00; at φ = −90◦ for
23There several more dates during the 08h field observations during which both sources were

observed, but these data were struck due to small lunar elongations or the lack of trails.
24We assumed a set of leakage factors from the deep 06feb00 observation.
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Figure 3.17: Comparison of 3C279 values for m and χ from the VLA with those
obtained from band-averaged CBI observations after calibration with the Tau A
model. The error bars reflect only the uncertainties in the polarization characteris-
tics of the measurements; the VLA uncertainties are derived from the intrinsic un-
certainties in the VLA measurements, along with the uncertianties incurred while
interpolating to the CBI band. There are additional uncertainties which stem
from the LL calibration of ∼ 5% which affect the overall polarization calibration,
but these uncertainties do not enter this comparison. Since the measurement of
m is in the high S/N limit, the correction for the bias in P from the noise (i.e.,

P ′ =
√

P 2 − σ2P ) has been neglected. For clarity, the two sets of data are offset
with respect to each other; the data calibrated with the Tau A model follow the
VLA data. The larger error bars for the later set of VLA data reflects the greater
uncertainty in the 12mar00 observations.
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09feb00; at φ = 130◦ for 10feb00; at φ = −95◦ for 11feb00; and at φ = −90◦ for
01mar00-05mar00. These measurements therefore sample different components of

the model, so a model error would not necessarily produce a uniform systematic

offset for the dates shown in the figure. Since the offsets are generally smaller than

the overall uncertainties in the calibration deduced from the VLA data, which tend

to be ∼ 10%, no effort was made to use this comparison to fine tune the model. In
practice, we cannot achieve the level of precision suggested by this figure because

the calibration loop does not always recover the flux in total intensity, which in

turn affects the inferred polarized flux. This uncertainty is in addition to the 5%

absolute error in the in the LL calibration. Considering that the receiver gains

can drift by as much as ∼ 5% between the Tau A observation at the beginning of
the night and the 3C279 observation at the end, the agreement is good.

Another test at our disposal is a comparison of the instrumental polarization

inferred from the Tau A model on 11jan00 with that which is derived directly

from the 3C279 observations on 06feb00. Figure 3.18 shows this comparison for

two baselines. The figure shows that for the two baselines under consideration,

the amplitude and phase of the instrumental polarization agree; the results for

other baselines are similar. The two baselines shown in the figure, RX2-RX12 and

RX6-RX12, were selected because they represent a variety of lengths; RX2-RX12

is a 173 cm baseline, so it samples ∼ 16′ scales, while RX6-RX12 is a 458 cm
baseline, so it resolves structure at the ∼ 4′ level. These resolution considerations
are important because the shorter baselines are more likely to mask errors in the

model.

The discussion in Section 3.3.2 shows that large errors in the Tau A model

would cause the leakage inferred from the model to depart from the benchmark

values determined by the deep 3C279 observation on 06feb00; this figure, and the

corresponding comparisons for the other baselines, show that this is not the case.

Since the model errors would appear as errors in the leakage, we may infer from

Figure 3.18 that the Tau A model is a good approximation to the source.

Taken together, these two tests provide confidence in the Tau A model obtained
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Figure 3.18: Comparison of the instrumental polarization obtained with 3C279 on
06feb00 with the leakage measured on 11jan00 with the Tau A model for all ten
bands. Two sets of leakage factors are shown; the upper pair of frames shows the
amplitude and phase for RX6-RX12, while the lower pair shows data for RX2-
RX12. Channels 3 and 8 had not been installed on the array at the time of the
11jan00 observations, so these data are missing from the comparison. The two
sets of data are offset for clarity. The figure shows the high consistency between
the leakage factors determined with the two approaches; comparisons for other
baselines show a similar level of agreement.
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from the scaling procedure; the tests suggest that the Tau A model is within

striking distance of the correct model, and certainly, the errors in the model are

comparable to the errors which stem from the application of the VLA data to the

CBI observations. The cross-check of the 3C279 observations in early February

and early March show that the Tau A model suffices to recover the expected

polarization for 3C279 to within the overall uncertainty of the 3C279 values from

the VLA, although this test glosses over errors for individual bands and baselines.

The instrumental polarization comparison provides a more detailed test of the

model, and it shows that the channel-by-channel discrepancies are small—certainly

well within the errors on the measurements. The Tau A leakage test measures an

instrumental polarization which produces the equivalent of a sky polarization of

5% × 350 ∼ 20 Jy, which is an order of magnitude larger than the polarization
of 3C279—we therefore obtain a higher S/N measurement of the leakage than

we do of the intrinsic polarization of 3C279; this favors the second test. These

tests provide confidence in the CBI’s Tau A model, but we will see in Chapter

5 that some significant uncertainties remain in the calibration which may be a

consequence of the Tau A model.

3.3.5 Previous Tau A Polarization Observations

The literature contains many discussions of Tau A’s polarization at cm wave-

lengths. Most of these data are not readily accessible to comparisons with the

CBI data, however, because differences in the observations affect the outcome of

the observations. We will see that resolution effects, for example, can rapidly

change the inferred polarization. Polarization observations are quite difficult to

interpret in isolation, even in the best circumstances. Bietenholz and Kronberg,

for example, have made exquisite VLA high resolution images of Tau A in which

they measure a peak fractional polarization of 20% at 4.9 GHz; they note that

this polarization falls well below the theoretical maximum of 65% for a source of

synchrotron emission with spectral index α = −0.26 [6]. This finding is typical of
the difficulties in interpreting observations of Tau A’s polarization. Further com-
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plicating the matter, the Tau A observations with the CBI must contend with a

poor calibration. We consider these issues in detail in this section.

Hobbs and Hollinger [31] have observed Tau A with a 2′ beam at 2 cm at the

NRAO 140’ telescope. They find that the peak fractional polarization is 11.6 ±
0.5%, and it coincides with the peak of the total intensity; at that point the position

angle is χ = 152± 2◦, although within a beamwidth of the peak the position angle
swings between 117◦ and 159◦. These orientations are in good agreement with

those measured with the CBI, which found a slightly lower fractional polarization

(11%) and a similar position angle (150◦). In contrast, the peak of polarized

emission in the CBI observations is offset from that for the total intensity, and

perhaps the superior resolution of the Hobbs and Hollinger measurements failed

to reveal this feature because it does not persist at their lower frequency.

Mayer and Hollinger [51] mapped Tau A’s polarization at 1.5 cm with 1.7′ res-

olution with the NRAO’s 140’ telescope. The authors find that the total intensity

spans a region which is roughly elliptical in extent with half-widths of 4′.2× 3′.0,
while the polarized emission is confined to a much smaller area; the polarization

extends across a region only 2′.0 × 2′.5 across which peaks 0′.25 east and 0′.5
south of the centroid of total intensity. The authors measure a peak fractional

polarization of ∼ 16%, at which point the position angle is ∼ 154◦. Mayer and
Hollinger report the polarization for a matrix of 0′.8 pixels around the centroid,

and from these values the offset for the polarization is apparent; according to their

measurements, the polarization rises from 2.8% through 13.2% to 16.0% along a

diagonal of three pixels through the center of the source from the northwest to the

southeast. Here once again we see that the position angle agrees with the angle

measured by the CBI, while the fractional polarization does not. The offset for

the peak of polarization agrees with the offset measured by the CBI. The peak

fractional polarization measured by the two telescopes, however, differs by over

50%.

Flett and Henderson [22] observed Tau A with a 1.5◦ beam at 9 mm with

the Chilbolton 25 meter dish. Their results are not presented with the same
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detail as those discussed above, but they do confirm the position offset. Since this

measurement is closest in frequency to the CBI observations, this agreement may

well be significant. The authors find that the centroid of polarized emission is

at a position ∼ 0.5′ southeast of that for the total intensity, at which point the
fractional polarization is ∼ 17% and the position angle is ∼ 155◦. This fractional
polarization is nearly twice as large as the peak observed in the CBI maps; much of

this differences arises from the contrast in beamsize between the CBI (Ωs ∼ 5.′6)
and the Chilbolton telescope (Ωs ∼ 1.′5). The Chilbolton observations provide
qualitative support for some of the CBI results, but these observations are not

amenable to a quantitative comparison.

The factors which complicate the comparison of Tau A polarization observa-

tions reported in the literature to the CBI data prompted us to seek calibrated

visibility data which we could smooth to the CBI beam. Bietenholz and collab-

orators [5] have made an extensive study of Tau A at GHz frequencies with the

VLA, and they have generously made their 4.885 GHz visibility data available for

this work. These data were obtained in all four of the VLA configurations, but we

excised the long baseline data because the corresponding visibilities make only a

marginal contribution to the total flux. The Bietenholz data were used to make

maps for I, Q, and U ; Figure 3.19 shows the map of the source restored with a

0′.5 beam. The Bietenholz maps confirm the offset between the total intensity and

the polarized emission; their maps show that the fractional polarization peaks at

∼ 20% roughly 0.′25 east and 0.′5 south of the centroid. This position agrees with
the centroid found by Mayer and Hollinger, but the peak fractional polarization is

significantly higher—no doubt due in large measure to the VLA’s smaller beam.

At the peak of polarized emission the position angle is 138◦, which is ∼ 15◦ smaller
than the position angle measured at the peak by Mayer and Hollinger. Perhaps

most importantly, the high resolution map provides a clear picture of the change in

polarization position angle across the source; the polarization position angle wraps

from -40◦ near the peak to 40◦ in a region ∼ 1′ northwest of the center. The CBI
beam averages the polarization over the entire source.
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The Bietenholz data allow us to explore the effect of smoothing with the CBI

beam. The cleaned I, Q, and U data were restored in DIFMAP with a Gaussian 5.6′

beam to approximate the beam produced by the LR baselines in configuration 1;

the resulting map is shown in Figure 3.20. Smoothing reduces the peak polarization

from 20% to ∼ 7%, while the position angle at the peak rises to ∼ 142◦. The larger
beam spreads the peak polarization around a plateau ∼ 1′ east and ∼ 2′ south of
the centroid of total intensity. On the opposite side of the total intensity centroid,

the polarization rises to ∼ 4%. This exercise demonstrates the effect of beamsize
on the inferred polarization: smoothing over the beam reduces the peak fractional

polarization in the high resolution Bietenholz maps by nearly a factor of three,

while position angle remains nearly unchanged.

The smoothed Bietenholz maps permit a comparison with the CBI observations

of 11jan00. The fractional polarization in the CBI maps is generally higher than

that in the Bietenholz maps. At the peak of the emission in total intensity, the

CBI measures a fractional polarization of 8.9% and a position angle of 151◦, while

the corresponding values for the smoothed Bietenholz data are 6% and 142◦. In

the vicinity of the peak of polarized emission, the fractional polarization in the

CBI data rises to ∼ 11%, while the position angle remains nearly unchanged.
The fractional polarization in the smoothed Bietenholz maps also increases by 1%

at the polarization peak, while the position angle remains roughly constant at

142◦. Thus, even when the beamsizes agree, the 4.885 GHz VLA data yield a

fractional polarization which is ∼ 50% lower than that which is measured by the
CBI. There must therefore be additional frequency-dependent effects which change

the polarization between 4.885 GHz and 31 GHz. At the outset of the experiments

with the Bietenholz 4.885 GHz observations we had hoped that these high quality

maps would yield a model which could be applied to 31 GHz CBI data after the

appropriate scaling. The fractional polarization seen in the smoothed data show

that this is not the case.

We are confindent that the Tau A model is substantially correct. We presented

two techniques for extrapolating the calibration of 06feb00 to 11jan00, and the
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Figure 3.19: Tau A, 4.885 GHz, resolved. Note that the scale of the image differs
from that of 3.20 by a factor of two.

models that result from these techniques differ in polarized flux by ∼ 2%. The
comparison of the instrumental polarization derived from Model 1 with known data

suggests that errors in the model are not significant, and the tests on observations

of 3C279 support this conclusion. The literature do not contain data which can

confirm our measurements of Tau A’s polarization. We will revisit the Tau A model

in Chapter 5, at which point we will see that the model is accurate to ∼ 10%.



130

Figure 3.20: Same as 3.19 after smoothing with a 5.6◦ beam to approximate the
CBI maps.

3.4 Calibration Error Budget

The deep CMBR observations are calibrated on 3C279 and Tau A. Figure 3.21

shows the uncertainties in the VLA data; these uncertainties reflect the raw VLA

uncertainties as well as the additional effects of the interpolation to 31 GHz on the

dates of the CBI observations. The shaded regions denote times during which the

08h deep field was observed; the figure shows that the uncertainties in the VLA

data are typically a few percent for most of the 08h deep field observations. The

Tau A model has an uncertainty at least 5%, the uncertainty we ascribe to the
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06feb00 3C279 observation, and the techniques used to determine the calibration

on 11jan00 increase this uncertainty further. In Chapter 5 we use supporting

observations to better constrain the errors on this model.
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Figure 3.21: VLA interpolation errors during the 08h field observations. The dates
start with 01jan00=1. The shaded regions denote times during which the 08h field
was observed. The sharp rise at the end of May is troubling, but it affects only
∼ 3% of the 08h deep field data.
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Chapter 4

VLA Observations

4.1 Introduction

Observations of 3C279 with the VLA provided the foundation for the polarization

calibration of the CBI. 3C279 combines all of the major requirements for a polar-

ization calibrator: it is bright, highly polarized, and unresolved by the CBI and

most configurations of the VLA at centimeter wavelengths; it is our good fortune

that 3C279’s declination of δ = −5◦ puts the source within view of both telescopes
for much of the year. 3C279 is variable, however, so a calibration program with

3C279 requires regular VLA observations to characterize the changes in the source.

We were awarded VLA time to monitor 3C279 for the duration of the CBI polar-

ization campaign. The monitoring program combined two challenging frontiers of

VLA performance—high-frequency photometry and polarization—and much of the

discussion in this chapter focuses on efforts to unravel the complications which ac-

companied these observations. Section 4.1 describes the observations, and Section

4.2 discusses the analysis and interpretation of the VLA data.

4.2 Observations

The VLA is a 27 element interferometer sited near Socorro, NM. The VLA is an

extraordinarily flexible instrument; the array can be configured to permit baselines

from tens of meters to tens of kilometers, and users can choose from any of 8 bands
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between ∼ 70 MHz and nearly 50 GHz. The VLA lacks channels which overlap
with the CBI’s 26-36 GHz band; the nearest VLA bands are a pair of bracketing

channels, 22.46 and 43.34 GHz (K and Q band). These are the highest bands

at which the VLA operates, and the monitoring observations were subject to the

gain and pointing problems which arise while observing at the limit of the VLA’s

capabilities. The VLA cycles through four major configurations every 16 months,

from the sparse A array to the compact D array; our monitoring observations

encompassed B, C, and D configurations. At K and Q band, the VLA employs

dual circular polarization, dual sideband receivers, and the backend computes all

possible correlations—RR, RL, LR, & LL—for each of the two IFs simultaneously.

These receivers reside at the Cassegrain focus, and when the user commands an

observation at a particular frequency, the subreflector at the prime focus nutates

to illuminate the receiver which is tuned to the desired band.

The VLA observations spanned two periods: September 1998 to December

1998, and December 1999 to August 2000. The 1998 epoch consisted of five ob-

servations over 90 days; these observations provided a test run for the monitoring

program. The changes in 3C279’s flux density during this period suggested that

the program would require biweekly observations, and complications which arose

during the analysis of these data provided insights into how to structure the ob-

servations. The second period consisted of thirteen observations over ten months.

These observations encompassed most of the CBI polarization campaign, and in

so doing provided the reference for all of the polarization observations with the

CBI. Table 4.1 lists the observations for the second period. Four runs were lost to

high winds at the site; the rejection of these data is discussed in Section 4.2.2.

Given the paucity of bright, compact, and polarized sources at centimeter

wavelengths, it is fortunate that 3C279 has a close neighbor, 3C273, which also

fills these requirements. 3C273 has I31 ∼ 20 Jy and m ∼ 5%, and although
its lower polarized emission makes it less desirable than 3C279 as the primary

polarization calibrator, it is bright enough to permit fast observations to verify

the CBI’s polarization calibration. We therefore included a 3C273 observation in
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date configuration comment

18feb00 BC

12mar00 BC

05apr00 C

25apr00 C

04may00 C

19may00 C rejected: high wind

02jun00 C

15jun00 C rejected: high wind

30jun00 C

13jul00 CD rejected: control system crash

31jul00 D rejected: high wind

10aug00 D

24aug00 D rejected: high wind

Table 4.1: BC is a hybrid array: north arm in B array, east-west arms in C. CD
is a also hybrid array: north arm in C, east-west arms in D.



136

each VLA run. The VLA and the CBI observations encompassed numerous other

calibration sources, but these two sources represent the only overlap between the

two programs.

4.2.1 Observing Strategy

The time awarded for our program consisted of 2h blocks in the 08:30-12:30 LST

range. Most of this time was consumed by calibration observations (40%) and

overhead for antenna slews and subreflector nutations (40%); the balance of the

time was filled by flux measurements of diagnostic sources (14%) and program

sources (6%). The preponderance of time dedicated to calibrations and diagnostic

observations reflects the demands that high-frequency polarization observations

place on the system.

Table 4.2 provides a schematic overview of a typical VLA schedule. 3C279

and 3C273 are the program sources; all other sources facilitate the analysis and

interpretation of the observations of 3C279 and 3C273. We included a handful

of diagnostic sources, J0713+438, J1310+323, and J1400+621, to assess the re-

peatability of the VLA flux measurements. J1310+323 and J1400+621 are sources

drawn from the VLBA polarization calibrator monitoring program which have a

history of long-term stability [55]. J0713+438 is a Compact Symmetric Object [78],

and as such, it is unpolarized [71]; this source provides a test of the quality of the

polarization calibration of the VLA. Each epoch required an observation of a flux

calibrator (3C286) and at least four observations of an instrumental polarization

calibration (0927+390 or 1159+292). Nearly every observation was preceeded by

a pointing calibration procedure. Time comes at a premium during these observa-

tions, and we exploited some redundancies among the calibration sources. 3C286,

for example, doubles as the absolute polarization position angle reference. In ad-

dition, all of the sources are unresolved under nearly all possible combinations of

VLA configurations and frequencies; this eliminates the need for additional phase

references.

The introduction alludes to the complications inherent in high-frequency po-
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source band τ (m) el (◦) p.a. (◦) purpose

0927+390 X 2.5 — — primary pointing

Q, K 5.0 80 -115 polarization calibration

0713+438 X 2.5 — — primary pointing

Q, K 2.5 68 — diagnostic flux measurement

0927+390 X 2.5 — — primary pointing

Q, K 5.0 83 -135 polarization calibration

1400+621 X 2.5 — — primary pointing

Q, K 2.5 38 — diagnostic flux measurement

0927+390 X 2.5 — — primary pointing

Q, K 5.0 85 -176 polarization calibration

3C286 X 2.5 — — primary pointing

Q 2.5 — — secondary pointing

Q, K 5.0 40 — flux calibration

1310+323 X 2.5 48 — diagnostic flux measurement

0927+390 X 2.5 — — primary pointing

Q, K 5.0 82 128 polarization calibration

1224+035 X 2.5 — — primary pointing

3C273 Q 2.5 — — secondary pointing

Q, K 5.0 45 — program flux measurement

3C279 Q 2.5 — — secondary pointing

Q, K 5.0 35 — program flux measurement

0927+390 X 2.5 — — primary pointing

Q, K 5.0 77 108 polarization calibration

Table 4.2: Sample VLA schedule.
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larization observations with the VLA. Some of the more pernicious effects can be

mitigated through the organization of the observing runs. As we will see, high-

frequency observations suffer from severe elevation-dependent gain variations. To

first order, these errors can be suppressed by scheduling the program sources to oc-

cur at elevations which are close to that of the flux calibrator. In competition with

this requirement, however, polarization calibration observations with the VLA re-

quire multiple scans of the polarization calibrator over uniform steps in parallactic

angle (Section 4.1.5). The final schedule is usually a compromise between these

considerations. In the schedule shown in Table 4.2, for example, the third and

fourth polarization calibrator observations are separated by a large step in paral-

lactic angle in order to permit observations of 3C286, 3C279, and 3C273 at similar

elevations. These considerations, as well as the components of the schedule, are

discussed in detail in the following sections.

4.2.2 Antenna Selection

Several years ago the VLA initiated an ongoing effort to equip all 27 antennas

with Q band receivers. At the outset of our VLA observing program, 19 antennas

had been fitted with Q band receivers, but a subset of these antennas suffered

from problems which compromised their performance at this high frequency. Only

15 had surfaces which had been figured to accommodate 0.7 cm observations,

for example; antennas 10, 21, 24, and 28 had surface errors which substantially

degraded their efficiencies, and thus had ∼ 3× less gain than the other antennas. In
addition, antennas 19 and 21 had random ∼ 0.2′ pointing errors arising from servo
control problems. We culled the weaker antennas to obtain a subset of antennas

with uniform characteristics, and these antennas were used for the duration of

the program. The five rejected antennas were used as a subarray dedicated to

measuring the atmospheric opacity during each run (Section 4.2.7).
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4.2.3 Referenced Pointing

The VLA antennas have raw antenna pointing errors of ∼ 10′′, and errors of this
magnitude are comparable to the VLA’s primary beam of Ωp ∼ 1′ at Q band.
In the absence of a corrective measure, this pointing error produces an amplitude

error of ∼ 10%. This error can bias the measured program flux up or down, de-
pending on whether the pointing error occurs during a flux calibration or a program

observation. To remedy this problem, the VLA provides a procedure, referenced

pointing, which corrects the pointing during the observing session. Referenced

pointing is a standard practice at K and Q band; VLA experience demonstrates

that at these frequencies the user should schedule a pointing calibration at least

once an hour or after slews larger than ∼ 10◦ [81]. The pointing calibrator must be
bright and unresolved; in the case of the schedule in Table 4.2, 3C273’s extended

emission at X band confuses the system, so the nearby source J1224+020 provided

the initial pointing solution for the program sources.

The referenced pointing system generates real-time corrections to the antenna

pointing. When the user commands a pointing procedure, the VLA measures the

pointing calibrator’s flux at the commanded position and at offsets in the four

cardinal directions. The telescope control system immediately fits the five fluxes

for each antenna to a model of the antenna beam, and solves for a set of antenna-

based pointing corrections which are to be applied to subsequent observations.

The control system discards these corrections when the user commands a new cal-

ibration; an inspection of the corrections shows that successive corrections bear no

resemblence to each other. Each iteration requires ∼ 2.5m, and repeated pointing
calibrations cost a significant amount of time; any arrangement of the observing

schedule which eliminates pointing calibrations pays large dividends.

The VLA provides two types of pointing correction: primary and secondary

referenced pointing. These procedures differ in the VLA band at which the cor-

rection is made. All primary referenced pointing observations are carried out at

8 GHz (X band), the VLA’s most sensitive channel, and these corrections can be

applied to all other observations at all frequencies. Secondary referenced pointing
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builds on the primary referenced pointing solutions by repeating the procedure at

the frequency of interest, usually K or Q band. The primary beam is smaller at

these higher frequencies, so the secondary solution refines the primary solution.

Secondary referenced pointing also eliminates any errors arising from collimation

differences between X band and K or Q band.

We employed both primary and secondary referenced pointing throughout the

VLA observations. As Table 4.2 shows, all sources received a primary pointing

correction, while secondary corrections were derived for the sources of greatest

interest: the flux calibrator and the program sources. VLA pundits debate the

efficacy of secondary referenced pointing; we chose to err on the side of caution

and use both procedures when time permitted. The secondary referenced pointing

solutions were generally on the order of a few arcseconds, which is ∼ 5% of the
primary beam at Q band; these corrections are smaller than the primary referenced

pointing solutions, which suggests that the procedure yields a refinement to the

primary solutions. To reduce the overhead required for pointing calibrations, the

solutions were recycled where possible; 3C273 and 3C279 are separated by 10.4◦

on the sky, for example, so in the schedule in Table 4.2, the primary solution for

3C273 was applied to 3C279, and thus 3C279 required only a secondary solution.

As Table 4.2 shows, secondary referenced pointing solutions derived at Q band

were applied to the subsequent Q and K band observations.

4.2.4 Absolute Flux Calibration

3C286, a compact steep spectrum QSO [64], is one of several primary flux calibra-

tors used by the VLA for observations at K and Q band. 3C286 has a flux density

Iν ∼ 2 Jy at both K and Q band, so a 2m observation yields a ∼ 103σ detection at
both frequencies. 3C286 is a rare example of a stable, compact extragalactic radio

source; most of the source’s radio emission originates from a region whose light

crossing time is tens of kyr [37]. While the VLA’s C and D configurations cannot

resolve 3C286 at centimeter wavelengths, it is slightly resolved by the larger B &

BC configurations, and under these circumstances a good model is required for
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the analysis. The K and Q band flux scales for 3C286 are derived from compar-

isons of D array observations of Mars to a model for the planet’s emission [72].

The VLA recommends canonical flux densities of IK=2.52 Jy and IQ=1.45 Jy for

3C286, although for this work we used a different set of values: IK=2.589 Jy and

IQ=1.562 Jy; these flux densities were obtained from recent comparisons of 3C286

and Mars at high frequencies and and extrapolations of the Baars scale at low

frequencies [69, 2]. Comparisons of Mars and the optically thin planetary nebula

NGC7027 with the VLA provide an estimate of the uncertainties on these values:

2% at K band and 8% at Q band. The flux calibration observations are among

the most critical in each run, so both primary and secondary referenced pointing

procedures preceeded these observations.

4.2.5 Instrumental Polarization Calibration

Imperfections in the VLA receivers produce instrumental polarization which can

be comparable to the polarization of the program sources. The technique that the

VLA recommends to calibrate the VLA’s instrumental polarization resembles that

for the CBI: the user observes a calibrator over a range of parallactic angles and

lets changes in the parallactic angle modulate the source polarization relative to

the instrumental contribution. The VLA differs from the CBI, however, in several

fundamental ways which affect this comparison. First, since the VLA receivers

respond to both hands of circular polarization, the absolute flux calibration suffices

to determine the receiver gains. An inspection of the calibration equation reveals

that this characteristic obviates the need for prior knowledge of the calibrator

polarization:

VRL = gjg∗k[Pe2iφ + I(εj + ε∗k)] (4.1)

For the VLA, the absolute flux calibration (RR and LL) on 3C286 isolates the

gains gj and g
∗
k, so the remaining unknowns—εj and ε

∗
k—can be deduced from

the fit to the center of the distribution of cross polarized visibilities. This feature
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of the VLA has clear virtue that the uncertainty in the intrinsic polarization of

the calibrator plays no role in the reliability of the calibration. Second, while the

CBI can force a change in parallactic angle with deck rotation, the VLA must rely

on the diurnal motion of the sky to change the parallactic angle of the source.

To obtain a good solution with a polarized source, the source parallactic angle

must swing through at least 90◦ in at least four uniform steps during the run;

this requirement favors sources which transit during the 2h run. The source must

also be bright and unresolved. These requirements confine our choice to one of two

polarization calibrators: 1159+292 and 0927+390, both of which have several Jy of

total intensity at cm wavelengths. We used single referenced pointing to calibrate

the pointing observations, and while double referenced pointing would have been

desirable, the additional 12.5m required is prohibitive. Section 3 discusses efforts

to assess the quality of the polarization calibration.

The VLA leakage terms (“D terms” in VLA parlance) are typically on the

order of 5% at K and Q band. The leakage terms can be measured to better

than 0.5% relative to the total intensity of the calibrators; this uncertainty limits

the quality of the polarization measurements. Some evidence suggests that the

instrumental polarization varies on week to month timescales [14], so the D terms

must be determined anew for each polarization observation.

4.2.6 Position Angle Calibration

The technique described above isolates the instrumental polarization. The phases

of the gains gi and g
∗
j , however, also affect the measured polarization; the phase

difference between the R and L channels is equivalent to the inferred position angle

of the source polarization. To obtain an absolute measurement of this phase, we

observe a point source of known polarization, and insert a phase offset derived

from the position angle error into the phases of the gain solutions. 3C286 is the

primary position angle reference for the VLA; the position angle of 3C286 is 33

degrees at all VLA frequencies [88].
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4.2.7 Atmospheric Opacity

Atmospheric extinction at K and Q band can bias the measured fluxes. At-

mospheric opacity at K band arises from the 22 GHz water vapor rotational transi-

tion, and at Q band from the broad wings of the multiple ∼ 60 GHz O2 rotational
transitions. The opacities at both frequencies can be on the order of ∼ 0.1. While
this opacity is large, it affects the flux measurements differentially; the opacity

introduces a systematic amplitude error which varies with the elevation difference

between the flux calibrator and the program source. There are several ways to the

mitigate the effect of atmospheric extinction; we can measure the opacity during

the observation and compensate for the extinction in the analysis, and we can

structure the observations to minimize the elevation difference between the flux

calibrator and program sources.

The atmospheric opacity at the VLA site changes with weather, so each observ-

ing session required a fresh opacity measurement. The VLA provides a standard

skydip procedure which requires at least ∼ 12m for nine elevation steps from the
zenith to the horizon. Opacity measurements for both K and Q band would clearly

require a prohibitive amount of time. Skydips do not require the entire array, how-

ever, so the five antennas which had serious efficiency problems at Q band were

reassigned to a subarray which performed skydips during each run. In the compact

VLA configurations, the azimuth of the skydip was chosen to prevent shadowing

at low elevations. The skydip data were analyzed with Tiptool [13], and the errors

on the opacities are roughly 1%. For an opacity of 0.2, this 1% error results in

an extinction error of less than 1% for an elevation separation of 10◦ about an

elevation of 45◦. The opacities computed by Tiptool were added to the analysis

pipeline (Section 4.2.1).

4.2.8 Gain Curves

The VLA antennas suffer from gravitational deformations that degrade their per-

formance at high frequencies. Most of the distortion is confined to flexure in the
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strut assembly which supports the subreflector; as the elevation of the telescope

changes, the struts sag and thereby change the forward gain. At 43 GHz, for exam-

ple, an elevation slew of ∼ 40◦ can alter the forward gain by as much as ∼ 20%. If
left uncorrected, these deformations will bias the flux measurements. Fortunately,

however, the gain variations repeat over long timescales; a careful measurement of

this effect yields antenna gain curves which can be used to correct data spanning

many months.

Elevation-induced gain variations of 10% were seen in the Aug-Dec 1998 Q

band data. At that time the extant gain curves covered a subset of the Q band an-

tennas, so we measured the gain curves again. A gain curve measurement requires

observations of a source through a large range in elevation, at least between the

horizon and the zenith. The gain curves generally fit a quadratic function of the

elevation, so a gain curve measurement requires at least three flux measurements,

and preferably many more. We obtained ∼ 6h of VLA engineering time for gain
curve measurements on each of five occasions in spring and summer 2000; the first

four observations were rejected because of high wind at the site, but the weather

for the fifth attempt was favorable. These data were analyzed by Steve Myers

for his VLBA polarization calibrator monitoring program, and he has made these

curves available for the use of the entire VLA community [56]. Figure 4.1 shows

Q and K band gain curves for antenna 6. The importance of this gain correction

is apparent from this plot: if the flux calibrator is observed at 40◦ elevation, and

the program source at 70◦ elevation, this antenna will underestimate the source

intensity by 15% at Q band.

Gain curves are not the only line of defense against elevation-dependent errors.

Elevation effects can be suppressed by scheduling the program source observations

at elevations which are near that of the flux calibrator. Given the scheduling

requirements for the polarization calibration, however, this can be difficult. In

the case of the 25apr00 schedule shown in Table 4.2, we observed 3C286 at 40◦

elevation and 3C279 and 3C273 at 35◦ and 45◦, respectively. Most of the antennas

are designed to have maximum forward gain at intermediate elevations, and these
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Figure 4.1: Sample gain curves at K and Q band for a VLA antenna.
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observations benefit from their positions near the flat region of the gain curves. In

the absence of a gain correction, elevation-dependent errors produce a ∼ 4% bias
in the program fluxes at Q band for these observations.

4.3 Data Reduction

The VLA data were edited and calibrated with standard AIPS tools. Data edits

substantially reduced the body of monitoring data; these edits can be grouped

based on the reach of the underlying problem—some problems affected the entire

the array, while others affected individual antennas or baselines. External factors,

particularly bad weather, compelled the rejection of all data for five of the thirteen

runs: high winds at the site rendered four runs useless, and a control system crash

during the run eliminated another. The wind-based edits resulted in a substan-

tial loss of data, and these edits are discussed in detail in Section 4.3.2. Most

antenna-based edits arose from pointing calibration failures, which are noted in

the referenced pointing solutions; and from gain instabilities, which were apparent

in the uncalibrated visibilities. Failure to reject the antennas with no pointing

solutions for 3C286 on 05apr00, for example, biases the K band 3C279 flux up-

ward by 10%. Finally, bad correlations in one of RR, RL, LR & LL for either IF

prompted the rejection of all visibilities for that integration. Together these edits

reduced the data from the subset of good antennas in the eight remaining runs by

30% at K band and 15% at Q band.

The edited data were passed to the AIPS calibration pipeline. The AIPS

task CALIB computed the antenna-based complex gains, and these solutions were

transferred to all the sources. The BC configurations of February and March 2000

resolved 3C286, so the calibration package employed a clean component model for

each band; the models were supplied by the VLA [15], and the total fluxes in the

models are those given in Section 4.3.4. For consistency, these models were used

for all the observations. The AIPS task CLCOR combined the gain curves and the

opacities with the source elevations to correct the gain amplitudes for elevation-
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dependent biases. Once the parallel hand gain terms had been established, the

AIPS task PCAL averaged the five observations of the polarization calibrator to

isolate the instrumental polarization contribution to the cross polarized visibili-

ties. The R-L phase difference was adjusted with CLCOR to recover the known

position angle for 3C286, and the data were written to (u,v)-fits files for analysis

in DIFMAP.

DIFMAP provides a variety of tools for extracting flux from visibilities [67]. For

unresolved sources, the radially averaged visibilities provide an accurate measure

of the source flux. For sources with simple morphologies, this average provides

an estimate of the flux; a better measurement requires DIFMAP’s visibility fitting

tools. An inspection of the visibilities for the sources suggested that the sources

were at most only marginally resolved by all configurations at cm wavelengths,

so all visibilities were fitted to a single Gaussian. In cases where the source was

unresolved, the modelfitting routine forced the Gaussian to be smaller than a

resolution element. This technique was applied to I, Q, and U for all sources.

4.3.1 Interpretation

As anticipated, 3C279 demonstrated significant variations in both intensity and

polarization throughout the Feb-Aug 2000 period. Some of the variations are, of

course, real; the central issue for the interpretation of these data is the extent to

which the variations reflect artifacts of the observing technique and the reduction

pipeline. We can attack this problem on several fronts. First, the telescope di-

agnostic data provide rough guidance about the bias introduced by wind loading

(Section 4.3.2). Second, we can prevail upon the stability of 3C286 to identify

intensity and polarization variations of instrumental origin (Section 4.3.3). Third,

contemporaneous measurements with the CBI of the total intensities of the pro-

gram sources can verify that the observed variability is instrinsic to the sources

(Section 4.3.4). Finally, the observations of the diagnostic sources provide some

handle on the quality of the data, although the conclusions which these data sup-

port are mixed (Sections 4.3.5, 4.3.6).
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Section 4.2 notes that the VLA has two IFs at each of K and Q band. These

IFs are separated by 50 MHz for both bands. This difference between the IFs is

too small to subsume significant changes in flux density due to the source spectra,

so the two IFs may be regarded as independent channels which measure the same

flux density. The differences in total intensity and polarized flux for the two IFs

tend to be much larger than the thermal errors in the associated visibilities, so the

flux densities from two IFs, which do not show any systematic differences, offer a

more realistic estimate of the noise in the measurements. The error bars in the

figures which follow are the differences between the measurements at the two IFs.

4.3.2 Wind

Wind loading on the VLA antennas is a paramount concern for observations at

high frequencies. Winds in excess of 6-8 m/s can cause the referenced pointing

system to fail to find solutions. In addition, we found that winds above ∼ 5 m/s
can degrade the antenna efficiencies to such an extent that the measured fluxes

are biased by as much as 40% at Q band. Wind is particularly severe during the

summer, and we lost four epochs of VLA data due to high winds at the site.

The VLA provides several types of wind data for users, and these data aided

the efforts to evaluate the quality of the VLA fluxes. The observer’s log notes wind

conditions on hour timescales, and the resulting 2-3 points per 2h run provide a

gross estimate of the wind conditions during the run. On two dates with very

high winds, these data supported the rejection of the entire run. In addition, the

referenced pointing solutions contain time-stamped wind data for each pointing

calibration; as we will see below, these data provided greater insight into the

anomalous fluxes measured during some epochs.

Figure 4.2 demonstrates the effect of wind on the flux measurements for 3C279

at Q band. The top two frames show the source flux I and fractional polarization

m = |P |/I, while the third shows several measures of the wind. The boxes rep-
resent the limits on the wind reported in the operator’s log. The points denote

the windspeeds during observations of 3C286 and 3C279. High winds on 19may00
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and 15jun00 clearly undermine the reliability of the Q band fluxes on both dates;

in both cases, wind loading suppresses 3C279’s flux by nearly 50%. High winds

can bias fluxes up or down. On 31jul00, 3C286 was observed during a ∼ 5 m/s
wind, while 3C279 was observed during a ∼ 8 m/s wind, and the relative loading
depresses the 3C279 flux. On 24aug00 the relative wind loading between these two

sources reverses, and 3C279 acquires a boost. Despite these simple considerations,

wind loading generally defies characterization; the magnitude of loading depends

on the interplay between telescope orientation and the wind direction, and as such,

the strongest statement we can make is that winds in excess of ∼ 5 m/s can explain
some variations in total intensity. Based on the considerations discussed above, we

rejected the data for these four epochs—all dates for which windspeeds exceeded

5 m/s. Contemporaneous observations of Iν of 3C279 with the CBI on these dates

confirmed that these variations are not intrinsic to the source.

An inspection of the fractional polarization in the middle frame of Figure 4.2

suggests that the wind loading threshold is too severe; the fractional polarization

m, the quantity which is transferred to the CBI, appears relatively immune to

the wind loading which can so strongly bias the total intensity. Indeed, even on

15jun00, the windiest day, m does not depart from the neighboring values. Given

that the intensity and polarization both scale with the overall antenna efficiency

ηA, the fact that m = ηAp/ηAI = p/I remains unchanged on this date is not a

great surprise. Were this true for all the dates, however, perhaps the wind load-

ing criterion could be relaxed—the 31jul00 data contradict this conclusion; high

winds during the 3C279 observation on this date boost the fractional polarization

to twice the neighboring values. An inspection of the time-stamped wind data

revealed that this was a gusty day, and the five observations of the polarization

calibrator 1159+292 in particular experienced a wide range of windspeeds, from

∼ 3 to ∼ 9 m/s. A comparison of the Q band leakage terms for 31jul00 and those
of neighboring dates confirmed that the 31jul00 polarization calibration was funda-

mentally different; the two sets of leakage terms differed in amplitude by as much

as a factor of two—far larger than the normal. Based on these considerations, the
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Figure 4.2: Demonstration of the effect of wind loading on the VLA antennas.
The bottom frame shows windspeeds noted during the run; the boxes denote wind-
speeds reported in the observer’s lof for regular intervals throughout the run, while
the points show windspeeds at the times of the observations of the sources shown
in the key. Note that we have only imcomplete data for some of the dates (e.g.,
18feb00)
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31jul00 data were rejected along with those of 19may00, 15jun00, and 24aug00.

The polarization position angle χ was not included in Figure 4.2 because wind

loading appeared to have little bearing on the repeatability of the values for χ.

4.3.3 3C286

Figures 4.3 and 4.4 show the intensities and polarized fluxes for 3C286 at K and Q

band for the remaining eight dates. The total intensity I and polarization position

angle χ are supplied to the calibration pipeline; the dashed lines in frames 1 and 3

denote the 1999.2 values recommended by the VLA, and properly calibrated data

should agree with these values. The fractional polarization m of 3C286 is also

constant [91]. Since m is not an input for the calibration, however, departures

from the expected value reflect either intrinsic polarization variations or spurious

effects introduced by the observations or the calibration. There is no precedent

for intrinsic variations, so we will assume that variations in m reflect errors in the

acquisition or the analysis of the data.

The measured total intensity for 3C286 often falls short of the given values for

both K and Q band. The maximum differences are 0.5% for K band (12mar00)

and 1% for Q band (30jun00). The total intensities were obtained from a single

component Gaussian fit to the visibilities, and these discrepancies arise because

the Gaussian model fails to represent all of the flux. An inspection of the angle-

averaged visibilities provides some insight into the cause of the missing flux; the

mean of the amplitudes of short spacing visibilities agrees with the expected value,

which suggests that phase errors have depleted the flux at the center of the map.

While a phase self-calibration recovers the remaining flux, we chose not to self-

calibrate the data because a consistent treatment of all of the data would require

self-calibration of sources with poor S/N, which in turn produces erroneous flux

determinations for those sources. This is an important consideration for the weak

components of polarized emission in some sources.

The polarization for 3C286 provides a test of the polarization calibration. The

Gaussian model recovers nearly all the expected flux for both Q and K band,
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Figure 4.3: 3C286 observations with the VLA, K band.



153

Figure 4.4: 3C286 observations with the VLA, Q band.
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although there are a number of dates for which the model flux falls short of the

expected value. In the case of the total intensity, these discrepancies arose from

phase errors, and self-calibration recovered the missing flux. At Q band, we expect

(Q,U) = (79,176) mJy for 3C286, and the map noise can be as high as 20 mJy.

Upon self-calibration, the measured fluxes exceed the expected values by 10%-

15%. This excess flux may arise from the application of self-calibration to low S/N

data, or it could be a symptom of a poor polarization calibration; since the latter

affects the interpretation of the polarized flux from the program sources, we must

establish whether this excess flux is real.

The radially averaged visibilities for Stokes Q on the dates in question can have

a significant noise component, so the mean amplitude of the visibilities provides

little guidance about the amplitude of the underlying flux. 3C286’s position angle

of χ = 33◦ splits the polarized flux between Q and U with a ratio of 0.41:0.91,

and a change in polarization position angle can isolate all of the polarized flux in

either Q or U. Of course, to determine the angle which forces the polarized flux

into one component, we must establish the current position angle χ, which in turn

requires accurate measurements of Q and U. If the excess flux is an artifact of

self-calibration, the magnitude of the error should be inversely proportional to the

S/N; parameterize this S/N dependence with η, so that F’ = ηF, where F is Q or

U. The input position angle χ, which balances the measured flux between Q and U,

should force the prefactors to be approximently equal, and at that position angle,

the position angle χ is a reliable number: χ ∼ tan−1(ηU/ηQ) ∼ tan−1(U/Q). To
isolate the polarized flux, add the phase offset necessary to force the flux into U.

At that position angle, the S/N is sufficient to extract the polarized flux from the

radially averaged visibilities. In most cases where the fitted fluxes are discrepant

with the expected values, the mean of the visibilities is equivalent to the expected

value. This circuitous technique demonstrates that the 3C286 visibilities contain

the expected polarized flux, so we may assume that the polarization calibration

for these dates is valid despite the fact that the simple fits to the visibilities fall

short of the expected values.
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4.3.4 3C279 and 3C273

Figures 4.5 and 4.6 show the 3C279 data that were employed for the CBI polariza-

tion calibration. 3C279 appears quiescent in total intensity through early April, at

which point it undergoes an outburst that tapers off through August. During this

period χ decreases smoothly while m undergoes changes which, with the exception

12mar00 Q band value, track the changes in I. The S/N for the polarized com-

ponents of 3C279 is high enough to permit self-calibration, which in turn shows

that the amount of flux lost to phase errors is small. As we will see below, the

contemporaneous CBI observations confirm the variations seen in the VLA total

intensities. Tables 4.3.4 and 4.3.4 list the VLA values for I, m, and χ for K and

Q band; these data, particularly the values for m and χ, provide the foundation

for the CBI polarization calibration. Chapter 5 discusses the application of these

data to the CBI observations.

Figures 4.7 and 4.8 show the total intensities and polarized flux densities for

3C273. At K band, the total intensity decreases linearly while the fractional polar-

ization increases monotonically for nearly the entire period. The Q band data show

similar variations for all but 10aug00, at which time the polarized flux increases.

The sharp upturn in the 10aug00 3C273 Q band polarization is not seen in the

3C279 data, which suggests that the change is not an artifact of the observation.

Figure 4.9 provides a comparisons of the VLA fluxes for K band with extrapo-

lated values from the CBI. The top two frames of this figure show comparisons for

3C279 and 3C273. The extrapolated CBI fluxes were derived from a least squares

fit to the fluxes in the ten CBI channels. The differences for 3C279 and 3C273

imply a systematic ∼ 10% calibration offset between the CBI and the VLA; at K
band, the extrapolated CBI flux exceeds the VLA flux by ∼ 8-10% for 3C279 and
∼ 10% for 3C273. Much of the disccrepancy for 3C273 can be attributed to the
contribution from the source’s extended jet which the VLA does not resolve, how-

ever; high dynamic range measurements of the jet suggest that it should contribute

∼ 1.5 Jy at K band [70]. Upon adding this to the flux of the source, we obtain
the comparison shown in Figure 4.10. After augmenting 3C273’s flux density to
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Figure 4.5: 3C297 observations with the VLA, K band.
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Figure 4.6: 3C297 observations with the VLA, Q band.
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date I (Jy) σI m σm χ (◦) σχ (
◦)

18feb00 24.61 0.04 0.089 0.001 60.1 0.8

12mar00 24.58 0.03 0.095 0.006 57.6 4.3

05apr00 24.58 0.05 0.085 0.005 58.0 1.8

25apr00 26.22 0.02 0.089 0.001 52.7 1.2

04may00 26.00 0.03 0.090 0.001 52.3 0.2

02jun00 25.75 0.15 0.107 0.004 54.0 4.2

30jun00 25.39 0.02 0.107 0.007 51.7 1.2

10aug00 24.70 0.14 0.114 0.002 49.1 1.4

mean 25.23 0.06 0.097 0.003 54.4 1.9

Table 4.3: K band polarization measurements for 3C279 with the VLA. To provide

a sense of the precision with which we measure I, m, and χ, the bottom row shows

the arithmetic means of the entries in the table. The mean values show that apart

from systematic errors, we typically measure m and χ to ∼ 3% at K band. The
uncertainties for m are consistent with the offsets seen for the K band observations

of 3C286 shown in Figure 4.3.

date I (Jy) σI m σm χ (◦) σχ (
◦)

18feb00 22.77 0.08 0.101 0.004 64.7 2.3

12mar00 22.62 0.12 0.117 0.006 60.6 4.0

05apr00 24.03 0.03 0.090 0.001 51.9 1.3

25apr00 26.17 0.04 0.097 0.001 52.2 2.2

04may00 25.19 0.13 0.100 0.001 52.9 0.7

02jun00 24.70 0.17 0.127 0.012 54.8 15.0

30jun00 25.16 0.10 0.119 0.002 50.8 2.4

10aug00 22.11 0.14 0.116 0.003 45.4 8.6

mean 24.09 0.10 0.108 0.004 54.2 4.6

Table 4.4: Q band polarization measurements for 3C279 with the VLA.
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Figure 4.7: 3C273 observations with the VLA, K band.
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Figure 4.8: 3C273 observations with the VLA, Q band.
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account for the jet, the agreement between the VLA observations and the CBI

observations is remarkable; the two sets of data cannot be distinguished.

Figure 4.11 repeats the source flux density comparison for Q band. At Q

band, the discrepancies between the VLA and the CBI are larger, particularly

for 3C273. This increase for 3C273 may reflect some steepening in the source’s

spectrum between 36 GHz and 43 GHz. The jet adds an additional 0.7 Jy at

Q band, but this flux density does not suffice to bring the two sets of data into

agreement. These observations show that the flux density scales used by the CBI

and the VLA are in good agreement, particularly in the neighborhood of K band.

The gain irregularities which plague VLA observations at Q band affect the two

sources with equal force, so the offset seen in the third frame of Figure 4.11 is

probably a feature of the spectral shapes of the two sources.

The VLA observations provide confidence in the CBI’s absolute flux density

calibration. The absolute calibration error for the CBI is ∼ 5%, while those for
the VLA at K and Q band are ∼ 2% and ∼ 8%. These uncertainties exceed the
striking agreement shown in Figure 4.10, although they can marginally account

for the discrepancies in the Q band data.

Although the two telescopes differ by an absolute calibration offset, both should

recover similar ratios of flux for the two sources at each band (Figures 4.9 and 4.11,

frame 3). After accounting for the additional flux density of 3C273’s jet, the ratios

of the K band VLA observations agree to ∼ 5% with those from the CBI after
extrapolation to this lower frequency, although some flattening in the 10aug00

total intensity for 3C273 causes the VLA ratios to diverge from the CBI ratios

on that date. At Q band, the agreement between the ratios is weaker; the offset

between the two sets of ratios is ∼ 10%. While this larger offset may reflect spectral
changes between 36 GHz and 43 GHz for one or both of the sources, the VLA and

the CBI ratios also differ in the shape of the evolution of the ratios over time. This

suggests that either the sources are undergoing temporal changes in the shape of

their spectra between 36 GHz and 43 GHz, or that the VLA Q band measurements

are more uncertain than their errors suggest. One peculiarity of this ratio analysis
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Figure 4.9: 3C279/3C273 comparison with the CBI and VLA, K band. The scatter
in the CBI data suggests that the errors on the flux densities, which are derived
from the scatter in the visibilities, underestimate the real errors in the data. This
discrepancy may arise from errors introduced when the total intensity calibration
is transferred to the program sources during the ncal1 procedure. The 3C279
observations with the CBI were typically performed at several deck positions to suit
the requirements of the polarization calibration, whereas the 3C273 observations
were performed at a single deck position; Section 2.4.2 discusses a noise source
pathology which is observed during observations at multiple deck positions, and
the superior consistency of the 3C273 flux densities over that for 3C279 may result
from the same underlying effect.
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Figure 4.10: 3C273 flux density comparison for the CBI and VLA, K band, after
including the interpolated flux for the jet in the VLA data.

is that the ratios for the telescopes appear to diverge in early August for different

reasons at different bands; at K band the divergence is caused by flattening in the

3C273 VLA flux, while for Q band the divergence is caused by a low 3C279 VLA

flux on that date.

4.3.5 Summary

This chapter describes efforts to obtain accurate measurements of the total in-

tensity and polarized flux densities of 3C279 and 3C273 with the VLA. These

measurements are susceptible to a variety of effects which can bias the flux densi-

ties by tens of percent at centimeter wavelengths; these effects are sufficiently large

to mask or mimic intrinsic changes in the source characteristics. While the VLA

data were winnowed to a subset which is believed to be free of significant system-

atic errors, the final data still contain several puzzles. Why is the sharp ∼ 20%
increase in m for the 12mar00 3C279 Q band data not seen in the observations

at K band? Why do the ratios of the program sources as measured with the CBI

and the VLA diverge near 10aug00 for both bands? While these variations may be

real, the magnitude of the many systematic errors which plague these observations
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Figure 4.11: 3C279/3C273 comparison with the CBI and VLA, Q band.
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suggests that the data still contain spurious variations at levels which are greater

than the formal errors.
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Chapter 5

Polarization Observations with the CBI

5.1 Introduction

The CBI polarization observations presented in this work targeted a variety of

sources. Most of these data we consider were obtained from observations of two

deep fields, and in Chapter 6 these data are applied to the primary scientific result

of this work: a limit on the polarization of the CMBR. The observing strategy

required to obtain an interesting limit on the polarization of the CMBR is simple—

we require months of nights on a single pointing. Fortunately, this requirement

dovetails with that for a component of the CBI’s total intensity program; one of the

CBI’s objectives is to measure intensity fluctuations on small (` > 1500) scales, and

long integrations on single pointings are needed to achieve the δT < 10 µK levels

predicted by standard models on these scales. These observing requirements are

commensurate with those to detect the polarization predicted by standard models

for ` ∼ 600 scales. These deep field observations were augmented by observations
of galactic and extragalactic polarized sources to evaluate the CBI’s polarization

capabilities.

The observations discussed in this chapter spanned a ten-month period in 2000.

Figure 5.1 provides a timeline of the CBI’s polarization observations. The first of

the two deep fields, located at α ∼ 08h (Table 5.1), was the focus of our attention
soon after the CBI was commissioned in December 1999, and observations on
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this field concluded when the field set in May 2000. We then embarked on an

observing strategy consisting of mosaiced observations to improve the resolution

in ` with which we sample the power spectrum in the ` ∼ 300→ 2000 range. The
mosaics require a lattice of pointings roughly a beamwidth apart on the sky, and

since the single pointings which compose the lattice do not have sufficient S/N to

obtain a useful limit on the polarization CMBR, the mosaic observations are not

considered in this work. In August 2000, the total intensity effort returned to the

high-` program with a second deep field at α ∼ 20h; these observations concluded
in 29oct00, at which point RX12 was reconfigured for LCP, thus bringing the

polarization observations to a close.

This chapter discusses the polarization observations with the CBI. Section 5.2

presents the considerations which led to our choice of deep fields. The 08h and 20h

deep fields are described in Sections 5.3 and 5.4, respectively. These discussions

focus on the calibration of these data as well as a number of consistency checks,

although the likelihood analysis of the deep field data must await Chapter 6. The

deep field observations were regularly interrupted by dates for which small lunar

elongations precluded observations of the CMBR, and these nights provided the op-

portunity to explore the polarization performance of the CBI through observations

of polarized galactic and extragalactic sources. These supporting observations are

discussed in Section 5.5.

5.2 Deep Field Selection

The ease with which we interpret the total intensity and polarization bandpowers

from the CMBR observations hinges on a judicious choice of fields, and a small part

of this work entailed the search for a set of fields which would minimize confusion

from astrophysical foregrounds. Several factors constrained the candidate fields to

a subset of the sky. The CBI’s elevation limit of 43◦ confines the time on source to

at most 6h, so the natural spacing for the fields in right ascension is ∼ 6h provided
that the fields transit near the zenith at the CBI’s latitude of −23◦. In addition,
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Feb Apr May Jun Jul Aug Sep OctJan Mar

20 h deep field

months in 2000

08 h deep field

conf 1 conf 2 conf 3

CBI Polarization Observation Calendar

3C279 w/ VLA, 2x per month

Tau A w/ CBI3c279 w/ CBITau A w/ CBI

Figure 5.1: CBI polarization observation calendar. The top row lists the three
CBI configurations; the next row shows the duration of the 3C279 observations
with the VLA; the next two show the polarization observations with the CBI.

the fields must be accessible to the VLA (latitude +34◦) and the OVRO 40 meter

telescope (latitude +37◦), both of which have effective elevation limits of ∼ 20◦

above the horizon at 30 GHz.

The goal of the search was to find four fields at equal intervals in right ascension

which minimize contamination from diffuse galactic emission and extragalactic

point sources. The galactic foreground templates were used to find regions of low

diffuse emission, and the point source data were used to fine tune the positions of

the fields to exclude the brightest point sources. This approach eliminates all but

two free parameters: the right ascension zero point and the declination of the set

of fields. In practice, the declination was confined to a band between δ ∼ −23◦ and
the equator to keep the fields in view of the Northern hemisphere telescopes while
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field αl (h,m,s) αt (h,m,s) δ (◦,′ ,′′) l (◦) b (◦)

02h 02:44 — -03:30 176.54 -54.21

08h 08:44:40 08:52:40 -03:10:00 230.30 24.19

14h 14:44 — -03:30 348.87 49.07

20h 20:48:40 20:56:40 -03:30:00 44.44 -28.43

Table 5.1: The CBI fields. During the 01jan00 to 01jan02 period, the 02h, 14h, and
20h fields were used for mosaiced observations, while the 08h, 14h, and 20h fields
were used for deep observations. The deep polarization observations presented in
this work concentrated on the 08h and the 20h fields, so the positions of both the
leads and the trails for these fields are given. The last two columns list the galactic
coordinates of the fields. The 08h field is relatively close to the galactic plane, but
since it is far from the galactic center, the contamination in this field is relatively
low. This is not the case for the 20h field, however, which is relatively close to the
galactic center.

maximizing the time on source. Concerns about foreground confusion for the total

intensity observations drove the choice of fields, but the considerations which favor

low foreground regions for total intensity are generally concerns for polarization

observations as well. At 1 cm, contamination to total intensity observations can

arise from galactic free-free emission, galactic synchrotron emission, extragalactic

radio sources, and any anomalous sources of emission. High galactic latitudes are

preferred, but our observing strategy limits the extent to which we can avoid the

galactic plane for all four fields. These foregrounds—and the templates which

guided the search—are considered in succession below. This effort resulted in the

four fields listed in Table 5.1.

Anomalous Foreground

Observations at centimeter wavelengths with the 5-meter and 40-meter telescopes

at OVRO demonstrated the presence of a diffuse source of emission of unknown

origin in the vicinity of the North Celestial Pole [48]. The emission has a spectral
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signature which resembles that of free-free, and it is strongly correlated with dust

emission found in the IRAS 100 µm data [4]. Unlike normal free-free emission,

however, this anomalous emission is considerably brighter than the level predicted

by the Hα emission in the field. Using observations which sample 7′-22′ scales at

14.5 and 32 GHz, the authors derive a simple scaling between the IRAS 100 µm

emission and the GHz brightness temperature of the foreground:

Tf = 7.5× 10−2ν−2.2GHz I100µ(MJy/sr)
−1K (5.1)

The ν−2.2 spectral dependence indicates that foreground shares the spectrum of

free-free or very shallow synchrotron. The 100 µm IRAS maps show that regions

of the galaxy with brightnesses comparable to a MJy/sr are relatively common,

so concerns about contamination from this foreground set a tight constraint on

the set of candidate fields. Further observations by the OVRO group at δ =

−5◦ and spanning α = 0h − 24h suggest that the correlation with 100 µm IRAS
emission at other points on the sky is not nearly as strong as that in the NCP

region, and indeed, the NCP region has a considerable amount of structure which

may contribute to local pathologies in the emission. The observation at δ = −5◦

suggested contamination of ∼ 20 µK, which, when added in quadrature to δT ∼
60 µK which is expected for ` ∼ 600, results in a ∼ 5% effect. These observations
indicate that the anomalous foreground is perhaps less of a threat than the scaling

in Equation 5.1 suggests.

In light of the uncertainties about the anomalous foreground, we confined the

field search to regions of low, smooth emission in the IRAS 100µm maps. Table 5.2

lists the mean IRAS emission for the the central 1◦ × 1◦ of the four fields, along
with the anomalous emission obtained from the scaling in Equation 5.1. The

predicted foreground levels are quite high—they can exceed the CMBR signal on

CBI scales—but the follow up observations that showed that the NCP scaling

does not persist near the equator give reason to believe that these estimates of the

contamination are very conservative. Despite the fact that the IRAS emission in
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field I100µ (MJy/sr) T 31 GHz (µK)

02h 2.74 110

08h 0.75 30

14h 6.09 244

20h 4.39 172

Table 5.2: Anomolous foreground expected for the four CBI fields based on IRAS
100 µ emission and the scaling of Leitch [48].

the fields differs by as much as a factor of eight, the levels of foreground emission

listed in Table 5.2 represent the best compromise between the emission in the

four fields. In the event that this foreground competes with the CMBR in the

CBI fields, the CBI’s ten channels provide some leverage in disentangling the

foregrounds from the CMBR [11], although in so doing we incur a penalty in

sensitivity because this technique effectively relegates some channels exclusively

to foreground measurements. The polarization characteristics of the anomalous

foreground are not known.

Galactic Synchrotron Emission

Galactic synchrotron emission is a concern for both the total intensity and the

polarization observations with the CBI. As in the case of other foregrounds, how-

ever, surveys provide templates which aid the search. Haslam et al. have mapped

the entire sky at 408 MHz with a resolution of 0.85◦, and the distribution and

fractional polarization of the emission seen in these maps suggests that the contin-

uum emission arises from galactic synchrotron processes [28]. We can extrapolate

the Haslam maps to 31 GHz to estimate the mean synchrotron emission in CBI

bands. Table 5.3 lists the mean brightness temperature for the four CBI fields at

408 MHz, as well as the extrapolated brightness temperature at 31 GHz based on

a conservative spectral index of α = −2.7.
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field T 408 MHz (K) T 31 GHz (µK) δT31 GHz (µK) δP31 GHz (µK)

02h 18.8 157 2.4 1.7

08h 14.4 120 1.8 1.3

14h 30.9 260 3.9 2.8

20h 26.1 220 3.3 2.3

Table 5.3: Galactic synchrotron emission based on 408 MHz maps. The scaling
from 408 MHz to 31 GHz was performed based on a spectral index of α = −2.7.

While the Haslam maps provide a measure of the mean emission in the field, the

CBI observations are contaminated only by the emission which fluctuates across

the primary beam, and the Haslam maps do not sample these small scales. The

325 MHz WENSS survey provides useful data about the small scale fluctuations in

the synchrotron emission [80], and when combined with the extrapolated Haslam

maps these data allow us to estimate the expected level of fluctuations at 31 GHz.

The WENSS maps show that the fluctuations on 5-20′ scales are ∼ 1.5% of the
mean, so we adopt this level for these scales, and report the results for the four

fields in column 4 of Table 5.3. These values are well below the tens of µK expected

for the total intensity of the CMBR on the same scales.

Since the synchrotron emission can be highly polarized, this foreground is an

important concern for the CBI’s polarization observations. If we assume the max-

imum possible allowed fractional polarization for synchrotron of ∼ 70%, the small
scale fluctuations inferred from the Haslam maps suggest that the polarization

fluctuations will be on the order of a few µK (column 5 of Table 5.3). While these

levels are small, they are not insignificant compared to the expected polarization

fluctuations in the CMBR of δP ∼ 5 µK on the same scales.
Our understanding of foregrounds on the angular scales and at the frequencies

of interest to cosmology remains remarkably sparse, although the amount of litera-

ture on foregrounds has increased since the time that the CBI fields were selected.
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In particular, the MAP and Planck missions have accelerated the interest in fore-

grounds; since these missions will perform polarization observations, much of this

work has focused on polarized foregrounds as well. We pause here to consider what

a sample of these efforts has to say about polarized synchrotron emission in the

CBI fields.

Baccigalupi et al. have used a variety of ∼ 3 GHz maps to estimate the
power spectrum of polarized synchrotron emission one might encounter at high

frequencies and a range of angular scales [3]. Their analysis considers two cases:

small scales (` < 1000) near the galactic plane (b = ±5◦) and large scales (` < 200)
far from the plane. While they do not address the intermediate galactic latitudes

which the CBI samples in the 08h and 20h deep fields, their analysis for fields

near the galactic plane provides a conservative upper limit on the synchrotron

contamination we might expect to encounter in the CBI fields.

Baccigalupi at al. find that the small scale synchrotron fluctuations near the

galactic plane can be significant. The authors derive a scaling based on the Parkes

survey of the equatorial strip at 2.4 and 2.7 GHz for which the spectrum of the

polarized component of synchrotron emission falls with `:

CP` = 1.2× 10−9
( `

450

)−1.8( ν

2.4 GHz

)−5.8
K2 (5.2)

This scaling suggests a contamination of `(` + 1)CP
` ∼ 10 µK at ` ∼ 600, and

this level exceeds the expected CMBR polarization fluctuations on the same scales

by nearly a factor of two. The two CBI polarization deep fields are far from the

b = −5◦ threshold from which this scaling was inferred, however, and while the
authors do not consider latitudes near b ∼ 25◦, they find that at galactic latitudes
near 50◦ the polarization spectrum has steepened to CP

` ∼ `−2.9. This steeper

spectrum, which appears below this high threshold in b, should provide relief from

the synchrotron contamination at the intermediate latitudes of the CBI fields.

For comparison, the authors also report the results of a calculation based on the

Haslam 408 MHz maps which suggest that the spectrum of polarized synchrotron
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is similar: `(` + 1)CP` ∼ 2.5 × 10−13 K2 at ` = 600 and 100 GHz; scaling this
result to 31 GHz yields ∼ 15 µK on the same scales. Unfortunately, the authors
do not discuss this calculation, nor do they comment on its range of applicability,

so it cannot be compared to the inference from the Haslam maps discussed above.

Taken together, these calculations suggest that the synchrotron contamination to

be expected in the CBI fields is significant—particularly for polarization—but all

of these predictions remain to be verified on small angular scales and at high

frequencies.

We have one additional tool at our disposal: the CBI deep total intensity obser-

vations on the same fields. These data, taken at the same time as the polarization

data, suggest that that any synchrotron in the deep fields is negligible. The ini-

tial total intensity result on the 08h field rules out a 15% synchrotron component

with a spectral index of β = −2.7 at 2σ [62], while the joint analysis of the 08h

and 20h fields permits a 2σ limit on the synchrotron contamination of 21% on the

short ` ∼ 600 baselines where the contamination is expected to be most severe.
While these levels are not insignificant, they are well below the levels predicted by

Baccigalupi et al.

The intersection of constraints provided by the anomalous foreground as traced

by IRAS 100 µm emission and 408 MHz continuum emission resulted in a set of

fields on α = 6h intervals which start in the neighborhood of α = 02h30m, δ =

−05◦. Since the extragalactic point sources are distributed uniformly on the sky,
they were considered after the galactic constraints produced a set of candidate

regions which minimized the diffuse galactic foregrounds. The point source con-

siderations are discussed below.

Extragalactic Point Sources

Point sources are a source of severe contamination for CMBR observations in the

high-` region targeted by the CBI. We cannot, of course, choose fields which are

free of point sources down to an arbitrary flux density threshold, but we can choose

fields which exclude the brightest sources. We adopted a 31 GHz threshold of 100
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mJy in a ∼ 2◦× 2◦ region. The point source filter consisted of several sets of data.
The 1.4 GHz NVSS survey was used to identify sources whose flux densities, when

extrapolated to 31 GHz with a reasonable spectral index (α = −0.5), exceed the
∼ 100 mJy limit [16]. The vast majority of these sources were also detected by the
PMN survey [23] at 4.85 GHz and Parkes Survey survey [98] at 8.4 GHz, so their

31 GHz flux densities could be estimated with a reasonable degree of confidence.

The source fluxes were extrapolated to 31 GHz and compiled to form a master

list of bright sources for the four candidate regions. The bright point source data

for the four fields were stacked to create a single map which contained all of the

potentially confusing sources. The stacked data suggested several possible pointing

centers which limited the number of > 100 mJy sources; we settled on one set of

fields for the initial observations; these are listed in Table 5.1.

While some of the point sources in the CBI fields are quite bright, two factors

mitigate their effect on the polarization observations. First, according to the stan-

dard models, the polarization signal peaks in the ` ∼ 600 region of the spectrum,
and the likelihood analysis of the total intensity observations of the 08h field show

that on these relatively large scales, point sources with flux densities of tens of

mJy carry very little weight relative to the CMBR fluctuations of δT ∼ 50 µK.
Second, point sources are generally very weakly polarized—they are rarely polar-

ized by more than 10%, so given our experience with point sources in the total

intensity observations, as well as the relative amplitudes of the temperature and

polarization fluctuations (δT : δP :: 10 : 1), the error introduced by point sources

should not exceed the source contribution to the total intensity which is negligible

at ` ∼ 600. And of course, the polarization effort benefits from the CBI observa-
tions of the total intensity: CBI observations of the 08h and 20h fields show that

the point sources are a minor consideration at ` ∼ 600; the brightest source within
the FWHM of the CBI beam for either the lead or the trail for both deep fields

has a total intensity flux density of ∼ 40 mJy. In summary, point sources are only
of marginal concern for the polarization observations of the 08h and 20h fields.
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5.3 08h Deep Field

The 08h field was overhead at midnight when the CBI began routine observa-

tions in January 2000, and we dedicated a considerable number of nights to this

field to evaluate the performance of the system. These observations produced our

first detection of the total intensity fluctuations in the CMBR; this measurement

demonstrated a significant decrease in the power spectrum between bins centered

on ` ∼ 600 and ` ∼ 1200 [62]. The 08h field observations spanned two configu-
rations; Table 5.4 lists dates of the 08h field observations in configuration 1, and

Table 5.5 lists the observations for configuration 2, as well as a summary of the

total time on source. The period between 11jan00 and 30may00 totals 141 nights,

but the number of nights on the field is far smaller: 59 nights were lost to weather;

9 were required for the reconfiguration of the array; and 29 were lost to a variety

of other factors, predominantly low (θ < 60◦) lunar elongation relative to the deep

field. And as the summary of the scans per night in the table demonstrates, the

time on source per night peaked early in the 08h field campaign.

The 08h field observations encompassed two array configurations. Configu-

ration 1 (Figure 5.2) was an initial sparse configuration which provided uniform

(u, v) coverage, and is thus neutral to the shape of the underlying spectrum, but its

power to measure polarization was limited because few of its baselines had the LL

counterparts necessary to correct the LR visibilities for instrumental polarization.

Only two of these baselines (RX0-RX12 and RX2-RX12) sampled the ` ∼ 800
scales on which the polarization signal predicted by standard models peaks, al-

though a third (RX10-RX12) can be included if we relax the requirements for the

instrumental polarization calibration; we explore this possibility in Chapter 6. To

improve our sensitivity to large scale polarized emission, RX12 was moved to the

center of the array midway through the 08h field observations; this configuration

(Figure 5.3) emphasized short cross polarized baselines while permitting access to

all of the receivers for repair.

The observing strategy remained roughly the same for all of the deep field ob-
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CBI configuration 1:  01jan00 to 14apr00

RX10

RX3

RX2

RX0
RX12

RX6
RX1

RX12−RX6    458.3 cm,    70.9 deg

RX12−RX0    100.0 cm,  180.0 deg
RX12−RX2    173.2 cm,  150.0 deg
RX12−RX3    400.0 cm,    60.0 deg

RX12−RX11  300.0 cm,         0 deg
NB:  RX5 out for nearly all of conf 1

RX9

RX11

Figure 5.2: CBI configuration 1: 01jan00 to 14apr00. RX12 (hatched) is the
orthogonally polarized receiver. Light solid lines denote LR baselines which have
simultaneous LL counterparts, the latter of which are shown with dark solid lines.
The light dotted lines show LR baselines which can be calibrated after several 20◦

deck rotations until they are parallel with the LL counterpart. The dashed line
to RX10 shows an additional baseline which cannot be calibrated under ordinary
circumstances, but which can be calibrated if we tolerate a small 7◦ error in the
phase calibration for that baseline.
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RX12−RX1  173.2 cm,        90 deg
RX12−RX8  100.0 cm,      180 deg

RX1

CBI configuration 2:  22apr00 to 01jul00

RX12−RX0  300.0 cm,   −120 deg

RX4

RX12−RX3  100.0 cm,          0 deg
RX12−RX4  200.0 cm,          0 deg

RX12−RX6  173.2 cm,        30 deg
RX12−RX7  173.2 cm,   −150 deg

RX0

RX7

RX8

RX6

RX12
RX9

RX3

Figure 5.3: CBI configuration 2: 23apr00 to 01jul00. The solid shaded lines denote
the LR baselines which have simultaneous LL counterparts. The dotted lines
denote baselines which can be calibrated after some multiple of a 30◦ deck rotation.
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servations. Chapter 2 notes that the spillover in the visibilities forced us to observe

the deep fields in pairs which were differenced offline to excise the spillover. Each

cycle of lead and trail required ∼ 16m. After each cycle the deck position was
stepped 20◦ increments (configuration 1) or 30◦ increments (configuration 2); this

increase in the stepsize followed the realization that adequate coverage of the (u, v)

plane did not require the denser sampling provided by the 20◦ steps. The choice of

30◦ increments, as compared to 40◦ or 45◦ increments, is particularly conducive to

polarization observations in configuration 2 (and configuration 3 for the 20h field)

because it permits nearly simultaneous LL-LR matches for LR baselines which

lack simultaneous LL counterparts. Baselines RX12-RX6 and RX12-RX7 in con-

figuration 2, for example, cannot be calibrated until baseline RX0-RX7 has rotated

through 60◦. To exploit this strategy, CBIPOLCAL was modified to search all of

the LL visibilities to find the nearly simultaneous matches for the LR visibilities

which lack simultaneous LL counterparts. The change in gain over the intervals

spanned by a few scans is typically far smaller than the overall gain uncertainties,

and is not a concern.

In Tables 5.4 and 5.5, the number of 16m scans is shown arranged in columns

of increasing baseline length for the 08h field observations. This sorting allows

us to quantify the data which go into the limits on each scale. In Chapter 6 we

assign the visibilities to three bins in `-space for the likelihood analysis; band 1

(446 < ` < 779) corresponds to columns 5-6, band 2 (930 < ` < 1395) corresponds

to columns 7-8, and band 3 (1539 < ` < 2702) corresponds to columns 9-12. After

deducting overhead for slews, each lead or trail lasts ∼ 6.5m, and this conversion is
used to obtain the sums at the bottom of Table 5.5. These times denote the total

time on either the lead or the trail, and since differencing spreads twice as much

time between two the fields, the net result is a penalty to the total sensitivity of
√
2 relative to the sensitivity implied by the integration times in the table. The

sums at the bottom of Table 5.5 show that the integration times between the

three bins scale as ∼ 1:0.7:1. The expected uncertainties in the maps (second to
last row) scale accordingly, while the real uncertainties obtained directly from the
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visibilities show greater parity. The origin of this change, which is caused by a

relative increase in the real noise for the first bin, is not known. All of the measured

uncertainties exceed the expected values; we examine this point in detail in Section

5.3.2. The goal of the likelihood analysis is to determine the best fit bandpowers

for each bin, and since the sensitivity per unit area in the aperture plane falls like

1/`, the sensitivity to the first bin exceeds that for the other bins.

One might infer that the sensitivity is diminished further still because some

of the scans will lack the 180◦ counterparts which are necessary to form both RL

and LR, and thus both Q and U . While only a subset of the scans have the 180◦

counterparts, this deficiency does not affect the likelihood analysis because the

calculation is built around LR visibilities; in this regard the limiting factor is thus

the number of matching LL baselines, since these baselines determine which LR

baselines can be calibrated.

5.3.1 08h Field Calibration

The 3C279 observations with the CBI form the backbone of the 08h field polar-

ization calibration. The majority of the 08h field observations were calibrated on

3C279, and while some were calibrated on Tau A, the Tau A model was calibrated

with 3C279 using the techniques discussed in Chapter 3. Chapter 4 discusses the

absolute uncertainties in the VLA values for 3C279’s polarization. Two additional

factors limit the accuracy with which the VLA observations can be applied to the

observations with the CBI: the variability of 3C279 and the differences in the fre-

quencies at which the CBI and the VLA observe; these factors result in a pair of

interpolations which are necessary to transfer the VLA observations to the CBI.

In addition, some of the 08h field observations lacked observations of the calibra-

tor, and on these dates we bootstrap the calibration from neighboring dates. This

section discusses the variety of techniques which were used to calibrate the 08h

field.

The first uncertainty in the VLA calibration arises from the variability in

3C279. Figures 4.5 and 4.6 show that the VLA observations undersample the
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scans per baseline length (cm)

# date calsource caldate 100 104 173 200 300 346 400 458

1 11jan00 Tau A — 20 20 0 — 0 — 0 0
2 12jan00 Tau A — 16 16 16 — 0 — 0 0
3 13jan00 Tau A — 21 21 21 — 0 — 0 0
4 09feb00 3C279 — 17 17 17 — 0 — 17 17
5 10feb00 3C279 — 21 22 21 — 0 — 22 22
6 11feb00 3C279 — 22 22 22 — 0 — 22 22
7 12feb00 3C279 14feb00 19 19 19 — 0 — 19 19
8 13feb00 3C279 14feb00 22 22 22 — 0 — 22 22
9 14feb00 3C279 — 19 19 19 — 0 — 19 20
10 01mar00 3C279 — 20 20 20 — 20 — 20 20
11 02mar00 3C279 — 16 16 16 — 16 — 16 16
12 03mar00 3C279 — 19 18 19 — 18 — 19 19
13 04mar00 3C279 — 17 16 17 — 16 — 17 17
14 05mar00 3C279 — 19 18 19 — 18 — 19 19
15 20mar00 Tau A 22mar00 17 17 17 — 0 — 0 0
16 21mar00 Tau A 22mar00 17 17 17 — 0 — 0 0
17 22mar00 Tau A — 18 18 18 — 0 — 0 0
18 23mar00 Tau A — 17 17 17 — 0 — 0 0
19 24mar00 Tau A — 17 17 17 — 0 — 0 0
20 25mar00 Tau A — 17 17 17 — 0 — 0 0
21 26mar00 3C279 28mar00 18 17 18 — 17 — 18 18
22 27mar00 3C279 28mar00 18 17 18 — 17 — 18 18
23 28mar00 3C279 — 17 16 17 — 16 — 17 17
24 30mar00 3C279 — 16 15 16 — 15 — 16 16
25 31mar00 3C279 — 15 14 15 — 14 — 15 15
26 04apr00 3C279 — 15 14 15 — 14 — 15 15
27 05apr00 3C279 — 13 12 13 — 12 — 13 13
28 06apr00 3C279 — 17 16 17 — 16 — 17 17
29 07apr00 3C279 — 14 13 14 — 13 — 14 14
30 08apr00 3C279 — 17 16 17 — 16 — 17 17

total, configuration 1 531 519 511 — 238 — 372 373

Table 5.4: 08h field observations, configuration 1.
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scans per baseline length (cm)

# date calsource caldate 100 104 173 200 300 346 400 458

31 23apr00 3C279 — 22 — 33 11 11 11 — —
32 24apr00 3C279 — 30 — 45 15 15 14 — —
33 25apr00 3C279 — 24 — 36 12 12 12 — —
34 26apr00 3C279 — 20 — 30 10 10 10 — —
35 27apr00 3C279 — 18 — 27 9 9 9 — —
36 28apr00 3C279 — 14 — 21 7 7 7 — —
37 29apr00 3C279 — 24 — 36 12 12 12 — —
38 30apr00 3C279 — 22 — 33 11 11 11 — —
39 01may00 3C279 — 18 — 27 9 9 9 — —
40 02may00 3C279 — 4 — 2 2 2 0 — —
41 03may00 3C279 — 10 — 15 5 5 4 — —
42 23may00 3C279 — 8 — 15 0 3 4 — —
43 29may00 3C279 28may00 8 — 12 0 4 2 — —
44 30may00 3C279 28may00 8 — 12 0 4 2 — —

total, configuration 2 230 — 344 103 114 107 — —

total, both configurations 761 519 855 103 352 107 372 373

expected σLR (mJy) 3.07 3.55 3.17

measured σLR (mJy) 3.84 3.96 3.57

Table 5.5: 08h field observations, configuration 2. The sensitivity is computed
based on 6.5m per scan.

dramatic changes in 3C279’s emission over the duration of the 08h field observa-

tions. In the most extreme case—the interval between 25apr00 and 19may00—the

fractional polarization changed by nearly 20%, although in this case the damage to

the overall calibration of the 08h field is limited because this period encompassed

only ∼ 10% of the data. In the absence of additional information data we chose
to linearly interpolate the source characteristics from the VLA observations to the

intervening dates. We can estimate a reasonable upper limit on the error in the

interpolation from the changes in 3C279’s characteristics; the variations in 3C279’s

polarization from epoch to epoch are δm ∼ 0.01 and δχ ∼ 5◦: both are ∼ 10%.
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In practice, the errors in the linear interpolation are probably smaller than these

values: the total intensity observations of 3C279 with the CBI show no evidence

for wild excursions during the intervening dates, so we may plausibly conclude that

the polarization is well behaved as well. The analytic errors in the interpolation

tend to be ∼ 3-5%, but these estimates are valid only in the linear approximation
of the variations.

The second uncertainty arises from the interpolation from the VLA channels

to the CBI channels. The VLA K (22.46 GHz) and Q (43.34 GHz) band channels

bracket the CBI’s 26-36 GHz band, so the VLA values for m and χ were interpo-

lated to the intervening frequencies. Again, we chose a linear interpolation. There

is no guarantee that the linear interpolation is valid, and indeed, spot inspections

of the flux densities in the ten CBI channels suggests that the bracketing data do

not fully characterize the behavior of the source across the band. The interpola-

tion errors tend to be ∼3-5% in amplitude and phase; the error for a particular
date depends heavily its proximity to the bracketing VLA observations. Figure 5.4

shows the interpolated VLA data at 31 GHz, as well as the uncertainties for these

data; the figure shows that the net uncertainty in the interpolations is ∼ 3-5%.
Several nights were calibrated with Tau A. On these nights we applied Tau A

Model 1 (Chapter 3) which is uncertain to 10%. While this uncertainty is larger

than that for the 3C279 calibration, Tau A was required for only 9 nights, so the

weight which this uncertainty carries in the overall error budget is small.

While ∼ 80% of the nights were calibrated with direct observations of 3C279
or Tau A, there were occasions for which the weather, the moon, or schedule errors

left us with no polarization calibrator for the night.1 We therefore implemented a

1The Tau A cross polarized visibilities are generally more susceptible to corruption from small

lunar elongations than those for 3C279 scans because Tau A was never observed with trails.

Comparison of 3C279 observations calibrated on Tau A to direct calibrations of the source on

11feb00 and 12feb00 demonstrate that lunar elongations of ∼ 30◦ relative to Tau A can corrupt
the inferred fractional polarization of 3C279 by 2%, a 20% error for this 10% polarized source. The

moon moves ∼ 5′ during the course of a 10m lead/trail pair, so while the cancellation obtained
with trails is not ideal, it would improve upon the undifferenced visibilities. Evidence of spillover
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second approach to the calibration of the 08h field: indirect calibration, in which

the calibration is bootstrapped from a neighboring date. As we will see below, this

approach introduces different errors than the direct calibration above. Column 3

of Table 5.4 notes the dates calibrated with this method.

We would like to estimate the error in the bootstrapped calibration, and the

distribution of LR calibration factors for dates with good calibrations provides

perhaps the best guidance for this problem. Figure 3.10 shows the amplitude and

phase components of the gain for the 08h observations for one baseline and one

channel; this figure suggests that the night to night variations in the calibration

are ∼ 10%. A quantitative analysis of the amplitudes and phases of the gains for
all channels and all LR baselines for the 11jan00 to 10apr00 period shows that the

mean rms of the gains is ∼ 15% for both amplitude and phase; Figure 5.5 shows
the distribution of the rms for all channels and LR baselines. The means were

obtained by computing the variance of fractional change in amplitude between

sessions for each channel and each baseline for the configuration 1 period, 11jan00

to 10apr00. The variance of the gain phase was measured relative to a radian.

This 15% mean uncertainty is our best estimate of the error in the bootstrapped

calibration for a single night. Figure 3.10 shows that there is no systematic drift

in the calibration, and in this regard it is representative of all of the baselines, so

the real error in the bootstrapped calibration for n nights should fall like 1/
√
n.

5.3.2 08h Field Results

Figures 5.6 and 5.7 show maps of Q and U for the short baselines. These maps

show no sign of a signal; for both maps the rms of the central region of the maps is

∼ 12 mJy/beam, which is indistinguishable from the rms away from the primary
beam. For comparison, Figure 5.8 shows a map for I; the total intensity signal is

obvious in the center of the map, and the rms in the central region of 28 mJy/beam

exceeds that of ∼ 16 mJy/beam outside of the primary beam. These maps have
on Tau A’s ∼ 25 Jy cross polarized visibilities would also argue in favor of the use of trails for
polarization calibration observations on this bright source.
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Figure 5.4: Interpolated VLA data for 3C279 at 31 GHz, 08h field. The dates in
the horizontal axis start with 01jan00 = 1. The top two frames show m and χ,
while the bottom shows the fractional uncertainties for both. The errors include
the VLA errors as well as the errors from the two interpolations. The shaded
regions denote times during which the 08h deep field was observed. The 11jan00-
13jan00 08h field observations are not shown; these were calibrated on Tau A, the
model for which is good to ∼ 10%.
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Figure 5.5: Histogram of the rms of the LR gains for the 08h field for each baseline
and channel. The data reflect the configuration 1 period, 11jan00- 10apr00. The
phase errors are measured in terms of a radian. The means of rms for both the
amplitudes and the phases is ∼ 15%; these means are a good measure of the change
in the calibration from night to night.

not been corrected for the shape of the primary beam. The Q and U maps for

bands 2 and 3—the intermediate and long baselines—are similar in that they show

no evidence for a signal.

5.3.3 08h Field Consistency Tests

Inspection of the deep field visibilities suggests that the data are dominated by

noise. In the absence of a strong signal, the consistency tests must rely almost

exclusively on the noise. In this section, we explore several diagnostics of the

08h field calibration. We first compare the noise in the data to the performance

predicted by the system characteristics, and then perform a χ2 test to assess the

quality of the signal. Finally, the noise is used to estimate changes in the amplitude

calibration. The χ2 test provides limited guidance as to whether the LR data

contain a signal; the more rigorous maximum likelihood analysis is presented in
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Figure 5.6: Map of Q for the 08h deep field, short baselines (|u| < 150λ). The
circle shows the extent of the primary beam at the band center: 45.2′ (FWHM)
at 31 GHz. The noise in the central region is identical to that outside of the area
defined by the primary beam.
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Figure 5.7: Map of U for the 08h deep field, short baselines (|u| < 150λ). See
Figure 5.6 for details.
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Figure 5.8: Map of LL for the 08h deep field, short baselines (|u| < 150λ). See
Figure 5.6 for details. The rms in the region encompassed by the primary beam is
nearly twice that outside the beam (see text).
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Chapter 6.

08h Field Visibility Uncertainties

Our first task is to establish that the noise in the visibilities agrees with our expec-

tation based on the system characteristics. Section 2.3 reviews the contributions to

Tsys; the factors discussed there translate directly to the scatter in the visibilities,

so we can compare the noise computed a priori with the real data.

The visibility uncertainties must be corrected for a bias which enters when the

data are averaged. The uncertainties are estimated from the scatter in the ∼ 50 or
so 8.4s integrations which form each scan: during routine observations, the control

system records 8.4s integrations to the archive, and in the offline analysis, UVSUB

combines these data to form ∼ 6m averages of the lead-trail difference visibility
Vj . UVSUB computes the sample variance of the differenced visibilities and records
the corresponding uncertainty sj with Vj in the output .uvf file. We average the
visibilities at each (u, v) point to obtain V̂(u) ± σ̂. These mean quantities are

obtained from the weighted averages of the N observations at each (u, v) point:

V̂ =
∑N
j=1 Vj/s2j
∑N
j=1 1/s

2
j

(5.3)

for the visibilities, and

σ̂2 =
1

∑N
j=1 1/s

2
j

(5.4)

for the uncertainties.

Equation 5.3 is an unbiased estimator of the mean of the visibilities, but Equa-

tion 5.4 introduces a bias in the combined uncertainty. This bias enters because

the uncertainties from each scan are each drawn from an underlying distribution;

the scatter in the integrations follows from the instrinsic distribution of errors, so

the scatter will differ from scan to scan in a way which does not necessarily reflect

the true character of the noise. We correct for the bias by computing it and scaling
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V calibration 〈σ〉 (Jy)

VLR CBIPOLCAL 6.10

VLL CBICAL 5.89

VLL CBIPOLCAL 5.84

VLR CBIPOLCAL 5.86

Table 5.6: Means of the 08h visibility uncertainties for LR and LL. Column
2 lists the calibration package used to calibrate the data. The LL calibration
with CBIPOLCAL is included as a cross-check; the LL flux scale determined by
CBIPOLCAL sets the flux scale for the subsequent LR calibration. The bottom
entry shows the mean LR uncertainty after excising the edge channels from the
CBI band (see text); these uncertainties are in good agreement with those for VLL.

the variance accordingly. The bias on the variance is given by

β ' 1 + 4
n

(5.5)

where n is the number of visibilities which go into the ∼ 6m average [50]. For
routine CMBR observations, n ∼ 50, so β = 1.08. Simulations that reflect lower
order effects as well as numerical artifacts of the data pipeline show that β tends

to be slightly lower: β = 1.06± 0.01. We adopt this value of β and scale all of the
visibility variances by this value.

Table 5.6 lists the means of the visibility uncertainties for the 08h field obser-

vations. All uncertainties have been normalized to 1 s. The means were obtained

from averaging over all of the visibility uncertainties for all channels and all nights.

The uncertainty means have been corrected for the bias discussed above.

The 08h visibility uncertainties all exceed the value computed from Tsys of

4.7 Jy by at least ∼ 20%. The source of this additional noise remains unknown.
CBIPOLCAL performs the total intensity calibration for the LL baselines which

match the LR baselines, so the table lists the values for 〈σLL〉 from CBIPOL-
CAL as a cross-check. The LL uncertainties obtained from CBICAL (row 2) and
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CBIPOLCAL (row 3) agree. This result is important because CBIPOLCAL derives

the absolute LR flux scale from the LL baselines it calibrates; an amplitude error in

these LL visibilities, as indicated by a significant excess in 〈σLL〉 from CBIPOLCAL,
would propagate to the LR calibration. The LR uncertainties are ∼ 5% higher
than those for LL. Since the two values of 〈σLL〉 agree, we infer that the excess in
〈σLR〉 is not a consequence of an error in the flux scale applied by CBIPOLCAL. It
may reflect a calibration error in the values of m for 3C279 derived from the VLA.

The LR uncertainties in the top row are a bit higher than those for LL. RX12 is

common to all of the LR visibilities, so one possible explanation is a higher system

temperature for RX12. Since σjk ∼ √

TjTk, this explanation requires TRX12 ∼
(1.04)2〈Tsys〉, and indeed, as Figure 5.9 demonstrates, direct Tsys measurements
for each of the receivers show that RX12’s noise is ∼ 1 K higher than the array
average of 27.4 K. The excess Tsys for RX12 can account for much of the divergence

between 〈σLL〉 and 〈σLR〉. Figure 5.9 suggests a quick test of this hypothesis: the
higher Tsys for RX12 appears to arise largely from the two channels at the band

edges. If we repeat the σLR analysis without these two channels, we find that

〈σLR〉 = 5.86± 0.06 Jy, which is consistent with 〈σLL〉. In a later section we look
at the errors in greater detail, at which point we will see that the high Tsys for

RX12 explains only part of the excess in 〈σLR〉.

χ2 Test

χ2 provides an important test of the data. The total integration time on the

08h field is such that if the standard models are to be believed, the S/N per LR

visibility should be unity for baselines of all lengths; we may assume that values

of χ2ν that exceed one indicate some combination of errors in our estimates of the

noise and spurious contamination to the signal. The short baselines may contain

a small contribution from polarization of the CMBR, but χ2 does not have the

sensitivity to detect these signals in the CBI data. We compute χ2ν for the reals
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Figure 5.9: Tsys comparison between RX12 and the array average, by band. The
1 K errorbars on the RX12 values are estimates which include both measurement
uncertainties and systematic errors; the systematic errors dominate the measure-
ment errors, and since the systematic errors enter both the RX12 measurement
and the mean of the other 12 receivers, the errors in this figure understate the
significance of the Tsys excess for RX12.

and imaginaries as

χ2ν =
1

2Nβ

N
∑

i

[(VRi
σRi

)2
+
(VLi
σLi

)2]

(5.6)

where N subsumes all channels and unique visibilities per night for each of the 41

nights of data in the 08h field. The factor of two accounts for the real and the

imaginary components of V; in this case, ν = 2N . The σi are the uncertainties on
the visibilities; the quadrature calibration ensures that σRi = σIi . The factor of β

removes the bias in the noise.

The χ2 test demonstrates that the LR visibilities are generally consistent with

noise. Table 5.7 reports the mean values of χ2ν for all of the baselines in the 08
h

dataset. The LR baselines were calibrated on 3C279 and Tau A in CBIPOLCAL,

and the LL baselines were calibrated on 3C274 in CBICAL. The values of χ2ν were

sorted by baseline length to demonstrate the effect of a signal on χ2ν for the short

LL baselines: χ2ν exceeds unity because the CBI’s short LL baselines detect the

CMBR with high S/N. The LR visibilities are inconsistent with noise for the short

baselines, while the noise estimates for the long LR baselines appear to be 1-2%
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|u| < 150 λ |u| > 150 λ all |u|

V calibration χ2ν ν χ2ν ν χ2ν ν

VLR CBIPOLCAL 1.025 14276 0.983 45060 0.993 59336

VLL CBICAL 1.153 29698 0.987 291080 1.003 320778

VLL CBIPOLCAL 1.101 28132 0.981 313032 0.991 341164

Table 5.7: χ2 tests on the 08h deep field data for LL and LR. The LL data
were obtained from CBICAL, while the LR data were obtained from CBIPOLCAL.
ν = 2Nd to account for the real and imaginary components of the visibilities.

too high.2 The origin of this excess in the short LR baselines is not known, and

given the number of degrees of freedom, it is significant; the likelihood analysis on

these data in Chapter 6 can establish whether the signal is of celestial origin. We

detect a signal on the long LL baselines, but the simple χ2 as computed above does

not have the sensitivity to reveal this signal. While the values of χ2ν are generally

well behaved given the few percent uncertainty in the bias correction, they do not

tell us about our primary concern—the calibration—because both V and σ scale
with |gjg∗k|.

Jackknife Test

χ2ν for the short LR baselines shows a highly significant excess over unity, so we

performed a jackknife test on these data to test whether the excess represents a

celestial signal. The 08h data were split into two groups by alternating date (odd

vs. even observation number in column 1 of Tables 5.4 and 5.5), and the two sets

of visibilities were averaged by (u, v) point for each channel. Upon differencing the

(u, v) point averages, we find that χ2ν = 1.03 for the reals and χ
2
ν = 1.11 for the

imaginaries with ν = 590 for both; the probabilities to exceed these values of χ2ν
2One night was an exception to this, however; the night of 13jan00 had a χ2 ∼ 1.5 for all

baselines, so it was deleted from the LR data set. No other nights were excised based on the χ2

test.
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under the null hypothesis are 30% and 3%, respectively. We cannot rule out the

possibility that the signal is celestial, but the test shows that the troubling excess

in Table 5.7 diminishes in significance as the visibilities are averaged.

Noise as a Proxy for the Amplitude Calibration

The 08h deep field observations were often accompanied by observations of 3C273,

which provide a measure of the consistency of the calibration from night to night.

There are several nights during the 08h field observations that lacked a suitable

polarization calibration, however, because the calibrator, usually 3C279, was cor-

rupted by small lunar elongations, and on these nights, neighboring 3C273 suffered

as well. We would like to have tracers of the calibration that are consistently in

view for all of the nights, and only one source satisfies this requirement: the 08h

deep field. In particular, we will use the deep field visibility uncertainties to infer

changes in the amplitude calibration. Since σ ∝ |gjg∗k|, the visibility uncertainties
provide no insight into the phase calibration.

The visibility uncertainties offer several advantages over traditional supporting

observations. The uncertainties and the visibilities undergo the same gain calibra-

tion, but since the uncertainties do not contain instrumental polarization, they are

not affected by systematic errors in the leakage correction. In addition, unlike the

supporting observations of polarized sources which typically last ∼ 5m each night,
the visibility uncertainties are measured throughout the entire session, and thus

they provide us with an extensive, high S/N body of data on a quantity which is

directly proportional to the gain amplitude. This use of the uncertainties is an

unorthodox technique, but we will see that the errors provide a useful diagnostic

of the calibration, and in particular, this analysis provides a check on the accuracy

of the Tau A model developed in Chapter 3. We must guard against sources of

confusion because factors which affect Tsys will change the uncertainties; these

include clouds, spillover,3 and ice on the antenna windows. The LL uncertainties

provide some guidance in this regard, because the considerations which affect the

3Spillover in the total power; this spillover affects all baselines regardless of length.
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noise characteristics of the LL visibilities affect those for LR with equal force.4

The LR visibility uncertainties were normalized by the associated integration

times to place the uncertainties on a uniform scale. After averaging by (u, v) point

the number of visibilities per night can be as high as ∼ 103 or more;5 these data
were then averaged with weights to obtain a mean uncertainty for the night. The

errors on the mean uncertainties were obtained from the variance of the ∼ 103

visibilities for each date; Figure 5.10 shows the standard error on the mean. This

procedure was repeated for the LL data calibrated with CBICAL to provide a base-

line for comparison. Figure 5.10 presents a time series of the LR uncertainties (top

frame) and the LL uncertainties (middle frame) as a function of the chronologically

sorted observation number (corresponding to column 1 of Tables 5.4 and 5.5). The

bottom frame shows the ratio 〈σLR〉/〈σLL〉 for each night.
The LR visibility uncertainties provide a measure of the consistency of the

amplitude calibration from night to night. Figure 5.10 shows that the variations in

the mean LR uncertainties exceed those for the LL data; the rms of the uncertainty

means for 〈σLR〉 is ∼ 7%, while that for 〈σLL〉 is ∼ 4%; since some of the variance
seen in 〈σLR〉 is due to factors which give rise to that in 〈σLL〉 (rms ∼ 4%), we
infer a ∼ 6% rms in the gain amplitude calibration for LR. The variations in 〈σLR〉
in Figure 5.10 are clearly not Gaussian, however: the mean uncertainties undergo

systematic drifts (dates 20-26), and data calibrated on Tau A are consistently high.

In the former case, the data were calibrated on 3C279, and these drifts may reflect

secular changes in the source polarization. In the latter case, they suggest an error

in the polarized flux of the Tau A model; the excess in 〈σLR〉/〈σLL〉 for dates
14-20 (22mar00-25mar00) is ∼ 10%, or 9% after correcting for the 4% increase in
Tsys for RX12. This excess may be the consequence of ∼ 10% too much polarized
flux in the Tau A model. We will revisit this point in the analysis of the 20h field

uncertainties, for which the calibrations are divided evenly between 3C279 and

Tau A (Section 5.4). The stability of the uncertainties for these data suggests that

4RX12’s above average Tsys notwithstanding.
5∼ 10 bands × ∼ 20 scans × ∼ 5 LR baselines.
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Figure 5.10: Means of visibility errors for the 08h field observations. The dates,
listed in Table 5.4, have been compressed to indices from 1 to 43. The top
frame shows the visibility errors for the LR baselines, which were calibrated with
CBIPOLCAL, while the middle frame shows the errors for the LL baselines cali-
brated with CBICAL. Since the LL calibration has a ∼ 5% error, the LL errors
provide our best measure of the uncertainty in the CBI’s measurements, and thus
provide the benchmark which the LR uncertainties are to be compared. The light
shaded regions denote dates which required calibration on Tau A instead of 3C279,
and the dark shaded regions denote dates for which the calibration was transferred
from a nearby 3C279 calibration. The third frame shows the ratio of the errors.
The early January dates (days 1-2) are contaminated by ice on the dishes, and as
a consquence, the noise is higher for both LR and LL on these dates, although
this does not fully explain the large disparity between 〈σLR〉 and 〈σLL〉 on these
dates.
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Tau A can be an excellent polarization calibrator with the correct model.

Summary

The consistency tests for the 08h field data show that the LR data are free of serious

errors. The LR uncertainties are ∼ 4% higher than the LL uncertainties, but much
of this excess results from the high Tsys in RX12. The χ

2 test shows that the LR

data are largely consistent with noise, and while the χ2 for the short baseline LR

data is ∼ 2.5% too high to support the null hypothesis, the jackknife test shows
that the source of the excess averages down to a negligible level of significance.

The scatter in the LR uncertainty means suggests an overall rms of ∼ 6% in the
gain amplitude calibration for the 08h field; these errors are generally noiselike, so

their contribution to the total calibration uncertainty for the 43 nights of data on

the 08h field should fall by 1/
√
43. The uncertainties for visibilities calibrated on

Tau A appear to be consistently ∼ 10% higher than those for data calibrated on
3C279, and this excess suggests an error of the same magnitude in the polarized

component of the Tau A model. This latter conclusion conflicts with the results

of Chapter 3, which suggested that the Tau A model has the appropriate amount

of polarized flux. Nearly 60% of the 20h deep field data were calibrated on Tau A,

however, and in the following section we will see that this 10% discrepancy persists

in these data.

5.4 20h Deep Field

After committing the austral winter of 2000 to observations of mosaiced fields,

the CBI returned to a second deep field observation in August. The 20h field

represents a rich vein of polarization data because the array configuration at that

time, configuration 3 (Figure 5.11), emphasized short cross polarized baselines,

and because the beginning of observations in August permitted several months of

time on source. Nonetheless, the analysis of the 20h data is complicated by the

irregular coverage of the polarization calibrators during this period and by the
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handoff between the 3C279 calibration in early August and the Tau A calibration

from late August onward. These considerations are discussed in detail in this

section.

The 20h deep field observations spanned the three month interval between

31jul00 and 29oct00. Table 5.8 lists the observations on this field. The early

data were calibrated on 3C279, while the later data were calibrated on Tau A.

As the table shows, the 20h observations include many dates for which a direct

polarization calibration was not possible; the period included several intervals of

a few weeks’ duration during which low lunar elongations precluded observations

of the polarization calibrator.6 Since Tau A was not due to rise above the CBI’s

elevations limits at night until the end of the August, the calibration for the latter

part of August was transferred from the mid-August 3C279 observations. Similarly,

in the middle of September and the middle of October Tau A was again obscured

by the moon, and each of these intervals required an indirect calibration.

5.4.1 20h Field Calibration

The 20h deep field observations suffered from a paucity of polarization calibrators.

At the end of July, 3C273 and 3C274 ceased to rise above the CBI’s elevation

limits at night, and 3C279, the prime polarization calibrator for the previous eight

months, would soon follow. On 10aug00-12aug00, we performed deep observations

of 3C279 with the intention of transferring 3C279’s polarization calibration to

Jupiter to fill the gap until Tau A rose at the end of the month. On these dates

3C279 was above the CBI’s elevation limit of 45◦ for little more than a half an hour

before it set, so these deep observations yielded at most four 5m integrations, plus

trails, per night. These observations demonstrated that Jupiter was not sufficiently

polarized to provide an expedient polarization calibration for the dates to follow.

The August observations in particular lacked calibrator observations. We used

6August, for example, included two such intervals; in early August, 3C279 was obscured by

the moon, and shortly after the lunar elongation exceeded the 60◦ threshold, 3C279 ceased to rise

above the CBI’s elevation limit at night.
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RX12−RX3  100.0 cm,          0 deg RX12−RX8  100.0 cm,      180 deg

RX0

RX12−RX0  300.0 cm,   −120 deg
RX12−RX1  173.2 cm,        90 deg

CBI configuration 3:  01jul00 to 01nov00

RX12−RX4  200.0 cm,          0 deg

RX12−RX6  173.2 cm,        30 deg
RX12−RX7  173.2 cm,   −150 deg

RX7

RX8

RX6

RX9

RX4

RX3

RX1

RX12

Figure 5.11: CBI configuration 3. The solid shaded lines denote the LR base-
lines which have simultaneous LL counterparts. The dotted dashed lines denote
baselines which can be calibrated after some multiple of a 30◦ rotation.
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scans per baseline length (cm)

# date calsource caldate 100 104 173 200 278.4 300

1 31jul00 3C279 10aug00 44 22 44 22 22 22
2 01aug00 3C279 10aug00 44 22 44 22 22 22
3 02aug00 3C279 10aug00 44 22 44 22 22 22
4 03aug00 3C279 10aug00 44 22 44 22 22 22
5 04aug00 3C279 10aug00 32 16 24 16 16 12
6 05aug00 3C279 10aug00 44 22 44 22 22 22
7 06aug00 3C279 10aug00 40 20 32 20 20 16
8 07aug00 3C279 10aug00 40 20 32 20 20 16
9 08aug00 3C279 10aug00 38 19 30 19 19 15
10 09aug00 3C279 10aug00 44 22 40 22 22 20
11 18aug00 3C279 10aug00 40 20 32 20 20 16
12 19aug00 3C279 10aug00 38 19 30 19 19 15
13 21aug00 3C279 10aug00 24 12 8 12 12 4
14 22aug00 3C279 10aug00 32 16 24 16 16 12
15 23aug00 3C279 10aug00 36 18 28 18 18 14
16 29aug00 Tau A — 38 19 30 19 19 16
17 30aug00 Tau A — 34 17 26 17 17 14
18 31aug00 Tau A 01sep00 38 19 30 19 19 16
19 01sep00 Tau A — 28 14 24 14 14 12
20 02sep00 Tau A 01sep00 34 17 26 17 17 14
21 16sep00 Tau A 24sep00 36 18 28 18 18 14
22 18sep00 Tau A 24sep00 36 18 28 18 18 14
23 19sep00 Tau A 24sep00 36 18 28 18 18 14
24 20sep00 Tau A 24sep00 32 16 24 16 16 12
25 21sep00 Tau A 24sep00 30 15 24 15 15 12
26 22sep00 Tau A 24sep00 28 14 24 14 14 12
28 23sep00 Tau A 24sep00 18 9 14 9 9 7
29 24sep00 Tau A — 28 14 24 14 14 12
30 25sep00 Tau A — 28 14 24 14 14 12
31 26sep00 Tau A — 30 15 24 15 15 13
32 27sep00 Tau A — 32 16 28 16 16 14
33 28sep00 Tau A — 22 11 22 11 11 11
34 29sep00 Tau A — 26 13 24 13 13 12
35 30sep00 Tau A — 22 11 22 11 11 11
36 01oct00 Tau A — 26 13 24 13 13 12
37 02oct00 Tau A — 26 13 24 13 13 12
38 12oct00 Tau A 20oct00 16 8 8 8 8 4
39 13oct00 Tau A 20oct00 18 9 14 9 9 7
40 14oct00 Tau A 20oct00 20 10 16 10 10 8
41 15oct00 Tau A 20oct00 18 9 14 9 9 7

Table 5.8: 20h field observations, configuration 3. Table continued on next page.
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scans per baseline length (cm)

# date calsource caldate 100 104 173 200 278.4 300

42 16oct00 Tau A 20oct00 10 5 2 5 5 2
43 17oct00 Tau A 20oct00 18 9 14 9 9 7
44 18oct00 Tau A 20oct00 22 11 22 11 11 11
45 19oct00 Tau A 20oct00 18 9 14 9 9 7
46 20oct00 Tau A — 18 9 14 9 9 7
47 21oct00 Tau A — 18 9 14 9 9 7
48 22oct00 Tau A — 12 6 4 6 6 2
49 23oct00 Tau A — 8 4 0 4 4 0
50 24oct00 Tau A — 14 7 6 7 7 4
51 25oct00 Tau A — 12 6 4 6 6 2
52 26oct00 Tau A — 14 7 6 7 7 4
53 27oct00 Tau A — 6 3 0 3 3 0
54 28oct00 Tau A — 10 5 2 5 5 2
55 29oct00 Tau A — 14 7 6 7 7 4

total 1478 739 1182 739 739 601

expected σLR (mJy/beam) 2.33 2.51 3.00

measured σLR (mJy/beam) 2.70 2.87 3.60

Table 5.9: 20h field observations, configuration 3, continued. Sensitivity is com-
puted based on 6.5m per scan.

the deep observations of 3C279 on 10aug00-12aug00 to derive a benchmark cali-

bration which was transferred to the preceding and following nights with the noise

source scaling technique described in Chapter 3; the total intensity observations on

these dates were used to infer the noise cal amplitude errors, and these corrections

were applied to the gain amplitudes for the cross polarized baselines. The uncer-

tainties on the VLA data for 3C279 on 10aug00 are δm/m ∼ 2% and δχ/χ ∼ 8%.
The discussion of Chapter 3 demonstrated that the scaling techniques tend to im-

prove the calibration to ∼ 10% over the ∼ 15% intrinsic gain variations from night
to night. Tau A rose above our elevation limits at night for the first time at the

end of August, and it was the only polarization calibrator for the remainder of
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the 20h field observations. We used the Tau A model presented in Chapter 3 for

these calibrations. Tau A is at α ∼ 5.5h, so there are regular gaps of about a week
during which the moon obscured Tau A but not the 20h field; during these dates

we transferred the calibration with the noise cal scaling technique using Jupiter as

the noise cal error reference source. We assess the errors on these calibrations in

the next section.

5.4.2 20h Field Results

Figures 5.12 and 5.13 present maps of Q and U for the 20h field. The map noises

for Q and U are typically 4-6 mJy/beam both inside and outside of the central

region of the maps, so the maps contain no obvious evidence for a signal. In

contrast, the I map, which shows a clear signal, has an rms of ∼ 31 mJy/beam in
the central part of the beam, and ∼ 10 mJy/beam elsewhere (Figure 5.14). The
maps for Q and U include fewer visibilities than we can calibrate for LR because

not all visibilities had the RL counterparts required to form Q and U. Table 5.10

lists the values of σLR derived from the 20h visibilities. These values are ∼ 15%
higher than those predicted by the integration time on the field; we will see that

this excess represents a combination of calibration errors and a real excess for the

LR visibilities due to the higher Tsys for RX12. The Q and U maps for bands 2 and

3 (the intermediate and long baselines) are similar in that they show no evidence

for a signal.

5.4.3 20h Field Consistency Tests

The consistency tests for the 20h field are the same as those for the 08h field. We

first compare the measured visibility uncertainties to expected values, and then

compute χ2 to establish that the visibilities are consistent with noise. Finally, we

use the uncertainties on the visibilities to assess amplitude calibration. The latter

test confirms the 10% amplitude error in the Tau A model that was suggested by

08h visibility uncertainties.
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Figure 5.12: Map of Q for the 20h deep field, short baselines (|u| < 150λ). The
circle shows the extent of the primary beam at the band center: 45.2′ (FWHM)
at 31 GHz. The noise in the central region is identical to that outside of the area
defined by the primary beam.
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Figure 5.13: Map of U for the 20h deep field, short baselines (|u| < 150λ). See
Figure 5.12 for details.
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Figure 5.14: Map of LL for the 20h deep field, short baselines (|u| < 150λ). See
Figure 5.12 for details. The noise in the central region of the map is nearly three
times that outside of the primary beam.
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20h Field Visibility Uncertainties

Table 5.10 lists the mean visibility uncertainties for the 20h field observations.

Nearly 40% of the 20h field data were calibrated on 3C279, while the balance

was calibrated on Tau A, so the table sorts the uncertainties by calibrator: Set 1

corresponds to the first 15 nights (3C279), and Set 2 corresponds to the remaining

40 nights (Tau A). The values in the table are the means of the uncertainties for

all of the visibilities for the sets in question.

The LR data in the first column of Table 5.10 were calibrated on 3C279 and

Jupiter; 3C279 sets the polarization scale through the fractional polarization m,

and Jupiter sets the absolute flux scale through the noise cal scaling. The LL

uncertainties (calibrated in CBICAL on Jupiter) are ∼ 4% larger than those for
LR. Given that RX12 has ∼ 4% more noise than the array average, this difference
suggests a systematic amplitude calibration error of at least ∼ 6− 8% for the data
that were calibrated on 3C279. An error of this size comes as no surprise, however,

as most of the dates during this period required some scaling, and we do not expect

the scaling procedure to improve the calibration to better than this level.

The most striking feature of Table 5.10 is that the LR uncertainties for the data

calibrated on Tau A are significantly higher than the other values. This attribute,

which was seen in the 22mar00-25mar00 08h field data, is almost certainly the

result of ∼ 10% excess polarized flux in the Tau A model.
Row three of Table 5.10 lists the mean uncertainties for the LL data calibrated

with CBIPOLCAL. We report these values to confirm that they agree with those

for the LL data calibrated with CBICAL; since these LL data set the flux scale for

the LR calibration, we are encouraged that they agree. Finally, Table 5.6 shows

that the LL uncertainties for the 20h field agree with those for the 08h field.

χ2 Test

Table 5.11 reports the results of the χ2 analysis of the 20h visibilities. As expected,

the short LL baselines show a slight excess due to the presence of a real signal,

while the long baselines are slightly less than unity, perhaps reflecting an error in
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V calibration Set 1 〈σ〉 (Jy) Set 2 〈σ〉 (Jy) all 〈σ〉 (Jy)

VLR CBIPOLCAL 5.47 ± 0.04 6.32 ± 0.03 6.01 ± 0.06
VLL CBICAL 5.68 ± 0.05 5.81 ± 0.02 5.76 ± 0.02
VLL CBIPOLCAL 5.78 ± 0.05 5.84 ± 0.04 5.82 ± 0.03

Table 5.10: Average noise in the 20h visibility data. These mean values are
weighted averages whose weights are obtained from the time on source per night.
The Set 1 LR data were calibrated with 3C279 to obtain m and χ, although the
absolute LR flux scale was derived from contemporaneous observations of Jupiter.
Row 2 shows the LL benchmark set by the calibration in CBICAL; these data were
calibrated on Jupiter. Row 3 shows the LL calibration in CBIPOLCAL; the Set
1 data were calibrated on 3C279, whose model for I was obtained from the LL
calibration in CBICAL, so rows 2 and 3 in column 1 should agree. The Set 2 LL
and LR data calibrated in CBIPOLCAL used Tau A as the calibrator for the entire
calibration, so the flux scale for the LR calibration was obtained directly from the
well tested I model for Tau A.

our estimate of the noise. The χ2ν for the short LR baselines are perhaps a bit

high given that the integration time on this field falls short of the level necessary

to detect a signal, and in Chapter 6 we explore whether this excess reflects a real

signal. The χ2ν for the long baselines are all 1-2% low; this is our best measure of

χ2ν since the values for the all baseline average are boosted by the short baseline

data. The error in the bias factor β (Section 5.3.3: β = 1.06 ± 0.01) is not quite
enough to bring the long baseline χ2ν into agreement with unity; these data suggest

that the estimates of the noise are a few percent too large. We saw this attribute

in the χ2ν test for the long baseline 08
h data.

Jackknife Test

The high χ2ν for the short LR baselines for ν = 33682 contradicts the null hypothe-

sis, so we performed a jackknife test on these visibilities. As with the 08h data, the

data were sorted into two groups based on interleaved dates. The two sets of data

were averaged and differenced. We find that χ2ν is 1.003 for the reals and 0.974 for
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|u| < 150 λ |u| > 150 λ all |u|

V calibration χ2ν ν χ2ν ν χ2ν ν

VLR CBIPOLCAL 1.029 33682 0.977 42272 1.000 75954

VLL CBICAL 1.079 61562 0.985 520696 0.995 582258

VLL CBIPOLCAL 1.072 67042 0.985 493508 1.000 560550

Table 5.11: χ2 tests on the 20h deep field data. ν = 2Nd to account for the real
and imaginary components of the visibilities.

the imaginaries with ν = 720; these values are highly consistent with unity. These

results suggest that the source of the excess in Table 5.11 loses significance as the

data are averaged, and it is thus not a great concern.

Noise as a Proxy for the Gain Calibration

Section 5.3.2 presents an analysis of the gain calibration in which the visibility

uncertainties are used to track changes in the amplitude of the gain calibration.

We apply the same technique to the 20h data. Figure 5.15 shows a time series

of the LR and LL uncertainties for the 20h field observations; the first and third

frames of the figure show a clear demarcation in the calibration at the transition

between Set 1 (3C279) and Set 2 (Tau A). After sorting the ratios by set, we

find that 〈σLR〉/〈σLL〉 = 0.96 for Set 1, while 〈σLR〉/〈σLL〉 = 1.09 for Set 2, in
agreement with the data reported in Table 5.10. We interpret the discrepancy for

the Set 2 data as evidence for a 10% excess in the polarized flux for the Tau A

model. The rms of the uncertainties is quite small: 3% for the LL data and 7% for

the LR data; these scatters include instrinsic variations in Tsys, so they provide

conservative estimates of the repeatibility of the amplitude of the gain calibration.

If the interpretation of the mean uncertainties in Table 5.10 is to be believed, these

calibration offsets cancel, for a net systematic amplitude calibration error for the

entire 20h LR data set of ∼ +4%.
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Figure 5.15: Top: LR baselines; middle: LL baselines; bottom: ratio of the two.
Some dates do not have LL observations; these dates lacked calibrator observations,
and the calibration requirements for the total intensity observations (¡ 5%) cannot
be met with a bootstrapped calibration. Heavy shading: bootstrapped (scaled)
calibration on 3C279. Light shading: bootstrapped calibration on Tau A.

5.5 Supporting Observations

We observed a variety of polarized sources to test the polarization performance

of the CBI. The 08h deep field observations were nearly always accompanied by

observations of 3C274 and 3C273, the former because it provided the total in-

tensity calibration, and the latter because it provides a consistency check on the

calibrations for LL and LR; both of these sources proved to be useful in evaluating

the polarization calibration. 3C273 is a 20 Jy, ∼5% polarized quasar which was
included in the VLA monitoring program, and it provides an important check of
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the internal consistency of the calibration. 3C274 is a 17 Jy, ∼ 4% polarized radio
galaxy whose stability allows us to assess the repeatibility of the polarization cali-

bration. 3C273 and 3C274 are unresolved by the CBI, however, so observations of

these sources do not test the CBI’s mapping capabilities. To evaluate the CBI’s

response to extended polarized emission, we observed several resolved polarized

sources: the double inner lobes of the active radio source NGC 5128 (Centaurus

A), and the emission nebulae of two galactic SNR, W44 and G326.3-1.8. We will

see that the 3C273 and 3C274 observations permit a quantitative assessment of

the calibration, while the extended sources merely provide qualitative evidence

for the CBI’s mapping capabilities. Since our goal is to evaluate the polarization

performance of the system, we focus on comparisons of m and χ to the exclusion

of I.

5.5.1 3C273

The polarized radio galaxy 3C273 provides our best test of the internal consistency

of the polarization calibration. 3C273 is a bright, moderately polarized extragalac-

tic radio source whose region of polarized emission is unresolved by both the CBI

and the VLA. 3C273 was observed on a routine basis during the 08h field observa-

tions with the CBI, and throughout the concurrent VLA polarization monitoring

campaign on 3C279. A comparison of the CBI measurements of 3C273 with the

data from the VLA tests the precision of the reduction pipeline.

The analysis of the CBI observations of 3C273 required several departures

from the standard technique for 3C279. Most of the CBI observations of 3C273

consisted of single 5m scans, without trails, so the short baseline visibilities were

corrupted by spillover. The lack of trails does not prevent the use of these data,

however, because spillover has no discernable effect on baselines longer than ∼150
cm; we simply deleted the short baselines. In addition, the 3C273 observations

consisted of single scans, which for extended structure would preclude the use of

the data for polarization; as noted in Section 2.2, observations separated by a deck

angle of 180◦ are required to obtain the full polarization characteristics—LR and
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RL, or equivalently, Q and U—of the source. For unresolved sources at the phase

center, however, Q̃ and Ũ are both real, so the polarization of 3C273 is readily

obtained from the calibrated LR visibilities. Because 3C273 is unresolved, all of

the baselines view the same LL structure, so we can apply the leakage corrections

to all LR baselines, even those which lack LL matches.

Figure 5.16 provides a comparison of the CBI and the VLA results for the

polarization of 3C273. This comparison required some interpolations. The shaded

regions denote the periods during which the 08h field was observed; some deep

field observations were not accompanied by 3C273 observations simply due to low

lunar elongations or truncated observing schedules.

The comparison in Figure 5.16 shows that the CBI does a fair job of recovering

the polarization characteristics measured by the VLA for 3C273. If we exclude the

22mar00-25mar00 observations, the mean fractional polarization discrepancy be-

tween the CBI values and the VLA values for m is 〈∆m〉 ∼ 0.0025; this systematic
offset corresponds to ∼ 5% of m or < 1% of the total intensity. The mean discrep-
ancy for χ is 〈∆χ〉 ∼ 2◦, or ∼ 5%. These offsets agree, and they are marginally
consistent with the cumulative uncertainties in the interpolations of the VLA data

for 3C279 (3-5%) and 3C273 (2-5%).

We excluded the 22mar00-25mar00 data from the analysis above; these obser-

vations were calibrated on Tau A, and the corresponding values for m and χ are in

poor agreement with the VLA values. The mean fractional polarization discrep-

ancy for Tau A is 〈∆m〉 = 0.0012, or ∼ 20%, while that for χ is 〈∆χ〉 = 7◦, or
18%. These errors, which are significant at the few σ level, point to an error in the

Tau A model which provided the calibration. The visibility errors suggested that

the Tau A model had ∼ 10% too much LR flux, and this comparison supports this
hypothesis given the combined errors in the interpolations for 3C279 and 3C273.

5.5.2 3C274

3C274 (M87, Virgo A) is a nearby giant elliptical galaxy which served as the pri-

mary total intensity calibrator throughout the 08h field observations. 3C274 is an
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Figure 5.16: Comparison of 3C273 as measured with the CBI (points) and the
VLA (lines with ±1 σ bands). Shaded regions denote times during which the
deep fields were in view. The first four dates in late March are dates whose data
were calibrated on Tau A; the fractional polarization on these dates shows a clear
systematic offset relative to the expected values, a problem which is no doubt a
consequence of the Tau A model. Since m and χ are in the high S/N limit, no
correction was made for bias from the noise in P .
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outstanding total intensity calibrator because its large emission region limits the

temporal variations in its total intensity. 3C274 is also marginally polarized at cen-

timeter wavelengths, and this characteristic, coupled with its high stability, makes

it a good source on which to test the repeatibility of the polarization calibration

for the duration of the 08h field observations. 3C274 was observed each night for

a single 5m scan, without trails, immediately prior to the 3C273 and 3C279 obser-

vations discussed above. The reduction of the 3C274 data was identical to that for

the 3C273 observations. 3C274 was observed on ∼ 75% of the nights of the 08h

deep field observations, and none of the nights of the 20h deep field observations.

The 3C274 observations provide an upper limit on the combined variability

of the calibration and the polarization of 3C274. Figure 5.17 shows the 3C274

polarization data as measured by the CBI. The fractional polarization varies about

a mean of 4.1% with a fractional rms of σm/〈m〉 = 15%, although the figure shows
that the scatter is not noiselike. In fact, the fractional polarization tends to cluster

in groups in a manner that suggests that the polarization calibration or the source

undergoes systematic errors from epoch to epoch. The peak to peak scatter in

the groups is ∆m ∼ 0.015, which is larger than the 5% uncertainty in the VLA
calibration for m (0.05 × 0.1 ∼ 0.005) and the error seen in the 3C273 data (5%
in m). The values for χ are a bit more stable than those for m; they vary about a

mean of 46◦ with an rms of 3◦, or ∼ 7%. It is not unusual to find that the position
angles are in better agreement than measurements of the fractional polarization;

the position angle is the easier of the two quantities to calibrate.

The analysis of the 3C273 observations suggests that the excess polarized flux

for the dates calibrated on Tau A arises from an error in the Tau A model. It

is therefore striking that the 3C274 data for the same dates show no excess (Fig-

ure 5.17); in fact, on these dates (days 82-85) 3C274 appears to have a slightly

lower fractional polarization. This feature, which may be intrinsic to 3C274, com-

plicates our attempts to assess the accuracy of the Tau A model.
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Figure 5.17: CBI observations of 3C274. This source was not monitored with the
VLA.

5.5.3 Centaurus A

Centaurus A (NGC 5128) is a nearby active galaxy whose polarized emission pro-

vides another test of the polarization imaging capabilities of the CBI. Centaurus

A has a rich variety of structure at centimeter wavelengths that extends to angular

scales as large as ∼ 10◦; we will focus on the small, central region which contains
components referred to as the double inner lobes [38]. The DILs are ∼10’ long
and highly polarized at centimeter wavelengths, so they provide a laboratory for

exploring the polarization mapping capabilities of the CBI.

Centaurus A has been the subject of many radio studies, but few permit a direct

comparison with CBI observations because these observations differ in resolution

and frequency from those of the CBI. The observations which permit the best
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comparison with the CBI data are those of Junkes et al. [38], who used the Parkes

64 meter telescope at 6.3 cm to map the DILs with 4.3’ resolution. While this

resolution approaches that of the CBI observations, the frequency at which the

Parkes observations were performed is substantially lower, so a comparison with the

CBI data could be complicated by frequency dependent changes to the polarization.

CBI Observations of Centaurus A

Centaurus A was observed for 6.8h on 08jun00, 13jun00, and 14jun00. We are

particularly interested in the ∼ 10′ core, so to maximize the time on source these
observations exclude trails, and the short baselines were excised from the data.

Figure 5.18 shows the CBI map of the double inner lobes, along with the south-

ernmost edge of the northern middle lobe. The image is centered on the northern

end of the double inner lobe, at which point the total intensity peaks at 20.1 Jy,

the fractional polarization reaches 12% and the position angle is -36 degrees. The

CBI’s resolution of 6.5’ FWHM allows us to discern the polarization gradient along

the two lobes. While the total intensity of the southern lobe agrees with that in

the northern lobe—it peaks at 18.7 Jy/beam—the polarization characteristics of

the southern lobe are strikingly different; the fractional polarization reaches 3.6%

at the total intensity peak, at which point the PA is ∼ −37◦. Continuing to the
south, the position angle winds around to ∼ 10◦.

Parkes Observations of Centaurus A

The Junkes observations at 6.3 cm are qualitatively consistent with the CBI maps.

Figure 5.19 shows the Parkes map of the total intensity of the DILs with the po-

larization vectors superposed, and Figure 5.20 shows the contours of the polarized

emission. The authors find that over the northern inner lobe the fractional polar-

ization peaks at 13%, while at the peak of the total intensity of the southern inner

lobe the polarization rises to only ∼ 5% at the southernmost edge of the lobe. The
position angle across the two inner lobes is −70◦ < χ < −33◦, and it wraps around
around to ∼ +5◦ along the southern slope of the southern inner lobe. These polar-
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Figure 5.18: CBI map of the double inner lobes of Centaurus A at 31 GHz.
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ization findings are in good agreement with the characteristics inferred from the

CBI observations of Centaurus A; the fractional polarization measurements for the

northern inner lobe agree, while those for the southern inner lobe differ by at most

a factor of two. The authors compare their 6.3 cm observations with their 3.5 cm

maps to be released in a later paper to obtain a rotation measure of -60 rad/m2

towards the central region of Centaurus A; this small rotation measure suggests

that Faraday rotation between these observations and 1 cm will be on the order

of a few degrees, or negligible.7 Given the difficulties in comparing different polar-

ization observations, the agreement between the CBI and the Parkes observations

is good.

5.5.4 W44

Supernova remnant W44 provides another test of the polarization mapping capa-

bilities of the CBI; it has several janskys of polarized emission at 1 cm, and its size

of ∼30’ matches the CBI’s primary beam. The remnant has a pear-shaped shell,
with a distinct asymmetry arising from the steep density gradient in the immedi-

ate neighborhood of the remnant [19]. W44 is a composite remnant because its

emission is divided between a steep spectrum shell and a flat spectrum core. There

is little quantitative discussion in the literature of its polarization on arcminute

scales and at GHz frequencies.

CBI Observations of W44

The CBI observed W44 for a total of 2.6h on 22jun00 and 24jun00. These observa-

tions were accompanied by trails. The data were calibrated on 3C279. Figure 5.21

shows the CBI map of W44 after being restored with a 8.6′ × 7′ beam. This po-
larization map was obtained by cleaning the maps for I, Q, and U down to the a

noise level of ∼ 50 mJy/beam peak to peak, so the S/N in I is ∼ 50 and the S/N in
P is ∼ 8 over much of the source. Since we are primarily concerned with the frac-

7Burns suggests that the SW lobe is more strongly depolarized because it is behind the source,

so radiation from the Southern Lobe encounters more depolarization from the ISM [12].
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Figure 5.19: Parkes 6.3 cm map of the total intensity of central region of Cen A;

contours are in mJy/beam.
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Figure 5.20: Parkes 6.3 cm map of the polarization of central region of Cen A.
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Figure 5.21: CBI map of supernova remnant W44 and the galactic HII region
G34.3+0.1

tional polarization, no correction was made for the CBI primary beam, although

removing the beam would have the effect of adding additional total intensity flux

to the edge of the remnant. The CBI maps show that the fractional polarization

peaks at ∼ 33% on the Northwestern slope of the source, and across the center
of the source it is relatively uniform at 10-12%. While the position angle varies

across the source, it is roughly uniform at ∼ 60◦ across most of the emission in
total intensity.

The neighborhood of W44 contains a galactic HII region which provides an ad-

ditional demonstration of the CBI’s polarization capabilities. The emission from
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this source, G34.3+0.1, is due to free-free emission, so the source should be unpo-

larized. The fractional polarization at the total intensity of the emission is ∼ 0.5%,
so we may conclude that the CBI is not creating spurious polarization at more than

the 1% level. It is probably not correct to infer that the leakage correction is good

to this level, however, because the image is the sum of visibilities measured at a

variety of deck positions, and any leakage errors will add incoherently and will thus

be suppressed. Nor does this test allow us to argue that the CBI is not suppressing

real polarized emission on the sky. At a minimum, however, this map suggests that

qualitatively, the CBI’s mapping capabilities are consistent with expectation.

NRAO 140′ Observations of W44

Kundu and Velusamy used the NRAO 140′ telescope to map W44 at 10.7 GHz

with a 3′ beam [45]. Figure 5.22 shows their map of the source. The authors find

that the fractional polarization peaks at ∼ 20% along the NE edge, and it remains
uniform over the dominant region of emission along the east side of the source.

At the peak of emission in total intensity the authors find that the fractional

polarization fractional polarization m ∼ 20%. They do not note a position angle,
although the figure shows that the position angle agrees qualitatively with the

position angles measured by the CBI. The maps also agree qualitatively in the

extent of the polarized emission across the source. No other data in the literature

come nearly as close to matching the CBI’s resolution and frequency coverage.

5.5.5 G326.3-1.8

SNR G326.3-1.8 is a composite SNR; it consists of a bright central source and

a low surface brightness shell [21]. G326.3-1.8 has been studied by a number of

authors, although, as with W44 and Centaurus A, comparisons are hampered by

resolution and wavelength-dependent effects.
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Figure 5.22: Map by Kundu and Velusamy of W44 at 2.8 cm with a 3′ beam.

CBI Observations of G326.3-1.8

The CBI observed G326.3-1.8 for a total of 1.3h on 07jul00 and 12aug00. The

CBI images show a smooth plateau of emission punctuated by a bright region of

emission from the plerion near the center of the remnant. The emission across the

plateau is typically ∼0.8 Jy/beam, and the emission from the plerion rises sharply
to 7.6 Jy/beam at the peak. The fractional polarization across the plateau is quite

large—it averages 20-30%, while the fractional polarization across the plerion drops

to ∼8%. The EVPA differs between the two components as well; on the shell the
EVPA is typically -20◦ to -30◦, while at the plerion it winds around to ∼ 10◦.

Parkes Observations of G326.3-1.8

Milne et al. have mapped G326.3-1.8 at 8.4 GHz with the Parkes 64 meter tele-

scope; the authors provide maps of the source which have been smoothed to

4.6′ [53]. Their 8.4 GHz map (Figure 5.24) does not permit a quantitative com-

parison with that from the CBI, but the qualitative agreement between the two is

immediately apparent. Milne finds that the fractional polarization at the peak of

the total intensity is ∼ 10%, while on the surface of the shell it rises to ∼ 20%.
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Figure 5.23: G326.3-1.8 map obtained with the CBI.

These values generally agree with those from the CBI. The change in position an-

gle across the source in the Parkes map resembles that for the CBI map as well.

5.6 Conclusions

Our paramount concern throughout this work is the calibration, and the most

important result of this chapter is an estimate of the uncertainty of the deep field

calibration. Our efforts to assess this uncertainty are hampered by the paucity of

calibrators, the differences in calibration techniques, and the small number of sup-

porting observations which parallel the deep observations. We attacked this prob-

lem from two directions: for the data calibrated on 3C279 we adopted a bottom-up

approach in which we propagate the errors in all of the factors which affect the cal-
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Figure 5.24: G326.3-1.8 map from the parkes 64 meter telescope at 8.4 GHz [53]
The map has been smoothed to 4.6′ by the authors.

ibration, while for the data calibrated on Tau A we employed a top-down approach

in which we used the supporting observations to infer the calibration uncertainty.

The limited amount of data is such that neither approach is ideal, so we choose a

compromise between the two.

The 3C279 calibration is the most amenable to analysis. The mean uncertainty

in the amplitude and phase for the VLA values of m and χ can be as high as 10%,

although for most dates the errors are far smaller. The analysis of the values

for m and χ from the CBI observations of 3C273 implies 3% uncertainties in both

amplitude and phase, while the scatter in the uncertainty ratio σLR/σLL suggests a

6% amplitude calibration error. The former test does not reflect the uncertainty in

the absolute calibration of the CBI, while the latter does. We adopt a conservative

5-10% uncertainty for the 08h field data calibrated on 3C279. The analysis of the

visibility uncertainties for the 20h field data calibrated on 3C279 is a somewhat

more problematic, as these data suggest a consistent 4% deficit in polarized flux



225

for 3C279; we adopt a conservative 10% uncertainty for these data.

In Chapter 3 we used dead reckoning to calibrate the deep Tau A observation

of 11jan00, and the model obtained on this date was applied to many of the

subsequent 08h and 20h deep field observations. One important result of this

chapter is that a variety of tests suggest that the Tau A model has ∼ 10% too much
polarized flux; this excess is seen in the visibility uncertainties and the supporting

observations of 3C273. And yet the CBI data remain inconclusive; the test on

3C279 on 01mar00-05mar00 discussed in Chapter 3, coupled with the tests on the

leakage, suggest that the model is better than 10%, and the 3C274 LR data show

none of the behavior seen in the 3C273 LR data. For the sake of argument we can

assume that the Tau A model has ∼ 10% too much polarized flux, and evaluate the
leakage after scaling Q and U components by 0.9. Figure 5.25 shows the results of

this analysis for the pair of baselines considered in Chapter 3; the figure shows that

the the effect of scaling the polarized flux in the model by 0.9 is at best marginal

for the two baselines in question. A quantitative comparison of all of the leakages

shows that while the leakage amplitudes obtained with the standard Tau A model

exceed the values obtained from the deep 06feb00 observations by 〈∆εA〉 = 3.1%,
the amplitudes obtained with the scaled Tau A model fall short of the 06feb00

values by 〈∆εA〉 = 7.2%. We see that while the 10% change in Tau A’s polarized
flux translates into a ∼ 10% change in the leakage amplitude, both Tau A models
straddle the expected value. The phase offset for the leakage 〈∆εφ〉 ∼ 10%, and
the 90% amplitude scaling does not affect this result. In light of these problems,

we adopt a uniform 10% uncertainty for the amplitude and the phase of the Tau

A model. In Chapter 6 we explore the effects of systematic calibration errors on

the best fit bandpowers for the CMBR data.
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Figure 5.25: Cross check on the Tau A model using leakages. Triangles denote
leakage derived with Tau A Model 1, and circles denote leakage obtained after
Model 1 has been scaled by 0.9. The comparison shows that for these two baselines
the leakage is fairly insensitive to a 10% change in the fractional polarization of
the model, although for all baselines the scaling of 0.9 widens the discrepancy with
respect to the reference leakage (3C279; squares) from ∼ 3% to ∼ 7% (see text).
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Chapter 6

Likelihood Analysis of the LR Visibilities

6.1 Introduction

The simple χ2 test discussed in Chapter 5 suggests that the LR visibilities are

dominated by noise, and the images of the deep fields support this conclusion.

The χ2 test makes a gross approximation, however, because it fails to consider the

high degree to which the visibility data oversample the underlying fluctuations,

and a complete treatment must accommodate these correlations. We adopt a

maximum likelihood power spectrum estimator to test the LR visibilities for the

presence of a polarization signal and evaluate the likelihood for a range of trial

polarization spectra. The trial spectrum that maximizes the likelihood is the best

estimate for the underlying spectrum. This chapter discusses the details of the

maximum likelihood calculation for the LR visibilities, and presents limits on the

polarization of the CMBR in the 08h and the 20h deep fields.

6.2 Method of Maximum Likelihood

The method of Maximum Likelihood rests on Bayes’ theorem of conditional prob-

ability. The signal reflects an underlying theory, and we want to estimate the most

likely spectrum of fluctuations, q, given the data, x. Unfortunately, this quantity

cannot be computed directly, but Bayes’ theorem tells us that this unknown is

proportional to a quantity that we can compute: the theory which is most likely
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to produce our data. Bayes’ theorem states that P (x ∩ q)—the joint probability
of x and q—can be expressed in terms of conditional probabilities:

P (x ∩ q) = P (q|x)P (x) = P (x|q)P (q) (6.1)

where P (x) and P (q) are the priors for x and q.

This simple statement is the basis of the method of maximum likelihood. In

the case at hand, our goal is to determine the peak of P (q|x): the most likely
spectrum q given the data x. We cannot directly compute this quantity, but since

it is proportional to P (x|q), we simply search for the theory which is most likely
to produce the data, and that theory provides our best estimate. P (x|q) is the
likelihood L(x|q) of the data given the theory. The prior probabilities P (x) and
P (q) are constant—we have one realization of the data, and we assume a uniform

prior for the theory—so these factors do not affect the maximization procedure.1

The first task is to compute the likelihood L(x|q). The likelihood is simply the
joint probability distribution function of the Nd visibilities, the real and imaginary

components of which are assumed to be Gaussian. The width of the autocorrelation

of the illumination pattern in the aperture domain, σp, coupled with our standard

observing strategy, results in correlations between the visibilities given by the

covariance matrix C. For Gaussian random variables x, the likelihood has the

form

L(x|q) = 1

πNd |C|exp
[

− xtC−1x
]

(6.2)

|C| denotes the determinant of C. The vector x contains Nd complex visibilities:

x = {V1,V2, ...VNd}. For computational simplicity, we follow the standard practice
and work with the log-likelihood:

ln[L(x|q)] = −Ndln[π]− ln[|C|]− xtC−1x (6.3)

1In principle, we can use existing measurements of {Ω0, ΩΛ, Ωbh2,...} to weight regions of
parameter space and thereby assign probabilities to the corresponding values for C`, but for this

work we assume a template for the spectrum that is neutral to the underlying physics.
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The spectrum which maximizes the log-likelihood provides the best estimate of

the spectrum that is most consistent with our data.

The covariance matrix includes the correlations between all pairs of visibilities;

it is the sum of the theoretical correlation M and the measurement uncertainty

N: C = M(q) + N. The first term embodies our a priori understanding of

the correlations between the visibilities; it is obtained from the window matrix

W, which describes the correlations produced by the observing strategy, and the

spectrum q. The spectrum represents our hypothesis about the nature of the

correlations. N is obtained from the uncertainties which accompany the visibilities.

Despite the simplicity of this prescription, there are a number of ways in which

the components of the likelihood can be assembled, and these choices affect the

performance of the computational algorithm; we review these issues in the section

that follows.

6.3 Implementation Considerations

We have considerable latitude in carrying out the likelihood calculation. There are

many compromises between speed and precision; as one endeavors to improve the

accuracy of the analysis, the computation can balloon to unmanagable proportions.

The polarization likelihood analysis routine for this thesis was implemented in

Mathematica, which sacrifices speed for transparency. A single iteration of the

routine does not require a significant amount of time, but the time required to test

the procedure with many simulations becomes prohibitive for all but the simplest

implementations. This section discusses several assumptions which were necessary

to keep the likelihood calculation tractable. The likelihood calculation requires

the manipulation of Nd dimensional matrices, and since the time required for

these procedures can scale as N 3d , we must keep the covariance matrix as small

as possible. These choices affect all parts of the likelihood calculation: the data

vector x, the spectrum q, the window matrix W, and the noise matrix N. We

characterize the effects of these approximations with simulations in Section 6.4.
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6.3.1 Visibility Averaging

The hundreds of hours of observations of the two deep fields have generated thou-

sands of visibilities in each of the ten CBI channels. Since the dimension of the

covariance matrix scales with the number of visibilities, the visibilities must be

combined to minimize Nd. We averaged the LR visibilities in two passes. We first

averaged all of the visibilities at each (u, v) point. The 08h field observations were

performed at equally spaced deck positions; first 20◦ steps (configuration 1), then

30◦ steps (configuration 2), so there are 18 and 12 LR visibilities, respectively, for

each baseline and each channel for the 08h observations.2 The strategy for the

20h field observations was the same as that for the configuration 2 observations

on the 08h field. Each of these points has been sampled hundreds of times during

the observations, and the first average is taken over the nj samples at each unique

(u, v) point j:

V̂j =
∑nj
i viwi
∑nj
i wi

(6.4)

The real and imaginary data are averaged separately. UVSUB computes the weight

wi for each scan from the ∼ 50 integrations which constitute the scan, and after
averaging all scans at each (u, v) point, the uncertainty for the visibility in Equa-

tion 6.4 is

σ̂2j =

∑nj
i σ2w2i
∑nj
i w2i

=
1

∑nj
i σ2i

(6.5)

As discussed in Chapter 5, we scale the variance in the real data by the factor

of β = 1.06 to account for the bias in this estimate of the uncertainties. The

simulated visibilities have uniform noise, so this correction is not applied to the

simulated data.

The second average is taken over the ten CBI channels, and in this regard

the LR analysis departs from that for LL. The ten channel average decreases

the dimension of the covariance matrix by a factor of ten, but does so at the

cost of lost information because the channels at the band edges sample different

2Antennas which formed identical baselines with RX12 given the choice of deck stepsize, such

as RX3 and RX8 in configuration 2, sample the same (u, v) point and are thus averaged together.
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scales.3 We might expect that this loss is most acute on the long baselines because

the separation between the band edges relative to the size of the autocorrelation

function of the illumination pattern increases with increasing `; in Section 6.4 we

explore the effect of the ten channel average, at which point we will see that this

hypothesis is correct.

These two averages permit a significant improvement in the speed of the calcu-

lation. The unaveraged data set consists of 33980 visibilities for the 08h field and

54577 visibilities for the 20h field. The two averages reduce these quantities to 185

complex visibilities for the 08h field and 149 visibilities for the 20h field—one band

average for each unique (u, v) point—each of which is accompanied by a weight.

Later we will truncate the covariance matrix further by binning the visibilities by

baseline length.

6.3.2 Reals and Imaginaries

We have several options for how we construct the covariance matrix. Since the

visibilities are complex,

Vp = VRp + iVIp (6.6)

for visibility p. We have two choices: we can compute the covariance directly

from the complex visibilities, or we can consider the real and imaginary compo-

nents separately. In the former case, the covariance matrix is complex and has

dimension Nd, while in the latter it is real and has dimension 2Nd. The former

approach is the faster of the two, but the additional book-keeping introduced by

the manipulations of complex quantites negates many of the enhancements derived

from the smaller matrix. Additionally, while the real and imaginary components

of the visibilities are Gaussian, the complex visibilities occasionally are not, so the

complex covariance matrix, when computed from 〈VjV∗k〉, does not always fully
describe the distribution of the visibilities.

The method by which we treat the real and imaginary components of the

3In addition, this average erases the spectral information about the signal.
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visibilities has additional ramifications for the covariance matrix. The extent of

the autocorrelation function of the illumination pattern in the aperture plane is

sufficiently large that for short baselines the visibility at a point up overlaps with

those at uq and −uq; we must therefore consider both correlations: 〈VpV∗q 〉 and
〈VpVq〉.4 Adopting the notation used by Hobson [32], we express the covariance
matrix elements in terms of the real and imaginary components:

Mpq = 〈VpV∗q 〉 = 〈(VRp + iVIp )(VRq − iVIq )〉 (6.7)

Mpq = 〈VpVq〉 = 〈(VRp + iVIp )(VRq + iVIq )〉 (6.8)

so that,

C =







〈VRVR〉 〈VRVI〉
〈VIVR〉 〈VIVI〉






=
1

2







Re[M+M] −Im[M−M]
Im[M+M] Re[M−M]






+N (6.9)

which has dimension 2Nd. In this approach, the data vector is a real vector of

length 2Nd: x = (VR,VI).

6.3.3 Visibility Window Function

Our instrument and observing strategy result in a high degree of correlation be-

tween the visibilities, and the likelihood routine must take these correlations into

account. This covariance is quantified by the window matrix of Chapter 2. The

observing strategy determines the shape of the window matrix: the point up de-

termines the sampling in the aperture domain, and the autocorrelation function

of the illumination pattern spreads the response at up across an area of size σp in

the aperture domain. If the visibilities are more than σp apart, for example, the

covariance matrix will be very nearly diagonal. For the CBI observing strategy σp

is sufficiently large to encompass neighboring visibilities, and this gives rise to a

high degree of correlation which is most pronounced on the short baselines. Since

4Beyond visibility separations which are greater than σp the conjugate correlations are negli-

gible.
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σp affects the coupling between the antennas, it is an integral component of the

window matrix. The window matrix elements are given by

Wpq = κpκq

∫

∞

−∞

∫

∞

−∞

Ãp(up − v)Ã∗q(uq − v)d2v (6.10)

Wpq = κpκq

∫

∞

−∞

∫

∞

−∞

Ãp(up − v)Ãq(uq + v)d2v (6.11)

where Ãp(up − v) is the autocorrelation of the illumination pattern at the point
up; the subscript p on Ã reminds us that σp is a function of the frequency of the

sample at up.

The shape of the autocorrelation of the illumination pattern is an important

component of the window function calculation. The CBI’s primary beam is nearly

Gaussian; the feed illuminates the primary reflector with a Gaussian pattern, but

the secondary reflector obscures the central part of the illumination pattern, and

the edges of the primary reflector truncate the wings of pattern. We performed

beam pattern measurements on 3C274 for the total intensity analysis; Figure 6.1

compares the best fit beam pattern with a Gaussian approximation. These mea-

surements focused on the amplitude of the beam; we assume that the beam does

not impart spurious changes to the phase, and the lack of significant change in

phase of the leakage measured at the half-power points (Section 3.3.1) supports

this conclusion.

The analysis presented in this work assumes that the beam is Gaussian. The

autocorrelation function of the beam centered at a point up has the form

Ãp(up − v) =
1

2πσ2p
exp
[ −1
2σ2p
(up − v)2

]

=
1

2πσ2p
exp
[ −1
2σ2p

(

u2p + v
2 − 2|up||v|cos[θp − θv]

)]

(6.12)

and that at the conjugate point is similar,

Ãp(up + v) =
1

2πσ2p
exp
[ −1
2σ2p
(up + v)

2
]
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Figure 6.1: CBI primary beam comparison. The best fit curve is obtained from
beam map observations of 3C274. The beammap data are best fit by a Gaussian
illumination pattern between radii of 7.5 cm and 45 cm which is then inverted to
obtain the beam. The Gaussian approximation has a FWHM of 45.2′ (31 GHz/ν);
this approximation is chosen to have a FWHM which matches that of the best fit
to the real data. By definition, the beams have unit response at the boresight.
POLFAKE can generate simulated skies with both beams seen in the figure.

=
1

2πσ2p
exp
[ −1
2σ2p

(

u2p + v
2 + 2|up||v|cos[θp − θv]

)]

(6.13)

The sign change follows from mapping of up → −up. The denominator in the
argument of the Gaussian sets the size of the autocorrelation of the beam:

σ2p =
2ln[2]

π2a2p
(6.14)

The factor of ap is the FWHM of the beam on the sky, which we obtain from the

best fit to the beam measurements: ap = 45.2
′(31 GHz/ν). The standard practice

is to integrate the window function over θv to obtain the azimuthally averaged

function Wpq(v); this form provides a direct measure of the response in ` space

under the flat sky approximation. In Section 6.4 we use simulations to explore the



235

validity of the Gaussian approximation.

Figure 6.2 shows the diagonal visibility window functionsWpp(v) for both fields.

The autocorrelation of the illumination pattern sets the widths of the functions

in ` space: ∆` ∼ 420 (FWHM). The most striking feature of this figure is the
decrease in the window functions with increasing `. Loosely speaking, a baseline

of length |v| samples scales θ`=2πv under the flat sky approximation, so a baseline
which corresponds to a length ` fills the primary beam with ∼ Ωp/θ2` independent
estimates of C`. The rms of the fluctuations within the primary beam decreases

with the number of fluctuations, which in turn scales as
√

Ωp/θ2` ∼ `, so the window
functions, which measure the response to fluctuations of fixed brightness, decrease

as 1/`.

6.3.4 Noise Covariance Matrix

We obtain the noise from the visibility weights, which are determined from the

scatter in the visibilities during each scan. As we saw, the noise in the LL visibil-

ities can be ∼ 20% higher than the values predicted, and the LR visibilities are
∼ 5−10% higher still due to the lower sensitivity in our RCP receiver. We assume
that the noise between different visibilities is uncorrelated, so the noise covariance

matrix is diagonal.5

Section 6.3.2 discusses two approaches for constructing the covariance matrix

given that the visibilities are complex; in parallel with these choices, there are two

options for the noise covariance matrix. If we treat the elements of the data vector

as complex quantities, the corresponding noise matrix has the form

Npq = δpq(σ
R
p σ

R
q + σ

I
pσ

I
q ) = 2δpqσ

R
p σ

R
q (6.15)

The cross terms between the reals and imaginaries are negligible because the

quadrature calibration ensures that the two components are orthogonal at the

5Coupling between the antennas, for example, would produce off-diagonal matrix elements in

the noise matrix, but there is no evidence for a false coupled signal in the data.
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1% level; the quadrature calibration also ensures the real and imaginary uncer-

tainties are equal. Alternatively, if we separate the reals and imaginaries to form

a covariance matrix of size 2Nd, we separate the reals and imaginaries in Equa-

tion 6.15 to form identical diagonal submatrices for the 〈VRVR〉 and the 〈VIVI〉
quadrants of the covariance matrix. The terms of the noise covariance matrix are

given by

Npq = δpqσpσq (6.16)

This is the expression which we apply to the covariance calculation.

6.3.5 Input Power Spectrum

The source spectrum has more degrees of freedom than any other component of

L(x|q). CMBFAST generates values for CEE
` and CBB` over our region of interest

in `, and we are free to insert these values into Equation 6.2 after the appropriate

flat sky mapping to v. This approach adds a significant degree of complexity to the

likelihood calculation, however, because it introduces a large space of trial parame-

ters to be explored; we can incorporate physical considerations in the analysis, for

example, by computing C` over a grid of cosmological parameters and evaluating

the likelihood of each model. In this case we would also weight the likelihoods

by the priors for the model parameters. This approach introduces a bias into the

analysis, however, because it imposes a matched filter on the data, and it precludes

transparent comparisons with other experiments, so we do not apply this approach

for this work.

To simplify the problem we adopt the common convention and apply a trial

spectrum that is constant across specific bands in `. Under this assumption of flat

band power we introduce a spectrum which is piecewise flat (qi ∼ `(`+1)C` ∼ con-
stant) for each of the Nb bands [9]. This template also permits direct comparisons

with flat bandpowers from other experiments.6 The trial amplitudes qααi for each

6The DASI polarization effort demonstrated the virtues of considering a shaped spectrum; they

improved the significance of their detection by applying a spectrum whose shape was determined

by the cosmology obtained from a concordance fit to the total intensity data [44]. Shaped trial
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band i are related to the brightness fluctuations by

qααi =
(δT

T

)2
=
`(`+ 1)

2π
Cαα` = 2πv2Cαα(v) ⇒ Cαα(v) =

1

2πv2
qααi (6.17)

where αα = TT,EE, or BB, and we have used the flat sky approximation to

relate ` to v: ` = 2πv for large `. We insert Cαα(v) into the theory covariance

matrix. The spectrum is often expressed as C`, which is related to C` by

C` =
`(`+ 1)

2π
C` (6.18)

This notation is convenient because C` is constant for flat band power.

B Modes

The full description of the polarization of the CMBR requires both E(x) and B(x).

Recall that

Mpq = 〈VLRp VLR∗q 〉 ∼ (Ẽ − iB̃)(Ẽ∗ + iB̃∗) ∼ (CEE` + CBB` ) (6.19)

Mpq = 〈VLRp VLRq 〉 ∼ (Ẽ − iB̃)(Ẽ − iB̃) ∼ (CEE` − CBB` − 2iCEB` ) (6.20)

Symmetry requires that CEB` = 0 [ref]. In the presence of E and B modes, the

threoretical component of the covariance has the form

M =
1

2







Re[ΣCW +∆CW] −Im[ΣCW −∆CW]

Im[ΣCW +∆CW] Re[ΣCW −∆CW]






(6.21)

with

ΣC = C
EE(v) + CBB(v); ∆C = C

EE(v)− CBB(v) (6.22)

This is the expression for the covariance that we insert in the likelihood.

spectra have great importance for polarization in particular because the peak to peak variations

in CEE` and CTE` are greater than those for CTT` ; C
TE
` , in fact, is expected to have multiple zero

crossings on ` = 200→ 2000 scales, and flat band power would artificially suppress this power.
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In the analysis that follows we will assume that CBB
` = 0. Given the absence

of direct measurements of CBB
` , this assumption is not ideal, but it is forced upon

us by the computational limitations, and it does have some observational support.

Increasingly precise observations of the total intensity of the CMBR are providing

compelling evidence for families of models which predict CEE
` >> CBB` on CBI

scales. In addition, none of the existing polarization observations have detected

the presence of B modes [89].

Trial Spectra

While the assumption of flat band power permits vast simplifications in the com-

putation of the likelihood, it still provides discretion in how the problem is cast.

In particular, we must decide how to sort the data in `; we must still choose band

centers and band widths, and these choices affect the outcome. Two competing

factors affect the band assignments. We could define a single band of sufficient

width (` ∼ 3000) to include all of the baselines and thus put all of the visibil-
ities in the service of a single limit. The loss of information in this approach,

however, outweighs the benefits; since the number of independent fluctuations in

the (u, v) plane increases with increasing |v|, or equivalently, for increasing `, the
S/N per fluctuation falls like 1/`—sufficiently rapidly that the likelihood soon be-

comes dominated by noise. This consideration favors narrow bins. And the CBI

introduces an innate scale size; the CBI’s natural sampling scale is the size of the

autocorrelation function of the illumination pattern which, when measured in `,

has FWHM ∆` ∼ 560.
We adopted a simple approach to binning the data in `. With this approach the

(u, v) data are sorted into bands based on |v|, and the likelihoods for the bands are
evaluated separately without regard for the correlations between the neighboring

bands. This method is equivalent to sorting the LR baselines by length and treat-

ing each set as an isolated experiment, and while this approach is computationally

desirable, it has a serious shortcoming. The tails of the window functions for a

particular band extend into the neighboring bands, and the resulting correlation
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must be taken into account with a joint fit to all bands. The latter approach is the

more accurate of the two, but the attendant increase in computational expense is

considerable. We discuss both approaches in this section.

Independent Bands

The independent binning scheme adopted for the polarization limit follows from

the geometry of the array configurations. The minimum antenna separation of

100 cm provides a natural scale for the band demarcations because the antenna

separations for the LR baselines tend to be grouped in multiples of this length. We

defined three bins centered on |b| ∼ 100, 200, and 300 cm, which correspond to ` ∼
630, 1260, and 1890. When the likelihood is evaluated, the limits of integration—

the bounds on |v|—are taken to be sufficiently large to encompass all of the power
in the window function, so in this case the band boundaries serve only to sort the

baselines which sample the scales of interest for the bin.

Table 6.1 lists the bins used for the analysis of the 08h field, and Table 6.2

lists the bins used for the analysis of the 20h field. Figure 6.2 shows the diagonal

elements of the visibility window functions for this choice of bands. We use the

same bands for both fields to enable a joint fit to both fields after the fields have

been fit separately. These bins are highly correlated, and in the absence of a

correction for the correlation, it is not valid to report all three limits from the bins

together; with this approach, we can state that the data support a limit for band 1

or band 2, for example, but not both.7 Figures 6.3 and 6.4 show the (u, v) coverage

for the two deep fields; the heavy circles in the figures denote the demarcations

between the three bands.

Correlated Bands

The remedy for the high correlations described above is to expand the covariance

matrix to include the correlations. We construct Nb window matrices, each of

7Bins 1 and 3 are sufficiently far apart that we can report limits for those two bins together

without fear of making a serious error.
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Figure 6.2: Visibility window functions, diagonal elements. This figure shows the
band scheme adopted for this work; the baselines were sorted into three bands
based on the natural demarcations between baseline lengths. The figure hints at
the degree of correlation between the fields; bands 1 and 2 are clearly strongly cor-
related for both fields, while for the 08h field, band 3 is only marginally correlated
with band 2. The real correlations are higher because the 30% bandwidth spreads
the functions in ` space.



241

0 < ` < 945 945 < ` < 1575 1575 < ` < 2205

RX b (cm) τ (h) RX b (cm) τ (h) RX b (cm) τ (h)

0 100.0 55.3 2 173.2 53.2 11 300.0 24.8

10 104.1 54.1 — 3 400.0 38.8

— — 6 458.3 38.8

8 100.0 12.0 1 173.2 11.9 0 300.0 11.9

3 100.0 12.0 6 173.2 11.9 9 346.4 11.1

— 7 173.2 11.9 —

— 4 200.0 10.7 —

133.4 99.6 125.4

Table 6.1: Bands for the likelihood analysis, 08h field. The RX column reports the
receiver with which RX12 forms the baseline, and the b column notes the length of
the baseline. The three vertical groupings are the bands, and the two horizontal
groupings correspond to configuration 1 and configuration 2. The bottom row
tallies the total integration time in hours for each band.

which has dimension 2Nd and for which the window matrix elements are evaluated

over the range applicable for the bin, i.e., the ranges in v (or equivalently, in `)

shown in the top row of Tables 6.1 and 6.2. We then scale each matrix by a trial

spectrum qi:

C =
Nb
∑

i

qiWi +N (6.23)

and search for the likelihood peak within the Nb dimensional space of possible

spectra (q1, q2, ..., qi). With this approach, C is largely block-diagonal; most of the

power resides in the blocks which correspond to baselines of similar length. These

blocks resemble the covariance matrices for the independent bands, and they are

surrounded by off-diagonal elements which represent the correlations between the

bands. While this approach is more accurate than the use of independent bins, it

comes at a considerable computational expense; the additional correlations increase
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0 < ` < 945 945 < ` < 1575 1575 < ` < 2205

RX b (cm) τ (h) RX b (cm) τ (h) RX b (cm) τ (h)

3 100.0 77.0 6 173.4 61.6 5 278.4 77.0

8 100.0 77.0 7 173.4 61.6 0 300.0 62.6

1 104.1 77.0 4 200.0 77.0 —

231.0 200.2 139.6

Table 6.2: Bands for likelihood analysis, 20h field. All data were taken with the
array in configuration 3.

the dimension of the covariance matrix to 2Nd, where Nd is the size of the entire

data set, and we must now search an Nb dimensional space—rather than a one

dimensional space—for the best fit values for the components of q. Because of the

prohibitive CPU requirements, we did not explore this avenue for this work.

6.3.6 Joint Fit

We observed two deep fields, and the combined data offer our best hope of a

detection, so we performed a joint fit to the two fields. For two nonoverlapping

fields, the covariance takes the form

CT =







M1 0

0 M2






+







N1 0

0 N2






(6.24)

where the data vector x = (x1,x2). The off-diagonal submatrices vanish because

the fields are uncorrelated, so rather than contend with a block-diagonal covariance

matrix of size 2Nd1 + 2Nd2 we simply evaluate ln[Li] ∼ −ln[|Ci|] − xtiC−1i xi for
each field i and sum the log-likelihoods to find the best fit bandpower for the two

fields.
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Figure 6.3: (u, v) coverage at the band center, 08h field. Heavy circles show the
regions of the (u, v) plane defined by the three bands shown in Table 6.1. Light
circles show the extent of the autocorrelation function of the illumination pattern,
which has width ∆p = 2

√

2ln[2]σp with σp = 28.6 (ν/GHz) at 1 cm. The two sets
of circled points represent baselines whose orientations differ by 60◦ (dashed line).
The figure shows that for fixed baseline separation, the short baseline visibilities
are more correlated than the long baseline visibilities.

6.3.7 RX10

During the configuration 1 observations of the 08h field there were only two base-

lines which sample the (` ∼ 600) scales at which the polarization predicted by
standard models peaks: RX0-RX12 and RX10-RX12. Of these, only RX0-RX12

could be calibrated because RX10-RX12 lacked an LL counterpart under our rou-

tine observing strategy.8 We can approximate the correct calibration for RX10-

RX12, however, because with θ = −16.1◦ and |b| = 104.1 cm,9 it is very close
to RX1-RX6 after the latter has undergone a 20◦ rotation; at that point the two

8RX10-RX12 is parallel to RX7-RX8 after a deck rotation of 87.8◦, for example, but irregular

deck rotations such as this were not part of the routine observations during which we stepped the

deck angle in increments of 20◦.
9For a coordinate system for which the orientation of baseline RX0-RX12 is 0◦.
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Figure 6.4: (u, v) coverage at the band center, 20h field. Heavy circles show the
regions of the (u, v) plane defined by the three bands shown in Table 6.2.

baselines differ in length by 4% and angle by 4◦. By displacing RX10’s position

by a distance of ∼ 4 cm and an angle of ∼ 4◦ relative to its original position, we
place it at a point at which it can be calibrated. We do not, of course, perform

this change physically on the array, but we can reposition the antenna in CBICAL

before calibration in CBIPOLCAL, and use simulations to estimate the error in-

troduced in the best fit bandpowers by this approximation. This position offset

introduces a systematic 2δθ ∼ 8◦ error in the phase calibration for this baseline.
3C279 is unresolved by the CBI, so this change does not corrupt the amplitude

calibration. Since CBIPOLCAL applies baseline-based calibrations, RX12-RX10 is

the only baseline which is affected by this change. We explore the effect of this

change on the best fit likelihoods with simulations in Section 6.4.

6.3.8 Explicit Calculation

We now combine all of the assumptions of this section to obtain a concise expression

for the covariance matrix. The primary anisotropy contribution to the covariance
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matrix is given by Equation 6.21, and the window functions Wpq and Wpq are

given by 6.10 and 6.11, respectively.

Our template for the underlying spectrum permits several simplifications in

the likelihood calculation. The assumption that CBB
` ≡ 0 allows us to write

ΣC = ∆C = CEE(v). We also assume a spectrum which is piecewise flat in `, so

CEE(v) has the form

CEE(v) =
1

2π

1

v2

(δT

T

)2
(6.25)

and we step the trial spectrum across a range of values in units of (δT/T )2. This

term is the sole degree of freedom in the maximization routine. We simplify the

calculation further by sorting the baselines into three bins as function of |v|, or
equivalently `, and evaluating the covariance separately for each band.

The assumption of a Gaussian primary beam simplifies the covariance calcula-

tion because it allows us to express the window matrix elements in terms of Bessel

functions. Upon inserting the flat spectra into the covariance, we obtain

qiWpq =
1

2π

(δT

T

)2
∫

∞

0

Wpq(v)

v
dv (6.26)

and

qiWpq =
1

2π

(δT

T

)2
∫

∞

0

W pq(v)

v
dv (6.27)

for each band i. After multiplying by a factor of two to account for differencing,

integration over θv in 6.10 yields

qiWpq =
1

2π

(δT

T

)2 κpκq
πσ2pσ

2
q

e2i(θp−θq)

×
∫

∞

0
exp
[

−
u2p + v

2

2σ2p
−
u2q + v

2

2σ2q

]

I0[vCpq]
dv

v
(6.28)

where I0[vCpq] is a modified Bessel function of the zeroth kind:

I0[vCpq] =
1

2π

∫ 2π

0
exp
[

vCpqcos[θ]
]

dθ (6.29)
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and the constant Cpq—not to be confused with the spectrum CEE(v)—is given by

C2pq =
u2p
σ2p
+
u2q
σ2q
+ 2
|up|
σp

|uq|
σq
cos[θp − θq] (6.30)

and the factor of κp converts from intensity to brightness temperature:

κp =
2ν2pkBT0

c2
x2ex

(ex − 1)2 (6.31)

with x = hνp/kBT0. The covariance matrix elements for the conjugate points

resemble those for qiW:

qiWpq =
1

2π

(δT

T

)2 κpκq
πσ2pσ

2
q

e2i(θp+θq)e−4iΘpq

×
∫

∞

0
exp
[

−
u2p + v

2

2σ2p
−
u2q + v

2

2σ2q

]

I4[vCpq]
dv

v
(6.32)

and the constant Cpq is identical to Cpq, save a single sign change:

C
2
pq =

u2p
σ2p
+
u2q
σ2q
− 2 |up|

σp

|uq|
σq
cos[θp − θq] (6.33)

The change in sign comes from mapping ∆θ → ∆θ + π for the conjugate point.
Wpq also introduces Θpq, a constant phase:

Θpq = tan
−1
[ |up|sin(θp)− |uq|sin(θq)
|up|cos(θp)− |uq|cos(θq)

]

(6.34)

One must take care in evaluating the expression for Θ because some diagonal terms

are singular.

The preceding discussion presents all of the factors which enter the covariance

calculation. We now make a few final assumptions. CBIPOLCAL applies the par-

allactic angle correction, so we let θj = θk = 0. We also combine the ten CBI

channels to form a single band centered at ν = 31 GHz; under this assumption,

σp = σq = σ, and κp = κq = κ, both of which are evaluated at 31 GHz. Thus we
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compute the covariance as,

C =
qi
2







Re[W +W] Im[W +W]

−Im[W −W] Re[W −W]






+
1

2







N 0

0 N






(6.35)

with qiW and qiW given by Equations 6.32 and 6.33, and N given by Equa-

tion 6.16.

6.4 Simulations

Simulated data are a critical tool for assessing the performance of the likelihood

routine, and they provide insights into effects such as calibration errors which

cannot be understood analytically. The polarization simulation pipeline consists

of a sequence of programs: POLSKY, POLFAKE [65], and CBIPOLCAL. The user

supplies spectra (CTT` , C
EE
` , C

BB
` , C

TE
` ) to POLSKY, which generates maps of

I(x), Q(x), and U(x). The user then feeds the maps, an observing strategy, a pri-

mary beam, and an array configuration to POLFAKE, which simulates observations

of these artificial skies to produce LL, LR, RL, and RR visibilities. POLFAKE

cannot introduce instrumental polarization, but we circumvent this shortcoming

downstream with CBIPOLCAL.

The simulation pipeline was designed to recreate the observations of the 08h

and 20h CBI deep fields. To simplify the interpretation of the simulations, flat

spectra were assumed for CTT
` (

√

CTT` = 60 µK) and CEE` (
√

CEE` = 6 µK), while

the other two spectra were set to zero. Two sets of maps were simulated for each

iteration. The first field was passed to POLFAKE twice to generate visibilities for

the configuration 1 and configuration 2 observations of the 08h field, while the

second field was passed to POLFAKE a single time to generate a set of visibilities

for the configuration 3 observations of the 20h field. The deck rotation increments

were chosen to recreate the strategy used for the real observations; they were set to

20◦, 30◦, and 30◦, respectively, for the three configurations. Although POLFAKE

generates calibrated visibilities, the visibilities were passed to CBIPOLCAL for a
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null calibration. This step was included for consistency, as later simulations were

recalibrated in CBIPOLCAL to explore the effects of calibration errors on the best

fit bandpowers. The configuration 1 and configuration 2 visibilities for the 08h

field were combined with UVSUB, and the data for the two fields were written to

text files for the likelihood analysis in Mathematica.

The simulations depart from the real data in a number of significant ways.

First, the real data span the entire 26-36 GHz band, but to expedite the production

of simulated visibilities many of the simulations focused on a central 1 GHz band.

Section 6.4.2 discusses this aspect of the simulations, and at that point we explore

the question of frequency coverage in greater detail. Second, we compute the

theory covariance under the assumption of a Gaussian primary beam, but we have

seen that the Gaussian approximation disagrees with the real beam at the few

percent level. We investigate the primary beam approximation in Section 6.4.3.

Finally, in Section 6.4.4 we introduce calibration errors into the simulated data,

but we do not approximate the cumulative effect of the ∼ 102 separate calibrations
for the deep field observations; we only explore the effects of systematic calibration

errors on the best fit bandpowers.

6.4.1 Baseline Likelihood Tests

The first test consisted of a set of simulations to establish that the likelihood routine

behaves as desired under ideal circumstances. For these tests we simulated 103 sets

of data, each of which represents 5000 nights of integration, for a single 31-32 GHz

channel. The large number of simulations was necessary to suppress the standard

error on the mean of the distribution of peak likelihoods to levels well below one

µK, and the long integration time ensures that the signal remains well above the

noise for all baselines. These data were calibrated in CBIPOLCAL with a set of

null calibration factors: unity gain (Gr ≡ 1, Gi ≡ 0) and zero leakage. Although
the CBI beam is not a perfect Gaussian, the simulations and the likelihood routine

both used the same beam—a Gaussian with FWHM 45.2′(31.0 GHz/ν)—so the

two procedures are internally consistent. If the routine performs as desired, the
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08h field (µK) 20h field (µK) joint fit (µK)

CEE` band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

6 µK 1 5.99 0.03 5.95 0.03 5.97 0.02

2 5.99 0.03 6.02 0.03 5.97 0.02

3 5.98 0.04 6.03 0.05 6.00 0.03

9 µK 1 9.00 0.04 9.00 0.05 8.99 0.03

2 8.93 0.04 8.97 0.04 8.94 0.03

3 8.92 0.04 8.97 0.04 8.94 0.03

12 µK 1 11.95 0.05 11.93 0.06 11.93 0.04

2 11.89 0.04 11.97 0.05 11.92 0.03

3 11.87 0.05 11.97 0.06 11.91 0.04

Table 6.3: Table of baseline simulation results for null calibration (unity gain, zero
leakage) for a variety of input spectra. In all cases we set CBB` = CTE` ≡ 0. The
three different choices for the spectra demonstrate the linearity of the routine.

mean of the 103 best fit amplitudes should equal the input amplitudes for all three

of the bins listed in Tables 6.1 and 6.2.

The first group of rows in Table 6.3 reports the results of the baseline tests

of the likelihood routine for a single channel centered on 31.5 GHz and an input

spectrum of CEE` = 6 µK. The uncertainties listed in the table were obtained

from the variance of the distribution of best fit bandpowers; the table reports the

amplitude of the mean of the best fit bandpowers (=
√

〈qi〉), and the uncertainties
are the standard errors on the mean. The routine recovers the input spectrum to

within the uncertainties; in all cases the amplitudes are within 1% of the input

values for both the single fields and the joint fit. Figure 6.5 shows the distribution

of the best fit amplitudes for band 1.

The preceding tests established that the likelihood routine returns the input

spectrum to a fairly high degree of accuracy. We augmented this initial test with
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Figure 6.5: Histogram of 103 best fit likelihoods for baseline tests of the joint
analysis pipeline.

several tests on data reflecting progressively larger spectra—CEE` = 9 µK and

CEE` = 12 µK—to test the linearity of the routine. The second two rows of Table 6.3

show the results of these tests; the output amplitudes fall short of the input spectra

by ∼ 1% in the worst cases, but these discrepancies are not significant. These tests
provide great confidence in the accuracy of the routine.

For the real data, the deep field visibilities for the lead and trail fields are dif-

ferenced to excise ground spillover. For very noisy data, as we have here, visibility

subtraction increases the rms of the visibilities by
√
2, so for the likelihood analysis

of the real data we scale the window matrix elements by a factor of two over those

which are required for the undifferenced data, but this is a trivial change and we

carried out our tests on single pointings. To halve the time required to generate

the simulated data, however, most of the data presented in this chapter consisted

of single (undifferenced) pointings. After performing the likelihood tests discussed

above, a set of 103 lead and trail fields were generated to assess the effect of the

field subtraction on the best fit likelihoods; these data were differenced in UVSUB

and passed to the likelihood routine which was modified to reflect the additional
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scatter. These simulations demonstrated that the factor of two fully accounts for

the additional scatter introduced by the visibility subtraction in UVSUB.

6.4.2 Ten Channel Average

We average the ten CBI channels at each (u, v) point to expedite the likelihood

calculation. This assumption reduces the dimension of the covariance matrix by

a factor of ten, but the attendant increase in speed comes at the cost of lost in-

formation because the 30% bandwidth for each visibility subsumes fluctuations

on different scales. In this section we use simulations to quantify the effects of

the ten channel average in the real data. For the channel average test, each set

of simulated maps was observed twice; once with all ten CBI channels, and then

again with only a single central channel. As with the real data, the ten channels

of simulated data for the former case were averaged at each (u, v) point. The inte-

gration times for the two sets of observations were adjusted to force the visibilities

to have identical S/N; they differ by a factor of 10.

Table 6.4 provides the results of this test; the ratios in the bottom row of

the table show that while the error introduced by the band average is marginal

(∼ 4%) on the short baselines, it rapidly becomes significant for increasing baseline
length. This effect can be understood in terms of the window functions; Figure 6.6

compares the diagonal elements of the visibility window functions for the shortest

and longest baselines in the 08h field observations. The figure shows that while

the visibilities at the band edges for the short baselines sample very similar scales

and thus nearly identical fluctuations, those for the longest baselines sample very

different scales, and the additional incoherence introduced in the latter case sup-

presses the measured amplitude by ∼ 20%. The magnitude of this effect is evident
in a comparison of the long baseline amplitudes for the 20h and the 08h data (row

6, columns 1 and 3 of Table 6.4). The longest baseline during the 20h observations

is 300 cm, while that for the 08h observations is 458.3 cm; as a consequence, the

band average over the high ` band suppresses more power for the 08h field than

for the 20h field.
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08h field (µK) 20h field (µK) joint fit (µK)

test band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

∆ν = 1 GHz 1 6.04 0.03 5.99 0.03 6.01 0.02

2 5.94 0.02 6.04 0.03 5.99 0.02

3 5.93 0.03 6.01 0.04 5.94 0.02

∆ν = 10 GHz 1 5.81 0.03 5.79 0.03 5.78 0.02

2 5.25 0.02 5.31 0.02 5.27 0.01

3 4.54 0.02 4.97 0.02 4.72 0.02

ratio 1 0.962 0.007 0.967 0.007 0.962 0.005

2 0.884 0.007 0.880 0.007 0.880 0.005

3 0.766 0.007 0.827 0.008 0.795 0.005

Table 6.4: Table of simulation results: single central channel vs. all channels. The
bottom row shows ratios.

If the standard models are to be believed, the integration times for the two

deep fields are such that none of the bands are expected to yield a detection.

The preceding test reveals the errors introduced by the ten channel average in

the presence of a strong signal. Since we do not expect to detect a signal, we

should consider the effect of the ten channel average on data which are pure noise.

Simulations with a vanishingly small signal show that the distributions of the best

fit bandpowers—nearly all of which are nondetections at the 2σ level—do not

change when the data are averaged. In light of this result, we must use great

caution when applying the scaling in the bottom row of Table 6.4 to the real data.

We will revisit this point in the discussion of the real data in Section 6.5.

6.4.3 Primary Beam Pattern

The likelihood analysis routine assumes that the primary beam pattern for the

CBI is a perfect Gaussian, but the beam pattern measurements (Figure 6.1) show
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Figure 6.6: Comparison of the diagonal window functions for a short baseline
and a long baseline. The two sets of window functions represent the low and
high-frequency channels for each of the two baselines, and the arrows denote the
positions of the band centers. The figure shows that because of the interplay
between the ∼ 30% fractional change in baseline length with the fixed size of
the autocorrelation function of the illumination pattern, the edge channels for the
long baselines measure virtually independent fluctuations while those for the short
baselines are highly correlated.

that the real beam only resembles a Gaussian. The Gaussian approximation vastly

expedites the likelihood calculation because under this assumption the integrals

over the beam in the covariance matrix become Bessel functions, which Mathemat-

ica obtains from installed functions rather than from time-consuming numerical

integrations. The shape of the primary beam affects the likelihood calculation

because the autocorrelation of the illumination pattern determines the correlation

between visibilities. Intuitively, as we increase the size of the beam, we improve

the precision with which we reject all Fourier modes except that which corresponds

to ` ∼ 2πu ∼ 2π|b|/λ; under these circumstances, the covariance matrix becomes
more diagonal because the Ãp(up − v) approach delta functions. In this regard,
our beam approximation is a second order effect: it affects the way in which power

is distributed between the central part of the beam and the wings, which in turn
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affects the likelihood calculation through the degree of correlation in covariance

matrix. We might therefore expect that since the visibilities for the shortest base-

lines have the greatest overlap in the aperture domain, the effect of the beamshape

is most pronounced for the low ` modes; we will show that this is the case.

We can use the simulated data to quantify the effect of the beam pattern on the

best fit bandpowers. We performed two sets of simulations for comparison. The

first set confined the analysis to a single channel to isolate the effect of the beam;

for this analysis, 103 sets of maps were simulated in POLSKY with the standard

CEE` = 6 µK spectrum. These maps were imaged with POLFAKE twice; first

with the Gaussian approximation to the real beam, and again with POLFAKE’s

interpolation of the real CBI beam. Both sets of data passed through the likelihood

analysis pipeline, which assumes a 45.2′ Gaussian beam at 31 GHz for both cases.

The first set of data provides a benchmark for the algorithm’s ability to recover the

input power, while the second mimics the conditions under which the real data

are obtained. The extent to which the best fit bandpowers for the second case

depart from those for the first provides a measure of the effect of the Gaussian

beam assumption on the analysis.

Table 6.5 provides the results of beam pattern tests. The second set of entries

shows the results of imaging the data with a real beam while extracting bandpow-

ers under the Gaussian approximation. These amplitudes are smaller than those

in the first row by as much as 3%, and while these differences are marginally sig-

nificant given the number of simulations, an inspection of the last set of entries

suggests that there is a trend for which longer baselines are less susceptible to

beam shape effects than shorter baselines. Since the illumination autocorrelation

function determines the correlation between visibilities in the aperture plane, this

result depends on the (u, v) coverage of the observations. These tests show that

when we compute the correlation using a Gaussian beam for data which have been

observed with the CBI beam—an assumption that is forced upon us by the con-

siderable improvement in speed—we underestimate the likelihoods by at ∼ 3% for
the shortest baselines, and less for the longer baselines.
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08h field (µK) 20h field (µK) joint fit (µK)

test band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

Gauss beam 1 5.99 0.03 5.95 0.03 5.97 0.02

2 5.97 0.03 6.02 0.03 5.97 0.02

3 5.98 0.04 6.03 0.05 6.04 0.04

CBI beam 1 5.83 0.03 5.80 0.03 5.81 0.02

2 5.87 0.03 5.97 0.03 5.89 0.02

3 5.93 0.04 5.97 0.05 5.95 0.03

CBI/Gauss 1 0.973 0.007 0.975 0.07 0.973 0.005

2 0.983 0.007 0.992 0.07 0.987 0.005

3 0.992 0.010 0.990 0.010 0.985 0.008

Table 6.5: Table of simulation results for two beam patterns, ∆ν = 1 GHz, 103

nights. This table shows that when we compute the likelihood under the assump-
tion of a Gaussian beam for data which have been observed with the real CBI beam,
we underestimate the amplitudes by at most 3%. This effect is most pronounced
on the shortest baselines.

This single channel test ignores the effect of the 30% change in the CBI’s

beamwidth across the CBI band. The beammap data span all ten channels, and

the beams for the ten channels were fit separately; POLFAKE uses these fits for

each of the ten bands when the data are simulated with the CBI beam. Similarly,

POLFAKE applies a simple 1/ν scaling to the Gaussian beam using the beamsize

supplied by the user for 30 GHz as a reference. Based on the results of the single

channel beam test, we might reasonably expect that the effect of the beamshape is

small for all ten channels. A second set of beam simulations were performed to test

this hypothesis, and these results show that the additional frequency dependent

effects in the beamshape are marginal; the dominant effect is the suppression of

signal from the ten channel average at each (u, v) point which we saw in Section

6.4.2.
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6.4.4 Perturbations to the Calibration

The preceding tests explored the effects of the approximations which enter the

data reduction pipeline. Real data suffer from errors in the gain calibration and

the instrumental polarization correction, however, so we must also consider the

effects of these errors on the best fit likelihoods. Recall that the cross polarized

visibility is given by,

VLR = G
[

P ∗e−2iφ + εI
]

(6.36)

Calibration errors enter the visibility through G and ε, so we consider four quan-

tities: GA, Gφ, εA, and εφ. For the purpose of this analysis, we will subsume

systematic errors in I into the errors in ε. The calibration errors can bias the

best fit bandpowers up or down, but we are particularly concerned with the latter,

because effects which reduce our limit can cause us to misinterpret the underlying

physics.

Simulations are necessary to understand the effects of calibration errors on the

best fit bandpowers. Intuitively, we might expect that since ln[L] ∼ P 2, the best fit
bandpowers scale as G−2A . The gain phase Gφ does not lend itself to such a simple

analysis, and the leakages are more complicated still, so we must rely on simulations

to quantify their effects. As noted above, we have four degrees of freedom, but

these four parameters can take a continuous range of values. We do not want to

map this entire space, so we explore the effects of these parameters separately for

a few points which approximate our understanding of the calibration errors, and

if necessary, we apply the attendant corrections to the best fit bandpowers for the

real data.

This simple approach belies an important layer of complexity. Both of the deep

fields contain many tens of nights, each of which has a different calibration which

is accompanied by an error, and the ideal approach would simulate each night of

data with a separate calibration which is drawn from the known distribution of

calibrations, such as the one shown in Figure 5.4. We chose to forgo this analysis

in favor of an approach which isolated the components of the gain and leakage.
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Noiselike errors will sum incoherently, so we are most concerned with the effects of

systematic calibration errors; we believe, for example, that the Tau A model has

a 10% amplitude error, and we know that the inclusion of baseline RX10-RX12

in the 08h data introduces a ∼ 8◦ phase error for that baseline. The simulations
presented in this section will allow us to quantify the effects of these calibration

errors on the real data.

Perturbations to the Gain

We first explored the effect of errors in the gain calibration. Simulations with

perturbations to GA show that the best fit amplitudes vary as G
−1
A , and this result

confirms that the simulation-calibration pipeline performs as required. In contrast

with the case of the gain amplitude errors, the gain phase errors are not amenable

to a simple analysis, but the simulations provide some guidance about their effects

on the bandpowers. The simulated data were calibrated with a variety of gain

phase errors; the gain phases were rotated in steps of 6◦, or ∼ 10% of a radian,
about Gφ = 0

◦. Table 6.6 lists the results of these tests. The table shows that

small phase errors (±6◦) have a marginal effect on the best fit amplitudes. The
phase errors have a more deleterious effect on the short baselines than on the

long baselines. These tests also suggest that the systematic phase error of ∼ 8◦ for
RX10 during the configuration 1 observations of the 08h field will increase the best

fit amplitude by a few percent, but weight which this increase carries is mitigated

by the contribution to the band 1 likelihood from RX0-RX12, which does not have

an analogous systematic phase calibration error.

Perturbations to the Leakage

The polarization analysis must consider errors in the instrumental polarization cal-

ibration. In the 08h field observations, for example, the instrumental polarization

inferred on a given night can differ from the expected value by ∼ 15%, and while
the resulting error in the leakage correction contributes to the rms of the visibili-

ties, these variations are noiselike, so these errors fall as 1/
√
n ∼ 2% for the ∼ 102
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08h field (µK) 20h field (µK) joint fit (µK)

test band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

Gφ = +18.0
◦ 1 8.50 0.10 7.03 0.06 7.45 0.06

2 5.99 0.03 6.49 0.05 6.15 0.03

3 5.31 0.04 5.73 0.05 5.68 0.03

Gφ = +12.0
◦ 1 6.70 0.05 6.37 0.04 6.43 0.03

2 5.96 0.03 6.16 0.04 6.00 0.02

3 5.81 0.04 5.86 0.05 5.82 0.03

Gφ = +6.0
◦ 1 6.09 0.04 6.13 0.04 6.08 0.03

2 5.95 0.03 5.98 0.03 5.95 0.02

3 5.91 0.04 5.93 0.05 5.91 0.03

Gφ = 0
◦ 1 5.89 0.03 6.00 0.03 5.94 0.02

2 5.94 0.03 5.93 0.03 5.92 0.02

3 5.94 0.04 5.95 0.05 5.93 0.03

Gφ = −6.0◦ 1 6.01 0.03 6.12 0.04 6.04 0.02

2 5.96 0.03 6.03 0.04 5.95 0.02

3 5.92 0.04 5.92 0.05 5.91 0.03

Gφ = −12.0◦ 1 6.63 0.05 6.35 0.04 6.40 0.03

2 5.98 0.03 6.17 0.04 6.01 0.02

3 5.83 0.04 5.84 0.05 5.77 0.0n

Gφ = −18.0◦ 1 8.39 0.10 7.01 0.06 7.30 0.05

2 6.03 0.03 6.50 0.05 6.16 0.03

3 5.68 0.04 5.70 0.05 5.68 0.03

Table 6.6: Table of simulation results for perturbations to the gain phase Gφ. The
table shows that errors of ∼ 10% of a radian have little effect on the measured
amplitudes.
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nights of data on the two deep fields. We used simulations to explore the effects of

leakage correction errors on the inferred likelihoods. POLSKY and POLFAKE can-

not contaminate the simulated LR visibilities with instrumental polarization, but

we can force instrumental polarization into the visibilities with CBIPOLCAL. For

the preceding tests we zeroed the leakage entries in the .cal file; we now set these

entries to values which approximate the real errors, and CBIPOLCAL oversubtracts

a component of LL from the LR visibilities based on this erroneous leakage. Since

the likelihood routine measures the rms of the fluctuations, oversubtracted and un-

dersubtracted leakage have the same effect on the best fit bandpowers. In the tests

that follow, we perturb the amplitudes and the phases of the leakage separately.

For the leakage error tests we assumed flat spectra for both
√

CTT` (= 60 µK)

and
√

CEE` (= 6 µK). The leakage amplitude was stepped in 1% increments, each

of which corresponds to a ∼ 10% error given the CBI’s instrumental polarization
of ε ∼ 10%. Table 6.7 lists the results of these tests; these results show that
typical errors in the instrumental polarization correction have a negligible effect

on the best fit bandpowers. A systematic absolute leakage amplitude error of 2%

(εA = 0.02)—which corresponds to a 20% error in the measurement of the leakage

term—results in a 5% change in the amplitude of the best fit bandpower for the

worst case. The phase of the leakage has no effect on the best fit bandpowers.

Table 6.8 shows the results for a sample of tests for which εA = 0.02, εφ = 0
◦, 45◦

and 90◦; both sets of amplitudes agree with those for data for which εφ = 0
◦.

We can use simple arguments to estimate the effect of the leakage amplitude

errors. If the leakage error is 2% in amplitude, the contribution to the rms from

the error is ε
√

CTT` ∼ 0.02× 60 µK ∼ 1.2 µK. This signal adds in quadrature with
CEE` , so

√
q′ ∼

√
62 + 1.22 ∼ 6.12 µK for a 2% effect. This is within a factor of

∼ 2 of the results seen in Table 6.7. The most important result of this analysis
is that on average the leakage amplitude errors degrade the best fit bandpowers:

they only increase the bandpowers.

The shapes of the spectra CTT
` and CEE` affect the weight which the contam-

ination from CTT` carries in our estimate of CEE
` , so we repeated the preceding
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08h field (µK) 20h field (µK) joint fit (µK)

test band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

εA = 0.00 1 5.89 0.03 6.00 0.03 5.94 0.02

2 5.94 0.03 5.93 0.03 5.92 0.02

3 5.94 0.04 5.95 0.05 5.93 0.03

εA = 0.01 1 5.98 0.03 6.05 0.03 6.01 0.02

2 5.98 0.03 6.03 0.04 5.96 0.02

3 5.96 0.04 5.96 0.05 5.95 0.03

εA = 0.02 1 6.34 0.04 6.31 0.04 6.30 0.03

2 6.07 0.03 6.20 0.04 6.09 0.02

3 5.96 0.04 5.96 0.04 5.95 0.03

Table 6.7: Table of simulation results for perturbations to the leakage amplitude
εA. These results show that systematic errors in εA ∼ 0.02, which corresponds
to a sytematic ∼ 20% error in the measurement of ∼ 10% leakage, increase the
amplitudes by a few percent.

analysis with data generated from our concordance cosmology.10 These simula-

tions also included correlations from CTE
` . This analysis showed that an error in

εA = 0.01 boosts the best fit amplitudes by 2-3% for band 1 while leaving bands

2 and 3 unperturbed, while an error of εA = 0.02 boosts the band 1 amplitudes

by ∼ 10% and the band 2 and 3 amplitudes by 2-3%. As with the tests with flat
spectra, on average the leakage errors increase the best fit bandpowers for realistic

CTT` and CEE` .

Conclusions

As we will see shortly, we have only upper limits to report, so our primary concern is

that systematic calibration errors do not cause us to underestimate these limits. We

know that errors in the gain amplitude simply scale the bandpowers, so these errors

10Ω0 = 1.0, h = 0.68, Ωb = 0.043, ΩCDM = 0.257, ΩΛ = 0.7, ns = 0.95, τ = 0
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08h field (µK) 20h field (µK) joint fit (µK)

test band 〈qi〉1/2 σqi 〈qi〉1/2 σqi 〈qi〉1/2 σqi

εφ = 0
◦ 1 6.34 0.04 6.31 0.04 6.30 0.03

2 6.07 0.03 6.20 0.04 6.09 0.02

3 5.96 0.04 5.96 0.04 5.95 0.03

εφ = 45
◦ 1 6.33 0.04 6.31 0.04 6.29 0.03

2 6.08 0.03 6.18 0.04 6.08 0.02

3 6.01 0.04 6.02 0.05 6.00 0.03

εφ = 90
◦ 1 6.34 0.04 6.31 0.04 6.26 0.02

2 6.07 0.03 6.20 0.04 6.09 0.02

3 5.96 0.04 6.03 0.05 5.95 0.03

Table 6.8: Table of simulation results for perturbations to the leakage phase εφ.
The leakage amplitude εA = 0.02 for all cases. These simulations show that the
absolute leakage phase εφ does not affect the best fit bandpowers, so we only require
a measurement of the leakage amplitude εA.

can increase or decrease our limits. This section shows that on average systematic

errors in the gain phase tend to increase the bandpowers, but modest errors of

∼ 10% of a radian have little effect. The results of the likelihood analysis are fairly
robust to systematic errors in the leakage correction; on average ∼ 10% errors in
the leakage amplitude produce only few percent increases in the bandpowers for

flat spectra for CTT` and CEE` , and errors in the leakage phase do not significantly

change the bandpowers. The simulations presented in this section suggest that

the effects of calibration errors in the CBI data will be small and additive; in the

next section we use the results of these simulations, combined with the known

systematic errors in the calibration, to scale the limits from the deep observations.
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6.5 Likelihood Analysis of the CBI Data

The simulations discussed in the preceding section demonstrate that the likelihood

routine performs as desired, and they provide insights into the effects of the ap-

proximations which are necessary to make the calculation tractable. In this section

we analyze real data with the routine. The real data require several changes: we

scale the covariance matrix by a factor of two to account for the
√
2 increase in

rms from differencing, and we scale the visibility variances by 1.06 to remove the

bias in the noise estimates.

The likelihood analysis of the two deep fields yields limits for CEE` for both fields

and the joint fit. Table 6.9 lists these results; the levels represent 95% confidence

limits; they are obtained by integrating the likelihood from qi = 0. Figure 6.7

shows likelihood curves for all 9 limits in Table 6.9. The limits on the ` ∼ 600
scales approach the levels for CEE

` predicted by standard models, while those for

the upper two bands are significantly higher. The effective bin widths are measured

from the extreme edges of the FWHM of the diagonal window functions.

With a few small modifications we can apply the LR likelihood analysis routine

to the LL data. To remove the polarization dependence, we let I4[vCpq]→ I0[vCpq]

(Equation 6.32) and set Θpq = 0 (Equation 6.34). Upon making these changes, we

find at ` = 603 that CTT` = 66.8+14.1−11.1 µK for the 08
h field; this level is consistent

with that of Padin et al. for the 08h field at the same `: CTT` = 62.9+11.3−7.9 µK [62].

The routines will not produce identical results because the algorithm presented in

this thesis averages over all channels, and because the (u, v) sampling is different.11

Nonetheless, the results are statistically equivalent.

Section 6.4 discusses a variety of factors which bias the best fit bandpowers,

and some of these factors have been applied to the limits shown in Table 6.9.

The average over the ten channels introduces a downward bias to the bandpowers

which is most pronounced on long baselines, but since this bias affects the high S/N

likelihoods, we do not apply it to our limits. The Gaussian beam approximation

11The result above reflects only the subset of the short LL baselines which match the LR

baselines.
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08h 20h joint fit

band `min `c `max 〈qi〉1/2 (µK) 〈qi〉1/2 (µK) 〈qi〉1/2 (µK)

1 446 603 779 14.1 8.1 7.0

2 930 1144 1395 21.2 15.9 12.8

3 1539 2048 2702 45.3 27.7 25.1

Table 6.9: CBI limits on CEE` for the two deep fields and the joint fit; 95% confi-
dence. The joint fit provides our deepest limit for each band.

in the likelihood routine decreases the best fit amplitudes by 3% for the short

baselines and less for the longer baselines, and although this correction is somewhat

model dependent, we make the conservative assumption that these factors affect

our limits and thus increase our limits by the same amounts. Chapter 5 argues

that the visibility uncertainties, when viewed as a proxy for the amplitude of

the gain calibration, suggest that the calibration for the 08h field is accurate to

a few percent, while that for the 20h field gives rise to flux densities which are

systematically a few percent high due to the ∼ 8− 10% error in the polarized flux
for the Tau A model. Since the 20h visibilities are biased upward by ∼ 4% by this
model error, the 20h limits were scaled downward by the same amount, and the

joint fit was scaled downward by ∼ 2%. We saw that the phase error introduced
by including baseline RX10-RX12 in the 08h field dataset increases the amplitudes

by 3% on average, but we do not correct the CBI limits for this error because this

phase error only affects ∼ 1/3 of the 08h data for band 1, and the simulations show
that the scaling for a 6◦ phase error for all the data in the band is only marginally

significant. Table 6.10 summarizes the biases which were applied to the data in

Table 6.9. As the table shows, many of these factors cancel.

Figure 6.8 compares the three CBI limits to the previous polarization measure-

ments. The three CBI limits are correlated, so they must be considered separately;

when these correlations are removed the limits will certainly improve, as the bands
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08h field 20h field joint fit

bias band bi bi bi

beam 1 1.03 1.03 1.03

2 1.02 1.01 1.01

3 1.01 1.01 1.02

GA all 1.00 0.96 0.98

net 1 1.03 0.99 1.01

2 1.02 0.97 0.99

3 1.01 0.97 1.00

Table 6.10: Likelihood biases for the real data based on known systematic errors
in the calibration and the analysis.

will better reflect the fluctuations between `min and `max for the bin. The CBI

limits are comparable to the deeper limits from previous measurements, and they

complement the DASI measurements at lower `. These limits are consistent with

the concordance model12 shown in the figure, but the CBI limits do not provide

the power to discriminate between perturbations on this model. CEE
` is a weak

function of the cosmological model over the windows of currently favored parame-

ters, so we require far greater sensitivity if we are to use the EE spectrum in the

CBI ` range to discriminate between models.

12Ω0 = 1.0, h = 0.68, Ωb = 0.043, ΩCDM = 0.257, ΩΛ = 0.7, ns = 0.95, τ = 0



265

Figure 6.7: Likelihood curves.
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Figure 6.8: CBI limits on CEE` with previous data. All limits upper limits are 95%
confidence. The error bars on the single DASI detection are 68% confidence limits.
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Chapter 7

Summary and Conclusions

7.1 Results of this Thesis

This thesis describes the major aspects of my contributions to the development and

operation of the Cosmic Background Imager. These projects include the design and

implementation of the downconverter and noise calibration system; the production

of the low-noise HEMT amplifiers; the observation and analysis of ∼ 50 hours of
monitoring data with the VLA; the calibration and analysis of over 100 nights of

CBI polarization data; and the likelihood analysis of these data to obtain limits

on CEE` . In this chapter we summarize these efforts, and discuss how they affect
our plans for the future of the CBI.

Chapter 2 presents an overview of the CBI and the factors which affect its

performance. The chapter opens with a discussion of how visibilities provide mea-

surements of C`, and then focuses on the aspects of the CBI which affect its

performance for polarization. The polarization of each receiver is determined by

the orientation of the quarter-wave plate. The CBI was deployed with all 13 re-

ceivers configured to measure LCP; we adjusted one receiver to measure RCP for

the program described in this thesis. This change results in 12 cross polarized (LR)

baselines and 66 total intensity (LL) baselines. The quarter-wave plate is part of

a phase shifter assembly, and Chapter 2 presents a model for the instrumental

polarization (leakage) which can arise from the phase shifter.
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The latter part of Chapter 2 focuses on a number of instrumentation projects

for the CBI which are part of this thesis: the downconverter, the noise calibration

system, and the low-noise HEMT amplifiers. We describe the design and perfor-

mance of the downconverter, which is a major component in the rf signal chain; it

meets the CBI’s requirements for size and performance. This downconverter design

was also used by DASI. The CBI’s internal noise calibration system was designed

and implemented for this thesis, and while it has temperature-dependent insta-

bilities which limit its efficacy for the total intensity observations, it proved to be

very useful for transferring the polarization calibration between nights with ∼ 10%
accuracy. The last section of Chapter 2 discusses the production of the NRAO-

designed low-noise HEMT amplifiers for the CBI. These critical components largely

determine the sensitivity of the CBI. The amplifiers require specialized assembly

and testing techniques, and the author learned these techniques at NRAO’s Cen-

tral Development Laboratory. On numerous occasions the CBI benefitted from

having these in-house capabilities.

Chapter 3 discusses the polarization calibration of the CBI. Polarization ob-

servations must contend with contamination from instrumental polarization. We

characterize the instrumental polarization with the leakage factor ε; the leakage

makes a negligible contribution to the total intensity visibilities (ε2P << I), but

it can be comparable to the polarized flux (P ∼ εI). Chapter 3 demonstrates how
the CBI’s deck rotation, when applied to observations of sources of known polar-

ization, can be used to determine the leakage and the gain for the cross polarized

baselines. The CBI developed a polarization calibration package, CBIPOLCAL,

which can derive and apply the leakage and the gain. By applying this proce-

dure to observations of 3C279, we show that the phase shifter model developed in

Chapter 2 can account for all of the instrumental polarization (ε ∼ 10%).
We are concerned about the stability of the instrumental polarization, so we

performed high S/N measurements of the leakage on 3C279 at regular intervals

during the 2000 observing season. These observations show that the leakage is

slightly less stable than the uncertainties on the measurements would suggest; we
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can attribute these discrepancies to errors in the interpolation of the VLA data for

3C279 to the CBI, or to intrinsic changes in the instrumental polarization. We also

show that the CBI’s response to extended polarized emission is well behaved, so

we measured the instrumental polarization at the beam half-power points. These

measurements demonstrated that the off-axis polarization response is consistent

with that at the center of the beam.

Although 3C279 was our primary polarization calibration for much of the 2000

season, we enlisted Tau A for the calibration on the many occasions for which

3C279 was not in view at night. With P ∼ 28 Jy, Tau A has ten times the
polarized flux of 3C279, but since the CBI resolves this source, we require a model

of its extended emission. Unfortunately, we do not have deep observations of Tau

A which are accompanied by observations of 3C279, nor does the literature contain

discussions of Tau A’s polarization at the CBI’s resolution and band, so we must

derive a model. Chapter 3 presents two different techniques for transferring the

polarization calibration from the deep 3C279 observation on 06feb00 to the deep

Tau A observation of 11jan00. The two techniques yield models which agree to

within ∼ 4% in amplitude and phase; they show that |P | ∼ 28 Jy and χ ∼ 28◦ at
31 GHz. Chapter 3 presents a variety of tests that suggest that this model is good

to this level, although tests in Chapter 5 show that the polarized component of

the model is accurate to 10%, and we adopt the latter uncertainty for the model.

3C279 was the primary polarization calibrator for the polarization observations,

and since it is a variable source, we monitored its polarization with the VLA for

much of the 2000 season. Chapter 4 presents the results of the VLA monitoring

campaign. These observations were performed with the VLA’s K and Q band

(22.46 and 43.34 GHz) channels which straddle the CBI’s 26-36 GHz band, but at

these high frequencies we had to deal with a number of difficulties associated with

observations at the limits of the VLA’s capabilities. A third of the data were lost

to high (> 4 m/s) winds at the VLA site, and a significant number of antennas

were excised from the analysis because of pointing and efficiency problems. The

remaining data consisted of eight observations between 18feb00 and 10aug00 with
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uncertainties of ∼ 5% in amplitude and phase. During the VLA campaign 3C279’s
fractional polarization changed by ∼ 30% (m ∼ 0.09→ 0.12) and its polarization
position angle changed by ∼ 20◦ at both K and Q band. We combined these
measurements of mν and χν with measurements of Iν from the CBI to calibrate

the cross polarized CBI baselines.

We routinely scheduled observations of 3C273 during the VLA campaign, and

these data played an important role for both the polarization and the total intensity

calibration. Comparisons of 3C273’s polarization as measured with the CBI with

that which was measured with the VLA demonstrated that the internal consistency

of the CBI’s polarization calibration is better than ∼ 5%. The total intensities
of 3C273 from the VLA provided an independent test of the CBI’s total intensity

calibration; comparisons of the two sets of data demonstrated that the CBI’s total

intensity calibration is considerably better than ∼ 5%. Since the VLA and the
CBI use different total intensity flux density calibrators, the agreement between

the two sets of data provides great confidence in the accuracy of both flux density

scales.

Chapter 5 presents the results of the polarization observations with the CBI.

These observations are divided between deep field observations of the CMBR and

supporting observations of polarized sources to test the CBI’s polarization capa-

bilities. The 08h and 20h deep field observations consist of 235 hours1 of data

spanning 99 nights, and a visual inspection of the maps suggests that these data

do not contain a detection of the polarization of the CMBR. A χ2 test on the LR

visibilities does not allow us to rule out the possibility that the data contain a

celestial signal, however. An analysis of the visibility uncertainties suggests that

the gain amplitude calibration for the cross polarized baselines is accurate to bet-

ter than ∼ 10%. A comparison of the uncertainties for deep field data calibrated
on 3C279 with those for data calibrated on Tau A show a 10% excess in the Tau

A model’s polarized flux, so we adopt a 10% uncertainty for the Tau A model.

The scatter in the visibility uncertainties indicates that the gain amplitude of the

1This sum includes leads and trails.
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calibration has an uncertainty of ∼ 6%, which is twice that for the total intensity
calibration.

Chapter 5 also presents the results of polarization observations of a number of

other polarized sources: the unresolved sources 3C273 and 3C274, the resolved dou-

ble inner lobes of Centaurus A, and the supernova remnants W44 and G326.3-1.8.

As noted above, the 3C273 observations confirm the accuracy of the polarization

calibration at the ∼ 5% level for data calibrated on 3C279. The polarization ob-
servations of 3C274 suggest that the combined variation in the source polarization

and the CBI calibration is m ∼ 0.02, or 2%. The observations of the extended
source show good qualitative agreement with data in the literature, although the

CBI operates at a combination of resolution and frequency for which there are few

previous observations that permit quantitative comparisons.

Chapter 6 presents limits on the polarization of the CMBR in the 08h and 20h

deep fields. This chapter opens with a review of the method of maximum likelihood

for the analysis of the cross polarized visibilities—which differs from that for total

intensity—and it discusses several approximations which are necessary to expedite

the Mathematica likelihood algorithm that was implemented for this thesis. This

algorithm does not, for example, account for the correlations between bands, nor

does it consider B modes. We make extensive use of simulations in this chapter;

we use simulations to verify that the algorithm performs as desired; to quantify

the effects of several assumptions in the analysis; and to explore the effects of

calibration errors on the best fit bandpowers. The latter set of tests is unique to

this analysis; for total intensity observations we must consider the effects of errors

in the gain amplitude GA and gain phase Gφ on the results, but for polarization

we must also contend with errors in the leakage amplitude εA and leakage phase

εφ. We verify that the bandpowers scale with GA, and then show that modest

systematic errors in Gφ do not significantly affect the bandpowers. The simulations

with errors in εA and εφ show that on average spurious contamination from CTT
`

introduced by errors in εA tends to add in quadrature with the power in C
EE
` ,

while errors in εφ do not change the bandpowers beyond the errors in εA. We are
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most concerned with calibration errors that can bias the bandpowers downward.

We know that errors in GA can have this effect; the simulations demonstrate that

on average errors in Gφ and εA tend to bias the bandpowers upward, while errors

in εφ are negligible. Most importantly, these simulations show that the known

systematic errors in the CBI calibration should not bias our limits downward.

Having demonstrated that the likelihood algorithm performs as desired, we

apply the procedure to the 08h and 20h data to obtain limits on the polarization

of the CMBR. We sort the cross polarized baselines into bins centered on ` =

{603, 1144, 2048}; the associated 95% confidence limits for the joint fits to the two
fields are CEE` < {7.0, 12.8, 25.1} µK under the assumption that B = 0. These
limits approach the levels predicted by standard models for these scales; the limit

at ` = 603 in particular is comparable to the polarization signal on that scale,

and the use of a shaped spectrum, coupled with corrections for the correlations

between bands, will improve the scientific significance of this result.

7.2 Future Work

The thesis demonstrates that the CBI can perform accurate polarization obser-

vations. The success of the polarization program presented in this work, coupled

with the success of the CBI’s total intensity program, led to the upgrade of the

CBI for polarization observations. Many of the challenges for the polarization

calibration presented in this work are a consequence of the limited number of po-

larization calibrators, and this condition will persist for the dedicated polarization

observations. This thesis demonstrated that secondary diagnostics, such as the

visibility uncertainties and the leakage terms, can provide quantitative insight into

the accuracy of the calibration in the absence of secondary sources.

After acquiring 2 years of total intensity data, the CBI was reconfigured to

maximize its sensitivity to polarization, and these observations began in Septem-

ber 2002. To implement this change, the half-wave plates were removed from the

rotating sections of the phase shifter assemblies and replaced with a multi-element
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CBI Configuration 7

Figure 7.1: CBI configuration 7. This configuration was adopted for the dedicated
polarization observations which began in September 2002. The hatched antennas
denote the LCP antennas.

wave plate assembly employed by DASI that has uniform 1-2% instrumental po-

larization across the 26-36 GHz band [43]. These plates can be rotated, so the

polarization assignments of the receivers can be changed by the control system.

The assignments are divided nearly evenly between the 13 receivers, resulting in

42 cross polarized (RL and LR) baselines and 36 total intensity (LL and RR) base-

lines. In addition, the array was reconfigured to target scales of ` ∼ 400 → 2000

(Figure 7.1), and with mosaicking we expect to extend this window to ` ∼ 300;
this is the region over which CEE

` is expected to peak for standard models (Figure

6.8).

Many of the results of this work will play a role in the CBI’s polarization pro-

gram. Perhaps the most important result of this thesis is that it demonstrates that

the CBI is capable of polarization observations: polarization imposes a unique and

strict set of demands on the telescope, so it is not a foregone conclusion that this
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should be the case. We demonstrated that the CBI’s instrumental polarization,

which is unimportant for total intensity observations, is not an impediment to an

accurate polarization calibration. We showed that the polarization characteristics

of the primary beams behave as expected, so the dedicated polarization observa-

tions will not require changes to the optics. We found that spillover and crosstalk

between the antennas do not contaminate the polarization data at the level of sen-

sitivity achieved in this work. These results have enabled us to convert the CBI to

polarization observations with only minor changes to the instrument and the con-

trol and analysis software, and thus to expedite the CBI’s dedicated polarization

program.
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Appendix A

Phase Shifter Model

A.1 Transfer Matrices

In this appendix we present the details of the calculation of the phase shifter model

presented in Section 2.3.2. The effects of the receiver components on the input

field E can be expressed as a series of matrix operations: E ′ = mn · · ·m0E =ME .
As noted in Chapter 2, we express the field as E = EX êx + EY êy, so the transfer
matrices are computed in the (êx, êy) basis. In the discussion that follows, we

associateM with receiver j (LCP) and N with receiver k (RCP).

The input field undergoes multiple transformations, each of which is character-

ized by a 2 × 2 transfer matrix. The transfer matrices are presented in the order
in which they affect the incident radiation.

0. CBI deck orientation (or equivalently, the baseline orientation) modulates the

position angle of the input polarization vector. To incorporate this effect,

we must choose a reference frame, and there are two natural frames for this

problem: the frame of the sky, and the frame defined by the rectangular

waveguide in the receivers. The guide frame is fixed to the deck, so let the

deck frame (êx, êy) be defined by the minor axis of the rectangular guide

in the receivers; the minor axis of the guide is preferred because the major

axis is too large to support 26-36 GHz radiation—only radiation whose E

mode is parallel to the minor axis propagates through the waveguide to the
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components that follow. Nearly all 13 receivers are oriented in the same

direction, and although the more general case of different orientations for

each receiver is not considered here, this change would not have a significant

effect on the outcome of this calculation. The transfer matrix which ties the

sky frame to the guide frame has the form of a simple rotation:

m0 =







cosψ sinψ

− sinψ cosψ






; n0 =







cosψ sinψ

− sinψ cosψ






(A.1)

where ψ is the deck orientation.

1. The first component which the incident radiation encounters after it passes

through the feed is the half-wave plate. Assume that the half-wave plate is

oriented at a position of φ with respect to the waveguide frame (êx, êy). The

second transfer matrix rotates the frame of the radiation into that of the

half-wave plate, so that the half-wave plate is parallel to the ê′x direction:

m1 =







cosφj sinφj

− sinφj cosφj






; n1 =







cosφk sinφk

− sinφk cosφk






(A.2)

Although the control system assigns the half-wave plates at positions which

remain constant for the duration of the observations, their zeros are not nec-

essarily the same, so φj 6= φk. The resolution of the half-wave plate encoder
limits the accuracy with which the half-wave plates realize the position re-

quested by the control system: for a perfect system, φ is identical to the

commanded position, while in practice, φ→ φ+ δφ with 〈δφ〉 ∼ 1◦. The ro-
tating sections are exercised prior to each observing session, so δφ contributes

a random error to successive measurements of the instrumental polarization.
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In the presence of errors,

m1 =







cos(φj + δφj) sin(φj + δφj)

− sinφj cosφj






;

n1 =







cos(φk + δφk) sin(φk + δφk)

− sinφk cosφk







(A.3)

2. The half-wave plate imparts an insertion phase and an insertion loss to the

component of the field which is parallel to the plate. Insert a phase delay

of α to the component of the rotated wave which is parallel to ê′x. Under

ideal circumstances α is a half wave and there is no signal degradation, so

the amplitude of the half-wave plate transfer matrix element is unity:

m2 =







Aje
iαj 0

0 1






=







−1 0
0 1






(A.4)

In practice, simple bandpass errors across the 26-36 GHz band cause the

insertion phase to depart from a half wave; call those errors δαj . The half-

wave plate also attenuates the component of the wave which is parallel to the

plate, so Aj < 1. To first order, the ê
′
y component—which is perpendicular to

the plate—suffers no complex insertion loss. Let α→ π+δα and A→ 1−δA
to obtain:

m2 =







−1 + δAj − iδαj 0
0 1






; n2 =







−1 + δAk − iδαk 0

0 1






(A.5)

to first order in the errors.

3. Finally, reverse the rotation of m1 to return the incident field to the original

reference frame:

m3 =







cosφj − sinφj
sinφj cosφj






; n3 =







cosφk − sinφk
sinφk cosφk






(A.6)
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4. After passing through the half-wave plate the radiation encounters the quarter-

wave plate. Rotate the input polarization vector by an angle θ from the

waveguide frame (êx, êy) to the reference frame of the quarter-wave plate

(ê′′x, ê
′′
y):

m4 =







cos θj sin θj

− sin θj cos θj







Any errors in the orientation of the quarter-wave plate enter at this step: for a

perfect system, θj = ±π/4, while in the presence of an error, θj = ±π/4+δθj .
The polarization of the receiver determines the sign of the π/4 term: since

receiver j is LCP, θj = −π/4 + δθj ; similarly, θk = π/4 + δθk . The rotation
into the quarter-wave plate frame takes the form

m4 =
1√
2







1 + δθj −1 + δθj
1− δθj 1 + δθj






;

n4 =
1√
2







1− δθk 1 + δθk

−1− δθk 1− δθk







(A.7)

5. The quarter-wave plate imparts a complex insertion loss to the signal. The

transfer matrix for an ideal quarter-wave plate is simple:

m5 =







Bje
iβj 0

0 1






=







i 0

0 1







Of course, the quarter-wave plate introduces errors as well: let B → 1− δB,
and β → π/2 + δβ. To first order the quarter-wave plate affects just the ê′′x

component:

m5 =







i− iδBj − δβj 0
0 1






; n5 =







i− iδBk − δβk 0

0 1






(A.8)
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6. Reverse the rotation of m4:

m6 =
1√
2







1 + δθj 1− δθj
−1 + δθj 1 + δθj






;

n6 =
1√
2







1− δθk −1− δθk
1 + δθk 1− δθk







(A.9)

Note that we obtain the same result for n6n5n4 by letting θ = π/4 instead

of θ = −π/4 in n4 and n6 and inserting the phase lag of i in the ê′′y direction
in n5.

7. The phase shifter assembly is followed by a transition from circular to rec-

tangular waveguide. The quarter-wave plate passes a wave of the form

E ′ = E ′xêx + E ′yêy to rectangular waveguide, and under ordinary circum-
stances, the waveguide cutoff in the êy direction of the rectangular guide

would reflect E ′yêy back through to the quarter-wave plate and create a
hodgepodge of unruly reflections. To prevent this reflection, the signal path

includes a lossy dielectric card parallel to êy immediately prior to the tran-

sition to absorb the unwanted E ′yêy mode. The transfer matrix for the mode
suppressor is trivial:

m7 =







1 0

0 0






; n7 =







1 0

0 0






(A.10)

The E-field at the mode supressor output is simply the E ′xêx component—a
complex scalar—so we can dispense with the vector characterization for E ′j
for the remainder of this calculation.

At this point we compute the entire transfer matrices for both receivers: M =

m7m6· · ·m0 and N = n7n6· · ·n0, and in turn the modified fields E ′j=MEj and
E ′k=NEk. In the presence of first order errors, the matrix elements of M and N
each have ∼ 102 terms, so these expressions will not be reproduced here. The
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modified fields allow us to compute the visibility.

A.2 Visibility

The visibility is the time average of the complex product of the voltages produced

by the two receivers:

VLR ∼ 〈E ′jE∗′k 〉 ∼ 〈MEj(NEk)∗〉 (A.11)

The visibility contains thousands of terms in varying orders of δ, but we will

neglect all but those which are linear in δ. We identify E-field coherence terms in
the visibility with the Stokes parameters given by the standard definitions

〈EXj EX∗k 〉 = 1
2(I +Q)

〈EXj EY ∗k 〉 = 1
2(U + iV )

〈EYj EX∗k 〉 = 1
2(U − iV )

〈EYj EY ∗k 〉 = 1
2(I −Q)

(A.12)

and solve for I, Q, U , and V . The factor of 1/2 preserves power; it ensures that

the power in the orthogonal correlation terms sums to I, for example. The algebra

for VLR is far too complicated to check by hand—the visibility contains ∼ 104

terms—but in Section 2.3.2 we consider simple test cases to assess whether the

calculation produces the expected results.
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