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Abstract

This thesis describes the instrumental design and observations with the Arcminute Cos-

mology Bolometer Array Receiver (ACBAR). We have used ACBAR to make very sensi-

tive, high resolution maps of the Cosmic Microwave Background (CMB) and have searched

within these maps for previously unknown massive clusters of galaxies through the Sunyaev-

Zel’dovich effect. ACBAR is a 16-pixel, millimeter-wave, 240 mK bolometer array that is

configurable to observe simultaneously at 150, 220, 280, and 350 GHz. The receiver observes

from the 2m Viper telescope at the South Pole from which it has beam sizes of ∼ 4 − 5′

at all frequencies. We have taken advantage of improvements in bolometric detector tech-

nology and the superb observing conditions at the South Pole to image the microwave sky

at multiple millimeter wavelengths. Here we present the results of observing ∼ 20 deg2

for 16 weeks in 2002. These represent the deepest CMB observations to date with a sen-

sitivity of ∼ 5 µK per 5′ beam at 150 GHz in the deepest part of the map. We present
the results from 150 GHz and employ an optimal filter to remove the primary CMB. We

detect no clusters above 4× the post-filter map RMS in the most sensitive 10 deg2 of the
maps. We perform a Monte Carlo simulation to determine the cluster detection efficiency

of the survey using the measured noise covariance and realizations of the CMB. We use the

results of the simulation to estimate the expected cluster yield of the survey as a function of

cosmological parameters. The non-detection of clusters allows us to place a 2σ upper limit

upon the variance of the smoothed density field of σ8 < 1.10 (ΩM/0.3)
−0.23 in a flat-ΛCDM

concordance cosmology.
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Chapter 1 Introduction

1.1 Motivation

Cosmology is concerned with understanding the composition, structure, and evolution of

our Universe. By this we mean cosmology attempts to answer the following questions: What

types of matter and energy populate the Universe and how are they distributed? How has

the geometry of the Universe evolved with time? How did the Universe transition from a

reasonably smooth distribution to the complex structures that we observe today?

Until recently, cosmology was a theorist’s playground in which the boundaries from ob-

servational data extended to virtually any model of the Universe that predicted a microwave

background, nucleosynthesis, and the existence of large-scale structure. However, cosmol-

ogy has made the transition from a data-starved science to one of precision measurement.

We are carving away vast regions of parameter space to leave just a few cosmological models

with reasonably well constrained parameters.

Unlike most of the sciences, cosmology is an observational (rather than experimental)

science; our interaction with the Universe is one-sided. Everything we learn about the

Universe is limited to what we can observe. We cannot put the Universe in a test tube

and shoot particles at it or mix it with chemicals and see what happens. We also have

only one universe to investigate which makes a statistical study of the laws of Nature that

govern the Universe as a whole all but impossible. Because of this, we need to exploit every

available piece of observational information to expand our understanding. Observations of

the Universe cover photon energies spanning roughly ten orders of magnitude and include

phenomena as diverse as black holes and the Big Bang. What is remarkable is that these

disparate observations are beginning to reveal a coherent picture of the Universe. It is

likely that cosmology will soon make the transition to a science that is not only precise but

accurate as well [85].

In the spirit of constraining cosmological parameters through complementary obser-

vations, we have embarked on a program to survey for clusters of galaxies using the

Sunyaev-Zel’dovich (SZ) effect as well as to measure the angular power spectrum of primary



2

anisotropies of the Cosmic Microwave Background (CMB). This thesis will be concerned

mainly with surveying for clusters of galaxies as probes the growth of structure and evolu-

tion of the cosmological volume element. However, our ability to find clusters with the SZ

effect is, as we shall see, intimately tied to the distribution of CMB anisotropies. Although

the CMB power spectrum is not the main topic of this thesis, it was the driving science goal

behind the Arcminute Cosmology Bolometer Array Receiver (ACBAR) and so we discuss

it first.

The remainder of Chapter 1 will discuss the scientific rationale behind ACBAR as well

as establish the cluster abundance formalism that we will use to constrain cosmological

parameters within the modern picture of adiabatic density perturbations in a Cold Dark

Matter (CDM) framework. The instrumental design of ACBAR is presented in detail in

Chapter 2. Chapter 3 describes the CMB observations made at the South Pole in 2001

and 2002 as well as the performance of the instrument. Chapter 4 details the processing of

the raw data and 5 details the development of our cluster detection methodology. We also

report the results of the cluster survey in Chapter 5 and place these results in the context of

a ΛCDM cosmology. We discuss other science from ACBAR in Chapter 6 and present our

conclusions and future prospects for SZ cluster surveys in Chapter 7. We include appendices

on the analysis of bolometer load curves and sky dips, re-design of telescope optics, transfer

functions, and the generation of CMB realizations at the end of this thesis.

1.2 CMB Power Spectrum

The Cosmic Microwave Background (CMB) is the sea of thermal photons left over from

the hot ionized plasma of the early Universe. The spectrum of the CMB is very well

fit by a blackbody of temperature 2.73 K and peaks at millimeter wavelengths [74]. We

believe that shortly after our Universe emerged in the Big Bang, the energy field formed

elementary particles, such as photons and electrons, in a tightly bound plasma. These were

not distributed uniformly, but instead conformed to the primordial density perturbation

field. Although the temperature of the Universe was too hot for the photons and charged

baryons to decouple, the weakly interacting dark matter had no such pressure support and

collapsed into the overdensities to enhance the potential wells.

The other charged particles were gravitationally attracted to these potential wells but the
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photon pressure prevented their collapse. This induced acoustic oscillations in the photon-

baryon plasma until about z ∼ 1100 when the Universe expanded and cooled enough that
the electrons were able to bind to the baryons (the so-called “epoch of re-combination”),

thus decoupling from the photons. The baryons then settled into the dark matter potential

wells to form gravitationally bound structures and the photons free-streamed from this

“surface of last scattering” and cooled with the expanding Universe to form the CMB we

observe today.

The CMB is a snapshot of the Universe when it was only about 300,000 years old and

encodes much information about the temperature and distribution of matter at that epoch.

With sensitive instruments we can measure the tiny variations in CMB temperature from

one point on the celestial sphere to the next. If we define the temperature of the sky in the

direction θ̂ as T (θ, φ), we can decompose the temperature field into a spherical harmonic

expansion as

T (θ, φ) =
∑

`m

a`mB`Y`m(θ, φ),

where the Y`m(θ, φ) are the spherical harmonics and B` = e
−`(`+1)σ2 is the window function

for a Gaussian beam of width σ. The angular power spectrum is then defined as

C` = 〈a`ma∗`m〉 =
1

2`+ 1

∑̀

m=−`

|a`m|2.

In the equations above, ` is the order of Legendre polynomials; smaller values of `

correspond to larger spatial scales on the sky. The C0 term is the monopole and set by the

average temperature measured by the FIRAS instrument on COBE to be 2.73 K [74]. The

dipole term (` = 1) is dominated by the motion of the earth with respect to the CMB rest

frame caused by our motion about the sun, the sun’s motion about the Milky Way, and the

Milky Way’s motion towards what has been termed “The Great Attractor” in the direction

of the constellation Leo. What is usually referred to as the CMB power spectrum is the set

of C`’s starting with ` = 2.

The shape of the CMB power spectrum encodes the distribution of density perturbations

as a function of angular scale. The primordial density field may have originated from the

quantum fluctuations in the Big Bang which were amplified by inflation and processed by the

oscillations in the plasma of the early Universe. If the age of the Universe at photon-baryon
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decoupling is denoted tdec, then regions larger than ctdec (the horizon size at decoupling)

cannot have causally interacted since inflation. Scales smaller than the horizon have had

sufficient time to interact and the peaks and troughs in the power spectrum reflect the

state of the acoustic oscillations in the plasma at decoupling. However, we also measure

anisotropy in the CMB on scales larger than the horizon size and believe these fluctuations

originate from the period before inflation.

One should note that the peaks in the power spectrum are anisotropy power and thus

correspond to both compression and rarefaction peaks in the distribution. The first peak

in the power spectrum at ` ∼ 220 corresponds to the physical scale that has just had time
to compress once; objects of this size subtend an angle of roughly one degree on the sky.

The second peak has collapsed and rarefied to maximum expansion at decoupling.

The different cosmological parameters affect the predicted power spectrum in different

ways. For example, the total density of matter and energy (Ωtotal) determines the angular

size of fluctuations on the sky by setting the angular diameter distance to the surface of

last scattering as well as the horizon size at decoupling. A larger (smaller) value of Ωtotal

shifts the power spectrum to larger (smaller) angular scale. The density of baryons affects

the depth of gravitational potential wells, thus enhancing the amplitude of compression

peaks while reducing rarefaction peaks. An interesting feature of these power spectra is

that different sets of cosmological parameters can produce virtually identical power spectra.

These parameter degeneracies can be broken by complementary measurements such as those

described in the next section. Model power spectra generated with CMBFAST1 [102] for

three different cosmologies (ΛCDM, SCDM, OCDM) are shown in Figure 1.1.

The epoch of re-combination was not instantaneous and so the surface of last scattering

has a finite thickness. The thickness is determined by the photon diffusion distance near

decoupling which is proportional to Ω
−1/2
M h−1 [65]. Fluctuations that are small compared to

this thickness (corresponding to a few arcminutes) will be averaged out as one looks through

the surface. This smoothing results in the damping tail of the CMB power spectrum at

` & 1000. The steepness of the damping tail is also shaped by the spectral index of the

primordial perturbation spectrum which has led to the term “tilt” meaning a non-flat

primordial spectrum. The existence of the damping tail was recently measured by the

Cosmic Background Imager experiment [83] and is in good agreement with the predictions

1Available from http://www.physics.nyu.edu/matiasz/CMBFAST/cmbfast.html
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Figure 1.1: Shows the model CMB power spectrum for three different cosmologies: ΛCDM
(solid line, ΩM = 0.3, ΩΛ = 0.7, h = 0.7), SCDM (dashed line, ΩM = 1, ΩΛ = 0, h = 0.5),
and OCDM (ΩM = 0.3, ΩΛ = 0, h = 0.7). All models assume ΩBh

2 = 0.021, n = 1, and no
reionization.
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of the ΛCDM cosmology in which ∼ 70% of the energy density of the Universe is in the
form of a mysterious “Dark Energy”, ∼ 25% in non-baryonic cold dark matter, and ∼ 5%
in ordinary baryonic matter.

At ` & 2000 – and frequencies far from 218 GHz – the primary CMB power spectrum

is expected to be dominated by an unresolved background of secondary CMB anisotropies

from the Sunyaev-Zel’dovich (SZ) effect in clusters of galaxies [46]. The SZ effect will be

discussed in the next section and recent results from the CBI [15] and BIMA [23] suggest

that this high-` power may have been detected. A conclusive measurement of this SZ

power spectrum will require measuring the high-` power spectrum at multiple frequencies –

including ∼ 218 GHz where the clusters should not contribute significantly – to separate the
primary from the secondary CMB anisotropies. The amplitude of the SZ power spectrum is

expected to scale very strongly with the normalization of the matter power spectrum (σ78)

[15].

There are simply too many CMB mapping experiments to list, but a few Web sites have

compiled all of the available data to illustrate the state of the field of CMB power spectrum

measurement2. It should be noted that most of the recent experiments have focused on

the large to moderate angular scales (` < 1000) where the CMB is believed to have the

most power. Experiments such as Boomerang, MAXIMA, DASI, and Archeops have done

a remarkable job of measuring the position and amplitude of the first few peaks in the

power spectrum and have placed very tight limits on most of the cosmological parameters.

However, the sensitivity of these large beam experiments falls off rapidly for ` & 1000. Only

a handful of experiments have attempted to measure the CMB power spectrum on smaller

angular scales: SuZIE placed an upper limit around ` ∼ 2500 [19], OVRO placed an upper
limit at ` ∼ 2000 [94], BIMA detected power at ` ∼ 7000 [23], and CBI definitively detected
the damping tail [72]. It is this region of the power spectrum that ACBAR was designed to

measure with high precision.

In Figure 1.2 we show the state of the observed CMB power spectrum as measured by

a selection of instruments. This figure incorporates the data from stratospheric balloon

instruments ARCHEOPS [7], Boomerang [101], and MAXIMA [42] as well as ground-based

experiments CBI [72], DASI [91], VSA [105], and ACBAR [59]. One can see from the figure

that ACBAR has measured the CMB damping tail across a wide range of angular scales

2http://background.uchicago.edu/∼whu, http://www.hep.upenn.edu/∼max/cmb/experiments.html
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with good precision.

1.3 The Sunyaev-Zel’dovich Effect

The Sunyaev-Zel’dovich (SZ) effect is the scattering of CMB photons from energetic elec-

trons in the shock-heated, gravitationally bound plasma in clusters of galaxies [107, 10].

Low energy CMB photons travel from the (in this case, misnamed) surface of last scatter-

ing and are boosted in energy by the few keV thermal electrons via Thomson scattering.

The probability of scattering depends on the electron density of the cluster and is of order

1% for any given photon. This is the thermal SZ effect and it results in unique spectral

distortion to the CMB intensity spectrum (see Figure 1.3). The CMB thus acts as a back-

light to the cluster, which appears as a cold patch at frequencies below ∼ 218 GHz and a
hot patch above ∼ 218 GHz.
The temperature spectrum of the thermal SZ effect is given by

∆Tthermal
TCMB

= y f(x) = f(x)

∫

d`
kTe
mec2

ne(`)σT ,

where the integral is along the line of sight through the cluster, y is referred to as the

Compton y-parameter and is proportional to the integrated electron pressure in the cluster,

k is Boltzmann’s constant, Te is the electron temperature, me is the mass of an electron,

c is the speed of light, ne is the electron number density profile, and σT is the Thomson

scattering cross-section. The factor f(x) encodes the frequency dependence and is given by

f(x) = x
ex + 1

ex − 1 − 4,

where x = hν/kTCMB and we have neglected higher order relativistic corrections (see, for

example, Itoh 1998).

The thermal SZ effect spectrum can be re-written in terms of specific intensity to give

∆ISZ =
dB(TCMB)

dT
∆TSZ = I0g(x)y,

where B(T ) is the Planck blackbody equation, TCMB is the temperature of the CMB,



8

0

2000

4000

6000

8000

0 1000 2000 3000

0

2000

4000

6000

8000

Figure 1.2: The upper panel shows the power spectrum measured by ACBAR with two
model power spectra. The solid line is a ΛCDM model and the dotted line is an SCDM
model. The ACBAR data points are uncorrelated. The lower panel compares the ACBAR
results to the power spectrum measured by previous bolometric and interferometric instru-
ments. The solid line is a flat-ΛCDM cosmology. The figure is taken from the ACBAR
cosmological parameter paper of Goldstein et al. (2002).



9

Figure 1.3: Intensity spectrum of both the thermal (solid) and kinetic (dashed) Sunyaev-
Zel’dovich effects for a massive cluster of galaxies. The model cluster is characterized by a
central comptonization of y = 10−4, an optical depth of τ = 0.01, and peculiar velocity of
±500 km/s.

I0 = 2(kTCMB)
3/(hc)2, and

g(x) =
x4ex

(ex − 1)2 f(x).

The SZ intensity spectrum is plotted in Figure 1.3 for a cluster with y = 10−4 which is

typical for massive clusters.

There is a second SZ effect due to the bulk motion of a cluster with respect to the CMB

rest frame. This kinetic SZ effect acts like a Doppler shift and the sign of the distortion

depends on the direction of the peculiar velocity with respect to the line of sight. The

temperature spectrum of the kinetic effect (ignoring relativistic corrections) is given by

∆Tkinetic
TCMB

= −τ
(

~vpec · r̂
c

)

,

where τ is the optical depth of electrons, ~vpec · r̂ is the component of the peculiar velocity
along the line of sight, and the negative sign indicates that a cluster moving away from us

will cause a decrement. The kinetic effect is also shown in Figure 1.3 and one can see that

the optimum frequency band to observe the kinetic effect is near the thermal null at ∼ 218
GHz, thus reducing contamination from the thermal signal.

In addition to thermal effect contamination, the kinetic effect has the unfortunate fea-
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ture of an intensity spectrum identical to the CMB. This means that CMB fluctuations

cannot be distinguished from kinetic SZ emission. This suggests that small beam sizes are

advantageous when trying to measure the kinetic effect because this will reduce the amount

of primary CMB confusion. The amplitude of the kinetic SZ signal is also quite small and

has not been conclusively detected as of the time of this writing. The strongest upper

limits on cluster peculiar velocities from the kinetic effect come from the SuZIE instru-

ment which observes from Mauna Kea and suffers from atmospheric noise contamination

[49]. The latest incarnation of SuZIE employs multi-frequency photometers that enable

thorough atmospheric removal and may permit significant detections of cluster peculiar

velocities.

It is important to note that the SZ effect is not really an emission mechanism but

a scattering processes that preserves photon number. The SZ effect results in a fractional

change in the surface brightness of the CMB by boosting photons to higher energy. Although

the photons we observe from a cluster at redshift z interacted with the intra-cluster plasma

when the Universe was (1 + z) hotter, those photons have undergone the same (1 + z)−1

redshift as the rest of the CMB as the Universe expanded. The SZ surface brightness inherits

the remarkable property of redshift independence from the CMB; a specific cluster (fixed

temperature and electron density) will have the same surface brightness independent of its

redshift of observation. The total flux from a cluster will, however, depend upon redshift

through the angular diameter distance relation. As will be shown below, the angular size of

a cluster of fixed proper dimension is expected to initially fall off but will eventually flatten

out and even increase at z > 2 in currently acceptable cosmologies.

It is the redshift independence of surface brightness that makes the SZ effect such a pow-

erful cosmological probe. One of the most powerful uses of the SZ effect is as a cosmological

distance measure without the use of standard candles (such as Cepheid variables). The SZ

signal is proportional to the integrated column depth of the electron pressure,
∫

neTed`.

This can be combined with both X-ray surface brightness observations, which are propor-

tional to the integral of the electron density squared,
∫

n2eT
1/2
e d`, and X-ray spectra which

give the temperature of the intra-cluster electrons, Te. By eliminating the electron density

and temperature one obtains a measurement of the depth of a cluster. If the assumption of

spherical symmetry is valid, one can assume the proper width of the cluster is the same as

the depth and use the angular diameter distance relation to determine the Hubble constant,
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H0 [71, 95]. With sufficient cluster statistics to reduce cluster orientation bias, the cluster

derived angular diameter distance relationship at high redshift can be used to measure the

matter and vacuum energy densities (ΩM and ΩΛ, respectively).

We can integrate the thermal SZ surface brightness of a cluster over solid angle using

dΩ = dA/d2A(z) to get the total flux density

Stotal = I0g(x)
σTkTCMB
mec2

〈Te〉nNe
d2A(z)

,

where 〈Te〉n is the mean density weighted electron temperature of the cluster, Ne is the
total number of free cluster electrons, and dA(z) is the angular diameter distance relation.

The total number of electrons is related to the cluster mass by

Ne =
fgM

µemp
,

where M is the total cluster mass, fg is the gas mass fraction, µe = 1.142 is the mean

molecular weight per electron assuming cosmic abundances plus 30% of the solar abundance

in metals [2], and mp is the proton mass. The gas mass fraction should be approximately

equal to the cosmological value of ΩB/ΩM ∼ 0.15 from BBN if clusters reflect the universal
partition of matter; it is measured to be fgh ∼ 0.081 assuming a ΛCDM cosmology [36].

1.4 Surveying for Galaxy Clusters

The second science goal of ACBAR is to conduct an untargeted survey for clusters of galaxies

using the Sunyaev-Zel’dovich effect. The success of this project is a more uncertain than

measuring the CMB power spectrum because is has not been attempted on a large patch

of sky before and the level of expected SZ signal is still unknown. Fortunately, the power

spectrum measurement and cluster search are derived from the same CMB maps resulting

in two science data sets from one set of observations. In the following subsections we will

discuss the usefulness of galaxy clusters as probes for measuring the cosmological parameters

as well as why the Sunyaev-Zel’dovich effect provides a powerful tool for surveying for

clusters [5, 48]. We follow the prescription outlined in Vianna and Liddle (1996) and Holder

et al. (2000) for modeling the cluster abundance but incorporate a modified cluster mass

function that better fits numerical simulations.



12

1.4.1 Clusters as Cosmological Probes

For a model of structure formation to be considered successful it must predict the observed

number density of galaxy clusters at the present epoch as well as at higher redshifts. Mas-

sive clusters of galaxies presently correspond to rare peaks in the density perturbation field

(much like galaxies at a redshift of a few) and their number depends strongly on the nor-

malization of the matter power spectrum. It has been suggested by many authors that

measuring the evolution of the number density of galaxy clusters would be a powerful probe

of some cosmological parameters; in particular, the matter density (ΩM ), power spectrum

normalization (σ8), and the density (and possibly equation of state) of dark energy (ΩΛ)

should be well constrained by such a survey [48]. The observed number density of clusters

is considered the strongest evidence against the standard CDM model (ΩM = 1) because

it under-predicts the number of rich clusters at intermediate redshifts by several orders

of magnitude [3] when normalized to the local cluster abundance as measured by X-ray

satellites [26, 27].

The evolution of the number density of clusters, n(z), can be separated into two effects:

1) the change in the comoving volume element, dV/dΩdz, and 2) the growth of structure

in the Universe as parameterized by the cluster mass function, dn/dM . The definitions of

the density parameters, Ωi, comes from the Friedmann equation

(

ȧ

a

)2

= H(z)2 = H20E
2(z) =

8πGρ(z)

3
+
Λ

3
−K(1 + z)2,

which can be re-written as

E2(z) =
8πGρ(z)

3H20
+
Λ

3H20
− K(1 + z)2

H20
.

At the current epoch, z = 0 and E(z = 0) = 1, from which we have

8πGρ0
3H20

+
Λ

3H20
− K

H20
= 1 = ΩM + ΩΛ + ΩK .

In the matter dominated epoch, the density term scales like (1 + z)3 and we can explicitly
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write down the evolution of the density parameters with redshift as

ΩM (z) =
8πGρ0(1 + z)

3

3H20E
2(z)

ΩΛ(z) =
Λ

3H20E
2(z)

ΩK(z) = −
K(1 + z)2

H20E
2(z)

.

We can re-write the function E(z) as

E2(z) = Ω0M (1 + z)
3 + Ω0Λ +Ω

0
K(1 + z)

2,

where the superscript 0 denotes the present value.

The comoving volume element is given by (see, for example, Hogg 2000)

dV

dΩdz
=
c(1 + z)2d2A(z)

H0E(z)
,

where the angular diameter distance, dA(z), is given by

dA(z) =
1

1 + z

∫ z

0

dz′

E(z′)

for the spatially flat case (ΩK = 0). The angular diameter distance relates the physical

size of an object, D, to its angular size on the sky by θ = D/dA(z). We have plotted

the dimensionless angular diameter distance relation and comoving volume element as a

function for redshift for three cosmologies in Figure 1.4. The interesting feature of the

angular diameter distance is that it flattens out at a redshift of 1–2 and even decreases past

this point. This means if a standard yardstick were taken to higher and higher redshift it

would at first appear smaller on the sky but eventually would begin to appear larger as it

is taken further away.

The cluster mass function, dn/dM(M, z), gives the number density of collapsed objects

of a given mass as a function of cosmology and redshift [120]. Press and Schechter (1974)

were the first to derive an expression for the mass function by making the assumption that

the fraction of matter in collapsed objects is proportional to the fraction of the density field

– smoothed on scale M = 4πR3ρ̄/3 – that exceeds a critical threshold δc for collapse. The
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Figure 1.4: Shows the dimensionless angular diameter distance (left panel) and comoving
volume element (right panel) as a function of redshift. The three cosmologies are ΛCDM
with ΩM = 0.3 and ΩΛ = 0.7 (solid), critical density SCDM (dashed), and OCDM Universe
with ΩM = 0.3 (dotted).

Press-Schechter (PS) comoving mass function is given by

dn(M, z)

dM
dM = −

√

2

π

ρ̄

M

δc
σ2(M, z)

dσ(M, z)

dM
e−δ

2
c/2σ

2(M,z)dM,

where M is the mass of the object, ρ̄ is the mean comoving matter density, σ2(M, z)

is the variance of the density field smoothed on scale M corresponding to a size R =

(3M/4πρ̄)1/3, δc is the linear density contrast at collapse and is found to be ∼ 1.69 for a
top-hat smoothing window (fairly independent of cosmology) [69]. The dispersion on mass

scale M is determined by smoothing the matter power spectrum P (k, z) with a window

function W (kR) is

σ2(M, z) =

∫

∞

0
Pδ(k, z)W

2(kR)
dk

k
.

The power spectrum is Pδ(k) ∝ k4T 2(k)δ2H(k), where δ
2
H(k) ∝ kn−1 is the primordial

power spectrum of density contrast (δ = δρ/ρ) – with n = 1 corresponding to the Harrison-

Zel’dovich spectrum – and T (k) is the transfer function [14]. The power spectrum is usually

normalized to the variance of the density field smoothed with a top-hat window function

on R = 8h−1 Mpc scales, designated σ8(z), where h is the dimensionless Hubble constant

defined as H0 = h 100 km/s/Mpc. The top-hat window function in Fourier space is given
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by [65]

W (kR) = 3

[

sin(kR)

(kR)3
− cos(kR)

(kR)2

]

.

High resolution numerical simulations [120, 55, 103] indicate that the Press-Schechter

(P-S) mass function over-predicts the number of low mass halos and under-predicts the most

massive halos. Since we are interested in the number density of the most massive clusters of

galaxies, we elect to use the modified P-S mass function given by Sheth and Tormen (S-T)

(1999); the functional form of the S-T mass function was verified by Jenkins et al. (2000)

and White (2002). This form of the modified mass function was determined by fitting to

the results of numerical cluster simulations. The modified comoving mass function is given

by

dn(M, z)

dM
dM = −A

√

2a

π

ρ̄

M

δc
σ2(M, z)

dσ(M, z)

dM

[

1 +

(

σ2(M, z)

aδ2c

)p]

e−δ
2
c/2σ

2(M,z)dM,

where we will use the best fit values of A = 0.3222, a = 0.707, and p = 0.3. We note that

[117] contains an error in the evaluation of dσ(M, z)/dM but this has a minimal effect on

the mass function.

To determine the dispersion on an arbitrary mass scale, we can either integrate the

smoothed power spectrum for every mass or we can use a fitting function in the region

of interest to massive clusters (∼ 8h−1 Mpc). This should provide an accurate analytic
function for the dispersion in the mass region of interest. We use the power law fit of

Vianna and Liddle (1996) given by

σ(R, z = 0) = σ8

(

R

8h−1 Mpc

)−γ(R)

,

where for CDM spectra the power law is fit by

γ(R) = (0.3Γ + 0.2)

[

2.92 + log

(

R

8h−1 Mpc

)]

.

Γ is the shape parameter used in the power spectrum transfer function and is equal to

Γ = ΩMhe
−ΩB(1+1/ΩM ),

and is evaluated at the current epoch. For a power spectrum with n = 1, the shape
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parameter is found to be Γ ∼ 0.23 ± 0.04 from the galaxy correlation function. We note
that the latest measurements of ΩM ∼ 0.3 from supernova and the CMB [101, 91, 7, 86]
and ΩMh

2 ∼ 0.02 from Big Bang nucleosynthesis [114] predict a value of Γ ∼ 0.21 which is
consistent with the value derived from galaxy correlation.

The evolution of the dispersion with redshift is given by the linear growth suppression

factor, g(ΩM ,ΩΛ); this compares the growth of linear density perturbations in an arbitrary

cosmology at a redshift z to SCDM (ΩM = 1, in which structure growth is proportional to

the scale factor a = (1 + z)−1). A useful analytic fit to the growth suppression factor is

given by Carroll, Press, and Turner (1992)

g(ΩM(z),ΩΛ(z)) =
5

2

ΩM (z)
[

Ω
4/7
M (z)− ΩM (z) + (1 + ΩM (z)/2)(1 + ΩΛ/70)

] ,

where the redshift dependence of ΩM and ΩΛ are given above. The redshift dependence of

the dispersion on 8h−1 Mpc scales is then given by

σ8(z) =
σ8(0)

(1 + z)

g (ΩM (z),ΩΛ(z))

g (ΩM (0),ΩΛ(0))
,

which uses the fact that the density contrast of structures grows proportional to (1 + z)−1

in a critical density Universe. We plot σ8(z) for three different cosmologies in Figure 1.5.

The figure shows that the dispersion in the density field was larger at high redshift in low

matter density cosmologies compared to SCDM. This means that the structure we observe

today formed at higher redshift in low matter density cosmologies.

The local abundance of massive clusters has been measured well by X-ray satellites. Eke

et al. (1996) derive limits on the present power spectrum normalization of σ8Ω
0.46−0.10ΩM
M =

0.52 if ΩΛ = 0 and σ8Ω
0.52−0.13ΩM
M = 0.52 if ΩΛ = 1 − ΩM . Note that if ΩM = 1 we have

σ8 = 0.52 to reproduce the local cluster abundance; but this set of parameters underpredicts

the number of clusters observed between redshift 0.5 to 0.8 by about two orders of magnitude

[3]. For ΩM = 0.3 we have σ8 ∼ 0.9± 0.03 depending on the value of ΩΛ. The degeneracy
between σ8 and ΩM can be broken by measuring the evolution of the number density

of galaxy clusters. ΩM effectively sets the normalization of the mass function and σ8(z)

determines how the mass function varies with redshift. It should be noted that optical

cluster surveys, such as the Sloan Digital Sky Survey, measure a substantially lower value
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Figure 1.5: Shows the dispersion in the power spectrum smoothed with an 8h−1 Mpc top-
hat window as a function of redshift normalized to the value at z = 0. The three cosmologies
are ΛCDM with ΩM = 0.3 and ΩΛ = 0.7 (solid), critical density SCDM (dashed), and an
open CDM Universe with ΩM = 0.3 (dotted).

of σ8 for a given value of the matter density. The SDSS constraint given in Bahcall et

al. (2002) is σ8Ω
0.6
M = 0.35 ± 0.03 for values of ΩM in the range of 0.1-0.4 which implies

σ8 = 0.72 if ΩM = 0.3. It will be shown below that the expected yield from a cluster survey

depends very strongly on the value of σ8; this is the cosmological parameter likely to have

the strongest constraints placed upon it by near-future cluster surveys.

We can now put this all together to estimate the number density of clusters above a

given mass limit. Multiplying the comoving number density of objects of mass M by the

comoving volume element and integrating from a lower mass limit Mlim to ∞ gives the
evolution of the differential number density of objects above the limiting mass

dn(> Mlim, z)

dΩdz
=

∫

∞

Mlim

dn(M, z)

dM

dV

dΩdz
dM.

This last equation assumes that a cluster survey will detect all objects above a given mass

limit, independent of cluster redshift. The cluster selection function (or detection efficiency)

of a survey, f(M, z), encodes the fraction of clusters that will be detected as a function of
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mass and redshift. Incorporating the selection function of a survey into the differential

number density yields

dn(z)

dΩdz
=

∫

f(M, z)
dn(M, z)

dM

dV

dΩdz
dM.

More realistic than a simple step-function in mass, the selection function of a cluster

survey will vary with both cluster mass and redshift and must be determined from Monte

Carlo simulations. The simulations incorporate the background noise properties of the sur-

vey and assumptions about the evolution of galaxy cluster properties. As will be discussed

below, it is the relative simplicity of the selection function of SZ cluster surveys versus

X-ray or optical cluster surveys that makes the SZ effect such a potentially powerful probe

of cosmology. For the remainder of this introduction, we will use the redshift-independent

step selection function with f(M, z) = 1 for M ≥ Mlim and f(M, z) = 0 for M < Mlim.

We determine the ACBAR cluster selection function in Chapter 5 and use this to estimate

the cluster yield as a function of cosmological parameters. We then compare the expected

cluster yield with the number of objects detected to place constraints on the cosmological

parameters σ8 and ΩM within the CDM paradigm.

Assuming the simple step selection function, we can integrate the differential number

density over redshift to get the total surface number density of massive objects at redshift

higher than z,
dN(> Mlim, > z)

dΩ
=

∫

∞

z

dn(> Mlim, z
′)

dΩdz′
dz′.

We plot dn(> Mlim, z)/dΩdz and dN(> Mlim, > z)/dΩ versus redshift for three cosmolog-

ical models in Figure 1.6. The three cosmologies are SCDM (ΩM = 1, ΩΛ = 0, h = 0.5,

σ8 = 0.52), ΛCDM (ΩM = 0.3, ΩΛ = 0.7, h = 0.7, σ8 = 0.93), and OCDM (ΩM = 0.3,

ΩΛ = 0, h = 0.7, σ8 = 0.87). The values of σ8 were chosen to be consistent with the Eke et

al. (1996) constraints from local abundance of X-ray clusters and we have used δc = 1.69

and Γ = 0.23 for all cosmologies. We have chosen a uniform cluster mass limit of 1015 M�

for these figures.

One of the most interesting features of Figure 1.6 is that most of the massive clusters in

a SCDM cosmology will form at a redshift around z ∼ 0.2 whereas most of the > 1015 M�
clusters in either a ΛCDM or OCDM cosmology will form at z ∼ 0.4. The mere existence of
> 1015 M� clusters past z ∼ 0.6 is enough to exclude SCDM as a viable model of structure
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Figure 1.6: Left panel shows the differential number counts of massive clusters (> 1015 M�)
versus redshift for the three cosmologies defined in the text: ΛCDM (solid), SCDM (dashed),
and OCDM (dotted). The right panel shows the integrated number counts for clusters above
the redshift z for the same three cosmologies. The value at z = 0 represents the visible
surface density of massive clusters on the sky.

formation. One also gleans from these figures that massive clusters of galaxies are quite

rare objects on the sky with a surface density of a few per 10 deg2. However, the number

density is a strong function of the power spectrum normalization, σ8. This is illustrated in

Figure 1.7, which shows the integrated number density of > 1015 M� clusters in a ΛCDM

cosmology with varying σ8. We expect more than a factor of two difference in the density

of massive clusters on the sky between cosmologies with σ8 = 0.9 and σ8 = 1.0.

The cluster mass function has an exponential dependence upon the dispersion of the

smoothed density field. As we increase the smoothing radius – equivalent to increasing

the mass scale – the dispersion decreases resulting in a sharp reduction of the expected

number of objects on that scale. Thus, the expected cluster yield from a survey will depend

strongly on the limiting mass of the survey, or equivalently, the survey selection function.

As will be discussed below, the selection function of SZ cluster surveys should not depend

strongly upon redshift [48]. We illustrate the effect of limiting cluster mass (assuming a

step selection function) upon expected cluster yield for the three cosmologies listed above in

Figure 1.8. It can be seen from the figure that expected cluster yield depends very strongly

upon limiting mass; especially at the high-mass end where clusters become quite scarce.

Another interesting feature of Figure 1.8 is that the difference in expected cluster yield

between low-density and critical density universes becomes most pronounced at the high-
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Figure 1.7: Illustrates the strong dependence on power spectrum normalization of the in-
tegrated surface density of massive clusters (M > 1015 M�) with redshift for a ΛCDM
cosmology and varying σ8. All other parameters are held fixed at the values given in the
text.

mass end. This suggests that massive clusters of galaxies that will provide the strongest

constraints on ΩM from galaxy cluster surveys. In fact, it is the abundance of massive

clusters at moderate redshifts that provides one of the strongest pieces of evidence against

the SCDM model.

1.4.2 SZ Cluster Surveys

The total SZ flux equation given above tells us that a flux limited survey will have a

cluster selection function that is proportional to TeNe/d
2
A(z). The angular diameter distance

relation is quite flat with redshift. Both Te and Ne are determined by the cluster mass; in

virial equilibrium the cluster mass sets the velocity dispersion, and hence the temperature,

of the cluster gas. Taken together this implies that the selection function for a flux limited

SZ survey should be almost independent of redshift with cluster mass being the limiting

factor [47]. Holder et al. (2000) show that the limiting mass for an upcoming interferometric

SZ survey is expected to vary with redshift by less than a factor of 2–3 for z > 0.5 (if there

is no cluster evolution); independent of the underlying cosmology. ACBAR has large beams

compared to most galaxy clusters and should be sensitive to the integrated cluster flux.

However, smaller beam experiments that resolve clusters will be sensitive to the cluster
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Figure 1.8: Shows the very strong dependence of expected cluster survey yield versus uni-
form limiting cluster mass for ΛCDM (solid), SCDM (dashed), and OCDM (dotted).

core radius. For fixed cluster mass, a cluster that formed earlier will tend to be more

compact (and consequently hotter) reflecting the higher density of the Universe at the epoch

of formation. The selection function for such an experiment will be a more complicated

function of redshift. This last point depends strongly upon the cluster detection method

employed and will be discussed in more detail in the Analysis chapter.

Unlike the SZ effect, the integrated cluster surface brightness in both optical and X-ray

falls off rapidly with redshift like (1+z)−4. This implies that the cluster selection function for

a flux limited sample will depend strongly upon redshift for optical and X-ray observations

but remain constant for an SZ survey (see, for example, Rosati et al. 2002). Cluster surveys

conducted in X-ray and optical are usually limited in depth to z . 1 [100]. However, the

forthcoming XMM Cluster Survey (XCS) [99] should detect many X-ray clusters out to

z ∼ 2. Because of the redshift independence of the SZ surface brightness, an SZ survey
will be limited only by the existence of massive galaxy clusters. As daunting of a task as

extracting cosmological parameters from X-ray and optical surveys may appear to be, it is

important to stress that unlike future large-scale SZ surveys, optical and X-ray surveys have



22

actually been conducted [e.g., ROSAT All-Sky Survey (RASS), Einstein Extended Medium

Sensitivity Survey (EMSS), and Sloan Digital Sky Survey (SDSS)] and have been used to

place strong constraints on σ8 and ΩM [100, 43, 96, 58, 4].

Once a survey has identified a set of candidate clusters, they must be followed up (either

optically or with X-ray spectra [66]) to obtain redshifts to extract the most information from

the survey. The measured evolution of the number density of clusters allows the separation of

otherwise degenerate cosmological parameters. A program to measure the angular diameter

distance relation with an unbiased sample of clusters will require pointed X-ray observations

to obtain electron temperatures in addition to cluster redshifts. Distance measures (such

as angular diameter and luminosity distances) are sensitive to cosmological parameters in

a way that is complementary to CMB and cluster abundance measurements [52].

1.4.3 Confusion

The dominant source of confusion for an SZ survey depends strongly upon the frequency of

observation and the angular scales probed by the experiment. Observations conducted below

the thermal null (< 218 GHz) will detect clusters as a decrement compared to the CMB.

At radio frequencies, however, point source emission will “fill in” the SZ signal decrement

making a cluster much less detectable [67] (or even completely dominate the signal). A

novel way to avoid this problem at radio frequencies is through the use of interferometry

which uses the differences in the Fourier transform of clusters and point sources to separate

their signals. Since point sources have a flat spectrum and clusters have a steeply falling

spectrum, one can use the signal from the longest baselines (which should have very little

cluster signal) as a point source monitor [16].

At frequencies above the thermal null (> 218 GHz), the dominant source of confusion

is from dusty infrared sources such as distant star forming galaxies. This has the opposite

effect of radio sources in that it makes the inferred SZ signal appear larger than it really

is. In fact, the problem is compounded by the gravitational lensing effect of clusters upon

the background of high redshift dusty galaxies [11] which collects more sources in the field

of the cluster than appear in the uniform background. As an aside, we mention that the

gravitational lensing of background galaxies has recently been used to detect clusters of

galaxies through reconstruction of the projected matter distribution of a cluster by the

shear distortion of background galaxy images [113]. This method shows great promise for
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measuring the mass of lensing clusters because the optical deviation of the background

galaxy images depends only on the cluster mass and requires no information about cluster

physics.

Observations at 100–200 GHz are relatively free of contaminating sources and are dom-

inated by confusion from fluctuations in the CMB itself. If an experiment has sufficient

sensitivity at frequencies on either side of the thermal null (ideally with a frequency chan-

nel straddling the null), then the contribution from the intrinsic CMB anisotropy can be

removed from the SZ sensitive channels. The amount of confusion for experiments with

sensitivity at only one frequency depends strongly on the angular resolution of the instru-

ment because the CMB power spectrum is steeply falling on small angular scales. However,

pushing instrument resolution to too fine of a scale in an attempt to escape the CMB will

resolve the clusters and lose the copious extended emission to the background noise. A

beam size of a couple arcminutes allows one to survey a reasonable amount of sky in a fixed

amount of time while still coupling well to extended cluster emission and avoiding most of

the primary CMB confusion.

One last source of confusion is the effect of interpreting the projected emission of sep-

arate sources that happen to lie along a common line-of-sight as a single object. This has

historically been a major problem for optical surveys such as the Abell cluster catalogs. Re-

cent multi-color and spectroscopic surveys add the power to discriminate objects in redshift

as well which dramatically reduces the number of spurious detections. The X-ray emission

from clusters depends very strongly on the degree of gas concentration (S ∝ n2e) which

greatly reduces projection effects. The SZ effect is proportional to the integrated electron

pressure along the line of sight and – because of the redshift independence – will suffer from

projection effects. However, massive clusters of galaxies have a rather low surface density

on the sky and thus chance projections are unlikely to be a major source of false cluster

characterization for ACBAR.

1.5 Previous Work

Although surveys for galaxy clusters have been conducted at X-ray and optical wavelengths

for some time, instruments with sufficient sensitivity to conduct untargeted surveys using

the SZ effect have only recently been constructed. Much like ACBAR, these experiments
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have focused on measuring the CMB power spectrum on small angular scales. Although

a handful have detected power attributed to small-scale CMB anisotropy (either primary

or secondary), so far none have identified a previously unknown object as an SZ cluster

detection. There are reported detections of previously unknown galaxy clusters near clusters

of radio sources (see for example [22]). However, these searches are not unbiased surveys

and there is some debate over the efficacy of the technique [51].

The Cosmic Background Imager experiment operates at 30 GHz in the Atacama desert

in Chile [83]. They measured the CMB power spectrum to ` ∼ 3500 and report a significant
excess of power in the ` range of 2000-3000 which they also attribute to a background of

unresolved SZ sources [72, 15]. Although the CBI has made SZ images of known galaxy

clusters as part of program to measure the Hubble constant [115], they do not report the

detection of previously unknown SZ clusters.

Receivers operating at 28.5 GHz were used with the Berkeley-Illinois-Maryland-Association

(BIMA) array to detect small-scale CMB power of ∆T = 14.3+4.8
−6.0 µK at ` ∼ 7000 [23]. Their

survey covered ten 6.6′ circular fields for a total area of approximately 1/8 deg2. The team

performed a radio point source survey with the VLA to remove all point sources well below

the level that could explain the detected power. At this ` the damping tail of the CMB

should yield very little primary CMB power. They report their detection is consistent with

level of power predicted from a background of unresolved SZ clusters.

In the most relevant work to the ACBAR cluster survey, Lin and Mohr (2002) analyzed

the non-detection of SZ clusters above 2σ in 7 of the early BIMA fields. They performed a

Monte Carlo simulation of the cluster detection efficiency and determined that the limiting

cluster mass of the survey was ∼ 1.3 × 1014h−1 M�. This was a very deep survey but its
power to discriminate cosmological parameters is limited by the size of the survey (∼ 250
arcmin2). Using these results they place constraints on the power spectrum normalization

and matter density of σ8 < 1.00Ω
−0.43ΩM−0.22
M at 95% confidence for flat-ΛCDM models over

a reasonable range of ΩM . If the matter density is indeed ΩM = 0.3 then this constraint

translates to σ8 < 1.52 at 95% confidence.
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Chapter 2 The ACBAR Instrument

The Arcminute Cosmology Bolometer Array Receiver (ACBAR) is a multi-frequency millimeter-

wave instrument optimized for observations of small angular scale fluctuations in the Cosmic

Microwave Background (CMB) from the South Pole.

2.1 Optics

The focal plane optics are designed to couple the ACBAR receiver to the Viper telescope and

produce diffraction limited beams at 150 GHz. The angular resolution at higher frequencies

is intentionally degraded to produce nearly matched beam sizes at all frequencies. This

beam size matching results in equal sampling on the sky at all frequencies while mapping

and simplifies multifrequency analysis.

Figure 2.1 shows the layout of the ACBAR focal plane as deployed in 2001 and 2002.

In 2001, the focal plane was arranged with common frequencies aligned in columns so that

each row observed at 150, 220, 280, and 350 GHz. For 2002, the focal plane is arranged with

rows of common frequency to concentrate the declination extent of the 150 GHz channels;

the 350 GHz feeds were replaced with an additional set of 150 GHz feeds because of poor

noise performance and large beam size. The main optical elements of the focal plane are

beam defining scalar feeds, expanding and reconcentrating conical feed structure, filtering,

and bolometric detectors. Each of these will be described in the following sections.

2.1.1 Scalar Feeds

The corrugated feeds used in ACBAR are designed to produce single moded (e.g., scalar),

nearly Gaussian beams with very low sidelobes. Low sidelobes reduce optical loading from

telescope spillover as well as decrease offset signals from modulation of the spillover by the

chopping flat of Viper (see Figure 2.15). Figure 2.2 shows an enlargement of the ACBAR 150

GHz scalar feed. The feeds were fabricated by Thomas Keating, Ltd.1 and performed within

specification. The geometry of the conical section of the scalar feeds (aperture diameter and

1Billingshurst, England, http://josephson.terahertz.co.uk/homepage.HTM
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Figure 2.1: Images of the ACBAR focal plane layout for 2001 (left) and 2002 (right).

Figure 2.2: Detail of the ACBAR 150 GHz scalar feed horn showing corrugation geometry
in cone and throat.

length, see Table 2.1) is designed to produce beams from the telescope of ∼ 4− 5′ FWHM
with reasonable sidelobe structure. We modeled the expected beam patterns by assuming

balanced hybrid conditions at the aperture and used the Fourier transform of a Gauss-

Laguerre expansion of the HE11 mode as described in [121]. The corrugation geometry

within the conical section is designed in accordance with [21]; the corrugation depth is λ/4

and the groove pitch is three grooves per wavelength to preserve the desirable HE11 mode.

Because ACBAR is not intended measure to polarization, we are not concerned about

instrumental cross-polarization from mode conversion after the beam defining section and

are thus able to transition from corrugated to smooth walled waveguide. Smooth walled

structures are much easier to fabricate and significantly less expensive. The transition to
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smooth walled waveguide occurs in the throat of scalar feed and must gradually convert

the λ/3 pitch corrugations to smooth wall without abrupt changes in waveguide impedance

that can cause mode conversion and thus degrade the beam quality.

We implement the throat prescription of Zhang (1993) which varies both the corrugation

thickness and depth through the throat. This proved quite challenging to fabricate, partic-

ularly at the higher frequencies. The feeds are manufactured by electroforming copper onto

aluminum mandrels with corrugations as narrow as 0.003”. It is very difficult to etch away

the aluminum mandrel to the bottom of the small corrugations after electroforming because

of the aspect ratio of the small corrugation structures at the back of the throat. Incomplete

etching degrades the performance of the throat transition causing mode conversion. The

measured beam patterns agree quite well with the model predictions and we believe that

the machining and etching of the throats were well done.

When designing the 350 GHz feeds, we determined that their length was prohibitively

long and would be extremely expensive to manufacture. We decided that the 350 GHz

channel science was less sensitive to increased sidelobe structure and decided to shorten

the feed by putting a lens at the aperture as described in [20]. Using a beam forming lens

can significantly shorten the length of a feed but this comes at a cost of higher sidelobe

structure, which we deemed acceptable.

The measured beam patterns of the ACBAR scalar feeds – as well as the model beam

patterns – are shown in Figure 2.3. These beam patterns were measured during the instru-

ment integration at U.C. Berkeley in the Fall of 2000. To measure the beams, we place

ACBAR on a custom built metal table with a hole for the dewar window. Below this hole is

a chopped thermal load on a computer controlled rotating arm that sweeps the load across

the beam. Integration times at each arm angle are set by the user. The axis of rotation of

the arm is adjustable and is approximately centered on the phase center of the scalar feeds.

Table 2.1 lists the measured Gaussian FWHM of the ACBAR beams exiting the dewar as

well as the model Gaussian widths. For the non-lensed feeds (this includes all frequencies

except 350 GHz), the agreement between the model predicted Gaussian widths and mea-

sured widths is within a fraction of a percent. As discussed in more detail in Appendix C,

to achieve equal beam sizes on the sky the beam widths on the primary mirror should scale

proportionally with wavelength.
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Figure 2.3: ACBAR beams measured from the dewar along with model beam patterns. The
beams were measured along the direction of the azimuth chop. From top to bottom, the
frequencies are 150, 220, 280, and 350 GHz. The agreement in most cases is seen to be
quite good. The 280 GHz beams appear to deviate slightly on one side which is probably
due to diffraction through the cryostat vacuum window. The finite size of the source (∼ 1◦)
will smooth the model beam pattern which explains why the measured 350 GHz beams do
not follow the deep nulls in the response pattern.
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Frequency a L Gaussian Model
(GHz) (mm) (mm) Fit FWHM FWHM

150 6.1 35.0 12.52◦ ± 0.01◦ 12.57◦

220 6.1 45.0 8.65◦ ± 0.03◦ 8.66◦

280 6.2 53.0 6.79◦ ± 0.08◦ 6.81◦

350 5.9 22.1 5.14◦ ± 0.02◦ 5.27◦

Table 2.1: Corrugated feed dimensions and average measured and model Gaussian FWHM
for all four ACBAR frequency feeds.

2.1.2 Feed Structure

The design of the ACBAR feed structure is based on the Planck satellite prototype design

of Church et al. (1996) (see Figure 2.4). Light enters the feed structure through the beam

defining scalar feed and encounters a waveguide cutoff that high pass filters the incoming

light. Cylindrical waveguide supports TE modes with the dispersion relation

k2 =
ω2

c2
− ν2ni
a2
,

where a is the radius of the waveguide and νni is the ith root of the first derivative of the nth

order Bessel function and is equal to 1.841 for the lowest frequency mode (TE11). For ν less

than νnic/2πa the wavenumber becomes imaginary and the wave is damped exponentially.

The length of the waveguide cutoff is approximately three times the cutoff wavelength in

order to fully attenuate low frequencies. During testing we observed that material in the

waveguide (from incomplete cleaning) greatly affected the waveguide edge frequency. The

steep waveguide cutoffs of properly cleaned waveguide edges can be seen in the transmission

spectra in Figure 2.5 below.

After waveguide filtering, the smooth walled section re-expands to a diameter of a few

wavelengths before reaching the edge defining and blocking filters. This re-expansion is

necessary to make the guide wavelength equal to the free space wavelength where the upper

band edge filters are designed. At this point we also have a thermal break to separate the

relatively warm 4 K front end of the feeds from the ultra-cold detector side of the feed

structure (which sits at 240 mK).

The optical coupling between two front-to-front conical feeds is reduced because the

phase caps for the two feeds have opposite curvature and small radii resulting in a large
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Figure 2.4: ACBAR 150 GHz feed horn structure for 2002.

phase mismatch. To improve the coupling we employ coupling lenses at the apertures of

both conical feeds. These are designed to place a common beam waist midway between the

two feed apertures. The design of these coupling lenses was developed by for use in Planck

[18] and were machined on a CNC lathe. There is a difficulty using focusing elements in

Gaussian optics because they do not obey the same object/image distance relationship as

geometric optics. When designing coupling lenses one finds that for short “object” distances

there is a maximum separation distance beyond which there is no solution. Because of the

large thickness of the filters in the ACBAR feed structure, the spacing between the apertures

slightly exceeds this maximum limit at 220 GHz. We use lenses designed for the maximum

separation with apparently no ill effects. We tested the efficacy of the coupling lenses at 150

GHz by measuring the optical efficiency of the feed structure with and without the lenses

and found that the lenses improved the relative optical efficiency by ∼ 40% (a significant
improvement).

The light is reconcentrated and fed into the detector cavity where it is absorbed by a

bolometer. Since the light sets up a standing mode with the reflective cavity backshort, the

detectors are spaced an odd number of λ0/4 away from the front and back surfaces of the

cavity to maximize the electric field at the absorber [56]. The initial design of the reconcen-

trating feeds tapered down to the waveguide diameter before entering the integrating cavity.

This was done because, historically, Winston concentrators in many moded systems were

used at millimeter wavelengths; many moded systems obey geometric ray tracing optics. In
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the geometric optics limit, light enters the integrating cavity and reflects until it is either

absorbed by the detector (or the cavity wall) or goes back out the cavity entrance. The

probability of detection would then go roughly as ∼ Aabsorber/Ahole from which it can be

seen that making the cavity hole as small as possible is advantageous.

On the other hand, ACBAR (and many other contemporary millimeter instruments)

operates single moded; in which case the Gaussian beams do not obey geometric optics.

We believe that the beam suffers reflection from the small cavity entrance hole as well as

diffraction upon entering the integrating cavity; both of these effects reduce the optical

efficiency of the system. To test this we gradually opened up the diameter of the entrance

to the integrating cavity until the diameter was as large as the absorber and measured

the optical efficiency in each case. This resulted in an additional improvement in relative

optical efficiency of ∼ 40% at 150 GHz and ∼ 80% at 350 GHz. This is a significant
improvement because light that is not absorbed by the detector is reflected back through

the feed structure, thus degrading the system sensitivity.

2.1.3 Filtering

The ACBAR filter bands were selected to maximize the ratio of astrophysical signal to the

sum of detector and atmospheric noise. Although the atmospheric transmission from the

South Pole is arguably the best on the earth’s surface for millimeter-wave observation, care

still must be taken to avoid the deep molecular lines that pervade the atmospheric spectrum.

Figure 2.5 shows a model of transmission spectrum at the South Pole in the winter generated

with the AT2 atmospheric model program. This model assumes an elevation of 2835 m,

temperature of −60◦C, precipitable water vapor of 0.25 mm, and pressure of 530 torr. Also
shown are the three frequency bands of ACBAR in 2002. The lines at 183, 325, and 380

GHz are generated by rotational transitions of water vapor and the lines at 56, 119, and 368

GHz are due to a rotational transitions of molecular oxygen [41]. The forest of narrow lines

is due almost entirely to ozone. Figure 2.6 shows the brightness temperature contribution

to each of the 2002 spectral bands from the atmosphere.

To determine the ACBAR frequency bands we used this model atmospheric transmission

spectrum and combined it with an estimate of the atmospheric fluctuation noise as described

in Lay and Halverson (2000). For each of our spectral bands we estimated the detector

2E. Grossman, Airhead Software, Boulder, CO 80302
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Figure 2.5: Model transmission spectrum for the South Pole during the winter (thin line)
generated with the AT atmospheric modeling program [40]. Overplotted are the average of
the 2002 ACBAR observing bands at 150, 220, and 280 GHz (colored lines). The spectral
bands have been normalized to 0.8 for ease of visibility.

Figure 2.6: Zenith brightness temperature contribution to each of the 2002 frequency bands
assuming a sky temperature of 260 K. The plot shows the continuum contribution along
with a forest of narrow transition lines of ozone and other minor species. This plot was
made by convolving the measured spectral bands of ACBAR with the model South Pole
emission spectrum generated with the AT atmospheric modeling program.
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Figure 2.7: Shows the ACBAR spectral bands for 2002 over plotted on the thermal (solid)
and kinetic (dashed) SZ intensity spectra. The model cluster parameters used are: Compton
y parameter of 10−4, optical depth of τ = 0.01, and peculiar velocity of 500 km/s.

noise of our system and found the ratio of astrophysical signal to the quadrature sum of

the detector noise and atmospheric noise as a function of band center and bandwidth. The

150, 280, and 350 GHz bands were optimized for detection of the SZ thermal effect by

maximizing the SZ signal to the total estimated noise contribution as a function of band

center and bandwidth. The 220 GHz band was optimized for detection of the SZ kinetic

effect (which has the same spectrum as primary CMB anisotropies) while minimizing the

contribution from the SZ thermal effect. In practice, however, relativistic corrections to the

thermal spectrum will prevent the 220 band from cancelling the thermal emission for all

cluster electron temperatures. Because of the constraints placed by atmospheric emission

lines, the 150, 280, and 350 GHz bands are also well optimized for primary CMB fluctuations

as well. Figure 2.7 shows the spectrum of the kinetic and thermal SZ effects along with the

measured ACBAR frequency bands. One can see that the 220 GHz band straddles the SZ

thermal null resulting in very little thermal contamination for measurements of either the

kinetic SZ effect or primary CMB anisotropy.

As described above, the lower edges of the frequency bands are set by the diameter of

waveguide cutoffs in the feed structures. The upper edges of the bands are defined with

resonant metal-mesh filters [62] which are provided by the Astronomy Instrumentation

group at Cardiff University. Metal-mesh filters suffer from resonant leaks at harmonics of
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the cutoff frequency; these leaks must be blocked with additional filters. If left unblocked

these high-frequency transmission leaks will couple to either warmer stages of the cryostat,

or worse yet, hot objects outside the cryostat.

High-frequency leaks are particularly insidious because the thermal emission of warm

objects in the Rayleigh-Jeans limit rises as ν2 and the higher frequencies couple to multiple

spatial modes (AΩ/λ2 > 1). If high-frequency leaks are not blocked at cold temperatures,

their cumulative effects can rapidly increase the loading on the detector as well as couple to

undesirable high-frequency astrophysical sources such as dust. These higher order modes

also cause significant problems in polarization sensitive experiments by increasing cross-

polarization response.

To block high-frequency leaks in ACBAR we use a combination of additional reflective

metal-mesh filters and absorptive dielectric filters. There are very few filters available other

than resonant metal-meshes for frequencies below about 1 THz. The ACBAR feed structure

employs a combination of two metal-mesh filters to block the harmonic leaks of the band

defining edge filter. The band defining edge filter and one blocking metal-mesh are mounted

at 240 mK and the third metal-mesh and dielectrics are installed at 4 K (see Figure 2.4).

At very high frequencies the transmission of metal-mesh filters opens up. To block

this high-frequency transmission we installed Pyrex disks in the 4 K feed structures which

absorb light between 40 cm−1 and around 2000 cm−1. The thickness of the Pyrex (and all

of the dielectrics) is tuned for maximum transmission. For a slab of lossless dielectric in

free space, the condition for maximum transmission (or equivalently, minimum reflection)

is

t =
mλ

2n
,

where n is the index of refraction of the material and m is an integer. The thickness of all

of the dielectric filters in ACBAR is tuned to first or second order.

The combination of Pyrex and metal-mesh filters will still transmit above 2000 cm−1 and

so we also installed a 55 cm−1 Yoshinaga filter [123] (otherwise known as an alkali halide

filter). The Yoshinaga filter is a combination of powdered Thallium Bromide salt and

carbon lampblack embedded in polyethylene. This filter is quite useful because it absorbs

everything above 55 cm−1 (at least as far as 300 K blackbody emission is concerned). The

full contingent of filters is listed in Table 2.2 starting from the detector.
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All of the filters at 4 K and colder are held in place with threaded filter caps as seen in

Figure 2.4. The filters are thermally sunk to their respective feeds using beryllium copper

spring washers inside the filter caps. Proper heat sinking of the filters is very important

because (at low temperatures) the heat capacity of the focal plane is dominated by the

dielectrics in the filters. We also employ a blackened re-entrant light baffle across the

thermal break between the 4 K feeds and 240 mK feeds. We use a thin layer of Stycast3

epoxy mixed with carbon lampblack known as “Bock Black” as the blackening agent [12].

This is applied to the 240 mK side of the light baffle to reduce optical loading from stray

light coupling from high-frequency multimoded leaks exiting the sub-Kelvin feed.

During early feed structure testing, we measured a substantial (∼ 3%) high-frequency
leak in the system. We believed that some fraction of the leak could be from stray light

making its way around the metal-mesh filters in the sub-Kelvin feed. The spacer between

the two filters was originally made from OFHC copper because we were concerned about

heat sinking the filters (see Figure 2.4). We decided to replace the copper spacer with a light

absorbing material to try to damp any high-frequency light from making its way around the

filters. We had new spacers fabricated from what we believed to be machinable Eccosorb

but turned out to be grey polyurethane. The effect was as desired; the high-frequency leak

vanished. The final feed design includes polyurethane spacers between the band-edge and

first blocking metal-mesh filters.

The set of filters thus described provides sufficient filtering for the feed structure, but

the cryostat itself requires additional filters to reduce thermal loading on the 4 K helium

stage from the 300 K vacuum jacket. In 2002 we used a single 14 cm−1 metal-mesh blocker

(∅100 mm clear aperture) at 77 K to reduce the load from 300 K (see Figure 2.8). In 2001

we had an additional Yoshinaga filter at 77 K but we determined this filter was adding

significant optical loading to our detectors and was thus removed. Although filters at 77 K

are necessary to reduce helium boil off, they can be a tremendous source of optical loading

and can even dominate over the loading from outside of the cryostat (as was the case

for ACBAR in 2001). The key considerations for filters at 77 K are to minimize in-band

absorption and/or reflection and to attempt to block all high-frequency multimoded leaks

at cold temperatures before they are intercepted at 77 K.

The transmission spectra of ACBAR were measured with a Fourier transform spec-

3Emerson & Cuming, Billerica MA
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Filter Temp (K) 150 GHz 220 GHz 280 GHz

Blocker #1 240 mK 255 GHz 360 GHz 420 GHz
Edge 240 mK 169 GHz 235 GHz 300 GHz
Yoshi 4 K 1.6 THz 1.6 THz 1.6 THz
Pyrex 4 K 1.2 THz (0.019”) 1.2 THz (0.026”) 1.2 THz (0.021”)

Blocker #2 4 K 234 GHz 360 GHz 420 GHz
Waveguide 4 K 131 GHz (0.053”) 204 GHz (0.034”) 252 GHz (0.0275”)
Blocker #3 77 K 420 GHz 420 GHz 420 GHz

Table 2.2: Filter elements of ACBAR in the 2002 configuration. Frequencies denote ap-
proximate 50% transmission point of blocker, edge, and waveguide filters but correspond to
roughly 10% points of Pyrex and Yoshi. Numbers in parentheses are thicknesses for Pyrex
and diameter for the waveguide. The 77 K filter is one large metal-mesh filter mounted on
the nitrogen can that all of the feeds look through. This upgraded filter arrangement differs
from the 2001 configuration which did not have Blockers #2 or #3 or the Pyrex but instead
used black-poly disks at 4 K. In 2001 the Yoshinaga filter was located in front of the feed
structure at 77 K and contributed significantly to the internal loading of the system; it was
replaced with smaller Yoshinaga disks within the feeds at 4 K for 2002.

Figure 2.8: Shows the arrangement of the ACBAR warm filter optics in 2002.
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trometer (FTS) at the South Pole and are shown in Figure 2.7. The measured transmission

spectrum, fi(ν), of band i has been corrected for the emission of the FTS source (ν
2 for RJ

sources). The band centers are determined by

νi0 =

∫

νfi(ν)dν
∫

fi(ν)dν)
.

Measurements of bandwidth, such as the span in frequency at half the maximum value,

tend to be qualitative since they depend strongly on the smoothness of the spectrum and

its gross features. Spikes in a high resolution spectrum will affect the overall normalization,

and hence, the half power points. In Table 2.3 we present the measured band centers and

approximate bandwidths of the ACBAR 2002 frequency bands. The optical parameters

during 2001 were approximately the same as those listed for 2002.

A very important parameter for characterizing an optical system is its optical efficiency,

η, otherwise referred to as the quantum efficiency; this is the fraction of incident optical

power that is transmitted through the filter stack and absorbed by the detector. Losses due

to absorption or reflection from filters or poorly matched optical structures will degrade

the optical efficiency of a system. The optical efficiency provides a normalization to the

measured transmission spectrum from which a band averaged optical efficiency is calculated.

The optical efficiency can be determined by measuring the optical power incident on a

detector by looking into two blackbody loads at different temperatures. One then compares

the measured optical power difference with the optical power calculated by convolving

the transmission spectrum with the spectral intensity of the two loads. The spectrum

normalization optical efficiency is thus defined as

ηi =
Q1 −Q2

∫

fi(ν)[B(ν, T1)−B(ν, T2)]A(ν)Ω(ν)dν
,

where B(ν, T ) is the black body spectral energy density of an object at temperature T ,

Q is the measured optical power, and A(ν)Ω(ν) is the system throughput which is equal

to λ2 in the limit the system is single moded. For this measurement we used Eccosorb4

microwave absorbing foam (AN-72) at both room temperature (300 K) and liquid nitrogen

temperature (77 K).

The band average optical efficiency is calculated by integrating the product of ηi and

4Emerson & Cuming, Randolph, MA 02368
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Channel Bolo R0 G0 β ν0 ∆ν0/ν0 η̄ τ
name name (Ω) (pW/K) (GHz) (%) (%) (ms)

D5 150-02 128.3 390.4 1.10 150.1 21.0 40.5 2.2
D6 JPL-14 93.8 563.1 1.21 150.7 17.9 39.4 5.2
D4 150-07 139.4 351.6 1.12 150.3 21.0 39.8 2.3
D3 JPL-18 82.3 338.6 1.17 150.7 19.9 39.6 7.2
D2 345-05 159.8 668.4 0.99 - - - -
B1 150-08 158.6 342.8 1.10 150.8 19.9 39.0 4.6
B2 150-12 198.4 365.4 1.07 151.1 17.9 43.9 2.0
B3 219-01 187.5 334.0 1.06 150.9 18.4 37.9 2.2
B6 150-09 216.4 325.7 1.05 150.4 18.4 37.1 3.4
B4 219-06 181.9 366.4 0.98 - - - -
C4 219-08 179.3 359.9 1.14 222.1 15.2 26.2 7.2
C3 JPL-12 89.5 595.2 1.19 221.5 13.5 33.3 9.0
C2 219-11 114.4 324.0 1.20 224.2 13.4 28.9 2.3
C1 219-05 188.4 332.6 1.03 220.6 12.2 40.1 4.8
C6 274-02 144.4 859.7 1.05 - - - -
A4 274-05 136.6 692.8 1.16 279.7 18.2 33.4 1.8
A6 274-03 159.0 539.9 1.11 282.3 18.3 28.1 1.4
A3 274-07 121.4 587.7 1.17 283.1 19.6 31.8 1.8
A5 274-09 134.0 699.5 1.17 285.4 15.2 29.2 2.0
A2 JPL-11 92.2 650.3 1.16 - - - -

Table 2.3: ACBAR bolometer and optical parameters for the 2002 season. Dark bolometers
have hyphens in the optical parameters. The detector impedance follows R(T ) = R0e

∆/T

and the ∆ for all of the bolometers is approximately 41.8 K. The thermal conductivity
is defined as G(T ) = G0(T/T0)

β where G0 are normalized to T0 = 300 mK. ν0 is the
measured band center and ∆ν is the approximate half power bandwidth. η̄ is the average
optical efficiency across the ∆ν bandwidth. τ are the effective optical time constants under
operating conditions.
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Channel Taped 200 GHz 300 GHz 380 GHz 500 GHz

150 GHz 0.23% 0.59% 0.22% 0.19% 0.11%
220 GHz 0.07% 23.57% 0.72% 0.08% 0.07%
280 GHz 0.03% 25.71% 6.88% 0.06% 0.04%
350 GHz 0.09% 10.40% 28.77% 0.22% 0.14%

Table 2.4: Measured thick grill results for the 2001 season. Shows the ratio of the measured
signal voltage for each thick grill (denoted by its nominal cutoff frequency in GHz) to the
unfiltered signal voltage. The “Taped” column refers to the signal measured with a piece of
aluminum tape over the source aperture rather than a thick grill and represents a baseline
point for each frequency. The bold values are the most important for that frequency because
they are the closest grill to the nominal upper band edge.

the transmission spectrum across the frequency band and dividing by the bandwidth. This

number is also somewhat qualitative because it depends on one’s choice of the limits of

integration and assumed bandwidth. The band averaged optical efficiencies for ACBAR’s

2002 configuration are also given in Table 2.3 where we have used the approximate half

power points of the spectra as the limits of integration.

Another important characteristic of a feed system is the integrated above-band response

(otherwise known as a “blue leak”). This measures the power response at frequencies above

the nominal band edge that will couple to undesirable sources. To measure the out-of-band

response of ACBAR we use a chopped thermal load with a small aperture and measure the

signal with and without thick grill filters of varying cutoff frequency. Thick grill filters are

plates of metal which have been densely drilled with many cylindrical waveguide holes. The

filter acts like waveguide passing all light above the waveguide cutoff (modulo the filling

factor of the drilled holes). Table 2.4 summarizes the average results of the thick grill

tests for a chopped RJ source. The inclusion of additional blocking filters in 2002 reduced

the high-frequency leakage to a level not measurable above the noise. Note that the thick

grills do not isolate the frequency of the leak but merely give a lower frequency bound.

Determining the actual magnitude of a leak requires knowing its frequency and correcting

for the ν2 brightness of the source.

2.1.4 Detectors

ACBAR detects optical power with extremely sensitive micro-mesh spiderweb bolome-

ters developed by the Micro Devices Laboratory at JPL for the Planck satellite [75, 112].
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Figure 2.9: Closeup image of a bolometer very similar to those used in ACBAR. The spider
web absorber is easily seen along with the NTD thermistor chip in the center. Image
courtesy of J. J. Bock of the Microdevices Laboratory at JPL.

These detectors are optimized to detect broadband emission across millimeter-wavelengths.

Bolometers provide the highest sensitivity and largest bandwidth in the far infrared through

sub-millimeter wavelength range. The ACBAR bolometers are background photon noise

limited (see the Noise section below) which allows us to take advantage of the excellent

atmospheric conditions of the South Pole without being dominated by detector noise.

The ACBAR bolometers have silicon nitride micro-mesh absorbers with neutron trans-

mutation doped (NTD) germanium thermistors. A picture of a bolometer very similar to

the ones used in ACBAR is shown in Figure 2.9. The spiderweb geometry has very low

heat capacity; this results in short detector time constants as well as reduces the cosmic ray

cross section while efficiently coupling to millimeter-wave photons.

In steady state, a bolometer will obey the power balance equation

P +Q =

∫ Tbolo

Tbase

G(T )dT,

where P = IV is the electrical power applied to the bolometer, Q is the incident optical

power, G(T ) = G0(T/T0)
β is the thermal conductivity referenced to some temperature T0,

Tbase is the baseplate temperature to which the bolometer is heat sunk, and Tbolo is the
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operating temperature of the bolometer. Typical values of G0 normalized to 300 mK for

ACBAR range from 300-700 pW/K. The impedance of the NTD thermistor at temperature

T is given by

R(T ) = R0e
√
∆/T ,

where R0 depends on the geometry of the thermistor and ∆ is a property of the doping of

the Germanium. Typical values for ACBAR are R0 ∼ 150 Ω and ∆ ∼ 41.8 K.
These bolometers are normally current biased by placing them in series with load re-

sistors with impedance large compared to the operating impedance of the thermistor and

applying a bias voltage across the stack. Bolometers respond to increases in optical power

by heating up, which lowers the impedance of the thermistor and causes a drop in the out-

put voltage. The drop in detector impedance means there is less electrical power applied

resulting in a slight cooling. This is referred to as electrothermal feedback and results in a

shortening of the detector response time.

The time constant, τ , of a bolometer determines how quickly it will respond to changes

in power [97, 73]. The nominal time constant of a bolometer of heat capacity C and thermal

conductivity G is τ = C/G. The effect of electrothermal feedback is to increase the effective

thermal conductivity. This results in a smaller effective detector time constant, τe = C/Ge,

where Ge is given by Ge = G − I2(dR/dT ). This is usually rewritten as Ge = G − αI2R
with α = R−1(dR/dT ). For NTD thermistors obeying the impedance versus temperature

relation above, we have α ∼ −16 K−1 for detectors with ∆ = 41.8 K operating at 350 mK.
The effective detector time constant is a single pole filter in the detector responsivity, S(ω),

to variations in optical power of frequency ω as

S(ω) =
S0

1 + iωτe
.

The value of the DC responsivity, S0, for the operating conditions of ACBAR is typically

∼ −2.5× 108 V/W. The time constants of the optical bolometers during operation are also
listed in Table 2.3.

The time constants of the detectors were measured on the telescope using a chopped

compact thermal source mounted behind a hole in the tertiary mirror. The frequency of

the chopper is varied from 5 to 200 Hz and we perform a digital lock-in to measure the

detector signals at each chop frequency. The signals are then corrected for the measured
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transfer function of the electronics and fit to the equation above to determine the in situ

detector time constants. A more detailed discussion of measured detector time constants is

provided in the Transfer Function Appendix.

The properties of a bolometer can be measured by slowly ramping the bias voltage and

measuring the output voltage of the detector to produce a load curve. Analysis of load

curves can provide all of the bolometer parameters of interest (R0, ∆, G0, β) including the

absorbed optical power. The analysis of load curves is discussed in detail in the Appendix.

Examples of load curves, responsivity curves, and detector noise versus bias measured with

ACBAR on the telescope in 2002 are shown for each of the four rows of detectors in Figures

2.10 through 2.13. The non-ohmic shape of the load curve is due to the applied electrical

power heating the thermistor and causing a decrease in DC signal voltage. The bias current

applied to the ACBAR detectors on the telescope is about 2–3 nA which puts the operating

point near the peak of the load curve. This is beneficial because it makes the response

of the detector insensitive to small changes in atmospheric loading while achieving near

minimum detector noise (as discussed below). The measured bolometer parameters for all

of the ACBAR detectors used in the 2002 season are listed in Table 2.3.

2.1.5 Telescope Optics

The Viper telescope (Figure 2.14) is located at the South Geographic Pole and is adminis-

tered by the Center for Astrophysical Research in Antarctica. Viper is an off-axis aplanatic

Gregorian telescope which has a re-imaging tertiary mirror to reduce the effective focal

length. Viper has a 2 m diameter primary mirror and additional 0.5 m skirt around the

primary to reduce ground spillover. There is a chopping flat mirror located at the image of

the primary formed by the secondary mirror which sweeps the beams approximately 3◦ on

the sky without modulating the beams on the primary.

The re-imaging tertiary on the Viper telescope was originally designed for low frequency

(45 GHz) observations of the CMB for which abberations were not significant. The tertiary

had to be redesigned to provide sufficient optical quality across a large field of view at

ACBAR’s higher frequencies. The redesign of the Viper telescope optics is described in

more detail in the Appendix. After the redesign, the telescope has an effective focal length
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Figure 2.10: Load curves from one channel (D row - 150 GHz) of ACBAR on 03/21/02.
These are for the four optically loaded detectors while on the Viper telescope with a base-
plate temperature of 232 mK looking at 60◦ elevation. The different line types separate the
four detectors in each row. The upper left panel is the signal voltage versus bias current
load curve. The upper right panel shows the impedance of the detectors versus applied
electrical power. The lower left panel is the DC responsivity of the detectors versus bias
current. The lower right panel is the detector NEP which includes both the Johnson and
Phonon noise contributions versus bias current. The detector is shunted by two 30 MΩ load
resistors as illustrated in Figure 2.23.
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Figure 2.11: Same as Figure 2.10 but for the B-row of 150 GHz detectors.
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Figure 2.12: Same as Figure 2.10 but for the C-row of 220 GHz detectors.
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Figure 2.13: Same as Figure 2.10 but for the A-row of 280 GHz detectors.

Figure 2.14: The Viper telescope without an instrument installed.
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Figure 2.15: Most of the Viper telescope optics along with the ACBAR dewar. The light
rays are the geometrical optic rays for full illumination of the primary and are shown to
illustrate the tight clearance around the prime focus.

of 3.44 m yielding a plate scale of

PS =
1

Feff
∼ 10′/cm.

This means that the 16 mm separation of feeds on the ACBAR focal plane will produce

beams separated by roughly 16′ on the sky.

Figure 2.15 shows a schematic of a subsection the Viper telescope optics along with the

ACBAR receiver. The rays drawn are the extreme geometric optical rays to illustrate the

tight clearances of the system; the actual Gaussian beam widths are much more narrow

than the lines drawn. With full illumination of the 2 m primary, the focal plane is fed at

f/1.7 in the geometric optics limit. The dewar is mounted on a sliding pillow-block mount

with a linear actuator for controlling the distance between the tertiary and the dewar for

focusing.

The chopping flat mirror sweeps the beams across the sky approximately 1◦ for every

2.2◦ of chopper rotation. The position of the chopper is read out with an encoder and

is controlled to trace a triangular chop with a PID loop. The triangle wave results in a

constant velocity chop across the sky. During the 2001 season we used an RVDT encoder5

5Schaevitz Sensor, model #R30A
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as both the control signal and position signal which turned out to be a critical mistake.

The RVDT suffered from two major problems that caused the dominant source of point-

ing error. First, a drift in the zero point voltage of the encoder caused the position on the

sky corresponding to zero volts to change with time. This drift was rather slow (about

10′ per month) and we were able to fit for it because we observed bright galactic sources

multiple times per day. The second more serious problem was that the gain of the encoder,

in volts per degree of rotation, fluctuated with time on the level of about 8%. The gain of

the chopper was roughly bimodal, falling into a high gain or low gain state. The only way

to determine the gain state the chopper was to look at the separation of a bright object

(in volts) between two adjacent channels and determine the scaling. The gain was observed

to change during the course of a multi-hour observation and thus the 8% gain uncertainty

will produce an error of approximately 7′ at the edge of the chop. The RVDT encoder gain

is also nonlinear which significantly complicates the conversion of volts to degrees with a

drifting voltage offset and fluctuating gain. To remedy this we installed an optical encoder6

for 2002 which solved all of these problems. The gain of the optical encoder is very linear

with the quadratic term approximately 0.1% of the linear term and no measurable gain

fluctuation. The RMS pointing error during 2001 was approximately 1.3′ and the RMS for

2002 is slightly less than 30′′.

The telescope is enclosed in a large conical ground shield that reflects telescope spillover

to the sky. This reduces both loading and modulated sidelobe signal. We determined that

the ground shield only obstructs observations below ∼ 25◦ elevation by measuring the angle
at which skydips deviated from the nominal equation. However, one section of the ground

shield – known as the “moon door” – lowers to allow observations of low elevation sources;

this is necessary to observe planets which do not rise higher that ∼ 30◦ above the horizon
at the pole. Unfortunately, the duration of unobstructed observation of a source through

the moon door is limited to ∼ 90 minutes per day. This is enough time to make high signal
to noise maps of bright sources such as planets.

Viper sits atop a six legged diagonal mount with a walkway to the control room. It was

discovered during summer of 2001 observations that as the sun circles around the horizon

the thermal contraction of the support legs causes a differential tilt of a few arcminutes. To

mitigate this effect we wrapped the support legs in reflective foil to reduce their emissivity.

6Gurley Precision Instruments, model #A25S
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Differential thermal contraction is not an issue during winter observations when the sun is

below the horizon.

The telescope rides on three wheels atop a hardened steel azimuth bearing. This bearing

is leveled to a few arcminutes with respect to the celestial equator and the residual tilt must

be corrected for in the pointing model. In addition, the telescope is approximately 1 km

away from the actual geographic pole; this is also accounted for in the pointing model. The

actual geographic coordinates were measured using a GPS unit to be −89◦59′34.9′′ latitude
and 45◦31′30′′ west longitude.

The elevation is controlled by a combination of two screw actuators. The “fine actuator”

controls the elevation of the telescope during observations with a 45◦ range and the “course

actuator” is set to either the lower position (allowing 0◦ to 45◦ elevation) or the upper

position (allowing 45◦ to 90◦). A servo-controlled PID loop controls the positioning of the

AZ and EL positions with power supplied by Techron amplifiers. All temperature sensitive

components of the telescope are temperature controlled to ∼ 300 K. All of the mirrors are
equipped with heaters for sublimating the thin layer of ice that accumulates over time.

Blowing snow collects on most mirrors and must be cleaned off daily because it contributes

to chopper synchronous offsets as well as signal attenuation, as discussed below.

We developed a telescope pointing model using frequent observations of both galactic

and extragalactic sources. This allows us to reconstruct the position of each beam on

sky using the reported AZ and EL encoder positions. The pointing model incorporates the

distance of the telescope from the geographic pole, the tilt of the azimuth ring, flexure of the

telescope with elevation, and the collimation offsets between the radio beams and nominal

telescope boresight position. As discussed below, the RA and DEC chopper functions are

then used to translate the measured chopper position into an instantaneous beam position

for all 16 optical channels.

2.2 Cryogenics

2.2.1 Dewar

The ACBAR dewar (Figure 2.16) is a liquid helium/liquid nitrogen cryostat. The environs

at the South Pole are quite harsh with the outside temperature routinely dropping below

-100◦F during the austral winter. To minimize the frequency of cryogen transfers, we made
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Figure 2.16: Schematic of the ACBAR dewar.

the cryogen capacity of the dewar as large as would reasonably fit on the telescope structure.

The dimensions of the ACBAR dewar are ∅20′′ in diameter and 36′′ in length (excluding

cryogen fill tubes). Both the helium and nitrogen tanks hold 25 liters of liquid and the 4

K cold space is ∅14.15′′ by 8.25′′ high. During normal operation the liquid helium holds

three days including fridge cycles (described below) and the liquid nitrogen holds about one

week.

Because the ambient temperature outside is so cold, we mounted adhesive sheet heaters

to the dewar and electronics boxes as well as surrounded the instrument with custom-made

insulating blankets to keep the temperature above 260 K; a single cool-down to -100◦F

could permanently damage the electronics. This nominal temperature is still quite cold

and could freeze ordinary rubber o-rings. A leak in the dewar during the winter would
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halt observations for at least a few weeks. Hence, we needed o-rings with a low operating

temperature and low permeability to helium gas. We selected Ethylene Propylene (EPDM)

o-rings7 which are rated to below 250 K. After nine months of observing, ACBAR had a

mere 15 torr of pressure at room temperature upon warm-up. We noticed that the o-rings

had permanently deformed after nine months of observing and so we replaced all of them

for the second season.

The ACBAR 4 K radiation shield design uses a re-entrant section to meet the 4 K

scalar feed plate rather than mount a large filter in the top of the 4 K shield with the

feeds looking through it. This design has two main advantages. First, only the 16 small

waveguide apertures of the feeds enter the 4 K cold space; these are heavily filtered which

greatly reduces stray optical power in the 4 K space that could load the fridge or bolometers.

The second benefit comes from the reduction of RFI entering the 4 K space by forming a

contiguous Faraday shield.

A number of factors influenced the decision to use a foam vacuum window on the dewar

rather than a thin sheet of dielectric (such as Mylar). Our first concern was scattering

of the beam from thin dielectrics which would result in increased spillover and modulated

sidelobe response. The dewar window is also quite large (4′′ clear aperture; see Figure 2.8)

and we were concerned about the strength of the window as well as its permeability to

helium gas. We measured the off-axis scattering, transmission, and helium permeability

of many materials and selected 1.2′′ thick Zotefoam PPA30 as our window material. This

foam is a nitrogen extruded polypropylene that has very good transmission (∼ 99% at 150
GHz) and low scattering at millimeter wavelengths. The foam is quite strong and has an

unmeasurably low permeability to helium gas. We used Stycast to seal the foam to an

aluminum mounting ring. The window deformed permanently when the dewar was first

evacuated with an inward deviation of ∼ 0.75′′ for the 4′′ aperture.

2.2.2 Fridge

The sensitivity and speed of bolometers depend strongly on their operating temperature.

We want to run the bolometers at an operating point where the detector noise is below

the expected photon background limit. This requires a base temperature below ∼ 300 mK
which is not difficult to achieve with a 3He sorption fridge. 3He fridges have historically

7Valley Seal Co., Woodland Hills, CA 91367
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Figure 2.17: Schematic of the 4He/3He/3He fridge built by Chase Research employed in
ACBAR for cooling the detectors to 240 mK. Figure courtesy of S. Chase.

operated from pumped liquid helium baths. The added complexity of pumping on the

ACBAR helium bath while mounted on the telescope was unattractive and thus we sought

an alternative solution for our detector cooling requirements.

In collaboration with the Polatron [88] and Bolocam [31] projects, Chase Research has

developed a three stage 4He/3He/3He fridge system – affectionately referred to as the 10He

fridge – that achieves base temperatures below 240 mK from an unpumped helium bath

and was selected for cooling the ACBAR bolometers. The fridge is described in detail in

Bhatia et al. (2001) and is shown schematically in Figure 2.17.

The fridge is cycled by first condensing 4He and using the enthalpy of that liquid to

condense the 3He in the ultracold stage. The 4He section is then re-cycled and used to

condense the 3He in the intercooler stage. The 4He liquid is exhausted in this process

and does not contribute to steady-state base temperatures. During normal operation the

intercooler stage operates at ∼ 370 mK for approximately 32 hours and the ultracold stage
operates near 240 mK for a longer duration. The fridge is recycled when the intercooler is
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Figure 2.18: Shows all of the temperatures of the fridge during a cycle while attached to the
focal plane. Lines below 4 K correspond to (royal) ultra still, (red) bolometer stage, (aqua)
inter still, (black) heat exchanger. Lines above 4 K are (red) 4He pump, (orange) inter
pump, (royal) ultra pump, (green) inter pump heatswitch, (navy) 4He pump heatswitch.
The vertical axis is temperature in Kelvin and the horizontal axis is time in seconds.

exhausted and takes about three hours from the start of the cycle to below 250 mK. A plot

showing the temperatures of the various fridge elements during the cycle is shown in Figure

2.18. Figure 2.19 shows load curves taken on the intercooler and ultracold stages without

the focal plane attached. The load curves were generated by dissipating a known amount

of power on a resistive heater mounted to each cold still and measuring the corresponding

still temperature with a GRT thermometer.

Sorption fridges work on the principle that lowering the pressure above a liquid allows

the molecules with more kinetic energy to escape thus cooling the liquid until the vapor

pressure equals the pressure above the liquid. This is the same principle that makes cooking

pasta at higher elevations difficult because water boils at a substantially lower temperature.

This effect has an added benefit for ACBAR at the Pole because the 9,200′ elevation pumps

the liquid helium bath and drops its temperature to ∼ 3.9 K instead of the 4.2 K at sea level
pressure. This small change in baseplate temperature greatly improves the condensation
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Figure 2.19: Fridge load curves for both the intercooler and ultracold stages of the ACBAR
fridge. The plots show the temperature of the stages as a function of applied electrical
power. Power is only applied to one stage at a time.
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Figure 2.20: Shows the stability of the bolometer baseplate temperature over the course of
a 5 hour observation. The RMS of the temperature is about 0.1 mK. Digitization noise in
the A/D can be seen in the data.

efficiency of the fridge cycle which doubled the hold time of fridge compared to the hold

time achieved in Berkeley during system integration.

The bolometer baseplate temperature provided by the ultracold still is remarkably sta-

ble. Figure 2.20 shows the temperature of the baseplate over the course of a 5 hour observa-

tion. One can see that there is very little drift in the baseplate temperature and the scatter

has an rms of σ ∼ 0.1 mK. Because ACBAR is mounted directly on the telescope, we were
concerned about variations in baseplate temperature with the angle of the telescope. We

requested that copper sinter be included in the stills to improve the coupling of the liquid in

the stills to the metal housing. Figure 2.21 shows the baseplate temperature as a function

of zenith angle during the course of a skydip which shows that there is very little change in

bolometer baseplate temperature over 75◦ of dewar angle change.

2.2.3 Thermal Isolation and Heat Sinking

The limited cooling capacity of the fridge requires us to restrict the thermal loading on

the bolometer stage to a few microwatts of power. The challenge is to rigidly support the

massive copper focal plane as well as read out all 24 bolometer channels and associated

thermometry while keeping the thermal load on the fridge to a few µW.

Figure 2.22 shows an image of the ACBAR focal plane structure. The scalar feeds are
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Figure 2.21: Shows the temperature of the ultracold bolometer baseplate during a skydip.
The variation in temperature is less than 1 mK over 75◦ of elevation change.

Figure 2.22: Picture showing the different elements of the ACBAR focal plane.
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mounted on a gold plated aluminum plate which is rigidly fixed to the 4 K helium cold

plate via ∅0.5” gold plated copper rods. The structural support of the cold focal plane is

provided via Vespel8 stand-offs machined to ∅0.25” and 0.015” thickness with aluminum

end caps. Vespel is a low thermal conductivity plastic which can be easily machined to

thicknesses as small at 0.01”. We use the cooling power of the 370 mK intercooler still as

a thermal buffer ring between the 4 K horn plate and the 240 mK detector stage. This

intercepts most of the thermal power that would otherwise overwhelm the small heat lift of

the ultracold stage.

There are multiple types of Vespel available with different temperature indices for the

thermal conductivity. Vespel SP-1 (brown) has a thermal conductivity below 4 K of ap-

proximately 1.8 × 10−5T 1.21 W cm−1K−1 and Vespel SP-22 (black) is 1.7 × 10−5T 2.0 W
cm−1K−1 [25]. We use SP-1 between 4 K and 370 mK and SP-22 between 370 mK and 240

mK. We estimate the thermal loads from the Vespel legs to be ∼ 40 µW on the Interhead
(370 mK) and . 0.1 µW on the Ultrahead (240 mK).

Flexible thermal straps (see Figure 2.22) are used to couple the fridge stills to the two

thermal stages. These are made from nickel-plated copper-braid shields that were lying

around the lab in which indium is embedded at each end for clamping. We originally used

OFHC copper straps between the fridge and focal plane cold stages but found that the me-

chanical resonances of the fridge strongly coupled to the focal plane inducing microphonics

in the signal band.

All of the isothermal wiring inside ACBAR is Teflon-coated gold-plated copper wire

and all of the wiring that traverses multiple temperature regions is Teflon-coated stainless

wire. Both of these are surgical quality wires manufactured by Cooner Wire9. The stainless

wiring is bundled into six twisted pairs within a common stainless shield (corresponding to

the six bolometer channels per bias) with no outer jacket. Stainless wiring has low thermal

conductivity but also has relatively high resistance; all of the wiring for high current devices

(such as pump heaters) must be doubled up to reduce the thermal power dissipation in the

wiring. All of the wires joining stages at different temperatures are heat sunk at each stage

by embedding the wires in a gold-plated copper tab with Stycast10 epoxy. The stainless

wiring is estimated to contribute less than 50 µW of power on the intercooler stage and

8DuPont Engineering Polymers, Newark, DE 19714-6100
9Chatsworth, CA 91311
10Emerson & Cuming, Randolph, MA 02368
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around 0.5 µW on the ultracold stage.

2.2.4 Thermometry

ACBAR uses three different types of thermometers inside the cryostat; all of these are

manufactured by Lake Shore Cryotronics, Inc11. For temperatures between ∼ 4 K and 300
K we use two-wire silicon diode thermometers. These are used on both cryogen tanks, the

JFET module, all three fridge pumps, and the two heat switches. On the cold stills of

the fridge, we use calibrated four-wire germanium resistance thermometers (GRT) which

are useful for temperatures below 4 K. The ultracold bolometer stage is equipped with a

calibrated four-wire Cernox RTD which is only accurate to ∼ 5 mK but has a useful dynamic
range from 230 mK to a few hundred Kelvin. This Cernox thermometer is particularly

useful because we can monitor the temperature of the bolometer stage during cool down as

well as measure its temperature during normal operation with the same sensor. Note that

a typical Silicon diode thermometer biased with 10 µA dissipates ∼ 20 µW at sub-Kelvin
temperatures which, as seen in Figure 2.19, would warm the bolometer baseplate well above

300 mK.

2.3 Electronics

2.3.1 Signal Electronics

The ACBAR electronics system is designed to provide DC bias across the bolometers and

read out all 24 channels with clean signal bandwidth from DC to ∼ 100 Hz. Figure 2.23
shows a schematic of the ACBAR signal electronics chain. The DC bias board supplies a

low noise voltage between 0 to 0.5 V symmetrically across the bias resistor stack. There

are four bias voltages – one for each row of detectors – which can be set independently

and are applied to six detectors each. Two sets of twisted pair stainless wires (one set for

redundancy) bring each of the bias voltages to the focal plane where they are broken out

to six detectors each. All isothermal cabling on the focal plane is gold-plated high-purity

copper.

In addition to the optically loaded bolometers, each of the four biases is also applied to

a “dark bolometer” (a bolometer which has been blanked off with a blackened load at 240

11Westerville, OH 43082
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Figure 2.23: A schematic of the ACBAR signal electronics chain. Dashed vertical lines
denote thermal boundaries.

mK) and a “fake bolometer” (a resistor in place of the bolometer) for use as monitors of

baseplate thermal drifts and electronics noise.

Each bolometer is in series with two 30 MΩ precision etched metal film load resistors

which were custom made by Mini-systems, Inc.12 The load resistor package is surface

mounted to a PCB board (shown in Figure 2.24), which is epoxied directly to the back of

the bolometer module at 240 mK. Also mounted on the PCB board is an EMI filter on each

side of the bolometer composed of surface mount 47 nH inductors13 and 10 pF capacitive

feed-through filters14 which provides filtering above a few hundred MHz directly on the

bolometer module.

The bolometer signal voltages are sent to the JFET modules on twisted pair stainless

wires. All bolometer signals of a common bias are carried out in a single bundle of six

twisted pairs. Each side of the bolometer voltage is sent into one side of a matched NJ132

JFET follower pair. The JFETs were manufactured by Interfet15 and were matched to

have less than ∼ 20 mV difference in offset voltages. The JFETs buffer the bolometers by
reducing their output impedance. This significantly reduces the susceptibility to sources

of current noise such as microphonic pickup and RFI. The JFET module is housed in a

blackened box mounted on the 4 K cold plate. It is thermally isolated from a 77 K cold

12Attleboro, MA 02703
13muRata part #LQP21A47NG14
14muRata part #NFM839R02C100R470
15Garland, TX 75042
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Figure 2.24: Schematic of the ACBAR bolometer module PCB board which provides load
resistance and RFI filtering directly at the bolometer. Figure provided by R. S. Bhatia.

finger that extends from the nitrogen can through a hole in the helium can (see Figure 2.16)

with G-10 fiberglass legs. A heater on the JFET module warms the temperature to the

operating point of ∼ 110− 120 K.
Radio frequency interference (RFI) entering the 4 K vacuum space can couple to the high

impedance wiring on the focal plane and heat the detectors, thus degrading their sensitivity.

To prevent this, all wires entering the 4 K vacuum space pass through additional RFI filter

modules mounted in the wall of the liquid helium radiation shield. The filters used in

these modules are muRata EMI π-filters16 which have been embedded in castable Eccosorb.

These RFI filter modules were measured to attenuate signals above 1 GHz at ∼ −60 dB
[64].

The signal wires then exit the dewar and enter the warm electronics signal box where

they are filtered and amplified. The signal boxes have RF shielding gaskets at all mating

surfaces. The raw signals are amplified by a factor of 200 and then the DC and AC com-

ponents are separated with a filter at ∼ 16 mHz (10 s time constant). The AC signals are
further amplified another factor of 200 (for a total gain of 40,000) and low pass filtered

at 650 Hz. The signals are then sent to VXI data acquisition system housed in a heated

enclosure on the back of the telescope primary mirror. There the signals are sampled at

∼ 2400 Hz and averaged over 8 samples to save disk space. This averaging puts the Nyquist
frequency at 150 Hz. The signals are finally converted to digital form and written to disk.

The complete transfer function of the ACBAR signal chain is described in detail in the

16muRata part #VFM41R01C222N16-27
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Appendix. We transfer the data to the US using the TDRSS network. This allows the

local science team to monitor the state of the instrument and analyze data within a day

of acquisition. This rapid turnaround proved invaluable because we were able to identify

problems very quickly rather than discovering them after the end of the season.

2.3.2 Microphonic Response

Early into the system integration at U.C. Berkeley, we discovered a forest of lines in the

noise spectra of all high impedance channels. We measured the in situ electronics noise to

be very clean using a low impedance short across one of the pairs of JFET gates in place of

a detector. We believed these lines were due to microphonic pickup in the system and this

was borne out by further investigation.

Variable capacitance between vibrating wires will drive a current through our high

impedance detectors resulting in a noise spike at the resonant frequency. To measure the

microphonic response of the system, we used mechanically vibrating load called the “Whom-

per”; similar to a speaker with a mass attached to the coil. We bolted the Whomper to

the dewar and swept the vibration frequency between a few Hz to a kHz while measuring

the noise spectrum of the detectors. This test revealed many strong resonances within our

signal band.

The two ways to reduce microphonic response are 1) lower the output impedance of

the detectors with FET buffers, or 2) tighten down the wiring to push the microphonic

response to frequencies well above the signal band. We had already employed option #1

with a JFET stage mounted to the 77 K cold finger on the cold plate. Unfortunately, the

path length from detectors to the JFETs left approximately 2 feet of high impedance wiring

that was free to vibrate. We made every effort to secure the high impedance wiring but

the microphonics persisted. This was particularly insidious because we could not measure

the microphonic response with the bolometers at room temperature because our detectors

have very little impedance at 300 K.

To locate the source of the microphonics we constructed “fake bolometers” using 30 MΩ

load resistors as the detectors and installed them on the focal plane. We then attached the

Whomper to the open room temperature dewar and measured the noise spectrum while

trying to isolate the source of the microphonics. The dominant sources of microphonic

response were discovered to be the vibration of the entire 240 mK stage of the focal plane
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and the JFET module. To reduce the vibration of these we installed a set of radial kevlar

supports which we tensioned by compressing belleville spring washers. Kevlar has the

unfortunate property of expanding upon cooling so the spring washers were necessary to

keep tension on the stages as the strands relax. The kevlar system successfully moved the

microphonic resonances of the system well above the ACBAR signal band.

2.3.3 Computer Control and Housekeeping

ACBAR can be configured for either manual or computer control of all system elements

by flipping large toggle switches for ease of use with gloved hands. Under manual control,

all settings are modified with turn pots. Under computer control the settings are changed

with a digital bus. The digital bus allows remote setting of all of the following: bolometer

bias levels, all heaters on fridge and cold stages, calibrator temperature and modulation

frequency, and all thermometer settings (reference impedance and excitation voltage). This

allows the observer to control virtually all aspects of the instrument from within the main

station dome located approximately 1 km away from the telescope. All of the housekeeping

information is read by the VXI crate at 2 Hz and saved to disk. This includes all bias levels,

thermometry readings, DC levels of all 24 bolometers, and the two-axis tilt meter mounted

on the telescope.
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Chapter 3 Observations and Performance

3.1 The South Pole Environment

ACBAR observes from the Viper telescope located at the Southern Geographic Pole in

Antarctica. The South Pole provides a remarkable platform for terrestrial far-infrared

observations [60]. The Amundsen-Scott South Pole Station is located on top of the Ross

ice shelf at an elevation of 9, 300′ which lowers the column depth of atmosphere above

the telescope. The pressure elevation at the Pole routinely exceeds 11, 000′ because of the

thinning of the polar atmosphere as air bulges as the equator. The extreme cold freezes out

most of the precipitable water vapor from the atmosphere greatly reducing emission and

absorption from the sky. The ambient temperature averages around -80◦F in the Austral

winter with a precipitable water vapor less than 0.32 mm 75% of the time [60]. In addition,

the atmosphere is very stable with long periods of good observing weather punctuated by

occasional weather events (usually associated with a warming of the ambient temperature)

[61]. The entire Southern celestial hemisphere is available year round allowing indefinite

integration times on small patches of sky. These attributes combine to make the South Pole

arguably one of the best locations on the planet for far-infrared observation.

3.2 Observational Parameters

A full characterization of the system requires precise measurement of the projected beams

on the sky; both the right ascension (RA) and declination (DEC) position of the beams

as the chopper swings and how the beams themselves change with chopper angle must be

measured. We measure these beam properties by making raster maps of compact objects

at multiple RA offsets to position the source at different chopper locations. Because these

raster map sets take a very long time, the telescope pointing can change a significant fraction

of a beam width over the course of an observation. Thus, many of these maps are required

to determine the true chopper functions as well as characterize the telescope pointing model.
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Source Other Name RA (J2000) DEC (J2000)

RCW38 IRAS 08573-4718 134.768◦ -47.510◦

RCW57 NGC 3576 167.886◦ -61.362◦

MAT6a IRAS 12073-6233 182.501◦ -62.832◦

Table 3.1: Reported IRAS coordinates of the galactic HII regions used to develop the
ACBAR/Viper pointing model.

3.2.1 Chopper Functions

The RA and DEC of each beam as a function of chopper angle can be measured on any bright

and reasonably compact source because, for this measurement, we are only interested in the

location of the center of the beam as a function of chop and not the details of how the beam

itself changes. However, the source cannot be so large or have complicated sub-structure

such that the measured centroids depend on small changes to the beam shape. For these

observations we use the bright galactic HII regions RCW38, RCW57, and MAT6a; we have

listed the IRAS reported coordinates for these sources in Table 3.1. The complete chopper

maps are made by starting with the source near the center of the chop and performing a

full raster map with 1′ declination steps through the entire array. The telescope is then

shifted in RA to put the source at a different chop position as recorded by the chopper

encoder voltage. We make raster maps with RA spacings of about 0.5◦ sec δ, where δ is the

declination of the observation, across the full ∼ 3◦ chop to build up the chopper functions.
The beam centroids are determined by fitting a Gaussian to the source position in each of

the raster maps.

The RA and DEC as functions of chopper voltage are well fit by second order polynomials

of chopper voltage in the form

α(V ) = α0 + α1V
′ + α2V

′2

δ(V ) = δ0 + δ1V
′ + δ2V

′2

V ′ = [V −∆V (t)]/g(t),

where the zeroth-order terms are boresight position offsets for each channel, first-order terms

are linear coefficients for the number of degrees per volt of chop, and the second-order terms

are the quadratic corrections.
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Figure 3.1: Measured chopper voltage offset for 2001 versus time. The large jump in offset
back to zero volts around day 186 is a result of re-zeroing the encoder. The two lines are
polynomial fits to the chopper voltage with time for the two periods. Note that in 2001
the full chopper range of motion was ±1 V over ∼ 3◦ which means that a 0.2 V offset
corresponds to a shift in position of approximately 18′ on the sky.

There are two additional variables in these functions which unfortunately were time

variable for 2001; these remained static for 2002 because of an overhaul of the chopper

encoder system. The ∆V (t) term is a drift in the zero point voltage of the RVDT chopper

encoder with time. This voltage drift caused the actual angular position of the chopper

corresponding to zero volts on the encoder output to drift with time, meaning that 0V was

not a fixed angle on the sky. Fortunately, we performed limited raster maps of galactic

sources multiple times a day and are able to parameterize the drift in chopper voltage with

time from the change in source location within the maps. Figure 3.1 shows the measured

drift in chopper voltage with time for the 2001 observing season.

The second time-varying term, g(t), is the gain correction of the chopper encoder with

time and is a far more serious problem than the monotonic slowly drifting voltage offset. It

was noticed in 2001 that the difference in source chopper voltage between two fixed pixels

(∆VAC = VA3 − VC3 and ∆VBD = VB3 − VD3) varied with time for raster maps made with
the source near the center of the chop. This implied that the chopper encoder gain (the

voltage difference for a fixed change in chopper rotation angle) was not a constant. The

encoder gain is seen to vary by as much as 10% (see Figure 3.2) and has been observed to

change during the course of a single raster map. The variation in chopper gain is roughly

bi-modal with a high and low state. A 10% change in chopper gain over the course of a 3◦
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Figure 3.2: Measured source position voltage differences ∆VAC = VA3 − VC3 (pluses) and
∆VBD = VB3 − VD3 (diamonds) versus time for approximately one month during 2001.
The two differences are highly correlated indicating the variation is due to gain fluctuations
common to both differences and not merely scatter due to centroiding uncertainty. Note
that the slight difference between ∆VAC and ∆VBD (which are equally spaced on the focal
plane) is due to distortion in the optical system.

chop means that the position of the beam at the edge of the chop can be off by as much as

9′ (roughly two beam widths) from the expected position. This position uncertainty has a

very detrimental impact on our ability to search for compact objects in 2001 and was the

dominant source of pointing error during the season.

The only way to measure the current gain state of the chopper is to make a raster

map and compare the measured two-channel chopper voltage difference to the nominal

value. Fortunately, the frequent galactic source maps also provide a reasonably frequent

measurement of the gain. However, without a bright object in the blank field maps to

determine the in situ encoder gain, we are forced to discard any observation for which the

gain measured from galactic sources on either side of an observation disagree (indicating

a gain change occured) or during periods of time when the gain is seen to vary on short

time scales. As mentioned above, the RVDT encoder on the chopper was replaced with an

absolute optical encoder which eliminated both the voltage offset drift and gain variation

problems for the 2002 season.
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3.2.2 Beam Sizes

Accurately measuring the beam sizes on the sky is important for calibrating the instrument

and generating window functions. Ideally, this requires a source with angular size much less

than the beam but can also be done using a source with well-characterized extended emission

that can be deconvolved from the resulting beam map. In addition, the source should be

very bright so that an accurate map can be made in a short period of time; this prevents

pointing jitter from the telescope from contributing significantly to the measured beam size.

The planets Mars and Venus satisfy these criteria with sizes less than an arcminute and

(depending on distance) fluxes greater than 100 Jy at all frequencies; these are our objects

of choice for measuring beam parameters. Figure 3.3 shows a raster map of Mars made on

07/17/01 when it was very near the Earth and Figure 3.4 shows a raster map of Venus on

09/22/02.

Using the measured chopper functions, one can convert a raster map into proper sky

coordinates and measure the solid angle of the beam. A raw raster map is first flat fielded

to remove chopper offsets before calculating the solid angle. To flat field the maps, we mask

out the pixels in the region of the source and then remove a common offset and third order

polynomial from each RA stare. The effect of this procedure is illustrated in Figure 4.7

which shows a raw raster map on RCW38 and the corresponding flat fielded image.

The solid angle is then found by integrating the source voltage over the flat fielded map

and dividing by the source amplitude:

Ωbeam ≡
1

Vnorm

∫

V (Ω′)dΩ′ =
1

Vnorm

∑

ij

Vij∆αi∆δj ,

where Vnorm is the best fit Gaussian voltage amplitude of the beam map, and ∆α and ∆δ

are the right ascension and declination widths of each bin, respectively. The measured beam

sizes from the 07/17/01 Mars raster map are listed in Table 3.2. Mars subtended 19′′ on

the sky for this observation which results in an error of < 0.5% in the measured solid angle.

The average beam FWHM from the table are 4.80′, 4.00′, 3.97′, and 5.66′ at 150, 220, 280,

and 350 GHz, respectively. For 2002 we used the planet Venus to measure the beam sizes.

These are listed in Table 3.3 from an observation of Venus on 09/22/02. The average beam

FWHM in 2002 were 4.69′, 4.25′, and 3.95′ at 150, 220, and 280 GHz, respectively.

The 150 and 350 GHz beam sizes differ substantially from the design of 4′. The 150
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Chan Freq (GHz) Ω (×10−6 sr) FWHM (′)
A1 280 1.86 4.41
A2 280 1.47 3.92
A3 280 1.33 3.74
A4 280 1.38 3.81
B1 220 1.78 4.31
B2 220 1.44 3.88
B3 220 1.51 3.84
B4 220 1.43 3.97
C1 150 2.43 5.05
C2 150 2.12 4.71
C3 150 2.10 4.69
C4 150 2.17 4.76
D1 350 3.26 5.84
D2 350 3.60 6.14
D3 350 2.94 5.55
D4 350 2.49 5.10

Table 3.2: Measured 2001 beam sizes from Mars on 07/17/01. The angular diameter of
Mars was 19′′ which is substantially smaller than the beams. The FWHM quoted in the
table is calculated assuming a Gaussian shape with θFWHM =

√

(4 ln 2)Ω/π.

Chan Freq (GHz) Ω (×10−6 sr) FWHM (′)
A4 280 1.74 4.26
A6 280 1.49 3.95
A3 280 1.47 3.92
A5 280 1.28 3.65
D5 150 2.29 4.89
D6 150 2.23 4.83
D4 150 1.97 4.53
D3 150 2.08 4.67
B1 150 2.22 4.82
B2 150 2.12 4.71
B3 150 1.89 4.44
B6 150 2.08 4.66
C4 220 2.05 4.63
C3 220 1.88 4.44
C2 220 1.38 3.80
C1 220 1.64 4.13

Table 3.3: Measured 2002 beam sizes from Venus on 09/22/02. The angular diameter of
Venus was 37.0′′ which is substantially smaller than the beams. The FWHM quoted in the
table is calculated assuming a Gaussian shape with θFWHM =

√

(4 ln 2)Ω/π.
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Figure 3.3: Raster map of Mars at an elevation of approximately 26.5◦ taken on 07/16/01.
The angular diameter of Mars was 19′′ on this date.
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Figure 3.4: Raster map of Venus at an elevation of 19.8◦ taken on 09/22/02. The angular
diameter of Venus was 37′′ on this date.
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GHz beams suffer from diffraction because of the aggressive edge taper on the 2 m primary

mirror. The ∼ 20% spread in 150 GHz beam size is consistent with the level expected for
a -18dB edge taper. In retrospect, under-illuminating the primary at 150 GHz would have

achieved effectively the same beam size without the risk of spillover. The very large 350

GHz beam sizes are somewhat of a mystery because the beams exiting the dewar are very

close to specification to produce a 4′ beam. It is believed that the surface roughness of

the mirrors contributes to the smearing, but an abrupt change between 280 and 350 GHz

seems unrealistic. It is also possible that the fine dusting of snow on the mirrors scatters

the beam and this is bolstered by the fact that the 350 GHz chopper synchronous offset is

most sensitive to the accumulation of snow on the mirrors.

One may also note from the beam size tables that the beam size varies within a frequency

column/row indicating some curvature of the focal plane. The focus of the dewar is set with

a linear actuator mounted between the telescope structure and the dewar cart which rides on

rails parallel to the optic axis. We chose the dewar focus position that, on average, resulted

in the maximum signal from galactic source raster maps. Since the optical throughput is

conserved, the maximum signal voltage should correspond well with minimum beam size.

We made a particular effort to minimize the beam size of the 150 GHz channels because it

is our strongest science frequency.

While analyzing galactic source chopper maps from 2001, we noticed that the voltage

amplitude of a source depended on its location in the chop. Upon further investigation we

found that the measured solid angle of a source also changed with chop angle indicating

that the beams are distorted as the chopper rotation changes the optical path through

the telescope. This effect means that the calibration will change as a function of chop for

compact objects but remain effectively constant for beam filling sources (if the throughput

is conserved).

To be more specific about how the effects of a changing beam size depend on the source

distribution, consider the following examples. Assume the beam gain is Gaussian and is

given by

B(~θ) = G0e
−θ2/2σ2

B (V/Jy),

where ~θ = θxx̂ + θyŷ, θ
2 = θ2x + θ

2
y, G0 is the gain in V/Jy, and σB is the Gaussian width
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of the beam. For a point source with intensity profile of

I(~θ) = S0δ(~θ) (Jy/sr),

where δ is the Kronecker delta function and the total source flux density is S0 =
∫

I(~θ)d2θ

(Jy), the voltage map of the source is the convolution of the beam and source profiles and

is given by

V (~θ) = B(~θ) ? I(~θ) = G0S0e
−θ2/2σ2

B (V).

Similarly, for a compact Gaussian object of width σS with intensity profile

I(~θ) =
S0
2πσ2S

e−θ
2/2σ2

S (Jy/sr),

(again with integrated flux density S0 =
∫

I(~θ)d2θ) the voltage profile from the source is

V (~θ) =
2πσ2BG0S0
2π(σ2S + σ

2
B)
e−θ

2/2π(σ2
S
+σ2
B
) (V).

Lets also consider a uniform intensity distribution given by I(~θ) = Σ (Jy/sr), where Σ is a

constant, in which case the voltage map is

V (~θ) = ΣG0ΩB (V).

If the bolometer responsivity and source flux density remain static, the condition for

throughput conservation is G0ΩB is constant. Performing the integral of the voltage map

over solid angle on the sky in both the point source case and Gaussian source case gives

∫

V (~θ)d2θ = S0(G0ΩB) (V sr).

We see that the integrated signal will be constant regardless of the change in beam size if

throughput is conserved. The actual voltages in the map will depend explicitly on the value

of the gain (G0 ∝ Ω−1B ) which in turn depends on chopper angle. However, for a diffuse
source (much larger than the beam size) of intensity Σ, the voltage map only depends on the

product G0ΩB which is independent of chopper position if the throughput is conserved. It

is therefore important to 1) verify that the throughput is conserved with chopper rotation,
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and 2) depending on the spatial extent of the source under observation, correct for the

change in gain with chopper angle.

To test the conservation of throughput we made complete raster maps of galactic sources

at multiple chopper offset positions and measured whether the integrated signal was con-

stant for all chopper offset positions. Ideally, one would like to use a bright point source

for this measurement, but the limited availability of planets and bright quasars made this

impossible. Most of our chopper map data is from RCW38 which has complex extended

structure and is not a good candidate for verifying throughput conservation since the chang-

ing beam size will couple to different regions of the source. The compact HII region MAT6a

[92] is better suited for this measurement because of its limited extended emission. The

integrated source voltage of MAT6a versus chopper position are found to be quite flat

indicating good conservation of throughput.

In late September 2002, we performed a sequence of beam maps on Venus. The winter

telescope operator (“winter over”) noticed that some ice crystals had accumulated on the

dewar window and carefully scrapped them off with a finger nail. From the Venus maps on

either side of the ice removal we discovered a significant change in some of the beams; the ice

on the curved surface of the window acted like a lens, distorting the focal plane. The average

beam sizes before the ice removal were 4.89′, 4.30′, and 4.23′ FWHM at 150, 220, and 280

GHz, respectively. After the ice removal the average beams measured 4.69′, 4.25′, and 3.95′.

The solid angle of a few of the beams towards the middle of the focal plane changed by

almost a factor of two. In addition, the positions of some of the beams were shifted by a

few arcminutes on the sky. Both of these effects tend to smear the effective beam size of the

coadded maps and reduce the sensitivity to compact sources. Unfortunately, the presence

of ice on the window and its effects were only discovered after the CMB observations.

The accumulation of ice on the window appears to have been a very gradual process.

Although we were only able to view planets at the very end of the 2002 season, we can

monitor the change in beam size with the galactic source raster maps. Using raster maps

on RCW38 we found that the change in beam size was roughly monotonic with time during

the course of CMB observations. For beam filling sources like the CMB, we do not need

to change the calibration with varying beam size but must correct for the changing CMB

window functions [59]. The calibration for point sources, however, will change linearly

with solid angle. Using the measured galactic source solid angles it should be possible to
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partially correct the calibration for those channels most affected by the ice. Because most

of the 150 GHz beams were not strongly affected by the ice we opt to leave the calibration

fixed and use the measured beam sizes of quasars in the final coadded maps for determining

the window function.

3.2.3 Chopper Synchronous Offsets

When the chopper is running the bolometer signals are dominated by a roughly parabolic

chopper synchronous offset (see Figures 3.5 and 3.6). Since the chop across the sky is roughly

constant latitude at the horizon, we would expect an offset at other elevations because the

beams no longer sweep at constant elevation. The amplitude of the temperature offset due

to motion through the atmosphere at 45◦ elevation is approximately equal to

∆T ∼ 3 mK
(

Tsky
220 K

)

( τ

0.03

)

(

∆δ

1.2′

)

,

where Tsky is the temperature of the atmosphere, τ is the atmospheric opacity, ∆δ is the

elevation change from the chop which is 1.2′ for a ±1.5◦ chop at 45◦. The key point is
that as the chopper swings, the beam will travel through a higher air mass and thus see a

temperature increase of a few mK. However, one sees from Figure 3.5 that the temperature

change can be much larger than the predicted amplitude as well as change sign, indicating

the offset is due to something other than the path of the beams across the sky.

The offset structure is observed to depend on a number of factors. Modulated spillover,

accumulation of snow on the telescope, and atmospheric conditions appear to be the dom-

inant sources of offset amplitude. The first two offset sources are somewhat within our

ability to control and we take steps to mitigate their effects. To reduce modulated mir-

ror spillover we mounted a blackened circular light baffle between the tertiary mirror and

the chopper. This light baffle is somewhat smaller than the projected area of the chopper

and intercepts beam power which would otherwise spillover and modulate as the chopper

rotates. The baffle significantly reduced the offset amplitude as can be seen in Figure 3.6

which shows the offsets before and after baffle installation in 2001. As discussed below in

the optical loading section, this warm baffle contributes to the loading of the system because

it intercepts beam power at ambient temperature. We decided that the increase in loading

was worth the reduction in possible systematics and thus left the baffle installed.
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Figure 3.5: Shows the measured average RJ sky temperature offsets of all optical channels
during observations of the CMB5 blank field (elevation 55◦) versus chop on 04/14/02 (solid
lines) and 06/19/02 (dashed lines). All channels are set to the same vertical scale for ease
of comparison. The frequencies are 280, 150, 150, and 220 GHz from top to bottom. The
350 µm zenith opacity for this observation was approximately 2.0 on 04/14/02 and 1.0 on
06/19/02.
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Figure 3.6: Chopper synchronous offsets before and after baffle installation on 02/04/01.
Shows the measured temperature versus chop for all optical bolometers before (solid) and
after (dashed) baffle installation. The columns are (from left to right) 280, 220, 150, and
350 GHz.
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Snow accumulation is another large contributor to the chopper synchronous offsets. The

mirror surfaces collect blowing snow as well as develop a thin layer of frost. The rate of

accumulation depends on the ambient temperature and the amount of blowing snow. As the

chopper rotates, the beams sweep across the secondary mirror, view different projections of

the chopper mirror, and move slightly (a few cm) on the primary mirror. The warm snow

then contributes an optical signal to the system as the beams move across it. The only

solution to this is to clean and defrost the mirrors frequently.

3.2.4 Snow

In addition to contributing to offset structure, snow accumulation also attenuates astro-

nomical signals. The method of signal loss is either power absorption or scattering by

crystals with size comparable to λ. This signal attenuation was discovered by comparing

the measured amplitude of galactic sources versus chopper offset amplitude. To test the

effects of snow on signal attenuation we performed raster maps on RCW38 with the mir-

rors quite snowy and then repeated the observation with the mirrors cleaned. The average

signal ratios for RCW38 with the mirrors snowy versus clean were 70%, 45%, and 20% at

150, 220, and 280 GHz, respectively, indicating a strong frequency dependence consistent

with absorption. The beam solid angles are effectively unchanged between the snowy ver-

sus clean measurements indicating the scattering would have to be relatively isotropic to

explain the signal loss without an appreciable broadening of the beams. This signal loss

is very serious (particularly in the high frequency channels) and needs to be mitigated by

identifying periods when the data may be contaminated from snow attenuation.

To develop a criteria for cutting data with snow contamination, we investigated the

correlation of chopper offset amplitude with source signal and found a strong correlation

at high frequency and a much weaker correlation at low frequency (see Figure 4.8). This

frequency dependence allows us to tune the level of tolerable snow attenuation to the science

goal being investigated. For example, the weaker dependence at 150 GHz means that a more

aggressive snow cut threshold can be used for science only incorporating the low frequency

channels, such as CMB power spectrum estimation. However, pointed cluster observations

rely on the higher frequency data to remove the CMB contribution from the maps and

must therefore employ a more conservative snow cut threshold to prevent severe signal

attenuation at higher frequencies. The snow cut is discussed more quantitatively in the
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Frequency TRJ Tinternal Tmirrors Tbaffle Tatm
(GHz) (K) (K) (K) (K) (K)

150 38.5± 3.8 11 4 5 15
220 36.7± 6.8 16 5 ∼ 0 22
280 63.0± 10.4 16 6 ∼ 0 40

Table 3.4: Average Rayleigh-Jeans (RJ) temperature loading at 60◦ elevation for the 2002
season and estimates of various contributions to the loading. These values were generated
from measurements of loading from load curves taken roughly twice daily. The mirror
contribution is estimated to be 3× the theoretical emissivity [122] at 260 K to account
for surface roughness. The atmospheric contribution is estimated from an average 350 µm
tipper value of 1.5 and a sky temperature of 220 K.

Data Cuts section below.

3.2.5 Optical Loading

The optical loading on all channels can be determined at any time from the DC level of

bolometer and the measured cold plate temperature using the power balance equation and

the previously measured properties of the bolometers (refer to §A.1). Figure 3.7 shows the
average Rayleigh-Jeans (RJ) optical loading versus time of all three observing frequencies

for part of the 2002 season. One can see the stability of the optical loading at 150 GHz

but the higher frequencies have significantly more scatter because of a stronger dependence

upon atmospheric conditions. The average RJ loading temperature for 2002 at all three

frequencies is listed in Table 3.4.

The bulk features in Figure 3.7 are the result of changes in atmospheric emissivity

as seen in Figure 3.8 which shows the correlation between RJ loading and τ350µm tipper

measurements. The higher frequency channels are more strongly correlated than 150 GHz

as would be expected from the emissivity profile of the atmosphere.

There are many contributors to the total optical loading of the system. The dominant

sources of loading for ACBAR are warm filter optics, atmosphere, and a hot telescope.

We took great pains to reduce the internal optical loading from the dewar by maximizing

the in-band transmission of the warm filters and blocking high-frequency leaks at cold

temperatures. The atmospheric contribution is given by

Tatm = Tsky(1− e−τ/ cos ζ),
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Figure 3.7: Average Rayleigh-Jeans temperature loading at (from top to bottom) 150, 220,
and 280 GHz versus time since January 1, 2002. The points represent the average optical
loading during load curves and were all taken at 60◦ elevation. Notice the strong correlation
between the frequency channels.
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Figure 3.8: Shows the average Rayleigh-Jeans temperature loading at 150 (pluses), 220
(diamonds), and 280 GHz (triangles) versus 350 µm zenith opacity for 2002.

where Tsky is the temperature of the atmosphere, τ is the average in-band zenith opacity,

and ζ is the zenith angle of the observation. The telescope consists of four warm aluminum

mirrors, each of which has an approximate emissivity of [122]

ε =

√

16πcε0
λσ

,

where c is the speed of light, ε0 is the permittivity of free space, λ is the observing wave-

length, and σ is the conductivity of the metal (3.7×107 Ω−1m−1 for aluminum). The actual
emissivity of the surface is usually a few times this value because of surface roughness. The

contribution from all four mirrors is roughly

Tmirrors ∼ few× 4εTambient.

The introduction of the light baffle to reduce chopper synchronous offsets also contributes

to the optical loading. The large beams of the 150 GHz channels are truncated at the baffle

aperture at a level which contributes ∼ 5 K but the beams from the higher frequencies
are sufficiently small that the baffle contribution is negligible. Estimates of the various

contributions to the optical loading are also given in Table 3.4.
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Figure 3.9: Illustrates the sky coverage geometry of a single declination stare. The 16 pixels
are swept ∼ 3◦ on the sky and the darkness of the cross hatch indicates the degree of overlap
of the four channels within each row.

3.2.6 Scan Strategies

When taking CMB data with ACBAR we perform an elevation raster map. This means we

fix the telescope elevation and observe with the chopper running for some period of time –

this is referred to as a “stare”. We then tilt the telescope down in elevation (usually 1′) and

continue the process. We usually perform ∼ 100 elevation steps which gives a large patch
of sky sampled by all four rows of focal plane. The sky coverage of the array during a single

DEC stare is illustrated in Figure 3.9. As described above, the dominant signal in the raw

raster maps is a roughly parabolic signal a few mK in amplitude. The chopper synchronous

offsets change with time and we were concerned that changing small-scale variations in

the offset signal could contaminate the CMB maps. We devised an observing strategy to

remove as much chopper synchronous offset as possible – even if slowly time varying – while

preserving the large-scale CMB power in the map.

We employ a LEAD-MAIN-TRAIL observing strategy which breaks the raster map

into three ∼ 3◦ fields that overlap roughly 0.5◦ in RA. The raster progresses by observing
the three fields in succession at fixed elevation before proceeding to the next elevation.

The fields are usually observed for 30 seconds on LEAD, 60 seconds on MAIN, and 30

seconds on TRAIL. If the offset is changing linearly with time then the average offset of

the LEAD and TRAIL fields should equal the offset in MAIN. By forming the difference

LMT =M − (L+ T )/2 we eliminate both a common offset as well as linear drift.
The three fields are separated by about 3◦ on the sky which is larger than the ∼ 1◦

peak correlation of the CMB; the LMT subtraction should not remove much CMB power.
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In fact, if the CMB fluctuations are Gaussian and uncorrelated, then the LMT map should

have
√

3/2 times the CMB RMS of the MAIN field alone. This observing strategy does

come at the price of sensitivity because the integration time is divided amongst three fields.

The ratio of instrumental noise in the LMT field compared to spending all of the time on

a single field is a factor of 2 resulting in a reduction of the signal to noise on the CMB of
√

3/8.

We are not concerned with preserving the large-scale CMB power if we are searching

for SZ clusters. We can treat the three fields as separate and remove an average offset plus

higher order polynomial to eliminate the chopper synchronous signal. For cluster searching,

this has a tremendous advantage over LMT subtraction because the spectrum of SZ clusters

is preserved. This means that clusters will always appear as decrements at 150 GHz in the

three separate fields but could appear as hot or cold spots in an LMT subtracted image. As

mentioned above, the offsets are mostly due to accumulating snow on the telescope optics.

When searching for clusters we implement an aggressive snow cut based on the amplitude

of the offset. This excludes the large chopper offset data as well as those periods of time

when the offsets are changing rapidly.

3.2.7 Field Selection

When selecting fields for deep CMB observations at millimeter wavelengths, the primary

foreground contaminant of concern is dust emission [109]. With most of the southern

celestial hemisphere available for continuous observation we were able to choose the very

best regions of dust contrast for our observations. The IRAS/DIRBE dust map of [28]

provides an excellent template of galactic dust emission and we found that the best region

of the southern hemisphere lies roughly between 21h to 5h in RA and −20◦ to −70◦ in DEC
(see Figure 3.10). The Viper telescope must change coarse elevation actuator positions to

observe sources with DEC > −45◦ (< 45◦ elevation) and so we decided to limit our DEC
range between −45◦ and −70◦ to avoid course actuator changes.
With so much clean sky available we decided to select our fields by centering them on

flat-spectrum mm bright radio point sources. These objects are typically blazars which are

a subset of AGN and highly time variable. They provide a continuous monitor of pointing

as well as a bright point source for measuring the final beam size in the coadded maps; the

coadded point source image incorporates the physical extent of the beams as well as beam



83

FIELD name α (J2000) δ (J2000)

CMB2/3/4 PMN J0455-4616 73.962◦ −46.266◦
CMB5 PMN J0253-5441 43.372◦ −54.698◦
CMB6 PMN J0210-5101 32.692◦ −51.017◦
CMB7 PMN J2235-4835 338.805◦ −48.600◦

Table 3.5: Central reference sources for each CMB observation. The quasar names and
positions are from the Parkes-MIT-NRAO Radio Survey as reported by the NASA/IPAC
Extragalactic Database [81].

Figure 3.10: Shows the lowest dust region of the southern sky along with the CMB fields
observed by ACBAR in 2001 and 2002 (field centers are listed in Table 3.5). The map
was generated with the IRAS/DIRBE projection of [28] to 150 GHz and is plotted with a
logarithmic intensity scale. The two very bright regions are the Magellanic Clouds.

smearing due to pointing jitter. The coadded quasar size in the CMB5 field at 150 GHz is

5.1′ FWHM which should be compared with the ∼ 4.8′ average instantaneous beam size.
This indicates an average smearing RMS of ∼ 0.7′.
A bright radio source in the middle of the field adds a degree of complexity to the analysis

because one must remove or mask out the object from the map; the pointing knowledge

gained far outweighs this inconvenience. We surveyed many of the flat-spectrum radio

sources in the southern hemisphere observed by SEST [6, 110, 111] searching for candidates

bright enough to detect with good S/N in a single raster map. We detected a handful with

good S/N and list the sources selected for each of the CMB fields in Table 3.5. A map of the

dust emission extrapolated to 150 GHz along with the CMB fields observed with ACBAR

during 2001 and 2002 is shown in Figure 3.10.
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3.3 Calibration

3.3.1 Planetary Observations

To convert the measured signal voltages to physically meaningful units we need to observe

an object of known flux. Our primary calibration source for the 2001 season is the planet

Mars which has been well studied at millimeter wavelengths [37]. We observed Mars multiple

times during the year in an effort to develop a consistent calibration and check for systematic

effects. For the 2002 season we used the planet Venus as our primary calibrator. Much less

is known about Venus at millimeter wavelengths, and its complicated atmosphere makes

the uncertainty of its brightness temperature quite high (∼ 8% at 150 GHz) [119]. To
determine the calibration we made raster maps of Mars and Venus (see Figures 3.3 and 3.4)

and integrated the voltage maps, which, as shown above, give

∫

VP (~θ)d
2θ = SPG0ΩB (V sr),

where SP is the planetary flux density (Jy), G0 is the boresight gain (V/Jy), and ΩB is the

beam solid angle (sr).

To determine the flux of Mars during an observation we use the FLUXES software

package [29], developed for the JCMT telescope on Mauna Kea. FLUXES provides the

brightness temperature of some planets on any date across a range of mm and sub-mm

wavelengths. FLUXES incorporates a model for the correction of Martian brightness tem-

perature with the Sun-Mars distance. For Venus we use the table of published Venus

brightness temperatures listed in Eric Weisstein’s thesis [119]. We determine the location

and solid angle of the planet, ΩP , from the online NASA planetary ephemeris
1. Typical

brightness temperatures for Mars were between 205 to 211 K at 150 GHz during our CMB

observations in 2001 with a reported error of 5%. The brightness temperature of Venus

is approximately 300 K at 150 GHz [116] with an error of 8%. The planetary brightness

temperatures as a function of frequency, TB(ν), are well fit by a straight line between 100

and 400 GHz. For each observation we convolve this linear fit with the frequency response

1NASA Reference Publication 1349: Twelve Year Planetary Ephemeris: 1995 - 2006 by Fred Espenak
(http://lep694.gsfc.nasa.gov/code693/TYPE/TYPE.html)
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of our detectors, f̃i(ν), to determine the band average flux density for each channel, i,

S̄iP =

∫

2kTB(ν)ΩP (ν/c)
2f̃i(ν)dν

∫

f̃i(ν)dν
.

In the absence of atmosphere, the ratio

Ri =
S̄iP

∫

V iP (
~θ)d2θ

(Jy V−1sr−1),

would give us the responsivity of the each channel. However, we observe the planet through

an attenuating atmosphere and must correct for the atmospheric opacity to determine the

actual planetary flux arriving at the instrument.

3.3.2 Atmospheric Opacity

To determine the actual planetary flux incident on our detectors – as well as source flux

during normal observations – we need to characterize the transmission of the atmosphere.

To do this we perform a skydip before and after planetary observations to determine the

atmospheric zenith opacity for each channel, τi. The details of measuring the in-band

opacity from a skydip are presented in the Appendix. Typical measured values of zenith

opacity are 0.035, 0.05, and 0.10 at 150, 220, and 280 GHz, respectively.

Because skydips are a time-consuming process, we developed a method which avoids

having to perform skydips regularly but still permits frequent monitoring of the atmospheric

transmission. We determed the relationship between our measured in-band opacities and a

350 µm tipper experiment located on the adjacent AST/RO building [93] which measures

the sub-mm opacity of the South Pole atmosphere approximately every 15 minutes. This

was done by performing many skydips and correlating the measured in-band zenith opacities

with those measured by the 350 µm tipper. The relationship is quite linear, as is seen in

Figure B.4 which shows the measured in-band opacity of ACBAR observing bands versus

the 350 µm tipper values.
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3.3.3 Responsivity

Once we have determined the atmospheric transmission, we can re-write the corrected

instrumental responsivity in for each channel,

Ri =
S̄iP e

−τP
i
/cos(ζP )

∫

V iP (
~θ)d2θ

=
1

G0ΩB
(Jy V−1sr−1),

For this calibration to be useful for subsequent observations we need to correct for the atmo-

spheric transmission of the observation as well as any change in bolometer responsivity due

to changes in optical loading at different zenith angles. The correction for the atmospheric

transmission of the observation is simply e−τ
obs
i
/cos(ζobs).

After each planetary observation we run a small chopped thermal source mounted behind

a hole in the tertiary. The source is an IR-41 etched metal film emitter manufactured by

Boston Electronics2. The active area of the source is only a few square mm in area but

was measured to emit roughly 200 K above ambient at 150 GHz. This provides a reference

signal for each channel, V Pcali , that is used to scale the bolometer responsivity for future

observations. To correct the change in bolometer responsivity with elevation, we run the

chopped calibrator source again at the elevation of the CMB observations and multiply

the responsivity by the measured ratio of the observation calibrator voltage, V obscali , to the

planetary calibrator voltage.

Because of the gradual accumulation of snow around the hole in the tertiary and ice on

the dewar window, this responsivity transfer is only useful for closely spaced observations.

However, the measured signal from RCW38 has an RMS scatter of < 4% which implies that

the detector responsivity is very stable. The resulting responsivity for each channel for a

given observation is then

Ri =
S̄iP

∫

V iP (
~θ)d2θ

e−τ
P
i
/cos(ζP )

e−τ
obs
i
/cos(ζobs)

V Pcali
V obscali

(Jy V−1sr−1).

Observations of the cosmic microwave background are usually calibrated into CMB

temperature units. Since we are looking at fluctuations in the CMB the conversion between

2Brookline, MA 02445, http://www.boselec.com
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flux density and temperature is given by

∆S =
dBν
dT
ΩB∆T,

where Bν is the black body spectral energy density given by

Bν(T ) =
2hν3

c2
1

ehν/kT − 1 (Jy sr−1),

and dBν/dT is evaluated at TCMB . Thus, the desired calibration from signal voltage to

CMB temperature units is given by

RCMBi = Ri

(

∫

dBν
dT f̃idν
∫

f̃idν

)−1

(K V−1),

where we have averaged the conversion from flux density to Kelvin over the band. We

estimate the total uncertainty on the calibration for the 2002 CMB observations to be 10%

which is dominated by the 8% uncertainty in the brightness temperature of Venus.

3.3.4 Galactic Source Cross-Calibration

During the 2002 observing season, there were no bright planets available until September

2002 and we were forced to use a bootstrapped calibration from galactic sources. When

the throughput is conserved, the integrated voltage map is equal to S0(G0ΩB). We can

determine the band averaged flux density of an object S2 from an object of known flux

density S1 by

S2 = S1

∫

V2dΩ
∫

V1dΩ

V cal1 e−τ1/ cos ζ1

V cal2 e−τ2/ cos ζ2
,

where the ratio V cal1 e−τ1/ cos ζ1/V cal2 e−τ2/ cos ζ2 accounts for the change in atmospheric trans-

mission and bolometer responsivity between the two observations.

We apply this method to observations of RCW38 in both 2001 with Mars and 2002 with

Venus where a planet was observed within one day of RCW38 and both observations have

calibrator runs for scaling the responsivity. We integrate the flux within 8′ of the source

center. These results are given in Table 3.6. The agreement between the integrated flux

is quite good at 150 and 280 GHz but the 220 GHz observations in 2001 suffer from low

number statistics and are unreliable. A raster map of RCW38 taken on 06/09/01 is shown
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Figure 3.11: Raster map of RCW38 taken on 06/09/01.

Freq (GHz) S2001RCW38 (Jy) S2002RCW38 (Jy)

150 146± 15 144± 14
220 229± 30 260± 26
280 318± 32 323± 32

Table 3.6: Bootstrapped flux densities for RCW38 within 8′ radius for 2001 and 2002. The
10% error bars on SRCW38 include planetary brightness temperature, voltage integral, and
responsivity uncertainties.

in Figure 3.11. The complex extended structure of RCW38 – particularly at 220 and 280

GHz – is apparent even in a single raster image. We estimate the total error including

planetary calibration, voltage integral uncertainty, and responsivity scaling to be ∼ 10% for
both 2001 and 2002.

3.3.5 Calibration Procedure

To determine the calibration for all channels for a given observation we use the following

procedure: We impose a limit to the change in baseplate temperature during the course of

an observation of 20 mK; this would result in a responsivity change of less than 10% for the

150 GHz detectors (see Figure 3.12). If the fridge is still cooling down or is warming up past

250 mK during an observation, we exclude it. Next we determine the atmospheric opacity

during the observation. Because we cannot perform skydips regularly we use the most recent
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Figure 3.12: Shows the change in relative responsivity for an average 150 GHz detector
with varying baseplate temperature (left panel) and zenith angle (right panel). The fiducial
parameters are R0 = 150 Ω, ∆ = 41.8 K, G0 = 300 pW/K, β = 1.1, Q = 10 pW, ζ = 30

◦,
Tbase = 240 mK, Tsky = 220 K, τ = 0.03, ν = 150 GHz, ∆ν = 30 GHz, and η = 0.4. If we
impose the constraint that the responsivity change must be less than 10% we find that the
baseplate temperature must rise no more than ∼ 20 mK.

350 µm tipper value and the measured scaling relations (see Appendix B) to determine the

in-band zenith opacity of each channel. The 350 µm tipper takes measurements quite

regularly, and thus, we have a frequent measure of atmospheric opacity that we can use

to correct our observations. With these two measurements in hand, we then calculate the

calibration for each channel using the measured planetary responsivity and apply it to the

signal voltages.

3.3.6 Calibration Stability

The stability of the calibration depends on the change in detector responsivity and atmo-

spheric attenuation. Figure 3.13 shows the measured calibrator signal (which we originally

implemented to measure in situ detector responsivity) versus time for all optical bolometers

during the 2002 season. Changes in calibrator signal of 50% occur in the 280 GHz channels,

whereas the 150 GHz channels fluctuate at the level of ∼ 10%. One can also see the strong
dependence of responsivity upon bias – the first group of points were taken in the summer

at slightly lower bias voltages than are currently being used for the remainder of the season.

We originally believed that the stability of the detector responsivity would significantly

depend upon the optical loading. Figure 3.14 shows the normalized calibrator signal from all
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Figure 3.13: Measured calibration source voltages versus days since January 1, 2002. From
top to bottom, the rows are 280, 150, 150, and 220 GHz, respectively. The data for each
channel have been normalized to have an average value of unity. The first six data points
were taken with different bias settings than the rest of the data which explains their depar-
ture from the general trend. The large variations in calibrator signal (particularly at 280
GHz) are due to the gradual accumulation of ice on the window.
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optical detectors in 2002 versus RJ optical loading as measured from load curves. Although

there is some correlation – particularly at the lower frequencies – between the calibrator

signal and optical loading, the correlation does not appear to be very strong. The trends in

the calibrator versus time (Figure 3.13) are too strong for the lack of correlation to be due

to measurement error. This indicates that some physical process is responsible for the lack

of correlation. At the end of the 2002 season we discovered that the changes in calibrator

signal were due to ice accumulation on dewar window. This renders the calibrator signal

useless as a long-term responsivity correction.

As mentioned above, the variation in optical responsivity of the system with changing

atmospheric conditions is not very large once the data taken when the telescope is snowy

is removed. This snow cut is discussed in detail in §4.5 below. We show the average
integrated signal voltage from RCW38, corrected for atmospheric attenuation, for the B-

row (150GHz) in 2002 versus time in Figure 3.15. We have applied the snow cut to the

data and the dispersion of the integrated signal is less than 4% indicating the responsivity

at 150 GHz is quite stable. In Figure 3.16 we show the ratio of the average integrated

signals of rows D (150 GHz) and C (220 GHz) to row B (150 GHz) versus time; the

correlations between different rows is also stable with time after applying the snow cut. As

will be discussed below in the Data Analysis chapter, the snow cut used for 150 GHz is

not adequate for 280 GHz because of the steep frequency dependence of snow attenuation

and so the results for 280 GHz are not shown in the figure. Because of the stability of the

detector responsivity – as measured from the integrated galactic source maps – we elect to

use the planetary calibration and correct for changes in opacity and the average change in

responsivity between the low-elevation planet observations and the CMB fields.

3.4 Noise and Sensitivity

There are multiple sources of noise that contribute to the limiting system sensitivity of an

instrument. The sensitivity of a well-designed system should not be limited by sources of

noise inherent to the instrument but by the random arrival time of background photons,

in which case, the system is said to be “background noise limited” (or “BLIP limited”).

Instrument characteristics that determine whether a system will be background limited are

optical power incident on a detector, bandwidth of observed light, optical efficiency, detector
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Figure 3.14: Correlation between the measured calibrator signal (normalized to have an
average of unity) versus RJ optical loading in Kelvin for all optical bolometers in 2002.
From top to bottom, the rows are 280, 150, 150, and 220 GHz, respectively. Although there
is some correlation at the lower frequencies, the correlation at 280 GHz is very weak.
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Figure 3.15: Shows the average integrated signal from the B-row (150 GHz) versus time
for RCW38 measured in limited raster maps in 2002. The signals have been corrected
for atmospheric attenuation and the error bars are purely statistical variance with the
integrated signals in the row. The strong snow cut was applied to this data and is discussed
in the Data Analysis section.

Figure 3.16: Shows the stability of the ratios of the average integrated RCW38 signal from
the D-row (150 GHz, diamonds) and C-row (220 GHz, pluses) to the B-row (150 GHz)
measured in full raster maps in 2002. The signals have been corrected for atmospheric
attenuation and the strong snow cut was applied to this data.
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impedance, detector thermal conductivity, operating temperature, electronics noise, as well

as the atmospheric conditions of the site.

3.4.1 Photon Noise

Bolometers are effectively photon integrators and are sensitive to the variance in the number

of photons arriving in a given length of time. For a detailed discussion, refer to Richards

(1994). The number of photons detected per second per Hz of bandwidth per spatial mode

is given by the Planck law

n =
εη

ehν/kT − 1 ,

where ν is the frequency of the radiation, T is the temperature of the source, ε is the source

emissivity, and η is the optical efficiency of the system. The variance of this number is
〈

(∆n)2
〉

= n+n2. Given an energy per photon of hν the mean square fluctuation in power

in 1 s of integration is 2Nh2ν2
〈

(∆n)2
〉

where the factor of 2 accounts for both polarizations

of the photons and N is the number of spatial modes, N = AΩ/λ2, which is 1 for ACBAR’s

single moded feeds.

If we define the power spectral density as Pν = 2Nnhν = εηBν(T )AΩ and use the fact

that for an integration time t the bandwidth is 1/2t, we have that the mean square noise

per unit bandwidth is given by the integral over the infrared bandwidth:

NEP 2γ = 2

∫

Pνhνdν +

∫

P 2ν /Ndν.

The first term represents the random arrival times due to a Poisson process and the second

term (referred to as the “Bose term” or “bunching term”) encodes the penchant for photons

(which are bosons) to bunch together. There is some debate about whether an additional

factor of q = 2Nt∆ν should be included in the denominator, where t is the integration time

and ∆ν is the infrared spectral bandwidth. This factor is in excess of 1011 for ACBAR and,

if true, would render the second term negligible.

If we can assume that the power spectral density does not vary significantly over the

band, the mean square power fluctuation is given approximately by

NEP 2γ ∼ 2Qhν0 +Q2/∆ν,
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Frequency Qtotal Qinternal Qexternal NEPγ1 NEPγ2
(GHz) (pW) (pW) (pW) (×10−17W/

√
Hz) (×10−17W/

√
Hz)

150 11.1 3.7 7.4 4.7 6.4
220 12.1 4.7 7.4 5.9 7.0
280 25.1 7.0 18.1 9.7 11.2

Table 3.7: Average estimated photon noise contributions for each of the three ACBAR
frequencies. The total loading was measured with a load curve on a relatively good day
τ350µm = 1.2, EL=60

◦ (05/06/02). NEPγ1 =
√
2Qhν0 and NEPγ2 =

√

Q2/∆ν.

where Q is the total optical power given by Q =
∫

Pνdν.

ACBAR has roughly equal contributions to the total optical power from warm telescope

optics and sky with T ∼ 260 K and ε ∼ 0.05 and sources inside the dewar with T between
4 K and 77 K and ε ∼ 0.2, where ε is the emissivity of the surface. Table 3.7 lists the
average optical loading for each frequency from inside and outside the dewar along with an

estimate of the two photon noise terms. If the second term exists, it would dominate the

photon noise contribution for ACBAR. The complete noise budget is presented in Table

3.8. The measured NEP s appear in-between the predicted total NEP s with and without

the additional photon bunching term.

3.4.2 Detector and Electronics Noise

Bolometric detectors suffer from two main sources of noise intrinsic to the detector. Johnson

noise arrises from the thermal fluctuations of a warm resistance and is derived in Richards

(1994). The mean square voltage noise per unit bandwidth of a resistor of impedance R at

temperature T is given by

NEV 2J = 4kTR.

This can be converted to an NEP using the electrical responsivity of the detector S (V/W)

to give

NEPJ =

√
4kTR

|S| ,

where the absolute value is taken because the responsivity of some detectors, including

those used in ACBAR, is negative. Johnson voltage noise has a flat spectrum but inherits

the frequency dependence of the responsivity when converted to noise power.

The second type of detector noise arrises from the quantization of the energy carriers
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Frequency (GHz) 150 220 280

∆ν (GHz) 30 30 50
η (%) 40 32 30

FWHM (′) 4.8 3.9 3.9
Qtotal (pW) 12.8 9.6 26.4

TRJ (K) 39 36 64
R (MΩ) 7.1 7.7 7.3

Tbolo (mK) 359 351 355
G(T ) (pW/K) 470 485 760
S (×108 V/W) -2.4 -2.6 -1.9

NEPγ counting × 1017 (W/
√
Hz) 5.0 5.3 9.9

NEPγ bose × 1017 (W/
√
Hz) 7.4 5.5 11.8

NEPJ × 1017 (W/
√
Hz) 2.5 2.4 3.4

NEPG × 1017 (W/
√
Hz) 4.5 4.5 5.8

NEPA × 1017 (W/
√
Hz) 1.2 1.2 1.6

NEPtotal w/o bose × 1017 (W/
√
Hz) 7.3 7.4 12.1

NEPtotal w/ bose × 1017 (W/
√
Hz) 10.4 9.3 16.9

NEPachieved × 1017 (W/
√
Hz) 9.4 7.9 14.6

NETCMB (µK
√
s) 345 640 1400

NETRJ (µK
√
s) 200 210 250

NEFD (mJy
√
s) 290 530 890

Table 3.8: Average bolometer parameters and noise budget for all three frequencies based
on telescope noise data taken with the chopper stopped and a load curve performed at
EL=60◦; both on 06/14/02. The amplifier and FET voltage noise contribution is estimated
to be 3× 10−9 V/

√
Hz at 10 Hz and is scaled to NEPA by dividing by the responsivity, S.

The total NEP is the quadrature sum of all noise components listed. The achieved NEP s
are determined from the average calibrated noise power spectra between 10 and 20 Hz.

(phonons) between the bolometer and the thermal bath and depends on the thermal con-

ductivity G and temperature of the bolometer. The phonon noise, or “G noise,” is given

by

NEPG =
√
4kT 2G.

The contribution of these detector noise sources under telescope operating conditions is

listed in Table 3.8 for the 2002 season detectors.

The bolometer bias voltage circuit as well as the readout electronics will also contribute

to the total system noise. Current noise in the bias circuit will produce voltage noise across

the high impedance thermistor. The amplifier chain also contributes through the JFET

buffers and warm amplification stages. During the 2001 observing season we shorted one

of the JFET pair gates together along with a 10 kΩ shunt to ground. This shorted pair
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Figure 3.17: Amplifier and FET noise PSD from ACBAR while on the telescope for a
shorted pair of FETs. The PSD has been smoothed. The effect of the 650 Hz AC filter can
be seen at high frequency.

provides an in situ measurement of the noise from one path through the JFET + amplifier

chain and a typical noise PSD is shown in Figure 3.17. The noise level is ∼ 3 nV/
√
Hz down

to ∼ 10 Hz where the 1/f noise starts to rise. To convert the noise voltage PSD to an NEP
one needs to divide by the electrical responsivity which is approximately −2.5×108 (V/W)
at low frequencies for ACBAR but does decrease with frequency as (1 + ω2τ2bolo)

−1/2.

We plot the average calibrated telescope NETCMB of the 150 GHz channels – after

correcting for the complete transfer function – versus frequency in Figure 3.18. Also plotted

are the expected frequency spectra of the primary CMB and a point source assuming a

chopper speed of 3◦ at 0.3 Hz. This figure indicates that the chopping rate could probably

be increased by a factor of ∼ 4 without significant loss of sensitivity from the rise in NET
due to detector time constants.
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Figure 3.18: Average calibrated NETCMB (solid line) of the eight 150 GHz detectors during
observations of the CMB. Also shown are the arbitrarily normalized frequency spectra of
ΛCDM CMB anisotropies (dot-dashed) and a point source convolved with a 4.5′ beam
(dashed). We have assumed a telescope chop of 3◦ at 0.3 Hz (108 arcmin/s).
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Chapter 4 Signal Processing

A considerable amount of signal processing must be performed on the raw voltage time

stream data to generate a map of the microwave sky. Figure 4.1 shows a schematic flow

diagram of the data path from raw time ordered data to the final coadded maps.

4.1 Time Domain Filtering

As described in detail in the Transfer Function Appendix, the raw signal voltages have

undergone a significant amount of filtering due to the response of the detectors and transfer

function of the signal electronics. We correct the raw time ordered data (TOD) for the

complete system transfer function to recover the incident optical signal time stream. The

correction of the transfer function in frequency space is given by

s̃(ω) = T̃−1(ω)ṽ(ω),

where v is the raw signal voltage, T is the transfer function of the system, s is the desired

incident signal, ω = 2πν is the frequency, and the tilde denotes Fourier Transform.

The advantage of correcting for the transfer function in Fourier space rather than by

convolution in time is computation speed. However, spikes in the TOD will then spill power

Raw TOD Filter De-spike Bin stare

1-chan Binned
Raster Map

Pass 
Snow Cut?

yesRemove
Offsets

Calibrate
Raster Map

Weighted Average
Single Frequency Map

Remove
Quasar

Weighted
Coadd Maps

Figure 4.1: ACBAR data processing flow chart.
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into the entire “corrected” time stream because the filter has the same length as the data.

We mitigate this by accepting an increase in computing time and perform the correction

directly on the TOD by convolving the data with a filter kernel of finite length. The full

filter kernel is given by a Fourier transform of inverse transfer function in frequency space

K(t)⇐⇒ T̃−1(ω).

Using the full Nyquist sampled transfer function will generate a kernel of length equal

to that of the TOD. By truncating the filter kernel at some length, the spillover from

cosmic ray spikes is limited to the data points within the kernel length. Truncating the

kernel also decreases the frequency resolution of the filter. This is not an issue because the

Fourier domain transfer function filters are slowly varying so errors introduced by using the

truncated kernel are very small.

In addition to correcting for the transfer function of the system, we also want to limit

the signal bandwidth to the range where astrophysical signals will contribute. This is

because the white noise level will blow up at high frequency after dividing by the steeply

falling transfer function. The highest frequency component in the time stream comes from

scanning the beam across a point source. An estimate of the signal bandwidth is obtained

by dividing the scan speed by the beam width. For the 2002 season we chop the ∼ 4.5′

(FWHM) beams ∼ 3◦ (peak-to-peak) at 0.3 Hz giving a scan speed of about 108 ′/s and a
“signal bandwidth” of about 22 Hz.

One can generate a better estimate of the signal bandwidth by modeling the time stream

of the scan and taking the Fourier transform (see Figure 4.2). The figure shows a model

time stream with beam and chop parameters given in the previous paragraph. The source

is placed at both the center and edge of the chop. One notes that regardless of the source

position, the signal bandwidth is about 30 Hz; frequencies above this will contribute noise

power but no signal power.

To filter out the noise above the signal band, we use a Blackman-windowed sinc filter

[106]. Windowing the sinc filter allows us to truncate the filter kernel without causing ripples

in the pass-band from an abrupt discontinuity at the edges of the kernel. The Blackman
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Figure 4.2: Modeled scan time stream and resulting PSD for a ∼ 4.5′ (FWHM) beam
chopped ∼ 3◦ (peak-to-peak) at 0.3 Hz. The left-hand panels have the source located in the
center of the chop and the right-hand panels have the source at the edge of the chop. One
notes that the details of the comb-like structure in the PSD depend on the source position
but the full signal bandwidth depends only on the chop speed and beam size.
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Figure 4.3: Blackman windowed sinc filter kernel (left panel) for a 30 Hz cutoff. The
frequency response of this kernel (right panel) shows the steep drop in power and good
stop-band attenuation. The kernel length used here is 1023 samples.

windowed sinc kernel (see Figure 4.3) is generated by the equation

hi = K
sin 2πfc(i−M/2)

(i−M/2)π
[0.42− 0.5 cos(2πi/M) + 0.08 cos(4πi/M)] ,

where fc is the desired cutoff frequency (scaled to the sample period), K is a normalization

constant to give unity gain in band, and M is the kernel length (we use a kernel length of

1023 samples).

The use of a time-domain filter introduces correlations in the otherwise statistically

independent data samples (see Figure 4.4). This figure shows the windowed sinc filter

kernel for 30 and 50 Hz edges translated into spatial extent assuming a scan speed of 108

arcmin/s. As can be seen in the figure, for a map pixelated at 1′ resolution the 30 Hz filter

will introduce significant correlation between adjacent pixels, but there will be significantly

less correlation with a 50 Hz filter. As an example of the effect of pixel-to-pixel correlation,

consider averaging five adjacent data points together that are correlated at the 50% level.

The variance in the average will be 40% larger than if the data points were uncorrelated.

On the other hand, if the data is only correlated at the 10%, the increase in variance of

the average is < 2%. Correlated noise can greatly reduce the significance level of detecting

sources a few pixels in size.

Note that because ACBAR scans in RA, the correlations introduced by the time domain

filters are only within rows and that different DEC observations are left uncorrelated. This
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Figure 4.4: Spatial structure of the Blackman windowed sinc filter at both 30 (solid) and 50
Hz (dashed) assuming a scan speed of 108 arcmin/s. The vertical dotted lines correspond
to ±1′ and illustrate the large pixel-to-pixel correlation introduced with a 30 Hz filter.

is borne out in the noise covariance matrix and will be discussed further below. Using a

50 Hz filter has the added benefit of leaving the 2-D spatial noise power spectrum (almost)

rotationally symmetric; whereas the 30 Hz filter will remove all noise power in RA with

spatial frequency higher than 2π/(108/30) ∼ 1.74 arcmin−1. Although it is possible to use
an asymmetric power spectrum to generate an optimal filter, the optimal filter will zero the

spatial structure where there is no signal power. It is convenient to leave the additional

high-frequency noise power in the map because of the mathematical simplicity provided by

rotational symmetry and the fact that it will be removed by the optimal filter.

4.2 Spike Removal

The next step is to identify and remove signal spikes due to cosmic ray hits in the bolometers

or data drop-outs. Spikes are found by taking a pointwise difference of the time ordered

data, xi, as

∆i = xi+1 − xi.

This differencing is effectively a high-pass filter; slowly varying signals (e.g., chopper offsets)

do not appear in the difference signal. The time constant of the electronics is short compared

to sample rate and so the signal from cosmic rays rise over one or two samples and thus

appear as significant departures from the mean in ∆i. We take the RMS of the difference

data and look for spikes above a fixed σ threshold. For the data presented here we use a 5σ
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Figure 4.5: Raw time stream and pointwise differenced signal during a cosmic ray hit.
Notice that the large slowly rolling offset in the raw time stream does not appear in the
difference signal but the quick change from the cosmic ray is very prominent.

cutoff for spike identification. An example of a cosmic ray hit and the associated difference

signal is shown in Figure 4.5.

Once the data spikes are identified, the data in the vicinity must be removed. The

spike cannot simply be removed from the time stream before filtering because the TOD

would no longer be contiguous. However, leaving the spike in the TOD during Fourier

domain filtering will spill power into all of the adjacent points. To eliminate this problem

we perform all filtering by convolving a time domain filter kernel of finite length with the

TOD and removing all of the data within one kernel length of the spike. Because of the

high sample rate of the system, this conservative spike removal retains the vast majority of

the TOD and prevents any contamination of data spikes in the final maps. The very low

cosmic ray cross section of the spider-web bolometers results in an insignificant loss of data
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from cosmic ray removal.

4.3 Map Binning

For each observation, the telescope tracks a point on the sky for a fixed amount of time

while the chopper sweeps the beams across the same strip of sky many times. This is refered

to as a “stare”. For a 60 second stare integration with a chop frequency of 0.3 Hz, each

point in the strip is observed 36 times per stare. The data are divided into bins in chopper

encoder voltage and averaged to produce a binned stare. Explicitly, for time ordered data

xi and chopper encoder voltage vi we bin the stare as

x̄m =

∑

j xj

Nj
,

with the sum over all encoder voltages vj that satisfy

(vmin +m∆v) ≤ vj < (vmin + (m+ 1)∆v).

The chopper encoder sweeps ±10 V corresponding to about 3◦ = 180′. The sample
rate of ∼ 300 Hz with a chop frequency of 0.3 Hz yields about 500 samples per left- or
right-going sweep, or roughly 3 samples per arcminute per sweep. The data are binned into

180 bins per chop corresponding to roughly 1′ on the sky. The beam width is significantly

larger than 1′ which means the noise in the bins will be correlated if there is noise power

on the sky.

Each stare, n, in a multi-position raster map undergoes the same binning procedure to

produce a binned map for each channel, Xmn. The stares are separated by 1
′ in declination,

and thus, each map bin corresponds to about one square arcminute on the sky. After

binning, the pointing model generates RA and DEC coordinates for each bin and writes the

binned data and pointing information to a file. These individual raster maps then undergo

offset removal and are coadded to produce a final map of the sky.
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4.4 Offset Removal

The dominant feature of the individual coadded maps is a large, roughly parabolic, chopper

synchronous offset (see Figure 3.5). The offsets are due to modulation of the beams through

the optical system as the chopping flat rotates. The dominant contributors to the offset

structure are movement of the beams on mirror optics (which is amplified by the presence of

snow on the mirrors), spillover from the chopper, and atmospheric conditions. As described

in §3.2.3 above, we installed a blackened light baffle between the tertiary and chopper to
reduce the spillover contribution to the offsets. The baffle does not affect the offset due

to motion of the beams on the mirrors; this is only improved by frequent cleaning of snow

from the mirror surfaces.

During periods of good weather (and when the mirrors are free of snow), the amplitudes

of the offsets are quite small and very stable. During poor weather, the offsets are observed

to change with time. We have optimized our CMB observation strategy to mitigate the

effects of time varying offsets while preserving the CMB signal by performing a LEAD-

MAIN-TRAIL (LMT) observing sequence. The LMT differencing strategy works well for

removing linearly drifting offsets by generating the vector

~X = ~M − 1
2

(

~L+ ~T
)

,

for each declination. Because the stares are observed in the sequence L-M-T, one sees that

the average offset of LEAD and TRAIL should equal the offset in MAIN if the offset is

stable or changing linearly with time.

The LMT technique has the additional benefit that large-scale structures (such as those

expected from the CMB) that are not repeated in L, M, and T are not removed in the

difference. The main disadvantage of the LMT technique is that it is not easy to distinguish

whether decrement sources in the LMT map are either actual decrements in the MAIN field

or increments (such as from radio point sources) in the LEAD or TRAIL fields unless there

is sufficient sensitivity in all three maps to make the distinction. This is not an issue for

measuring the CMB power spectrum because it is the CMB power (not amplitude) in the

map that is of interest. To find SZ clusters in the maps, however, we need to employ a

different technique to remove the offsets.

Unlike large-scale CMB fluctuations, clusters are compact objects and we are not con-
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cerned with preserving the large-scale structures in the maps. We can therefore compute

an average offset for each of the L, M, and T raster maps independently and remove the

offset from each stare in the three maps. Given n declination stares of a field, we calculate

the average offset as

µi =
1

n

∑

j

Xij ,

where i denotes the bin number in the chop and j is the declination stare number. The

resultant average subtracted map, X ′, is then

X ′ij = Xij − µi.

Because the offsets can vary with time, this technique does not perfectly remove the

offset in each stare; it removes the small-scale offset structure due to snow on the mirrors

which does not change rapidly with time unless the weather is particularly poor. However,

it leaves the large-scale variations caused by the atmosphere which do not have much small-

scale power. To remove this residual power we fit and subtract an additional polynomial

from each of the stares after average offset subtraction. After RA offset removal we perform

the same procedure in declination, removing both a common “offset” as well as a polynomial.

There is usually very little residual large-scale structure in the maps after RA offset removal

except for large-scale CMB fluctuations. Thus, the DEC offset removal only has a modest

effect on the map RMS. The resultant maps are very flat and quite random in appearance.

An example of common offset plus polynomial removal for a CMB raster map is shown in

Figure 4.6.

Although the offset and polynomial removal is necessary to remove undesirable spatial

structure, it also effects the data in a number of ways which must be accounted. The first

possible issue is removal of the desired cluster signal. The pixel noise in a single observation

map is typically a few hundred µK RMS and a massive cluster of galaxies will only produce a

signal ∼ 50 µK in amplitude. It could be argued that the offset removal would be dominated
by the large statistical variance in the map and the cluster signal would remain effectively

unchanged. However, the offset removal is a linear process and thus removes cluster signal.

In a noiseless map with a cluster at the center, the offset removal truncates the cluster

signal by a factor which depends on the size of the map and weakly upon the degree of
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Figure 4.6: Illustrates the effectiveness of offset removal upon a single channel raster map
of the MAIN CMB5 field. A common offset plus third-order RA polynomial were removed.
The collection of dark points around (65,45) is the central pointing quasar. The scale was
reduced by a factor of 5 between the left and right hand figures.

polynomial removed. For the 180′ by 103′ CMB5 maps we remove a third-order polynomial

in RA and a first-order polynomial in DEC. For a 5′ FWHM Gaussian beam on a flat field,

the offset plus polynomial removal would reduce the peak signal by ∼ 10%. We will discuss
this issue more thoroughly in the Detection Efficiency section below.

The offset removal eliminates a significant fraction of the primary CMB anisotropy

from the map. Although this is beneficial to cluster searching because it reduces the “back-

ground” noise in the map, the change in the CMB power spectrum should be accounted for

when developing an optimal filter and this will be discussed further below. The last con-

cern from offset removal is the introduction of correlation between pixels. This will produce

off-diagonal elements in the noise covariance matrix and reduce the significance of a cluster

detection. This too will be discussed more fully in the Power Spectrum Estimation section.

We have an additional degree of complexity for offset removal because our fields include

a bright quasar as a pointing reference. If neglected, the quasar will contaminate the average

offset and cause ringing in the map from polynomial removal. Ideally, we would fit to the

quasar and remove it from each binned map but the sensitivity in the individual maps is

not sufficient to completely remove the quasar from the binned map. Simply subtracting

the quasar from the map using its known position is not possible either because quasar

fluxes are highly time variable and the pointing jitter causes its location to vary slightly

with time. To eliminate this we flag the pixels within 10′ of the quasar and exclude them

from the offset removal process; we then remove the quasar after coadding. The efficacy

of masked offset removal is illustrated in Figure 4.7 which shows a 150 GHz raster map of
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Figure 4.7: Shows the ability to remove large, time-varying offsets from a raster map in an
area with a known source. This figure is a 150 GHz raster map of RCW38 and the offsets
are atypically large and variable. We masked out the 8′ surrounding the known position of
RCW38 and removed a fourth-order polynomial in RA and a constant in DEC.

RCW38 with particularly large offsets that change with time.

4.5 Data Cuts

In this section, we describe the various cuts applied to the raw data set before inclusion in

the coadded maps. The first cut is based on the reliability of the pointing solution for a

given observation. There are brief periods of time where the observation of galactic sources

does not yield a consistent pointing solution and CMB observations during these periods

are excluded. We also verify that the chopper is chopping during the entire observation. We

next verify that the fridge base temperature is cold (< 250 mK) during the entire observation

to prevent significant changes in detector responsivity. If the fridge is still cooling down

during an observation or is warming up before the end of an observation, we do not include

it.

Our final cut is referred to as the “snow cut.” As mentioned above, accumulation of snow

on the telescope mirrors causes a large chopper synchronous signal. Snow also attenuates
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the astrophysical signal before reaching the detectors. This is an especially sinister effect

because the signal from the responsivity calibrator mounted in the tertiary is not affected

by snow on the telescope mirrors and one may naively assume the system responsivity has

not changed. The effect was discovered by measuring the integrated RCW38 flux with time

and noticing that the reduction in signal was correlated with an increase in map variance

from the chopper offset. Figure 4.8 shows the average integrated RCW38 signal at 150, 220,

and 280 GHz versus the average RMS of the C row (220 GHz). One can see from the plot

that the magnitude of signal attenuation is a strong function of frequency. We determined

that an average C row RMS of 0.02 V provided a reasonably conservative cut level below

which the 150 GHz row has very little attenuation. As seen in the figure, this cut level is

also acceptable for the 220 GHz channels but completely unacceptable at 280 GHz where

the average signal has fallen dramatically by this point. Approximately 650 of the original

1280 hours of CMB5 data survive all of the cuts and is included in the final coadded maps.

In this thesis we will primarily concern ourselves with the 150 and 220 GHz data but

will not use the 280 GHz for cluster searching because of its poor sensitivity (approximately

6 times worse than the 150 GHz maps). Thus, we implement the C row RMS ≤ 0.02 V snow
cut for the deep CMB and cluster observations. Figure 4.9 shows the average C row RMS

versus CMB5 observation along with a horizontal line representing the 0.02 V threshold.

One can see that there are very clean periods punctuated by severe snow accumulation.

The 0.02 V cutoff level removes 40% of the available CMB5 data and is our largest source

of data loss.

4.6 Coadding Maps

The individual raster maps are then calibrated (as described above) and coadded into a

map for that observation at each of the observing frequencies. For each spectral frequency

we generate a rectangularly gridded empty master map, M , large enough in spatial extent

to encompass all of the points from the raster maps. We then cycle through the individual

raster maps and determine which bin within the master map (for that observing frequency)

to include each sample using the reported pointing model RA and DEC of each raster map

point (αij , δij). The location of a given binned map point in the master map depends on
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Figure 4.8: Average integrated signal of RCW38 at 150, 220, and 280 GHz versus the
average RMS of the four channels in the C row (220 GHz) for 2002. The vertical line
corresponds to an average C row RMS of 0.02 V.
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Figure 4.9: Average RMS of the C row (220 GHz) versus time for all CMB5 observations.
The dashed horizontal line corresponds to 0.02 V and all observations lying above this
threshold are cut from the data sample.

the size of the master map pixels, given explicitly by

(RA bin)ij = floor

(

αij − αmin
∆α

)

(DEC bin)ij = floor

(

δij − δmin
∆δ

)

,

where αmin and δmin are the coordinates of the corner of the master map on the sky and

∆α and ∆δ are the widths of the master map bins.

There are intrinsic sensitivity differences between the individual channels that go into a

single frequency’s observation map and we use this information to weight the data points

rather than simply average the points in each bin. We perform a weighted average of the

points within each observation bin using the inverse of the variance of the individual binned

maps for that sample as the weight. Given a collection of samples in each bin, X imn, from

maps, i, with map RMS σi, we calculate the weighted average of each bin in the observation

map as

X̄obsmn =

∑

iX
i
mn/σ

2
i

∑

i 1/σ
2
i

.

Once we have coadded all the channels within a given observation to generate a map at

150 GHz we have sufficient sensitivity on the central quasar to use it as a pointing reference
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Figure 4.10: Measured position offsets in RA and DEC of the quasar PMN J0253-5441 in
the CMB5 field for all files used in the coadded data set. The rms dispersion is 0.39′ in RA
and 0.47′ in DEC. The dispersion is a combination of pointing jitter and centroiding error.

and remove it from the map. We measure the centroid of the quasar and compare it to

the reported pointing model position by smoothing the map with a narrow Gaussian and

determine the best-fit position. The scatter of quasar centroid positions for the CMB5 field

is shown in Figure 4.10 and represents a combination of actual pointing jitter and centroid

uncertainty. We can then use the measured centroid position to shift the coordinates of

the coadded map before adding it to the final map. This will produce a minimally sized

quasar image in the final map but the resulting size of the quasar may not accurately

represent the final coadded beam size since the quasar is used for both positioning and

beam size estimation. We remove the quasar by fitting an asymmetric 2-D Gaussian to

the 10 arcminutes surrounding the quasar and subtract the best fit Gaussian. This quasar

removal works well but we conservatively exclude the 10′ around the quasar from further

analysis because of correlations introduced by the time domain filters.

Once the quasars are removed from all of the coadded observation maps, we measure the

variance in each map and use it as a measurement of the atmospheric conditions during the

observation for weighting the final coadd. Since the observation maps do not have uniform

coverage across the entire map, we only use the overlap region where all channels within

that frequency were sampled to generate the weighting. As with the observation maps, we
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generate the final coadded map by

Mmn =

∑

αX
α
mn/σ

2
α

∑

α 1/σ
2
α

,

where Xαmn are the individual observation map values and σ
2
α is the variance of the overlap

region of observation map α.

The binned maps of the CMB5 MAIN field are shown in Figure 4.11 at all three fre-

quencies and we have intentionally left the quasar in the field and performed no smoothing

to illustrate the effective beam size. This effective beam includes the combination of the

actual beam sizes along with pointing jitter. The same maps are also shown in Figure 4.12

but we have removed the quasar from the field using the prescription above.

The error bar associated with Mmn is not simply the square root of the variance of the

points {Xαmn} because points that are de-weighted because of large map variance should
contribute less to the error. We thus use a weighted variance defined as

σ2M =
1

N − 1

∑

α (Xα −M)
2 /σ2α

∑

α 1/σ
2
α

.

Rather than run through the data twice – once to generateMmn for each point and another

time to calculate σM – we see that expanding the square of the difference term we get

σ2M =
1

N − 1
(〈

X2
〉

−M2
)

,

where the brackets indicate weighted average. So we can keep track of the sums of Xα/σ
2
α,

X2α/σ
2
α, and 1/σ

2
α and just remove the square of the weighted average at the end of the coadd

to determine the variance. One can see that in the limit of equal weights, the weighted

variance becomes the standard variance. Maps of σM – which are useful for quantifying sky

coverage – for the LEAD, MAIN, and TRAIL CMB5 fields at 150 GHz are shown in Figure

4.13. Overplotted on the error maps are boxes indicating the low-noise regions of the three

fields used for cluster searching in subsequent sections.

Related to the variance is the noise covariance matrix, C. If the master map has N total

points then the noise covariance matrix is N × N and measures the degree of correlation
between each pair of pixels in map. If the points are uncorrelated, then the diagonal

elements of C will merely be the variances of each map pixel and the off diagonal points
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Figure 4.11: Final coadded maps at 150, 220 and 280 GHz of the CMB5 MAIN field after
common offset and second order polynomial removal. The maps are pixelated at 1′ in RA
and DEC. All three plots have been converted to thermodynamic temperature and the
scale on all three plots is from -1 to 2 mK. This image is useful because the point source
quasar shows the final effective beam size of the system which includes pointing jitter. We
have only removed a common offset and second-order RA polynomial from these maps to
preserve the large-scale structure.
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Figure 4.12: Same as Figure 4.11 except the central quasar has been removed and the plots
rescaled to ±400 µK.
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Figure 4.13: Shows the error maps of the three CMB5 fields at 150 GHz. The scales on
the images are from 0 to 140, 100, and 140 µK per 1′ pixel. The white boxes indicate the
lowest noise regions of the maps which are used for SZ cluster searching.
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will be zero. If we convert the αth observation map and final coadd map into data vectors

Xαm and Mm of length N , then the weighted noise covariance matrix element between the

mth and nth pixels of the coadded map is given by

Cmn =
1

N − 1

∑

α(X
α
m −Mm)(Xαn −Mn)/σ2α

∑

α 1/σ
2
α

,

where the sum is over coadded maps {α} with variance σ2α. Given that not all pixels in the
master map are sampled in each individual coadd map, this sum will be incomplete.

The noise covariance matrix of the coadded data vector ~M is related to χ2 for a model

data vector ~s by

χ2 =
(

~M − ~s
)T

C−1
(

~M − ~s
)

,

which in the limit of a diagonal noise covariance matrix is equal to the usual expression

χ2 =
∑

m

(Mm − sm)2 /σ2Mm .
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Chapter 5 Data Analysis

5.1 Jackknife Tests

To test whether the structure seen in the maps is repeatable, we can break the data into the

first half and second half, process the two halves separately, and compare the average and

difference of the two halves. To keep the weighting the same, we also multiply the difference

map by 0.5. We remove common offsets from the individual maps along with a third-order

polynomial in RA and first-order polynomial in DEC. Approximately 62 raster maps went

into each of the halves. The resulting jackknife maps of the 150 GHz LEAD, MAIN, and

TRAIL CMB5 fields are shown in Figures 5.1 through 5.3. The maps are pixelated at 1′

which substantially over-samples the 5′ FWHM beam and results in a somewhat noisy map.

By smoothing the maps with a 5′ FWHM Gaussian we eliminate most of the small-scale

noise while leaving the large-scale power in the maps. The RMSs in the smoothed 150

GHz CMB5 fields are given in Table 5.1 for both the sum and difference. Keep in mind

that because the maps are small, the offset removal eliminates the very large-scale CMB

anisotropy resulting in a significantly smaller map variance than would be expected from

raw CMB (∼ 100 µK for ΛCDM). Note that the difference RMSs are a factor of 3–5 smaller
than the sum RMSs even though we removed most of the large-scale CMB power from the

map with offset removal.

We can also perform a multi-frequency jackknife by averaging and differencing the signal

at two frequencies. Figure 5.4 shows the average and difference of the overlapping regions

of 150 and 220 GHz CMB5 MAIN field maps; both have been smoothed with a 5′ Gaussian.

Field σavg σdiff
(µK) (µK)

LEAD 27.0 8.1
MAIN 25.6 5.6
TRAIL 26.6 8.1

Table 5.1: RMS of the 5′ Gaussian smoothed average and difference 150 GHz CMB5 maps
for the first-half/second-half jackknife test.
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Figure 5.1: First-half versus second-half jackknife for the 150 GHz CMB5 LEAD field. The
map is pixelated at 1′ and the scale is ±100 µK. A common offset and third-order RA
polynomial and first-order DEC polynomial have been removed; this eliminates the largest
scale CMB fluctuations from the image.
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Figure 5.2: First-half versus second-half jackknife for the 150 GHz CMB5 MAIN field. The
map is pixelated at 1′ and the scale is ±100 µK. The 10′ around the central pointing quasar
has been masked out.
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Figure 5.3: First-half versus second-half jackknife for the 150 GHz CMB5 TRAIL field. The
map is pixelated at 1′ and the scale is ±100 µK.
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Figure 5.4: Shows the multi-frequency jackknife for the CMB5 MAIN field between 150
GHz and 220 GHz. The 220 GHz map has been scaled by 0.75 to maximize the ratio of
average map dispersion to difference map dispersion. The maps have been smoothed with
a 5′ FWHM Gaussian and are pixelated at 1′ with a scale of ±100 µK. The 10′ around the
central quasar has been masked out.

We can also test the for a flat spectrum by scaling the 220 GHz map by some factor and

measuring the ratio of the dispersion in the average map to the dispersion in the difference

map. We find the optimum ratio occurs for a scaling of 0.75. However, this scaling does not

account for the large difference (∼ 3) between the noise in the 220 versus 150 GHz maps
which would tend to drive the “optimum” ratio down. Using the 0.75 scaling we measure

the RMSs in the maps to be 23.8 µK in the average map and 8.4 µK in the difference map

indicating that most of the structure in the average map is consistent between frequencies.
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5.2 Source Extraction

The topic of extracting compact sources from a noisy background has been the subject of

many recent papers. Most of these have targeted the upcoming Planck satellite mission1,

which is expected to discover thousands of previously unknown clusters of galaxies [57].

What Planck will lack in sensitivity on individual pixels it will more than make up for

by mapping the entire microwave sky at many frequencies which will allow the spectral

discrimination of SZ sources. This has prompted much development of extraction methods

to discern SZ clusters in the presence of a noisy background composed of both instrumental

variance and primary CMB anisotropy.

The methods generally fall into two broad categories: Bayesian and Wiener. Bayesian

methods attempt to identify clusters in a single-frequency map by probing the likelihood

distribution of clusters in a four-dimensional parameter space (two spatial dimensions, a

cluster size, and central temperature decrement) using the measured noise properties of

the data and an estimate of the power due to the CMB and other foregrounds. Wiener

methods, otherwise known as Optimal Filtering, develop a spatial filter that minimizes the

contamination of undesirable noise sources (e.g., instrument noise and foregrounds) while

maximizing the contribution from sources of a given spatial structure. We elect to use

optimal filters for extracting candidate sources from the ACBAR data set.

5.2.1 Optimal Filtering

Optimal filtering makes use of the measured noise properties of a data set and a priori

knowledge of a source morphology to generate an unbiased spatial filter. This filter max-

imally enhances objects with the desired shape while minimizing the noise variance in a

map. In the present case, we concern ourselves with extracting cluster candidates from a

single-frequency map (150 GHz) with an unremovable background of CMB and instrument

noise. The matched optimal filter is given, in Fourier space, by the ratio of the source tem-

plate to the noise power spectrum. This enhances spatial scales where the signal-to-noise

is largest. The details of generating a matched filter are given in Herranz et al. (2002).

This reference is primarily concerned with the relatively new subject of scale adaptive filters

(such as wavelets), but we found that the adaptive filters did not behave as expected for our

1http://astro.estec.esa.nl/SA-general/Projects/Planck/
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data set. The traditional matched filter, however, yielded consistent and reliable results.

We will focus only on the implementation of the matched optimal filter and use the terms

“matched filter” and “optimal filter” interchangeably.

The necessary ingredients for an optimal filter are a spatial template of the desired

source, τ(x), and an estimate of the noise background, P (q). In Fourier space, the matched

filter, ψ̃(q), is given by

ψ̃(q) =
1

a

τ(q)

P (q)
,

where the factor a is a normalization factor so that the filter is unbiased. The convolution

of the filter with the source profile is a multiplication in Fourier space and for a source at

the origin (~x = 0) we have

∫

d~q τ(~q)ψ̃(~q) = 2π

∫

dq qτ(q)ψ̃(q) = 1,

where we have assumed symmetry in the second equation. This yields the normalization

constant for a given source template and noise power spectrum of

a = 2π

∫

dq q
τ2(q)

P (q)
.

For the case of ACBAR, the ∼ 5′ FWHM Gaussian beams smooth out the small-scale
structure in the cluster and so we assume a symmetric source profile, τ(~q) = τ(q). The oft

used β-model cluster profile is found to fit cluster emission well [77] and is given by

s(x) =
1

[1 + (x/rc)2]
3β/2−1/2

,

which for β = 2/3 equals

s(x) =
1

√

1 + (x/rc)2
.

The β-model has the undesirable features of a diverging spatial integral and Fourier trans-

form. We therefore elect to use the modified β = 2/3 profile described in Hobson and

McLachlan (2002) given as

s(x) =
rcrv
rv − rc

(

1
√

r2c + x
2
− 1
√

r2v + x
2

)

,
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where rc is the core radius of the cluster and rv is a “virial” radius. rv is not to be confused

with the actual virial radius of the cluster, but is used to truncate the extended emission

of the cluster at large radii. The authors use rv = 3rc and we follow suit. The Fourier

transform of the modified β-model has the simple form

s̃(q) =
rcrv
rv − rc

e−rcq − e−rvq
q

.

The ACBAR beams are well approximated by a rotationally symmetric Gaussian given by

b(x) = e−x
2/2θ2

b̃(q) = θ2e−(qθ)
2/2,

where θ is the Gaussian width of the beam. We can then convolve the beam profile with

the source template by multiplying in Fourier space to give

τ̃(q) = b̃(q)s̃(q) =
θ2rcrv
rv − rc

e−(qθ)
2/2 e

−rcq − e−rvq
q

.

5.2.2 Noise Power Spectrum Estimation

Both matched filter and Bayesian cluster detection methods require knowledge of the “noise”

power spectrum (or noise covariance matrix). The noise is composed of both instrumental

noise as well as background noise sources. The background noise sources for ACBAR are

residual atmosphere and the CMB. In the limit that the data is completely dominated by

noise one can use the measured power spectrum of the map as the “noise” power spectrum.

However, if there is appreciable signal power in the map, then one must estimate the noise

contribution since the signal and noise power spectra are not separable. The instrumental

and atmospheric contributions are calculated directly from the dispersion and correlations

within the data after removing the astrophysical signal. Estimating the background CMB

contribution to the noise power is more difficult.

As detailed above, the calculation of the noise covariance matrix, CNmn, is mathematically

straightforward. In practice, however, it is very memory-intensive and quite cumbersome

to calculate for a large number of map pixels. For a map with 10,000 pixels the computer

must store 400MB of data (for floating point precision) along with all the computational
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overhead to calculate the matrix. This usually involves at least one more matrix of the

same size. The situation is somewhat simplified if the correlations in the data are roughly

known and the full N ×N matrix need not be measured.
For the case of ACBAR, the raster maps are made by chopping the beams in RA for

on the order of a minute for each DEC step. Because of the reasonably long integration

time per stare and the time for the telescope to move between stares, the DEC stares can

be considered effectively uncorrelated. This approximation is borne out in the measured

covariance matrix with the cross-row elements substantially smaller than the diagonal and

very random. However, within each row the situation is much less clean because of correla-

tions introduced by the atmosphere as well as time domain filters applied to the TOD and

offset removal.

To calculate the contribution of the covariance matrix from the CMB we start by gener-

ating the correlation function, C(θ), which gives the average correlation between two pixels

separated by an angle θ on the sky. The correlation function is derived from the CMB

power spectrum by

C(θ) =
1

4π

∑

`

(2`+ 1)C`W`P`(cos θ),

where the sum is over the spherical harmonic multipole `. The C` in this expression is the

angular power spectrum of the CMB and W` is refereed to as the “window function” of the

experiment. The window function depends on the beam shape as

W` = e
−`(`+1)σ2

b ,

where σb is the Gaussian width of the beam in radians. The P` are the zeroth order Legendre

polynomials and θ is the separation of the pixels on the sky. The CMB covariance matrix

only depends on the magnitude of the separation between the two pixels and not their

absolute location. Thus, for the pair of points on the sky at locations ~θm and ~θn , the

theoretical contribution to the CMB covariance matrix is given by

CCMBmn = C
(∣

∣

∣

~θm − ~θn
∣

∣

∣

)

.

With both the noise and CMB covariance matrices, the full covariance matrix, CT , is the
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Figure 5.5: Shows the measured noise correlation function for data processed with a 50 Hz
low-pass filter and pixelated at 1′. This function is calculated by averaging the off-diagonal
strips of the full noise covariance matrix. The left panel shows the full correlation function
and the right panel is a blow-up of the first 10 bins. As discussed in the text, the large-scale
correlation is due primarily to offset removal and the small-scale structure visible in the
right panel is due primarily to the 50 Hz filter.

sum of these two,

CT = CN + CCMB .

We measured the intra-row noise correlation function by averaging the block diagonal

noise covariance matrix. We show the results for a 50 Hz low-pass cutoff filter in Figure 5.5.

One can see from the zoomed in plot on the right that the first off-axis pixel correlation

is small – but not eliminated – by moving using a 50 Hz LP filter rather than 30 Hz.

The morphology of the longer scale correlation from offset and polynomial removal is fairly

independent of the LP filter edge.

Uncorrelated Gaussian noise will have a white (flat) spatial power spectrum in the

absence of filtering. We have selected our cutoff frequency of 50 Hz to leave the noise

power effectively white. Our scan speed of 108 arcmin/s and 1′ pixelization give a Nyquist

frequency of 54 Hz. However, our 2002 data has a narrow noise line in the power spectrum

at 55 Hz which we believe is from a mechanical resonance with the muffin fans in the “blue

box” that holds the VXI crate on the back of the telescope. Thus, we use a conservative

cutoff frequency of 50 Hz; this makes the power spectrum slightly asymmetric but prevents

unwanted microphonics from contaminating the data.



129

The integral of the noise power spectrum gives the total variance due to noise in the

map. For a map of uncorrelated Gaussian noise, the variance of the individual pixels is

equal to the noise variance in the map (σpixel = σmap). A map with power spectrum P (~q),

where ~q is the 2-D spatial frequency, has a map variance given by

σ2map =

∫

d~q P (~q)

= 2π

∫

∞

0
dq qP (q)

= 2π
∑

q

qPq∆q,

where in the second line we have assumed that the noise power spectrum is rotationally

symmetric so that it depends only on the magnitude of the spatial frequency and not its

direction (q = |~q|). In the last line have converted the integral to a sum and binned the
power spectrum into bins of width ∆q.

Because the data is processed such that we believe that σpixel = σmap is approximately

valid, we assume the noise power spectrum is flat. We then have

PN (~q) =
σ2map
∫

d~q
=
σ2pixel
4q2max

,

where in the right-hand expression we’ve assumed that map bin resolutions are the same

in RA and DEC, thus giving the same maximum spatial frequency in both dimensions,

qmax = π/∆θ. Total area in spatial frequency space is then 4q
2
max.

To calculate the contribution to the power spectrum from the CMB, we make use of the

relation

σ2CMB =
1

4π

∑

`

(2`+ 1)C`W`.

Note that there is an implicit lower limit on the sum over ` if the map is not full-sky given

by ` ∼ 2π/θ where θ is the size of the map in radians. The CMB5 map is approximately
2.5◦ in extent which gives a minimum ` of approximately 140.

With the equation above we can determine the shape of the CMB power spectrum,

PCMB(q), by equating the map variances to yield

2π
∑

q

qPCMBq ∆q =
1

4π

∑

`

(2`+ 1)C`W`.
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For ∆q = 1 = ∆` we have

2πqPCMBq =
1

4π
(2`+ 1)C`W`

PCMBq =
1

8π2q
(2`+ 1)C`W`.

For ` larger than about 100 – which is the case for the ` range available to ACBAR – the

approximation ` ' q (with q in inverse radians) is valid and the CMB power spectrum can
be approximated as

PCMBq ' 1

4π2
C`=qW`=q.

The full “noise” power spectrum for use in generating an optimal filter is then simply

Pq = P
N
q + P

CMB
q .

We now compare the measured power spectrum from the offset removed MAIN CMB5

field with that predicted by a ΛCDM power spectrum and white 27 µK RMS noise per

1′ pixel (see Figure 5.6). The qualitative agreement between the two power spectra is

remarkable. The model power spectrum has not been corrected for the effects of offset

removal and thus predicts significantly more power at q < 0.2 arcmin−1 than is measured.

As will be seen shortly, the optimal filter will pass no power for spatial frequencies less

that about 0.2 arcmin−1 and so the over-prediction of large-scale power will not have a

significant effect on the optimally filtered data. One can also see from the figure that the

approximation of white noise is not quite accurate around q ∼ 1 arcmin−1. This departure
could be the desired cluster signal power manifesting in the power spectrum. We will explore

the differences produced using optimal filters based on the model power spectrum versus

the realized power spectrum below.

5.2.3 Cluster Sizes

Optimal filters require a cluster profile template, τ(x), which includes a dependence upon

the cluster core radius, rc. The angular core radius of a cluster depends on its mass,

formation epoch, observation redshift, and the underlying cosmology of the Universe. For

very small clusters, the relatively large ACBAR beams will leave the source unresolved and

the source template will be the beam shape. More likely, however, the clusters ACBAR can
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Figure 5.6: Compares the measured power spectra of the CMB5 fields LEAD (diamonds),
MAIN (pluses), and TRAIL (boxes) at 150 GHz to that predicted with a ΛCDM cosmology
(solid) and 27 and 40 µKGaussian noise per 1′ pixel (dotted). The predicted power spectrum
has not been corrected for the effects of offset removal and over-predicts noise power on the
largest scales. Also shown is the power spectrum of a cluster (dashed) with a 0.7′ core
radius capable of producing a 100 µK decrement in a 5′ beam.
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detect will be a significant fraction of the beam width in size and the source template will

be best modeled as the convolution of the primary beam and an intermediate size cluster.

If the source template in the optimal filter is too small, then the extended cluster emission

will be filtered out of the map. On the other hand, if the source template is too large, more

of the intrinsic CMB anisotropy will pass through the filter and increase the map variance.

Thus, we need to determine the most likely range of cluster core radii that ACBAR is

capable of detecting.

We accomplish this by using hydrodynamical cluster simulations provided by Mohr and

Evrard which image SZ clusters of a range of masses at redshifts 0.06, 0.5, 1.0, 1.5, and

2.3 in ΛCDM, SCDM, and OCDM cosmologies. The simulated clusters are described in

detail in Mohr and Evrard (1997). The parameters in the three cosmologies are: 1) ΛCDM:

ΩM = 0.3, ΩΛ = 0.7, σ8 = 1, and h = 0.8, 2) SCDM: ΩM = 1, ΩΛ = 0, σ8 = 0.6, and

h = 0.5, 3) OCDM: ΩM = 0.3, ΩΛ = 0, σ8 = 1, and h = 0.8. There are sixteen clusters in

each cosmology and each cluster is imaged at a distance of 0.06c/H0 along three orthogonal

axes resulting in 48 cluster images per cosmology. The images are binned in 0.5′ pixels

which are scaled to the appropriate size at the specified redshift with the angular diameter

distance relation.

We scale the Hubble constant in the cluster images for ΛCDM and OCDM to the Hubble

Key Project value of h = 0.72 but retain the SCDM value of h = 0.5 to keep the age of the

Universe larger than the age of the oldest stars. The physical properties of the simulated

clusters scale like R ∝ h−1, M ∝ h−1, and y ∝ h. Few of the simulated clusters have

masses exceeding 1015 M� which, as will be explained later, is the realistic mass range

accessible to ACBAR. To extend the cluster sample we assume the cluster properties follow

“self-similar” scaling relations, which agrees with the scaling observed in hydrodynamical

simulations [80]. Under self-similarity, if the mass of the cluster is increased by a factor α

the size of the cluster scales as α1/3 and the Compton depth (and temperature decrement)

scale as α.

We start by determining the ballpark temperature anisotropy that ACBAR will be able

to classify as a detection. To do this, we form an optimal filter with the source template equal

to the 5′ Gaussian beam. This point source response is the best-case situation because the

physical scale of the filter will be the smallest, thus introducing the least amount of confusion

from primary CMB anisotropy. We apply this optimal filter to the most sensitive region of



133

Figure 5.7: Left panel shows cluster mass, M200, versus the expected convolved central
decrement for ΛCDM (pluses), OCDM (diamonds), and SCDM (triangles) cosmologies.
The central decrement, ∆T , is the maximum temperature decrement at 150 GHz of an SZ
cluster after convolution with the 5′ beam of ACBAR. The right panel shows the cluster
core radius, rc, versus central temperature decrement for the same three cosmologies. The
dashed vertical line at 60 µK denotes a conservative 4σ lower limit to the optimally filtered
maps.

the 150 GHz CMB5 map. The 1σ RMS of the optimally filtered map is approximately 15

µK which will require a beam-convolved cluster decrement to exceed 60 µK in amplitude

for a 4σ detection. Unfortunately, clusters capable of producing a 60 µK decrement in a 5′

beam must be very massive (& 1015 M�), and hence, are quite rare objects in the sky (refer

to Figure 1.6).

Now that we have a realistic estimate of the cluster temperature decrement accessible

to ACBAR, we need to convert that into a range of core radii for the optimal filter. We

do this by taking each of the simulated SZ clusters described above and fit for the core

radius of the cluster template, s(x), given above (assuming rv = 3rc). We then convolve the

simulated cluster with a 5′ Gaussian beam and measure the central temperature decrement

that would be measured by ACBAR from that cluster. The results are presented in Figure

5.7, which shows the cluster mass, M200, and core radius, rc, versus measured central

decrement, ∆T , for each of the three cosmologies. The mass estimator M200 is the mass

contained within a sphere of radius r200 in which the average interior density is 200 times the

critical density. We have only included the simulations from redshifts z = 0.5, 1.0, and 1.5

because this represents the realistic range of redshift that massive clusters will be present
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(refer to Figure 1.6). Overplotted is a line denoting a 60 µK measured central temperature

decrement which shows that ACBAR will only be able to detect clusters of mass greater

than about 1015 M� at 4σ, fairly independent of cosmology.

The parameter we are trying to constrain with these simulations is the likely range of

core radii corresponding to detectable clusters. This is shown in the right-hand panel of

Figure 5.7. We have drawn a vertical line corresponding to 60 µK and we can see that,

unlike the cluster mass, the core radii of clusters above this temperature threshold are not

well constrained. This is because the SZ temperature decrement is roughly proportional

to the total mass of the cluster, but the physical core radius depends upon the redshift

of cluster formation and the apparent core radius depends on geometric effects from the

angular diameter distance. As seen from the figure, the likely range of detectable core radii

lies roughly within the range of 0.4− 1.0′.
Because the core radius is small compared to the main Gaussian beam, one may be

inclined to assume the source is completely unresolved and simply use the 5′ Gaussian

beam as the source template. To test this approximation, we fit the Gaussian width to the

convolution of the primary beam and a model cluster template of varying core radius and

plot the fit FWHM versus the core radius in Figure 5.8. One can see that for very small

core radii the convolved FWHM is effectively the same size as the raw beam, but for core

radii in the detectable range of 0.4 − 1.0′ the spread in beam size is significant. With no
clearly localized optimum cluster scale we will use optimal filters across the likely size range

to search for clusters in the maps. It will be shown below in §5.4.2 that the signal-to-noise
of a cluster in the filtered maps will not depend strongly upon the assumed cluster core

radius.

5.2.4 Application of Optimal Filters

Now that we have both a realistic source template and a noise power spectrum, we can

generate optimal filters using the prescription given above. As we saw in Figure 5.6, the

measured map power spectrum and the model noise power spectrum are very similar. Figure

5.9 shows the isotropic Fourier transform of the matched filter, ψ̃(q), with a beam size of

5′ and a core radius of 0.7′ for both the measured map noise power spectrum and a model

power spectrum generated with a ΛCDM cosmology plus 27 µK of white noise. One can

see from the figure that the optimal filter based on the measured and model power spectra
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Figure 5.8: Shows the best fit Gaussian FWHM of the convolution of a 5′ FWHM Gaussian
beam and a cluster source profile (given in text) versus the cluster core radius, rc.

are quite similar. We elect to use the model power spectrum for generating the matched

filter least we contaminate the “noise” power spectrum with candidate cluster signal in the

deep CMB images. The other feature to take away from Figure 5.9 is that cluster signal

power at large angular scales is lost because of the contribution of primary CMB noise

power to the denominator of the optimal filter. Figure 5.6 illustrates this point more clearly

by comparing the power spectrum of a rc = 0.7
′ cluster (convolved with a 5′ beam) with a

ΛCDM power spectrum and white noise. This effects larger clusters significantly more than

compact clusters because a larger fraction of their flux is

A related question is the effect of beam size upon the post-filter map RMS; this is

illustrated in Figure 5.10. The plot assumes a ΛCDM cosmology and 50 µK per 0.5′ pixel

(comparable to the deepest ACBAR maps) and a cluster core radius of 0.7′. The optimal

filter is normalized to be unbiased to this model cluster for all beam widths; the S/N ratio

on such a cluster is inversely proportional to the post-filter map RMS. For the cluster model

and noise level given above, the “optimum” beam size is about 4′. The slow rise at large

beam size is caused by including an increasing fraction of primary CMB anisotropy. The rise

at small beam size results from the fixed pixel instrument noise blowing up as the smaller

beam smoothes fewer noise pixels..

If one is optimizing an experiment to search for clusters, this plot does not tell the entire

story for a few important reasons. First is that the cluster mass function (and, hence, flux

function) is very steep and going to smaller beam sizes will couple more efficiently to the
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Figure 5.9: Shows the Fourier space representation of the match filter, ψ̃(q), for a Gaussian
beam size of 5′ and a cluster core radius of 0.7′ using both the measured CMB5 MAIN
map power spectrum (dotted) and a ΛCDM plus 27 µK white noise model power spectrum
(solid).



137

Figure 5.10: Shows the RMS of an optimally filtered ΛCDM anisotropy map versus beam
FWHM (solid line) with fixed 50 µK instrument noise per 0.5′ pixel and assuming a cluster
core radius of rc = 0.7

′. The dashed curve shows the CMB contribution to the total RMS
which increases with beam size and the dotted line shows the contribution from instrument
noise.

less massive, but significantly more populous, galaxy clusters. Another effect to consider

is that the temperature sensitivity of an instrument is independent of beam size and so an

instrument with larger beams will map a larger region of sky to a fixed sensitivity than a

small beam experiment. In addition, we have assumed the map is pixelated at 0.5′ and the

instrument noise contribution rapidly drops with the smoothing effect of larger beams.

We illustrate the effect of varying the cluster core radius upon the shape of the optimal

filter in Figure 5.11. The figure shows how the optimal filter is shifted to slightly larger scales

(smaller spatial frequency) as the core radius is increased from 0 to 1′. Although increasing

the core radius improves the coupling to the extended cluster emission, this comes at the

price of increasing the post-filter map variance by passing an increasing fraction of primary

CMB power. This point is illustrated in Table 5.2 which lists the post-filter map RMS

from the CMB as well as total map RMS for a 5′ Gaussian beam, 27 µK of white noise

per 1′ pixel, and ΛCDM cosmology for cluster core radii from 0 to 1′. One sees from the

table that the noise from the CMB increases by about a factor of two between a pure 5′
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Figure 5.11: Shows the Fourier space representation of the optimal filter for ΛCDM cos-
mology with 27 µK of noise and a 5′ beam (bottom) as well as for the beam convolved with
core radii of 0.4′, 0.7′, 1.0′, from second to bottom to top. The filters have been shifted
vertically for ease of visibility.

Gaussian beam and the same beam convolved with a 1′ core radius cluster. The variance

is determined by generating a model power spectrum as described above, performing the

convolution in Fourier space, and using Parseval’s theorem,

σ2 = 2π

∫

dq qψ̃2(q)P (q),

where the integral is bounded below by the minimum q determined from the size of the map

(201′ × 201′ in this case).
A related question is how well the post-filter map variance integrates down with time

given a single-frequency map (in which case the CMB is not removable). In the case

of ACBAR, the CMB rapidly becomes the limiting “noise” source at 150 GHz because

it cannot be removed with the less sensitive 220 and 280 GHz channels. This point is

illustrated in Figure 5.12 which shows the total post-filter RMS, the residual RMS from

the CMB, and the extra noise power from instrumental variance. It may be noted that

the residual CMB power does decrease with integration time. This is because the lower
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rc σCMB σtotal
(′) (µK) (µK)

0 8.4 15.3
0.4 10.3 16.9
0.7 11.9 18.3
1.0 13.7 19.9

Table 5.2: Post optimal filtering total RMS and CMB-only RMS versus cluster core radius
for the parameters listed in the text.

instrumental noise floor allows the optimal filter to push to higher spatial frequencies where

there is less CMB power.

The real-space representation of a matched filter with cluster core radius of rc = 0.7
′

is shown in Figure 5.13 along with a 5′ Gaussian for reference. One can see that the

physical extent of the filter kernel can extend far beyond the compact beam. The oscillations

in the large-scale modes tend to cancel the largest scale structures (dominated by CMB

fluctuations) when convolved with the map.

We choose to apply the optimal filter in Fourier space rather than generate a real-space

kernel and convolve with the data. To do this, we take the entire map for a given field and

pad it with enough zeros so that we do not need to worry about wrap around edge effects.

We also zero the edges of the map where the noise rises significantly above the average

noise level. We do this because the spatial extent of the filter could couple extra noise into

the low noise region of the map. Convolving the filter in Fourier space is done by simply

multiplying the Fourier space representation of the filter by the Fourier transform of the

map and inverse Fourier transforming the product.

We apply optimal filters to the LEAD, MAIN, and TRAIL fields of CMB5 with the

appropriate white noise level for each map as measured from the noise power spectrum

(listed in Table 5.3). We do this for cluster template core radii of 0.4′, 0.7′, and 1.0′,

as well as for a point source template, denoted rc = 0
′. The filtered 150 GHz maps are

shown in Figures 5.14 through 5.17. We scaled the z-axis of each image so that sources

with amplitude equal to or larger than 4σ appear as white, where σ is the map RMS after

optimal filtering. The post-filter map RMS is also listed for each field and core radius in

Table 5.3.

Overplotted on these figures are the locations of candidate sources where the signal
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Figure 5.12: Shows the different contributions to the optimally filtered map RMS as a
function of pixel integration time. This assumes a ΛCDM cosmology, 5′ FWHM Gaussian
beams, a cluster core radius of rc = 1

′, eight 300 µK
√
s detectors pixelated at 1′ resolution.

The solid line is the total map RMS, the dashed line is the residual CMB, and the dotted
line is the instrumental noise contribution. Note that the x-axis is on a log scale.

Figure 5.13: Shows the real-space representation of the matched filter for ΛCDM cosmology
with noise equivalent to 27 µK per 1′ pixel with a 5′ beam and cluster core radius of 0.7′

(right). Also shown is a 5′ FWHM Gaussian beam (left) for comparison. The filters have
been normalized to the same scale for ease of comparison and the axis units are both
arcminutes.
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CMB5 σwhite rc = 0
′ rc = 0.4

′ rc = 0.7
′ rc = 1

′

FIELD (µK) (µK) (µK) (µK) (µK)

LEAD 40 21.7 22.8 23.8 25.1
MAIN 27 15.9 17.2 18.5 19.9
TRAIL 40 20.6 21.9 23.0 24.4

Table 5.3: Pre-filter 1′ pixel white noise RMS (first column) and post-filter total map
RMS for the 150 GHz CMB5 fields versus filter template core radius assuming a ΛCDM
cosmology. The rc = 0

′ case refers a 5′ FWHM point source profile. Compare the post-filter
map RMSs to the theoretical values given in Table 5.2.

exceeds ±3σ in any of the maps – meaning if the source exceeds the threshold in any of
the filtered maps for core radii from 0 to 1′ we mark its position in all of the maps at

the location of maximum signal-to-noise. We will discuss candidate source selection in the

Source Catalog section below. Also plotted on these figures are the locations of known Abell

clusters [1], radio sources from the PMN catalog [39], and bright IRAS sources [54].

The efficacy of the optimal filter is well illustrated in Figure 5.18 which shows the field

in the vicinity of the faint radio source PMN J0229-5403 before and after optimal filtering.

The left panel of the figure shows the raw map image which is dominated by pixel noise

and large-scale CMB power with the source no where to be found. The right panel shows

the optimally filtered map where we have used a 5′ FWHM Gaussian as the point source

profile and one can see that the radio source is readily identified.

5.3 False Detection Rate

We now investigate the false detection rate in filtered CMB images as a function of cos-

mology, noise level, and cluster core radius. This should allow us to select an appropriate

candidate identification threshold above which we expect few or no false cluster signals. De-

tails of generating CMB and noise realizations from a power spectrum or covariance matrix

are provided in Appendix E.

We quantify the false detection rate as the average number of spurious detections in

a field (such at the CMB5 MAIN field which is roughly 3.6 deg2) by generating many

realizations of both the CMB and correlated noise and running these maps through the

same filtering and source selection criteria as the real data. We generate the CMB sky

using power spectra from CMBFAST and the FFT CMB realization method described
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Figure 5.14: Shows the results of applying the matched filter assuming a 5′ FWHMGaussian
source profile (point source), ΛCDM cosmology, and white noise level appropriate for each
of the LEAD, MAIN, AND TRAIL fields of CMB5 at 150 GHz as given in Table 5.3. The
maps are scaled so that points ±4 times the filtered map RMS are shown in white. The map
variances are 21.7, 15.9, and 20.6 µK for the LEAD, MAIN, and TRAIL fields, respectively.
The diamonds (crosses) are the locations of sources that exceed −3σ (+3σ) in at least one
of the filtered maps. Overplotted are the locations of known Abell clusters (triangles) as
well as radio sources from the PMN radio catalog and IRAS sources (pluses). Although the
central quasar in the MAIN field has been removed, we mask out the data within a circle
of radius 10′.
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Figure 5.15: Same as Figure 5.14 except a cluster core radius of rc = 0.4
′ was used for the

optimal filter source profile. The map variances are 22.8, 17.2, and 21.9 µK for the LEAD,
MAIN, and TRAIL fields, respectively.
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Figure 5.16: Same as Figure 5.14 except a cluster core radius of rc = 0.7
′ was used for the

optimal filter source profile. The map variances are 23.8, 18.5, and 23.0 µK for the LEAD,
MAIN, and TRAIL fields, respectively.
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Figure 5.17: Same as Figure 5.14 except a cluster core radius of rc = 1.0
′ was used for the

optimal filter source profile. The map variances are 25.1, 19.9, and 24.4 µK for the LEAD,
MAIN, and TRAIL fields, respectively.
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Figure 5.18: Shows the measured microwave sky in the vicinity of the radio source PMN
J0229-5403 at 150 GHz. The plus denotes the reported source position. The left panel is
the raw image pixelated at 1′ with a scale of ±250 µK and the right panel shows the same
field after optimal filtering but the scale has been changed to ±150 µK. The optimal filter
incorporates a ΛCDM power spectrum, 40 µK per pixel of white noise, and assumes a 5′

FWHM Gaussian source profile.

above. We generate CMB maps that are 401′ × 401′ in size and smooth them with a 5′

Gaussian beam profile (in real space). We then extract maps that are the same size as the

raster fields (∼ 180′ × 103′) which eliminates the periodic boundary conditions imposed by
the FFT generation method.

The instrument noise is generated with the correlation function method described above.

The full noise covariance matrix suggests that the noise between rows in a map is uncor-

related, and thus, we use the average intra-row correlation function derived from the mea-

sured covariance matrix of the CMB5 fields at 150 GHz to generate the noise realizations.

This simplifies the noise generation greatly because we can use the same L matrix (from

C = LLT ) to realize the noise for every row.

We then add the noise maps to the CMB maps and apply the same offset removal

procedure as used on the raster maps with common offset subtraction plus an additional

third-order poly RA and first-order poly DEC removal. These offset removed maps are then

padded with zeros and the optimal filters are applied by multiplication in Fourier space.

For each CMB plus noise realization, we apply the optimal filter for cluster core radii of 0′,

0.4′, 0.7′, and 1′ and use the same white noise level as measured in the CMB5 fields at 150

GHz (27 µK per 1′ pixel in MAIN and 40 µK in LEAD/TRAIL).

The cluster candidates are selected if their amplitude exceeds a selection threshold which
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Figure 5.19: Left panel shows the average false detection rate for the simulated 4.1 deg2

CMB5 MAIN field at 150 GHz for ΛCDM (solid), SCDM (dashed), and OCDM (dotted)
cosmologies. The upper line for each cosmology corresponds to a cluster core radius of
rc = 0

′ and the lower line for rc = 1
′. The right panel compares the false detection

rate between the MAIN field (solid) and LEAD field (dotted) for a ΛCDM cosmology and
measured noise correlation function for each field. The upper (lower) line for each field
corresponds to a template cluster core radius of rc = 0

′ (1′).

we have chosen to be a multiple of the post-filter map RMS. Because of the zero padding of

the map before filtering, the width of the filter kernel will correlate junk data into the map.

To mitigate this effect, we exclude from consideration the 10′ strips of data around the

edge of the map. We calculate the RMS of the interior region of the map and measure the

number of discrete aggregates exceeding the threshold factor times the map RMS. Because

massive clusters are rare objects on the sky, we count objects within 5′ of each other as the

same object.

We performed this exercise for 150 CMB plus noise realizations in SCDM, ΛCDM,

and OCDM cosmologies and apply the four optimal filters of varying template cluster core

radius. We calculate the map variance and then scan the detection threshold between 2 and

5 times the filtered map RMS and measure the number of clusters exceeding the threshold.

The results are shown in Figure 5.19 where we have plotted the number of false cluster

detections in all three cosmologies for core radii of 0′ and 1′ (the rc = 0.4
′ and 0.7′ results

fall between these two extremes).

We see from the figure that the false detection rate is remarkably insensitive to cosmology

even though the OCDM model should have significantly more small-scale structure than

the other two cosmologies. This is most likely due the fact that the increase in coupling of
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the optimal filter to beam-size CMB fluctuations is offset by an increase in post-filter map

variance. The false detection rate is also reasonably insensitive to the template cluster core

radius. We note that the decrease in false detection rate for larger core radii is probably due

to larger map RMS. The right-hand panel in the figure shows the agreement between false

detection rates for the LEAD and MAIN fields even though the integration times differ by a

factor of two. The slightly higher false detection rate for the MAIN field is presumably due

to coupling to real small-scale CMB anisotropies where the LEAD field is still dominated

by noise.

The horizontal line in the figure denotes the level at which one would expect to find –

on average – a single false cluster in the 4.1 deg2 simulated field; near ∼ 3.6σ for almost all
cosmologies and core radii. A threshold of 4σ yields a single false cluster in roughly 1 out

of every 4-5 realizations. If we lower the detection threshold to 3σ we would expect quite a

few false objects in the maps (∼ 5− 6 per 4.1 deg2 field). Note that even though the maps
contain roughly 13,000 1′ × 1′ pixels, we do not expect 0.15%× 13, 000 ∼ 20 points below
−3σ because the pixels are highly correlated from the optimal filter.
Based on this false detection rate simulation we elect to use 4σ as our cluster detection

threshold. That being said, however, the steepness of the cluster mass function suggests

that a fraction of objects exceeding 3σ should be galaxy clusters even though the CMB

and noise will conspire to yield a handful of false detections per field. It would thus be

worthwhile to include objects detected at 3σ in a follow-up cluster verification program if

the goal is to find massive clusters. We explore the related question of cluster detection

efficiency in the next section.

5.4 Bias and Detection Efficiency

We now investigate the probability of detecting a cluster at a given S/N threshold as a

function of amplitude and core radius. This will determine the survey selection function

from which we can generate realistic expectations for the survey cluster yield. Given the

abundance of evidence for a ΛCDM cosmology, we will assume an underlying CMB power

spectrum with ΩM = 0.3, ΩΛ = 0.7, h = 0.7, Ωbh
2 = 0.021, τ = 0, n = 1, and COBE

normalization (generated with CMBFAST). We will Monte Carlo the detection efficiency for

both the MAIN and LEAD/TRAIL fields at 150 GHz using their measured noise properties.
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5.4.1 Cluster Realizations

We begin by using the same CMB and noise realizations as used for the false detection rate

estimation. We then generate simulated clusters assuming the modified β-model profile

given by

s(x) =
rcrv
rv − rc

(

1
√

r2c + x
2
− 1
√

r2v + x
2

)

,

where rc is the cluster core radius and rv = 3rc is scale on which the cluster emission is

truncated. The clusters are generated with much higher angular resolution than the 1′ pixel

size of the maps and are smoothed with a 5′ FWHM Gaussian beam before binning down

to 1′ map resolution. We generate clusters with core radii of 0′, 0.4′, 0.7′, and 1.0′ which

correspond to the core radii of the matched filters to test for amplitude bias.

The convolved clusters are normalized to peak central decrements from -20 µK to -180

µK in steps of 20 µK. By renormalizing the cluster amplitude after convolution we will only

test the detection efficiency over the range of clusters likely to be detectable by ACBAR. A

measured central decrement of 100 µK for a 5′ beam at 150 GHz corresponds to 96 mJy in-

beam (from ∆S = (dB/dT )∆TΩ). It is then a useful approximation to use 1 µK ∼ 1 mJy
per beam. After re-binning and normalizing the cluster, we add it to a random location

within each CMB+noise realization for a total of 100 realizations per cluster.

We then remove the offsets from the map in the same manner as the raw data with a

common offset in RA and DEC as well as a third-order polynomial in RA and first-order

polynomial in DEC. This removes a significant amount of CMB from the map and we will

verify if the cluster signal is attenuated by ∼ 10% as suggested in the Offset Removal section
above. Next we pad the map with zeros in the same manner as the real data and apply

the matched filters – with core radii of rc = 0
′, 0.4′, 0.7′, and 1.0′ – to the padded map in

Fourier space. The matched filters assume the appropriate white noise level for each field:

27 µK per 1′ pixel for the MAIN field and 40 µK for the LEAD/TRAIL fields.

We then “detect” the simulated cluster in the map by recording the largest decrement

within 2′ of the input cluster position; this allows for the possibility that the peak cluster

signal is not at exactly the same position as the input cluster. We also measure the post-

filter map RMS for each realization. This gives us a total of 100 realizations for each of the

4 input cluster core radii, 9 cluster amplitudes, and 4 matched filters.
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Figure 5.20: Left panel shows the measured central cluster temperature decrement in the
MAIN field versus the input cluster decrement for model cluster core radii of 0′ (dotted),
0.4′ (dashed), 0.7′ (solid), and 1′ (dot-dashed). The values for each core radius are from a
matched filter with equal core radius. The measured cluster amplitude versus input cluster
amplitude for mismatched optimal filters is presented in the right-hand panel. The input
cluster has a core radius of rc = 0.7

′ and the lines correspond to filters assuming core radii
equal to the left-hand panel.

5.4.2 Bias

We can now compare the measured (beam convolved) cluster amplitude versus the input

cluster amplitude as a function of core radius, amplitude, and applied filter. The results are

presented in Figure 5.20. The left panel of the figure shows the measured cluster temperature

decrement versus the input temperature decrement for clusters of varying core radius. The

values presented for each core radius are from the matched filter with the correct cluster

core radius. One immediately sees that the detected cluster decrement tends to be lower

than the input cluster decrement with the best fit bias of ∼ 90%; in agreement with the
anticipated 10% signal reduction from offset removal. We repeated the procedure without

performing the offset removal and find the matched filter is indeed unbiased. For small

amplitudes the detected cluster ∆T exceeds the input temperature. This is because the 2′

minimum temperature search radius couples to noise in the map when the cluster amplitude

drops near the noise level. We also tested the bias for realizations of the LEAD field and

find the same 90% amplitude effect with a slightly higher noise level for low amplitude

clusters, as would be expected from the larger noise level in the LEAD field.

The right-hand panel of Figure 5.20 illustrates the effect of measuring the beam con-
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Figure 5.21: Shows the ratio of the detected S/N of a rc = 0.7
′ cluster using optimal

filters that assume a cluster core radii of 0′ (dotted), 0.4′ (dashed), 0.7′ (solid), and 1′ (dot-
dashed) to the S/N for the properly matched rc = 0.7

′ filter. This ratio is plotted versus
input convolved cluster temperature decrement.

volved cluster temperature decrement with an “optimal” filter of mismatched core radius.

We have used a fiducial cluster of rc = 0.7
′ and measured the temperature with all four

core radii filters. From the figure one can see that measuring the cluster temperature with

a filter that assumes a smaller (larger) core radius will underestimate (overestimate) the

cluster amplitude. That being said, we found an interesting effect when we compare the

signal-to-noise ratio (S/N) of the cluster for the different filters. The S/N is defined as the

measured central cluster decrement divided by the RMS of the filtered map. The ratio of

the S/N of the rc = 0.7
′ cluster using the incorrect “matched” filter to the S/N with the

correct filter (versus central decrement) is shown in Figure 5.21.

The remarkable feature of this figure is that even though the properly matched filter

gives the highest signal-to-noise (as would be expected), the improperly matched filters

generally give a S/N which is & 95% of the matched value. This is not true for the very

weakest clusters which are dominated by coupling to the noise. We interpret this to mean

that the loss in cluster signal from using a filter that is undersized for the input cluster is

offset by a decrease in post-filter map RMS by reducing the coupling to the CMB. What

this says, for the case of ACBAR at least, is that our ability to detect clusters with a S/N
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threshold should not depend strongly on the core radius used in the optimal filter.

5.4.3 Average Signal-to-Noise Ratio

We now present the average signal-to-noise of the cluster detections versus a variety of

cluster identifiers. Given the results of the previous sub-section, we only present the S/N

for each core radius from the properly matched optimal filter. We are presenting the average

S/N for a given cluster core radius and amplitude, which means that roughly half of the

clusters fell above this value and half below this value.

Figure 5.22 shows the average S/N of filtered cluster images versus the integrated 150

GHz flux density of the input cluster in Jy. This is presented for both the MAIN and

LEAD/TRAIL realizations in which the input white noise levels are 27 and 40 µK, respec-

tively. For the case of rc = 0
′, we assume a point source with flux density sufficient to

produce the central beam convolved ∆T . The most notable feature of this figure is the

strong drop in S/N as the cluster core radius increases implying an increasing fraction of

total cluster flux is lost outside the beam. This immediately tells us that the detection

criteria employed here will not produce a uniform cluster selection function based on total

integrated cluster flux. As we will see below, the S/N versus the flux within the beam will

be much less sensitive to the size of the cluster. The other point to note in the figure is that

the average S/N for a given cluster will be a bit lower in the LEAD/TRAIL fields than in

the deeper MAIN field.

We can also perform a similar exercise by plotting the average detected S/N of the

clusters versus their central Comptonization, y0. This is the actual y0 of the raw cluster;

not the value after convolving with the beam. The results are shown in Figure 5.23. There

is no corresponding y0 for a point source so we omit the rc = 0
′ data. One notices from

the figure that the detectability of a cluster rapidly increases as the core radius increases

for fixed central y0. This is understood because the larger cluster will fill more of the beam

and produce a larger signal for a given value of y0.

The last comparison we present is the average measured S/N versus the beam convolved

decrement ∆T produced by the cluster (see Figure 5.24). This is equivalent to plotting

the S/N versus the in-beam flux density with the conversion 1 µK ∼ 1 mJy mentioned
above. The scatter in S/N with varying core radii is greatly reduced from the previous

two cluster quantities. This is because the detection criteria of selecting peaks above some
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Figure 5.22: Shows the S/N ratio versus integrated 150 GHz flux density of the input
clusters for both MAIN (left) and LEAD/TRAIL (right) simulations. The cluster core radii
are 0′ (dotted), 0.4′ (dashed), 0.7′ (solid), and 1′ (dot-dashed) and the S/N reported are
from the properly matched optimal filter. We have drawn a horizontal line at 4σ to guide
the eye for comparison.

Figure 5.23: Shows the S/N ratio versus central cluster Comptonization, y0, of the input
clusters for both MAIN (left) and LEAD/TRAIL (right) simulations. The cluster core
radii are 0.4′ (dashed), 0.7′ (solid), and 1′ (dot-dashed) and the S/N reported are from the
properly matched optimal filter. We have drawn a horizontal line at 4σ to guide the eye for
comparison.
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factor times the map variance is sensitive to the in-beam flux and not the total cluster flux.

Renormalizing the optimal filter to output an estimate of the integrated cluster flux will

have no effect on the S/N because the map RMS will be scaled by the same factor. There

is a relatively weak dependence upon cluster core radius with higher S/N for more compact

clusters. This is because compact objects are inherently easier to detect when the noise

power spectrum is steeply falling, as is the case of the CMB. Hence, even if two clusters

result in equivalent in-beam fluxes, the more compact object will be easier to detect in the

presence of CMB.

The fact that the S/N of a detection depends on the size of the cluster may appear

to contradict the claim that a cluster survey selection should depend only on cluster mass

(e.g., total cluster flux) [47]. The difference arrises from our choice of detection algorithm.

We are identifying clusters by their peak temperature decrement above the noise level of

the filtered map. The peak decrement depends only on the amount of cluster flux within

the beam. The result of Holder et al. (2000) that SZ survey selection functions will not

depend strongly upon cluster size is based upon identifying clusters by probing χ2-space;

fitting to the entire cluster profile with both an amplitude and core radius. This type of

object detection scheme should be sensitive to the cluster flux that lies outside the main

beam.

For the simulations presented here, the convolved central temperature decrement that

will be detected at 4σ (on average) is ∼ 77 µK for the MAIN field and ∼ 107 µK for
the LEAD/TRAIL fields. These are equivalent to in-beam flux densities of ∼ 74 mJy and
∼ 102 mJy for the MAIN and LEAD/TRAIL fields, respectively. This means that 50%
of the objects with these in-beam flux densities should be detected at 4σ. We explore the

detection efficiency as a function of σ threshold in the next sub-section.

5.4.4 Cluster Detection Efficiency

With our simulations, we can estimate the fraction of clusters that will be detected above

a given σ threshold as a function of cluster core radius and in-beam flux (or equivalently,

beam convolved central ∆T ). This is the ACBAR cluster selection function. The results

are presented in Figures 5.25 and 5.26 for clusters detected above 4σ and 3σ, respectively,

in both the CMB5 MAIN and LEAD/TRAIL simulations. Again we see that for fixed

in-beam flux density and detection threshold, compact clusters will be detected somewhat
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Figure 5.24: Shows the S/N ratio versus beam convolved central temperature decrement,
∆T , of the input clusters for both MAIN (left) and LEAD/TRAIL (right) simulations. The
cluster core radii are 0′ (dotted), 0.4′ (dashed), 0.7′ (solid), and 1′ (dot-dashed) and the
S/N reported are from the properly matched optimal filter. We have drawn a horizontal
line at 4σ to guide the eye for comparison.

Detected MAIN 3σ MAIN 4σ LEAD 3σ LEAD 4σ
fraction (mJy) (mJy) (mJy) (mJy)

50% 54 75 73 106
90% 78 111 115 146

Table 5.4: Approximate in-beam 150 GHz flux densities for detection thresholds of 3 and
4σ with corresponding fractional detection rates of 50% and 90%. Values are listed for both
the MAIN and LEAD/TRAIL simulations and represent the average of the four core radii
used in the simulations.

more frequently than extended clusters. One may also note that the slope of the detection

efficiency with ∆T changes between the MAIN and LEAD/TRAIL simulations which re-

flects the higher noise level in the later. We list the approximate in-band fluxes yielding

detection efficiencies of 50% and 90% for both 3σ and 4σ detection thresholds in Table 5.4.

These values were approximated by averaging the detection efficiencies across the four core

radii of the simulations.

5.4.5 Expected Cluster Yield

Using the mass function formalism presented in the introduction and the estimated detection

efficiency, we can estimate the expected cluster yield of the ACBAR survey for a given
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Figure 5.25: Shows the fraction of simulated clusters detected above 4σ versus convolved
central temperature decrement, ∆T , for both MAIN (left) and LEAD/TRAIL (right) simu-
lations. The cluster core radii are 0′ (dotted), 0.4′ (dashed), 0.7′ (solid), and 1′ (dot-dashed)
and the S/N reported are from the properly matched optimal filter. The conversion between
central ∆T in µK and an in-beam flux in mJy for a 5′ beam at 150 GHz is approximately
1 mJy ∼ 1 µK.

Figure 5.26: Same as Figure 5.25 except for a lower detection threshold of 3σ.
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Figure 5.27: Shows the relationship between cluster mass and in-beam flux density assuming
a 5′ beam at 150 GHz for simulated clusters in a ΛCDM cosmology. Simulated clusters from
z = 0.5, 1.0, and 1.5 are included in the figure and the solid line is a fit to the data.

cosmology. We have estimated the detection efficiency as a function of in-beam cluster flux,

but the number count formalism depends on cluster mass. To estimate the relationship

between cluster mass and in-beam flux we return to the cluster simulations used to estimate

the like range of core radii of clusters detectable by ACBAR. Again we will focus only on

the predicted number counts from a ΛCDM cosmology.

Figure 5.27 shows the cluster mass versus measured in-beam flux (using a 5′ FWHM

Gaussian at 150 GHz) for the simulated clusters in a ΛCDM cosmology. Although the

simulated cluster images have been scaled for the difference in assumed Hubble constant,

they were generated assuming σ8 = 1.0 and we have used σ8 = 0.93 for consistency with X-

ray observations. The main effect of differing values of σ8 will be on the expected abundance

of clusters (refer to Figure 1.7). However, the different values of σ8 will also affect the

redshift of cluster formation with clusters forming earlier in the universe with larger σ8.

Clusters that form earlier will be more compact because of the higher mass density at

formation but will also be hotter. These two effects will cancel to first order when measuring

the in-beam flux after convolution with the large ACBAR beams and, therefore, we will

ignore them.
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Field S3σ0 Σ3σ S4σ0 Σ4σ

Simulation (mJy) (mJy) (mJy) (mJy)

MAIN 52 19 74 21
LEAD/TRAIL 68 30 102 29

Table 5.5: Best fit parameters S0 and Σ for the average detection efficiency function, f(S).
The values are given for the MAIN and LEAD/TRAIL simulations with detection thresholds
of 3σ and 4σ.

We include the clusters from redshifts of z = 0.5, 1.0, and 1.5 in the mass versus in-

beam flux figure and find that the dispersion is reasonably small. We therefore assume

no evolution of the mass-flux relation for our ballpark estimate of expected cluster yield

and find a good fit for M200(Sbeam) ∼ 1015(Sbeam/67mJy)2/3 M�. Now that we have a
relationship between cluster mass and in-beam flux density, we need only a functional form

of the detection efficiency versus in-beam flux to calculate the expected cluster yield.

The detection efficiency functions plotted in Figures 5.25 and 5.26 are very well fit to

an integrated Gaussian with the fraction of clusters producing an in-beam flux S given by

f(S) =
1√
2πΣ2

∫ S

0
dS′ e−

(S′−S0)
2

2Σ2 ,

where S0 is the 50% detection flux and Σ is a measure of the width of the transition. Because

the detection fractions in the plots are to first order insensitive to core radius and represent

a reasonable cross-section of likely core radii, we simply average the efficiency functions

for each of the MAIN and LEAD/TRAIL simulations across core radius for each detection

threshold. The average efficiency functions are then fit to the f(S) equation above and the

results of the fits are presented in Table 5.5. The 4σ 50% detection fluxes correspond to

cluster masses of ∼ 1.1× 1015 M� for the MAIN field and ∼ 1.3× 1015 M� for the LEAD
and TRAIL fields.

The expected cluster yields for a given Nσ detection threshold are then given by mul-

tiplying the detection efficiency times the mass function, integrating over cluster mass and

redshift, and multiplying by the solid angle of the survey:

N = Ω

∫

dz

∫

dM f [S(M)]
dn

dM

dVc
dΩdz

.

The detection efficiency function given above gets quite small for low cluster masses but
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is still finite. Because the mass function is very steep, this tends to significantly over-

count the number of low-mass clusters likely to be detectable above the noise. Also, our

predicted efficiency function is biased high in the low-mass (low in-beam flux) region by

false detections of spurious correlations between input low-mass clusters and random cold

spots in the filtered CMB realizations. To mitigate this issue, we institute a low-mass

cutoff of Mlimit = M(S0 − Σ) for each simulation. This corresponds to lower mass limits
of approximately ∼ 8.5× 1014 and ∼ 10.6× 1014 M� for the 4σ detection thresholds of the
MAIN and LEAD/TRAIL simulations, respectively. The low mass cutoff has the additional

benefit of keeping the power law fit to the variance of the smoothed density field, σ(M, z),

within the range of mass that the fit is valid.

We generate the expected cluster counts in a ΛCDM cosmology with ΩM = 0.3, ΩΛ =

0.7, h = 0.7, σ8 = 0.93, δc = 1.69, and Γ = 0.23 and the Sheth-Tormen mass function.

Performing the mass integral gives the expected distribution of the cluster surface density

with redshift for each field. These dN/dΩdz distributions are shown in Figure 5.28 for the

3 and 4σ detection thresholds of MAIN and LEAD/TRAIL. Performing the integral over

redshift and multiplying by the solid angle of the filtered maps gives the expected cluster

yield for the survey. The full maps are approximately 4 deg2 per field but we only include

the innermost 3.2 deg2 to avoid the higher noise outer regions of the maps. These results

are presented in Table 5.8 which also lists the number of detected decrements in the maps

for both 3σ and 4σ thresholds. Note that the expected false detection rate is estimated to

be ∼ 4− 5 objects for 3σ and ∼ 0 for 4σ per 3.2 deg2 field.

5.5 Results

5.5.1 Source Catalog

Here we present the catalog of candidate sources in the CMB5 fields. We include any source

that exceeds ±3σ in at least one of the four optimally filtered maps (rc = 0′, 0.4′, 0.7′, or
1.0′) and report the S/N and core radius of maximum significance. The S/N is defined

as the peak filtered temperature divided by the RMS of the filtered map. We include all

objects detected above 3σ in the entire 4.1 deg2 maps, but mark with an ∗ the S/N values
of those objects that lie outside of the innermost 3.2 deg2. We exclude the sources in the

outer region of the maps from derivation of constraints on cosmological parameters because
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Figure 5.28: Shows the expected redshift distribution of cluster surface density in the MAIN
(solid) and LEAD/TRAIL (dashed) fields for a flat-ΛCDM cosmology with σ8 = 0.93 and
ΩM = 0.3. The upper (lower) curve for each field represents the results for a 3σ (4σ)
detection threshold. Each field is approximately 3.2 deg2 in area.

they lie within a beam width of the significantly higher noise portion of the maps. The

finite width of the optimal filter will couple the high-noise data into the low-noise region of

the map and contribute to false detections.

Some source positions vary by 1–2′ depending on the core radius of the filter. In the

case of multiple detections within 2′ we only report the source position and core radius of

the maximum S/N detection. We also compare the CMB5 source candidates to catalogs

of known radio, infrared, optical, UV, and X-ray sources available on the NASA/IPAC

Extragalactic Database2 by searching for known objects within 5′ (one beam width) of

the candidate source positions. With the exception of a few of the radio sources, the

objects reported in the “Near Object” column probably do not correspond to actual object

detections because the large 5′ search radius will include random objects quite frequently.

It should be noted that the matched filter tends to group increments and decrements

because of the negative annulus around the central peak of the filter (refer to Figure 5.13).

For example, clustered around the radio source PMN J0229-5403 in the LEAD field, we find

2http://nedwww.ipac.caltech.edu
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two > 3σ temperature decrements which are most likely artifacts of the filter and not real

clusters. This point is made in Schulz and White (2002) who also employ matched filters to

extract clusters from simulated SZ maps. For this reason we should cull decrements within

a beam width of bright point sources from the catalog.
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RA DEC S/N rc FIELD Near Object Type Dist
(J2000) (J2000) (′) (′)

35.297 -55.331 -3.72∗ 0 L
35.326 -54.081 -3.37∗ 0 L
35.441 -54.198 -3.30∗ 0 L
35.903 -55.231 -3.01 1 L
36.797 -54.015 -4.13∗ 1 L
37.172 -54.081 -3.20 0 L PMN J0229-5403 Radio 4.9
37.431 -54.081 -3.09 0 L PMN J0229-5403 Radio 4.7
37.720 -54.065 -3.49 0 L IRAS F02294-5420 Gal 3.5
38.902 -54.781 -3.09 0 L
39.162 -53.981 -5.14∗ 1 L
39.710 -54.531 -3.12 0 L
39.912 -54.398 -3.93 0 L
40.056 -54.281 -3.29∗ 0 L
40.171 -54.598 -3.11∗ 0 L 1RXS J024039.0-543252 X-ray 3.0
41.440 -55.398 -3.10∗ 0.7 M
41.497 -55.181 -3.11 0 M
41.642 -54.081 -3.00 0.4 M
42.738 -54.531 -3.16 0.4 M
42.795 -55.365 -3.91∗ 0 M
44.728 -53.981 -3.45∗ 0 M
45.506 -54.048 -4.03∗ 0 M
46.227 -54.498 -3.70∗ 1 T IRAS F03031-5437 IrS 4.4
46.342 -54.998 -3.03∗ 1 T
46.602 -53.998 -3.04∗ 1 T CSRG 0235 Gal 4.5
47.438 -54.531 -3.31 0 T
49.168 -55.398 -3.15∗ 1 T many Marano Hole sources -
49.486 -54.548 -3.92 0 T
50.380 -53.981 -3.41∗ 0 T
50.668 -54.081 -3.50 0 T
50.668 -54.765 -3.49 0 T
50.841 -54.898 -3.34∗ 0 T
50.899 -54.148 -3.67∗ 0 T

Table 5.6: Catalog of candidate source decrements exceeding −3σ in the CMB5 fields.
The core radius and source position are for the filter which yields the maximum S/N. The
“FIELD” column indicates which of LEAD, MAIN, or TRAIL the source was detected
within. Known objects identified within 5′ of the candidate position are listed in the “Near
Object” field and the distance between source position and reported object position is listed
in the “Dist” field. S/N values marked with an ∗ lie outside (but within 10′) of the optimum
filtered map region indicating the local RMS may slightly exceed the RMS used to generate
the S/N values reported.
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RA DEC S/N rc FIELD Near Object Type Dist
(J2000) (J2000) (′) (′)

35.326 -55.398 3.89∗ 0 L
35.384 -54.381 3.66∗ 0 L
35.701 -55.198 3.38 0 L
35.759 -53.998 3.32∗ 0.7 L
36.076 -55.231 3.01 0 L
36.133 -54.065 3.10 0.7 L
36.941 -54.781 3.36 1 L
37.287 -54.031 5.34∗ 0.7 L PMN J0229-5403 Radio 1.6
37.460 -54.715 3.46 1 L ESO 153-IG 036 Gal 3.8
38.527 -54.298 3.07 0.7 L
38.873 -54.081 3.18 1 L
39.219 -54.431 3.25 1 L LSBG F154-040 Gal 0.4
39.940 -54.481 3.40∗ 1 L
40.056 -55.281 3.80∗ 1 L APMCC 285 Clust 4.1
40.085 -54.348 3.14∗ 0 L
40.114 -54.181 3.69∗ 0.7 L IRAS F02388-5421 Gal 1.7
40.142 -53.981 3.31∗ 1 L PMN J0240-5401 Radio 2.2
40.171 -54.881 3.39∗ 0 L
40.747 -54.981 3.02∗ 1 M
41.007 -55.365 3.89∗ 0 M
41.007 -54.415 3.53 0.4 M IRAS F02424-5437 IrS 0.7
41.151 -54.298 3.36 0 M
41.469 -55.098 3.07 0 M
42.016 -54.965 3.04 1 M LSBG F154-033 Gal 1.5
42.132 -54.098 3.43 1 M APMBGC 154-014-037 Gal 4.6
43.660 -53.981 3.11∗ 0 M APMCC 314 Clust 2.9
44.756 -54.581 3.43 0 M
45.449 -54.131 3.80∗ 0 M LSBG F154-028 Gal 2.7
46.313 -55.398 3.12∗ 0 T [KOS90] 030420-553530 Gal 3.9
47.034 -55.281 3.06 0 T
47.323 -54.481 3.18 0 T
47.553 -54.465 3.15 0 T FSM 005/FSM 015 Gal 4.1/3.9
47.640 -55.365 3.24∗ 0.4 T
50.293 -55.381 3.49∗ 0 T
50.639 -53.981 4.68∗ 0.7 T PMN J0322-5354 Radio 4.5
50.784 -54.798 3.75∗ 0 T
50.841 -53.981 3.18∗ 0 T
51.014 -54.081 3.69∗ 1 T

Table 5.7: Catalog of candidate source increments exceeding +3σ in the CMB5 fields.
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Field 3σ 3σ 4σ 4σ
Expected Detected Expected Detected

LEAD 0.6(+4) 7 0.2(+0) 0
MAIN 1.0(+4) 3 0.4(+0) 0
TRAIL 0.6(+4) 4 0.2(+0) 0

Table 5.8: Expected cluster counts and measured number of decrements for each 150 GHz
CMB5 field versus detection threshold in a flat-ΛCDM cosmology with ΩM = 0.3 and
σ8 = 0.93. We have only included those objects detected within the lowest noise 3.2 deg

2 of
the map. The numbers in parentheses are the expected false detection rates for each field
and σ threshold.

5.5.2 Comparison with Expectations

The formalism for predicting the number counts was presented in the previous sections.

Here we compare the expected number of decrements with S/N above some σ threshold with

the number actually measured. The results are presented in Table 5.8 where we have also

included an estimate of the false detection rate for each field and σ threshold. The expected

and measured 4σ decrements are within reasonable agreement considering that only 0–1

objects are predicted in a ΛCDM cosmology and none are detected. The agreement at 3σ

is also reasonable with ∼ 14 “objects” (both real clusters and false detections) predicted
and 14 detected. However, two of the > 3σ decrements in the LEAD field are probably

contaminated by a radio source and should not be included as “detected” objects.

The expected cluster yield of the ACBAR survey depends very strongly upon the values

of σ8 and ΩM assumed for the Universe. We have used values of σ8 = 0.93 and ΩM = 0.3 to

be consistent with the values measured by X-ray satellites and CMB observations. However,

recent measurements of the CMB power spectrum with the Cosmic Background Imager

suggest a higher value of σ8 ∼ 1.0 to explain an excess of power at high-` than would
be expected from primary CMB alone [15]. We compare the expected 4σ cluster yield in

all three CMB5 fields for a flat-ΛCDM cosmology with ΩM = 0.3 as a function of σ8 in

Figure 5.29. The figure also presents the Poisson probability of measuring zero clusters as

a function of σ8. Note that the Poisson probability of detecting zero objects reduces to

Pµ(0) = e
−µ, where µ is the mean expected number of objects [108].

The effects of a 10% error in calibration upon expected cluster yield are also illustrated

in Figure 5.29. We have only shown the calibration error in the direction that would produce

fewer expected clusters. We see that the calibration error only affects the σ8 probability
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Figure 5.29: Left panel shows the expected 4σ cluster yield of the ∼ 10 deg2 ACBAR CMB5
cluster survey for a ΛCDM concordance cosmology as a function of σ8. Right panel shows
the Poisson probability of detecting zero objects at −4σ as a function of σ8. The dashed
line in both figures represents the effects of a 10% error in flux calibration; we have only
shown the error direction that would produce fewer clusters.

curve at the few percent level. The expected number of objects also depends upon the lower

mass limit imposed because of the steepness of the mass function. Although statistically

motivated, the low-mass cutoff could be too conservative; increasing it to a higher limiting

mass would further reduce the number of expected clusters.

The matter density, ΩM , controls the normalization of the mass function and affects the

evolution of σ(M, z) and the comoving volume element. Following Lin and Mohr (2002), we

also calculate the probability of detecting no clusters at 4σ as a function of σ8 and ΩM in

a flat-ΛCDM cosmology; the results are shown in Figure 5.30. The 95% confidence contour

is well fit by σ8 < 1.10 (ΩM/0.3)
−0.23 for 0.1 ≤ ΩM ≤ 1.

We have assumed that the selection function and mass-flux relationship do not depend

upon core radius or redshift. The assumed universality of the selection function will slightly

underestimate the detection fraction of compact clusters and overestimate the fraction of

large core radius clusters; these effects should cancel to first order. The cluster mass versus

in-beam flux relationship (based on hydrodynamical simulations and shown in Figure 5.27)

appears reasonably insensitive to core radius and cluster redshift. We only used simulated

clusters in the redshift range 0.5–1.5 and one may argue that neglecting clusters with z < 0.5

may bias the results. However, a 1015 M� cluster at z < 0.5 would be clearly detectable

in the RASS X-ray survey. Based upon the probability distribution of σ8 shown in Figure
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Figure 5.30: Shows the Poisson probability of detecting zero objects at −4σ in the ∼ 10 deg2
ACBAR CMB5 cluster survey for a flat-ΛCDM cosmology as a function of σ8 and ΩM . The
solid lines indicate the 68, 95.4, and 99.7% probability contours from this work. Overplotted
are the 1σ contours from X-ray observations [26] (dotted lines) and the SDSS [4] (dashed
lines).
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5.29 we use the non-detection of clusters at 4σ to place an upper limit of σ8 < 1.13 at 95%

confidence in a flat-ΛCDM concordance cosmology with ΩM = 0.3 . This result is reasonably

robust to uncertainty in the instrument calibration and the value of the low-mass cutoff.
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Chapter 6 Other ACBAR Science

6.1 CMB Power Spectrum

ACBAR has made the most precise CMB maps to date with a sensitivity of ∼ 5 µK per
beam over many square degrees. We have mapped approximately 50 deg2 to varying levels

of sensitivity in an effort to measure the CMB power spectrum from ` ∼ 150 to ∼ 2500. The
purpose of varying the depth of the CMB maps is to reduce the cosmic variance contribution

at low-` by covering a large area of sky but to also go very deep on a few fields to beat down

the instrument noise at high-` where the exponential cutoff from the beam size determines

the highest significant multipole. The ACBAR power spectrum based on a few months of

observation in 2001 and five months in 2002 is presented in Kuo et al. (2002) and shown in

Figure 1.2.

The most significant improvement to the measured power spectrum from ACBAR is

for ` & 1000. This data will be significant for some period of time – even after the MAP

satellite [70] releases its full sky power spectrum in early 2003 because its angular resolution

will limit it to ` < 1000. Other contemporary experiments designed to measure small scale

CMB anisotropy have been limited by a variety of factors. The interferometric CBI in Chile

is a very elegantly designed experiment but lacks the intrinsic sensitivity to measure small

scale CMB anisotropy over a large amount of sky. The BOLOCAM experiment [31] has the

sensitivity, angular resolution, and throughput to be a very powerful CMB experiment but

has been plagued by poor weather and sky noise on Mauna Kea and the limited availability

of CSO telescope time. There are a handful of small-scale CMB experiments on the horizon

(e.g., AMI, AMIBA, and SZA) which should measure complementary CMB power spectra

at low-frequency. These experiments are interferometers and should be subject to different

systematic effects than ACBAR.

The ACBAR power spectrum has been used to place further constraints on cosmological

parameters – both alone and in conjunction with other published power spectrum measure-

ments – and the results are presented in Goldstein et al. (2002). The strongest constraints

from ACBAR are on the density of dark energy (ΩΛ) and the spectral index of scalar density
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perturbations (ns). The probability that the Universe is spatially flat and composed only

of matter is extremely unlikely. Most of the evidence points towards roughly 70% of the

density in the form of an as of yet unidentified dark energy that is causing the expansion

of the Universe to accelerate and an additional ∼ 25% in the form of dark matter whose
nature is equally mysterious. The probability that Λ = 0 based on ACBAR plus COBE

data is a mere 2%. It is truly remarkable to contemplate that ∼ 95% of the energy density
of the Universe is of a form we know virtually nothing about. There are still significant

questions that observational cosmology has yet to answer.

6.2 Pointed Cluster Observations

During 2001 and 2002, we conducted pointed cluster observations with ACBAR of an X-

ray luminosity limited sample of clusters in the southern hemisphere (Lx > 4× 1044 erg/s,
δ < −44◦) selected from the REFLEX cluster survey [13]. This program is part of the Viper
SZ Cluster Survey [98] which combines observations of southern clusters from ACBAR at

150, 220, and 280 GHz with X-ray data from ROSAT, Chandra, and XMM as well as weak

lensing data from the 4m CTIO telescope in Chile. The goal of the Viper Cluster Survey is

to understand the physical properties of nearby (z < 0.1) clusters.

Understanding cluster physics will be vital for estimating the cluster selection function in

future deep SZ cluster surveys that will be sensitive to the details of the evolution of cluster

gas [46]. The multifrequency observations of ACBAR allow the separation of contaminating

primary CMB anisotropy from the SZ emission which is very important for measuring the

distribution of cluster gas. An example of a CMB cleaned SZ image made by ACBAR is

shown in Figure 6.1 for the Abell cluster A3266 [34]. The multifrequency observations of

clusters afforded by ACBAR make it a powerful instrument for the study of SZ emission of

nearby clusters.
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Figure 6.1: Illustrates the ability to remove primary CMB anisotropy from an SZ cluster
image with multifrequency ACBAR data. This figure shows ACBAR data at 150, 220, and
280 GHz of Abell 3266 as well as a CMB subtracted image which maximizes the SZ signal to
noise. The overlay contours are from ROSAT and they overlap the measured SZ decrement
quite well. This figure is from Gomez et al. (2002).
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Chapter 7 Conclusions and Future Prospects

We have taken advantage of improvements in bolometric detector technology and the re-

markable observing conditions at the South Pole to make the most sensitive maps of the

Cosmic Microwave Background to date. ACBAR has demonstrated that the South Pole is

an ideal location to conduct large-scale CMB and SZ surveys at millimeter wavelengths. Our

deepest CMB field was mapped to a sensitivity of ∼ 5 µK per 5′ beam at 150 GHz over many
square degrees with adjacent fields mapped to ∼

√
2 times this sensitivity. We searched

within these maps for previously unknown clusters of galaxies using the SZ effect. Because

our higher-frequency maps lack the sensitivity to effectively remove the primary CMB sig-

nal from the 150 GHz maps, we applied optimal filters tuned to the cluster sizes likely to

be detectable by ACBAR to reduce the contamination from primary CMB anisotropy. We

found that the cluster size assumed in the optimal filter has remarkably little effect on the

expected S/N of a cluster.

We find no clusters with signal greater than 4 times the post-filter map RMS within

the most sensitive 10 deg2 of our optimally filtered maps. This is consistent with the 0–1

expected from a ΛCDM concordance cosmology with ΩM = 0.3 and power spectrum nor-

malization of σ8 = 0.93 based on X-ray observations (refer to Figure 5.29). We determined

the expected yield of the ACBAR cluster survey by Monte Carlo simulation of our detection

efficiency using realizations of the CMB and the measured noise covariance. We find the

cluster selection function to be a fairly uniform function of in-beam cluster flux, but not

total cluster flux (or equivalently, cluster mass). This results from our use of a peak-finding

cluster detection method. In the future, we intend to employ a Bayesian cluster detection

algorithm which should result in a more uniform selection function with cluster mass [47].

We estimate the mass limit of the survey to be ∼ 1.1×1015 M�. Using the simulationed
cluster selection function and the non-detection of sources above 4σ, we place a 2σ upper

limit of σ8 < 1.10 (ΩM/0.3)
−0.23 upon the power spectrum normalization in a flat-ΛCDM

cosmology (h = 0.7, Γ = 0.23). This result is consistent with the reported 68% confidence

contours on the σ8–ΩM plane from X-ray observations [26], the Sloan Digital Sky Survey

[4] for values of ΩM & 0.15 (refer to Figure 5.30). The result is also consistent with the
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non-detection of SZ clusters in the deep BIMA fields [68] and the power spectrum excess

at high-` detected by CBI [15]. We note in passing that the X-ray and optical results are

inconsistent with each other at the > 1σ level which may indicate that the systematics of

cluster surveys are not entirely understood.

We detect a handful of objects above 4σ just outside of the optimal map region and

two objects at > 3.9σ within the best parts of the maps. The probability of ∼ 4σ false
detections is low and these objects may be the first discovery of previously unknown clusters

using the SZ effect. We have begun a follow-up program using X-ray satellite observations

from XMM, optical observations from the 4 m CTIO telescope in Chile, as well as pointed

multi-frequency observations with ACBAR to determine cluster redshifts and verify an SZ

spectrum of cluster candidates.

In retrospect, it would have been judicious to select fields with at least one known X-ray

bright galaxy cluster to verify ACBAR’s cluster finding efficacy. However, massive clusters

are very rare objects on the sky and this would have biased our result. We will make this a

priority for future cluster searches with ACBAR to demonstrate its ability to find clusters

in a large survey. Our deepest field has four optically selected galaxy clusters from the

Southern Abell catalog [1] but we do not detect any of these above a S/N of 3. This is not

surprising because most of these Abell clusters lack sufficient hot gas to be detectable in

the RASS. The possible exception is A3067 (43.629◦, -54.124◦ J2000), which overlaps nicely

with a cold spot in our filtered maps but does not quite reach the 3σ selection threshold.

ACBAR’s relatively large 5′ beams couple well to the extended emission of very massive

galaxy clusters but also to small-scale primary CMB anisotropy. We find that CMB con-

tamination in our single-frequency maps decreases our sensitivity to clusters by ∼
√
2; this

has a very large effect on the expected yield of our survey because the cluster mass function

is very steep. In 2004, we intend to reconfigure the ACBAR focal plane with enough 220

GHz feeds to provide comparable sensitivity to the 150 GHz channels. The 220 GHz CMB

maps will be free of SZ signal and can be used as a template for removing the primary

CMB anisotropy from the 150 GHz maps. This should greatly increase the number of clus-

ters detectable by ACBAR. Deep observations at 150 and 220 GHz should also allow the

separation of the primary and SZ power spectra at ` & 1000 which will put tight limits on

σ8.

Future SZ surveys, such as SZA in the Owens Valley and the South Pole Telescope,
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will have smaller beams than ACBAR. This will not only improve coupling to the more

abundant low-mass clusters but will also push the angular scale further down the damping

tail of the CMB power spectrum. We also note that near-future X-ray surveys (such as the

XMM Cluster Survey [99]) expect to detect hundreds of clusters out to redshifts as high as

z ∼ 2. These deep surveys will be more sensitive to the details of cluster physics at high
redshift because they will resolve the clusters rather than integrate their flux over a large

beam. We must better understand the evolution of clusters to develop accurate survey

selection functions if meaningful cosmological parameters are to be extracted from these

deep surveys.

Cluster evolution should eventually be well understood from the wealth of information

provided by upcoming deep, high-resolution, multi-frequency SZ surveys and X-ray obser-

vations. With this information it should be possible to accurately separate the evolution

of structure growth and the comoving volume element in cluster abundance surveys and

tightly constrain the cosmological parameters σ8, ΩM , and ΩΛ. In principle, it may be

possible to use these observations in conjunction with distance measurements to constrain

the equation of state of the dark energy [79]. This should shed some light on this mysterious

dark energy that dominates the energy budget and expansion dynamics of the Universe but

whose nature remains one of the most fundamental open questions in cosmology.
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Appendix A Bolometer Parameters

A.1 Load Curve Analysis

The steady state of a bolometer is determined by the power balance equation

P +Q =

∫ Tbolo

Tbase

G(T )dT,

where P = IV is the electrical power dissipated by the bolometer, Q is the absorbed optical

power, G(T ) is the thermal conductivity of the bolometer to the temperature bath and is a

function of temperature, Tbase is the temperature of the bath, and Tbolo is the temperature

of the bolometer. The thermal conductivity is usually well described by a power law of the

form

G(T ) = G0

(

Tbolo
T0

)β

,

where T0 is a merely a reference temperature for which G(T0) = G0 and β is the power law

index of the thermal conductivity. The ratio Tbolo/T0 occurs quite frequently and is usually

denoted as φ = Tbolo/T0, and thus the thermal conductivity can be written

G(φ) = G0φ
β .

Expanding the power balance equation we have

P +Q =
G0

(β + 1)T β0

(

T β+1bolo − T
β+1
base

)

=
G0T0
β + 1

(

φβ+1bolo − φ
β+1
base

)

.

The impedance of the bolometer is a strong function of temperature and is given by

R(T ) = R0e

√

∆
T ,

where ∆ is a property of the thermistor material and R0 depends on the geometry of the

thermistor. Typical values of these characteristic bolometer quantities for ACBAR are

R0 ∼ 150 Ω, ∆ ∼ 41.8 K, G0 ∼ 300− 700 pW/K, and β ∼ 1.
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The equation for thermistor impedance as a function of temperature is only true in the

limit of low electric field across the thermistor. Depending on the type of semiconductor

used for the thermistor, when the electric field across it exceeds a certain value, electron

hoping across the thermistor will occur and the impedance will not obey this simple relation.

This is called the electric field effect (or just E-field effect) and usually only manifests when

bolometers have very high impedance resulting in large electric fields [35]. The functional

form for the impedance including the E-field term is

R(T ) = R0e

√

∆
T
−
eEL

kT ,

from which you should note the different dependencies upon temperature of the two terms

in the exponent.

The physical parameters of a bolometer can be measured from a series of load curves (see

Figures 2.10 through 2.13) for which the bolometer is exposed to some optical load and the

DC signal voltage of the bolometer (Vs) is recorded for many values of bias voltage (Vb). In

most applications, the bias and signal voltages will have some voltage offsets due to FETs or

the amplifier as well as gain which must be removed to get the true bias and signal voltages.

For the circuit arrangement shown in Figure 2.23, one can determine the impedance of the

bolometer for any pair, (Vb, Vs), by analyzing the circuit as a simple voltage divider,

Rbolo = 2RL
Vs

Vb − Vs
,

where RL is the impedance of one of the two load resistors (each 30 MΩ in ACBAR). The

bias current is

Ibias =
Vb − Vs
2RL

.

The electrical power dissipated by the bolometer is given by P = V 2s /Rbolo. If the bolometer

quantities R0 and ∆ are known, the temperature of the bolometer can be determined by

inverting the R(T ) relation to get

Tbolo =
∆

[ln(Rbolo/R0)]
2 .

To determine the parameters R0 and ∆, one usually “blanks off” the bolometer – so
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that it is looking into a very cold load resulting in little optical power – and the impedance

of the bolometer is measured across a range of base temperatures. This set of bolometer

resistances as a function of base temperature is then fit to the R(T ) relation to extract

R0 and ∆. In practice, the bolometer is rigidly mounted to a baseplate which is then

attached to a fridge and controlled to a given temperature with a heater. The temperature

of the baseplate needs to be accurately measured and this is best achieved with a calibrated

thermometer, such as a GRT or Cernox thermometer. At each baseplate temperature a

very short load curve is taken. One must be careful not to apply too much power to the

bolometer or it will heat significantly above the baseplate temperature. It is a simple matter

to determine if too much bias power has been applied because the signal voltage versus bias

voltage will deviate from an ohmic straight line. The impedance of the bolometer is then

determined by fitting a straight line to Vs(Vb) with

Vs = Vb
Rbolo

Rbolo + 2RL
.

One can then fit the measured values of Rbolo and Tbase to the R(T ) function to determine

R0 and ∆. Taking the natural log of the impedance nicely linearizes this equation,

lnR = lnR0 +
√
∆x,

where x = 1/
√
T .

Unfortunately, it is unlikely that the true bolometer temperature will the same as the

baseplate because of finite thermal conductivity, Kapitza resistance, or a miscalibrated

thermometer. If you know the ∆ of the material, a priori, then it is useful to include a

temperature offset in the fit and replace Tbolo with Tbase+ δT , where δT is the temperature

offset between the measured temperature and the true bolometer temperature. For ACBAR,

we were told by the thermistor manufacturer that the ∆ of the NTD Germanium chips is

41.8 K. We were thus able to measure the temperature offsets for all of our bolometers

which were found to be as high as 12 mK from the Cernox thermometer values.

With R0 and ∆, one can then determine the thermal conductivity parameters G0 and

β from a full load curve. By converting the measured values of Vs and Vb into P and Tbolo,

as described above, one can then fit for G0 and β from the derivative dP/dTbolo. Using the
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power balance equation we see this derivative is given by

dP

dTbolo
= G0

(

Tbolo
T0

)β

= G0φ
β .

One can then take the natural log of this equation to linearize it and fit a straight line to

determine G0 and β. Take careful note that E-field effects will most likely corrupt the low

bias points where the bolometer impedance is highest; particularly for low base temperature

load curves with little optical power. This will manifest itself as a non-linear ln(dP/dT ) vs

lnTbolo curve at low Tbolo and care should be taken to exclude these points from the fit.

Unless the load curve is very finely sampled, it is more accurate to use the imperfect

differential

∆P

∆Tbolo
=

G0

(β + 1)T β0

(

T β+1bolo1
− T β+1bolo2

)

(Tbolo1 − Tbolo2)
=

G0
(β + 1)

(

φβ+11 − φβ+12
)

(φ1 − φ2)
.

The key benefit of these equations is that both the baseplate temperature, Tbase, and ab-

sorbed optical power, Q, do not appear. This implies that one can determine G0 and β from

a load curve at any base temperature and any applied optical power. However, the power

law index, β, depends weakly on the temperature of the bolometer. If one is going to use

the measured bolometer parameters to determine optical loading (as described in the next

paragraph), it is generally a good idea to determine G0 and β in the range of bolometer

temperature similar to where you will be measuring Q (e.g., determine G0 and β from the

same load curve that you want to determine the absorbed optical power).

Re-arranging the power balance equation gives

Q =
G0

(β + 1)T β0

(

T β+1bolo − T
β+1
base

)

− P.

With all of the bolometer parameters in hand, one can determine the bolometer temperature

and electrical power for each point in a load curve and solve for Q for the entire load curve.

Since Q is constant across the load curve, this should be a flat line if the bolo parameters

are correct. It is likely that E-field effects will cause the measured Q to deviate from a

flat line at low bolometer temperatures. Note that this depends explicitly on knowledge

of the base temperature. Temperature offsets can greatly affect the value of Q measured
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in this way. For example, a +10 mK offset (bolometer base temperature 10 mK higher

than thermometer reads) with a 500 pW/K bolometer will yield a value of Q too high by

∼ 5 pW. Because of this, it is useful to have a well-characterized dark bolometer on the
cold stage which you can use as a temperature reference – if you measure a non-zero value

of Q for the dark bolometer (and have eliminated optical loading or RF heating) you can

determine the temperature offset by

∆Tbase ≈
Qmeas
G0

(

T0
Tbase

)β

,

for ∆Tbase � Tbase.

Measuring the optical power with the technique described above has many useful ap-

plications. For example, the optical efficiency of a bolometric system is usually measured

by looking into two different temperature loads and comparing the measured difference in

absorbed optical power (∆Qabs) to the incident optical power (∆Qincident). This method

for determining optical efficiency is advantageous over the load curve difference method for

systems with high optical efficiency because it does not depend on having the bolometers

at the same operating temperature. It is occasionally difficult to apply enough electrical

power to a load curve looking into LN2 to achieve the same bolometer temperature looking

into a room temperature load.

Similarly, by measuringQ for two different loads you can determine how much additional

loading is incident upon the bolometers from within the dewar. For example, if you measure

Q looking at both a 300 K and 77 K load and take the ratio of Q300 to Q77 you should

measure
Q300
Q77

=

∫

f̃νBν(300K)AΩdν
∫

f̃νBν(77K)AΩdν
∼ 300
77
= 3.9

if no power is intercepted by an intermediate temperature within the dewar, where f̃ν is the

optical efficiency normalized frequency response of the system and Bν(T ) is the blackbody

spectral energy density. However, realistic optical systems have finite transmission at each

optical element, and thus the ratio is more accurately described by

Q300
Q77

=
Qinternal +

∫

f̃νBν(300K)AΩdν

Qinternal +
∫

f̃νBν(77K)AΩdν
< 3.9,

where Qinternal is the loading from the optical elements along the path of the beam due to



179

absorption or reflection.

The initial deployment of ACBAR suffered from a large amount of internal loading

from the 77 K filters leading to Q300/Q77 ratios as low as 2.0. After the system upgrade

in the Austral Summer of 2001/2002, the measured ratios rose to between 3.3 and 3.7

indicating little internal loading. Another useful application for measuring Q is during

a skydip, where the telescope is tipped from near the zenith down to very low elevation

to measure the emission (and, hence, transmission) of the atmosphere. The problem with

using bolometer voltages is that the bolometer is inherently nonlinear and the large changes

in loading during a skydip can lead to misleading atmospheric opacity measurements. By

determining Q at each point in the skydip one can accurately determine the real variation

in optical loading with zenith angle to measure atmospheric opacity. As an aside, it was by

analyzing skydips that the excess filter loading in ACBAR was discovered and explained our

excess noise. The details of analyzing skydips are presented in an accompanying appendix.

A.2 Bolometer Optimization

With reasonable estimates for the operating parameters of an instrument (e.g., η, Q, Tbase,

amplifier noise, etc.) one can optimize the thermal conductivity of a bolometer to obtain

the lowest total NEP . This process is discussed in detail in Griffin and Holland (1988).

Figure A.1 shows the various contributions to the 150 GHz system noise as a function of

bolometer operating temperature (which is set by the bias current).

If the bolometer is operated in the undesirable “detector noise limit,” then the impedance

of the bolometer and thermal conductivity will determine the sensitivity almost irrespective

of the background photon noise contribution. If, on the other hand, the detector is domi-

nated by photon noise, then an otherwise less than optimal detector G does not translate

into a noise increase as NEP ∝
√
G. Figure A.2 illustrates this point; it shows the mini-

mum NEPtotal as a function of detector thermal conductivity for four optical loadings. The

minimum NEP is set by tuning the operating temperature of the bolometer for a given

base plate temperature and optical loading. Although the G corresponding to the minimum

NEP tends to be quite low (∼ 60 pW/K for ACBAR’s 150 GHz channels), it is usually
not practical to use devices with such low G because the detector time constant goes like

C/G and would be prohibitively large. Even with thermal conductivities many times the
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Figure A.1: Noise contributions to ACBAR at 150 GHz versus bolometer operating temper-
ature where we have assumed Q = 10 pW, G0 =300 pW/K, β = 1 R0 = 150 Ω, ∆ = 41.8
K, and NEVamp = 3 × 10−9 V/

√
Hz at 10 Hz. The solid line is the total system NEP ,

the dotted line is phonon noise, the dashed line is Johnson noise, the dot-dashed line is
amplifier noise, and the triple-dot-dashed line is photon noise. We have included both the
counting and Bose terms in the NEPγ .

optimal value, the total system NEP is less than 10% higher the minimum for Q = 15 pW

and G0 = 300 pW/K.
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Figure A.2: Minimum total ACBAR 150 GHz NEP versus detector thermal conductivity,
G0, for various optical loadings. The bolometer parameters are the same as in Figure A.1.
The lines correspond to, from bottom to top, Q =5, 10, 15, and 20 pW optical loading.
The average loading for ACBAR is approximately 13 pW at 150 GHz. The actual thermal
conductivity of the 150 GHz detectors is approximately 300 pW/K and one can see from
the Figure that even though the thermal conductivity is many times the optimal value, the
system noise is . 10% above the minimum because of the contribution from other noise
sources (mainly photon noise).
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Appendix B Atmosphere

B.1 Spectrum

The transmission spectrum of the atmosphere is a complex forest of vibrational and rota-

tional molecular lines dominated by water, oxygen, and ozone. The two parameters that

are most useful for quantifying the atmospheric spectrum are its temperature, Tatm, and

frequency dependent zenith opacity, τν . The transmission of the atmosphere at a frequency

ν and zenith angle ζ (where the zenith angle is defined as the angle subtended between

the point directly overhead and the direction of observation) is given by e−τν/ cos ζ . Figure

B.1 shows a model of the transmission of the South Pole atmosphere in the winter gener-

ated with the AT atmospheric modeling program1. One can see that there are well-defined

“windows” in the far-infrared where the absorption and emission from the atmosphere are

minimal; these windows transmit the most astrophysical signal while contributing the least

atmospheric power.

The emissivity of the atmosphere contributes to the optical loading of the system (and

hence, background noise) and is given by

εν = 1− e−τν/ cos ζ .

The spectral flux density emitted by the atmosphere at temperature Tatm is thus

Iν = ενBν(Tatm),

where Bν(T ) is the emission from a black body at temperature T . In the Rayleigh-Jeans

limit, the power received on a detector with optical efficiency normalized frequency response

f̃ν is then

Patm =

∫

f̃νεν
2kTatmν

2

c2
AΩdν .

1Airhead Software, Boulder CO
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Figure B.1: Model of atmospheric transmission for the South Pole during the Austral Winter
generated with the AT atmospheric modeling program. This model assumes an elevation
of 2835 m, temperature of -60C, PWV of 0.25 mm, and pressure of 530 torr.
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B.2 Skydip Analysis

Although models of the transmission of the atmosphere are useful for selecting spectral band

edges, once an instrument is in the field the actual transmission of the atmosphere for each

channel needs to be measured. This is usually done with a procedure called a skydip. A

skydip is a measurement of the optical power incident on a detector as a function of zenith

angle and should follow the relation a + be−τ̄/ cos ζ , where τ̄ is the effective zenith opacity

of the channel. For any point in the skydip there will be many contributions to the total

optical power, or equivalently, observed temperature loading:

Tobs(ζ) = Tinternal + εscopeTscope + (1− εscope)
[

TCMBe
−τ̄/ cos ζ + Tatm

(

1− e−τ̄/ cos ζ
)]

,

where Tinternal is the internal loading in the dewar due to absorption or reflection by filters

or optical stops, εscope is the total emissivity of the telescope and is a function of frequency

and the telescope mirror material, Tscope is the temperature of the telescope, TCMB is the

temperature of the cosmic microwave background (2.73 K) and is assumed to be the domi-

nant astrophysical source, and Tatm is the temperature of the atmosphere. The emissivity

of a mirror surface depends on its conductivity and surface finish [122] and is given by

ε =

√

16πcε0
λσ

,

where c is the speed of light, ε0 is the permittivity of free space, λ is the wavelength, and

σ is the conductivity of the metal which is approximately 3.7× 107 Ω−1m−1 for aluminum.
Surface roughness and oxidation will degrade the reflectivity of a metal surface and the

actual emissivity is usually a few times this value. Note that for Viper there are four mirror

surfaces and thus the total emissivity of the telescope is 4× this nominal value.
The optical loading on a detector can change during the course of a skydip. This can

cause a bolometer to go non-linear and, thus, fitting to the DC voltage of a bolometer

as a function of zenith angle can give incorrect results for the atmospheric opacity. This

problem is mitigated by calculating the optical power on the bolometer for each point in

the skydip. This can only be done if the bolometers have been well characterized (see the

Load Curve Analysis appendix), the bolometer base temperature is monitored, and FET

voltage offsets can be removed by either including a zero bias point in the skydip or using a
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resistor channel whose voltage does not depend on optical power or base plate temperature

as an offset monitor.

For ACBAR’s 2001 observing season we performed approximately 350 skydips but only

took a grounded bias point for the last ∼ 40 dips to measure the FET offsets. Since it
is important to know the FET offsets for all channels to accurately determine the optical

loading, we needed a way to infer the FET offsets for the skydips without grounded bias

points. The solution was to use the fake bolometers (load resistors) as FET offset monitors

since their biased signal (DC) should only depend on the FET offsets and the voltage gain

(which we assume to be stable). Figure B.2 shows the correlation between the FET offsets

of two of the resistor channels of ACBAR and one can see they are well fit by a line with

slope of unity indicating a common drift in FET offset voltage.

While biased, only one of our resistor channels was not saturated. But because the FET

offsets are correlated, we can use this one channel as an indicator of drifts in all channels.

To this end we computed the average of the FET offsets for all channels for the 40 skydips

with grounded bias points as well as the change in voltage on the one resistor channel

between biased and unbiased states (13.676 V). For all of the skydips where no grounded

bias point was taken we then used the biased voltage of this resistor channel, subtracted

this voltage difference, and compared the resulting number with the average grounded bias

value (-4.275 V) to determine any shift in FET offset voltage. The resultant shift in FET

offsets is then added to the average FET offsets for all channels which gives the appropriate

offset to remove from the skydip voltages. In 2002, we explicitly included a bias grounded

data point in all skydips and this issue was moot.

Once the voltage offsets have been properly removed from the skydip, the optical power

for each skydip point is determined by inverting the bolometer power balance equation

Q =

∫ Tbolo

Tbase

G(T )dT − IV,

which makes use of the measured bolometer properties and base plate temperature. One

then has Q(ζ) for each channel. With laboratory load curve measurements looking into two

different temperature loads one can take the measured ∆Q for a temperature difference of
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Figure B.2: Comparison of the FET offsets of two resistor channels. The line has slope of
unity indicating good correlation of offset drift between channels.
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Figure B.3: The observed temperature of all channels as a function of zenith angle, ζ.
Within each frequency are four sets of points: plus, diamond, triangle, and times represent-
ing channels 1 through 4 of each frequency, respectively. The lines connecting the points
are to guide the eye and are not fits to the data.

∆T and convert Q(ζ) to T (ζ) by

T (ζ) =
∆T

∆Q
Q(ζ).

Figure B.3 shows a skydip performed on 02/07/01 for all channels.

Fitting T (ζ) to the functional form a + Tatm
(

1− e−τ̄/ cos ζ
)

without further assump-

tions can prove difficult because 1 − e−x ∼ x for x � 1 leading to a degeneracy between
the parameters Tatm and τ̄ . It is usually the case that τ̄ / cos ζ � 1 unless the skydip
is taken to very large zenith angles or the opacity is particularly high. However, this

degeneracy can be broken with an estimate of the temperature of the atmosphere and

telescope transmission, in which case the term that depends on zenith angle is given by

(1− εscope) (TCMB − Tatm) e−τ̄/ cos ζ . We were fortunate to be granted access to the archive
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Figure B.4: The correlation between the average measured effective opacity at 275 (dia-
monds) and 150 GHz (pluses) versus the 350 µm tipper on AST/RO. The solid lines are
the best fit linear curves.

Band (GHz) a b

150 0.0186 0.0112
220 0.0189 0.0251
280 0.0209 0.0439
350 0.0417 0.0954

Table B.1: Average linear fit between the measured in-band zenith opacity versus reported
350 µm tipper for 2001. The equation is parameterized by τ̄ = a+ bτ350.

of atmospheric temperatures measured by the sub-mm tipper on the AST/RO [93] which

measures both the temperature of the atmosphere as well as zenith opacity at 350 µm

approximately every 15 minutes. Using this archive we were able to break the τ–Tatm

degeneracy as well as correlate our measured effective opacities for all channels with the

values measured at 350 µm. This latter point allows us to use the frequently measured τ350

to correct for the atmospheric transmission without having to do time consuming skydips

multiple times a day. Figure B.4 shows the correlation between measured effective opacities

at 150 and 275 GHz versus the 350 µm values. A straight line was fit to each channel i of

the form τ̄i = ai + biτ350 and the average values of a and b for each frequency are listed in

Tables B.1 and B.2. Figure B.5 shows a histogram of effective zenith opacity at 150 GHz

scaled from the entire 350 µm tipper archive from 2001.
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Band (GHz) a b

150 0.0155 0.0121
220 0.0160 0.0247
280 0.0442 0.0373

Table B.2: Average linear fit between the measured in-band zenith opacity versus reported
350 µm tipper for 2002. The equation is parameterized by τ̄ = a+ bτ350.

Figure B.5: Histogram of effective zenith opacity at 150 GHz for the 2001 observing season.
This data was generated by the NRAO 350 µm tipper at the pole [93] and scaled to 150
GHz.
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Appendix C Optics

C.1 Gaussian Telescope Optics

A discussion of Gaussian telescope optics is in order before detailing the Viper telescope

and feed horn design. The propagation of single moded beams is well described by Gaussian

optics [32] and the field distribution is given by the wave equation

∇2ψ + k2ψ = 0,

which, for a wave propagating in the ẑ direction, the solution is

ψ(z) = A
w0
w(z)

e−r
2/w2(z)e−ikze−iπr

2/λR(z)ei tan
−1(λz/πw20).

The width of the beam is characterized by w(z) given by

w(z) = w0

[

1 +

(

λz

πw20

)2
]1/2

,

and a beam waist is defined as the width of the beam when the phase is flat. The effect

of a focusing optic is to convert one beam waist to another by varying the phase front of

the incident beam. For a beam waist size w1 a distance d1 from a focusing element of focal

length f , the equations giving the position and size of the re-imaged waist are

d2
f
= 1 +

(d1/f)− 1
[(d1/f)− 1]2 + (πw21/λf)2

(

w2
w1

)2

=
1

[(d1/f)− 1]2 + (πw21/λf)2
.

Thus, the effect of a telescope can be described by multiple applications of these focusing

formulae to propagate an initial beam waist – generated by a feed horn – through the system.

For distances much larger than a wavelength, the effect of a focusing element reduces to the
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familiar geometric optics relation
1

f
=
1

d1
+
1

d2
.

The resulting far field beam on the sky is given by

θFWHM =
√
2 ln 2

λ

πwp
,

where wp is the waist size formed by the primary. It needs to be stressed that this relation

is only approximate and that the true beam size will be determined by a diffraction integral

of the fields over the finite aperture of the primary which will spread the beam slightly from

this nominal value.

An important parameter characterizing a telescope is the effective focal length, feff . In

the geometric optics limit, the effective focal length is given by

feff = DF =
D

2 tanφ1/2
,

where D is the diameter of an incident ray bundle, F is the f/# of the beam incident on

the focal plane, and φ1/2 is the half-angle of the beam incident on the focal plane. For

most purposes a telescope can be approximated as a single focusing element of focal length

feff . The primary waist size for a system with effective focal length feff , feed waist w0,

and wavelength λ is equal to

wp =
λfeff
πw0

,

and thus the beam size is simply θFWHM =
√
2 ln 2w0/feff and is independent of frequency

to first order. One can see from these equations that matched beam sizes from a multi-

frequency instrument requires matched feed waist sizes, w0; this produces primary beam

waists that scale with wavelength.

The effective focal length also sets the plate scale of the system which is the separation

of two pixels on the sky for a given separation on the focal plane. This is a useful parameter

to determine the density of pixels on the sky for close packed focal plane array. The plate

scale is given by PS = 1/feff with units of radians per unit length. The units of length are

set by feff (e.g., for a system with an effective focal length of 4 m the plate scale is 0.25

rad/m or 0.86 ′/mm).
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For ACBAR we decided upon a nominally 4′ beam at all frequencies which corresponds

to a primary waist size of wp = 0.644 m at 150 GHz and an edge taper of -20dB at the

edge of the 2 m primary. However, when the beam pattern is modeled for a feed designed

to produce this beam waist, the sidelobe structure results in an actual edge taper of -18dB.

Performing the diffraction integral of this distribution over the 2 m aperture implies that

the 150 GHz beam should be spread to ∼ 4.5′ because of edge truncation; this is, in fact,
close to the 4.69′ we observe on the telescope. One may think that the solution to this

spreading is to simply make the beam waist larger on the primary to compensate for the

finite aperture affects. However, the diffractive effects spread the beam more quickly than

it will be reduced by going with large waist sizes. Because the Viper telescope consists of

many off-axis reflections from asymmetric mirrors, performing accurate diffraction integral

predictions was unrealistic and it was decided the safest approach would be to scale the

primary beam waists with wavelength in an attempt to achieve matched beam sizes at all

frequencies. In retrospect, the diffraction integral on the primary appears to reasonably

predict the values of the beam sizes achieved and it should have been possible to do a

better job of matching the beam sizes.

C.2 Viper Telescope and Tertiary Redesign

ACBAR observes from the Viper telescope at the South Pole which is administered by the

Center for Astrophysical Research in Antarctica (CARA). Viper has been used to conduct

45 GHz observations of CMB anisotropies with the CORONA receiver [87] and polarization

in the CMB with the Dos Equis receiver. Viper was also used to measure large scale

magnetic fields through polarization of the dust in the galactic center at 850 µm with the

SPARO receiver [24]. Viper is an off-axis aplanatic Gregorian telescope with a 2 m diameter

primary mirror and an additional 0.5 m skirt around the primary to reduce spillover. The

pre-ACBAR optical arrangement is shown in Figure C.1 and consists of a 2 m parabolic

primary mirror, an elliptical secondary mirror, a chopping flat at an image of the primary

formed by the secondary to sweep the beams across the sky without modulating the position

on the primary, and a hyperbolic tertiary mirror that refocuses the beam into the receiver.

One should take particular note of the reflection off last optic which is a ∼ 90◦ off-axis
reflection that converts the incident f/5.2 beam into f/0.5 resulting in serious aberration of
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Figure C.1: Comparison of Viper telescope optical layout before (dashed) and after (solid)
the tertiary change.

the focal plane.

Our initial design goal for ACBAR was to get as many diffraction limited beams at 150

GHz as possible across the focal plane. With a -18 dB edge taper at 2 m this corresponds

to a beam size of approximately 4.5′ on the sky which is well matched to extended cluster

emission as well as small enough to cover the CMB power spectrum down to ` ∼ 2500.
However, the severe coma of the existing optical system would limit us to a single diffraction

limited 150 GHz pixel in the focal plane – if we attempted to put more pixels in the focal

plane the spreading of the spot diameters would become comparable to the beam waist sizes

of the feeds resulting in significantly enlarged beams on the sky. Because of this we decided
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to redesign and reposition the tertiary mirror to improve the optical quality of the system

for ACBAR.

Because of existing structural constraints of the telescope, the available degrees of free-

dom for the redesign were quite limited. The chopper could be moved slightly in both

position and angle but we did not want to deviate too much from the image of the primary

formed by the secondary; this would modulate the beams on the primary resulting in large

chopper synchronous offsets. The position of the tertiary was reasonably free once it was

decided that cutting a hole in the floor of the telescope hopper was acceptable. However,

the tight confines of the secondary support structure severely limited the position of the

ACBAR dewar, and thus, the available position and angle of the new tertiary.

The fixed primary waist size constrains the ratio of the effective focal length to the feed

waist size. The effective focal length of the system is determined primarily by the location of

the tertiary and the distance of the dewar to the tertiary, but this is tightly constrained by

the telescope structure. The feed waist size is determined by the feed geometry and should

be much larger than the rms spot diameter due to abberations on the focal plane which

depend strongly on optical quality achieved with the tertiary. To get good optical quality

on the focal plane the angle of reflection off the tertiary should be as small as possible and

the resulting f/# should be as high as possible. The high effective focal length also reduces

the space between beams on the sky for a close packed array by reducing the plate scale.

These constraints left little room for optimization but an acceptable tertiary was found

which met all of the design criteria within the physical constraints of the telescope.

With most of the physical criteria set, the surface of the tertiary mirror was optimized

to produce the best image quality across the focal plane allowing for the greatest number

of pixels. For this we used the optical design package CodeV produced by Optical Research

Associates1. CodeV is a ray tracing package with optimization tools that allow you to

specify the convergence criteria (such as image distortion and aberrations) for a target

solution while specifying the range of multiple physical dimensions.

1Pasadena, CA 91107
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Appendix D Transfer Functions

D.1 Introduction

A time varying optical signal incident upon a system will undergo multiple layers of pro-

cessing before the signal is written to a data file. Each element filters the oscillations in

the signal as a function of frequency. The transfer function quantifies the conversion of a

time varying optical signal, s(t), with Fourier transform, s̃(ω), incident on the receiver into

the recorded signal voltage time stream, v(t). In Fourier space, the effect of the transfer

function, f̃(ω), is a multiplication given by ṽ(ω) = f̃(ω)s̃(ω). The transfer function is a

complex quantity with both amplitude and phase and fully describes the attenuation and

phase shift of a signal as a function of frequency.

As described below, the transfer function can cause serious distortion of the time stream

signal. It must be measured to correct the recorded voltage time stream to recover the

incident optical signal by multiplying the Fourier transform of the recorded signal by the

inverse of the transfer function, s̃(ω) = f̃−1(ω)ṽ(ω). Note that physical filters have a real

impulse response, and hence satisfy f̃(−ω) = f̃(ω)∗. This implies that the recorded time

stream voltage is also real. The following sections describe the filtering elements of the

ACBAR system and their measurement.

D.2 Filters

The ACBAR transfer function can be broken down into different classes of filters: thermal,

electrical, and sampling. The first filter element to process incident light is the bolometer.

As discussed in the Bolometer section, the frequency response of a bolometer is described

by a single-pole filter with a time constant τbolo; typical bolometer time constants are of

order of a few milliseconds. The frequency response of a single-pole filter is the same as an

RC filter with f̃(ω) = 1/(1 + iωτbolo). The effects of this filter can be separated into an
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amplitude and phase given by

fω =
1

√

1 + (ωτbolo)2

φ = − tan−1 ωτbolo.

Fitting bolometer time constants is described in more detail below.

The bolometer signal voltage then passes along wires to the FETs where the large

impedance of the bolometers and capacitance of the wires and FETs form an RC filter with

τ = RC. Since we do not know the value of RC a priori, we also include it as a parameter in

the fit of the transfer function with typical values around 0.2 ms (consistent with a detector

impedance of 20 MΩ and capacitance of 10 pF). The signals are buffered by the FETs and

then exit the dewar into the readout electronics where they under go amplification and

another stage of electrical filtering. The AC filtering stage has an RC filter with a -3dB

point at 650 Hz. The -3dB point of a filter is defined to be where the voltage squared (not

the voltage) has fallen to half of the peak value. For a filter with a known -3dB point the

equivalent time constant is given by τ = 1/2πν3dB.

Following amplification, the signals then enter the VXI crate where the signal is anti-

alias filtered, sampled, averaged, and converted to digital form. The anti-aliasing (AA)

filter used for ACBAR is an Agilent1 E1503A Signal Conditioning Plug-on (SCP) which is

a programmable AA filter with -3dB points at 2, 10, and 100 Hz as well as an “unfiltered”

mode with cutoff at 1.5 kHz. We operate the filter at the 100 Hz setting during normal

operation. The filtering for this module is advertised as a 2-pole Bessel filter but was

discovered to be, in fact, only single pole. By plotting the log of the voltage attenuation

versus the log of the frequency we found the filter falls off with a slope of -1 and not -2

at high frequency and is well fit by a single RC filter across our signal band. The AA

filter also introduces a 25 ms time delay into the data stream which causes a phase shift of

φ = −ωTdelay. But because all of our signals and encoders are processed through the same
filtering and averaging, we can ignore time delays because they are common to all channels

including the chopper position encoder.

After AA filtering the signal is sampled at 2800 Hz and then averaged on 8 samples to

reduce the file size as much as possible without aliasing noise into the signal band. The

1Palo Alto, CA 94303
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effect of averaging can be though of as a convolution of the time stream data with a boxcar

average. For example, with a boxcar of length T and a signal x(t) one has

y(t′) =
1

T

∫ t′

t′−T
x(t)dt.

For an input signal of frequency ω given by x(t) = ei(ωt+φ) one gets

y(t′) = x(t′)e−iωT/2
sin(ωT/2)

ωT/2
,

which has a sinc low-pass filter as well as a phase shift.

The Nyquist frequency is defined as the maximum frequency component that can be

fully reconstructed from sampled data and is equal to one half of the sampling rate. The

averaging of the sampled signal reduces the Nyquist frequency of our data and results in

signal aliasing. This shifts power at frequencies above the Nyquist frequency back into the

signal band as well as inverts the phase of the signal. The purpose of the anti-aliasing

filter is to reduce high-frequency noise from being aliased into the signal band as much as

possible. Aliasing can be understood easily with the following example (provided by Sunil

Golwala):

Given a time stream signal, g(t), which has been sampled on interval ∆t, the discrete

Fourier transform is given by

g̃(ωn) =

k=N/2
∑

k=−(N/2−1)

g(tk)e
−iωntk ,

where tk = k∆t and ωn =
n2π
N∆t with n ∈ [−(N/2 − 1), N/2]. For an excitation with

frequency above the Nyquist frequency (ωnyquist = π/∆t) given by g(tk) = cos(ω0tk + φ)
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with ω0 =
N−m
N

2π
∆t and m ∈ [0, N/2− 1], we have

g(tk) =
1

2

[

ei(ω0tk+φ) + e−i(ω0tk+φ)
]

=
1

2

[

ei(
N−m

N

2π
∆t
k∆t+φ) + e−i(

N−m

N

2π
∆t
k∆t+φ)

]

=
1

2

[

e−i(
m

N

2π
∆t
k∆t−φ) + ei(

m

N

2π
∆t
k∆t−φ)

]

=
1

2

[

e−i(ωmtk−φ) + ei(ωmtk−φ)
]

= cos(ωmtk − φ),

where I have used the fact that ei(
N

N

2π
∆t
k∆t) = eik2π = 1. This result shows that a waveform

with frequency ωN−m will be aliased to frequency ωm after sampling. Pay particular note

to the fact that the phase of the input waveform has changed sign after aliasing.

By averaging our 2800 Hz sampled data into 8 samples per bin we reduce the Nyquist

sampling rate from 1400 Hz to 175 Hz. Figure D.1 shows the effect of averaging and aliasing

on the 100 Hz AA filtered data. The signal bandwidth of ACBAR is less than 50 Hz and

one can see from the figure that the AA filter knocks down aliased white noise to the level

a few percent below 50 Hz. With the addition of the bolometer time constant filtering this

is reduced to less than 1% below 50 Hz. Figure D.2 shows the amplitude attenuation and

phase shift from all filter elements, as well as the cumulative transfer function from all filters

up to the Nyquist frequency, for a model bolometer.

D.3 Transfer Function Measurement

Measuring the transfer function of a system is, in principle, as simple as placing a chopped

optical source in front of an instrument and measuring the signal from the data stream as a

function of chop frequency. Accomplishing this in situ without disturbing the system, such

as changing the optical loading by placing a chopped source in front of the instrument, can

prove to be difficult. For ACBAR we drilled a small hole (approximately ∅3/16”) in the

tertiary mirror and mounted a variable frequency chopped load behind it. Although the

load provides approximately 200 K of chop, the small size of the hole allows enough signal

through without changing the loading on the bolometers appreciably. This chopped source,

referred to as the Calibrator, allows us to measure changes in detector responsivity as well
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Figure D.1: Transfer function of the VXI electronics including the 100 Hz AA filter and
averaging as well as the effects of aliasing for frequencies up to the averaged sample rate
(350 Hz). The left panel shows the amplitude of a signal versus measured frequency. The
solid line is the filter attenuation and the dashed line shows the aliasing of signals above
the Nyquist frequency back into the signal band. The vertical line at 175 Hz denotes the
Nyquist frequency. The right panel shows the phase shift for the same data. Notice the
phase shift changes sign for aliased frequencies.

as bolometer time constants and the full system transfer function.

To measure the transfer function we turn on the calibrator source and start the chopper

wheel spinning. We measure the signal in all detectors for 30 seconds as well as an optical

encoder signal from the chopper blade. This is done for chop frequencies from 10 to 160 Hz.

The optical encoder signal provides an accurate measurement of the optical chop frequency

as well as a phase reference for the bolometer signals. The encoder is physically offset in

angle from the wave guide that the optical signal emanates from; this results in a constant

phase shift between the encoder signal and bolometers. Since the phase shifts from all filter

elements are zero at 0 Hz, this offset is easily fit to and removed from all channels.

A digital frequency lock-in is employed to extract the amplitude and phase of each

bolometer from the time stream signal for each chop frequency. A lock-in is a very useful

technique to extract small AC signals of known frequency from noisy data. Consider a time

varying signal v(t) = V0 cos(ωt− φ) which is then multiplied by two functions to produce



200

Figure D.2: Amplitude attenuation (upper panel) and phase shift (lower panel) as a function
of frequency for all filter elements in the ACBAR signal pipeline for a model τbolo = 2 ms
bolometer with RC = 0.2 ms. The curves are bolometer time constant (dotted), RC filtering
(dashed), 100 Hz AA filter (dot dashed), 650 Hz AC filter (three dot dashed), sinc filter
from averaging (long dashed), and cumulative effect of all five filters (solid).
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X(t) = v(t) cos(ω′t)

= V0 cos(ωt− φ) cos(ω′t)

=
V0
2
[cos(ωt− φ+ ω′t) + cos(ωt− φ− ω′t)]

Y (t) = v(t) sin(ω′t)

=
V0
2
[sin(−ωt+ φ+ ω′t) + sin(ωt− φ+ ω′t)].

Low-pass filtering these two functions by averaging over a time much longer than ω−1

selects the DC component of X(t) and Y (t) with ω′ = ω resulting in

X̄ =
V0
2
cosφ

Ȳ =
V0
2
sinφ

and thus

√

X̄2 + Ȳ 2 = V0/2

tan−1(Y/X) = φ.

Because of the shape of the chopper blade, encoder, and optical signal hole, the harmonic

structure of the power spectra of the measured calibrator signal and bolometer signals

will differ. However, measuring the transfer function requires knowing the processing of a

single frequency component as the frequency is changed. Thus, we select the fundamental

frequency of the signal from the calibrator encoder and lock-in to that frequency in the

bolometer signals. To determine the fundamental frequency we measure the PSD of the

encoder signal and find the peak power. Since we only integrate for 30 seconds the resolution

of the PSD is not adequate to accurately determine the fundamental chop frequency. To

improve the accuracy, we perform a lock-in on the encoder signal for all frequencies within

0.5 Hz around the PSD peak frequency to determine the actual fundamental frequency value

to 1 mHz precision.

With the fundamental chop frequency known, we then measure the amplitude, A(ω),
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and phase, φ′(ω), of each bolometer signal as well as the amplitude, Aenc(ω), and phase,

φenc(ω), of the encoder signal. We then take the difference of the bolometer and encoder

phase to determine their relative phase which removes the phase shift due to the arbitrary

start time of each data file,

φ(ω) = φ′(ω)− φenc(ω).

The measured transfer function of each bolometer, A(ω) and φ(ω), is the cumulative effects

of the bolometer, RC filter of the detector and FETs, AC amplifier filter, anti-aliasing filter,

and any low-pass filter from data averaging. Thus, a model of the transfer function must

be consistent with both the amplitude attenuation and phase shift produced by all of these

elements. Unfortunately, by differencing the phase of the bolometers and optical encoder,

we have removed any phase shift common to those channels; this includes the AA filter and

averaging phase shifts. To measure the AA filter of the VXI we sent a sine wave into one

filtered and one unfiltered channel of system and measured the signal with both averaging

on and off for frequencies from 10 to 200 Hz. The AA filter is well fit by a single pole RC

filter with -3dB point at 100 Hz and the averaging is well described by the sinc function as

described above. This is inconsistent with the manufacture’s claim that the AA filter is a

2-pole Bessel filter.

With the effects of these filters known, we then correct the measured transfer function

amplitude response, A(ω), for the attenuation from the AA filter, the 650 Hz AC filter, and

the averaging of the VXI crate as well as remove the phase shifts from the AA filter and 650

Hz AC from the measured phase shift function, φ(ω). These corrected functions are then

simultaneously fit for two one pole filters: the bolometer time constant, τbolo, and the RC

time constant of the detector impedance and the FET and wiring capacitance, τRC . Figure

D.3 shows this fit for a single 150 GHz bolometer and one can see the excellent agreement

between amplitude and phase for the two time constant model.

D.4 Effects of Transfer Function

As mentioned previously, the processing of input signals by the system transfer function

results in a distortion of the measured time stream data. These effects are well illustrated

by the impulse response of the system which is the time response to a delta function input

signal. The processed signal that will be recorded for a given input signal is determined by
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Figure D.3: Amplitude attenuation (left panel) and phase shift (right panel) as a function
of frequency for a 150 GHz bolometer after correcting for all filters but bolometer time
constant and a residual RC filter. The pluses are the data and the solid line is a fit with
bolometer time constant τbolo = 2.1 ms and τRC = 0.2 ms.

convolving the impulse response of the system with the time stream data.

The convolution theorem states that the Fourier transform of the convolution of two

functions is equal to the product of their Fourier transforms [90]. Specifically, for functions

g(t) and h(t), with respective Fourier transforms G(ω) and H(ω), the convolution theorem

states

g ? h =

∫

∞

−∞

g(τ)h(t− τ)dτ

g ? h⇐⇒ G(ω)H(ω),

where the ⇐⇒ indicates Fourier transform. Using the convolution theorem with one func-
tion as a delta function to represent the time stream impulse, we see that the impulse

response of the system is the inverse Fourier transform of the frequency response transfer

function. The impulse response of ACBAR with a few bolometer time constants is shown

is Figure D.4. One notices the long delay introduced by the system which is irrelevant to

the data analysis since all channels suffer the same delay and can be neglected. The signal

then rises rapidly and decays with a time constant that depends strongly on the speed of

the bolometer.

When the beams are scanned across a source, the impulse response will smear out signal
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Figure D.4: The impulse response of the ACBAR system for various bolometer time con-
stants. The solid line is for an infinitely fast bolometer (τbolo = 0 ms), the dashed line has
τbolo = 2 ms, and the dotted line has τbolo = 10 ms. One can see that the delta function
impulse can become severely distorted in the time stream when detector time constants are
large.

to a degree which depends on the scan velocity. Faster scan speeds push more of the signal

bandwidth to higher frequencies which causes more signal distortion. Figure D.5 shows the

effect of scan velocity on a Gaussian beam for a pair of detector time constants.
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Figure D.5: The effects of scan velocity and detector time constant are illustrated in these
two plots. A model 4.5′ beam is scanned across a point source at a fast chop velocity of 3.3◦

amplitude at 0.7 Hz (left panel) and a slow chop velocity of 3.3◦ at 0.3 Hz. The solid line
is the unfiltered time stream data, the dashed line is the response of the ACBAR system
with a 2 ms bolometer, and the dotted line is for a 10 ms bolometer. One can see that the
10 ms signal is significantly reduced in amplitude and broadened in extent whereas the 2
ms bolometer suffers very little distortion.
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Appendix E CMB Realizations

We need to generate realizations of the CMB and correlated instrument noise for Monte

Carlo simulations of cluster detection efficiency and false detection rates. Here we present

two methods to generate realizations of the CMB given a power spectrum; the first method

can also be used to generate realizations of noise if the covariance matrix is known. These

methods are derived from useful discussions with Ken Ganga, Eric Hivon, and Chao-lin

Kuo.

E.1 Correlation Function Method

As mentioned above, we can generate the covariance matrix of the CMB, CCMBmn , from

the correlation function, CCMB(θ). To generate the covariance matrix for a map on the

sky with pixel positions {~θm} we start by rearranging the pixels into one long vector and
calculate the matrix Θmn which is equal to the angular separation on the sky of each pair

of pixels,

Θmn =
∣

∣

∣

~θm − ~θn
∣

∣

∣
.

Using the correlation function of the CMB generated from a given power spectrum and

window function,

CCMB(θ) =
1

4π

∑

`

(2`+ 1)C`W`P`(cos θ),

the CMB covariance matrix is simply

CCMBmn = CCMB (Θmn) .

For an ensemble of measurements on sky {∆Tm} at positions {~θm}, we can arrange the
temperature measurements into a long vector ~∆T and the covariance matrix is given by the

ensemble average of the vector product of ~∆T with itself,

Cmn =
〈

~∆T ~∆T
T
〉

mn
.
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Since the covariance matrix is symmetric with positive definite eigenvalues, we can find the

“square root” of the matrix via Cholesky Decomposition [90] into two tridiagonal matrices

C = LLT .

If we generate a normally distributed random vector, ~x, with unity RMS and zero mean and

the same length as ~∆T , then the ensemble average of the vector product of ~x will satisfy
〈

~x~xT
〉

= I, where I is the unity identity matrix.

Inserting this into the covariance equation above we have

C = LLT

= LILT

= L
〈

~x~xT
〉

LT

=
〈

(L~x)(L~x)T
〉

=
〈

~∆T ~∆T
T
〉

,

from which we claim that the model temperature map ~∆Tmodel = L~x will have exactly the

same ensemble average covariance matrix as the input correlation function. This equation is

quite remarkable because it shows that once the matrix L has been determined, a realization

of the CMB sky is generated by merely multiplying this matrix times a random vector of

the appropriate length. One should also note that this formalism works equally well for

any covariance matrix including the noise covariance matrix. This means we can generate

realizations of the noise – including any pixel-to-pixel correlations – once we determine the

square root matrix L of the measured noise covariance matrix.

Generating realizations of the CMB this way can be remarkably difficult for large map

sizes because was must include correlations in both RA and DEC. If we consider generating

CMB realizations that are the same size as our raster maps, 180′ × 103′, then with 1′

pixel resolution we will have 18,540 pixels on the sky which translates into a floating point

covariance matrix occupying approximately 1.4 GB of memory; certainly an unwieldy object

to store, let alone perform Cholesky decomposition upon. The situation is much simplified

for generating noise realizations for ACBAR because the only non-zero correlations occur

within rows, and thus, the covariance matrix is block diagonal. The memory requirements
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for a block diagonal matrix based on the raster map dimensions given above is a mere 13 MB.

What is even more useful is that, because the covariance matrix is block diagonal, Cholesky

decomposition need only be performed on the sub-matrices which are only 180 × 180 in
size. If we assume a common correlation function for all rows in the map, we only need

to perform Cholesky decomposition on one of these sub-matrices to generate the full noise

realization for the raster map.

E.2 FFT Method

The angular power spectrum is the ensemble average of the coefficients of the spherical

harmonic decomposition of the sky. However, for a small enough patch of sky, realizations of

the CMB can be generated with the FFT which is much faster than the correlation function

method and consumes much less memory. For a given CMB angular power spectrum one

generates the spatial power spectrum, PCMB(~q), via the method given in the previous

section. For the realizations presented here, we omit the beam window function from the

CMB power spectrum and instead convolve the resulting maps with a Gaussian of the

appropriate width.

Next, we specify the number of pixels (Nx, Ny) and pixel resolution of the map (∆θx, ∆θy)

in both the x̂ and ŷ directions. The corresponding spatial frequency vectors are then

qix = 2π
(i−Nx/2)
Nx∆θx

,

where i runs from 0 to Nx, and similarly for ŷ. Note that the resolution in spatial frequency

is determined by the size of the map in each direction and is given by

∆qx =
2π

Nx∆θx
.

For a full-sky map we have Nx∆θx = 2π and so the resolution is ∆q = 1 rad
−1 (correspond-

ing to ∆` = 1).

The CMB is believed to be a Gaussian random field which means that its Fourier

components are complex and are drawn from independent normal distributions [see, for

example, Liddle and Lyth (2000)]. The value of the real, R~q, and imaginary, I~q, parts of
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Figure E.1: Shows 3.3◦ × 3.3◦ simulations of the CMB for ΛCDM (left), OCDM (middle),
and SCDM (right) cosmologies. The scale in the figures is ±400 µK. Note the excess of
small-scale structure in the OCDM simulation. The axes are both in degrees.

each point in Fourier space, ~q, are drawn from the same distributions and satisfy

σ2~q = 〈R2~q〉 = 〈I2~q 〉 = PCMB~q ∆qx∆qy/2 .

For each point in Fourier space we generate a random value for the real and imaginary

terms and combine them to form the Fourier space map

∆̃T ~q = R~q + iI~q.

The real-space temperature map must be purely real and so the Fourier space map must

satisfy the condition

∆̃T−~q = ∆̃T
?
~q .

One then takes the inverse Fourier transform of the ∆̃T ~q field to produce the realization of

the CMB. Examples of CMB realizations generated with this method are shown in Figure

E.1 for ΛCDM, SCDM, and OCDM cosmologies. The input CMB power spectra used to

generate these CMB realizations were generated with CMBFAST. One can see from these

figures that the OCDM realization has significantly more small-scale structure than the

spatially flat cosmologies as expected from their power spectra (refer to Figure 1.1).

Fourier transforms assume periodicity in the map and so the maps generated in this

manner can be shifted by any amount in any direction and remain smoothly varying. On

the other hand, if we want to measure the spatial power spectrum of a CMBmap by inverting
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this procedure, it is unlikely that the map will satisfy the periodic boundary conditions. To

solve this problem we can apply an apodizing window (e.g., Hanning window) to the map

which will taper to zero at the map edges and mitigate the effects of aperiodicity [90].
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