Finite-Difference Algorithms for Counting Problems

Thesis by

Eric Bax

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted Novemeber 11, 1997)

ii

© 1998
Eric Bax
All Rights Reserved

iii

Acknowledgements

I thank my parents for their support and encouragement of my endeavors. My mother is
my greatest teacher. My father has always reassured me that education speeds success. I
also thank my sisters and brothers. Their inspiration and moral support are among my
greatest assets. I cannot imagine making my way through life without them.

I thank my advisor, Dr. Joel Franklin. He is an excellent mentor, teacher, fellow
researcher, and role model. He has given me much more than knowledge of computer
science and mathematics. Through his advice and example, he has taught me much about
how to work and learn. Ireally appreciate his emphasis on understanding not just important
results but also how they were discovered and developed. Dr. Franklin has taught me to
learn by looking over the shoulders of giants.

I thank Gail Stowers and everyone at the CalTech Precollege Science Initiative for res-
cuing me when my career was threatened by lack of funding. At CAPSI, the love of people
and of education extends far beyond their stated mission of bringing inquiry-based learning
to the classroom.

I thank my undergraduate advisor, Dr. Hayden Porter. I came to graduate school on
his advice. I came through graduate school using what I learned from him about work
and courage, as well as computer science. I also thank Dr. Douglas Rall and Dr. Marty
Cook at Furman University. Dr. Rall introduced me to research. His positive attitude and
encouragement of independent thinking have inspired my work to this day. Dr. Cook was
always available to listen to my ideas and point me in constructive directions.

I thank the professors at MTKI in Budapest, especially Dr. Andras Recski. He gave
me insights on combinatorial algorithms that have greatly influenced my work. His maxim,
“If you are having a hard time, try to solve a more general problem,” is the basis for the
finite-difference results in this thesis. Several years after I took his course, I returned to
Budapest for a few weeks. He welcomed me, read my papers, and gave me excellent advice

for further research.

v

I thank all of my teachers through the years, including Dr. Peter Bossaerts, Dr. Mani
Chandy, and Dr. Alain Martin at Caltech; and the many great teachers at Furman Uni-
versity and from elementary school at St. Martin de Porres through high school at Lower
Richland.

I thank my many companions in learning, including Will Jowers, Todd Brandes, Michael
Croan, Jin Kim, John Hughes, Mac McLaughlin, Stephanie Eller, Mimi O’Bosky, Don
Wilbur, Jennifer Lahue, Zehra Cataltepe, Joseph Sill, Nicole Peill, Paolo Sivilotti, John
Thornley, Adam Rifkin, Rajit Manohar, and Eve Schooler.

Finally, I thank Beth Erlanson for her encouragement and moral support. She has been
a source of strength and calm throughout the process of writing this thesis. Thank you,

Beth, for believing in me.

Abstract

We present a novel method to construct counting algorithms:

1. Construct a generating function in which one type of terms corresponds to the objects

to be counted.

2. Apply the proper finite-difference operators to produce a formula that counts the

terms.

3. Choose finite-difference parameters to reduce the computation required to evaluate

the formula.

We compare this finite-difference method to two other methods, the dynamic program-
ming method and the inclusion and exclusion method. Using the problem of counting
Hamiltonian paths as an example, we show that finite-difference algorithms require only
polynomial space for problems for which dynamic programming algorithms require expo-
nential space. Also, we show that finite-difference algorithms are a generalization of inclu-
sion and exclusion algorithms. Finite-difference algorithms have some free parameters, and
inclusion and exclusion algorithms correspond to a particular setting of those parameters.
Using the 0-1 matrix permanent problem as an example, we show that the finite-difference
parameters can be chosen to produce finite-difference algorithms that are faster than their
inclusion and exclusion counterparts.

We use the problems of counting paths by length and counting independent path sets to
illustrate how the flexibility of generating functions and extensions to finite-difference op-
erators allow the development of finite-difference algorithms for problems beyond the realm
of inclusion and exclusion. Furthermore, we use the problems of sequencing, bin packing,
and deadlock avoidance to demonstrate the development of finite-difference algorithms for

NP-complete and #P-complete problems.

vi

Contents

1 Introduction
1.1 Finite-Difference Method
1.1.1 Finite-Differences and Multilinear Terms
1.1.2 Finite-Difference Formulas
1.1.3 Hamiltonian Paths as the Multilinear Term of a Polynomial
1.2 Inclusion and Exclusion Method
1.3 Dynamic Programming Method
1.4 Comparison of Methods,

2 Finite-Difference Operators
2.1 Finite-Differences and Multilinear Terms
2.2 Alternative Operators e
2.3 Non-Multilinear Terms L L o

3 Counting Paths and Cycles by Length
3.1 Paths e
3.2 Cycles o e
3.3 Computational Issues
3.3.1 Evaluationof F() e
3.3.2 An Alternative Finishing Polynomial
3.3.3 Setting u and v to Reduce Computation.
34 Challenges. e e

3.5 Extensions. 0 e e e e s

4 Recursive Algorithms and Computational Reductions
4.1 A Recursive Algorithm
42 Reductions e

(=2 J = RS 1 BTN OO U S I

oo

10
10

13
13
15
16
16
16
17
18
18

vii

4.2.1 Bounding and Zero-Sets L. 20
4.2.2 Vestigial Elements o oo 20
4.2.3 Symmetries L e 21
4.3 Ordering Finite-Difference Evaluations 21
Finite-Difference Algorithms for Other Problems 23
51 Introduction. e e e 23
5.2 Sequencing 23
5.2.1 TheProblem e 23
5.2.2 A Finite-Difference Algorithm 24
52.3 Complexity e e 25
5.2.4 Variations e e e 25
53 BinPacking 27
5.3.1 TheProblem 27
5.3.2 A Finite-Difference Algorithm 27
5.3.3 Complexity e 29
5.3.4 Variations e e e e e e e e e e 29
5.4 Deadlock Avoidance L 30
54.1 TheProblem 30
5.4.2 A Finite-Difference Algorithm 31
5.4.3 Complexity e 32
5.4.4 Variations e e e e 32
5.5 DIScussion e e e e e e e e e e e e 33
Computing the Permanent of a 0-1 Matrix 34
6.1 A Finite-Difference Formula for the Permanent 35
6.2 Zero-Valued Terms e 36
6.3 Expected Fraction of Nonzero-Valued Terms in the Zero-Mean Formula . . 40
6.4 Expected Fraction of Nonzero-Valued Terms in the Low-Variance Formula . 43
6.5 Eliminating Sets of Zero-Valued Terms to Speed Computation. 49
6.6 Discussion e e e e 52

A Permanent Decomposition Increases the Expected Fraction of Zero-

Valued Terms 53
7.1 Row Zeroings and Correlations 53
7.2 Decomposition 54

viii

7.2.1 A Random Decomposition Strategy to Increase Row Sum Variance . 55
7.2.2 Variance Increased by a Constant Multiplier. 57
7.2.3 Variance Increased by a Factor of n — Too Much Variance 59

7.2.4 Variance Increased by a Factor of v/n — An Exponentially Small Frac-

tion of Nonzero-Valued Terms v v v v v v v v v v 60
7.3 Optimal Nonrandom Decomposition Vectors 62
T4 DISCUSSION . « & v v v o e e e e e e e e e e e e e e e e e e 64

A Method to Compute the Permanent that Avoids Many Zero-Valued

Terms 65
8.1 Alternative Computation of the Permanent Formula 65
82 Algorithm 67
83 Analysis e 68
8.4 Variations e e e 69
8.5 Expected Fraction of Terms Computed by the Algorithm — f(n,pm) 71
8.6 Discussion e e 73
Estimation of Finite-Difference Formulas by Sampling 75
9.1 Sampling Terms from the Entire Formula, 76
9.1.1 Formula and Notation 76
9.1.2 Estimation by Sampling o oL 76
9.1.3 Choosing Finite-Difference Parameters to Reduce Variance Among
Terms o o e e e e e e e 78
9.1.4 Complex Parameters oo 82
9.1.5 Computations. 87
9.2 Sampling Terms by Type, 87
9.2.1 Parameters (u,v)=(1,-1) 88
9.2.2 Parameters (u,v)=(1,0) Lo 89
9.2.3 Parameters (1,0) and (0,—1), . 90
9.3 Sampling Blocks of Terms, 93
9.4 DisCUSSION . . .« « v o i e e e e e e e e e e e e e e e 95

Gaussian Approximations for Sums and Differences Over Two Sets of
Bernoulli Variables 98

ix

Bibliography 110

List of Figures

6.1

6.2

6.3

6.4

7.1

The low-variance formula has many-zero-valued terms. As matrix size in-
creases, the expected fraction of zero-valued terms goes to 100% for the
low-variance and zero-mean formulas.,
The expected fraction of zero-valued terms in the low-variance formula is
shown for several matrix densitiesp.
The expected fraction of zero-valued terms in the low-variance formula is
nearly 100% for sparse matrices (p = 0.25). Note that the vertical axis varies
from 99% to 100%.
For the expected fraction of zero-valued terms in the zero-mean formula with
p = 0.50, the asymptotic approximation and asymptotic lower bound are

shown with the actual values for various matrix sizesn.

The expected fractions of zero-valued terms in decomposition matrix A, p
are shown for matrices of size n = 40, various entry probabilities p, and
various numbers m of pairs of decomposition variables, each with probabil-
ity w = p. The optimal number of decomposition variables increases with

expected matrix density p. Lo oo

37

38

39

44

X1

List of Tables

6.1

6.2

7.1

7.2

7.3

9.1

9.2

9.3

Matrix size 10 — percentages of terms with value zero and percentages of

function calls eliminated. Each value is the average over 100 random matrices.

Matrix size 20 — percentages of terms with value zero and percentages of

function calls eliminated. Each value is the average over 100 random matrices.

Optimal decomposition vectors for Ay, with matrix size n = 9 and various
entry probabilitiesp. L L
Optimal decomposition vectors for Ay, with matrix size n = 11 and various
entry probabilities p. oL
Optimal decomposition vectors for Ay, with matrix size n = 13 and various

entry probabilitiesp. L Lo o

E(X}?) for matrices with all one-valued entries. For each parameter setting,
the variance of randomly sampled terms is the difference between the entry
for the setting and the entry in the column on the right. Among the settings
tested, the root parameters produce the minimum variance.
The means and standard deviations over the terms with k£ entries of value 1
in x for finite-difference parameters (u,v) = (1,—1). The figures shown are
averages over 1000 randomly generated matrices with size n = 16 and entry
probability p=0.50. o
The means and standard deviations over the terms with k entries of value 1
in x for finite-difference parameters (u,v) = (1,0). The figures shown are
averages over 1000 randomly generated matrices with size n = 16 and entry
probability p=0.50.

51

62

64

64

88

90

91

9.4

9.5

xii

The means over terms with & entries of value +1 and d entries of value —1
in x with finite-difference parameters (1,0) and (0,-1). The number of +1
entries corresponds to the row, and the number of —1 entries corresponds to
the column. The figures shown are averages over 1000 randomly generated
matrices with size n = 16 and entry probability p=0.50.
The standard deviations over terms with & entries of value +1 and d entries of
value —1 in x with finite-difference parameters (1,0) and (0,-1). The number
of +1 entries corresponds to the row, and the number of —1 entries corre-
sponds to the column. The figures shown are averages over 1000 randomly

generated matrices with size n = 16 and entry probability p = 0.50.

92

Overview of Chapters

This work focuses on creating counting algorithms by applying finite-differences to gen-
erating functions. Chapter 1 begins with an example of this process. A finite-difference
algorithm is developed to count Hamiltonian paths. Then, for comparison, dynamic pro-
gramming and inclusion and exclusion algorithms are developed for the same problem.
In Chapter 2, finite-difference operators are formally introduced. It is proven that iterated
finite-difference operators produce the number of multilinear terms in a generating function.
Other operators with these properties are exhibited, and operators to count non-multilinear
terms are developed. Chapter 3 contains algorithms to count paths and cycles by length.
These algorithms illustrate the finishing polynomial technique, a method of transforming
terms corresponding to a variety of structures into multilinear terms. Chapter 4 contains a
recursive algorithm to evaluate iterated finite differences. Computational reductions based
on properties of specific problem instances are outlined. In Chapter 5, algorithms are devel-
oped for several problems to illustrate the techniques introduced in earlier chapters. These
problems include sequencing, bin packing, and deadlock avoidance.

The remaining chapters are devoted to finite-difference algorithms for the permanent
of a 0-1 matrix. In Chapter 6, the problem is introduced and a finite-difference formula
is derived. For several finite-difference parameter settings, it is proven that the expected
fraction of zero-valued terms in the finite-difference formula goes to unity as matrix size
increases. A simple method to reduce computation by eliminating many of the zero-valued
terms from the evaluation of the formula is presented and tested. In Chapter 7, a permanent
decomposition is shown to transform a single instance of the 0-1 permanent problem into a
pair of permanent problem instances, each having the property that the expected fraction of
nonzero-valued terms in the corresponding finite-difference formula is exponentially small.
Chapter 8 contains an algorithm to compute the permanent, avoiding so many zero-valued
terms that the expected running time is an exponentially small fraction of the time required

to compute the permanent by the standard method. The algorithm has the drawback of

requiring super-polynomial space. Methods are introduced to adjust the algorithm to trade
off time and space requirements. Finally, Chapter 9 outlines methods to estimate the

permanent formula and other finite-difference formulas by sampling terms at random.

Chapter 1

Introduction

To introduce the finite-difference technique, we develop an algorithm to count Hamiltonian
paths. Then, for comparison, we develop algorithms using inclusion and exclusion and

dynamic programming.

1.1 Finite-Difference Method

Definition 1 (Finite-Difference Operator) The finite-difference with respect to ;, writ-

ten Dj(uj,v;), is defined as follows:

Vu vy Dyuynf() = L= I 2) (1)

where f(x; = uj) is the function that results from setting z; to the constant value u;.
For example,

2 2
5T125 — 371235

=3 = z,23 (1.2)

Dy(5, 3)x1x2$§ =

To simplify formulas, we denote assignments to variables in f() by their assigned values
and omit free variables. Also, we abbreviate D;(u;,v;) by D;. In the shortened notation,

the definition of the finite-difference operator is written

D; () W (13)

1.1.1 Finite-Differences and Multilinear Terms

For P() a polynomial with every term of degree n or less, Dy - -- D,, P() is the coefficient of

the multilinear term x; -- - z,. A proof of this property is given later. Intuitively, each D;

acts as a derivative with respect to z;, so the composition D; --- D, finds the derivative
with respect to every variable. Since the polynomial’s terms have degree n or less, each term
other than the multilinear term lacks some variable. Since the term is constant with respect

to the missing variable, the difference operator that corresponds to the missing variable kills

the term.

1.1.2 Finite-Difference Formulas
Expanding the finite-difference operators produces a formula for the multilinear term:

1

(u1 —v1) -+ (un — vn)

(-1)'®P>x) (14)

x€{u1,v1} % xX{un,vn}

Dl"'DnP()z

where s(x) is the number of variables z; set to v;. Computing the formula requires 2"
evaluations of P(), so if each evaluation requires O(poly n) time and O(poly n) space, then

the entire computation requires O(2"poly n) time and O(poly n) space.

1.1.3 Hamiltonian Paths as the Multilinear Term of a Polynomial

Let G be a directed graph with vertex set V = {s,t} U {1,...,n}. We will show that the
number of s-t Hamiltonian paths in G is the coeflicient of a polynomial with every term of
degree n.

Let A be the adjacency matrix of the graph induced by vertex subset {1,...,n}, and

define a corresponding variable matrix B such that b;; = a;jz;. Define a 1 x n “entrance”

vector s:
z; 1f G has an edge from s to §
si=9q DA ees ’ (1.5)
0 otherwise
Define an n x 1 “exit” vector t:
1 if G has an edge from i to ¢
ti = _ (1.6)
0 otherwise

Define W to be the set of length n + 1 s-¢ walks in G that contain neither vertex s nor
vertex t as internal vertices. For j in 1...n and for each walk w € W, define m;(w) to be
the number of occurrences of vertex j in the walk.

Define P() = sB™ 1t. Since adjacency matrix multiplication counts walks, P(1,...,1) =

|W|. Since each variable z; is multiplied into terms as its vertex j is visited,

P(s,...,zn) = 3 o an) (1.7)
weWw
The Hamiltonian paths have mi(w) = ... = my(w) = 1. So the Hamiltonian paths corre-

spond to multilinear terms. O

1.2 Inclusion and Exclusion Method

The following algorithm is adapted from a paper by Karp [24]. (For related results, see
(2, 3].) Let U be the set of length n + 1 s-t walks in G that contain neither vertex s
nor vertex t as internal vertices. Let Wg be the set of walks that lack all vertices in

S C{1,...,n}. The number of Hamiltonian paths is
lU—(W{l}U...UW{n})| (1.8)
By the principle of inclusion and exclusion [29], this is equal to

- > Wyugl+ > Wiy OWenyl = 2 Wy N Wiy (1.9)
{jl}g{lv""n} {Jl jQ}Q{lr"’”}

Note that Wi;y 0 ... N Wy = Wi o (Both expressions are the walks that lack all

vertices in {j1,...,Jx}.) By definition, U = Wy. So,

U-(WmU...uWepl= > (-1D)Sl|wyg (1.10)
SC{1,...,n}

To count walks that lack all vertices in .S, use adjacencies s, B, and t. Set z; =0 for j € S

and z; =1 for j € S to erase edges to forbidden vertices. Then
|Ws| =sB™ 't (1.11)
and the number of Hamiltonian paths is

3 (-1)5sBnlt (1.12)
x€{1,0}"

where s(x) is the number of variables assigned zero.

The inclusion and exclusion formula is a special case of the finite-difference formula,

with parameters u; = 1 and v; = 0. Like the general finite-difference formula, the inclusion

and exclusion formula can be computed in O(n?2") time and O(n?) space.

1.3 Dynamic Programming Method

The following algorithm is adapted from a paper by Bellman [9]. (For related results, see
[16].) The algorithm counts paths of successive lengths. On termination, cg,; is the number
of s-j paths with internal vertices S. Hence, ¢{; . n}: is the number of s-¢ Hamiltonian

paths.
The adjacencies A and t are defined as before. Define a non-variable version of adjacency

1 ifGh dge fi to j
sz{ i as an edge from s to j (1.13)

0 otherwise

Variable L refers to path length. The algorithm follows.

for j=1ton

Cp,j = 8j

forL=2ton
for S such that |[§|=L -1
for j €S

Cs,j = zie{l,..‘,n},i;zéj Cs—{i},i@ij

C{1,..n}t = 2oi€ft,..n} S{t,.n}—{i},iti

The algorithm requires O(n?2") time and O(2"n) space.

1.4 Comparison of Methods

The inclusion and exclusion algorithm is a special case of the finite-difference algorithm.
Both algorithms sift through a larger set of walks to count the set of Hamiltonian paths. The
dynamic programming algorithm is fundamentally different; it accumulates Hamiltonian

paths through construction and gathering of subpaths.

The dynamic programming algorithm requires exponential space, and the other algo-
rithms do not. Also, there are many cross-references among the computed terms, hence
many messages and synchronizations are required to partition the computation among
message-passing processors in a parallel computer. In contrast, the other algorithms sum
over 2" terms with no cross-references. The terms can be computed independently on sepa-
rate processors. The only step that requires communication is summing over the processors.

Unlike the inclusion and exclusion formula, the finite-difference formula offers a choice
of parameter settings. Some settings allow reductions in the computation of formula (1.4).
For example, if every term of P() has degree n, then setting u; = —wv; introduces a pairwise
symmetry among the formula’s terms. The terms with opposite assignments to each variable

have the same value, i.e.,
(-1* ™ P(x) = (-1)*) P(~x) (1.14)

Proof. If n is even, then (—1)*®) = (-1)*(-*) and P(x) = P(—x). If n is odd, then
(-1)*®) = —(=1)*(-*) and P(x) = —P(—x).]
The computation can be halved by computing one term of each pair and doubling the result.

As we develop finite-difference algorithms, we will explore problem-specific parame-
ter settings that allow greater computational reductions. Also, we will extend the finite-
difference framework to tackle problems beyond the domain of the inclusion and exclusion

framework.

Chapter 2
Finite-Difference Operators

In this section, we show how finite-difference operators isolate terms of a polynomial. We
begin with the multilinear term and proceed to other terms. For a general treatment of

finite differences, consult the numerical analysis text by Hildebrand [17].

2.1 Finite-Differences and Multilinear Terms

Recall that we defined the finite-difference operator with respect to z; as follows.

fuj) = fvg)

Uj — Uy

D;f() for u; # v, (2.1)
Let P() be a polynomial with every term of degree n or less. Then D;--- D, P() is the
coefficient of the multilinear term of P().

Proof. We prove a more general result. Let L; be a linear operator with the following

property.

0 ifp=0
Ljat = P (2.2)
1 ifp=1

Also, assume that the operators commute: L;L; = L;L;.
Apply Ly --- L, to P().
Ly« Lo P() (2.3)

Rewrite P() as the sum of terms.

— P P1
=L{---L, Z Cpiyepny * o XER (2.4)
(p1,--»pn)€{0,...n}" p1+..4pn<n

Apply the linear operators to each term.
= Zcpl,...,anl e DpaPt - gPr (2.5)
For the multilinear term,
Ly Lpz1- - Tn=L1 " Lp1%1- Tp1-1=1--1=1 (2.6)

So the term contributes c; ... ; to the sum.
Each non-multilinear term is constant with respect to some variable z;. (Use the pi-
geonhole principle; p1 + ... +pp < nand (p1,...,pn) # (1,...,1) implies p; = 0 for some

j.) Since the operators commute,

Ll ...Lnxﬁ)l ...mz" (27)
Ly Lj1Ljyy - LyLjaR* - - 2 adal?A - abe (2.8)
Ly---Lj1Lj41---Ly0 =0 (2.9)

So non-multilinear terms contribute zero to the sum. Hence,
L1 s LnP() =C1,..,1 (2.10)

The finite-difference operator D; meets the conditions for L;. It is linear:

D;cP() = ¢D;P() (2.11)

and
D;[P() + Q0) = D;P() + D;Q() (2.12)

Also,
ifp=

Djz} = { (1) ifz :S (2.13)

and
D;D;P() = D;D; () (2.14)

10

2.2 Alternative Operators

Here are some other operators that meet the conditions for L;.

L;P() = 5-P0 (215)
and 5 1
LP() =3 /_ P() 2 dz; (2.16)

We do not explore algorithms based on these operators in this paper, but they may have
their uses. For example, the integral could be used to develop algorithms that estimate the

multilinear term by Monte Carlo integration.

2.3 Non-Multilinear Terms

We generalize finite-difference operators to isolate non-multilinear terms. Define P() as

before. Let L;? be a commuting linear operator with the following property.

0 ifp<k
Lka? = or (2.17)
1 ifp=k

For ki + ...+ kn =n, L¥ ... L¥2 P() is the coefficient of term z¥ ... zkn,

Proof. The proof is similar to the proof for multilinear terms. As before,

k kn _ k kn n
Lll T Ln P() - Z cpl;'",an].l o Ln Izlyl U x?l (2'18)
For the target term,
L]fl P Lﬁ"mfl - mg" —]_ (2.19)
so the term contributes x’fl .«-zkn to the sum. For other terms, pj < k; for some z;. So
L?j zeros the term. a

Now we develop an operator that meets the conditions for Lf. Define operator D:

DP() = ﬁ(]ﬂ(z + Az) — P(z)) (2.20)

11

where P(z + Az) is P() with each occurrence of z rewritten z + Az. We show

0 ifp<k
DFa? = P (2.21)
k! ifp=k
Proof. Note
Dz? = pzP~! + lower order terms in x (2.22)
Assume the proposition holds for k. Then
DFFlghtl — pkpgh+l (2.23)
= D*[(k + 1)z* 4+ lower order terms] = (k + 1)D*z* = (k + 1)! (2.24)
If p<k+1, then
D¥*1gP = D*¥DaP = D*[terms of order less than k] =0 (2.25)
0
Now expand D?P().
1
D?P() = o [P(z + 2A1) — 2P(z + Az) + P(z)) (2.26)
Note the binomial form. In general,
i k
D P k m
Am —— %‘O () P(z + mAxz) (2.27)

To form an operator that returns 0 for 2¥ with p < k and 1 for x;?, replace z; by z in P(),

J
apply D, evaluate at z = vj and Az = u; — v;, and divide by k..

Definition 2 (kth Finite-Difference Operator)

k
DPP)= 2 — (u]_% oo Z() 1)E~™ P(o; + m(u; — v;)) (2.28)
m=0

Since we divide by k!,

0 ifp<k
DWg? — o (2.29)
1 ifp=k

12

Note that we can compute ng)P() with k£ + 1 evaluations of P(). By iteration, we can
compute D§k1) e Dgc")P() with (k1 + 1) - (k, + 1) evaluations of P().
With the polynomial P() from the introduction, DYCI) “ee Dgc")P() counts s-t walks with

k; occurrences of vertex j for ky + ... + k, = n. So, for example,
p{¥ D p() (2.30)

counts length n s-t walks with § occurrences of vertices 1 and 2. The computation requires
O(n?) evaluations of P().

The methods developed in this section isolate the coefficient of a single term in P(). In
the next section, we show how to find the sum of a set of coefficients by manipulating the

generating function P(). We focus on the example of counting paths and cycles by length.

13

Chapter 3

Counting Paths and Cycles by
Length

In this chapter, we develop algorithms to count paths and cycles by length. We begin with a
generating function similar to the one used to count Hamiltonian paths in the introduction.
The variables correspond to vertex occurrences, and matrix multiplication counts walks of
the desired length. Then, we multiply by a finishing polynomial that adds the necessary
variables to turn path or cycle terms into multilinear terms.

Counting Hamiltonian paths is a special case of counting paths by length. The principle
of inclusion and exclusion does not apply directly to the general problem, but the finite-
difference approach produces the algorithm in a straightforward fashion. The material in
this chapter was originally published as a paper in Information Processing Letters [6]. For
an algorithm that counts paths or cycles of all lengths, see [3]. For an algorithm to list all

cycles, see [31].

3.1 Paths

Let G be a directed graph with vertex set V' = {s,t} U {1,...,n}. We will show that the
number of length & s-t paths in G is the coefficient of the multilinear term of a polynomial
with every term of degree n.

Let A be the adjacency matrix of the graph induced by vertex subset {1,...,n}, and

define a corresponding variable matrix B such that bij = a;;z;. Define a 1 X n “entrance”

14

vector s:
. if G has an edge from s to j
0 otherwise
Define an n x 1 “exit” vector t:
1 if G has an edge from i to ¢
t; = T s aneee (3.2)
0 otherwise

Define W to be the set of length k£ s-t walks in G that contain neither vertex s nor
vertex ¢ as internal vertices. For j in 1...n and for each walk w € W, define m;(w) to be
the number of occurrences of vertex j in the walk.

Define Px(z1,...,2Zn) = sB*¥=2¢ for k > 1. Since adjacency matrix multiplication counts
walks, Py(1,...,1) = |W]|. Since each variable z; is multiplied into terms as its vertex j is
visited,

Pe(@1,e . ymn) = S ayt) gmn(w) (3.3)
weW

Define the “finishing” polynomial

Fi(z1,...,2,) = Tjy e T, (3.4)
{jl,---ajk}g{li'”)n}
Examine the polynomial
Pk(xla---,mn)Fn—k+1($la---7$n) = (Z le(W)ern(W))(Z len'mjn——k+1)
weWw {jl7-"7jn—k+l}g{1)“',n}
(3.5)

Each term of Pj() has degree & — 1, and each term of F,,_xy1() has degree n — k + 1, so
each term of the product has degree n.

For each walk w € W, the polynomial Py()Fn—k+1() has terms:

:E;m(w) L Z‘Tnn"(w)(Tjp xjn—k+1) (3.6)

{jl:"'7jn—k+1}g{17'“7n}
If the walk is not a path, then it contains more than one occurrence of some vertex. Hence,
mj(w) > 1 for some j € {1,...,n}, so none of the terms in (3.6) is multilinear.
If the walk is a path, then & — 1 of the m;(w)’s are 1, and n — k + 1 of the m;(w)’s are

0. When {j1,-..,jn—k+1} is the set for which mj, (w) = ... = m;,_ ., (w) = 0, the sum

15

produces a multilinear term:

x;nl(w) e m:ln"(w)a;jl .o xjn—k+l =TTy (3.7)
By the pigeonhole principle, each of the other sets {ji,...,jn—g+1} fails to index some

m;(w) that is 0. So z; has exponent zero in:

mi(w)

T

.'I,‘nm" (w)

Tj Lhn_ppa (3.8)

and the term is not multilinear. Thus, each path in W gives a single multilinear term in
Py()Fu—k+1()- So Dy -+ DpPr()F_k+1() is the number of length k s-t paths in G. The

formula is

1 > (—1)°) Py (x) Fropp1 (%) (3.9)

(ul — 'Ul) - (Un - ’Un) xe{ul,vl}x-"x{un,vn}

where s(x) is the number of variables z; set to v;.

3.2 Cycles

A similar relationship holds for cycles. Let G be a directed graph with vertex set V =
{s}u{1,...,n}. Then the number of length k cycles on s is the coefficient of the multilinear
term of a polynomial with every term of degree n.

Define A, B, and s as before. Define an n x 1 “return” vector r:

(3.10)

1 if G has an edge from ¢ to s
T =
' 0 otherwise

Define Qx(z1,...,%n) = sB*~2r. The coefficient of the multilinear term of Qy () Fj—x+1()
is the number of length k cycles on s. So D; -+ DpQk()Fy—x+1() counts these cycles. The

formula is

1 > (=1 Qp(x) Fop1 (x) (3.11)

(Ul _ Ul) ‘e (u'n - ’Un) xe{ul’UI}X"'X{unﬂ)n}

where s(x) is the number of variables z; set to v;.

16

3.3 Computational Issues

3.3.1 Evaluation of Fj()

Using dynamic programming, F;() can be evaluated in poly(n) time and poly(n) space.
Define
Z L1 - Ty, (3.12)

{415---Jk}C{1,...,n} and m=max(j1,...,jz)

s

e.g., f23 = 2123 + z2x3. By the definition:

ffr=zm Yme{l,...,n} (3.13)
m—1
i = Z fl?—lxm = Z fl?—lmm (3.14)
h<m h=k—1
and o .
FO)=> f=> " (3.15)
m=1 m=k

So Fi() can be computed by the procedure:

initially f} =%, Vme {1,...,n}
forc=2tok
Vme {c,...,n} £2:=50" £ x

Fk() = ;11=k flllil

3.3.2 An Alternative Finishing Polynomial

The essential property of F;,_1() is that its product with any term of degree k—1 produces
a multilinear term of degree n if the degree k—1 term is linear in k—1 different variables, and
it produces a non-multilinear term of degree n otherwise. Polynomials have this essential

property if they meet the conditions:
e Every term has degree n — k + 1.

e The terms of Fj,_1() are present, each with coefficient one.

So we define an alternative finishing polynomial:

k1) = (@1 + .o+ 2)" 5 (0 = £+ 1) (3.16)

17

This polynomial can be evaluated in O(n) time. (The dynamic programming procedure to
evaluate F,,_j1() requires O(n3) time.) The time required to evaluate Po()Ep_g41() or
Qe F_r41() is O(n?). So the algorithms to count paths and cycles have time complexity
O(n22").

3.3.3 Setting u and v to Reduce Computation

If we set u =0 or v =0, then F,,_;() is zero in some terms of formulas (3.9) and (3.11).
Computation can be reduced by not evaluating the zero terms. For concreteness, let u = 1
and v = 0. In formula (3.9), Py(x)Fy,_r41(x) is summed over all assignments x € {0,1}".
For a given assignment, let d be the number of elements in x that are assigned one. Recall
that F,,_x41() is the sum of products over size n — k + 1 subsets of the variables. If a subset
contains a variable assigned zero, then its product is zero. If a subset contains only variables
assigned one, then its product is one. So F;,_11() is the number of subsets that contain
only variables assigned one, i.e.,

(n_i+1) fd>n—-k+1

(3.17)
0 otherwise

Frpi1(x) = {
Hence, terms in which x has fewer than n—k+1 variables assigned one need not be evaluated.
This leaves Y35, gy1 C(n,d) = Y51 C(n,i) = O(nF~!) terms to be evaluated. The
savings are substantial for counting short paths and cycles. The computation required to
compute Py() or Qx() is O(kn?), so the total time complexity to count paths or cycles of
length k is O(knk+1).

Since Py()Fy—k+1() and Qi()Fp—k41() have only degree n terms, the computation can
be halved by setting u = —v, as discussed in the introduction. Unfortunately, the u = —v
strategy cannot be combined with the v = 0 strategy, because finite-differences require
uj # vj Vj. If k > 2, then, under the v = 0 strategy, more than half of the terms must be
computed. So it is more efficient to use the u = —v strategy in this case.

Under the u = —v strategy, the computation can be reduced by using the alternative
finishing polynomial #y,_,1(). If n is even, then set u =1 and v = —1. Assignments with
equal numbers of positive and negative elements in x give Fn_k+1(x) = Osince z1+.. .4z, =
0. The fraction of assignments with equal numbers of positive and negative elements is
C(n,%)

—git = O(ﬁ) If n is odd, then a similar reduction can be achieved by setting u; = 2,

vp=-2,anduj=1,v;,=-1Vj>1.

18

3.4 Challenges

The choice of finite-difference parameters and finishing polynomials introduces opportunities
for future research. One challenge is to find parameters and finishing polynomials that
reduce computation for general problem instances. For example, u = (1,-1,1,-1,...)
and v = (0,0,0,0,...), with the proper finishing polynomial, may combine the advantages
of the u = —v setting and the u = 1 and v = 0 setting. Another challenge is to find
simple ways to tailor u, v, and the finishing polynomial to specific problem instances to
reduce computation. Yet another challenge is to find methods to estimate numbers of paths
and cycles by using subsets of the finite-difference formulas’ terms. Part of this goal is to
find settings of u and v and finishing polynomials that produce terms with low variance.
Another part of the goal is to identify which subsets of the terms best estimate the sum

over all terms.

3.5 Extensions

The algorithms to count paths and cycles can be extended to count other structures. For
example, suppose we wish to count sets of s-¢ paths with no common vertices, called in-
dependent path sets. Add a vertex v, with a v-j edge for each s-j edge and an i-v edge
for each i-t edge. For each set of m independent paths in the original graph, there are m!
walks in the new graph with m —1 occurrences of vertex v and no more than one occurrence
of each other vertex. For example, independent path set {s-1-2-3-,s-4-5-t} corresponds to
walks s-1-2-3-v-4-5-t and s-4-5-v-1-2-3-t.

For convenience, assume there are no edges between s and ¢. Add to A row and column
n + 1, corresponding to vertex v. Define B as before, i.e., b;; = a;;z;. Use k to index the
sum of path lengths in the independent set. The number of independent path sets with m
paths is

1 2 _ ;
'Tm Z Dy--- DnD7T+11Pk+(m—1)()Fn—k-l-l() (318)
T k=2

where Fy,_;111(m-1) is the finishing polynomial over variables z1, ..., z,.

19

Chapter 4

Recursive Algorithms and

Computational Reductions

In this chapter, we develop a recursive algorithm to compute D; --- D,, P(). Then we show
how to produce computational reductions based on problem structure. Using the problem
of counting paths by length as an example, we show that a framework to develop reductions

for inclusion and exclusion algorithms [4] extends to finite-difference algorithms.

4.1 A Recursive Algorithm

The following algorithm recursively evaluates the finite-differences in the expression D; - - - D,, P().
The problem size n and the finite-difference parameters u and v are global variables. The
function call £diff(1,0) evaluates D --- D, P(). Each function call £diff(j,x) evaluates
Dj.--D,P(). The variable x accumulates assignments to z1,...,z,, and €’ is the n-vector

with value one in entry j and value zero in the other entries.

fdiff(j,x)

{

if j =n+ 1 then return P(x)

else return ;2-[fdiff(j + 1,x +ujed) — £diff(j + 1,x + vjel)]

uj—vj

Each function call £diff(j,x) assigns a value to z;, and the descendant function calls

assign values to z;11,...,xp. So the valuesof zy,.. ., zj_1 are fixed throughout the recursion

20

from £diff(j,x). We refer to the values of x with z;,...,2;_; fixed as the continuations
of z1,...,zj_1.

To count paths, set P() = Px()F,_k(). Setting u =1 and v = 0 produces the following
algorithm.

paths(j,x)

{

if j =n+ 1 then return Py (x)Fy_x(x)

else return [paths(j + 1,x + €7) — paths(j + 1,x)]

}

4.2 Reductions

4.2.1 Bounding and Zero-Sets

With u =1 and v = 0, P(x) counts length k¥ s-t walks in the graph formed by eliminating
vertices that correspond to zero-valued entries in x. Eliminating a vertex from a graph
cannot add walks, so changing a one-valued entry in x to zero cannot increase Py(x).

Since F,_p(x) = (nfk), where d is the number of one-valued entries in x, changing a
one-valued entry in x to zero cannot increase F,_j(x).

Define x? to have a given set of values in entries 1 to j — 1 and to have ones in entries
j to n. By the above arguments, Py(x?)F,_1(x®) is an upper bound over continuations
of 2¢,... ,w’;_l. Compute Py (x°)F,_1(x) at the beginning of function call paths(j,x). If
Py (x)F,,_1(x?) = 0 then return 0.

The walk polynomial Py (x) is zero if the vertices corresponding to zero-valued entries
form an s-t cut set, for example. Hence, the reduction is more likely when the graph is
sparse. The finishing polynomial F},_j(x) is zero if the number of zero-valued entries is

greater than k. So the reduction is more useful when counting shorter paths.

4.2.2 Vestigial Elements

At the beginning of function call paths(j,x), remove from the graph the vertices corre-
sponding to zero-valued z,...,z;_;. If no vertex in j to n is in the connected component
with s and ¢, then the presence of vertices in j to n does not affect the number of s-¢ walks.

So Pi(x) is constant over all continuations.

21

Let ¢ be the number of one-valued z1,...,z;_1. Let m = n—j+1 be the number of “ves-
tigial” vertices. There are (7) continuations with i one-valued entries in zj,...,z,. Since
(c+i

these continuations have ¢ + 4 one-valued entries, F;,_r(x) = (.';). These continuations

have sign (—1)?~(¢*+%). Hence, the function call can return

ne e (7) (1) “n

1=0
4.2.3 Symmetries

Again, consider the beginning of function call paths(j,x). Remove from the graph the ver-
tices corresponding to zero-valued z1,...,z;_1. Suppose vertices j to j+m—1 have identical
adjacencies, i.e., any permutation of their labels results in the same labelled graph. Then
the number of one-valued zj,...,%j1m—1 determines Py(x)F,_g(x) for continuations of
Zly-wr,LTj—1,%j,---,Zj+m—1. The polynomials Py(x) and F;,_i(x) have the same values re-
gardless of which particular variables z;,. ..,z -1 are one-valued. Thus, paths(j + m, x)
returns the same value as paths(j + m,x’) if x and x' have the same number of one-valued
variables corresponding to symmetric vertices.

The function call paths(j,x) can jump ahead m levels of recursion, computing a single
case of paths(j +m,x) for each number 7 of one-valued entries. So the function call can be

amended:

if j,...,j+m-— 1 are symmetric vertices

then return Y 5_o(—1)""1(}) paths(j +m,x +eJ +... + eI ti~1)

A fast test for vertex symmetry is given in [4].

4.3 Ordering Finite-Difference Evaluations

The reductions depend on the order of assignment to variables z;,...,z,. Some depen-
dencies are not true restrictions; they were imposed to simplify the presentation. These
dependencies can be overcome by dynamically reordering the assignments. For example,
suppose vertices j and j+3 are symmetric. To use the symmetry reduction, swap the labels
on vertices j +1 and j + 3. Now j and j + 1 are symmetric, and the reduction can be used

as presented.

22

In general, the labels on vertices j to n may be permuted at the start of paths(j,x)
without altering the result. To prove this, recall that paths(j,x) computes D;--- D,.
Permuting labels is equivalent to reordering the evaluation of finite-difference operators.
Since finite-difference operators commute, the result remains the same.

A previous paper [4] contains more details about the reductions presented here and

about strategies to reduce computation by reordering the recursion.

23

Chapter 5

Finite-Difference Algorithms for
Other Problems

5.1 Introduction

To demonstrate the methods introduced in previous chapters, we now develop finite-difference
algorithms for a few other problems. Two problems, a sequencing problem and a bin packing

problem, are taken from a paper by Karp [24] in which inclusion and exclusion algorithms

are developed for the problems. (The paper also contains references to dynamic program-

ming algorithms.) Another problem, involving deadlock avoidance, is taken from a paper

by Gold [14].

For each problem, we derive a generating function for which the multilinear terms cor-
respond to objects or configurations that we wish to count. Then, the counting algorithm
amounts to applying the finite differences D; - - D, to the generating function. Finally, we
outline algorithms for variations of the problems, including associated optimization prob-

lems and counting alternative objects or configurations.

5.2 Sequencing

5.2.1 The Problem

The sequencing problem is defined as follows [24]:
“We are given a set of tasks 11,75, ...,T,. Three integers are associated with each task
T;: a positive execution time [(¢), a non-negative release time r(%), and a positive deadline

d(i). We wish to determine if there exists a one-processor schedule starting at time 0 such

24

that the execution of each task takes place within the interval bounded by its release time

and its deadline.”

5.2.2 A Finite-Difference Algorithm

Define a feasible schedule for a multiset of tasks to be a sequence of disjoint open intervals

with the following properties:

1. Each interval (a,b) is labelled by a task T; such that interval length equals task
execution time (b — a = (7)), the beginning of the interval is no earlier than the
release time (a > r(i)), and the end of the interval is no later than the deadline
(b < ().

2. The multiset of interval labels equals the multiset of tasks.

Define s; to be the number of feasible schedules for size k£ multisets of tasks such that all
tasks complete by time . We can count these feasible schedules by dynamic programming.

To that end, define
E(t) = {i|r(t) <t —1(i) and ¢t < d(i)} Vt € {0,...,T} (5.1)

asin [24]. Set E(t) indexes the tasks that may complete at time ¢ without violating their time

constraints. The following dynamic program computes sy for 0 <¢ < T and 0 < k < n.

sgo=1fort >0 (5.2)
sop =0for k>0 (5.3)
Stk = St—14k + Z siyipk-1fort=1,.... Tandk=1,...,n (5.4)

i€E(t)
Let T = max; d(i). Then s7, is the number of feasible schedules for multisets of n
tasks. We wish to determine whether or not there is a feasible schedule that contains one

occurrence of each task. For that purpose, define

ser(x) = Z ct(p1y-. ., pn)it -+ - 2Bm (5.5)
p1+...+pn=k

where c;(p1,...,pn) is the number of feasible schedules that complete by time ¢ for the

multiset with p; occurrences of task ¢; for 1 <1 < n. We wish to determine whether or not

25

er(l,...,1) > 0. Since cr(1,...,1) is the multilinear term of st ,(x),
CT(I,... ,1) = D1 -~-DnST,n(X) (56)

To compute s7,(x) by dynamic programming, examine the program for st k. To convert
the computation of s;; to a computation of s;x(x), we must multiply by z; when we add

task ¢; to schedules. The sum in (5.4) represents the addition of task T; to schedules, so the

dynamic program is:

sto(x)=1fort >0 (5.7)
sor(x)=0for k>0 (5.8)
ser(x) = se—1k(x) + Z sty p—1(X)zs fort =1,..., Tand k=1,...,n (5.9)
i€E(t)
5.2.3 Complexity
The time required to compute s, (x) is O(Tn?), so the time required to compute ¢z (1, ..., 1)

by (5.6) is O(2"Tn?). The space requirement is O(7'n) plus enough space to store the sum

of s7n(x) over 2" assignments to x.

5.2.4 Variations

Our sequencing problem is an existence problem. An associated optimization problem is
to determine the minimum amount of time required to accomplish the tasks. To solve
this problem, first solve the existence problem with T' = max; d(i). If there is no feasible
schedule for the tasks, then the optimization problem has no solution. Otherwise, reduce
T by one and resolve the existence problem. Repeat until there is no feasible schedule for
the tasks. The solution to the optimization problem is the last value of T' for which there
is a feasible schedule. Since there is no feasible schedule in which task T; completes before

(%) + I(3), the existence problem will need to be solved at most
max d(z) — max r(7) + [(3) (5.10)
) 1

times to solve the optimization problem.

To save computation, solve all of the existence problems using a single pass through the
2" assignments to x for the finite differences and a single pass through the dynamic program-
ming procedure for sp,y, 4(:),»(x) for each assignment. In the dynamic programming proce-

dure, we compute the values s;;(x) corresponding to the other existence problems. Instead

26

of summing only smay; a(i),n (X) over the assignments, sum smax,; r(i)-+1(i),n (X); - - - » Smax; d(i);n (%)
The least T such that ¢7(1,...,1) > 0 is the solution to the optimization problem.

To count feasible schedules for a multiset of tasks other than the complete set, use the
finite-difference operators for non-multilinear terms that were introduced in Chapter 2. For
example, suppose we wish to count feasible schedules for two instances of task T}, three
instances of T3, no instances of T3, and one instance of Ty. Examine (5.5). We wish to
compute cr(2,3,0,1). By (2.29),

cr(2,3,0,1) = DPDP DM 57 4(x) (5.11)

If two tasks in the original problem have identical specifications (I(3) = I(j), r(i) = r(4),
and d(z) = d(j),) then, instead of solving the problem for the complete set, solve the non-
multilinear term problem for two instances of T; and no instance of T;. Then multiply
the result by 2! since the two instances of T; may represent either #; followed by T; or
T; followed by T;. The solution is the same, and there is a reduction in computation, as
outlined at the end of Chapter 2.

To count feasible schedules for all size k subsets of (distinct) tasks, use the technique of
finishing polynomials that was developed in Chapter 3 to count paths and cycles by length.
From (5.5), note that sz x(x) consists of terms with coefficients that count feasible schedules
for size k multisets of tasks and variables with exponents that count multiset members by
task. We wish to compute the sum of coefficients over terms that correspond to multisets
with k distinct tasks. These terms have & variables with nonzero exponents.

Recall the finishing polynomial (3.4):

Fo_x(x) = Z Ly Tjp_y, (5.12)
{jl;--wjn-—k}g{l,'“:n}

The finishing polynomial contains one term corresponding to each size n — k subset of

(distinct) tasks. Consider the polynomial:

sT,k(%) Fn—r(x) (5.13)

For each term in sy 4(x) with k£ variables with nonzero exponents, there is one term in
F,_r(x) that contributes the n — k remaining variables to form a multilinear term. The
other terms in sy x(x) lack more than n — k variables, so no term in F,_(x) contributes

enough variables to form a multilinear term. So the coefficient of the multilinear term of

27

the product polynomial is the number of feasible schedules for subsets of k£ (distinct) tasks.

Hence, the solution is:
Dy -+ Dpstp(x) Fr—k(x) (5.14)

5.3 Bin Packing

5.3.1 The Problem

The bin packing problem is defined in [24] as follows:

“An instance of the bin packing problem is specified by a positive integer bin capacity
B, a positive integer m giving the number of bins, and n items, where the size of item ¢ is
given by a positive integer s(i). The question is whether the set of items can be partitioned
into sets Uy, ..., Up such that the sum of the sizes of the items in each u; is B or less.”

(For notational convenience, we use m for the number of bins; k is used in [24].)

5.3.2 A Finite-Difference Algorithm

Define a feasible packing for a multiset of items to be a sequence of m sequences of items

with the following properties:
1. The items in the sequences of items form the multiset.
2. In each sequence of items, the sum of item sizes is no greater than B.
3. The sequences of items may be empty or may contain duplicates.

Define d;; to be the number of sequences of k items (duplicates allowed) with sum of

sizes j. We can compute d;; for 0 < j < B and 0 < k < n as follows:

doo =1 (5.15)
doj =0 for k>0 (5.16)
dj,() =0forj>0 (517)
djr=0forj <0 (5.18)
k]
dig = disiyp-1forj=1,...,Bandk=1,...,n (5.19)
=1

Define b; to be the number of sequences of k (not necessarily distinct) items with sum

of sizes less than B. Then b, = E]B:o djk- Now, define t5; to be the number of feasible

28

packings for multisets of k items with & (possibly empty) sequences of items. We can

compute tj 5 using the following dynamic program:

t0,0 =1 (520)
tox =0 for k>0 (5.21)
k
thi =Y th-1gbk—qfor h=1,...,Bandk=1,...,n (5.22)

g=0
Recall that there are m bins. We wish to determine whether or not ¢, , counts a feasible

packing for the full set of items {1,...,n}. To that end, define

the(®) = > cnlpr,...,pa)af - abn (5.23)
P1+...+pn=k

where cp,(p1,...,pn) is the number of feasible packings for the multiset with p; occurrences

of item ¢ for 1 < ¢ < n. We wish to determine whether or not ¢,,(1,...,1) > 0. Since
¢m(1,...,1) is the multilinear term of ¢, ,,(x),
cm(l,...,1) = D1 - Dptyypn(x) (5.24)

To compute %, ,(x) by dynamic programming, we need to introduce variable z; into
terms when we count item 7 being added to a sequence. Examine (5.19). The sum corre-
sponds to adding item ¢ to a sequence. So insert z; after the sum to define d;;(x) by the

dynamic program:

doo(x) =1 (5.25)

do(x) =0 for k>0 (5.26)

djo(x)=0forj >0 (5.27)

d;r(x) =0forj <0 (5.28)

dj(x) = Z —s@yp—1(X)zifor j=1,...,Band k=1,...,n (5.29)

Also, let bi(x) = Zfzo d;jx(x). Then t}, 1(x) can be computed as follows:

too(x) =1 (5.30)

29

tox(x) =0for k>0 (5.31)

k
the(x) =D thot1gbe—g(x) for h=1,...,Band k=1,...,n (5.32)
q=0

5.3.3 Complexity

The time required to compute t,, 5 (x) is O(n?B), so the time required to solve the problem
by computing the finite differences is O(2"n2B). The storage requirements are O(nB) for

the values d;(x), plus the storage needed to sum wy, ,(x) over 2" assignments to x.

5.3.4 Variations

An associated optimization problem is to find the minimum number of bins required for all

items. To solve this problem, solve the feasibility problem for

mE{[Z?—:éi(ﬁ],...,n} (5.33)

The value [M} follows from the fact that the combined capacity of the bins must be
at least as large as the sum of item sizes. The value n follows from the fact that if there is
no feasible packing in which each item gets its own bin, then there is no feasible packing for
any number of bins. The minimum value of m with a feasible solution is the solution to the
optimization problem. A similar approach works for the problem of finding the minimum
bin capacity B required.

To count feasible packings for multisets of items other than the complete set, {1,...,n},
use the finite-difference operators for non-multilinear terms. For example, to count feasible

packings for four instances of item 1 and two instances each of items 5 and 6, compute
¢m(4,0,0,0,2,2) = DY DI DBt () (5.34)

As for the sequencing problem, if two (or more) items in the original bin packing problem
have identical sizes, then, instead of solving the original problem for the multilinear term,
solve the non-multilinear term problem for two (or more) instances of a single item with
the size of the duplicated items. Once again, the answer is the same, and the computation
is reduced.

To count feasible packings over all size k subsets of (distinct) items, use the finishing

polynomial technique. Examine (5.23). Note that #5, x(x) is the sum of terms that have sum

30

of exponents k. We desire the sum of the coefficients of terms with nonzero exponents on

k distinct variables. Recall the finishing polynomial:

Fo_k(x) = Z T T, (5.35)
{1, dn-xC{1,...,n}
The finishing polynomial contains one term with each set of n — k distinct variables. Hence,
each term in t,, x(x) with k£ distinct variables produces one multilinear term in the polyno-
mial:
tm k(%) Fp—k (%) (5.36)

So the feasible packings for subsets of £ items are counted by

Dy--- Dntm,k(x)Fn—k(x) (537)

5.4 Deadlock Avoidance

A paper by Gold [14] analyzes a general deadlock avoidance problem and several constrained
versions of the problem. We use the problem with the constraint that no partial requests
are allowed. For in-depth analysis of deadlock problems, see [1, 14, 15, 19]. For a proof that
the problem presented here is NP-complete, see [14].

5.4.1 The Problem

For a system with r resource types, an instance of the deadlock avoidance problem is
specified by a nonnegative integer r-vector ag that indicates how many units of each resource
are available initially and n processes Pi,..., P,. Each process P; is specified by a pair of
nonnegative integer r-vectors (y;,z;). If process P; obtains the resources indicated by y;,
then it eventually terminates and provides resources z; to the available pool.

We wish to determine if there exists a sequence of processes Pq(1ys - -+, Ps(ny in which

each process occurs once:

{5Q1),...,s(n)} = {1,...,n) (5.38)

and no resource constraints are violated:

Ysi) S a0+ D (255) — ¥si)) Vi€ {L,...,n} (5.39)
j<i

(By vector inequality x <y, we mean that the inequality holds for all positions.)

31

5.4.2 A Finite-Difference Algorithm

First, we develop a dynamic program to count sequences that obey the resource constraints
(5.39) but may violate (5.38) by having no occurrences of some processes and multiple
occurrences of others. Refer to these sequences as feasible sequences. Let s,x be the
number of such sequences of length k. Let m; be the maximum units of resource j available

during or after a sequence of length n:

m; = [ag]; +n[mlax(zij —yi5)] Vie{l,...,r} (5.40)
Then
1 fa= ag
Sa0 = _ Vae {0,m;} x...x{0,m,} (5.41)
0 otherwise
sak =0 Va such that a; < 0 for some j € {1,...,r} (5.42)
and
n
Sak = 25a+yi—zz-,k—1 Vae {0,mi} x...x {0,m,} and k € {1,...,n} (5.43)

=1

The number of length n feasible sequences is:

San (5.44)
ac{0,m1}x...x{0,m,}

To solve the problem, we need to count the length n feasible sequences that contain all

processes. To that end, alter the dynamic program to index processes Py, ..., P, by variables

T1y+ee9p.

1 ifa=a
Sa0(x) = Y Vae{0,mi}x...x{0,m,) (5.45)
0 otherwise

sak(x) =0 Va such that a; <0 for some j € {1,...,7} (5.46)

n
Sak(x) = Zsaﬂi_zi’k_l(x)xi Vae {0,m1} x...x {0,m,} and k € {1,...,n} (5.47)

=1
and

P(x) = Z san(X) (5.48)

ac{0,m;}x...x{0,m,}
Then D, --- D, P(x) > 0 if and only if there exists a sequence that meets conditions (5.38)
and (5.39).

32

5.4.3 Complexity

The polynomial P(x) can be evaluated in O(n I]}_,(m; + 1)) time, so D; --- D, P(x) can
be evaluated in O(2"n[[}_;(m; + 1)) time. The computation requires O(I]}—,(m; + 1))

space.

5.4.4 Variations

To determine if it is possible to execute process F; first and avoid deadlock, solve the
deadlock avoidance problem for the remaining processes, with z; — y; added to ag. To find
a deadlock-free sequence of resource allocations (if one exists), first test each process to find
a safe initial process. Then find a safe second process by finding a safe initial process among
those remaining. Iterate to find safe processes for the subsequent positions in the ordering.
Since Dy - - - Dy P(x) counts deadlock-free process orderings, if Dy - -- D, P(x) = n!, then all
process orderings are deadlock-free.

To count sequences that satisfy the resource constraints and contain multiple occurrences
of some processes, use the finite-difference operators for non-multilinear terms from Chapter
2. For example, to count sequences with two occurrences of process P;, three occurrences

of process P, and one occurrence of Ps, evaluate
DB pl p(x) (5.49)

where P(x) is the generating function for sequences of 6 processes.

The same approach works for sets of processes with identical specifications. Represent
each set by a single process from the set, and count sequences with as many occurrences of
the process as there are members of the set. Multiply the result by the factorials of the set
sizes since the occurrences of each representative process may be replaced by the processes

in its set in any order to form a solution sequence for the original problem. For example,
2131D{? p{® pV p(x) (5.50)

counts the sequences containing one instance of each process if the processes can be par-
titioned into a pair with the specifications of Pj, a triple with the specifications of P,
and a single process with the specification of P5. As discussed in Chapter 2, this problem
transformation saves computation.

To count length k sequences that satisfy the resource constraints and contain k distinct

33

processes, use the finishing polynomial technique. Define

Py(x) = > sa,k(%) (5.51)

ac{0,m1}x...x{0,m,}

and recall the finishing polynomial (3.4):

Frp(x) = > Tjy o Ty, (5.52)
{jl)""jn—-k}g{l,...,n}

The multilinear terms of Py (x)F,,_x(x) correspond to sequences without repeated processes,

S0
D1 -+ DpPy(x) Fr—g(x) (5.53)

counts these sequences.

5.5 Discussion

The examples in this chapter illustrate how to develop finite-difference algorithms for count-
ing problems. The examples also illustrate how to develop algorithms for associated opti-
mization problems and for variations of the counting problems. Although the techniques
involving multilinear terms and finishing polynomials are illustrated separately, these tech-
niques can be combined to produce algorithms for more complex problems. Likewise, the
finishing polynomial may be altered to develop algorithms for even more problems. The
key to using these techniques is understanding how they interact with one another and with
the underlying generating function.

We have not considiered ways to choose finite-difference parameters in order to reduce
computation for the finite-difference formulas developed in this chapter. Later, we will
show that the proper choice of parameters enables dramatic computational reductions for
the permanent problem. Finding such parameters (if they exist) for the problems presented

here is a challenge for the future.

34

Chapter 6

Computing the Permanent of a 0-1
Matrix

In this chapter, we develop finite-difference algorithms to compute the permanent of a 0-1
matrix. First, we develop a finite-difference formula. Then we prove that some finite-
difference parameter settings produce many zero-valued terms. Finally, we develop an
algorithm that reduces computation by eliminating collections of zero-valued terms.

The permanent of an nxn 0-1 matrix is the number of ways to choose a set of one-valued
entries with one entry in each row and one entry in each column. If the columns represent
workers, the rows represent jobs, and one-valued entries represent worker-job compatibility,
then the permanent is the number of ways to assign each worker to a job and have each
job accomplished. Likewise, if the rows and columns represent the vertex partitions in a
bipartite graph and one-valued entries represent edges, then the permanent is the number
of complete matchings. Alternatively, if the matrix is the adjacency matrix of a directed
graph, then the permanent is the number of directed cycle sets in which each vertex is on
one cycle.

The permanent problem has applications to statistical physics, including problems in-
volving monomer-dimer systems. For more information, see [30].

Computing the permanent is a #P-complete problem [32]. #P problems are the counting
problems associated with NP problems (32, 13]. For example, determining whether or not
a graph has a Hamiltonian cycle is an NP problem, so counting the Hamiltonian cycles
is a #P problem. In this case, the existence problem is NP-complete [23, 13], and the
counting problem is #P-complete [33]. In the case of the permanent, the existence problem

— determining whether a bipartite graph has a complete matching — is in P [25, 10]. However,

35

the counting problem is #P-complete.
Ryser made progress on computing the permanent by developing an inclusion and ex-
clusion algorithm [29]. The algorithms presented here are a generalization of that inclusion

and exclusion algorithm. The results in this chapter are taken from several papers [7, 8].

6.1 A Finite-Difference Formula for the Permanent

The permanent of an n x n 0-1 matrix is the number of n-sets of one-valued entries with

one entry in each row and one entry in each column.

per A = Z aljy *** Gnj, (6.1)
G1e-dn
where j; ... jp is a permutation of 1...n. Suppose the rows represent women, the columns
represent men, and the one-valued entries denote compatibility. Then the permanent counts
the marriage arrangements in which each person has a compatible spouse.
The product of row sums counts the dating arrangements in which each woman chooses
a compatible man. (Entry a;; represents woman ¢ choosing man j. Row sum i represents

woman ¢’s choices.)

(a11+ ...+ awm) - (an1 + ... + apn) (6.2)
n n
- H Z a5 = Z A14; °* Qnj, (63)
i=1j=1 (j15--rin)E{1,.c,n}™

In some of these arrangements, several women choose the same man. The permanent terms
correspond to arrangements in which each man is chosen by exactly one woman.

Define [A(x)];; = [A]ijx;, i-e., multiply each column j by z;. Now each woman’s choices
are labelled.

P(x) = (a11z1 + ...+ a1n2pn) - (@n1z1 + ... + anpzy) (6.4)
n n

=[I> aijz; = > ayjy - Onja T - Ty (6.5)
i=1j=1 (G1yein)E{L,-om}™

In the terms of the last sum, z; occurs once for each woman who chooses man j. The
permanent terms are those in which each z; occurs exactly once. Hence, the permanent is
the coefficient of the multilinear term of P(x), and per A = D; --- D, P(x).

Different choices of finite-difference variables produce different formulas for the perma-

36

nent.

per A = L 3 (-1)*®) P(x) (6.6)

(ur — 1) (un — vp) x€{u1,v1} X X {ttn,vn }

where s(x) is the number of variables z; set to v;.
The formulas can be computed by evaluating P(x) for each of the 2" assignments to x.
This requires O(2" poly n) time and O(poly n) space. (The inclusion and exclusion formula

by Ryser [29] is the finite-difference formula with u; = 1 and v; = 0 for all 5.)

6.2 Zero-Valued Terms

We develop computational reductions by selecting finite-difference parameters that induce
many zero-valued terms in formula (6.6). If P(x) is zero, then the term corresponding to

assignment x is zero. Recall that P(x) is the product of row sums of A(x).
P(x) = (a11z1 + ... + a10Zn) - -+ (@n1Z1 + - .. + CGpnTy) (6.7)

If any row sum is zero, then P(x) is zero. Assume A is a 0-1 matrix. Consider the finite-
difference parameter setting: u; = 1 and v; = —1 for all j. For x drawn at random
from {1,—-1} x ... x {1, -1}, each row sum has expected value zero. Shortly, we will show
that this zero-mean parameter setting produces many zero-valued terms. Now consider a
different setting: for odd j, u; = 1 and v; = 0; for even j, u; = 0 and v; = —1. Like the
previous setting, this one balances positive and negative entries in x. But the new setting
produces row sums with lower variance. We will show that this low-variance parameter
setting produces even more zero-valued terms than the zero-mean setting.

Assume A is drawn at random, each entry having value one with probability p < 1
and having value zero with probability ¢ = 1 — p. We prove that the expected fraction of

nonzero-valued terms with the zero-mean parameter setting is O(—;\/—~7—). Then we prove
n? logn

that the fraction goes to O(%—ll——) for the low-variance parameter setting.

Figure 6.1 compares ex;ectegg?ractions of zero-valued terms in the low-variance, the
zero-mean, and the inclusion and exclusion formulas. The low-variance formula has the
most zero-valued terms. Figure 6.2 displays expected fractions of zero-valued terms for the
low-variance formula with various element probabilities p. Figure 6.3 shows that for sparse

matrices, the expected fraction of zero-valued terms is nearly 100%.

37

U 8ZIs xiijew
0
= O .
o]
a]
a
L o] -
O
D +
a]
- +
o}
+
o
+
+0
+
++ HWM
= +++ -
O BJNLWIO} UOISNOX3 PUB UOISH|oUl AT %
+ B|nuloj uesw-0isz + ++++++
o BJNWIO} SOUBLRA-MO| T %%
OO
»&SAVOOOAXVOO
0 0 0010 0010 1010010 0-0.0.0.:01 N0 0 0000 000 LoD OD OO0 ¢ O Y M 1 1

06°0=d ‘pasedwon) SejnuiI0 ~- SUB] PanjeA-01e7 Jo Uonoel4 pajoadx3

¢0

v0

90

80

SUWIB) PanjeA-01aZ JO uoljoely

the expected fraction of zero-valued terms goes to 100% for the low-variance and zero-mean

Figure 6.1: The low-variance formula has many-zero-valued terms. As matrix size increases,
formulas.

38

U 8IS XLijew
05

¢0

¥0

90

SWI8] PanjeA-01aZ JO uonoel)

Figure 6.2: The expected fraction of zero-valued terms in the low-variance formula is shown

for several matrix densities p.

39

o
T T T T e
1o
[=>]
[N ¢
N o
S B 413
=2
(72
@
Q
=
B 1R
=
®
1]
s
an R -4 8
=
(/2] =
£ 2
= a9
R O x
o =
Q o -~
=] s
(3 'S, 1]
=1 %
oL 3 12
3 8
— s
S 3,
s ?
i) Jo
S %% ™
< <
L %
Py
- LN
2 >
3 I o 48
=y o o
1] < >
< ®
n °© < > 4 o
e
1 i] 1 o
— [oy © < N @
> > > = >
> > & > S
= = S =

SULIB]} PaNn{BA-019Z JO uonoely

Figure 6.3: The expected fraction of zero-valued terms in the low-variance formula is nearly
100% for sparse matrices (p = 0.25). Note that the vertical axis varies from 99% to 100%.

40

6.3 Expected Fraction of Nonzero-Valued Terms in the Zero-

Mean Formula

Given x, the row sums are i.i.d. So the expected fraction of nonzero-valued terms is

1
o Z [1=Pr{a1z1+... + apnzn}]” (6.8)
xe{l,-1}»
where a; = 1 with probability 0 < p < 1 and a; = 0 with probability ¢ = 1 — p. Let k be

the number of variables z; assigned one.

= zn: (Z)%;[l —Pr{(a1 +... 4+ ag) — (ag41 + ... +a,) = 0})" (6.9)
k=0

To compute (6.9), note that the row sum is zero if equal numbers of ai,...,a; and

@k41,-..,0y are one. Let v be the number of ay,. .., ax with value one, and sum over cases.

min(k,n—Fk
Pr{ai+...+ar — (ag4+1+ ... +a,) =0} = (Z)C(k, V)P dF VO — k, v)p? g
v (6.10)
(For a dynamic programming procedure to compute the fraction of nonzero-valued terms
for general finite-difference parameters, see [7].)

To find an upper bound for (6.9) as n — 0o, we will use several results from probability
theory [11]. First, approximate the binomial distribution (}) % by the normal distribution
%g(%(k ~ %)), where g(z) = #e‘%zz. The terms in the tails of the distribution,
k-2 > n%+€, contribute an exponentially small sum, so they can be ignored. Also,

approximate the row sum by a normal distribution with mean (2k — n)p and variance npq.

~ It O A CLl) N
uc-a%n%ﬁ \/ﬁg(vn M No AN T) (6.11)

(For a detailed justification of this approximation, refer to Appendix A) Let t, = y\i/-_—nﬂ and

At =2
~ [argon - — g<ﬁt>1" (6.12)

ok
Vv 1pPq

The limits of integration may be taken as oo or as £2n¢; the same asymptotic form results.

41

Observe that

= I—) "~ exp(— IL—- g ex __.1_ 2 2
“’mg(ﬁt” p(\/;;g(\ﬂt)) P(=5,.9 (\/;t)) (6.13)

We can ignore the second exponential function since it is 14+O(#?) for t — 0. So the fraction

of nonzero-valued terms is

~2 ” 9t) exp(—&ﬂ Z1))at (6.14)

. _ -2
Let r = %, and make the change of variable w = exp(5-).

~ \/Z/1 w1 (log l)‘%e“xwdw (6.15)
7 Jo w ’

where A = %pq.

Partition the integral into three regions, 0 to)\‘%, A" to %, and % to 1. Note that
(log %)_% increases from 0 to oo as w goes from 0 to 1. We will see that the first region
dominates the integral as A — oc.

Examine the first region.

Az 1. 1
/ w™ " log =) " Te M dw (6.16)
0 w

Note that (log %)‘% is maximized at w = A7 2.

1

2 A2 1,-X
o /0 W Lo gy (6.17)
Make the change of variable w = .
2 -r *® -1 _—
< o)\)\ /0 u e du (6.18)

The integral is I'(r).
2

=\ iog T (6.19)

42

Now examine the second region.

1
/ ® W (log = =) e du (6.20)

[l

Note that (log %)”% is maximized at w =

w e M dw (6.21)

1 2
< —
\/10g2/,\“%
=zl As) — 00,

The expression in the integral is maximized over positive numbers at w = X
< A7Z, so the expression is maximized over the region of integration at w = A~

t\)|>—l

r—1

Py

Substituting the maximum value produces the bound
1

AT3(r=Dg=A? (6.22)

<
vV log 2
which is dominated by (6.19), the integral over the first region

Examine the third region.
(6.23)

1 7‘—-11 1 —% —)\wd
/%w (oga) e w

Doj—

Note that e~ is maximized at w =

1 1
e 2 /l wr“l(loga)—%dw (6.24)
2

Since (log =)~z is O((1 — w)‘%) as w — 1, the integral is a finite constant. Hence, the

w
integral over the third region is dominated by (6.19), the integral over the first region
Substitute (6.19) into (6.15) to derive the following asymptotic upper bound for the

fraction of nonzero-valued terms.

2r .,
7r10g/\)\ [(r) as A — oo (6.25)
Expand A.
" 1
2 2 .
\/ ~(2npq) T et (6.26)

Figure 6.4 compares this asymptotic upper bound for the actual expected fraction of
nonzero-valued terms. (The figure shows the corresponding lower bound for the expected

43

fraction of zero-valued terms.)

Figure 6.4 also shows an asymptotic approximation, which is derived as follows. To
evaluate (6.15), we partition the integral into three regions, 0 to)\‘%, 273 to %, and % to
1. Instead, consider the regions 0 to A=(1=9), A=(1-¢) ¢, %, and % to 1 for any fixed ¢ > 0.

The upper bound for integral over the first region, (6.19), becomes

1

(1 —¢)log /\/_TI‘(T) (6.27)

The upper bound for the integral over the second region, (6.22), becomes

1 ¢
A——(l—ﬁ)(r—l) —A 6-28
Veog2 ¢ ()
This is dominated by the first region, (6.27). The upper bound for the third region, (6.24),
remains the same. It is dominated by the upper bound for the first region, (6.27). Substitute
(6.27) into (6.15) and expand A to derive the following asymptotic upper bound for the

fraction of nonzero-valued terms.

2r T 1
—(2 2I(r)——— 6.29
- 6)W(pg) 20 (r) e Tosn (6.29)
Note that (6.26) is the special case of this bound with € = . Setting ¢ = 0 gives the
approximation which is plotted in Figure (6.4).

6.4 Expected Fraction of Nonzero-Valued Terms in the Low-

Variance Formula

First, we will exhibit a correspondence between x values in the low-variance formula and
x values in the zero-mean formula. Row sums in the low-variance formula have half the
expected value and, on average, half the variance of corresponding row sums in the zero-
mean formula. We will alter the previous derivation according to these differences to derive
an asymptotic upper bound for the fraction of nonzero-valued terms in the low-variance
formula.

For simplicity, assume n is even. Given x € {1, —-1}" (the zero-mean formula), generate
the corresponding x in the low variance formula as follows. For odd j, if z; = —1 then

change it to zero; for even j, if z; = 1 then change it to zero. Some examples:

44

3
T T T T T =
H i
'; 0::
: cco
- : S o6 cC 4 8
' =1
H O T O
H S Eo
' "‘;6
=} H el
= H 2=
3 ' D aeo <
" n . D 2. " ©
o H o ©.Q
a ! X OB
D ' o= 2
2 i Y88
<) : o £
- . Ea i)
2l & 3@ ~
[3+] H [1+]
o i
=] '
= |
5] H o
= . 1 ©
=
2l ¢ -
g : S
<_ Jlo®
8 B x
ol
= E
£ ' E
> i
(7] Y [e]
<t [~ . 1 <=
H
«<
=
EL o
£ 15}
c
(53]
D
= o
e N
D
N
- [aw]
=
o

SWI9) PaN[eA-0I9Z JO uonorl)

Figure 6.4: For the expected fraction of zero-valued terms in the zero-mean formula with
p = 0.50, the asymptotic approximation and asymptotic lower bound are shown with the
actual values for various matrix sizes n.

45

zero-mean X low-variance x
(1,1,1,1,1,1) (1,0,1,0,1,0)

(1-1,-1,1,1,1) (1,-1,0,0,1,0)
Note that the sum of entries in the low-variance x is half the sum in the zero-mean x.

To prove this, we show that the sum is half for every corresponding adjacent pair (z;, zj41)-

(Assume j is odd.)

zerg-mean low-variance
(zj,zj41) sum | (zj,Tj41) sum
-1-1 -2 0-1 -1
1-1 0 1-1 0
-11 0 00 0
11 2 10 1

Each row sum ajz1 + ...+ a2z, has half the expected value for each low-variance x as for
the corresponding zero-mean x.

The number of nonzero entries in a random low-variance x is binomially distributed, i.e.,
x has m nonzero entries with probability (;) zln So the variance of row sum a1z, +. . .+ap T,
is binomially distributed, with variance mpq occurring with probability () 51;; The terms

in the tails of the distribution, |m — %| > nzte

, are an exponentially small fraction of the
terms, so they can be ignored in our derivation of the asymptotic upper bound.

To find the asymptotic upper bound for the fraction of nonzero-valued terms in the
low-variance formula, we use the approximations made to analyze the zero-mean formula,

but halve the mean row sum and consider only terms with variance

z_e)npq, l(1 +)npq] (6.30)

1
mpq € [5(1 -1 5
i

1
n2"¢

Modify (6.11) to get the fraction

2 2%k-n. 1 3(2k—np.,
O R)

~o

(6.31)

1
lk—2Z|<n2te

We bound this expression by taking the maximizing variance mpq for each term in the sum.

Each term is maximized when
1 (%(2]{: - n)p
g
Vmpq Vmpq

) (6.32)

46

is minimized. Let z = %(Zk —n)p and ¢ = \/mpq. Then (6.32) has the form

2

1 _lz
e 2.7 (6.33)

V2ro?

This expression is minimized with respect to 0? when 0% = 22. Also, when o2 is restricted

to a range [02; ,02.,], expression (6.33) is minimized by

(2 2 2
Omin % < Omin
2
o“ =4 z? 02, <z?< o2, (6.34)
2 2 2
{ Tmax Tmax < 7T

Hence, we bound (6.31) by partitioning into three sets of terms and assigining the worst-case

value of 0% = mpq for each.

(

31— —2)npg (3(2k —n)p)? < (1 — —2=)npg

n? n2 "¢

mpg =4 (32k—n)p)? 3(1- =)npg < (3(2k - n)p)® < 5(1+ n—%"’—_:)npq (6.35)

11+ —=)npg 31+

1
\ n2 "¢

)npq < (3(2k — n)p)?

1_
n2"¢

We will find that the first and second sets contribute exponentially small fractions to (6.31),

so the third set determines the asymptotic fraction of nonzero-valued terms.

Consider the first set of terms. Examine (6.31). Note that %g(”\“/%") approximates a

p.d.f., so it weights each set of terms by O(1) or less. We could bound the contribution
2

1=

of the first set of terms by setting mpq = %(1 —)npg in the remaining part of the

expression. Instead, we set mpg = (%(2k —n)p)? to achieve a looser but simpler bound.

1 '1'(2k — n)p n
- T) (6.36)
—[1- mg(l)]" (6.37)

47

Recall that (%(2k —n)p)? < %(1 -

2
l—E

)npq for the first set of terms.

1

<[1-
\/%(1 — ——)npq
n2

g(I* (6.38)

The denominator is O(y/n), so the expression is O(e_\/ﬁ). Hence, the first set of terms
contributes an exponentially small fraction to the sum.
Now consider the second set of terms. As for the previous case, set mpq = (3(2k—n)p)2.

Once again, we get .

~ @

g(I* (6.39)
Recall that (3(2k — n)p)? < 2(1+ —%2—_:)npq for the second set of terms.
n

1
1 2
\/5(1 + 1=)npg
n?

<[1- g (6.40)

The denominator is O(y/n), so the expression is O(e_\/ﬁ). Hence, the second set of terms
contributes an exponentially small fraction to the sum.
Finally, consider the third set of terms. To derive an asymptotic upper bound on their

contribution to the sum (6.31), assume that all terms are in the third set. Set mpq =

1 2
11+ —2—)npq.
(1 + —)npg

2 2k-n 1 L2k —n)p
X - sl = —
k—2|<n3*e 1= /P 2 1=/

" (6.41)

~o

Let ¢ = (1 + _%2—_5)
2 2%k-n,. 1 @2k —n)p
> ﬁg(—\/ﬁ i1 W =4 Voo

1
lk—%|<n3te

) (6.42)

Note the similarity to (6.11). We follow the derivation of the asymptotic bound for the

zero-mean formula. As before, let ¢, = %_ﬁﬁ and At = %

1 p,, 1 "
~ [ol — (/2) (6.43)

48

Observe that

- \/%ﬁg(\/gt(-z—%))]" (6.44)

o exp(— o [Pt) exp(— o2 (. [Po——
ool oo Pt et [Pt (6.45)

As in the previous derivation, we can ignore the second exponential function since it is
1+ O(?) for t — 0.

So the upper bound for the fraction of nonzero-valued terms is

~2 [g(t)ex(\/j g(\f (7))>dt (6.46)

42
Let r = %, A= /o and w= exp(55).
1 1 1
~ 4t / W (log =)~} e gy (6.47)
7 Jo w

Partition the integral by regions as in the previous derivation, and the change of variable

w = (%)% yields

o
2 \-tery, / u* e~y as A — oo (6.48)
mlog A 0
The integral is I'(4cr).
2r

~ /\—4cr)

4c T'(4cer) TTog X (6.49)
2r 2cmpgq

=4cT'(4 r .

e I CT)\/W(logn — log 2c7rpq)(n) (6:50)

For € < %, as n — 00, ¢ — % So the upper bound for the fraction of nonzero-valued terms

2 T(2r), /W—%%;L—(f%)" (6.51)

VT i (6:52)

goes to

This can be rewritten as

which is O(n™"(log n)_%)

49

6.5 Eliminating Sets of Zero-Valued Terms to Speed Com-

putation

In this section, we develop a method to speed up computation of the permanent by collecting
sets of zero terms in the low-variance formula. First, we develop a recursive algorithm
that eliminates sets of zero-valued terms. Then, we present a preprocessing method that
encourages elimination of large sets of zero-valued terms. Finally, we present test results.
The following algorithm computes the permanent by evaluating the finite-differences in
the expression per A = D;--- D, P(x). The matrix A, the matrix size n, and the finite
difference parameters u and v are global variables. The function call permanent(1,0)
evaluates the permanent. Each function call permanent(j,r) evaluates D; - -- D, P(x). The
variable r accumulates row sums as the variables x; receive assignments. In each function

call,

j—1
=) 4Tk (6.53)
k=1

We use a’ to denote column j of A.

permanent(j,r)

{

if j =n+1 then return [[j_, r;

1
uj—vj

else return [permanent(j + 1,r + ujal) — permanent(j + 1,r + v;al)]

}

Each function call permanent(j,r) assigns a value to z;, and the descendant function
calls assign values to z;1,...,2,. If, for some row, the partial row sum r; is zero, and
the entries in columns j through n are all zero, then the row sum will remain zero in
all descendant function calls. Hence, all descendant function calls will return zero. The
following algorithm avoids these descendant function calls and returns zero instead. Each

global variable f; stores the column of the rightmost nonzero entry in row i.

collect_zeros(j,r)

{

if, for some row i, f; = j —1 and r; = 0, then return 0

50

else if j =n+ 1 then return [[i_; r;

1

5—v; [collect zeros(j +1,r + u;al) — collect zeros(j + 1,r + vjal)]

else return

}

The computational savings scale exponentially with the level of recursion at which zero
terms are collected. The following preprocessing procedure encourages efficient collection of
zero terms by permuting the columns of A to pack nonzero entries to the left. First, choose
a row with a minimum number of nonzero entries. Permute the columns of A to pack the
row’s nonzero entries into the leftmost columns. Then choose a row with a minimum (but
positive) number of nonzero entries in the remaining columns, and permute the remaining
columns to pack those nonzero entries to the left. Repeat until all columns have been packed
(or until columns with only zero entries remain, in which case the permanent is zero).

Tables 6.1 and 6.2 show the results of using the preprocessing procedure with function
collect.zeros and the low-variance formula. The procedure is very effective for sparse
matrices. For example, with matrix size n = 20 and entry probability p = 0.25, only
100% — 99.25% = 0.75% of the function calls are executed, speeding up the computation by
a factor of m ~ 133. Finally, note that the fraction of function calls avoided increases
as the matrix size increases.

Permuting the columns prior to executing collect_zeros is equivalent to permuting the
finite-differences in the expression D; - -- D, P(x). Our preprocessing procedure is equivalent
to a single static reordering. The finite-differences can also be dynamically reordered, as dis-
cussed in the previous chapter. Recall that collect_zeros(j,r) evaluates finite-differences
Dj; to D,. Hence, columns j to n may be permuted at the start of collect zeros(j,r)
without altering the result, assuming that the values f; are updated to reflect changes in
the rightmost nonzero entries of rows.

The following algorithm is a dynamic reordering version of collect_zeros. Instead
of permuting columns, we reorder assignments to variables z1,...,z,. The variable set S
indexes unassigned variables. Function call dynamic(S, r, w) evaluates the finite-differences
indexed by S. As in collect_zeros, the variable r accumulates row sums as the variables

z; receive assignments. In each function call,

T, = Z Qi Tk (654)
keS

The variable w; performs the function that variable f; performed in collect_zeros. Each

51

p | % zero-valued terms | % function calls eliminated
0.25 99.38 98.08
0.50 94.10 81.22
0.75 82.84 52.49

Table 6.1: Matrix size 10 — percentages of terms with value zero and percentages of function
calls eliminated. Each value is the average over 100 random matrices.

p | % zero-valued terms | % function calls eliminated
0.25 99.82 99.25
0.50 97.23 85.79
0.75 87.47 56.35

Table 6.2: Matrix size 20 ~ percentages of terms with value zero and percentages of function
calls eliminated. Each value is the average over 100 random matrices.

w; records the number of nonzero entries in row ¢ in columns corresponding to unassigned
z;’s. When w; = 0, row sum 4 is fixed in all descendant function calls. So if r; = 0, then
all descendant function calls would return 0. Initially, w; is the sum of entries in row ¢. To

compute the permanent, call dynamic({1,...,n},0,w).

dynamic(S,r,w)

{

if, for some row i, wi = 0 and r; = 0, then return 0
else if S = () then return [[}_;r;

else choose j €35

1
uj—vj

andreturn

}

[dynamic(S — j,r+ujal, w — al) — dynamic(S — j,r + vjal, w — al)

The choice of j determines the efficiency of the algorithm. Since zero-valued terms are
collected when w; = 0 and r; = 0 for some row ¢, the general strategy is to choose j
corresponding to a column with nonzero entries in rows with few “unassigned” nonzero
elements (low w;) and low row sums r;. We have tested several specific methods to choose

7 on small matrices, and they are modestly successful.

52

6.6 Discussion

The finite-difference parameter settings analyzed in this chapter are not necessarily optimal
over the space of random 0-1 matrices — even better settings may remain to be discovered.
The settings analyzed here are certainly not optimal for all specific 0-1 matrices. A tech-
nical report [5] outlines some methods to tailor the finite-difference parameters to problem
instances.

The next chapter is devoted to a procedure to increase the expected fraction of zero-
valued terms. The procedure works in conjunction with the parameter settings analyzed in
this chapter.

The subsequent chapter is devoted to another method to eliminate sets of zero-valued
terms than the method presented in this chapter. The method presented here is simpler
and easier to implement than the method developed later. Also, the method developed
here springs from the framework developed in an earlier chapter on recursive algorithms for
finite-difference formulas. The method developed later is more amenable to analysis and it

eliminates more zero-valued terms, but it has super-polynomial space requirements.

53

Chapter 7

A Permanent Decomposition
Increases the Expected Fraction of

Zero-Valued Terms

We exploit a permanent decomposition identity to replace problem instances by pairs of
problem instances that have many more zero-valued terms. In the end, we produce problem

instances for which all but an exponentially small fraction of the terms have value zero.

7.1 Row Zeroings and Correlations

In the finite-difference permanent formulas analyzed in a previous chapter, the row sums are
correlated. For x assignments with about half the entries positive and about half negative,
there are likely to be several rows in A(x) with sum zero. For x assignments with almost
all entries positive (or negative), it is likely that no row in A(x) has sum zero. When one
row sum is zero, it is likely that several others are zero as well. Since only one zero row
sum is needed to zero the term, the extra zero row sums are “wasted.”

If the row zeroings were independent, there would be many more zero-valued terms, as
we show in the following analytic sketch. For simplicity, assume n is a multiple of 4, A has
5 “even” rows with 2 one-valued entries each, and the other rows have odd numbers of
one-valued entries, so they never have sum zero. Each even row has sum zero when half the

entries of x that correspond to one-valued entries in the row are assigned +1. The fraction

54

of assignments that zero each even row is

1 4 1

by Stirling’s formula [11]. So each even row has a nonzero sum in about 1 — ﬁ of the

S)3

assignments.
If the row zeroings were independent, then the fraction of nonzero-valued terms would
be about .
1-—=)% 7.2
- (7.2)

To find the fraction as n — oo, take the natural logarithm, approximate by a Taylor series

expansion about 1, and exponentiate. The fraction of nonzero-valued terms would be
—l/m-1
e 2V (7.3)

In this chapter, we show how to reduce correlations among row sums to achieve an expo-

nentially small fraction of nonzero-valued terms.

7.2 Decomposition

Note that the permanent is linear in its columns. For example, if we define A4, as the matrix

A with the first row replaced by vector a, then
per Aayp = per Aa + per Ay (7.4)

Set a to the first column of A to make A, = A. Then we have a formula for the permanent
of A:
per A= per Aayp — per Ap (7.5)

We refer to b as the decomposition vector.

To compute per A, we can use formula (7.5) to compute the permanents of A1}, and Ap,.
On the face of it, this doubles the computation. However, we can choose the decomposition
vector to decrease the expected fraction of nonzero-valued terms.

Consider the worst case for correlations among row zeroings, when A is the matrix with
all entries one-valued. For each assignment x, all row sums in A(x) are equal. Using the

low-variance formula, the row sums are zero for ﬁ of the assignments x. So the fraction

(Vn)

55

soq 1
of nonzero-valued terms is 1 oW

We will now use decomposition to compute A. For simplicity, assume n is odd. Use

finite-difference parameters u; = 1, v; = —1; for odd j > 1, u; = 1 and v; = 0; for even
J, uj = 0 and v; = —1. (These are the low-variance parameters for all columns except the
first.) Let b = (—-”;—1, cee "T*l) The row sums over columns 2 to n
n
> aijz; (7.6)
j=2

vary from —-1‘—;—1 to ”T‘l

In the computation of the permanent of Ay, the first column, z,b, has entries —"T_l to
2—2"—1. Hence, each row sum over columns 2 to n is cancelled by some element in the first
column. So every term has value zero.

In the computation of the permanent of A, the first column has entries —”T"l +1 to
"T”l 4+ 1 if 21y = +1 and entries ——"T‘l —1to ”—51 —1if z; = —1. For z; = +1, the term
with partial row sums —ﬂg—l over columns 2 to n is the only nonzero-valued term. Likewise,
for 1 = —1, the term with partial row sums 2—2“—1 is the only nonzero-valued term. So the
computation has only 2 nonzero-valued terms!

As illustrated in the example, decomposition can significantly increase the fraction of
zero-valued terms for matrices with many one-valued entries. In general, decomposition
can be used to separate row sums for rows that have their one-valued entries in common
columns. Specific decomposition strategies are a topic for future research. In the remainder
of this chapter, we analyze a simple strategy — choosing the decomposition vector entries

at random.

7.2.1 A Random Decomposition Strategy to Increase Row Sum Variance

Each row sum in matrix A,p(x) is the sum of the row sum in the original matrix A(x) and
z1 times the decomposition vector entry for the row. Each row sum in matrix Ay (x) is the
sum of the partial row sum in A(x), neglecting the first entry, and z; times the decompo-
sition vector entry for the row. If we select decomposition vector entries independently at
random from an integer-valued distribution that takes the shape of a zero-mean Gaussian
as n increases, then the distributions (over random 0-1 matrices and random decomposi-
tion vectors) of row sums of A, (x) take the shape of Gaussians with the variance of the
row sums of the original matrix A(x) plus the variance of the decomposition vector entry

distribution. The row sums of Ap(x) have similar distributions. Hence, this decomposition

56

strategy increases the variance of row sums.
To specify our strategy in more detail, let us generate the entries of the decomposition

vector by summing over i.i.d. Bernoulli variables:
b; = (dil + ...+ dzm) - (dim—{-l + ...+ diQm) Vi € {1, e ,n} (77)

where each d;; has value one with probability w and value zero with probability 1 — w, and

m and w are values that we will choose. For matrix A, p(x), the row sums have the form:
[(dix + ... + dim) — (dim+1 + ... +diom)|z1 + 05121 + . .. ATy (7.8)

Whether z; is assigned positive one or negative one, the term
[(dit + ... + dim) = (dim+1 + - - - + dizm)] 71 (7.9)

has mean zero and variance 2mw(1 — w). If k variables z; are assigned positive one, then

the sum of the remaining terms, e.g.,
a1+ ...+ Qi = Qigg1 — -~ Qi (710)

has mean (2k —n)p and variance npq. The entire row sum has mean (2k — n)p and variance
npq + 2mw(l — w). As n — oo, the row sum distribution takes the shape of a Gaussian
with mean (2k — n)p and variance npg + 2mw(1 — w). We can produce any variance greater
than npg through the choice of m and w. For the remainder of this exposition, let w = p.
Then the variance is (n + 2m)pg. We will control the variance through the choice of m.
For the computation of the permanent of A,.y, the expected fraction of nonzero-valued

terms is

1 n
— Z H[l - Pr{[(dzl +...+ dzm) - (dim+1 +...+ diQm)]l‘l +ai1T1+...FainTy = 0}]

(3
xe{1,—1}r =1
(7.11)
Note that the distribution of [(d;1 +. ..+ dim) — (dim+1+- - . +diom)] 1 is the same whether z;
is positive one or negative one, since the distribution of (d;1 +. ..+ dim) — (dims1+- . . +dizm)
is symmetric about zero.

Collect terms, letting k& be the number of entries in x assigned positive one. Then the

57

expected fraction of nonzero-valued terms is

n 1 n n
Z on (k) H[I—Pr{(dil-i-. A dim) = (dimg1+. . Adigm)+ (@i +. . Aai)— (@ig41+. - - +aim) = 0}]
(7.12)
Given k, the row sums are independent and identically distributed. So the expected fraction

of nonzero-valued terms is

n

Z 51;1- (Z) 1-Pr{(di+...+dn)—(dmt1+.. . +dom)+(a1+. .. +ar)—(ag41+. . . +an) = 0}]"
= (7.13)
where each a; is a random variable that has value one with probability p and zero with
probability ¢ = 1 — p, and each d; is a random variable that has value one with probability
p and zero with probability ¢ =1 — p.

The row sums of Ap(x) are similar to the row sums of A, p(x). They have the form
(7.8), except that the term a;;z; is replaced by zero. Because of this, the asymptotic
expected fraction of nonzero-valued terms in the computation of the permanent of Ay, is
slightly less than the expected fraction of nonzero-valued terms in the computation of the
permanent of A,4p. Hence, we focus on the fraction for 4,4 and use the result as a bound

on the fraction for Ay,.

7.2.2 Variance Increased by a Constant Multiplier

Consider the asymptotic form of the expected fraction of nonzero-valued terms (7.13) in the
computation of the permanent of A,y when we select the number m to create row sum
variances (n+ 2m)pq = cn, where ¢ is constant with respect to n. (Without decomposition,
¢ = pg; with decomposition, ¢ > pg.) Examine (7.13). Note that the bracketed expression
is in [0,1] for all k. So the term corresponding to k is no greater than 2%(2), which is the
probability that the sum of n i.i.d. Bernoulli variables is k, given that each variable takes
value one with probability % and zero with probability % According to Feller [11], p. 193,
(6.7)

) 2in (Z’) ~ —Emexp(—%no'%) (7.14)

k—2|>2n0.64
2

o8

So we introduce error o(exp(—3n®?)) by restricting the sum to values of k such that
|k — 2| < 2n06%. According to Feller [11], p. 184, (3.13),

1 2 2k -1

where ¢() is the standard normal, i.e., g(2) = \/Lﬂ exp(—122).

Note that the sum of random variables in (7.13),
(di+...+dm) — dmt1+ ... +dom) + (a1 + ... +ag) — (@41 + ... + ap) (7.16)
is the difference of sums over two sets of i.i.d. Bernoulli variables:
(di+...+dp+ay+...+ap) = (dmg1 + ...+ dom + Gpgp1 + ... +ap) (7.17)
Thus, according to the main result of Appendix A,

Pr{(di+...+dm) —(dnt1+... +dom) + (a1 +... + ar) — (ag41 + ... + an) = 0} (7.18)

N 1 (2k —n)p
Vit 2mipg’ v/ + 2m)pg

as n — oo, for |k — | < 2n0%%, with additive error o(exp(—3n°28)). (Having 2m +n

) (7.19)

random variables instead of n random variables strengthens the result of Appendix A.)
Using tail bound (7.14) and asymptotic forms (7.15) and (7.19) in (7.13) gives the

following expression for the asymptotic expected fraction of nonzero-valued terms:

2k —n 1 (2k—n)

» - P 4 ofexp(Lnd®
|k—12’-]§S:2n0.64 \/ﬁg(Vn e Mg(NG)" + o(exp() (7.20)

2

Since our result will dominate the error term o(exp(-—%no'%)), we disregard it in the re-

maining analysis.

Let t = 2’\“/%” and At = % Then the asymptotic expected fraction is

1 Pty
ltkls%;w Al - 72 () (7.21)
Observe that . t 1
p n n pt pt
1- ﬁg(%)] ~ exp(——\/;g(%)) eXp(_Q_CQQ(_ﬁ)) (7.22)

59

The second exponential is no greater than one. So the asymptotic form of the expected

fraction of nonzero-valued terms is

< ¥ atgen(-/rai) (7.29

1] <no-14

Analysis similar to that for (A.30) in Appendix A shows that the following integral has the

same asymptotic form as the sum above.

[it sty exni=[2o Z2) (1.29)

By symmetry, this is equal to

2 / £) exp(\/7 (f)) (7.25)

Let r = 55 and A = /5. Make the change of variable w = exp() Then we have

the following bound for the asymptotlc expected fraction of nonzero-valued terms:

T [r—1 1, 1 —Aw
-/ w' " (log =) 2e " Wdw (7.26)
7 Jo w

In the earlier analysis of the expected fraction of nonzero-valued terms without decomposi-

tion, this was shown to have asymptotic form:

VE)T e r.2m

So the asymptotic expected fraction of nonzero-valued terms is
1

\/n;cf logn

For n — oo and c constant with respect to n, increasing row sum variance cn through

oO() (7.28)

decomposition decreases the expected fraction of nonzero-valued terms.

7.2.3 Variance Increased by a Factor of n — Too Much Variance

There is a limit to how much the expected fraction of nonzero-valued terms can be decreased
by increasing row sum variance through decomposition. In our previous analysis, ¢ is

constant with respect to n. Suppose instead we increase the variance multiplier with n, i.e.,

60

¢ = n, so that variance (n + 2m)pq = n?.
Examine expression (7.13), the expected fraction of nonzero-valued terms. For simplic-
ity, assume n is even. Note that the expression in brackets, which is the probability of a
nonzero row sum, is minimum when k¥ = %, i.e., when half the variables in x are assigned

+1 and half are assigned —1. Hence, the expected fraction of nonzero-valued terms is

> é} 2% (Z) [1-Pr{(di+...+dm)—(dmi1+...+doem) +(a1+.. . +an) = (az 1 +.. . +an)}”
) (7.29)

Since k does not appear in the bracketed term, and %(k) is a distribution, we can move
the bracketed expression to the left of the sum and substitute one for the sum over the

distribution. So the previous expression is equal to
1-Pr{(di+...+dn)— (dmsr1+...+dom) + (a1 +-.. +a%) - (a%_i_l + ... +an)}]" (7.30)

Use (7.19) to derive the following asymptotic form for this lower bound on the expected

fraction of nonzero-valued terms. Remember that (n + 2m)pg = n?.

[1 = 0(O)]" = expl=5(0)) = exp(——=) a5 n — o0 (7.31)

Hence, the expected fraction of nonzero-valued terms does not even go to zero as n — oo.

This is worse than not using decomposition at all.

7.2.4 Variance Increased by a Factor of \/n — An Exponentially Small
Fraction of Nonzero-Valued Terms

Suppose we choose m to make the variance (n 4+ 2m)pg = y/nn. Examine (7.13). Use
(7.14) and (7.19) to derive the following expression for the asymptotic expected fraction of

nonzero-valued terms:

% O ot g

|k—2|<2n0-64

Since our result will dominate the error term o(exp(——%no'%)), we disregard it in the

remaining analysis. Note that the term in brackets is minimum for the largest deviations

61

of k from %, ie., [k — 3| = 21964, So the asymptotic form is

< > (f)u- e (733

n\ g | T oIV o
|k—%]§2n0‘64

The bracketed term is independent of k, and the sum of 5 (}) over the range of k is a

partial distribution. So the expression is

1 n0-644p 1 dp ..
<[t- a9 N = - 075 g(no.u)] (7.34)

As n — oo, Eé_l’ﬁ — 0. Bound this fraction by one to find an upper bound for the previous

expression.

1
<[1- Wﬂ(l)]n (7.35)
To find the asymptotic behavior of this expression, let z = -—m}_ﬁ;g(l). Then
1 n n
1 - g = (1 +2) (7.36)
Exponentiate and take the natural logarithm.
(14 z)" = exp[ln(1 + z)"] = exp[nIn(1 + z)] (7.37)

Take the Taylor series expansion for In(1 + z):

72
2!

3

(W) + (7.38)

In(1+z) = In(1) + z In'(1) +

T In"(1) +

Note that In'(y) = %, In”(y) = —;—21—, In"(y) = 2;15, and Int®) (y) = (=1)k+1(k — 1)!;1,;. So

1

In(1+a) =0+ = 2) + S
n(l +z) = +ﬁ(1)+§n()+§?n()+... (7.39)
and
1 1
ln(1+m)=0+m—§x2+§m3:ﬁ:... (7.40)
So we have:
1
exp[nIn(l +)] = exp[n(z — §m2 + %a:?’ +...)] (7.41)
and
1
(1+2)" = expln(z — 22 + a5 £...)] (7.42)

2 3

62

P b1 b2 b3 b4 b5 b6 b7 bg bg
05{0[0]J0]0jO0O|0O}0O]O0]O0
o6|-1|-1(0(0j0j0}]0 1|1
o7f-1|-1(-1(0j0;0}1 11
08(-2|-1|-110}0}0}{11]2
09 -2(-1]-110,0}1|1}2]2

Table 7.1: Optimal decomposition vectors for Ay, with matrix size n = 9 and various entry
probabilities p.

Undo the substitution z = —55177—59(1):

1 1 11 ,.. 11 ,

1= 59" = expln(——5759(1) = 53559 (1) — 35559 (D) =)l (7.43)
1 1 11
0.25 2 3

= exp[-n""g(1) = 5 —5559" (1) = 55507 (1) — -] (7.44)

0.25 1 1 5 11 3
= exp[-n""g(1)] exp[~ 5 —5559" (V)] exp[~ 5 —7559°(1)] - (7.45)

In all but the first exponential, the exponents go to zero as n — 0o, so these exponentials
go to one. Hence, the first exponential determines the asymptotic form. So the asymptotic

expected fraction of nonzero-valued terms is

1
\27me

s

O(exp(n~

) (7.46)

7.3 Optimal Nonrandom Decomposition Vectors

Tables 7.1, 7.2, and 7.3 show the best (nonrandom) decomposition vectors for various matrix
sizes and entry probabilities. The displayed decomposition vectors produce the minimum
possible expected fraction of nonzero-valued terms in the formula for Ay, with column mul-
tipliers 4; = 1 and v; = —1, and the remaining column multipliers half u; =1 and v; = 0
and half u; = 0 and v; = —1. The optimal decomposition vectors were found through
exhaustive search.

Note that the zero vector is the best decomposition vector for matrices of size n = 9 and
n = 11 with entry probability p = 0.5. Hence, decomposition does not reduce computation
in these cases. However, as matrix size and entry probability grow, the entries of the best

decomposition vector increase in absolute value.

63

¢ T+ ey T T T T
S + 0O X<
S+ @O XdAXO+ O o
- & + O x+a3 -4
OO0 —
4 + 0O XeDo —ANNITNONOD
TTTTTRTRT
@ + O x& 0 cooocoocooo
o + 0 xax o
o
S I o + o X <% [m] -4
S =
7 ® + 0D xos O
e} 1S
j= =3 + 0 X <ok] »
= @
8 o + O X 9o o =2
D O =
ol o + O X <¥o+ o 4353
= - =
§ S + O X <%0+ al s
g o + O X 4% + = -‘§
= © + O X axo +] S
@ £
;—e + @ X Ao + a 188
@
Ll o + O xaxe + o]
< =)
> 1| o + 0O X a%o + o 3
o f ot
Sle + B xXdaxo + o] -
~N o%
- e + D xaxo + o 4 8
o 173
cle + @ xX<aAx o + o ©
=] —
‘g o + O X 4 % © +] s
e
IC e + O x4 % © + o g
o] Jogs
% o + 0O X 4 % © + o g5
Qo+ O XxXa x o +)
De+ox4a x o + o
b+ O X 4 % o + a
b+ O X « * & + [a] _8
b+ 0 X * ° + o]
SO x <« * o + &)
-0 X 4 * S + ol
b3 I ::I XI 1 i |I L 1 b o
— 7 o w o wn r~ w0 © 0 w
=] o @ o ~ =) «© o] =]
o = = o =

SULIB) PON[EA-019Z JO uonoe.)

Figure 7.1: The expected fractions of zero-valued terms in decomposition matrix A}, are
= 40, various entry probabilities p, and various numbers m

shown for matrices of size n =

of pairs of decomposition variables, each with probability w = p. The optimal number of

decomposition variables increases with expected matrix density p.

64

P by | by | b3 by bs | bg | by bg | bg | 10 b1
o5(1010j]0j0O(0OjO|O0O]|O|O0] O 0
06(-1(-1|-170{0]0)0}0]1 1 1
07¢4-1|-1)-1¢{-1|-1(0 |1 |1}1 1 1
08-21-2|-1(-1({0 00|11 2 2
09(-3}-2|-2y-1(-1]0]|0}|1]1 2 2

Table 7.2: Optimal decomposition vectors for Ay, with matrix size n = 11 and various entry
probabilities p.

P || b1 | bo | b3 | by |bs |bg | b7 | bg|bg | bio| b1 |big| bis
05)-1{0]J0f(O0OJO010}0[O0]0 0 0 0 1
o6 |)-1{-1]-1{-1{-110]1010]1 1 1 1 1
o7|-1(-1|-1¢({-11-11-1701]1 1 1 1 1 2
0o81Yy-2(-21-2(-1}-1y01{0(01]1 1 1 2 2
09y-3{-2|-2(-1|-110|101/|0]1 1 2 2 3

Table 7.3: Optimal decomposition vectors for Ay, with matrix size n = 13 and various entry
probabilities p.

7.4 Discussion

The random decomposition strategies that we analyzed all have independently drawn de-
composition vector entries. These strategies are effective because they use independent
decomposition vector entries with large variance to overwhelm the dependencies among row
sums in the original matrix, creating nearly independent row sums. A challenge for the
future is to identify decomposition strategies in which the decomposition vector entries are
chosen with dependencies that counteract the dependencies among the original row sums,
creating nearly independent row sums with lower variance and hence more row zeroings.
Both our analysis of random decomposition vectors and our search for optimal non-
random decomposition vectors focus on decomposition strategies with good average results
over problem instances drawn at random. Another challenge is to develop decomposition
strategies tailored to problem instances. Finding the best decomposition strategy for an
instance may prove to be intractable, so there may be a tradeoff between the computation

required to find a good decomposition vector and the computation saved by decomposition.

65

Chapter 8

A Method to Compute the
Permanent that Avoids Many

Zero-Valued Terms

8.1 Alternative Computation of the Permanent Formula

Recall the permanent formula:

per A= Z (—1)5x) H E 05T (8.1)

xe{~1,1}» i=1j=1

where s(x) is the number of variables z; assigned —1. The straightforward method to
compute this formula is to step through x assignments, compute the signed product of row
sums for each assignment, and sum these values over assignments. In this chapter, we use an
alternative method to compute the formula in order to avoid computing many zero-valued
terms.

Focus on the product of row sums:
n n
I1 > aijz; (8.2)
i=1j=1

View vector x as the concatenation of “half vectors” y and z, with Z entries each. (To sim-

plify the exposition, assume 7 is even.) For a given assignment x = (y1, ... SYB, 21, z%),

66

suppose we have already computed the row sums over the first half of the columns of A(x):

c(y) = D aijy; (8.3)

'Mml:

7j=1

and suppose we have already computed the row sums over the second half of the columns
of A(x):
n
d(z) = Z aijzj-2 (8.4)

j=3+1
Then we can compute the product of row sums by taking the product of the sums of the

half-row sums.

f[Xn: aijT; = f[(cz-(Y) + di(2)) (8.5)

i=1j=1 i=1
If we define s(y) to be the number of variables y; assigned —1 and define s(z) to be
the number of variables z; assigned —1, then (—1)**) = (~1)*®)(=1)*(2), For notational

convenience, define ¢y(y) = (=1)*%) and dy(z) = (=1)**). Then
(=1)*%) = ¢o(y)do(2) (8.6)

Note that the space {—1,1}" in formula (8.1) is the cross product {-1,1}% x {-1,1}%.
Hence, the assignments x € {—1,1}" are equivalent to the assignments (y,z) € {—1,1}% x
{=1,1}%. We can use (8.5) and (8.6) to create a formula equivalent to (8.1).

per A = > o(¥)do(2) [[(e (y) + (@) (8.7)

(v2)e{-1,1}F x{-1,1}% i=1

To compute this formula, we can first compute and store all half-row sums.
C = {c(y)ly € {~1,1}%} and D = {d(z)|z € {~1,1} %} (8.8)
Then the formula becomes

per A = Z codo f[(cz + d;) (8.9)

(c,d)eCxD 1=1

Now, suppose we partition the sets of half-row sum vectors according to the values in

entries 1,...,m. (These are the sums over halves of the columns of A(x) for the first m

67

rows. We will specify the value of m later.) Denote the partitions of C as follows:
n n
C(s)={ceClcg=s1and ... and ¢y, = s} Vs€ {_E’”"E}m (8.10)

Denote the partitions of D as follows:

Dt)={d€D|d; =t and ... and dp =t} Ve {J;-, o g}m (8.11)

Introducing the partitions into formula (8.9) produces:

per A = Z Z Cod, ﬁ(cl +d;) (8.12)

(S)E{~ 2, 2} X (=2, 2} (c,d)eC(s)x D(t) i=1

All ¢ € C(s) have values sy1,...,5y, in the first m entries. All d € D(t) have values
t1,...,tm in the first m entries. So these values are constant within the second sum, and

they can be moved outside the sum.

m

per A = > ITGsi + o) > codo ﬁ (ci +d;) (8.13)

(s t)e{—5 gt x{=5, 5™ =1 (¢,d)EC(s)x D(t) i=m+1

The new product is the key to avoiding many zero-valued terms. If s; + #; = 0 for some
i € {1,...,m}, then the new product is zero, so there is no need to compute the second
sum. In terms of the original formula (8.1), we avoid computing the products of row sums

for all assignments x such that A(x) has a zero row sum in the first m rows.

8.2 Algorithm

The algorithm proceeds as follows:

(1) For each y € {—1,1} %, compute:

aiy; and co(y) = (-1)°®) (8.14)

o

c(y) =

i=1

(2) Store vectors ¢(y) as set C.

68

(3) Partition set C:

C(s)={c€Cle1=s1and ... and ¢y, = sy} for s € {——;—L-,... —m (8.15)

(4) For each z € {—1,1}%, compute:
n
d(z) = Z a;2;—z and do(z) = (-1)5@ (8.16)

2
j=%+1

(5) Store vectors d(y) as set D.

(6) Partition set D:

D(t)={d e D|d; =t; and ... and dp =t} for t € {—g,..., ym (8.17)

| S

(7) For each pair (s,t) € {—5%,...,5}™ x {~%,..., 5}, examine []7%;(s; + ¢;). If it is

nonzero, then do step (8).

(8) Compute

m

H(Si + ti) Z codp ﬁ (Ci -+ di) (8.18)

and add the result to the running total.

On completion, the running total is the permanent of A.

8.3 Analysis

The algorithm requires quite a bit of space to store multisets C' and D of vectors c¢(y) and
d(z). Since there are 2% assignments each for y and z, the algorithm requires O(27n) space.

Steps (1), (2), and (3) require O(2%poly n) time since there are 23 assignments y
in {~1,1}2. Likewise, steps (4), (5), and (6) require O(2%poly n) time. Step (7) re-

69

quires O(n?™poly n) = O(2?™1%62"poly n) time, since there are (n + 1)>™ pairs (s, t) in
{(-%,..., 531" x {~%,..., 5}™. Step (8) requires O(poly n) time for each assignment x in
{-1,1}" such that A(x) has no zero row sums in the first m rows. Let f(n,p, m) represent
the expected fraction of assignments x for which A(x) has no zero row sums in the first m
rows, with the expectation over n x n matrices with each entry one with probability p and

zero with probability 1 — p. Then the algorithm has expected running time:
max[O(22 poly n), 0(2°™!%82"poly n), 0(2" f (n, p, m)poly n)] (8.19)

If we set m = %, then the center expression is equal to the first expression. In this
2

case, we avoid computing terms with zero row sums in the first % rows. The running

time is:

max[O(22 poly n), 0(2"f(n, p, poly n)] (8.20)

——)
4logyn
In the previous chapter, we analyzed f(n,p,n), the expected fraction of assignments x for
which A(x) has no zero row sums. Later in this chapter, we analyze the expected value of

f(n,p,m) for m < n.

8.4 Variations

The same basic steps can be used to construct an algorithm using (—1,0) and (0,1) column
multipliers instead of (—1,1) multipliers. If the first 7 columns have multipliers (0,1)
and the remaining columns have multipliers (—1,0), then the range of each entry in s is
{0,...,%} and the range of each entry in t is {—%,...,0}. This reduces the computation
in step (7) from O(n®*™poly n) to O((%)*"poly n).

The procedures also work with decomposition. If all columns have multipliers (-1, +1),
and the decomposition vector is b, then the range of s; is {b; — 5,...,b; + 3} U {—b; —
%,...,—bi+ 5}. The range of each entry s; has at most 2n + 2 values, so the computation
required for step (7) increases to O((2n)™n™poly n) = O(2m+2mle2npoly n). If only the
initjal (decomposition) column has multipliers (—1,1), and the remaining multipliers are
(0,1) for the first half of the columns and (—1,0) for the second half, then the range of each
entry s; has no more than n 4 2 elements, and the range of each entry ¢; has 2 +1 elements.
In this case, step (7) requires O(n™(%)™poly n) computation.

Computation can be saved by making a list of those partitions C(s) and D(t) that are
nonempty and computing step (7) only for pairs (s, t) that correspond to nonempty pairs

of partitions. The algorithm will collect zero-valued terms more effectively if the first m

70

rows can each have zero sums in A(x). Hence, if the column multipliers are (—1,1), then
permute the rows of A so that as many as possible of the first m rows have even numbers
of elements.

Computation and space can be saved by “merging” duplicated partial row sums. If C
contains duplicates, then keep only one and store the number of duplicates as a coefficient.
When the duplicated vector ¢ is used to find the product of row sums, multiply the result
by the coefficient. If C' contains vectors ¢ and ¢’ that are identical except for opposite signs
(co = —¢p), then their terms will cancel in the computation, so they can be eliminated from
C. (The same rules apply to duplicates and opposites in D.)

The storage requirement can be reduced as follows. Compute and store partial row
sums over less than half of the columns. Partition these partial row sum vectors according
to the first m entries, as we did with the vectors ¢(y) in the original algorithm. For each
assignment to the z;’s corresponding to the remaining columns, compute the partial row
sum vector d. Find the partitions such that none of the first m partial row sum vector
entries are the opposite of the corresponding entries of d. For each ¢ in these partitions,
compute the product of row sums using ¢ and d.

For example, if we use the first % columns to form partial row sums ¢, then the algorithm
proceeds as follows:

(1)’ For each y € {—1,1}7, compute

ai;y; and co(y) = (=1)°%) (8.21)

M]

c(y) =

j=1

(2)’ Store vectors ¢(y) as set C.

(3)’ Partition set C:

C(s)={c€Clc; =51 and ... and ¢, = 8y} for s € {——g, R i (8.22)

71
(4)’ For each z € {1, 1}§4ﬂ, compute

d(z) = Z a;jzj-z and do(z) = (-1)*@ (8.23)
j=241

and let t = (dy, ..., dm).
(5)’ For each s € {—%,..., %}™, examine []i2,(s;+1;). If it is nonzero, then do step (6)’.

(6)’ Compute

m

[IGsi+t) > codo f[(c; + d;) (8.24)

i=1 (C:d)GC(S)XD(t) i=m+1

and add the result to the running total.

The storage requirements are determined by step (2)’. Since C consists of one vector
for each y € {-1, 1}%, the space required is 0(2%poly n), a reduction from the original
algorithm by a factor of 27%.

There is a tradeoff of space for time. We do not store and partition the vectors d(z) as in
the original algorithm, so we must step through these vectors one at a time (step (5)’) instead
of computing for entire partitions at once (step (7)). Hence, the time required for steps (4)’
and (5) is O(23Tnnmpoly n) = 0(2%11lerIOg2 "poly n). (Compare to O(22™1°627poly n) for
step (7) in the original algorithm.)

The expected running time for step (6)’ is O(2" f(n,p, m)poly n). Hence, the algorithm

has expected running time
maz[0(2F ™18 " poly n), (2" f (n, p, m)poly n)] (8.25)
For example, if we set m = @, then the expected running time is

maz|O(2°% poly n),0(2" f(n, p,m)poly n)] (8.26)

8.5 Expected Fraction of Terms Computed by the Algorithm
— f(n,p,m)

In this section, we find the asymptotic form (as n increases) of the expected fraction of the

2™ assignments x for which A(x) has no zero row sum among the first m rows when we use

72

column multipliers (—1,1) and decomposition. We show that, for m = 4—1—6’;2—n, this fraction
determines the expected running time of our algorithm, and the expected running time is
an exponentially small fraction of the 2"poly n time required to evaluate the permanent
formula (8.1) directly.

In a previous chapter, we showed that if we use a random decomposition strategy to
increase row sum variances to y/nn, then the expected fraction of nonzero-valued terms is
O(exp(—n% L_)). The fraction of nonzero-valued terms is the fraction of assignments x

Vime
for which A(x) has nonzero row sums in all n rows. In the previous chapter, we showed

that this fraction has an asymptotic form bounded by (7.35):

1~ (D" (8.27)

The fraction of terms computed by the algorithm is a similar quantity. It is the fraction
of assignments x for which A(x) has nonzero row sums in the first m rows. Review the
derivation of the previous expression. Note that the n in the exponent is the only reference
to the number of rows that have nonzero sums in the fraction of terms counted by the
expression. All other n’s refer to the number of columns in A. Hence, an upper bound for

the asymptotic form of f(n,p, m), the fraction of terms computed by our algorithm, is:

[1- ;0},759(1)]’” (8.28)

Following the derivation in the previous chapter from (7.35) to (7.43) , we find that

-_ 1 11 11 .
[1- no.75]m = exp[m(“no.wg(l) T 9509 (1) - 32359 (1) —-..] (8.29)
Let m = @:
n 1 11 5 11

= Pl gogyn otV " g (M~ g mms M=) (830)
— exp|[— n%25 g¢(1) 1 1 g2(1) 1 1 3(1) | ‘a1

n0-25 g(1) 1 1 92(1) 1 1 93(1)
= exp[——log2 n 4]eXP[_§n0.50 log,n 4]exp[—EnL25 ogyn 4]--- (8.32)

The first exponential dominates. In the others, the exponents go to zero as n — oo, so the

exponentials go to one. Hence, f(n,p, Zlo?;j)’ the asymptotic expected fraction of terms

73

computed by the algorithm, is

T

n 1
O(eXP[—m\/%])

We can use this result to analyze the expected running time of the algorithm. Earlier,

(8.33)

we showed that steps (1) through (6) require O(2%poly n) time. With decomposition,
we found that step (7) requires O(2m+2™mlog2npoly) time. With m = m’;g‘—z—n, this is
0(2$+%poly n). Also, we found that step (8) requires O(2" f(n, p, m)poly n) expected
running time. From (8.33), we can see that this step determines the expected running time,

which is

W

nT 1 ipoly n)
4log2n\/27rep y

This is smaller than the O(2"poly n) required to evaluate the permanent formula directly,

O(2" exp|—

(8.34)

by a factor of

.

exp] n 1]
xp[——
P 4logyn v/27me

(8.35)

8.6 Discussion

The result above can be extended to matrices with entries in {—1,0,1}. Specifically, examine
the possibility of applying the algorithm developed in this chapter to a {—1,0,1} matrix,
with decomposition to make row sum variances v/nn and column multipliers (—1,1). The

range of possible row sums

n
Z aijmj (836)
j=1

is the same as for 0-1 matrices, so the data structures and procedures of the algorithm for
0-1 matrices work for {—1,0,1} matrices as well.

Now consider whether the expected computational reduction achieved for 0-1 matrices
is also achieved for {—1,0,1} matrices. As in the analysis for 0-1 matrices, assume the
entries of the {—1,0,1} matrices are drawn i.i.d. to compute expectations. Note that
the reduction in computation relies on small expected values of row sums (8.36) and the
possibility of achieving row sum variance y/nn through decomposition.

Recall that the expected value of a row sum in a 0-1 matrix, given k variables T assigned
+1, is:

pr = (2k —n)p (8.37)

74

where p is the probability of each entry taking value 1. Since the computational reduction
proof applies for p € [0,1], it applies for |ug| as large as |2k — n|. For {—1,0,1} matrices,
let u' be the expected value of each entry. Then the expected value of a row sum, given k

variables z; assigned +1, is:
pr = (2k —n)p’ (8.38)

Note that |p'| < 1. Hence, |uk| < |2k — n], and the expected row sums are in the range
covered by the proof.

Since decomposition can only increase row sum variance, the proof applies only if the
row sum variance without decomposition is less than /nn. Let (/)% be the variance of each

2

entry. Note that the row sum variance without decomposition is n(c’)*. The maximum

entry variance is achieved by the distribution

—1 with probability %
a;; = ¢ 0 with probability 0 (8.39)
1 with probability %

In this case, (¢/)? = 1, and the row sum variance without decomposition is 7, which is in

the range covered by the proof.

75

Chapter 9

Estimation of Finite-Difference

Formulas by Sampling

In this chapter, we examine methods to estimate the value of a finite-difference formula
by evaluating a subset of the terms. While our examples and computations involve the
finite-difference formula for the permanent, many of the results extend to finite-difference
formulas in general.

We begin by analyzing methods to sample terms at random from the entire formula.
The mean of the sampled terms is an estimator for the mean of all terms in the formula.
We consider the use of different finite-difference parameters to improve the estimation by
decreasing the variance among terms.

Next, we consider a method in which we partition the terms, then sample within each
partition to estimate the sums over partitions separately. If we can partition the terms
such that terms within each partition have similar values, then this method gives better
estimates with fewer samples.

We also outline a method to sample blocks of terms. The blocks are generated by choos-
ing an assignment to the finite-difference variables at random, then listing all assignments
that can be formed by varying the values of a subset of the finite-difference variables. The
set of terms that corresponds to this set of assignments is the block of terms. For the per-
manent generating function, the sum of a block of terms can be computed more efficiently
than the sum of the same number of terms sampled at random. Furthermore, summing
a block of terms computes a portion of the finite-difference sieve, producing cancellations

among terms in the generating function.

76

9.1 Sampling Terms from the Entire Formula

9.1.1 Formula and Notation

Recall the finite-difference formula for the permanent:

1

(ur = v1) - (un — vp)

per A = Z (=1)*)

x€{u1,v1}X...X{tn,vn}

P(x) (9.1)

where s(x) is the number of variables z; assigned v;, and the generating function is

P(X) = H z QT (92)

i=1j=1

Also, note that the generating function may be rewritten:

P(x) = Y c(p)al! - aln (9.3)
PEQ

where (@ is the set of integer-valued vectors defined as follows:

Q={p>0lpr+...+po=n} (9.4)

In this chapter, we refer to terms of the finite-difference formula (9.1) as finite-difference
terms or simply as terms. We refer to terms of the generating function (9.3) as generating-

function terms.

9.1.2 Estimation by Sampling

In this section, we consider the following method to estimate formula (9.1). Select m finite-
difference variable assignments xi,...,x,, independently and uniformly at random from
{u1,v1} x...x {un,vp}. For assignment x;, define X; to be 2" times the term corresponding

to x;:
1

(u1 — 1) (Un — vn)

X; = 27(—1)%) P(x;) (9.5)

The estimate of (9.1) is the average of the random variables X1,..., X,,:

Xi+...+ X,

- (9.6)

77

The estimate is unbiased, i.e., the expected value of the estimate is the value of the finite-
difference formula. To see this, note that the expected value of a term drawn uniformly at

random from a sum is the value of the sum divided by the number of terms. Hence,

1

(ul —Ul)"'(un — Up)

1
EX; = 2"E[(-1)*x3) P(x;)] = 2”2—n per A= per A (9.7)

So,

m

__mper A

E| = per A (9.8)

]

Intuitively, the estimate is likely to be better when the terms of the finite-difference
formula have similar values. For example, in the extreme case that all terms have the same
value, the estimate is exact regardless of the terms chosen for the sample. We place this
intuition into a mathematical context using the central limit theorem, as derived in Feller
[11], p. 244.

Note that random variables Xi,..., X, are i.i.d., with means p = FX; = per A and

variances:
o’ = B(X}) - (EX,)? (9.9)
_ _1_ n(__1ys(x) 1 < 2 r 2

x€{ur,v1}X..X{tn,vn}

By the central limit theorem, as sample size m increases, the distribution of the average

m

(9.11)

takes the shape of a Gaussian distribution with mean p and variance ‘T’n—2 Hence, the

distribution of
X1+t Xm L

. (9.12)
ym
takes the shape of a standard normal distribution with p.d.f.
1 1,2
z) = —==e 2° 9.13
o) = 7= (913)
Since pu = per A,
Xi+...+X B 1

Pr{——l——m—m —per A< ﬂ%} - /z:_oo 27re%22dz as m — 0o (9.14)

2

Thus, lower variance o among finite-difference terms makes a better estimate more likely.

78

9.1.3 Choosing Finite-Difference Parameters to Reduce Variance Among

Terms

We now examine how different finite-difference parameters (u,v) influence the variance

among terms in the finite-difference formula. Recall that
o? = BE(X?) — (EX;)* (9.15)

The term (EX;)? is the square of per A, so it is constant with respect to the finite-difference
parameters. To reduce the variance, we must reduce the other term, E(X?).
From (9.10),

1

2
P vy] (9.16)

BXD=g ¥)

x€{u1,v1}X...x{tn,vn}
We now expand this expression to determine the influence of the finite-difference parameters.

1

(ul “'Ul)"'(un”"un)

E(X?) = o) 22M(=1)%%I PP (9.17)

x€{u1,v1}X..%X{un,vn}
Simplify. .

(u1 —v1) -+ (un — vn)

E(X?) =2"] 2) [P(x)]* (9.18)

x€{u1,v1}X.o. X {tin,vn}
Expand p(x) by (9.3).

1

(ug —v1) -+ (Un — vn)

E(X7) =2 2 > (> e()al* - afr]? - (9.19)

x€{u1,v1}X...x{un,vn} PEQ

Expand the squared sum.

1
EXE = 2" 2 cpcq$p1+q1---xp"+‘1n

() [(Ul - ’Ul) e (un — ’Un)] XE{UM’Ul};.X{umvn} (p’q)EQQZ () () 1 7
(9.20)

Let t; = p; + g;. Swap the order of summation.

1

(u1 = v1) -+ (Un = vn

E(X{)=2" 3 cp)e(a)l

)]2 > i -zl (9.21)
(p.a)e@?

x€{u1,v1}X...x{tn,vn}

The coeflicients ¢(p) and c¢(q) are determined by the problem instance, and they are

constant with respect to the finite-difference parameters. For example, for the permanent

79

of a 0-1 matrix, c¢(p) is the coefficient of %’ - -- zE» in the product of row sums:

n n
H Z aija:j (922)
i=1j=1

Hence, c¢(p) is the number of sets of one-valued entries with one entry from each row and

p; entries from each column j.

The finite-difference parameters influence the variance through effects on the following

expression from (9.21):

1
[]2 Z .'L':tll . :L,fln (923)
(ur —v1) - (un — vn) x€{ur,v1 }x . x{un,vn}

The value of the sum is 2" times the expected value of a term corresponding to an assignment
g g

x drawn uniformly at random from {uj,v1} X ... X {un, v, }.

Z wgl .. -'Efz" - Q"E[a:tl1 N a:%"] (9.24)

x€{u1,v1}¥...x{un,vn}

Since the assignments to the variables in x are independent under this distribution,

> aft---aly = "Bl B(ah) (9-25)

x€{u1,v1}Xo. X {tn,vn}

Variable z; takes values u; and v; with equal probability.

t1 21 t t
+ n n
Y afeah (M) (M (9.26)
x€{u1,v1}X...X{tn,vn}
Simplify.
> oi o = (uf o) (a4 o) (9.27)
x€{u1,v1}X...X{tn,vn}
Parameters (u,v) = (1,-1)
Suppose we set u; =1 and v; = —1 for all j. Then
1 1
== (9.28)

80

Recall (9.27). Note that

0 ift;is odd
(1% 4+ (-1)4) = l J TS © (9.29)
2 ift; is even
Hence,
0 if ¢; is odd f j
R O (9:30)
XE{u1,01} XX {tim 0n} 2" if t; is even for all j
So, if we define
S = {(p,q) € Q*|t; is even for all j} (9.31)
then, by substitution into (9.21),
1
E(X})=2") C(P)C(Q)zﬁ - 2" (9.32)
(p,a)es
Simplify.
E(X))= Y cdp)da) (9.33)
(p,q)€S
Parameters (u,v) = (1,0)
Suppose we set u; = 1 and v; = 0 for all j. Then
1 2
=1 9.34
(s o) (o =), (834
Recall (9.27). Note that
1 ift; >0
(1% 4+ 0%) = 1 J (9.35)
2 if tj =0

For a given wtll ---ztr let k be the number of exponents with value greater than zero. Then

t1

gt .. gln = on—k (9.36)

x€{u1,v1}X...x{un,vn}

If we define
St = {(p,q) € Q%p + q has k entries greater than zero} (9.37)

81

then, by substitution into (9.21),

E(X})=2"> > dp)e(q)2"* (9.38)
k=0 (p,q)€ Sk
Simplify.
E(X)H)=2">"2""% 3" ¢(p)c(a) (9.39)
k=0 (P, 9)ESs,

Parameters (u;,v;) = (1,0) and (0,-1)

Suppose n is even, and we set u; = 1 and v; =0 for j € {1,...,2} and u; = 0 and v; = —1

for j€ {§+1,...,n}. Then

=1 (9.40)

Recall (9.27). Note that

1 ift; >0
(15 4 0%) = 1 (9.41)
2 ift; =0
and
-1 ift; > 0 and ¢; is odd
(0% + (=) =¢ 1 if t; > 0 and ¢; is even (9.42)

2 ift; =0
Let k£ be the number of exponents ¢; with value greater than zero. Let d be the number
of exponents ¢; with value greater than zero and j € {3 +1,...,n}. Then
gt gl = (=1)d2nk (9.43)

x€{u1,v1}X...x{un,vn}

Define

Sk,d = {(p,q) € Q2|tj > 0 for k entries in p + q and t; > 0 for d entries with j € {2 +1,...

(9.44)
By substitution into (9.21),

n k

EX7)=2") % > cp)ela)(-1)%2"* (9.45)

k=0d=0(p,q)€S;,q

82

Simplify. .
E(X})=2") 2" (-1 > c(p)c(q) (9.46)

k=0 d=0 (p,q)ESk,d

The variance for these finite-difference parameters is no greater than the variance for
the previous parameters. To see this, compare (9.46) to (9.39). Note that sets Sy 4 partition
set Sk, so the sums involve the same pairs of generating-function terms. The difference is

that the factor (—1)¢ in (9.46) allows some cancellation to occur.

9.1.4 Complex Parameters

So far, we have analyzed the variance for the original inclusion and exclusion parameters
((u,v) = (1,0)) and two sets of parameters that we used earlier to increase the number
of zero-valued terms in the finite-difference formula. We have shown that one of these sets
has variance at least as low as the inclusion and exclusion parameters for every instance
of the 0-1 matrix permanent problem. By intuition, the introduction of many zero-valued
terms reduces the variance among terms as long as many large terms are not introduced
as well. This is the case for our parameters. However, there must be a limit to this
approach. Consider the extreme case in which the permanent is nonzero, and every term
except one has value zero. Unless O(2") sample terms are evaluated, it is very likely that
all sample terms have value zero, so the estimate is likely to be zero regardless of the value
of the permanent. Instead of introducing as many zero-valued terms as possible, good
finite-difference parameters for estimation should make all terms have nearly equal values.

Consider complex parameters. The generating function is the product of row sums.
Complex multiplication is equivalent to scaling and rotation. The rotation produces smooth-
ing among finite-difference terms by reducing correlations among generating-function terms.
This motivation is an appeal to intuition, but the intuition is supported by the following
analysis and test results.

To use complex parameters, first note that (9.1) holds true for complex u and v. Now

redefine the sample variable from (9.5):

1

. — Re(2™(— s(x;)
Xi = Rl (1)) s

P(x;)) (9.47)

(Note that this reduces to the previous definition for real u and v.) Once again, the estimate
is
Xi+...+ X,

- (9.48)

83

As before, the estimate is unbiased. To see this, note that the expected value of the real

part of a term drawn uniformly at random from a sum of complex numbers is the value of

the real part of the sum divided by the number of terms. Hence,

1

_o9n el(— s(x;)
EXi = 2 BlRe((-1) ™ o S0

So,
Xi+...+Xn

m

A
_ mper —per A

B[]

The variance among terms is still
o’ = B(X}) - (BX;)*

Once again, only E(X?) is affected by the choice of parameters. From (9.47),

1 1
E(X}) = — Re(2™(—1)*®) Px)))?
(X7 = 3 xe{w};‘x{umvn}[@V s ey PO
Following the derivation of (9.21), we get:
1
E(X})=2" Y cp)e(a)Re(| 2 > o

(p,9)€Q? (ur —v1) - (un = vn) x€{u1,v1} % .. X {ttn,vn}

From (9.27),
ool = (Ul +0f) - (e + o)

x€{u1,v1}X...X{tn,vn}

Parameters (u,v) = (i, —1i)

Suppose we set u; =1 and v; = —1 for all . Then
1 2 __ l 2n __ _1- 2n __ 1 n
(ul—vl)---(un—vn)] —-(22') (21) 22"(1)

Recall (9.54). Note that

i+ (i) = { 0 ift;is odd

2i% if t; is even

P(x;))] = 2"2%Re(per A) =per A (9.49)

(9.50)

(9.51)

(9.52)

(9.55)

(9.56)

84

Hence,
gl gle = 0 .) ?f tj %s odd for some.j (9.57)
x€{u1,01} X oo X {tmy0n } 27*" = 2"(=1)" if t; is even for all j
So, if we define
S = {(p,q) € Q*|t; is even for all j} (9.58)
then, by substitution into (9.53),
1
B(X{)=2" 3 o(p)e(@)g (-1)" - 2" (-1)" (9.59)
(p9)es
Simplify.
E(X))=) cp)clq) (9.60)

(p,q)eS

This is identical to the result for parameters (u,v) = (1, —1). So far, complex parame-
ters yield no improvement. To take proper advantage of complex parameters, we must use

a variety of parameter values.

Parameters (u;,v;) = (¢, —i) and (1, -1)

Suppose n is even, and we set u; =i and v; = ~iforj € {1,..., 3} andu; =l and v; = -1

forj € {2 +1,...,n}. Then
)

1 9 11 _1_ 1.,
[(ul—vl)---(un—vn)] _(21') n 22"(2') (9-61)
Since % = —¢ and n is even, we have:
1 s 1 4
[(u1 —v1)- - (un — ’Un)] = o’ (9-62)
Recall (9.54). Note that
(@ + (i) = 0 if £; is odd (9.63)
2i% if t; is even
and
0 ift;is odd
(1% + (=1)%) = Htj1s0 (9.64)
2 ift;iseven

85

Hence,
0 if ¢; is odd for some j
mil e x’fln = ntit..ttia . ’ . . (9.65)
x€{u1 01} %... X {tin,vn} 27 7 if ¢; is even for all j
Define
So = {(p,q) € Q2|tj is even for all j and t; +... + ¢z mod 4 = 0} (9.66)
and
Ss = {(p,q) € QZItJ' is even for all j and ¢t; + ... + t% mod 4 = 2} (9.67)

Note that t; + ... + tzzz mod 4 is either 0 or 2 if all ¢; are even. Thus, Sy and Sy partition
the pairs of generating function terms corresponding to terms xil .- zln that have nonzero

value in (9.65). Pairs in Sy have

) ool =20 (9.68)

x€{u1,v1} X...X{tn,vn}

Pairs in S5 have
gt ah = -0 (9.69)

x€{ui,v1}x...X{un,vn}

Substitution into (9.53) gives:

BN =21 3 cp)(@Re(zmi)+ Y elplel@Re(zgi™(-2)Y)] (9.70)
(P,9)€So (P,9)€S:

Since n is even, " is real. If n mod 4 = 0, then " = 1, and we have:

B(X})= Y cp)e(@) - D cp)c(a) (9.71)
(P,a)€So (P,a)€S2
If n mod 4 = 2, then " = —1, and we have:
E(X})= Y cp)@ - Y cp)la) (9.72)
(P, a)€S2 (p.9)€So

Compare this to result (9.33), for parameters (u,v) = (i,—i). Note that Sy and S,
partition S. Hence, the variance with the present parameters can be no greater then the
variance with the previous parameters. So the present parameters are superior. Next, we

consider parameters with even more variation over the unit circle.

86

Parameters (u,v) from the Roots of Unity

Let r be the complex number % of the circumference around the unit circle from 1, coun-
terclockwise. Note that 72" = 1. Suppose we set uj = rJ and v = ritn = ~u; for all
j€{l,...,n}. Then

1 9 _1_ 1 9 _1_ 1
ooy ~ e = e (9.73)
Since ™ = —1:) .
2= —(-1)n*1 9.74
(Ul_'vl)"'(un_'un)] 53m (1) (9.74)
Recall (9.54). Note that
. . 0 if t; is odd
() + (=)= O (9.75)
2(r7)% if t; is even
Hence,
0 if ¢; is odd for some j
> e =g _ (9.76)
€ {t11,01} % e X {1t 0} 2 j.__l(r)4 if t; is even for all j
Define
S ={(p,q) € @*|t; is even for all j} (9.77)
Substitute into (9.53):
1 Lo
B(X})=2") C(p)C(Q)Re(2@(—1)”+12 IT)%) (9.78)
(p,9)es j=1
Simplify.
B(X})= Y cpel@Re((-1)" [(7)Y) (9.79)

(p,9)es j=1

This is similar to the previous result (9.71), except that instead of simply adding or sub-

tracting c¢(p)c(q) for each (p,q) € S, these values are multiplied by coefficients
n .
Re((-1)™** [T (+)%) (9.80)
j=1

Note that the complex value in parentheses is on the unit circle, so its real part is

87

less than or equal to one. For most pairs (p,q) € S, the real part is less than one in
absolute value, so the contribution to the present result has a smaller absolute value than
the contribution to the previous result. The following computations show that this produces

lower variances for matrices with all one-valued entries.

9.1.5 Computations

Table 9.1 shows the values of E(X?) for matrices of various sizes having all one-valued

entries. Results are displayed for the following finite-difference parameter settings:
e real parameters - (u,v) = (1,-1)
e alternating parameters — (u;,v;) = (¢, —1) and (1, —1)
e root parameters — (uj,v;) = (r7,r7+")

The results show that the roots give the least variance, followed by the alternating
parameters. The real parameters give the most variance.

For reference, the values of (per A)? = (n!)? are listed for each matrix size n. Subtracting
this value from E(X?) gives the variance. The size of the permanent gives some idea of the
distribution of relative error achieved by sampling. Recall that we are trying to predict the
mean of a distribution with mean equal to the permanent. Through sampling, the variance
goes to the variance indicated by the table divided by the number of samples.

Matrices with all one-valued entries were used in these computations because they have
the maximum permanents over 0-1 matrices. Hence, these computations give some idea
of how variances scale with permanents in the case of the largest permanents. Similar
computations can be carried out to find the expected variances for different parameters over
random 0-1 matrices with i.i.d. Bernoulli entries, i.e., for the matrix distributions considered
in the analysis of fractions of zero-valued terms. Given a specific problem instance, the
variance among finite-difference terms can be estimated by sampling, and it can be bounded
by finding upper and lower bounds on term values, then computing the variance for the
worst-case distribution with these bounds. Also, Hoeffding’s inequality [18] may be used to

derive probabilistic bounds on the effectiveness of estimation by sampling.

9.2 Sampling Terms by Type

In this section, we consider methods to estimate the finite-difference formula (9.1) by sep-

arately estimating sums over partitions of the terms and adding the estimates to obtain

88

real alternating roots | (per A)?
8.0e0 4.0e0 4.0e0 4.0e0
1.8e2 6.1lel 4.8el 3.6el
8.3e3 1.2e3 1.1e3 5.8e2
6.3e5 5.3e4 4.0ed 1.4e4
7.1e7 2.5e6 2.1e6 5.2eb
1.1e10 2.2e8 1.6e8 2.5e7
2.4el12 2.0e10 1.5e10 1.6e9
6.4el4 3.0e12 1.9¢12 | 1.3ell
10 | 2.2e17 4.4el4 2.9e14 | 1.3el13
11 | 9.0el19 9.9e16 5.4e16 | 1.6el5
12 | 4.5e22 2.2e19 1.2e19 | 2.3el7
13 | 2.6e25 6.8e21 3.3e21 | 3.9e19
14 | 1.8e28 2.1e24 1.0e24 | 7.6e21
15 | 1.4e31 8.8e26 3.5e26 | 1.7e24
16 | 1.3e34 3.6e29 1.4e29 | 4.4e26

O 00 -3 O Uik W N

Table 9.1: E(X?) for matrices with all one-valued entries. For each parameter setting,
the variance of randomly sampled terms is the difference between the entry for the setting
and the entry in the column on the right. Among the settings tested, the root parameters
produce the minimum variance.

an estimate of the entire sum. This method is more effective than random sampling from
the entire set of terms if the variances among terms in the partitions are lower than the
variance among all terms. Thus, the goal is to partition the terms into sets of terms with
similar values.

9.2.1 Parameters (u,v) =(1,-1)

Consider the case in which the finite-difference parameters are (u,v) = (1,~1). Partition
the assignments x € {1, —1}" according to the number of variables z; assigned +1:

Py = {x|x has k entries with value +1} Vk € {0,...,n} (9.81)

Define the partial sum:

Sp=Y_ (—1)S(X)§%P(x) Vk € {0,...,n} (9.82)
xe Py,

Note that the finite-difference formula is equal to Sy + ...+ S,. The analogous random

89

variable to X; in the previous section is
_[(n s(x;) 1
Xig = | | (F1) 52 P(xi) (9.83)

for x; chosen uniformly at random from the (}) assignments x in P;. The sampling estimate

Xk,1+---+Xk,m

- (9.84)

has expected value Sg.

For a random 0-1 matrix, it is likely that:

e Most terms in the sums Sy for k near 0 have large negative values.
e Most terms in the sums Sy for k£ near n have large positive values.

e Most terms in the sums Sy, for k£ near 7 have relatively small values.

Intuitively, it would seem that the extreme sums, Sy for £ near 0 and n, would have the
largest variances among terms simply because they have terms with the largest absolute
values. This intuition is shown to be true by random tests on the computer. (Of course,
Sp and S, themselves are exceptions — these “sums” each have one term, so the variances
among their terms are 0.) Table 9.2 shows the averages, over 1000 randomly generated
matrices of size n = 16 and density p = 0.50, of the means and standard deviations over
terms in the sums S;. The standard deviations are smallest over the sets of terms with k
near % — the sets with the lion’s share of the terms in the formula. The exceptions are the
sets with £ = 0 and k = n. These sets each contain a single term, so the standard deviation
is 0.

Fortunately, these extreme sums have the fewest terms. We can calculate the most
extreme sums exactly by computing all terms instead of sampling. (Recall that sum Si
has (}) terms.) For the remaining sums, samples can be allocated so that sums with
higher variances are sampled more heavily. The variances among terms within sums can be

estimated either by sampling or by bounding through computing bounds on the terms.

9.2.2 Parameters (u,v) = (1,0)

Now consider finite-difference parameters (u,v) = (1,0). Partition the assignments x €
{1,0}™ as follows:

Py, = {x|x has k entries with value 1} Vk € {0,...,n} (9.85)

90

k | mean | standard deviation
0 | 2.8el14 0.0e0
1 }-3.3e13 1.9¢13
2 | 2.8el2 2.9e12
3 | -1.5ell 2.6el1
4 4.3e9 1.4e10
5 | -4.3e7 3.9¢8
6 5.7e4 7.1e6
7 2.9e2 1.9e5
8 | -l.4el 3.3e4
9 2.9¢2 1.9¢5
10 | 5.Te4 7.1e6
11 | -4.3e7 3.9e8
12 | 4.3e9 1.4e10
13 | -1.5el1 2.6ell
14 | 2.8e12 2.9e12
15 | -3.3e13 1.9e13
16 | 2.8el14 0.0e0

Table 9.2: The means and standard deviations over the terms with & entries of value 1 in x
for finite-difference parameters (u,v) = (1,—1). The figures shown are averages over 1000
randomly generated matrices with size n = 16 and entry probability p = 0.50.

and define sums

Se= Y (-1)*™P(x) Vk€{0,...,n} (9.86)
x€EP;,

As k increases, the values of terms in Sy and the variances among terms in S increase.
Unfortunately, the sums with the smallest variances do not contain the most terms, and
the sums with the most terms have relatively large variances. Table 9.3 shows the averages,
over 1000 randomly generated matrices of size n = 16 and density p = 0.50, of the means
and standard deviations over terms in the sums S;. The absolute values of the means and
the standard deviations increase with k, except that the standard deviation for k = 16 is 0

since there is only one term of this type.

9.2.3 Parameters (1,0) and (0, -1)

Consider finite-difference parameters (1,0) and (0, —1). Assume n is even. Let uj =1 and

vj=0forj€{l,...,8} and u; =0 and v; = —1 for j € {3 +1,...,n}. Partition the

91

k mean | standard deviation
0 0.0e0 0.0e0
1 0.0e0 0.0e0
2 6.9¢4 5.2e5
3 | -4.4e7 2.0e8
4 4.3e9 1.3e10
5 | -1.5ell 3.5ell
6 | 2.8el2 5.1el12
7 |-3.3el13 4.9e13
8 | 2.8el14 3.5el4
9 | -1.8e15 1.9e15
10 | 9.9el5 8.8el5
11 | -4.6el6 3.4el6
12 | 1.8el17 1.1el7
13 | -6.6el7 3.4el7
14 | 2.2¢18 8.5el7
15 | -6.5¢18 1.7¢18
16 | 1.8el19 0.0e0

Table 9.3: The means and standard deviations over the terms with k entries of value 1 in
x for finite-difference parameters (u,v) = (1,0). The figures shown are averages over 1000
randomly generated matrices with size n = 16 and entry probability p = 0.50.

assignments x € {1,0}% x {0,—1}% as follows:

Py.q = {x|x has k entries with value +1 and d entries with value ~1 V(k,d) € {1,..., 3}2}
(9.87)

and define sums:
Ska= > (~1)*P(x) V(k,d) € {1,..., g}z (9.88)

XEPk,d

Sums Sy ¢ with small £ and d have terms with small absolute values and small variances
among terms, because many of the variables z; are assigned 0. Sums Sk, with k£ and d
nearly equal also tend to have terms with small absolute values, because the effects of the
+1 and ~1 assignments to z;’s tend to cancel each other, making row sums small. This
parameter setting has the desirable property that terms with large absolute values tend
to be confined to sums with few terms. Tables 9.4 and 9.5 show the averages, over 1000
randomly generated matrices of size n = 16 and density p = 0.50, of the means and standard

deviations over terms in the sums Sy, 4.

92

(k,d) 0 1 2 3 4 5 6 7 8
0 0.0e0 0.0e0 8.0e4 -4.7e7 | 4.4e9 | -1.5ell | 2.8e12 | -3.3el3 | 2.8el4
1 0.0e0 0.0e0 6.0el 2.9e4 | -9.6e6 | T.2e8 | -2.2e10 | 3.9ell | -4.4el12
2 2.5e3 -1.6el | -3.3e-1 | 2.2¢2 | -1.2e3 | -2.0e6 1.6e8 -5.4e9 | 9.6el10
3 -1.4e6 4.0e3 3.4e2 3.6e2 5.3el | -9.5e3 | -9.5¢b 9.6e7 -2.9¢9
4 7.1e7 -7.3e5 5.6e2 -4.6e2 | -9.0e2 | 8.6e3 4.1e4 -2.2¢e4 2.0e7
5 -3.1e9 9.4e7 -1.0e6 | -3.6e4 | 7.5ed | -8.9e3 1.1e4 -4.2e5 9.7e6
6 1.1ell | -6.4€9 2.1e8 -1.0e6 | -2.8e6 | 4.7eb 2.4e5 -4.8¢4 | -3.7e6
7 -4.1e12 | 3.5ell | -2.0el0 | 6.6e8 | -1.3e6 | -2.4e6 | -2.2e6 9.0eb 4.4e6
8 2.7eld4 | -3.1el3 | 2.6e12 | -1.4ell | 3.5e¢9 | 3.9e8 -1.0e8 1.2e7 5.7¢6

Table 9.4: The means over terms with k entries of value +1 and d entries of value —1 in
x with finite-difference parameters (1,0) and (0,-1). The number of +1 entries corresponds
to the row, and the number of —1 entries corresponds to the column. The figures shown
are averages over 1000 randomly generated matrices with size n = 16 and entry probability

p = 0.50.
(k,d) 0 1 2 3 4 5 6 7 8
0 0.0e0 | 0.0e0 | 3.3e5 | 1.4e8 | 8.8¢9 | 2.1ell | 2.6el2 | 1.9e13 | 0.0e0
1 0.0e0 | 0.0e0 | 1.2e3 | 7.9¢5 | 1.1e8 | 4.9¢9 | 1.1ell | 1.4el12 | 1.2¢13
2 1.3e4 | 3.1e2 | 1.Te2 | 3.0ed | 1.7e6 | 9.7e7 | 2.9¢9 | 5.2¢10 | 6.0ell
3 1.0e7 | 2.2e5 | 2.5e4 | 3.6e4 | 2.3e¢5 | 4.2¢6 | 1.3e8 | 2.5¢9 | 3.0el0
4 5.9e8 | 2.2e7 | 1.0e6 1.7e5 | 2.7eb 1.1e6 | 8.7¢6 1.1e8 1.6e9
5 2.3e10 | 1.3e9 | 6.6e7 | 5.6e6 | 2.7e6 | 1.3e6 | 3.8¢6 | 2.8¢7 | 1.8e8
6 5.8el1l | 4.9e10 | 3.4e9 | 2.4e8 | 6.2e7 | 1.9¢7 | 8.2¢6 | 9.5¢6 | 5.0e7
7 1.1e13 | 1.2e12 | 1.1el1 | 8.5e¢9 | 7.5e8 | 1.6e8 | 4.5e7 | 1.7e¢7 | 2.1e7
8 0.0e0 | 2.0e13 | 3.1e12 | 3.4ell | 2.9¢10 | 3.1e9 | 7.9e8 | 8.0e7 | 0.0e0

Table 9.5: The standard deviations over terms with k entries of value +1 and d entries of
value —1 in x with finite-difference parameters (1,0) and (0,-1). The number of +1 entries
corresponds to the row, and the number of —1 entries corresponds to the column. The
figures shown are averages over 1000 randomly generated matrices with size n = 16 and
entry probability p = 0.50.

93

9.3 Sampling Blocks of Terms

In this section, we consider a method to sample blocks of terms instead of sampling single
terms. By a block of terms, we mean a set of terms in which a subset of the finite-difference
variables are assigned all possible combinations of parameter values. Let S C {1,...,n}
index the variables z; to be varied in the block. Let x’ be an assignment in the block.

Define the block sum:

1

(u1 — 1) (up ~ p)

By g = 3 (—1)*™) P(x) (9.89)

x|zj=2! Vj¢S and z;e{u;v;} Vjes
J J J 7173

This is the sum over a subset of 2!5! of the terms in the finite-difference formula (9.1).
The random variable for sampling blocks of terms that is analogous to X; for sampling

single terms is:
Y; =27 18IB, s, (9.90)

where x; is chosen uniformly at random from {ui,v1} x ... X {un,v,}, and S; may be a
fixed subset of {1,...,n} or a subset chosen at random, independently of x;. In either case,

the estimate

m

(9.91)

has expected value equal to the value of the finite-difference formula.

A block of terms By s can be computed more efficiently than the sum over a random
sample of the same number of terms. To illustrate, assume (u,v) = (1, —1). Use variables
r; to accumulate row sums and use variable s to compute the sign (—1)3(") = I -ZIp.

Initially, compute partial row sums over columns with fixed values of z;:

T = Z agzy Vi€ {l,...,n} (9.92)
JES

and compute the “partial” sign using the fixed values of z;:
§ = H T (9.93)

Next, define the following procedure to assign values to variable z;’s, accumulate row sums
and the sign, and compute the product of row sums for complete assignments. Set V indexes

the unassigned variables. Use a’ to denote column j of matrix A.

94

block(V,r,s)

{

if V=0 then returns- [[{_, r;

let j be some member of V

return block(V — j,r +al,s) + block(V — j,r —al, —s)

}

The function call block(S,r,s), with the values of r and s from (9.92) and (9.93),
computes By . This method requires O(n(n ~ |S|) + 215ln) time, while straightforward
evaluation of the products of row sums in the terms of the block requires O(2!5n2) time.

Because the block sum evaluates a portion of the finite-difference sieve, many of the
generating function terms are zeroed. To illustrate, suppose that the finite-difference pa-

rameters are (u,v) = (1, —1). Substitute the parameter values into the block sum (9.89):

1
By,s = > (—1)S(x)2—nP(X) (9:94)
x|zj=2} VjgS and z;€{1,~1} Vjes
Note that
(=1)5®) =z, ... z,, (9.95)
Make this substitution, and expand P(x) according to (9.3).
1
By s = Z Fr1 Tn Z c(p)zt* - - zbr (9.96)
x|z =z VigSs and z;c{1,~1} vjeSs pPEQ
Permute sums and simplify.
1
By g = o Z c(p) Z m’flﬂ ---xﬁ"“ (9.97)
pPEQ x|zj=2 ¥j¢s and z;e{1,-1} Vjes

For a given term in the second sum, suppose p; is even for some j € S. Then p; + 1 is
odd, so the second sum is zero because z; is positive and negative in symmetric halves of

the assignments in the block. Thus, if we define

R={p e Q|p; is odd Vj € S} (9.98)

95

then

Bus==3 c(p) 3 gt et (9.99)
PER x|zj=¢} vj¢s and z;e{1,-1} vjes

since the generating function terms indexed by P — R are zeroed.

9.4 Discussion

Recently, several algorithms have been developed to estimate the permanent of a 0-1 matrix
(20, 21, 22, 28]. The ultimate goal is to develop a fully polynomial randomized approxima-
tion scheme (FPRAS), i.e., a randomized algorithm that takes as input an n x n 0-1 matrix
A and a real number ¢ > 0, and in time polynomial in both n and 1 produces output Y (4, €)

with the property:

Pr{(1 —¢) per A<Y(A,¢e) < (1+¢) per A} > (9.100)

=] W

Karmarkar, Karp, Lipton, Lovész, and Luby [22] designed a randomized algorithm for which
Pr{(l+e) 'per A<Y(A,e) <(1+¢€)per A} >1—6 (9.101)

The algorithm has time complexity O(poly(6,¢e,7)22), which is about the square root of
the O(n?2") time required to compute the permanent using Ryser’s algorithm [29]. More
recently, Jerrum and Vazirani [21] have developed an approximation algorithm with time
complexity O(poly(4, e, n)2\/m°g2 ™). Furthermore, there are polynomial time algorithms for
several restricted classes of 0-1 matrices. For more information, see [28], Ch. 11.

The approximation methods developed in this chapter do not fit into the FPRAS frame-
work. There are no guarantees regarding the ratio of our estimators to the permanent, for
reasons involving algorithm design and theory. The FPRAS-type algorithms [21, 22] op-
erate by sampling permanent terms at random or evaluating determinants, which involve
signed permanent terms. Our sampling procedures evaluate products of row sums, which
may have many terms that are not permanent terms. These extra terms may overwhelm the
permanent terms by any ratio, since even if the permanent is zero, the product of row sums
may be nonzero. The FPRAS-type algorithms approximate by samples or “signed” sam-
ples of the objects we wish to count; our procedures approximate by sampling terms from
a sieve formula that involves many objects besides those that we wish to count. Hence, the
FPRAS-type algorithms must be designed specifically to sample the desired objects, while

our procedures apply to general finite-difference formulas.

96

There are theoretical limits on the types of problems that can be tackled by FPRAS.
Intuitively, to sample objects at random in polynomial time, we must be able to generate
the objects in polynomial time. If the existence problem associated with our counting
problem is NP-complete, then we do not know how to generate the objects in polynomial
time. Formally, let N(A) be the number that we wish to compute, given instance A with
size poly(n). (For example, in (9.100), N(A) = per A and A is an n x n 0-1 matrix.) The
existence of an FPRAS for N(A) with output Y (4, ¢) means that

Pr{(1 -)N(A) < Y(A) < (1 +)N(A)} > % (9.102)
and Y (4, ¢€) can be computed in time polynomial in n and % Set € = %— Then
1 1 3 3
Pr{zN(4) <Y(4,5) S gN(A)} = 7 (9.103)

and Y (4, 7) can be computed in time polynomial in n. Note that the FPRAS identifies
whether or not N(A) = 0 with probability at least 3. If N(A) = 0, then Y'(4, 1) = 0 with
probability at least 3. If N(A) > 1, then Y(4, }) > 0 with probability at least 3. Hence,
the FPRAS solves the existence problem associated with N(A) with probability at least
—Z—. For example, if N(A) is the problem of counting Hamiltonian cycles in the graph with
adjacency matrix A, then the FPRAS solves the Hamiltonian cycle existence problem with
probability at least %. Existence problems having this type of solution constitute the class
BPP. Since the Hamiltonian cycle existence problem is NP-complete, an FPRAS for the
Hamiltonian cycle problem would imply that all NP problems are in BPP. This is considered
unlikely. Unless it is true, there is no FPRAS for a counting problem that corresponds to
an NP-complete existence problem. This argument is adapted from [28], Ch. 11.

For even stronger results on the difficulty of approximating some specific problems, refer
to the paper by Zuckerman [35]. There, it is shown that unless NP=P, the permanent of
a matrix with entries in {—1,0,1} and with a positive permanent cannot be accurately
approximated by any polynomial time procedure.

A paper by Linial and Nisan [27] contains some results on approximating the size of a
union of sets by the sum over a subset of the terms in the inclusion and exclusion formula.
They show that if the sizes of the sets and the sizes of intersections of K or fewer of the
sets are known, and if K > Q(4/n), then the size of the union can be estimated to within a
multiplicative factor of 1 + ¢~ K/vn),

97

Conclusion

In this work, we develop and demonstrate the finite-difference technique to produce counting

algorithms:

1. Construct a generating function in which one type of terms corresponds to the objects

to be counted.

2. Apply the proper finite-difference operators to produce a formula that counts the

terms.

3. Choose finite-difference parameters to reduce the computation required to evaluate

the formula.

Finite-difference algorithms have advantages over other counting algorithms. Finite-
difference algorithms require less storage space than their dynamic programming coun-
terparts. Also, finite-difference algorithms have fewer cross-references than dynamic pro-
gramming algorithms, which is an advantage for parallel computation on message-passing
multicomputers. Finite-difference algorithms are a generalization of inclusion and exclu-
sion algorithms. The free parameters of finite-difference formulas can be chosen to produce
algorithms that are faster than their inclusion and exclusion counterparts.

In combinatorics, generating functions are used to count the structures in a fixed super-
structure [34] or to solve a recursion [26]. For these applications, a fixed generating function
is produced, and the desired coefficients are deduced through analysis. In this work, a class
of generating functions is developed for each problem. Given a problem instance, a method
to compute the corresponding generating function is produced, and the desired coefficient
is determined through evaluation of finite-differences. Generating functions are usually

reserved for the realm of proof, but this work applies them to the realm of computation.

98

Appendix A

Gaussian Approximations for Sums
and Differences Over Two Sets of

Bernoulli Variables

At several points in the preceeding chapters, (6.11), (7.19), and (7.32), we have approxi-
mated the distribution of the difference between sums over two sets of Bernoulli variables

by Gaussians. These differences have the form:
1+ ...+ 2T —Tgp1— ... — T (A].)

where the variables are i.i.d.
We need approximations for which the multiplicative errors can be made arbitrarily
small by increasing n and for which the additive error is o(e_%"o'zs). The approximations

are needed only for k£ such that
= g| < en® (A.2)

where ¢; and ¢ are constants, with 0 < ¢; < 0o and 0 < ¢ < 1. The approximations need
only be asymptotic. They need not hold for all n, but for any given multiplicative error
tolerance greater than zero, there must be some N such that the approximations are within
the multiplicative and additive error tolerances for all n > N.

This appendix supplies approximations in which for every multiplicative error tolerance
greater than zero, there exists a pair K and K’ such that for all kK > K and n — k >
K', the approximations are within the multiplicative and additive error tolerances. The

approximations have additive error o(e™2%"*) 4 o(e~2(n=k)"**),

99

To show that this appendix supplies sufficient approximations, first consider the additive

error. Note that
|k - g| < c1n® implies |(n — k) — gl <en® (A-3)

So

k> g —cin? andn—k > g —c1n® (A.4)

As n — oo, these lower bounds go to § because c; < 1. So, for k restricted so that

|k — 2| < c1n®?, there is some value of N such that for alln > N,

_ 14,032 _l¢n_ 1)0.32 1,028
e" 28 4 em 2R o pman (A.5)

Hence, the additive error bound supplied by this appendix is sufficient.
Now consider the multiplicative error. Since we need approximations only for k such

that
Ik — %| < en® and |(n — k) — g; < en® (A.6)

we need approximations for £ and n — &k with the following ratios:

% — clncz k % -+ clnc2
n > < n
g+ecn2 n—-k 5 —cn®

(A7)

Since ¢; is finite and ¢3 < 1, the bounding ratios go to 1 as n — oco. Hence, for any lower
bound less than 1 and upper bound greater than 1, for all n sufficiently large, all pairs
(k,n — k) that meet condition A.6 have a ratio within our bounds. To be specific, choose
lower bound % and upper bound 2. Then our approximations are sufficient if they are within

error tolerances for all (k,n — k) such that

k
n—k

1

5 < <2 (AS)
The appendix supplies approximations within error tolerances for all k > K and n—k > K',
where K and K’ depend on the error tolerances. By taking N = 3max(K, K'), we ensure
that for all n > N, for all pairs (k,n — k) that meet condition A.8, k¥ > K and n — k > K'.
For example, given K = 10 and K’ = 10, if N > 30 then all pairs (k,n — k) such that

1 k
Il L) .
5 <% < (A9)

have k£ > 10 and n — k£ > 10. Since we can choose N such that, for all n > N, the approx-

100

imations supplied by this appendix meet the error tolerance requirements, this appendix
supplies sufficient asymptotic approximations.

To use notation from Feller {11], in which & plays a different role, we use n in the role of
k and n' in the role of n — k in the remainder of this appendix. Thus, n here corresponds
to n +n' in the remainder of this appendix, and K and K’ here correspond to N(e) and
N'(€) in the remainder of this appendix.

We use the following process to prove that a Gaussian approximation is valid for the
difference A.1. First, we show that a Gaussian approximation is valid for the distribution of
the sum over two sets of independent Bernoulli variables with identical distributions within
each set, but possibly different distributions between the sets. Then, we show that the
distribution of the difference between two sets can be transformed to the distribution of the

sum over two sets.

A.1 The Sum Over Two Sets of Bernoulli Variables

Suppose we have two sets of independent Bernoulli variables that are identically distributed
within each set, and we want to estimate the distribution of the sum of the random variables
by a Gaussian. Let n be the number of variables in the first set. Let 0 < p < 1 be the
probability that each variable in the first set takes value one, and let ¢ = 1 — p be the
probability that each variable takes value zero. Similarly, let n’ be the number of variables
in the second set. Let 0 < p’ < 1 be the probability that each variable in the second set
takes value one, and let ¢/ = 1 — p’ be the probability that each variable in the second set
takes value zero.
Denote the first set of variables {x1,...,z,}. Denote the second set of variables {y1,..., ¥y }.

Define bs to be the probability that the sum has value s:
bs=Pr{zi+...+zpn+y1+... + 9y =5} (A.10)

Define B; to be the Gaussian p.d.f. with the same mean and variance as the sum over the

two sets of bernoulli variables.

s—(np+n'p 2
B, = - 1 P e (A.11)
V2m/npg+n'p'q

We will prove the following:

Theorem 1 For every e > 0, there exist N(e) and N'(€) such that for all n > N(e) and

101

n' > N'(e€), for all s € {0,...,n+n'},
(1—€)Bs+0(e™ 2™) + 0(e 2" ™) < by < (14€) B+ 0(e™2"") + o(e~3™)"**) (A.12)

Proof. We will use results from Feller [11] for the sum over a single set of i.i.d. variables
to derive results for the sum over a pair of sets. Following the notation in Feller [11], Ch.

VII, let m be the unique integer
m=np+0d6with —g<6<p (A.13)

and let ' be the unique integer
m' =n'p' + 6§ with —¢' <8 <p' (A.14)

The values m and m' index the central terms of the binomial distributions generated by

sums over the sets of variables. Denote the terms of the distributions as follows:
n
= b(m + k;n,p) = otk gn=(m+k) A.15
ar = b(m + k;n,p) (m+k>p q (A.15)

i.e., the probability that the first set of variables sums to m + k is denoted by a;. Also,
!

n 1t ' (m! k!
ajy = b(m' +k';n',p) = (m' + k') ()™ (¢ R (A.16)

The following lemma is proved in Feller [11], p. 184:

Lemma 1 If n — oo and k is constrained to an interval |k| < K, such that K3 /n? — 0,

then for every € > 0 and n sufficiently large,

ag
1- .
€<hg(kh) <l+e (A.17)
where h = \/i—pq and g() is the normal distribution, i.e., g(z) = \/—12—;6_%22 Hence, for
sufficiently small k,
ax ~ hg(kh) (A.18)

Define By to be the Gaussian p.d.f. with mean m + m' and the same variance as B.

1 1 _ 1 [s=(m4m"]?
B = e 2 nmpgtn'p/d A.19
* V2r/npg+1p'd (A.19)

102

To prove the theorem, we will prove two more lemmas. The first states that B approximates

b,, and the second states that B, approximates BL.
Lemma 2 For every € > 0 there exist N(€) and N'(¢) such that for all n > N(e) and
n' > N'(e), for all s € {0,...,n+n'},

1

(1—€)B’ +o(e 2") + o(e™ 1)) < b, < (1+€)By + o(e™2""") + o(e=3(")***) (A.20)
Proof of Lemma. Note that

bs = Z akay (A.21)
(k kN |m+Ek+m!+k'=s and 0<m+k<n and o<m/4+k'<n’

To simplify notation, denote the set of summation by S:
S={k,K)m+k+m'+k=sand0<m+k<nand 0<m'+k <n'} (A.22)

Separate the sum into terms for which k and &' are small enough that the Gaussian approx-
imations hold for a; and a}, and other terms. The approximations are valid for |k| < n0-¢6
and lk,! S (nI)O.SG.

bs = Z apay + Z apay (A.23)
(k,k')ES | |k|<n0-66 and |k'|<(n’)0-66 (k,k")ES | |k'|>n0-66 Or [k'|>(n')0-65
Examine the second sum. Since a; < 1 and aj, < 1 for all values of k and £/, the second

sum is no greater than

Sooat+ >, ap (A.24)

|k|>n0-66 || >(n’)0-66

According to Feller [11], p. 193, (6.7), these sums are

0

o(e=2""**) and o(e~2(")"*) | (A.25)

Hence,

bs = Z aray + o(e_%no'm) + o(e_%("l)o'”) (A.26)
(k,kNES | |k|<n0-66 and [E!|<(n')0-66

103

. . . I} . _ 1 r_
Now use the Gaussian approximations for a; and ay,, with h = N and b’ = -

bs = [> hg(kh)h' g(k'B)| By + o(e™ 2™ + o(e~ 2™
(k,k)ES | |k|<n066 and |k’|<(n’)0-66
(A.27)

where E is the error made in the sum through the use of Gaussian approximations. Using
(A.17), we see that for every ¢ > 0 and n and n’ sufficiently large, for all (k, k') with
|k| < ,nO.66 and |k’| < (nl)0.66,

G;ka;d

=9 < e

< (1+¢)? (A.28)

Since ag, a},, hg(kh), and h'g(k'h') are all nonnegative for all (k, k'), we have
(1-€e? < B <(1+¢€)? (A.29)

Now estimate the sum by an integral.

T hg(kW g(K'H) = | / hg(kh)H g((s—m—m’ —k)h')dk] Ba+ By
(kk1)eS | [kl<no®® and [ur|<(n'o-o8 e
(A.30)

where E» is the error due to estimating the sum by the integral over the range |k| < n?-6
and |k'| < (n')%%, and Ej is the error due to extending the range of k£ (and thus k') to
(—o0, +00).

The integral itself is the value at s—m—m/' of the convolution of two zero-mean Gaussians
with variances npq and n'p’¢’. So the integral is the value at s — m — m' of a zero-mean

Gaussian with variance npq + n'p'q’:

(s—(m+m'))?
! 1 6_% npg+n'p'q’ (A.31)
vnpg+n'p'q /2n

This is the value at s of a Gaussian with mean m + m’ and variance npq + n'p'q’. So,
error terms aside, the distribution of the sum of the two sets of Bernoulli variables can
be approximated by a Gaussian with mean within two of the sum of the means (since
[(m +m') — (np + n'p’)| < 2) and with variance equal to the sum of the variances.

Consider Ey, the error due to estimating the sum

> hg(kh)R g(k'R') (A.32)
(keS| [k|<n®68 and [k'|<(n)0-66

104

by the integral

min(no.ﬁﬁ ’(nl)0.66)+1
/ hg(kR)R g(K' ') dk (A.33)
k

=max(—n0-66,—(17)0-66)
where k' = s —m —m/ — k.
Denote by FE2(k) the ratio of a single term in the sum to the integral over the corre-

sponding region.

hg(kh)h g(K'h'
By(k) = — gk g (k') (A.34)
[0 hg((k + D g((K — o)k)ds
Note that
hg(kh)W g(K'I) B < hg(kR)W g(k'R)
maxgepo,1) hg((k +)W g((F — 2)k') = 72 = mingepo 17 hg((k + z)R)Wg (K — z)I)
(A.35)
Examine the bounding fractions for z € [0, 1].
hg(kh) g(k'I) _ g(kh)g(k'h") (A.36)
hg((k + z)h)h'g((K' — z)h') — g((k + z)h)g((k' — z)h) '
Expand the Gaussians and subtract exponents to divide.
o~ 3D K2 —(k+2)]= 3 (h')?[(K')*~ (k' ~2)?] (A.37)
Simplify.
e—%—h2[—2km—z2]—%(h')2[2k’x——z2] (A38)
I _ 1
Recall that h = N and b/ = e
o Hek (- tha—stl- bt ok (4.39)

For |k| < n%% and |k'| < (n/)*68, the exponent goes to zero as n and n' increase, so the
exponential goes to one. Thus, for any € > 0, for all z € [0,1], for all n and n’ sufficiently
large, and for |k| < n%56 and |k'| < (n')0%6,

11
l-e<e 2mp

1 1 !
[-—Qkx—mz]—gn—;pTET[Zk z—z?] <l4e¢ (A40)
Hence, for every € > 0 and n and n’ sufficiently large, and for || < n%% and |'| < (n')%66,

l1-e<BEy(k)<1l+e (A.41)

105

Now consider the entire sum and integral. Since both the sum terms and the integrals
over corresponding regions are all positive, the previous result for separate terms and regions
implies the following. For every e > 0 and n and n’ sufficiently large, and for |k| < n0-56
and |k'| < (n")06,

l—e<BEy<l+e (A.42)

Finally, examine F3, the error due to extending the ranges of ¥ and %’ in the approxi-

mating integral. Since hg(kh) <1 and h'g(k'h") <1, F3 is no greater than

2 hg(kh)dk + 2 b g(k'B)dk' (A.43)

k>n0'66 kl>(nl)0.66

According to the tail bound from Feller [11], p. 175, (1.7),

1,.0.32

L 066y ~in
/;;>n0.66 h‘g(kh)dk < n0.66 g(n h) - O(e 2) (A.44)

Hence,
E3 = o(e™2""™) 4 o(e~ (")) (A.45)

Combining the results for the integral and errors in (A.27) and (A.30) completes the
proof of the lemma. O
To complete the proof of the theorem, we show that B approximates B! when Bl is

larger than the additive error term allowed by the theorem.

Lemma 3 For every € > 0, there exist N(e) and N'(¢) such that for all n > N(e) and
n' > N'(¢), for all s € {0,...,n+n'},

!

S
= <
B,

1,0.32 1,0.32

(1-¢)< (14¢€) if B >e 2™ or By > e 2" (A.46)

Proof of Lemma. Recall that

s—{m+m') 2
B; = L ! e_% npg+n'p’q (A.47)
V2T V/npg + n'p'q’

and 2
1 1 _lls‘(ﬂ;ﬁ#_
B. = V2r g+ pg B (4.48)
Let o® = npg + n'p'q’. Then
By _ ¢~ 5 5z l(s—(mAm")? (s (np+np'))?] (A.49)

B

106

We will show that both an upper bound and a lower bound for the ratio go to 1 as either

n or n' increases, given that

1 n0-32

B, >e ™ or By >e2 (A.50)
Recall that |m —np| <1 and |m’ — n'p’| < 1. Hence,
[(m +m) — (np +n'p')| <2 (A.51)

Without loss of generality, assume s > m +m’. Then decreasing np + n'p’ decreases Bj, so

np + n'p’ = m 4+ m’ — 2 maximizes the ratio. So we have the upper bound:

5 < o (s (mtm)? ~(s—(me+m! ~2))’
o Se 242 (A.52)
s
The upper bound is equal to
es T (A.53)

We can use np + n'p' = m +m/ — 2 to derive the equivalent upper bound:

2 s—(np+n'p') 2

es” o e o7 (A.54)

We will show that condition (A.50) implies that this upper bound goes to 1 as n — oo.
: 1
Assume n is large enough that T < 1. Then

1 n0-32

Bl >e 2 (A.55)
implies
s—(m m’ 2
P R A o (A.56)
So /
('S - ('n:;-_’_ m))2 < n0.32 (A57)
and .
,i:@| < 016 (A.58)
Likewise,
B, > ¢ "% (A.59)

107

implies 2

I R R P (A.60)
So "y

(s__—__(_n}:f+—np)_)2 < 032 (A.61)
and

s — (np + n'p')

0.16
. | <n (A.62)

Combining results, we see that condition (A.50) implies (A.58) or (A.62).
Substituting (A.58) into (A.53) produces the upper bound:

2,016

e et (A.63)

Since o = v/npg + n'p'q’, both exponents go to 0 as either n or n' increase, and the bound
goes to 1. Likewise, substituting (A.62) into (A.54) produces the upper bound:

9,016 2

e o e o? (A.64)

Once again, the exponents go to 0, so the bound goes to 1 as either n or n/ increase.

Now we derive a lower bound for the ratio of B; to B;. Examine (A.49). Without loss of
generality, assume s > m+m’. Then increasing np+n'p’ increases B until s—(np+n'p') = 0.
For now, assume s — (m + m') > 2, so that s — (np + n'p’) = 0 does not occur within
the range of possible values for np + n'p’ given by |(m + m') — (np + n'p’)| < 2. Then

np +n'p’ = m + m' + 2 minimizes the ratio. So we have the lower bound:
By o= 1 2 l—(mtm))?—(s—(mtm'+2))?]
=2 <e 252 (A.65)
§
The lower bound is equal to
eTF T et (A.66)
We can use np + n'p’ = m + m' + 2 to derive the equivalent lower bound:

_2s—(nptn'p) _ 2

emiitetrs) 4 (A.67)

Note that lower bounds (A.66) and (A.67) are similar to upper bounds (A.53) and
(A.54). As for the upper bounds, assume that condition (A.50) holds. Then (A.58) or
(A.62) holds. Substitute (A.58) into (A.66) or substitute (A.62) into (A.67) to derive a

108

lower bound in which the exponents go to 0 as either n or n’ increase, so the lower bound

goes to 1.
Now consider the case s — (m +m') < 2. The maximum possible value of B, is achieved

by np +n'p’ such that s — (np+n'p’) = 0, since B, is a Gaussian. Maximizing B, minimizes

the ratio. So we have the lower bound:

By il mim) -7 (A.68)

L

Since s — (m + m') < 2, this bound is at least
_2
e o2 (A.69)

Since o increases as either n or n' increase, the exponent goes to 0, and the lower bound

goes to 1. 0O

To prove the theorem, combine the last two lemmas. Since B; approximates B, and

B! approximates bs, B; approximates b;. a

A.2 The Difference Between Two Sets of Bernoulli Variables
We need to apply this result to distributions of the form:
T+ Ty —Y1— e — Y (A.70)

where the variables are all independent, the z;’s are identically distributed, and the y;’s are

identically distributed. To fix notation, let

1 with probabilit
z; = ey (A1)
0 with probability g=1—1p
and let
1 with probability p’
i = e (A.72)
0 with probability ¢ =1 - p’

Our result applies to sums of Bernoulli variables, so the subtracted variables may cause

concern. We can alleviate this concern as follows. Replace each —y; by —1 + y;, where y’

109

is the Bernoulli variable

(A.73)

) = { 1 with probability ¢ =1 —p/
=

0 with probability p’
Note that —1 + y;- has the same distribution as —y;. So the sum can be rewritten as
Ty 4.t Tty oty —n (A.74)

This is the sum of two sets of Bernoulli variables and a single constant translation term.
Our theorem applies to the sum over the sets of variables. To account for the translation

term, translate the index s in bs by —n/'.

110

Bibliography

[1]

2]

[10]

[11]

T. Araki, Y. Sugiyama, T. Kasami, and J. Okui, Complexity of the deadlock avoidance
problem, Proc. 2nd IBM Symp. on Mathematical Foundations of Computer Science,
IBM Japan, Tokyo 229-252.

E. Bax, Inclusion and exclusion algorithm for the Hamiltonian path problem, Inform.
Process. Lett., 27 (4) (1993) 203-207.

E. Bax, Algorithms to count paths and cycles, Inform. Process. Lett., 52 (1994) 249-
252.

E. Bax, Recurrence-based reductions for inclusion and exclusion algorithms applied to
#P problems, CalTech-CS-TR-96-01.

E. Bax, Tailoring the permanent formula to problem instances, CalTech-CS-TR-96-17.

E. Bax and J. Franklin, A finite-difference sieve to count paths and cycles by length,
Inform. Process. Lett., 60 (1996) 171-176.

E. Bax and J. Franklin, A finite-difference sieve to compute the permanent, CalTech-
CS-TR-96-04.

E. Bax and J. Franklin, A permanent formula with many zero-valued terms, Inform.
Process. Lett., 63 (1997) 33-39.

R. Bellman, Dynamic programming treatment of the travelling salesman problem, J.
Assoc. Comput. Mach., 9 (1962) 61-63.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland 1976.

W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley and
Sons, Inc. 1968.

[12]

[13]

[14]

[15]

[16]

[24]

[25]

111

J. Franklin, Methods of Mathematical Economics pp.68-79, Springer-Verlag New York,
Inc. 1980.

M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, New York, 1979.

E. M. Gold, Deadlock prediction: easy and difficult cases, SIAM J. Comput., 7, 320-
336.

A. N. Habermann, Prevention of system deadlocks, Comm. ACM, 12, 373-377, 385.

M. Held and R. M. Karp, A dynamic programming approach to sequencing problems,
J. Soc. Indust. Appl. Math, 10 (1962) 196-210.

F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill 1956.

W. Hoeffding, Probability inequalities for sums of bounded random variables, Am.
Stat. Assoc. J., (1963):13-30.

R. C. Holt Some deadlock properties of computer systems, ACM Computing Surveys,
4, 179-196.

M. R. Jerrum and A. Sinclair, Approximating the permanent, SIAM Journal on Com-
puting, 18(6):1149-1178, December 1989.

M. Jerrum and U. Vazirani, A mildly exponential approximation algorithm for the
permanent, Algorithmica, 16(1996):392-401.

N. Karmarkar, R. Karp, R. Lipton, L. Lovész, and M. Luby, A Monte Carlo algorithm
for estimating the permanent, STAM Journal on Computing, 22(2):284-293, April 1993.

R. M. Karp, Reducibility among combinatorial problems, in R. E. Miller and J. W.
Thatcher (eds.), Complezity of Computer Computations, Plenum Press, New York,
85-103.

R. M. Karp, Dynamic programming meets the principle of inclusion and exclusion,
Oper. Res. Lett., 1 (2) (1982) 49-51.

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logzst.
Quart., 2 (1955) 83-97.

[26]

[27]

(28]

[29]

(30]

31]

[32]

[33]

[34]

[35]

112

J. H. van Lint and R. M. Wilson, 4 Course in Combinatorics, Cambridge University
Press 1992.

N. Linial and N. Nisan, Approximate inclusion-exclusion, Combinatorica, 10 (4) (1990)

349-365.

R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press
1995, pp. 315-329.

H. J. Ryser, Combinatorial Mathematics, The Mathematical Association of America

1963, Ch. 2.

A. Sinclair, Algorithms for Random Generation and Counting: A Markov Chain Ap-
proach, Birkhauser, Boston 1993.

R. Tarjan, Enumeration of the elementary circuits of a directed graph, SIAM J. Com-
put., 2 (3) (1973) 211-216.

L. G. Valiant, The complexity of computing the permanent, Theoretical Computer
Science, 8(1979):189-201.

L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Com-
put., 8 (3) (1979) 410-421.

H. Wilf, Generating Functionology, Academic Press, Boston 1994.

D. Zuckerman, On unapproximable versions of NP-complete problems, STAM J. Com-
put., 25 (6) (1996) 1293-1304.

